[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004093070A1 - 光記録媒体及びその記録再生方法 - Google Patents

光記録媒体及びその記録再生方法 Download PDF

Info

Publication number
WO2004093070A1
WO2004093070A1 PCT/JP2004/005215 JP2004005215W WO2004093070A1 WO 2004093070 A1 WO2004093070 A1 WO 2004093070A1 JP 2004005215 W JP2004005215 W JP 2004005215W WO 2004093070 A1 WO2004093070 A1 WO 2004093070A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
layer
dye
substrate
recording layer
Prior art date
Application number
PCT/JP2004/005215
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Noda
Shigeyuki Furomoto
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003110579A external-priority patent/JP2004318985A/ja
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP04726915A priority Critical patent/EP1615214A4/en
Publication of WO2004093070A1 publication Critical patent/WO2004093070A1/ja
Priority to US11/176,749 priority patent/US7672215B2/en
Priority to US12/360,904 priority patent/US7907503B2/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24079Width or depth
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers

Definitions

  • the present invention relates to an optical recording medium having a plurality of recording layers for recording or reproducing information by allowing light to enter from one side, such as a DVD-R, a method of recording and reproducing an optical recording medium, and a method of manufacturing an optical recording medium.
  • an optical recording medium having a plurality of recording layers for recording or reproducing information by allowing light to enter from one side, such as a DVD-R, a method of recording and reproducing an optical recording medium, and a method of manufacturing an optical recording medium.
  • optical disks having a recording layer containing an organic dye such as CD-R, DVD-R, and DVD + R
  • CD-R organic dye
  • DVD-R digital versatile disk
  • DVD + R digital versatile disks
  • a medium such as CD-R which is a typical optical disk having a dye-containing recording layer, has a dye-containing recording layer and a reflective layer on a transparent disk substrate in this order. It has a laminated structure with a protective layer to cover, and performs recording / reproduction with laser light through the substrate.
  • the single-sided DVD-R (single-sided single-layer DVD-R), which is also a typical single-sided DVD-R, has a dye-containing recording layer and a reflective layer on the first transparent disk substrate.
  • a so-called dummy disk having a protective layer in this order, and further forming a reflective layer on the second disk substrate (which may be transparent or opaque) as needed with or without an adhesive layer on the protective layer.
  • the recording / reproducing is performed by a laser beam from one side through the first transparent disk substrate.
  • the dummy disk may be a transparent or opaque disk substrate alone, or may have a layer other than the reflective layer.
  • DVD + R has almost the same configuration as DVD-R, it will be represented by the description of DVD-R.
  • a single-sided DVD-R as described above is bonded to form a medium having two recording layers, and lasers are applied to each recording layer from both sides. Recording / reproducing by irradiating light (that is, irradiating a laser beam from one side of the medium to record / reproduce the recording layer closer to this one side, It irradiates light and records / reproduces information on the recording layer closer to the other side.) Double-sided DVD-R (double-sided dual-layer DVD-R) is also known.
  • a recording / reproducing apparatus is not increased in size and complexity, and a single-sided recording medium is provided to enable continuous reproduction over a plurality of recording layers. It is desired to realize a single-sided optical recording medium (for example, single-sided dual-layer DVD-R) that can perform recording and reproduction on these multiple recording layers by irradiating a laser beam from the optical disk. ing.
  • a single-sided optical recording medium for example, single-sided dual-layer DVD-R
  • a single-sided incident type optical recording medium having the following configuration for example, a dual-layer single-sided incident type DVD-R having two recording layers (single-sided dual-layer DVD-R) has been proposed. (See, for example, JP-A-11-066622).
  • a laminated dual layer type single-sided incident type D VD-R Is a first recording layer made of an organic dye on which information can be optically recorded by irradiating a recording laser beam on a first light-transmitting substrate, and a semi-transparent layer capable of transmitting a part of the reproduction laser beam.
  • a first reflective layer composed of a light-reflective film, an intermediate layer having a light-transmitting property with respect to a recording laser beam and a reproducing laser beam, and information being recorded optically by irradiation with the recording laser beam.
  • the second recording layer made of the organic dye to be obtained, the second reflection layer for reflecting the reproduction laser beam, and the second substrate are sequentially laminated. Disclosure of the invention
  • a guide groove (concave portion) for guiding recording light or reproduction light is provided in a spiral or concentric shape on a substrate of an optical recording medium such as CD or DVD.
  • the depth of the guide groove is generally, for example, about 150 nm.
  • the recording layer is formed so as to fill the concave portions on the substrate.
  • the thickness of the recording layer increases.
  • the recording / reproducing characteristics eg, reflectance, maximum signal amplitude, polarity, etc.
  • the maximum signal amplitude is a value obtained by standardizing the signal amplitude of the longest mark / longest space (14T mark Zl4T space in a DVD medium) by reflectance.
  • optical recording media are provided with a recording track in the thick film portion (concave portion).
  • the guide groove (concave portion) provided on the substrate is a convex portion when viewed from the incident side of light irradiated during recording or reproduction. That is, the dye-containing recording layer becomes a convex portion in the concave portion of the substrate.
  • single-sided optical recording media having a plurality of dye-containing recording layers for example, dual-layer single-sided incident type DVD, etc.
  • recording or reproduction of information on the second dye-containing recording layer is performed by irradiating light through the first dye-containing recording layer.
  • this single-sided incidence type optical recording medium as in a general optical recording medium, if the depth of the guide groove formed on the substrate on the side opposite to the side where light is incident is, for example, about 150 nm, In some cases, the reflectance required for recording or reproducing information on the second dye-containing recording layer may not be obtained.
  • the first dye-containing recording layer good recording / reproducing characteristics can be obtained by providing a recording track in the concave portion (thick film portion) as in the case of a commercially available optical recording medium. Since the recording layer has different conditions from the first dye-containing recording layer, a more preferable recording track may be different.
  • the present invention has been made in view of such a problem, and in an optical recording medium having a plurality of dye-containing recording layers for recording or reproducing information by irradiating light from one side, from the side from which light is incident.
  • an optical recording medium having a plurality of dye-containing recording layers for recording or reproducing information by irradiating light from one side, from the side from which light is incident.
  • the optical recording medium of the present invention comprises a first substrate having a guide groove, a first dye-containing recording layer, a translucent reflective layer, a second dye-containing recording layer, a reflective layer, and a second substrate having a guide groove.
  • the recording / reproducing wavelength is within a range of 1 / 1100 ⁇ to 16X ⁇ .
  • the optical recording medium of the present invention comprises at least a first substrate having a guide groove, a first dye-containing recording layer, a translucent reflective layer, a second dye-containing recording layer, a reflective layer, and a second substrate having a guide groove.
  • An optical recording medium is a first information recording body comprising a first dye-containing recording layer containing a first dye and a translucent reflective layer sequentially laminated on a first substrate having a guide groove. And a second information recording body in which at least a reflective layer and a second dye-containing recording layer containing a second dye are sequentially laminated on a second substrate having a guide groove.
  • the information recording body and the second information recording body are bonded together via an optically transparent adhesive layer with the opposite sides of the substrate facing each other, and light is incident from the first substrate side to obtain information.
  • An optical recording medium for performing recording or reproduction of the optical disk, wherein the depth of the guide groove of the second substrate is within a range of 1 / 1100 ⁇ to 1 / 6 ⁇ , where ⁇ is the recording / reproduction wavelength. It is characterized by having.
  • the optical recording medium of the present invention records or reproduces information by irradiating light from one side.
  • An optical recording medium having a plurality of dye-containing recording layers for producing light, wherein a depth of a guide groove used for recording or reproducing information of the dye-containing recording layer located on a side far from a side from which light is incident is:
  • the recording / reproducing wavelength is ⁇
  • the wavelength is within a range of 1/1000 input to 1 ⁇ 6 X ⁇ .
  • An optical recording medium includes at least a substrate having a dye-containing recording layer, a reflective layer, and a guide groove, and optically records or reproduces information in the dye-containing recording layer by irradiating light from the opposite side of the substrate.
  • the medium is characterized in that the depth of the guide groove of the substrate is in the range of 100 ⁇ 100 to 1/6 ⁇ ⁇ , where ⁇ is the recording / reproducing wavelength.
  • the recording / reproducing method for an optical recording medium comprises a first dye-containing recording layer and a second dye-containing recording layer, and the first dye-containing recording layer and the second dye-containing A method for recording or reproducing information on or from an optical recording medium for recording or reproducing information on a recording layer, wherein the second dye-containing recording layer has a thick film portion and a thin film portion, and records or records information on the second dye-containing recording layer. Reproduction is performed by irradiating light to the thin film portion via the first dye-containing recording layer.
  • the present invention is applied to an optical recording medium in which the thick film portion and the thin film portion of the second dye-containing recording layer are formed so as to correspond to the concave and convex portions of the substrate provided on the side opposite to the side where light is incident. Is preferred.
  • the first dye-containing recording layer has a thick film portion and a thin film portion, and light is incident on the thick film portion to record or reproduce information. Further, it is preferable to apply the present invention to an optical recording medium in which the thick film portion and the thin film portion of the first dye-containing recording layer are formed so as to correspond to the concave and convex portions of the substrate provided on the light incident side.
  • a first information recording body in which at least a first dye-containing recording layer containing a first dye and a translucent reflective layer are sequentially laminated on a first substrate having a guide groove, On a second substrate having at least a reflective layer and a second A second information recording body, which is formed by sequentially laminating a second dye-containing recording layer containing the above-described dye, wherein the first information recording body and the second information recording body face each other on the opposite side of the substrate,
  • An optical recording medium which is bonded through an optically transparent adhesive layer and records or reproduces information by irradiating light from the first substrate side, wherein the second dye-containing recording layer has a thick film portion. And a thin film portion, wherein light is incident on the thin film portion to record or reproduce information.
  • an optical recording medium having a plurality of color element-containing recording layers for recording or reproducing information by irradiating light from one side, wherein the dye-containing recording layer located on a side far from the side from which light is incident, It has a thick film portion and a thin film portion, and is characterized in that light is incident on the thin film portion to record or reproduce information.
  • the method for manufacturing an optical recording medium according to the present invention is a method for manufacturing an optical recording medium for manufacturing the above optical recording medium, comprising: forming a guide groove on the second substrate or the substrate using a negative stamper. It is characterized by including.
  • the optical recording medium the recording / reproducing method of the optical recording medium, and the method of manufacturing the optical recording medium of the present invention
  • a plurality of dye-containing recording layers for recording or reproducing information by irradiating light from one side are provided.
  • the optical recording medium has sufficient reflectance and better recording / reproducing characteristics. is there.
  • recording or reproducing information on the dye-containing recording layer by irradiating light from the opposite side of the substrate there is an advantage that a sufficient reflectivity can be obtained and good recording characteristics can be obtained.
  • FIG. 1 is a schematic diagram showing the overall configuration of an optical recording medium according to one embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing the overall configuration of an optical recording medium according to one embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the overall configuration of another optical recording medium according to an embodiment of the present invention.
  • FIGS. 1 and 2 show an example of an optical recording medium (write-once optical recording medium), a recording / reproducing method of an optical recording medium, and a method of manufacturing an optical recording medium according to an embodiment of the present invention. It will be explained while doing so.
  • the optical recording medium of the present invention is a single-sided incident type optical recording medium having a plurality of recording layers, and capable of recording or reproducing information on each recording layer by irradiating a laser beam from one side.
  • a bonded single-sided incident type optical recording medium for example, a dual layer type single-sided incident type DVD-R (single-sided dual layer DVD) having two recording layers is used.
  • R single-sided dual-layer DVD recordable disc.
  • FIG. 1 is a schematic sectional view showing an optical recording medium (optical disc) according to the present embodiment.
  • the optical recording medium of the present invention comprises a first recording layer containing a dye on a transparent (light transmitting) first substrate (first light transmitting substrate) 21 having a disk shape.
  • First dye-containing recording layer 22, translucent reflective layer (hereinafter referred to as translucent reflective layer) 23, transparent adhesive layer (intermediate layer) 24, buffer layer 28, second recording including dye A layer (second dye-containing recording layer) 25, a reflective layer 26, and a disk-shaped second substrate 27 are provided in this order.
  • the light beam is irradiated from the first substrate 21 side, and recording or reproduction is performed.
  • the optical recording medium of the present invention has a structure in which the first substrate 21 having the guide groove is provided on the first substrate 21. At least a first information recording body in which a first dye-containing recording layer 22 containing a first dye and a translucent reflective layer 13 are sequentially laminated, and a second substrate 27 having a guide groove. , At least a second information recording body in which a reflective layer 26 and a second dye-containing recording layer 25 containing a second dye are sequentially laminated, and a first information recording body and a second information recording body Are bonded together via an optically transparent adhesive layer with the surface opposite to the substrate facing the substrate.
  • being transparent means being transparent (having optical transparency) with respect to a light beam used for recording or reproduction of the optical recording medium.
  • the transparent (light-transmitting) layer also includes a layer that slightly absorbs a light beam used for recording or reproduction. For example, if the light beam used for recording or reproduction has a transmittance of 50% or more (preferably 60% or more), it is assumed that the light beam is substantially light-transmissive (transparent).
  • the first substrate 21 is desirably excellent in optical characteristics such as being transparent and having a small birefringence.
  • the refractive index (refractive index with respect to the wavelength of recording light or reproducing light) of the first substrate 21 is usually 1.40 or more, and preferably 1.45 or more. However, it is usually 1.70 or less, preferably 1.65 or less.
  • the moldability is excellent, such as easy injection molding. Further, low hygroscopicity is desirable because warpage and the like can be reduced. Further, it is desirable that the optical recording medium has a shape stability so as to have a certain rigidity. However, if the second substrate 27 has sufficient shape stability, the first substrate 21 does not need to have high shape stability.
  • Such materials include, for example, acrylic resin, methacrylic resin, polycarbonate resin, polyolefin resin (especially amorphous polyolefin resin).
  • resins made of polyester resin, polystyrene resin, epoxy resin, etc., and glass made can be used.
  • the substrate 21 may be composed of a plurality of layers, for example, a substrate in which a resin layer made of radiation-cured resin such as light-cured resin is provided on a substrate made of glass resin or the like can be used. .
  • polyacrylonitrile is preferred from the viewpoints of high productivity such as optical characteristics and moldability, cost, low moisture absorption, shape stability, and the like.
  • Amorphous polyolefin is preferred from the viewpoints of chemical resistance and low moisture absorption.
  • a glass substrate is preferable in terms of high-speed response and the like.
  • the first substrate 21 is preferably thinner, and usually has a thickness of preferably 2 mm or less, more preferably 1 mm or less. This is because the shorter the distance between the objective lens and the recording layer and the thinner the substrate, the smaller the coma aberration tends to be, and the easier it is to increase the recording density. However, a certain thickness is required in order to obtain sufficient optical characteristics, hygroscopicity, moldability, and shape stability. Usually, the thickness is preferably 10 m or more, more preferably 30 zx m or more.
  • the distance between the objective lens and the two recording layers may be appropriately adjusted in order to perform good recording or reproduction on both the first recording layer 22 and the second recording layer 25.
  • desirable For example, it is preferable to make the focus of the objective lens approximately at the midpoint between the two recording layers, since both the recording layers can be easily accessed.
  • the distance between the objective lens and the recording layer is adjusted to be optimal when the substrate thickness is 0.6 mm.
  • the thickness of the first substrate 21 was reduced from 0.6 mm by half the thickness of the transparent adhesive layer 24 as an intermediate layer. Most preferably, it is thickness. At this time, both recording layers The approximate midpoint of the distance is about 0.6 mm, which makes it easier to focus on both recording layers. '
  • the thickness of these layers and the transparent adhesive layer 24 should be from 0.6 mm. Most preferably, the thickness is one half of the sum of On the first substrate 21, a groove (guide groove) 31 used to guide recording Z reproduction light (recording Z reproduction beam; for example, laser light) at the time of recording or reproducing information has a spiral or concentric shape. Is provided.
  • the groove 31 is provided on the first substrate 21 in this way, irregularities are formed on the surface of the first substrate 21, and the concave portion (groove) is called a group, and the convex portion is called a land. Then, information is recorded or reproduced on the first recording layer 22 using these groups and Z or land as recording tracks. Note that the groove 31 on the first substrate 21 becomes a convex portion in the light incident direction.
  • the first recording layer is usually used. Since 22 is formed by coating on the first substrate 21, the film thickness is increased in the group (concave portion) of the first substrate 21, and the thicker film is more suitable for recording or reproduction, so the group is recorded. It is preferably a truck.
  • the depth of the groove 31 provided on the first substrate 21 (groove depth; the height of the convex portion of the first colorant-containing recording layer) is defined as 110 X It is preferable to set it to ⁇ or more because the reflectance can be sufficiently secured. More preferably
  • the depth of the groove 31 of the first substrate 21 is not more than 2 ⁇ 4 ⁇ ⁇ because transferability of the groove shape can be improved. It is more preferably not more than 2 / 5 ⁇ , and still more preferably not more than 2 / 6 ⁇ .
  • the depth of the groove 31 of the first substrate 21 be 325 nm or less. It is more preferably at most 260 nm, further preferably at most 217 nm.
  • the width (groove width, G width; width of the convex portion of the first dye-containing recording layer; half width) of the groove 31 of the first substrate 21 is 1/10 XT or more, where T is the track pitch. It is preferable that the reflectance is sufficiently secured. More preferably, it is 2/10 XT or more, and further preferably, 3Z10 XT or more. For example, when the track pitch is 740 nm, it is preferable that the width of the groove 31 of the first substrate 21 be 74 nm or more. It is more preferably at least 148 nm, further preferably at least 222 nm.
  • the width of the groove 31 of the first substrate 21 be 910 XT or less because the transferability of the groove shape can be improved. More preferably, it is 8/10 XT or less, and still more preferably, 7Z10 XT or less.
  • the width of the groove 31 of the first substrate 21 is preferably 666 nm or less. It is more preferably at most 592 nm, further preferably at most 518 nm.
  • the groove 31 of the first substrate 21 is slightly meandered in the radial direction at a predetermined amplitude and a predetermined frequency, thereby providing a pebble.
  • isolated pits are formed on the land between the grooves 31 of the first substrate 21 according to a certain rule (this is called land pre-pit, LPP; Land Pre-Pit).
  • LPP land pre-pit
  • LPP Land Pre-Pit
  • the address information may be recorded in advance.
  • It may have uneven pits (pre-pits).
  • the substrate having such irregularities is manufactured by injection molding from a stamper having irregularities.
  • a resin layer made of a radiation curable resin such as a photocurable resin is provided on a substrate such as glass, irregularities such as recording tracks may be formed on the resin layer.
  • the first recording layer 22 usually has the same sensitivity as a recording layer used for a single-sided recording medium (for example, CD-R, DVD-R, DVD + R) or the like.
  • the refractive index (the refractive index with respect to the wavelength of the recording light or the reproduction light) of the dye used for the first recording layer 22 is usually at least 1.0, preferably at least 1.5. However, it is usually less than 3.00.
  • the extinction coefficient (extinction coefficient with respect to the wavelength of recording light or reproduction light) of the dye used for the first recording layer 22 is usually 0.50 or less, preferably 0.
  • the extinction coefficient is too large, the absorption by the dye-containing recording layer becomes too large, and the reflectance becomes low. However, for recording to be performed, it is preferable to have some absorption. There is no particular lower limit, but it is usually 0.001 or more.
  • the reflection, transmission and absorption of light be in appropriate ranges. Recording sensitivity can be increased and thermal interference during recording can be reduced.
  • Such organic dye materials include macrocyclic azananulene dyes (phthalocyanine dyes, naphthalocyanine dyes, porphyrin dyes, etc.), pyromethene dyes, polymethine dyes (cyanine dyes, merocyanine dyes, squirrelium dyes, etc.), anthraquinone dyes Dyes, azurenium dyes, Examples include metal-containing azo dyes and metal-containing indoaniline dyes. Among the various organic dyes described above, metal-containing azo dyes are preferred because they have excellent recording sensitivity and excellent durability and light resistance. In particular, the following general formula (I) or (II)
  • Ring A 1 and A 2 are each independently a nitrogen-containing aromatic heterocyclic ring which may have a substituent, and rings B 1 and B 2 may each independently have a substituent X is an alkyl group having 1 to 6 carbon atoms which is substituted with at least two fluorine atoms.
  • the organic dye used in the recording layer of the optical recording medium of the present invention is preferably 350 to 90.
  • a dye compound having a maximum absorption wavelength Max in a visible light to near infrared region of about 0 nm and suitable for recording with a blue to near microwave laser is preferable.
  • a near-infrared laser typically 780 nm, 830 nm, etc.
  • a red laser typically, 635 ⁇ m, 650 nm, 680 nm, etc.
  • a wavelength of 340 to 53 represented by a wavelength of 410 nm, 515 nm, etc.
  • Dyes of about 0 nm suitable for recording with a so-called blue laser or the like are more preferable.
  • One type of pigment may be used, or two or more types of the same type or different types may be used. You may mix and use above. Further, a dye suitable for recording in each of the above-mentioned recording lights having a plurality of wavelengths may be used in combination to provide an optical recording medium corresponding to recording by a laser beam in a plurality of wavelength ranges.
  • the first recording layer 22 is formed of a transition gold chelate compound (for example, acetyla cetonatochelate, bisphenyldithiol, salicylaldehyde oxime, (Bis-dithio- ⁇ -diketone, etc.), and a recording sensitivity improver such as a metal compound for improving the recording sensitivity.
  • a transition gold chelate compound for example, acetyla cetonatochelate, bisphenyldithiol, salicylaldehyde oxime, (Bis-dithio- ⁇ -diketone, etc.
  • a recording sensitivity improver such as a metal compound for improving the recording sensitivity.
  • the metal-based compound refers to a compound in which a metal such as a transition metal is contained in the form of an atom, an ion, a cluster, or the like, and is, for example, an ethylenediamine-based complex, an azomethine-based complex, or
  • Organometallics such as phenanthroquinone-based complexes, dihydroxyazobenzene-based complexes, dioxime-based complexes, nitrosaminophenol-based complexes, pyridyltriazine-based complexes, acetylacetonato-based complexes, meta-mouthen-based complexes, and vorphyrin-based complexes Compounds are included.
  • the metal atom is not particularly limited, but is preferably a transition metal.
  • the first recording layer 22 of the optical recording medium of the present invention may contain a binder, a leveling agent, an antifoaming agent, etc., if necessary.
  • Preferred binders include polyvinyl alcohol, polyvinylpyrrolidone, nitrocellulose, cellulose acetate, ketone resin, acrylic resin, polystyrene resin, urethane resin, polyvinyl butyral, polybutonate, and polyolefin. .
  • the film thickness of the first recording layer 22 is not particularly limited, since a suitable film thickness varies depending on a recording method or the like, but is usually preferably 5 nm or more, more preferably, to obtain a sufficient degree of modulation. Is at least 10 nm, particularly preferably at least 20 nm. However, in the optical recording medium of the present invention, The thickness is usually not more than 3 m, preferably not more than 1 m, and more preferably not more than 200 nm, since it is necessary that the thickness is not too thick to transmit light.
  • the film thickness of the first recording layer 22 usually differs between the groove and the land, but in the optical recording medium of the present invention, the film thickness of the first recording layer 22 refers to the film thickness in the groove of the substrate.
  • Examples of the method for forming the first recording layer 22 include a generally used thin film forming method such as a vacuum evaporation method, a sputtering method, a doctor blade method, a casting method, a spin coating method, and an immersion method.
  • the spin coating method is preferred from the viewpoints of properties and cost. From the viewpoint that a recording layer having a uniform thickness can be obtained, the vacuum deposition method is more preferable than the coating method.
  • the number of rotations is preferably from 10 to 1500 rpm, and after spin coating, treatment such as heating or exposure to solvent vapor may be performed.
  • the coating solvent for forming the first recording layer 22 by a coating method is not particularly limited as long as it is a solvent that does not invade the substrate.
  • ketone alcohol-based solvents such as diacetone alcohol and 3-hydroxy-3-methyl-2-butanone
  • cellosolve-based solvents such as methyl sorb and ethyl sorb
  • linear hydrocarbon solvents such as n-hexane and n-octane Solvents: Cyclohexane, methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, n-butylcyclohexane, tert-butylcyclohexane, cyclooctane, and other cyclic hydrocarbon solvents; tetrafluoropropanol, o Examples include perfluoroalkyl alcohol solvents such as kutafluor
  • an organic dye and the recording layer components such as various additives if necessary, placed in the installed crucible in a vacuum vessel, 1 0 2 of the vacuum vessel in a suitable vacuum pump ⁇ 1 0 - after evacuating to about 5 P a, and heating the crucible to evaporate the recording layer components, by depositing on a substrate placed facing the crucible to form a first recording layer 2 2 .
  • the translucent reflection layer 23 is a reflection layer having a certain light transmittance.
  • it is a reflective layer that has low absorption of recording / reproducing light, has a light transmittance of 40% or more, and has an appropriate light reflectance (usually 30% or more).
  • an appropriate transmittance can be provided by thinly providing a metal having a high reflectance. It is also desirable to have some degree of corrosion resistance.
  • the first recording layer 22 has a blocking property so that the upper layer (the transparent adhesive layer 24 in this case) of the translucent reflection layer 23 does not affect the first recording layer 22.
  • the thickness of the translucent reflective layer 23 is usually preferably 50 ⁇ m or less. More preferably, it is 30 nm or less. More preferably, it is 25 nm or less. However, since the first recording layer 22 is not affected by the upper layer of the translucent reflection layer 23, a certain thickness is required, and is usually 3 nm or more. More preferably, the thickness is 5 nm or more.
  • a material having a moderately high reflectance at the wavelength of the reproduction light for example, Au, Al, Ag, Cu, Ti, Cr, Ni, Pt, T a, Pd, Mg, Se, Hf, V, Nb, Ru, W, Mn, Re, Fe, Co, Rh, Ir, Zn, Cd, Ga, In, S Metals and metalloids such as i, Ge, Te, Pb, Po, Sn, Bi, and rare earth metals can be used alone or as an alloy.
  • Au, Al, and Ag have high reflectivity and are suitable as the material of the translucent reflective layer 23.
  • other components may be included.
  • those containing Ag as a main component are particularly preferable because of their low cost and high reflectivity.
  • the main component means one having a content of 50% or more.
  • the translucent reflection layer 23 has a small thickness and large crystal grains of the film may cause reproduction noise.
  • pure silver tends to have large crystal grains, Ag is preferably used as an alloy.
  • each may be 0.1 to 15 atomic%, but the total of them is 0.1 to 15 atomic%. Preferably, it is atomic%.
  • a particularly preferred alloy composition contains 0.1 to 15 atomic% of at least one element selected from the group consisting of Ag, Ti, Zn, Cu, Pd, and Au, and at least It contains 0.1 to 15 atomic% of one rare earth element.
  • rare earth metals neodymium is particularly preferred.
  • a layer consisting of Au alone has small crystal grains and is suitable because of its excellent corrosion resistance. However, it is more expensive than Ag alloy.
  • Examples of the method of forming the translucent reflective layer 23 include a sputtering method, a ion plating method, a chemical vapor deposition method, and a vacuum vapor deposition method. Further, between the first substrate 21 and the translucent reflective layer 23, for example, the improvement of the reflectivity and the recording A well-known inorganic or organic intermediate layer or adhesive layer may be provided in order to improve the characteristics and the adhesion.
  • an intermediate layer or an adhesive layer
  • a first recording layer 22 For example, by stacking an intermediate layer (or an adhesive layer), a first recording layer 22, an intermediate layer (or an adhesive layer), and a translucent reflective layer 23 on the first substrate 21 in this order, An intermediate layer (or an adhesive layer) is provided between the first recording layer 22 and the first recording layer 22, and an intermediate layer (or an adhesive layer) is provided between the first recording layer 22 and the translucent reflective layer 23. Is also good.
  • the transparent adhesive layer 24 needs to be transparent, and preferably has a high adhesive force and a small shrinkage rate during curing and bonding because the shape stability of the medium is high.
  • the refractive index (refractive index for the wavelength of recording light or reproducing light) of the transparent adhesive layer 24 is usually 1.40 or more, and preferably 1.45 or more. However, it is usually 1.70 or less, preferably 1.65 or less.
  • the transparent adhesive layer 24 is preferably made of a material that does not damage the second recording layer 25.
  • the transparent adhesive layer 24 is usually made of resin, it is easily compatible with the second recording layer 25, and in order to prevent this and suppress damage, it is desirable to provide a buffer layer 28 described later between both layers. .
  • the transparent adhesive layer 24 be made of a material that does not damage the translucent reflective layer 23.
  • a known inorganic or organic protective layer may be provided between both layers to suppress damage.
  • the thickness of the transparent adhesive layer 24 be controlled accurately.
  • the thickness of the transparent adhesive layer 24 is usually preferably 5 im or more.
  • a certain distance is required between the two recording layers. Although it depends on the focus servo mechanism, it is usually required to be 5 im or more, preferably 10 m or more.
  • the thickness is usually preferably 100 m or less.
  • Examples of the material of the transparent adhesive layer 24 include a thermoplastic resin, a thermosetting resin, an electron beam-curable resin, and an ultraviolet-curable resin (including a delay-curable resin).
  • Thermoplastic resins, thermosetting resins, etc. can be formed by dissolving in an appropriate solvent to prepare a coating solution, applying the coating solution, and drying (heating).
  • the ultraviolet curable resin can be formed by preparing a coating solution as it is or by dissolving it in an appropriate solvent, applying the coating solution, and irradiating ultraviolet light to cure the resin.
  • ultraviolet curable resins There are various types of ultraviolet curable resins, and any of them can be used as long as they are transparent. In addition, these materials may be used alone or in combination, or may be used as a multilayer film instead of a single layer.
  • a coating method a method such as a spin coating method or a casting method such as a casting method is used as in the case of the recording layer.
  • the spin coating method is preferable.
  • a resin having a high viscosity can be applied and formed by screen printing or the like. It is preferable to use an ultraviolet-curable resin which is liquid at a productivity of 20 to 40 ° C. because it can be applied without using a solvent.
  • the viscosity is preferably adjusted to be 20 to 100 mPa * s.
  • an adhesive layer can also be formed by using a pressure-sensitive double-sided tape and pressing the tape between the laminated structures.
  • UV-curable adhesive there are a radical UV-curable adhesive and a cationic UV-curable adhesive, both of which can be used. All known compositions can be used as the radical-based UV-curable adhesive, and include a UV-curable compound and a photopolymerization initiator as essential components. A composition is used.
  • the ultraviolet curable compound monofunctional (meth) acrylate or polyfunctional (meth) acrylate can be used as a polymerizable monomer component. Each of these can be used alone or in combination of two or more.
  • acrylate and methacrylate are collectively referred to as (meth) acrylate.
  • Examples of the polymerizable monomer that can be used in the optical recording medium of the present invention include the following.
  • Monofunctional (meth) acrylates include, for example, methyl, ethyl, propyl, butyl, amyl, 2-ethylhexyl, octyl, nonyl, dodecyl, hexadecyl, octadecyl, cyclohexyl, benzyl , Methoxyethyl, butoxystil, phenoxethyl, nonylphenoxethyl, tetrahydrofurfuryl, dalicidyl, 2-hydroxyethyl, 2-hydroxypropyl, 3-chloro-2-hydroxypropyl, dimethylaminoethyl, getylaminoethyl, nonyl (Meth) acrylates having a group such as phenoxyshetyl tetrahydrofurfuryl, t
  • polyfunctional (meth) acrylates examples include 1,3-butylene glycol, 1,4-butanediol, 1,5-pentanedidiol, 3-methyl-1,5-pentanediol, and 1,6-.
  • Examples of those which can be used together with the polymerizable monomer include polymerizable oligomers such as polyester (meth) acrylate, polyether (meth) acrylate, epoxy (meth) acrylate, and urethane (meth) acrylate.
  • the photopolymerization initiator used in the optical recording medium of the present invention any of known ones capable of curing an ultraviolet curable compound represented by a polymerizable oligomer and a polymerizable monomer can be used.
  • a molecular cleavage type or a hydrogen abstraction type is suitable for the optical recording medium of the present invention.
  • Examples include benzoin isobutyl ether, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, benzyl, 2,4,6-trimethylbenzoyldiphenylphosphinoxide, 2-benzyl-2 —Dimethylamino-1- (4-morpholinophenyl) -butane-one, bis (2,6-dimethoxybenzoyl) -one, 4,4-Trimethylpentyl phosphinoxide and the like are preferably used, and other molecular-cleavable compounds such as 1-hydroxycyclohexylphenyl ketone, benzoinethyl ether, benzyldimethyl ketal, 2 —Hydroxy_2-methyl-1 1-phenylpropane 1-one, 1- (4-isopropylphenyl) 1-2-hydroxy-2—methylpropane 1-one and 2-methyl-11- (4-methylthiophene)
  • sensitizers for the photopolymerization initiator include, for example, trimethylamine, methyldimethanolamine, triethanolamine, p-ethylaminoacetophenone, p-dimethylaminoethyl benzoate, p-dimethylaminoisobenzoyl, N, N —Amines that do not cause an addition reaction with the above-mentioned polymerizable components, such as dimethylpentylamine and 4,4′-bis (getylamino) benzophenone, can be used in combination.
  • compositions can be used as the cationic UV-curable adhesive, and an epoxy resin containing a cationic polymerization type photoinitiator corresponds to this.
  • the cationic polymerization type photoinitiator include a sulfonium salt, a rhododium salt and a diazonium salt.
  • Tetrakis (pentafluorophenyl) Pole 4-Methylphenyl 4- (1-methylethyl) phenylhexafluoro Phosphate, 4-Methylphenyl-41- (1-methylethyl) phenyl Phenylfluorohexafluoro Antimonate, 4-methylphenyl-4- (1-methylethyl) phenyltetrafluoroproporate, 4-methylphenyl4 -— (1-methylethyl) phenyltetraphenyl (kisulfone fluorophenyl) porate, etc. .
  • Epoxy resins include bisphenol A-epicrol hydrin type, alicyclic epoxy, long chain aliphatic type, brominated epoxy resin, glycidyl ester type, glycidyl ether type, heterocyclic type, etc. It doesn't matter.
  • the epoxy resin it is preferable to use one having a low content of free free chlorine and chlorine ions so as not to damage the reflective layer.
  • the amount of chlorine is preferably 1% by weight or less, more preferably 0.5% by weight or less.
  • the ratio of the cationic polymerization type photoinitiator per 100 parts by weight of the cationic ultraviolet curable resin is usually from 0.1 to 20 parts by weight, preferably from 0.2 to 5 parts by weight.
  • a known photosensitizer can be used in combination to more effectively use the wavelength in the near ultraviolet region or the visible region of the wavelength range of the ultraviolet light source. Examples of the photosensitizer at this time include anthracene, phenothiazine, benzylmethyl ketal, benzophenone, and acetofenone. It is.
  • the UV curable adhesive may further include other additives as necessary, such as a thermal polymerization inhibitor, an antioxidant represented by hindered phenol, hindered amine, phosphite, etc., a plasticizer, epoxy silane, and mercapto.
  • a silane coupling agent represented by silane, (meth) acryl silane or the like can be blended for the purpose of improving various characteristics. These are selected from those having excellent solubility in ultraviolet-curable compounds and those that do not hinder ultraviolet transmission.
  • the second recording layer 25 is usually formed of a single-sided recording medium (eg, CD-R, DVD).
  • the refractive index (refractive index with respect to the wavelength of the recording light or the reproduction light) of the dye used for the second recording layer 25 is usually 1.00 or more, and preferably 1.5 or more. However, it is usually 3.00 or less.
  • the extinction coefficient (extinction coefficient with respect to the wavelength of recording light or reproduction light) of the dye used for the second recording layer 25 is usually 0.50 or less, and preferably 0.30 or less. If the extinction coefficient is too large, the absorption by the dye recording layer will be too large, and the reflectance will be low. However, in order to perform recording, it is preferable that there is some absorption, and there is no particular lower limit, but it is usually 0.001 or more.
  • the second recording layer 25 and the reflective layer 26 light reflection and It is desirable that absorption and absorption be within appropriate ranges.
  • the recording sensitivity can be increased, and the thermal interference during recording can be reduced.
  • the material of the second recording layer 25, the film formation method, and the like are described in substantially the same manner as the first recording layer 22, so only different points will be described.
  • the thickness of the second recording layer 25 is not particularly limited because the suitable thickness varies depending on the recording method and the like, but is usually preferably 10 nm or more in order to obtain a sufficient degree of modulation. It is preferably at least 30 nm, particularly preferably at least 50 nm. However, since it is necessary that the thickness is not too thick in order to obtain an appropriate reflectance, it is usually 3 / m or less, preferably 1 m or less, more preferably 200 nm or less.
  • the film thickness of the second recording layer 25 usually means the film thickness in the thick film portion.
  • the materials used for the first recording layer 22 and the second recording layer 25 may be the same or different.
  • the reflection layer 26 needs to have high reflectance. It is also desirable that the material has high durability.
  • the thickness of the reflective layer 26 is usually preferably 20 nm or more. More preferably, it is 30 nm or more. More preferably, it is 50 nm or more. However, in order to shorten the production tact time and reduce the cost, it is preferable that the thickness be somewhat thin, and it is usually 400 nm or less. More preferably, the thickness is 300 nm or less.
  • a material having a sufficiently high reflectance at the wavelength of the reproduction light for example, a metal of Au, Al, Ag, Cu, Ti, Cr, Ni, Pt, Ta and Pd Can be used alone or as an alloy.
  • Au, Al, and Ag have high reflectivity and are suitable as the material of the reflective layer 26.
  • other components include the following Is also good. Examples of other components include Mg, Se, Hf, V, Nb, Ru, W, Mn, Re, Fe, Co, Rh, Ir, Cu, Zn, Cd, Ga, Mention may be made of metals and metalloids such as In, Si, Ge, Te, Pb, Po, Sn, Bi and rare earth metals.
  • the main component means one having a content of 50% or more.
  • Ag is preferably used as an alloy rather than pure silver.
  • each may be 0.1 to 15 atomic%, but the total of them is 0.1 to 1 atomic%. It is preferably 5 atomic%.
  • a particularly preferred alloy composition contains 0.1 to 15 atomic% of at least one element selected from the group consisting of Ti, Zn, Cu, Pd, and Au, and contains at least 1 element. It contains 0.1 to 15 atomic% of rare earth elements.
  • rare earth metals neodymium is particularly preferred. Specifically, it is AgPdCtAgCuAtAgCuAuNd, AgCuNd or the like.
  • the reflective layer 26 a layer made of only Au is preferable because of its high durability (high corrosion resistance). However, they are more expensive than Ag alloys.
  • a multilayer film by alternately stacking low-refractive-index thin films and high-refractive-index thin films of a material other than a metal, and use it as the reflective layer 26.
  • the reflective layer 26 for example, a sputtering method, an ion pump, Examples include a rating method, a chemical vapor deposition method, and a vacuum vapor deposition method. Further, a known inorganic or organic intermediate layer or adhesive layer may be provided above and below the reflective layer 26 to improve, for example, the reflectance, the recording characteristics, and the adhesion.
  • the second substrate 27 desirably has shape stability so that the optical recording medium has some rigidity. That is, it is preferable that the mechanical stability is high and the rigidity is high.
  • Such a material examples include resins such as acryl-based resin, methacryl-based resin, polycarbonate resin, polyolefin-based resin (particularly, amorphous polyolefin), polyester-based resin, polystyrene resin, and epoxy resin, and glass. Can be used.
  • resins such as acryl-based resin, methacryl-based resin, polycarbonate resin, polyolefin-based resin (particularly, amorphous polyolefin), polyester-based resin, polystyrene resin, and epoxy resin, and glass. Can be used.
  • the second substrate 27 may be composed of a plurality of layers, for example, a substrate in which a resin layer composed of a radiation curable resin such as a photocurable resin is provided on a substrate such as glass or resin. Can also be used as the second substrate.
  • the second substrate 27 needs to have particularly high shape stability. In this regard, it is desirable that the hygroscopicity is low.
  • the second substrate 27 need not be transparent, but if it is transparent, the refractive index of the second substrate 27 (the refractive index with respect to the wavelength of recording light or reproduction light) is usually 1.40 or more. And preferably at least 1.45. However, it is usually 1.70 or less, and preferably 1.65 or less.
  • the same material that can be used for the first substrate 21 can be used.
  • an A1 alloy substrate such as A1—Mg alloy containing A1 as a main component, or Mg Mg-based substrates such as Mg-Zn alloys, etc., and substrates made of any of silicon, titanium, and ceramics. A substrate obtained by combining these can be used.
  • the above-mentioned resins are preferred from the viewpoints of high productivity such as moldability, cost, low hygroscopicity, shape stability and the like, and particularly preferred is polyphenol.
  • Amorphous polyolefin is preferred from the viewpoints of chemical resistance, low hygroscopicity and the like.
  • a glass substrate is preferable in terms of high-speed response and the like.
  • the second substrate 27 is preferably thick to some extent, and the thickness is preferably 0.3 mm or more.
  • a thinner one is advantageous for making the recording / reproducing device thinner, and is preferably 3 mm or less. More preferably, it is 1.5 mm or less.
  • first substrate 21 An example of a preferred combination of the first substrate 21 and the second substrate 27 is the first substrate 2
  • the first and second substrates 27 are made of the same material and have the same thickness. Since the rigidity is the same and the balance is maintained, it is preferable that the medium does not easily deform as a medium against environmental changes. In this case, it is preferable that the degree and direction of deformation when the environment changes are the same for both substrates.
  • the first substrate 21 is as thin as about 0.1 mm and the second substrate 27 is as thick as about 1.1 mm. This is preferable because the objective lens can easily approach the recording layer and increase the recording density.
  • the first substrate 21 may be in a sheet shape, and may not have a guide groove.
  • a groove (guide groove) 32 used to guide recording / reproducing light (recording / reproducing beam; for example, laser light) at the time of recording or reproducing information is spirally or concentrically formed on the second substrate 27. It is provided in a shape.
  • the grooves 32 are provided in the second substrate 27 in this way, irregularities are formed on the surface of the second substrate 27, and the concave portions (grooves) are called groups, and the convex portions are called lands. Note that the groove 32 on the second substrate 27 becomes a recess in the light incident direction.
  • the film thickness of the group (concave portion) of the second substrate 27 is reduced. It becomes thicker (this part is called a thick film part), and the film thickness becomes thinner at the land (convex part) of the second substrate 27 (this part is called a thin film part).
  • the depth of the groove 32 is small, it is possible to record or reproduce information on or from the second recording layer 25 using the group and Z or land as recording tracks. it can.
  • a pebble is provided by slightly meandering the groove 32 of the second substrate 27 at a predetermined amplitude and a predetermined frequency in the radial direction.
  • isolated pits are formed in the land between the grooves 32 of the second substrate 27 according to a certain rule (this is called land pre-pit, LPP; Land Pre-Pit).
  • the address information may be recorded in advance.
  • a wobble is provided on the land by slightly meandering the groove wall of the groove 32 of the second substrate 27 at a predetermined amplitude and a predetermined frequency in the radial direction.
  • address information and other information may be recorded in advance by providing pits in the group.
  • the second substrate 27 having such irregularities is preferably manufactured by injection molding using a resin from a stamper having irregularities from the viewpoint of cost.
  • a resin layer made of a radiation-curable resin such as a photocurable resin is provided on a substrate such as glass, irregularities such as recording tracks may be formed on the resin layer.
  • a buffer layer 28 as an intermediate layer is provided between the transparent adhesive layer 24 and the second recording layer 25.
  • the buffer layer 28 prevents mixing of the two layers and prevents compatibility.
  • the buffer layer 28 may have a function other than preventing the mixing phenomenon. Further, another intermediate layer may be interposed as needed.
  • the material of the buffer layer 28 must be incompatible with the second recording layer 25 and the transparent adhesive layer 24 and have a certain degree of light transmittance, but known inorganic and organic substances can be used. In terms of characteristics, inorganic materials are preferably used. For example, (a) metal or semiconductor, (b) oxide, nitride, sulfide, oxysulfide, fluoride or carbide of metal or semiconductor, or (c) amorphous carbon is used. Above all, a layer made of a substantially transparent dielectric or a very thin metal layer (including an alloy) is preferable.
  • silicon oxides especially silicon dioxide, oxides such as zinc oxide, cerium oxide, and yttrium oxide; sulfides such as zinc sulfide and yttrium sulfide; nitrides such as silicon nitride; silicon carbide; (Oxysulfides); and the alloys described below are preferred.
  • a mixture of silicon oxide and zinc sulfide in a weight ratio of about 30:70 to 90:10 is also suitable.
  • a mixture of zinc oxide and Iou dioxide yttrium (Y 2 ⁇ 2 S- Z N_ ⁇ ) is also suitable.
  • the metal or alloy is preferably silver or a material containing silver as a main component and further containing 0.1 to 15 atomic% of at least one element selected from the group consisting of titanium, zinc, copper, palladium, and gold. It is. Further, those containing silver as a main component and containing at least one rare earth element in an amount of 0.1 to 15 atomic% are also suitable. As the rare earth, neodymium, praseodymium, cerium and the like are suitable.
  • a resin layer may be used as long as it does not dissolve the dye in the recording layer during the preparation of the buffer layer.
  • a polymer film that can be prepared by vacuum evaporation or the CVD method is useful.
  • the thickness of the layer 2 8 is preferably equal to or greater than 2 nm, more preferably 5 nm or more. If the thickness of the buffer layer 28 is excessively thin, the prevention of the above-mentioned mixing phenomenon may be insufficient. However, it is preferably 2000 nm or less, More preferably, it is 500 nm or less. If the buffer layer 28 is excessively thick, not only is it unnecessary to prevent miscibility, but also the light transmittance may be reduced. In the case of a layer made of an inorganic material, it takes a long time to form a film, which may lower productivity or increase the film stress. In particular, in the case of a metal, the transmittance is preferably about 20 nm or less because the transmittance of light is excessively reduced.
  • a buffer layer may be provided as an intermediate layer between the translucent reflective layer 23 and the transparent adhesive layer 24.
  • any other layer may be interposed as needed.
  • any other layer may be provided on the outermost surface of the medium.
  • a protective layer may be provided to protect the recording layer and the reflective layer.
  • the material of the protective layer is not particularly limited as long as it protects the recording layer and the reflective layer from external force.
  • examples of the material of the organic substance include a thermoplastic resin, a thermosetting resin, an electron beam curable resin, and an ultraviolet curable resin.
  • the inorganic substances oxidation Kei arsenide, nitride Gay element, M g F 2, S n 0 2 , and the like.
  • thermoplastic resin, a thermosetting resin, or the like can be formed by dissolving in an appropriate solvent to prepare a coating solution, and applying and drying the solution.
  • the ultraviolet curable resin can be formed by preparing a coating solution as it is or by dissolving it in an appropriate solvent, applying the coating solution, and irradiating with UV light to cure the resin.
  • acrylate resins such as urethane acrylate, epoxy acrylate, and polyester acrylate can be used. These materials may be used alone or as a mixture, or may be used as a multilayer film instead of a single layer.
  • a coating method such as a spin coating method and a casting method, and a method such as a sputtering method and a chemical vapor deposition method are used as in the case of the recording layer.
  • the spin coating method is preferable.
  • the thickness of the protective layer is generally in the range of 0.1 to 100 im, but is preferably 1 to 50 im in the optical recording medium of the present invention.
  • the optical recording medium if necessary, it is possible to write (print) on a surface other than the incident surface of the recording light or the reproduction light with various types of printing such as ink jet or thermal transfer, or with various writing instruments.
  • a print receiving layer may be provided.
  • a recording layer may be provided in addition to the main layer structure, and the number of recording layers may be three or more.
  • two optical recording media having the present layer configuration and the first substrate 21 with the outside facing each other may be bonded to each other to provide a larger capacity medium having four recording layers.
  • the recording medium is far from the first dye-containing recording layer 22 on the side closer to the light incident side (one side). Therefore, recording or reproduction of information on the second dye-containing recording layer 25 located on the side farther from the side from which light is incident is performed by the first dye. This is performed by making light incident through the containing recording layer 22.
  • the depth of the groove 32 of the second substrate 27 is different from the depth of the groove of a general dye-based optical recording medium, and is reduced to a specific range.
  • the shape change of the reflective layer reflecting the groove shape is reduced. A sufficient reflectivity is obtained. If a sufficiently high reflection rate can be obtained in this way, compatibility with DVD-ROM will be easier. Further, if the depth of the groove of the second substrate 27 can be reduced, the productivity of the second substrate 27 having the guide groove is also improved, and the mass productivity is improved.
  • the depth of the groove 32 of the second substrate 27 is reduced to a specific range to reduce the depth of the groove, so that the second pixel
  • both the thin film portion 25B and the thick film portion 25A of the second dye-containing recording layer 25 are used.
  • light can be applied to the lands (convex portions) of the second substrate 27, that is, the concave portions (thin film portions 25B) of the second recording layer 25 (irradiation).
  • information can be recorded or reproduced, and light is incident on the group (concave portion) of the second substrate 27, that is, the convex portion (thick film portion 25A) of the second recording layer 25. It is also possible to record (reproduce) information by irradiating (irradiating).
  • the second substrate is specifically described as follows.
  • the depth (groove depth) of the groove 32 of the second substrate 27 is preferably equal to or greater than 1 / 10000X ⁇ , where ⁇ is the recording / reproducing wavelength. It is more preferably at least 2 / 100 ⁇ , and even more preferably at least 3Z100 ⁇ . This is because it is preferable to have such a depth in order to secure a sufficient reflectivity and apply tracking stably.
  • the groove of the second substrate 27 is
  • the depth of 32 is preferably 7 nm or more. More preferably, the thickness is 13 nm or more, and further preferably, 20 nm or more.
  • the depth of the groove 32 of the second substrate 27 is preferably set to 1/6 X ⁇ or less. More preferably, 1Z8 ⁇ ⁇ or less, further preferably 1/1 0 ⁇ or less. This is because it is desirable not to make the groove too deep in order to secure the amount of reflected light by reducing the shape change of the reflective layer and to obtain a high reflectance.
  • the depth of the groove 32 of the second substrate 27 is preferably not more than 108 nm. It is more preferably at most 81 nm, further preferably at most 65 nm.
  • the width (groove width, G width; half width) of the groove 32 of the second substrate 27 is preferably equal to or more than 1/10 XT, where T is the track pitch. More preferably, it is 2Z10 XT or more, and further preferably, 3/10 XT or more. This is because if the groove width is too narrow, tracking tends to be difficult.
  • the width of the groove 32 of the second substrate 27 is 74 nm or more. It is more preferably at least 148 ⁇ m, further preferably at least 222 nm.
  • the width of the groove 32 of the second substrate 27 be 9Z10 XT or less. It is more preferably 8Z10 XT or less, and further preferably 7/10 XT or less. This is because if the groove width is too wide, tracking becomes difficult to perform, and good recording tends to be difficult.
  • the width of 2 is preferably 666 nm or less.
  • the thickness is more preferably 592 nm or less, and even more preferably 518 nm or less.
  • the depth of the groove 32 of the second substrate 27 is set to be smaller than the depth of the groove of a general dye-based optical recording medium. It is preferable that the depth of the groove 32 be smaller than the depth of the groove 31 of the first substrate 21.
  • the recording / reproducing wavelength is 65 nm
  • the depth of the groove 32 of the second substrate 27 is set to 65 nm or less
  • the depth of the groove 31 of the first substrate 21 is, for example, 108 nm. It is preferable to set the above.
  • the combination of the setting of the groove depth of the first substrate 21 and the second substrate 27 is not limited to this, and the depth of the groove 32 of the second substrate 27 is What is necessary is just to be shallower than the depth of the groove 31.
  • the depth of the groove 32 of the second substrate 27 is made shallower than the depth of the groove 31 of the first substrate 21, preferably 90% or less, more preferably, and more preferably. It is 80% or less, more preferably 70% or less. However, it is usually at least 5% of the depth of the groove 31 of the first substrate 21, preferably at least 10%.
  • the single-sided incident type optical recording medium as described above, if a recording track is provided in the concave portion (thick film portion 22A) of the first dye-containing recording layer 22, good recording / reproducing characteristics can be obtained. If a recording track is provided in the concave portion (thick film portion 25A) of the second dye-containing recording layer 25, better recording / reproducing characteristics (eg, reflectance, polarity, maximum signal amplitude, etc.) may not be obtained. is there.
  • the optical recording medium according to the present embodiment has a first dye-containing recording layer 22 having a thick film portion 22A and a thin film portion 22B, and a thick film portion 25A and a thin film portion 25B.
  • a recording track is provided on the thick film portion 22A.
  • a recording track is provided in the thin film portion 25B so as to obtain better recording / reproducing characteristics.
  • the phase difference optical path length difference between a concave portion (non-track portion) and a convex portion (track portion) when irradiating a light beam is important for performing tracking on a recording track and performing good recording or reproduction. It becomes.
  • the difference between the light reflected from the interface between the first recording layer 22 and the translucent reflective layer 23 in the concave portion and the light reflected from the same interface in the convex portion corresponds to the optical path length difference.
  • This difference in optical path length mainly depends on the distance between the light incident side surfaces of the concave portion and the convex portion of the first recording layer 22 (the first substrate 21 side of the thin film portion 22B of the first recording layer 22).
  • Dl (see FIG. 1), the thickness difference between the concave and convex portions of the first recording layer 22, It is determined from the complex refractive index of the recording layer 22 and the complex refractive index of the first substrate 21.
  • the difference between the reflected light from the interface between the second recording layer 25 and the reflective layer 26 in the concave portion and the reflected light from the same interface in the convex portion corresponds to the optical path length difference.
  • This optical path length difference mainly depends on the distance between the light incident side surfaces of the concave and convex portions of the second recording layer 25 [the transparent bonding layer (intermediate layer) of the thin film portion 25 B of the second recording layer 25. ) Distance between the surface on the 24th side and the surface on the transparent adhesive layer 24 side of the thick film portion 25A] d2 (see Fig. 1), and the film thickness of the concave and convex portions of the second recording layer 25 It is determined from the difference, the complex refractive index of the second recording layer 25, and the complex refractive index of the transparent adhesive layer 24.
  • d 2 is necessarily different from d 1.
  • 2 is considerably smaller than (11) because the recording layer is applied and the grooves are filled to some extent on the surface.
  • the optical path length difference and, consequently, the phase difference show a behavior significantly different from that of the first recording layer 22.Thus, it is considered that it is more preferable to record on the thin film portion 25B in the second recording layer 25. .
  • the thickness (L film thickness) of the thin film portion 25 B of the second recording layer 25 be equal to or more than a predetermined thickness (for example, 70 nm).
  • a predetermined thickness for example, 70 nm.
  • the difference in film thickness between the thick film portion 25A and the thin film portion 25B of the second recording layer 25 is expressed as follows: ⁇ is the recording / reproducing wavelength, and ⁇ is the refractive index of the second recording layer 25. / 100 X ⁇ or more is preferable. It is more preferably at least 2 2100 ⁇ ⁇ , even more preferably at least 3 ⁇ 100 ⁇ ⁇ X ⁇ .
  • the film thickness difference is 1Z33 ⁇ / ⁇ or less. It is more preferably not more than 1 ⁇ 4X ⁇ / ⁇ , and further preferably not more than 15 ⁇ .
  • the thick film portion 25 A and the thin film portion of the second recording layer 25 The difference in film thickness from 25 B is preferably 3 nm or more.
  • the thickness is more preferably 6 nm or more, and further preferably 9 nm or more.
  • the difference in film thickness is preferably 98 nm or less.
  • the thickness is more preferably 74 nm or less, and even more preferably 59 nm or less.
  • the difference in film thickness between the thick film portion 22 A and the thin film portion 22 B of the first recording layer 22 is represented by 1 /, where ⁇ is the recording / reproducing wavelength and ⁇ is the refractive index of the first recording layer 22. It is preferable to be 30 0 ( ⁇ / ⁇ ) or more. It is more preferably not less than 2 ⁇ 30 ⁇ ( ⁇ ), and still more preferably not less than 3/3 ⁇ ( ⁇ / ⁇ ).
  • the difference in film thickness is preferably 4/4 X ( ⁇ / ⁇ ) or less. It is more preferably 4 ⁇ 5 X ( ⁇ / ⁇ ) or less, and still more preferably 4 ⁇ 6 X ( ⁇ / ⁇ ) or less.
  • the thick film portion 22 A and the thin film portion of the first recording layer 22 are provided.
  • the difference in film thickness from 22 B is preferably at least 10 nm.
  • the thickness is more preferably at least 20 nm, further preferably at least 30 nm.
  • the difference in film thickness is preferably set to be equal to or less than 295 nm. It is more preferably at most 236 nm, still more preferably at most 197 nm.
  • the thick film portion 22A and the thin film portion 22B of the first recording layer 22 are formed corresponding to the concave and convex portions of the first substrate 21 located on the light incident side, respectively. For this reason, it is preferable to provide recording tracks in groups (concave portions) of the first substrate 21, that is, in convex portions (thick film portions 22 A) of the first recording layer 22 protruding in the light incident direction.
  • the thick film portion 25A and the thin film portion 2A of the second recording layer 25 are the thick film portion 25A and the thin film portion 2A of the second recording layer 25
  • information is recorded or reproduced on the optical recording medium by irradiating light to the land (convex portion) of the second substrate 27, that is, the convex portion (thin film portion 25B) of the second recording layer 25.
  • the recording or reproduction of information will be performed (by irradiation).
  • the optical recording medium of the present invention while recording tracks are provided on the group of the first substrate 21, recording tracks may be provided on the lands of the second substrate 27, and information of each recording layer may be recorded. Alternatively, it may be necessary to change the tracking polarity during playback.
  • the depth of the groove 32 of the second substrate 27 is made shallower than the depth of the groove of a general dye-based optical recording medium, or the second dye containing the second dye on the side far from the light incident side.
  • the information recording / reproducing characteristics of the second dye-containing recording layer 25 are improved, but these embodiments are combined. It is more preferable to make the depth of the groove 32 of the second substrate 27 shallow and to provide a recording track in the thin film portion 25B of the second dye-containing recording layer 25.
  • first information recording body having a first recording layer 22 containing a dye and a translucent reflective layer 23 on a transparent first substrate 21 in this order is prepared.
  • second information recording body having a reflective layer 26, a second recording layer 25 containing a dye, and a buffer layer 28 in this order on the second substrate 27 is prepared. Then, the first information recording medium and the second information recording medium are bonded to each other via the transparent adhesive layer 24 with the recording layer inside.
  • a transparent first substrate 21 having grooves, lands, and pre-pits formed on the surface with irregularities is formed by injection molding or 2P method (from a resin stamper having irregularities to a photocurable resin or the like). (A method of manufacturing by transferring and curing to a curable resin).
  • the first recording layer 22 is formed by forming a film on the surface of the first substrate 21 having the convex and concave sides by spin coating or the like.
  • the first information recording body is manufactured by forming the reflection layer 23.
  • a second substrate 27 having grooves, lands, and pits formed on the surface with irregularities is formed by injection molding or 2P method.
  • a reflective film 26 is formed by sputtering and vapor-depositing an Ag alloy or the like on the uneven surface of the second substrate 27.
  • a film is formed by spin coating or the like to form the second recording layer 25.
  • a buffer layer 28 is formed by sputtering a dielectric or the like, thereby producing a second information recording body.
  • the second information recording medium is placed, and the adhesive is spread over the entire surface by high-speed rotation, pressing, or the like. This is performed while adjusting the thickness of the adhesive layer to be within a predetermined range.
  • the optical recording medium is manufactured by irradiating ultraviolet rays from the first information recording medium side through the translucent reflective layer 23 and curing and bonding an adhesive such as an ultraviolet curable resin.
  • an adhesive layer can also be formed by using a pressure-sensitive double-sided tape and pressing the tape between the first information recording body and the second information recording body while pressing the tape.
  • a delay-curing adhesive applying an adhesive on the first information recording body by screen printing or the like, irradiating with ultraviolet light, placing the second information recording body, and pressing the adhesive layer. Can be formed.
  • the delayed curing adhesive is usually opaque in many cases.
  • a method of manufacturing the substrates 21 and 27 having the guide grooves (irregularities) will be described.
  • a first substrate 21 is manufactured by transferring irregularities to a resin material by injection molding using a metal stamper having desired irregularities.
  • a method of manufacturing the second substrate 27 by transferring the unevenness to a resin material by injection molding using a metal stamper having the opposite unevenness.
  • a recording track may be provided with synchronization information, address information, and the like, for example, by adding a pebble.
  • a recording track is provided on the thick film portion 22A of the first recording layer 22 and a recording track is provided on the thin film portion 25B of the second recording layer 25.
  • a pebble is given to the concave portion of the substrate 21 and the convex portion of the second substrate 27.
  • the procedure for applying a wobble to the concave portion of the first substrate 21 is as follows.
  • a beam is exposed while being meandering on a glass substrate Z photoresist, and then developed to obtain a master disk with irregularities.
  • this irregular master usually, there is a wobble in a concave portion (groove portion).
  • a stamper is manufactured by using the uneven master, and a first substrate 21 having unevenness (grooves, guide grooves) is manufactured by injection molding using the manufactured stamper.
  • the convex portion of the stamper has a wobble, the wobble can be formed in the concave portion of the first substrate 21.
  • the concave portion of the stamper has the concave portion in order to give the concave portion to the convex portion of the second substrate 27. For this reason, in the above-described method, it is not possible to add a pebble to the convex portion of the second substrate 27. Therefore, first, a stamper is manufactured in the same manner as the stamper used to form the irregularities (grooves, guide grooves) on the first substrate 21 described above. However, the shape of the unevenness (groove depth, groove width, meandering width, etc.) depends on the unevenness to be formed on the second substrate 27. 5215
  • the concavities and convexities are transferred from this stamper to produce a negative stamper having the concavo-convex reverse.
  • the concave portion of the negative stamper has a wobble.
  • a second substrate 27 having irregularities is manufactured by injection molding using this negative stamper.
  • the concave portion of the negative type stamper has a rugged portion, a wobbled portion can be formed on the convex portion of the second substrate 27.
  • Recording on the optical recording medium configured as described above is performed by irradiating the recording layer with a laser beam focused to a diameter of about 0.5 to 1 m from the first substrate 21 side.
  • thermal deformation of the recording layer such as decomposition, heat generation, and melting occurs due to absorption of laser light energy, and the optical characteristics change.
  • the recorded information is reproduced by reading the difference in reflectance between the portion where the optical characteristics are changed and the portion where the optical characteristics are not changed by the laser beam.
  • the first recording layer 22 and the second recording layer 25 can be distinguished by the focus error signal obtained by the knife edge method, the astigmatism method, the Foucault method, or the like.
  • the objective lens that focuses the laser beam is moved up and down, S-shaped curves are obtained at the laser focusing position corresponding to the first recording layer 22 and the position corresponding to the second recording layer 25, respectively.
  • the first recording layer 22 and the second recording layer depend on which S-curve is used for the focus support. It is possible to select which of the recording layers 25 is to be recorded / reproduced.
  • the information when information is recorded or reproduced on the first recording layer 22, the information is recorded on the group (concave portion) of the first substrate 21, that is, on the convex portion (thick film portion 22 A) of the first recording layer 22. Recording or reproduction of information is performed by irradiating (irradiating) light.
  • the second recording layer 25 when information is recorded or reproduced on the second recording layer 25, light is applied to the land (convex portion) of the second substrate 27, that is, the convex portion (thin film portion 25B) of the second recording layer 25. It is preferable to record (reproduce) information by irradiating (irradiating).
  • the laser beam used for the optical recording medium of the present embodiment includes N, He—Cd, Ar, He—Ne, ruby, semiconductor, dye laser, etc., but is lightweight and compact. Semiconductor lasers are preferred because of their ease of use and ease of handling.
  • the laser beam used is preferably shorter in wavelength for high-density recording, but is particularly preferably a laser beam of 350 to 530 nm.
  • Representative examples of such laser light include laser light having a center wavelength of 405 nm, 410 nm, and 515 nm.
  • An example of laser light in the wavelength range of 350 to 530 nm can be obtained by using a high-power semiconductor laser of 405 nm, 410 nm blue or 515 nm turquoise.
  • a semiconductor laser capable of continuous oscillation with a fundamental oscillation wavelength of 740 to 960 nm or (b) a semiconductor laser excited by a semiconductor laser and capable of continuous oscillation with a fundamental oscillation wavelength of 740 to 960 nm It can also be obtained by converting the wavelength of one of the solid-state lasers using a second harmonic generation element (SHG).
  • SHG may be any piezo element that lacks inversion symmetry, but is preferably KDP, ADP, BNN, KN, LB ⁇ , or a compound semiconductor.
  • the second harmonic include a semiconductor laser having a fundamental oscillation wavelength of 860 nm, a harmonic of 430 nm, and a solid-state laser pumped by a semiconductor laser, a Cr-doped L. i S r A 1 F6 crystal (A fundamental oscillation wavelength of 860 nm) and a harmonic of 4300 nm.
  • the optical recording medium the method for manufacturing the optical recording medium, and the method for recording / reproducing the optical recording medium according to the present embodiment, a plurality of recording layers 2 for recording or reproducing information by irradiating light from one side.
  • the light is incident on the thin film portion 25B of the second recording layer 25 located on the side farther from the side where the light is incident, and the information of the second recording layer 25 is
  • sufficient reflectivity and good recording / reproducing characteristics for recording or reproducing information of the second recording layer 25 located on the side farther from the side where light is incident. (Polarity, maximum signal amplitude, etc.).
  • good recording / reproducing characteristics can be obtained in any of the plurality of recording layers 22 and 25.
  • the present invention is not limited to this, and information is input by allowing light to enter from one side.
  • the present invention can be applied to an optical recording medium having a different configuration as long as the optical recording medium has a dye-containing recording layer for performing recording or reproduction of the optical recording medium.
  • a first recording layer containing a dye is formed on a disc-shaped transparent (light-transmitting) first substrate (first light-transmitting substrate) 1.
  • first substrate first light-transmitting substrate
  • semi-transparent reflective layer semi-transparent reflective layer
  • intermediate resin layer intermediate resin layer
  • second dye-containing recording layer second dye-containing recording layer
  • reflective layer 6 second substrate 7 8 (comprising the adhesive layer 7 and the base 8) in this order
  • the present invention can also be applied to a laminated dual-layer single-sided DVD-R.
  • Reference numerals 11 and 12 are guide grooves (grooves and recesses).
  • the information of the second recording layer 5 located on the far side from the side where light is incident For recording or reproducing information, guide grooves (grooves, concave portions) 12 provided on the second substrate 78 (substrate opposite to the side where light is incident) are used, so that sufficient reflectivity can be obtained.
  • the depth of the guide groove 12 may be in the range of ⁇ ⁇ 0 ⁇ ⁇ to ⁇ ⁇ ⁇ , where ⁇ is the recording / reproducing wavelength.
  • a recording track is provided in the groove (group, concave portion) 12 of the second substrate 78, that is, in the concave portion (thin film portion) of the second recording layer 5.
  • a recording track is provided in the groove (group, concave portion) 12 of the second substrate 78, that is, in the concave portion (thin film portion) of the second recording layer 5.
  • information is recorded or reproduced by irradiating (irradiating) light into the grooves (groups, concave portions) 12 of the second substrate 78, ie, the concave portions (thin film portions) of the second recording layer 5.
  • the present invention when the present invention is applied to a laminated dual-layer type single-sided incidence type optical recording medium, its effect is high and preferable. That is, on a first substrate having a guide groove, at least a first information recording body in which a first dye-containing recording layer containing a first dye and a translucent reflective layer are sequentially laminated, and a guide groove is provided. A second information recording body in which at least a reflective layer and a second dye-containing recording layer containing a second dye are sequentially laminated on a second substrate, wherein the first information recording body and the second information recording are provided. Applied to an optical recording medium that records or reproduces information by irradiating light from the first substrate side, with the body and the substrate facing each other with the surface on the side opposite to the substrate facing through an optically transparent adhesive layer. Then, the effect is high.
  • the present invention can be applied not only to a so-called substrate surface incident type optical recording medium but also to a so-called film surface incident type optical recording medium. That is, for example, a substrate having a substrate (including a protective layer and a substrate), a dye-containing recording layer, a reflective layer, and a substrate having a groove therein. Light is incident from the substrate side (the opposite side of the substrate) to form the dye-containing recording layer.
  • the present invention can also be applied to an optical recording medium (an optical recording medium provided with one dye-containing recording layer) for recording or reproducing the information described above.
  • the depth of the guide groove of the substrate is recorded so that the guide groove (groove, concave portion) provided on the substrate (substrate opposite to the side on which light is incident) can obtain sufficient reflection.
  • the reproduction wavelength is ⁇
  • the wavelength may be in the range of 1 ′′ 100 ⁇ to 1 / ⁇ .
  • At least a first dye-containing recording layer containing a first dye and a semi-transparent reflective layer are sequentially laminated on a first substrate having a guide groove.
  • the first information recording body and the second information recording body are bonded together with an optically transparent adhesive layer facing the opposite side of the substrate.
  • the description will focus on the fabrication of the second information recording medium.
  • a reflective layer was formed on the second substrate by sputtering a silver alloy containing Ag at 97 atm% or more.
  • an fluorinated pentane solution of a metal-containing azo dye is spin-coated on the reflective layer under a predetermined coating condition (dye concentration), and dried at 100 ° C. for 30 minutes to obtain a second dye.
  • a containing recording layer was formed.
  • the thickness of the second dye-containing recording layer was adjusted to a predetermined thickness by changing the application conditions.
  • the refractive index of this recording layer was 2.25 and the extinction coefficient was 0.02.
  • a radical ultraviolet curable resin (adhesive) is spin-coated on the protective layer, and is applied to the reflective layer side of the first substrate including the separately prepared recording layer (first recording layer).
  • an optical recording medium is manufactured.
  • the first information recording medium does not have a recording layer and a semi-transparent reflective layer.
  • a polycarbonate substrate reffractive index: 1.56 with a groove of 0.6 mm was used.
  • the refractive index of the adhesive layer after curing was 1.53.
  • the reflectivity was 25% or more, and the reflectivity was 30%. Normally, in order to obtain compatibility with DVD-ROM, it is sufficient that the reflectance of the unrecorded portion of the second recording layer is more than 10%. In the present embodiment, since the first recording layer and the translucent reflective layer are not provided, the reflectivity tends to be higher than in the actual case. Considering the effect of the first information recording medium, it is considered that a reflectance of more than 10% can be obtained.
  • the polarity of the recording signal is desirably HtoL.
  • the maximum signal amplitude be large. Usually, it is preferably 0.5 or more, more preferably 0.6 or more. However, the maximum signal amplitude can be improved by adjusting the thickness of the recording layer, groove shape, recording power, recording pulse waveform (recording strategy), etc., so long as the reflectance is sufficient. Even if the value of the maximum signal amplitude is small, it can be used as an optical recording medium. For example, by recording at a high recording power, the maximum signal amplitude can be increased by increasing the width of the recording mark in the track direction.
  • Table 1 shows the measurement results of the reflectance, polarity, and maximum signal amplitude of each of the examples and the comparative examples.
  • a guide groove is formed on the second substrate so as to have a groove depth of 65 nm (corresponding to approximately ⁇ 0), a groove width (G width) of 320 nm, and a land width (L width) of 420 nm. did.
  • the buffer layer was formed by sputtering an Ag alloy. Then, the metal-containing azo dye was spin-coated at a dye concentration of 3.55 wt% as a coating condition to form a second recording layer.
  • the thickness of the groove portion of the second recording layer thus formed (thick film portion, G film thickness) ) was 85 nm, and the film thickness at the land (thin film portion, L film thickness) was 70 nm.
  • the polarity of the recording signal and the maximum signal amplitude were measured, as shown in Table 1, the polarity of the recording signal was H to L, and the maximum signal amplitude was less than 0.1 (when recording at a recording power of 15 mW). ). However, the maximum signal amplitude can be improved by adjusting the film thickness of the recording layer, etc., so that it is considered that such a recording medium can be used.
  • Example 2 the reflectance of the land portion was measured on the optical recording medium manufactured in the same manner as in Example 1 under the above-described conditions. As a result, as shown in Table 1, the reflectance was 40.0%.
  • Example 3 where, except for a single layer buffer was S i 0 2 was measured reflectance in the same manner as in Example 2 above, as shown in Table 1, the reflectance was 2 8.1% .
  • Example 4 by setting the dye concentration as the coating condition to 4.43 wt%, the film thickness (thick film portion, G film thickness) of the groove portion of the second recording layer was set to 100 nm, and the film thickness of the land portion was changed. Same as Example 2 except that the thickness (thin film portion, L film thickness) was 80 nm (that is, the difference in film thickness between the thick film portion and the thin film portion of the second recording layer was 20 nm). Then, the reflectance was measured, and as shown in Table 1, the reflectance was 27.4%.
  • Example 5 the reflectance was measured in the same manner as in Example 4 except that the buffer layer was changed to ZnS—Si 2, and as shown in Table 1, the reflectance was 26.7%. Met.
  • Example 6 the coating concentration was set to 4.43 wt%, the film thickness (thick film portion, G film thickness) of the groove portion of the second recording layer was set to 100 nm, and the film thickness of the land portion was changed. Same as Example 3 except that the thickness (thin film portion, L film thickness) was 80 nm (that is, the difference in film thickness between the thick film portion and the thin film portion of the second recording layer was 20 nm). Then, the reflectance was measured, and as shown in Table 1, the reflectance was 29.7%.
  • guide grooves are formed on the second substrate so as to have a groove depth of 50 nm (corresponding to approximately ⁇ 3), a groove width (G width) of 410 nm, and a land width (L width) of 330 nm. did.
  • the buffer layer was formed by sputtering an Ag alloy. Then, the metal-containing azo dye was spin-coated at a dye concentration of 3.55 wt% as a coating condition to form a second recording layer.
  • the film thickness (thick film portion, G film thickness) of the groove portion of the second recording layer thus formed is 105 nm, and the film thickness of the land portion (thin film portion, L film thickness) is 75 ⁇ . m.
  • the reflectance of the group portion of the optical recording medium thus manufactured was measured under the above-described conditions, the reflectance was 40.1% as shown in Table 1.
  • Example 8 except that the single layer buffer was S i 0 2 was measured reflectance in the same manner as in Example 7 described above, as shown in Table 1, the reflectivity was 3 0.9% .
  • the polarity and maximum signal amplitude of the recording signal were measured, as shown in Table 1, the polarity of the recording signal was H to L and the maximum signal amplitude was 0.36. However, since the maximum signal amplitude can be improved by adjusting the thickness of the recording layer, etc., it is considered that such an optical recording medium can be used.
  • Example 9 the dye concentration as the coating condition was set to 4.43 wt%. Then, the thickness (thick film portion, G film thickness) of the groove portion of the second recording layer was set to 130 nm, and the film thickness of the land portion (thin film portion, L film thickness) was set to 95 nm (ie, The reflectance was measured in the same manner as in Example 7 except that the thickness difference between the thick film portion and the thin film portion of the second recording layer was set to 35 nm. The reflectance was 29. 1%.
  • Example 10 the reflectance was measured in the same manner as in Example 9 except that the buffer layer was changed to ZnS-Si— 2, and as shown in Table 1, the reflectance was 31. 3%.
  • the polarity of the recording signal and the maximum signal amplitude were measured, as shown in Table 1, the polarity of the recording signal was H to L and the maximum signal amplitude was 0.31. However, since the maximum signal amplitude can be improved by adjusting the thickness of the recording layer, etc., it is considered that such an optical recording medium can be used.
  • Example 11 by setting the dye concentration as the coating condition to 4.43 wt%, the film thickness (thick film portion, G film thickness) of the groove portion of the second recording layer was set to 100 nm, The point where the film thickness of the portion (thin film portion, L film thickness) was set to 80 nm (that is, The reflectance was measured in the same manner as in Example 8 described above, except that the thickness difference between the thick film portion and the thin film portion of the second recording layer was set to 20 nm. The reflectance was 31.2%.
  • the polarity of the recording signal and the maximum signal amplitude were measured, as shown in Table 1, the polarity of the recording signal was H to L and the maximum signal amplitude was 0.3. However, since the maximum signal amplitude can be improved by adjusting the film thickness of the recording layer, it is considered that such an optical recording medium can be used.
  • Example 12 the reflectance of the land portion was measured on the optical recording medium manufactured in the same manner as in Example 7 under the above-described conditions. As a result, as shown in Table 1, the reflectance was 45.3%.
  • Example 1 3 except that a single layer buffer was Z n S- S i 0 2 was measured reflectance in the same manner as in Example 1 2 described above, as shown in Table 1, the reflectivity 2 9 0%.
  • Example 14 the reflectance of the land portion was measured on the optical recording medium manufactured in the same manner as in Example 8 under the above-described conditions. As a result, as shown in Table 1, the reflectance was 36.4%.
  • Example 14 Even with an optical recording medium manufactured in the same manner, if group recording is performed as in Example 8, the characteristics required for recording and reproduction cannot be obtained, whereas the optical recording medium according to Example 14 is not obtained. It was found that if land recording was performed, the characteristics required for recording and reproduction could be obtained.
  • Example 15 the reflectance of the land portion was measured on the optical recording medium manufactured in the same manner as in Example 9 described above under the conditions described above. As a result, as shown in Table 1, the reflectance was 31.1%.
  • Example 9 Even with an optical recording medium manufactured in the same manner, if the group recording is performed as in Example 9, the characteristics required for recording and reproduction cannot be obtained, but as in Example 15, It was found that if land recording was performed, the characteristics required for recording and reproduction could be obtained.
  • Example 16 the reflectance of the land portion was measured on the optical recording medium manufactured in the same manner as in Example 10 described above under the conditions described above. As a result, Table 1 As shown in the figure, the reflectance was 38.2%.
  • Example 10 Even with an optical recording medium manufactured in the same manner, if group recording is performed as in Example 10, the characteristics required for recording and reproduction cannot be obtained. It was found that the characteristics required for recording and reproduction could be obtained if land recording was performed.
  • Example 17 the reflectance of the land was measured on the optical recording medium manufactured in the same manner as in Example 11 under the above-described conditions. As a result, as shown in Table 1, the reflectance was 36.1%.
  • Example 11 Even with an optical recording medium manufactured in the same manner, if group recording is performed as in Example 11, the characteristics required for recording and reproduction cannot be obtained. It was found that if land recording is performed, the characteristics required for recording and reproduction can be obtained.
  • Example 18 In Example 18, the second substrate has a groove depth of 30 nm (approximately equivalent to ⁇ / 20), a groove width (G width) of 220 nm, and a land width (L width) of 52 nm.
  • a guide groove was formed as described above.
  • the buffer layer was formed by sputtering an Ag alloy. Then, a metal-containing azo dye was spin-coated with a dye concentration of 3.10 wt% as a coating condition to form a second recording layer.
  • the film thickness (thick film portion, G film thickness) of the groove portion of the second recording layer thus formed is 110 nm, and the film thickness of the land portion (thin film portion, L film thickness) is 70 nm. Met.
  • the reflectance of the group portion of the optical recording medium thus manufactured was measured under the above-described conditions, the reflectance was 43.0% as shown in Table 1.
  • Example 1 9 except that the buffer layer was Z n S- S i 0 2 Where the reflectance was measured in the same manner as in Example 1 8 described above, as shown in Table 1, the reflectance 3 9 0%.
  • the polarity of the recording signal and the maximum signal amplitude were measured, as shown in Table 1, the polarity of the recording signal was H to L and the maximum signal amplitude was 0.22. However, since the maximum signal amplitude can be improved by adjusting the thickness of the recording layer, etc., it is considered that such an optical recording medium can be used.
  • the buffer layer is S i 0.
  • the polarity of the recording signal and the maximum signal amplitude were measured, as shown in Table 1, the polarity of the recording signal was H to L and the maximum signal amplitude was 0.11. However, since the maximum signal amplitude can be improved by adjusting the thickness of the recording layer, etc., it is considered that such an optical recording medium can be used.
  • the thickness (thick film portion, G film thickness) of the groove portion of the second recording layer was set to 135 nm by setting the dye concentration as the coating condition to 3.55 wt%. Except that the thickness of the land portion (thin film portion, L film thickness) was 90 nm (that is, the difference between the thick film portion and the thin film portion of the second recording layer was 45 nm), The reflectance was measured in the same manner as in Example 18 described above. As shown in Table 1, the reflectance was 30.2%.
  • the polarity of the recording signal and the maximum signal amplitude were measured, as shown in Table 1, the polarity of the recording signal was Ht 0 L, and the maximum signal amplitude was smaller than 0.1 (at a recording power of 15 mW). (If recorded). However, since the maximum signal amplitude can be improved by adjusting the film thickness of the recording layer, it is considered that such an optical recording medium can be used.
  • Example 22 the reflectance was measured in the same manner as in Example 21 except that the buffer layer was changed to ZnS-Si— 2. As shown in Table 1, the reflectance was 4 1 ⁇ 7%. Thus, one layer buffer from A g alloy Z n S - be replaced by S i 0 2, it was found that the required reflectivity obtained for recording and reproducing.
  • Example 23 the thickness (thick film portion, G film thickness) of the groove portion of the second recording layer was set to 135 nm by setting the dye concentration as the coating condition to 3.55 wt%. Except for the point that the film thickness of the land portion (thin film portion, L film thickness) was 90 nm (that is, the difference in film thickness between the thick film portion and the thin film portion of the second recording layer was 45 nm), When the reflectance was measured in the same manner as in Example 20 of Example 1, the reflectance was 38.9% as shown in Table 1.
  • the polarity and maximum signal amplitude of the recording signal were measured, as shown in Table 1, the polarity of the recording signal was H to L and the maximum signal amplitude was 0.17. However, since the maximum signal amplitude can be improved by adjusting the thickness of the recording layer, etc., it is considered that such an optical recording medium can be used.
  • Example 24 the reflectance of the land portion was measured on the optical recording medium manufactured in the same manner as in Example 18 described above under the conditions described above. As shown in Table 1, the reflectance was 49%. It was 1%.
  • Example 25 when the reflectance of the land portion was measured under the above-described conditions on the optical recording medium manufactured in the same manner as in Example 19 described above, the reflectance was 43 as shown in Table 1. 9%.
  • Example 19 Even with an optical recording medium manufactured in the same manner, if group recording is performed as in Example 19, the characteristics required for recording and reproduction cannot be obtained. It was found that if land recording is performed, the characteristics required for recording and reproduction can be obtained.
  • Example 26 the reflectance of the land portion was measured on the optical recording medium manufactured in the same manner as in Example 20 described above under the above-described conditions. As shown in Table 1, the reflectance was 49.5%.
  • Example 26 Even with an optical recording medium manufactured in the same manner, if group recording is performed as in Example 20, the characteristics required for recording and reproduction cannot be obtained, whereas in Example 26, It was found that if land recording is performed, the characteristics required for recording and reproduction can be obtained.
  • Example 27 In Example 27, the reflectivity of the land portion was measured on the optical recording medium manufactured in the same manner as in Example 21 described above under the above-described conditions. As shown in Table 1, the reflectivity was 33.9%.
  • Example 28 the reflectance of the land portion was measured on the optical recording medium manufactured in the same manner as in Example 22 described above under the above conditions. As shown in Table 1, the reflectance was 47.9%.
  • Example 29 the reflectance of the land portion was measured on the optical recording medium manufactured in the same manner as in Example 23 described above under the above-mentioned conditions. As shown in Table 1, the reflectance was It was 44.2%.
  • Example 23 Even with an optical recording medium manufactured in the same manner, if group recording is performed as in Example 23, the characteristics required for recording and reproduction cannot be obtained. It was found that if land recording was performed, the characteristics required for recording and reproduction could be obtained.
  • the second substrate had a groove depth of 120 nm (almost equivalent to ⁇ 5.5), a groove width (G width) of 330 nm, and a land width (L width) of 410 nm.
  • a guide groove was formed.
  • the buffer layer was formed by sputtering an Ag alloy. Then, the second recording layer was formed by spin-coating the metal-containing azo dye at a dye concentration of 1.9 wt% as a coating condition.
  • the film thickness (thick film portion, G film thickness) of the groove portion of the second recording layer thus formed was 70 nm, and the film thickness of the land portion (thin film portion, L film thickness) was 30 nm.
  • the reflectance of the group portion was measured on the optical recording medium thus manufactured under the above-described conditions, the reflectance was 9.0% as shown in Table 1.
  • Comparative Example 2 Comparative except that a single layer buffer is S I_ ⁇ 2 above Example 1 When the reflectance was measured in the same manner as described above, the reflectance was 6.5% as shown in Table 1.
  • the buffer layer was formed by sputtering an Ag alloy. Then, a metal-containing azo dye was spin-coated at a dye concentration of 1.90 wt% as a coating condition to form a second recording layer.
  • the film thickness (thick film portion, G film thickness) of the groove portion of the second recording layer thus formed was 75 nm, and the film thickness of the land portion (thin film portion, L film thickness) was 20 nm.
  • Comparative Example 4 except that a single layer buffer was S i 0 2 was measured reflectance in the same manner as in Comparative Example 3 described above, as shown in Table 1, the reflectance was 1 9.9% .
  • the recording layer and the translucent reflection layer were used as the first information recording medium. Although a substrate having no groove and no groove was used, the evaluation of the second recording layer does not have a significant effect even when the ordinary first information recording medium is used.

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

複数の色素含有記録層を有する片面側入射型光記録媒体において、光を入射させる側から遠い側に位置する色素含有記録層の情報の記録又は再生を行なうのに十分な反射率及び良好な記録特性が得られるようにする。このため、案内溝を有する第1基板(21),第1色素含有記録層(22),半透明反射層(23),中間層(24),第2色素含有記録層(25),反射層(26),案内溝を有する第2基板(27)を備え、第1基板(21)側から光を入射させて第1色素含有記録層(22)及び第2色素含有記録層(25)の情報の記録又は再生を行なう光記録媒体を、第2基板(27)の案内溝の深さが、記録再生波長をλとして、1/100×λ~1/6×λの範囲内になるように構成する。

Description

光記録媒体及びその記録再生方法
技術分野
本発明は、 例えば D V D— Rなどの片面側から光を入射させて情報の 記録又は再生を行なう複数の記録層を備える光記録媒体, 光記録媒体の 記録再生方法及び光記録媒体の明製造方法に関する。
細 背景技術
現在、 CD— R, CD-RW, MO等の各種光記録媒体は、 大容量の 情報を記憶でき、 ランダムアクセスが容易であるために、 コンピュータ のような情報処理装置における外部記憶装置として広く認知され普及し つつある。 さらに取り扱う情報量の増大により、 記憶密度を高めること が望まれている。
種々の光記録媒体の中でも CD— R, DVD-R, DVD + Rなど、 有機色素を含む記録層 (色素含有記録層ともいう) を有する光ディスク は比較的安価で、且つ、再生専用の光ディスクとの互換性を有するため、 特に広く用いられている。
一例として、 色素含有記録層を有する光ディスクとして代表的な CD 一 Rなどの媒体は、 透明ディスク基板上に色素含有記録層と反射層とを この順に有し、 これら色素含有記録層や反射層を覆う保護層を有する積 層構造であり、 基板を通してレーザ光にて記録 ·再生を行なうものであ る。
さて、 同じく代表的な片面型 D VD— R (片面 1層 DVD— R) は、 第 1の透明ディスク基板上に色素含有記録層、 反射層、 これらを覆う保 護層をこの順に有し、 さらに保護層の上に接着層を介して或いは介さず に、 第 2のディスク基板 (透明でも不透明でも良い) 上に必要に応じて 反射層を形成したいわゆるダミーディスクを設けた積層構造であり、 第 1の透明ディスク基板を通して片面側からレーザ光にて記録 ·再生を行 なうものである。 ダミーディスクは透明又は不透明のディスク基板のみ であっても良いし、 反射層以外の層を設けていても良い。
なお、 DVD + Rは、 D VD— Rとほぼ同じ構成であるため、 DVD —Rの説明で代表させる。
また、 光記録媒体の記録容量を更に大容量化するために、 上記のよう な片面型 DVD— Rを貼り合わせて 2つの記録層を有する媒体とし、 両 面側から各記録層にレ一ザ光を照射して記録 ·再生を行なう (即ち、 媒 体の一面側からレーザ光を照射し、 この一面側に近い方の記録層の記録 •再生を行なう一方、 媒体の他面側からもレーザ光を照射し、 この他面 側に近い方の記録層の記録 ·再生を行なう) 両面型 DVD— R (両面 2 層 DVD— R) も知られている。
ところで、 近年、 複数の記録層を有する光記録媒体においては、 記録 再生装置が大型化, 複雑化しないようにし、 また、 複数の記録層にわた る連続的な再生を可能とすべく、 片面側からレーザ光を照射することに よってこれらの複数の記録層に対して記録 ·再生を行なうことができる 片面入射型光記録媒体 (例えば片面入射 2層 DVD— R) を実現するこ とが望まれている。
このため、 例えば、 以下のような構成を有する片面入射型光記録媒体 として、 例えば 2つの記録層を有するデュアルレイヤタイプの片面入射 型 DVD— R (片面 2層 DVD— R) が提案されている (例えば特開平 1 1— 066622号公報参照)。
例えば貼り合わせ型のデュアルレイヤタイプの片面入射型 D VD-R は、 第 1透光性基板上に、 記録用レーザ光の照射により光学的に情報が 記録し得る有機色素からなる第 1記録層と、 再生用レーザ光の一部を透 過し得る半透光性反射膜で構成された第 1反射層と、 記録用レーザ光及 び再生用レーザ光に対して透光性を有する中間層と、 記録用レーザ光の 照射により光学的に情報が記録し得る有機色素からなる第 2記録層と、 再生用レーザ光を反射する第 2反射層と、 第 2基板とを順に積層して構 成される。 発明の開示
ところで、一般に、 C Dや D V Dなどのような光記録媒体の基板には、 記録光又は再生光を案内するための案内溝 (凹部) が螺旋状又は同心円 状に設けられている。
例えば、 C D— R , D V D— Rなどの色素含有記録層 (以下、 記録層 という) を持つ光記録媒体では、 案内溝の深さは一般に例えば 1 5 0 n m程度である。
また、 記録層を持つ C Dや D V Dなどの光記録媒体を作製すべく、 そ の基板上に記録層を形成する材料を塗布すると、 基板上の凹部が埋まる ように記録層が形成されるので、 凹部では記録層の膜厚が厚くなる。 そ して、 通常、 このように膜厚の厚くなつている部分 (厚膜部; 凹部) に 記録トラックを設けると、 記録再生特性 (例えば反射率, 最大信号振幅 , 極性など) が良いとされている。
ここで、 最大信号振幅とは、 最長マーク/最長スペース (D V D系の 媒体では、 1 4 Tマーク Z l 4 Tスペース) の信号振幅を反射率で規格 化した値である。
このため、 市販されている光記録媒体は全て厚膜部 (凹部) に記録ト ラックが設けられている。 なお、 基板に設けられる案内溝 (凹部) は、 記録時又は再生時に照射 される光の入射側から見ると凸部である。 つまり、 基板の凹部では色素 含有記録層は凸部となる。
現在、 複数の色素含有記録層を有する片面入射型光記録媒体 (例えば デュアルレイヤタイプの片面入射型 D V D— Rなど) の開発が進められ ている。
例えば、 2つの色素含有記録層を有する片面入射型光記録媒体では、 光を入射させる側 (光入射側, 片面側) に近い側の第 1色素含有記録層 と遠い側の第 2色素含有記録層とを有するものとなる。 このような片面 入射型光記録媒体では、第 2色素含有記録層への情報の記録又は再生は、 第 1色素含有記録層を介して光を入射させることによって行なわれるこ とになる。
'このような片面入射型光記録媒体では、一般的な光記録媒体と同様に、 光を入射させる側とは反対側の基板に形成する案内溝の深さを例えば 1 5 0 n m程度とすると、 第 2色素含有記録層の情報の記録又は再生を行 なうのに必要な反射率が得られない場合がある。
また、第 1色素含有記録層には、市販されている光記録媒体と同様に、 その凹部 (厚膜部) に記録トラックを設ければ、 良い記録再生特性が得 られるが、 第 2色素含有記録層では第 1色素含有記録層と条件が異なる ため、 より好ましい記録トラックが異なる場合がある。
本発明は、 このような課題に鑑み創案されたもので、 片面側から光を 入射させて情報の記録又は再生を行なう複数の色素含有記録層を有する 光記録媒体において、 光を入射させる側から遠い側に位置する色素含有 記録層の情報の記録又は再生に際し、 又は、 基板の反対側から光を入射 させて色素含有記録層の情報の記録又は再生を行なうに際し、 十分な反 射率が得られ、 さらに良好な記録再生特性が得られるようにした、 光記 録媒体, 光記録媒体の記録再生方法及び光記録媒体の製造方法を提供す ることを目的とする。
このため、 本発明の光記録媒体は、 案内溝を有する第 1基板, 第 1色 素含有記録層, 半透明反射層, 第 2色素含有記録層, 反射層, 案内溝を 有する第 2基板を少なくとも備え、 第 1基板側から光を入射させて第 1 色素含有記録層及び第 2色素含有記録層の情報の記録又は再生を行なう 光記録媒体であって、 第 2基板の案内溝の深さが、 記録再生波長を入と して、 1 / 1 0 0 Χ λ〜 1 6 X λの範囲内であることを特徵としてい る。
本発明の光記録媒体は、 案内溝を有する第 1基板, 第 1色素含有記録 層, 半透明反射層, 第 2色素含有記録層, 反射層, 案内溝を有する第 2 基板を少なくとも備え、 第 1基板側から光を入射させて第 1色素含有記 録層及び第 2色素含有記録層の情報の記録又は再生を行なう光記録媒体 であって、 第 2基板の案内溝の深さが、 第 1基板の案内溝の深さよりも 浅いことを特徴としている。
本発明の光記録媒体は、 案内溝を有する第 1基板上に、 少なくとも、 第 1の色素を含有する第 1色素含有記録層と半透明反射層とを順次積層 させてなる第 1情報記録体と、 案内溝を有する第 2基板上に、 少なくと も、 反射層と第 2の色素を含有する第 2色素含有記録層とを順次積層さ せてなる第 2情報記録体とを備え、 第 1情報記録体と第 2情報記録体と を基板の反対側の面を対向させ、 光学的に透明な接着層を介して貼り合 わされてなり、 第 1基板側から光を入射させて情報の記録又は再生を行 なう光記録媒体であって、 第 2基板の案内溝の深さが、 記録再生波長を λとして、 1 / 1 0 0 Χ λ〜 1 / 6 Χ λの範囲内であることを特徴とし ている。
本発明の光記録媒体は、 片面側から光を入射させて情報の記録又は再 生を行なう複数の色素含有記録層を有する光記録媒体であって、 光を入 射させる側から遠い側に位置する色素含有記録層の情報の記録又は再生 に用いられる案内溝の深さが、 記録再生波長を λとして、 1 / 1 0 0 Χ 入〜 1 Ζ 6 X λの範囲内であることを特徴としている。
本発明の光記録媒体は、 色素含有記録層, 反射層, 案内溝を有する基 板を少なくとも備え、 基板の反対側から光を入射させて色素含有記録層 の情報の記録又は再生を行なう光記録媒体であって、 基板の案内溝の深 さが、 記録再生波長を λとして、 1 Ζ 1 0 0 X λ〜 1 / 6 X λの範囲内 であることを特徴としている。
本願発明の光記録媒体の記録再生方法は、 第 1色素含有記録層と第 2 色素含有記録層とを備え、 片面側から光を入射させて前記第 1色素含有 記録層及び前記第 2色素含有記録層の情報の記録又は再生を行なう光記 録媒体の記録再生方法であって、 第 2色素含有記録層は厚膜部及び薄膜 部を有し、 第 2色素含有記録層の情報の記録又は再生は、 第 1色素含有 記録層を介して薄膜部に光を入射させて行なうことを特徴としている。 特に、 第 2色素含有記録層の厚膜部及び薄膜部が、 光を入射させる側 の反対側に備えられる基板の凹部及び凸部にそれぞれ対応して形成され ている光記録媒体に適用するのが好ましい。
また、 第 1色素含有記録層が、 厚膜部及び薄膜部を有し、 厚膜部に光 を入射させて情報の記録又は再生を行なう様にするのが好ましい。 さらに、 第 1色素含有記録層の厚膜部及び薄膜部が、 光を入射させる 側に備えられる基板の凹部及び凸部にそれぞれ対応して形成されている 光記録媒体に適用するのが好ましい。
特に、 案内溝を有する第 1基板上に、 少なくとも、 第 1の色素を含有 する第 1色素含有記録層と半透明反射層とを順次積層させてなる第 1情 報記録体と、 案内溝を有する第 2基板上に、 少なくとも、 反射層と第 2 の色素を含有する第 2色素含有記録層とを順次積層させてなる第 2情報 記録体とを備え、 第 1情報記録体と第 2情報記録体とを基板の反対側の 面を対向させ、 光学的に透明な接着層を介して貼り合わされてなり、 第 1基板側から光を入射させて情報の記録又は再生を行なう光記録媒体で あって、 第 2色素含有記録層が、 厚膜部及び薄膜部を有し、 薄膜部に光 を入射させて情報の記録又は再生を行なうように構成されることを特徴 としている。
また、 片面側から光を入射させて情報の記録又は再生を行う複数の色 素含有記録層を有する光記録媒体であって、 光を入射させる側から遠い 側に位置する色素含有記録層が、 厚膜部及び薄膜部を有し、 薄膜部に光 を入射させて情報の記録又は再生を行なうように構成されることを特徴 としている。
本発明の光記録媒体の製造方法は、 上記の光記録媒体を製造する光記 録媒体の製造方法であつて、 ネガ型スタンパを用いて第 2基板又は基板 上に案内溝を形成する工程を含むことを特徴としている。
したがって、 本発明の光記録媒体, 光記録媒体の記録再生方法及び光 記録媒体の製造方法によれば、 片面側から光を入射させて情報の記録又 は再生を行なう複数の色素含有記録層を有する光記録媒体において、 光 を入射させる側から遠い側に位置する色素含有記録層の情報の記録又は 再生に際し、 十分な反射率が得られ、 さらに良好な記録再生特性が得ら れるという利点がある。 また、 基板の反対側から光を入射させて色素含 有記録層の情報の記録又は再生を行なうに際しても、 十分な反射率が得 られ、 さらには良好な記録特性が得られるという利点がある。 図面の簡単な説明
図 1は、 本発明の一実施形態にかかる光記録媒体の全体構成を示す模 式図である。
図 2は、 本発明の一実施形態にかかる他の光記録媒体の全体構成を示 す模式図である。 発明を実施するための最良の形態
以下、 図面により、 本発明の実施の形態にかかる光記録媒体 (追記型 光記録媒体),光記録媒体の記録再生方法及び光記録媒体の製造方法の一 例について、 図 1 , 図 2を参照しながら説明する。
( 1 ) 光記録媒体の構造
本発明の光記録媒体は、 複数の記録層を有し、 片面側からレーザ光を 照射することでそれぞれの記録層に情報の記録又は再生を行なうことが できる片面入射型光記録媒体である。
本発明の光記録媒体では、 貼り合わせ型の片面入射型光記録媒体 (片 面入射型 D V D— R ) として、 例えば 2つの記録層を有するデュアルレ ィャタイプの片面入射型 D V D— R (片面 2層 D V D— R , 片面 2層 D V Dレコーダブル ·ディスク) を例に説明する。
図 1は、 本実施形態にかかる光記録媒体 (光ディスク) を示す模式的 な断面図である。
本発明の光記録媒体は、 図 1に示すように、 ディスク状の透明な (光 透過性の) 第 1基板 (第 1光透過性基板) 2 1上に、 色素を含む第 1記 録層 (第 1色素含有記録層) 2 2、 半透明の反射層 (以下、 半透明反射 層という) 2 3、 透明接着層 (中間層) 2 4、 ノ ッファー層 2 8、 色素 を含む第 2記録層 (第 2色素含有記録層) 2 5、 反射層 2 6、 ディスク 状の第 2基板 2 7をこの順に有してなる。 光ビームは第 1基板 2 1側か ら照射され、 記録又は再生が行われる。
つまり、 本発明の光記録媒体は、 案内溝を有する第 1基板 2 1上に、 少なくとも、 第 1の色素を含有する第 1色素含有記録層 2 2と半透明反 射層 1 3とを順次積層させてなる第 1情報記録体と、 案内溝を有する第 2基板 2 7上に、 少なくとも、 反射層 2 6と第 2の色素を含有する第 2 色素含有記録層 2 5とを順次積層させてなる第 2情報記録体とを備え、 第 1情報記録体と第 2情報記録体とを基板と反対側の面を対向させ、 光 学的に透明な接着層を介して貼り合わされてなる。
なお、 本発明の光記録媒体において、 透明である (光透過性がある) とは光記録媒体の記録又は再生に用いる光ビームに対して透明である ( 光透過性がある) ことを言う。 また、 透明である (光透過性がある) 層 としては、 記録又は再生に用いる光ビームを多少吸収するものも含む。 例えば、 記録又は再生に用いる光ビームの波長について 5 0 %以上 (好 ましくは 6 0 %以上) の透過性があれば実質的に光透過性がある (透明 である) ものとする。
次に、 各層について説明する。
( a ) 第 1基板 2 1について
第 1基板 2 1は、 透明であるほか複屈折率が小さいなど光学特性に優 れることが望ましい。 また、 第 1基板 2 1の屈折率 (記録光又は再生光 の波長に対する屈折率) は、 通常 1 . 4 0以上であり、 好ましくは 1 . 4 5以上である。 但し、 通常 1 . 7 0以下であり、 好ましくは 1 . 6 5 以下である。 さらに、 射出成形が容易であるなど成形性に優れることが 望ましレ さらに、吸湿性が小さいと反り等を低減できるため望ましい。 更に、 光記録媒体がある程度の剛性を有するよう、 形状安定性を備え るのが望ましい。但し第 2基板 2 7が十分な形状安定性を備えていれば、 第 1基板 2 1は形状安定性が大きくなくても良い。
このような材料としては、例えばアクリル系樹脂、メタクリル系樹脂、 ポリカーボネート樹脂、 ポリオレフイン系樹脂 (特に非晶質ポリオレフ イン)、 ポリエステル系樹脂、 ポリスチレン樹脂、 エポキシ樹脂等の樹脂 からなるもの、 ガラスからなるものを用いることができる。 或いは、 第
1基板 2 1は複数の層からなるものであっても良く、 例えばガラスゃ樹 脂等の基体上に、 光硬化榭脂等の放射線硬化榭脂からなる樹脂層を設け たもの等も使用できる。
なお、 光学特性、 成形性などの高生産性、 コスト、 低吸湿性、 形状安 定性などの点からはポリ力一ポネートが好ましい。 耐薬品性、 低吸湿性 などの点からは、 非晶質ポリオレフインが好ましい。 また、 高速応答性 などの点からは、 ガラス基板が好ましい。
第 1基板 2 1は薄い方が好ましく、通常厚さは 2 mm以下が好ましく、 より好ましくは 1 mm以下である。対物レンズと記録層の距離が小さく、 また基板が薄いほどコマ収差が小さくなる傾向があり、 記録密度を上げ やすいためである。 但し、 光学特性、 吸湿性、 成形性、 形状安定性を十 分得るためにはある程度の厚みが必要であり、 通常 1 0 m以上が好ま しく、 より好ましくは 3 0 zx m以上である。
本発明の光記録媒体においては、 第 1記録層 2 2及び第 2記録層 2 5 の両方に良好に記録又は再生を行なうために、 対物レンズと両記録層と の距離を適宜調節することが望ましい。 例えば、 対物レンズの焦点が両 記録層のほぼ中間地点となるようにすると、 両記録層にアクセスしゃす く好ましい。
具体的に説明すると、 D V D— R O M , D V D— Rシステムにおいて は、 基板厚さ 0 . 6 mmのときに対物レンズと記録層との距離が最適に なるよう調節されている。
従って、 本層構成において D V D— R O M互換の場合は、 第 1基板 2 1の厚さは、 0 . 6 mmから、 中間層としての透明接着層 2 4の膜厚の 2分の 1を減じた厚さであることが最も好ましい。 このとき、 両記録層 のほぼ中間地点が約 0 . 6 mmとなり、 両記録層にフォーカスサーポが かけやすい。 '
なお、 第 2記録層 2 5と半透明反射層 2 3の間にバッファ一層や保護 層など他の層がある場合は、 0 . 6 mmから、 それらの層と透明接着層 2 4の膜厚の和の 2分の 1を減じた厚さであることが最も好ましい。 第 1基板 2 1には、 情報の記録又は再生の際に記録 Z再生光 (記録 Z 再生ビーム;例えばレーザ光) を案内するために用いられる溝 (案内溝 ) 3 1が螺旋状又は同心円状に設けられる。 このように第 1基板 2 1に 溝 3 1を設けると、 第 1基板 2 1の表面上に凹凸ができ、 その凹部 (溝 ) をグループといい、 凸部をランドという。 そして、 これらのグループ 及び Z又はランドを記録トラックとして、 第 1記録層 2 2へ情報の記録 又は再生が行なわれる。 なお、 第 1基板 2 1上の溝 3 1は、 光の入射方 向に対して凸部となる。
例えば波長 6 5 0 n mのレーザを開口数 0 . 6から 0 . 6 5の対物レ ンズで集光して記録又は再生が行なわれる、 いわゆる D V D— Rデイス クの場合、 通常、 第 1記録層 2 2は、 第 1基板 2 1上に塗布形成される ので、 第 1基板 2 1のグループ (凹部) で膜厚が厚くなり、 膜厚が厚い 方が記録又は再生に適するため、 グループを記録卜ラックとするのが好 ましい。
ここで、 第 1基板 2 1上に設けられる溝 3 1の深さ (溝深さ ;第 1色 素含有記録層の凸部の高さ) は、 記録再生波長を λとして、 1 1 0 X λ以上とするのが反射率を十分に確保できで好ましい。 より好ましくは
1 8 Χ λ以上とする。 さらに好ましくは 1 Ζ 6 X λ以上とする。 例え ば記録/再生光の波長 (記録再生波長) を λ = 6 5 0 n mとすると、 第 1基板 2 1の溝 3 1の深さは、 6 5 n m以上とするのが好ましい。 より 好ましくは 8 1 n m以上とする。 さらに好ましくは 1 0 8 n m以上とす る。
但し、 第 1基板 2 1の溝 3 1の深さは、 2Ζ4 Χλ以下とするのが溝 形状の転写性を良好にできで好ましい。 より好ましくは 2/5 Χλ以下 とし、 さらに好ましくは 2/6 Χλ以下とする。 例えば記録再生波長を λ = 6 5 0 nmとすると、 第 1基板 2 1の溝 3 1の深さは、 3 2 5 nm 以下とするのが好ましい。 より好ましくは 2 6 0 nm以下とし、 さらに 好ましくは 2 1 7 nm以下とする。
また、 第 1基板 2 1の溝 3 1の幅 (溝幅, G幅;第 1色素含有記録層 の凸部の幅;半値幅) は、 トラックピッチを Tとして、 1/1 0 XT以 上とするのが反射率を十分に確保でき好ましい。 より好ましくは 2/1 0 XT以上とし、 さらに好ましくは 3Z 1 0 XT以上とする。 例えば、 トラックピッチを 740 nmとすると、 第 1基板 2 1の溝 3 1の幅は、 74 nm以上とするのが好ましい。より好ましくは 1 48 nm以上とし、 さらに好ましくは 222 nm以上とする。
但し、 第 1基板 2 1の溝 3 1の幅は、 9 1 0 XT以下とするのが溝 形状の転写性を良好にでき好ましい。 より好ましくは 8/1 0 XT以下 とし、 さらに好ましくは 7Z1 0 XT以下とする。 例えば、 トラックピ ツチを 740 nmとすると、 第 1基板 2 1の溝 3 1の幅は、 66 6 nm 以下とするのが好ましい。 より好ましくは 5 92 nm以下とし、 さらに 好ましくは 5 18 nm以下とする。
例えばグループ記録とする場合には、 第 1基板 2 1の溝 3 1は、 所定 の振幅, 所定の周波数で半径方向に僅かに蛇行させることで、 ゥォブル が設けられる。 また、 第 1基板 2 1の溝 3 1間のランドにはある規則に したがった孤立ピット (アドレスピット) を形成し (これをランドプリ ピット, L P P ; Land Pre- Pit という)、 このランドプリピットによつ てァドレス情報を予め記録しておいても良い。 なお、 この他に必要に応 じ凹凸ピット (プリピット) を有することもある。
このような凹凸を有する基板は、 コストの観点から、 凹凸を持つスタ ンパから射出成形により製造するのが好ましい。 ガラス等の基体上に光 硬化樹脂等の放射線硬化樹脂からなる樹脂層を設ける場合は、 樹脂層に 記録トラックなどの凹凸を形成してもよい。
( b ) 第 1記録層 2 2について
第 1記録層 2 2は、 通常、 片面型記録媒体 (例えば C D— R , D V D 一 R, D V D + R ) 等に用いる記録層と同程度の感度である。
また、 良好な記録再生特性を実現するためには低発熱で高屈折率な色 素を用いることが望ましい。
ここで、 第 1記録層 2 2に用いる色素の屈折率 (記録光又は再生光の 波長に対する屈折率) は、 通常 1 . 0 0以上であり、 好ましくは 1 . 5 0以上である。 伹し、 通常 3 . 0 0以下である。
また、 第 1記録層 2 2に用いる色素の消衰係数 (記録光又は再生光の 波長に対する消衰係数) は、 通常 0 . 5 0以下であり、 好ましくは 0 .
3 0以下である。 消衰係数が大きすぎると、 色素含有記録層による吸収 が大きくなりすぎ、 反射率が低くなつてしまう。 但し、 記録が行なわれ るためにはある程度吸収があることが好ましく、 下限は特に無いが、 通 常 0 . 0 0 1以上である。
更に、 第 1記録層 2 2と半透明反射層 2 3との組合せにおいて、 光の 反射、 透過及び吸収を適切な範囲とすることが望ましい。 記録感度を高 くし、 かつ記録時の熱干渉を小さくできる。
このような有機色素材料としては、 大環状ァザァヌレン系色素 (フタ ロシアニン色素、 ナフタロシアニン色素、 ポルフィリン色素など)、 ピロ メテン系色素、 ポリメチン系色素 (シァニン色素、 メロシアニン色素、 スクヮリリゥム色素など)、アントラキノン系色素、ァズレニウム系色素、 含金属ァゾ系色素、 含金属インドアニリン系色素などが挙げられる。 上述の各種有機色素の中でも含金属ァゾ系色素は、 記録感度に優れ、 かつ、 耐久性, 耐光性に優れるため好ましい。 特に下記一般式 ( I ) 又 は ( I I )
Figure imgf000016_0001
(環 A1及び A 2は、各々独立に置換基を有していてもよい含窒素芳香族 複素環であり、 環 B 1及び B2は、 各々独立に置換基を有していてもよい 芳香族環である。 Xは、 少なくとも 2個のフッ素原子で置換されている 炭素数 1〜6のアルキル基である。) で表される化合物が好ましい。 本発明の光記録媒体の記録層に使用される有機色素は、 3 50〜9 0
0 nm程度の可視光〜近赤外域に最大吸収波長 Am a xを有し、 青色〜 近マイクロ波レーザでの記録に適する色素化合物が好ましい。 通常 CD 一 Rに用いられるような波長 7 7 0〜 8 30 nm程度の近赤外レーザ ( 代表的には 78 0 nm, 830 nmなど) や、 DVD— Rに用いられる ような波長 62 0〜 6 9 0 nm程度の赤色レーザ (代表的には 6 3 5 η m, 6 5 0 nm, 680 nmなど)、 あるいは波長 4 1 0 nmや 5 1 5 η mなどで代表される波長 340〜 53 0 n m程度のいわゆるブルーレー ザなどでの記録に適する色素がより好ましい。
色素は一種でもよいし、 同じ種類のものや異なる種類のものを二種以 上混合して用いても良い。 さらに、 上記複数の波長の記録光に対し、 各 々での記録に適する色素を併用して、 複数の波長域でのレーザ光による 記録に対応する光記録媒体とすることもできる。
また第 1記録層 2 2は、 記録層の安定ゃ耐光性向上のために、 一重項 酸素クェンチヤ一として遷移金厲キレー卜化合物 (例えば、 ァセチルァ セトナートキレート、 ビスフエ二ルジチオール、 サリチルアルデヒドォ キシム、 ビスジチォ一 α—ジケトン等) 等や、 記録感度向上のために金 属系化合物等の記録感度向上剤を含有していても良い。 ここで金属系化 合物とは、 遷移金属等の金属が原子、 イオン、 クラスタ一等の形で化合 物に含まれるものを言い、 例えばエチレンジアミン系錯体、 ァゾメチン 系錯体、 フエニルヒドロキシアミン系錯体、 フエナント口リン系錯体、 ジヒドロキシァゾベンゼン系錯体、 ジォキシム系錯体、 ニトロソァミノ フエノール系錯体、 ピリジルトリアジン系錯体、 ァセチルァセトナート 系錯体、 メタ口セン系錯体、 ボルフイリン系錯体のような有機金属化合 物が挙げられる。 金属原子としては特に限定されないが、 遷移金属であ ることが好ましい。
さらに本発明の光記録媒体の第 1記録層 2 2には、 必要に応じて、 パ インダー、 レべリング剤、 消泡剤等を併用することもできる。 好ましい バインダ一としては、 ポリビニルアルコール、 ポリビニルピロリ ドン、 ニトロセルロース、 酢酸セルロース、 ケトン系樹脂、 アクリル系樹脂、 ポリスチレン系樹脂、 ウレタン系樹脂、 ポリビニルブチラ一ル、 ポリ力 ーポネート、 ポリオレフイン等が挙げられる。
第 1記録層 2 2の膜厚は、 記録方法などにより適した膜厚が異なるた め、 特に限定するものではないが、 十分な変調度を得るためには通常 5 n m以上が好ましく、 より好ましくは 1 0 n m以上であり、 特に好まし くは 2 0 n m以上である。 但し、 本発明の光記録媒体においては適度に 光を透過させるためには厚すぎない必要があるため、 通常 3 m以下で あり、 好ましくは 1 m以下、 より好ましくは 2 0 0 n m以下である。 第 1記録層 2 2の膜厚は通常、 溝部とランド部で異なるが、 本発明の光 記録媒体において第 1記録層 2 2の膜厚は基板の溝部における膜厚を言 う。
第 1記録層 2 2の成膜方法としては、真空蒸着法、スパッ夕リング法、 ドクターブレード法、 キャスト法、 スピンコート法、 浸漬法等一般に行 われている薄膜形成法が挙げられるが、 量産性、 コスト面からはスピン コート法が好ましい。 また厚みの均一な記録層が得られるという点から は、 塗布法より真空蒸着法の方が好ましい。
スピンコート法による成膜の場合、 回転数は 1 0〜 1 5 0 0 0 r p m が好ましく、 スピンコートの後、 加熱あるいは溶媒蒸気にあてる等の処 理を行っても良い。
ドクターブレード法、 キャスト法、 スピンコート法、 浸漬法等の塗布 方法により第 1記録層 2 2を形成する場合の塗布溶媒としては、 基板を 侵さない溶媒であればよく、 特に限定されない。 例えば、 ジアセトンァ ルコール、 3—ヒドロキシー 3—メチル— 2—ブタノン等のケトンアル コール系溶媒; メチルセ口ソルブ、 ェチルセ口ソルブ等のセロソルブ系 溶媒; n—へキサン、 n —オクタン等の鎖状炭化水素系溶媒; シクロへ キサン、 メチルシクロへキサン、 ェチルシクロへキサン、 ジメチルシク 口へキサン、 n—ブチルシクロへキサン、 t e r t —ブチルシクロへキ サン、 シクロオクタン等の環状炭化水素系溶媒;テトラフルォロプロパ ノール、 ォクタフルォロペン夕ノール、 へキサフルォロブ夕ノール等の パ一フルォロアルキルアルコール系溶媒;乳酸メチル、 乳酸ェチル、 2 —ヒドロキシィソ酪酸メチル等のヒドロキシカルボン酸エステル系溶媒 等が挙げられる。 真空蒸着法の場合は、 例えば有機色素と、 必要に応じて各種添加剤等 の記録層成分を、 真空容器内に設置されたるつぼに入れ、 真空容器内を 適当な真空ポンプで 1 0— 2〜 1 0 -5 P a程度にまで排気した後、るつぼ を加熱して記録層成分を蒸発させ、 るつぼと向き合って置かれた基板上 に蒸着させることにより、 第 1記録層 2 2を形成する。
(c) 半透明反射層 23について
半透明反射層 2 3は、 ある程度の光透過率を持つ反射層である。 つま り、 記録再生光の吸収が小さく、 光透過率が 40 %以上あり、 かつ適度 な光反射率 (通常、 3 0 %以上) を持つ反射層である。 例えば、 反射率 の高い金属を薄く設けることにより適度な透過率を持たせることができ る。 また、 ある程度の耐食性があることが望ましい。 更に、 半透明反射 層 2 3の上層 (ここでは透明接着層 24) の浸み出しにより第 1記録層 22が影響されないよう遮断性を持つことが望ましい。
高透過率を確保するために、 半透明反射層 23の厚さは通常、 5 0 η m以下が好適である。 より好適には 30 nm以下である。 更に好ましく は 2 5 nm以下である。 但し、 第 1記録層 22が半透明反射層 2 3の上 層により影響されないために、 ある程度の厚さが必要であり、 通常 3 n m以上とする。 より好ましくは 5 nm以上とする。
半透明反射層 2 3の材料としては、 再生光の波長で反射率が適度に高 いもの、 例えば、 Au、 A l、 Ag、 C u、 T i、 C r、 N i、 P t、 T a、 P d、 Mg、 S e、 H f 、 V、 Nb、 Ru、 W、 Mn、 R e、 F e、 C o、 Rh、 I r、 Z n、 C d、 G a、 I n、 S i、 Ge、 T e、 P b、 P o、 S n、 B i及び希土類金属などの金属及び半金属を単独あ るいは合金にして用いることが可能である。 この中でも Au、 A l、 A gは反射率が高く半透明反射層 2 3の材料として適している。 これらを 主成分とする以外に他成分を含んでいても良い。 なかでも A gを主成分としているものはコストが安い点、 反射率が高 い点から特に好ましい。 ここで主成分とは含有率が 50 %以上のものを いう。
半透明反射層 2 3は膜厚が薄く、 膜の結晶粒が大きいと再生ノイズの 原因となるため、 結晶粒が小さい材料を用いるのが好ましい。 純銀は結 晶粒が大きい傾向があるため A gは合金として用いるのが好ましい。 中でも A gを主成分とし、 T i、 Z n、 C u、 P d、 A u及び希土類 金属よりなる群から選ばれる少なくとも 1種の元素を 0. 1〜 1 5原子 %含有することが好ましい。 T i、 Z n、 Cu、 P d、 A u及び希土類 金属のうち 2種以上含む場合は、 各々 0. 1〜 1 5原子%でもかまわな いが、 それらの合計が 0. 1〜 1 5原子%であることが好ましい。
特に好ましい合金組成は、 A gを主成分とし、 T i、 Z n、 Cu、 P d、 Auよりなる群から選ばれる少なくとも 1種の元素を 0. 1〜 1 5 原子%含有し、 かつ少なくとも 1種の希土類元素を 0. 1〜 1 5原子% 含有するものである。希土類金属の中では、ネオジゥムが特に好ましい。 具体的には、 Ag P d C u、 Ag CuAu、 Ag CuAuNd、 A g C uNdなどである。
半透明反射層 2 3としては A uのみからなる層は結晶粒が小さく、 耐 食性に優れ好適である。 ただし、 A g合金に比べて高価である。
また、 半透明反射層 23として S iからなる層を用いることも可能で ある。
金属以外の材料で低屈折率薄膜と高屈折率薄膜を交互に積み重ねて多 層膜を形成し、 反射層として用いることも可能である。
半透明反射層 23を形成する方法としては、 例えば、 スパッ夕法、 ィ オンプレ一ティング法、化学蒸着法、真空蒸着法等が挙げられる。また、 第 1基板 2 1と半透明反射層 2 3との間に、 例えば反射率の向上, 記録 特性の改善, 密着性の向上等のために公知の無機系または有機系の中間 層又は接着層を設けても良い。 例えば、 第 1基板 2 1上に、 中間層 (又 は接着層), 第 1記録層 2 2 , 中間層 (又は接着層), 半透明反射層 2 3 の順に積層させることで、 第 1基板 2 1と第 1記録層 2 2との間に中間 層 (又は接着層) を設け、 第 1記録層 2 2と半透明反射層 2 3との間に 中間層 (又は接着層) を設けても良い。
( d ) 透明接着層 2 4について
透明接着層 2 4は、 透明である必要があるほか、 接着力が高く、 硬化 接着時の収縮率が小さいと媒体の形状安定性が高く好ましい。
透明接着層 2 4の屈折率 (記録光又は再生光の波長に対する屈折率) は、 通常 1 . 4 0以上であり、 好ましくは 1 . 4 5以上である。 但し、 通常 1 . 7 0以下であり、 好ましくは 1 . 6 5以下である。
また、 透明接着層 2 4は、 第 2記録層 2 5にダメージを与えない材料 からなることが望ましい。 但し、 透明接着層 2 4は通常、 樹脂からなる ため第 2記録層 2 5と相溶しやすく、 これを防ぎダメージを抑えるため に両層の間に後述のバッファ一層 2 8を設けることが望ましい。
さらに、 透明接着層 2 4は、 半透明反射層 2 3にダメージを与えない 材料からなることが望ましい。 但し、 ダメージを抑えるために両層の間 に公知の無機系又は有機系の保護層を設けることもできる。
本発明の光記録媒体において、 透明接着層 2 4の膜厚は正確に制御す ることが好ましい。 透明接着層 2 4の膜厚は、 通常 5 i m以上が好まし レ^ 2層の記録層に別々にフォーカスサーポをかけるためには両記録層 の間にある程度の距離がある必要がある。 フォーカスサーボ機構にもよ るが、 通常 5 i m以上、 好ましくは 1 0 m以上が必要である。
一般に、 対物レンズの開口数が高いほどその距離は小さくてよい傾向 がある。 但し、 あまり厚いと 2肩の記録層にフォーカスサ一ポを合わせ るのに時間を要し、 また対物レンズの移動距離も長くなるため好ましく ない。 また硬化に時間を要し生産性が低下するなどの問題があるため、 通常、 1 0 0 m以下が好ましい。
透明接着層 2 4の材料としては、 例えば、 熱可塑性樹脂、 熱硬化性樹 脂、 電子線硬化性樹脂、 紫外線硬化性樹脂 (遅延硬化型を含む) 等を挙 げることができる。
熱可塑性樹脂、 熱硬化性樹脂などは適当な溶剤に溶解して塗布液を調 製し、 これを塗布し、 乾燥 (加熱) することによって形成することがで きる。 紫外線硬化性樹脂は、 そのままもしくは適当な溶剤に溶解して塗 布液を調製した後にこの塗布液を塗布し、 紫外光を照射して硬化させる ことによって形成することができる。 紫外線硬化性樹脂には様々な種類 があり、 透明であればいずれも用いうる。 またそれらの材料を単独であ るいは混合して用いても良いし、 1層だけではなく多層膜にして用いて も良い。
塗布方法としては、 記録層と同様にスピンコート法やキャスト法等の 塗布法等の方法が用いられるが、この中でもスピンコート法が好ましい。 或いは、粘度の高い樹脂はスクリーン印刷等によっても塗布形成できる。 紫外線硬化性樹脂は、 生産性を 2 0〜4 0 °Cにおいて液状であるものを 用いると、 溶媒を用いることなく塗布でき好ましい。 また、 粘度は 2 0 〜 1 0 0 0 m P a * sとなるように調製するのが好ましい。
なお、 感圧式両面テープを用い、 積層構造間にそのテープを挟んで押 圧することによって接着層を形成することもできる。
さて、 紫外線硬化性接着剤としては、 ラジカル系紫外線硬化性接着剤 とカチオン系紫外線硬化性接着剤があるが、 いずれも使用可能である。 ラジカル系紫外線硬化性接着剤としては、 公知の全ての組成物を用い ることができ、 紫外線硬化性化合物と光重合開始剤を必須成分として含 む組成物が用いられる。 紫外線硬化性化合物としては、 単官能 (メタ) ァクリレートや多官能 (メタ) ァクリレートを重合性モノマー成分とし て用いることができる。 これらは、 各々、 単独または 2種類以上併用し て用いることができる。 ここで、 本発明では、 ァクリレートとメタァク リレートとを併せて (メタ) ァクリレートと称する。
本発明の光記録媒体に使用できる重合性モノマーとしては例えば以下 のものが挙げられる。 単官能 (メタ) ァクリレー卜としては例えば、 置 換基としてメチル、 ェチル、 プロピル、 プチル、 ァミル、 2—ェチルへ キシル、 ォクチル、 ノニル、 ドデシル、 へキサデシル、 ォク夕デシル、 シクロへキシル、 ベンジル、 メトキシェチル、 ブトキシェチル、 フエノ キシェチル、 ノニルフエノキシェチル、 テトラヒドロフルフリル、 ダリ シジル、 2—ヒドロキシェチル、 2—ヒドロキシプロピル、 3 —クロ口 一 2—ヒドロキシプロピル、 ジメチルアミノエチル、 ジェチルアミノエ チル、 ノニルフエノキシェチルテトラヒドロフルフリル, 力プロラクト ン変性テトラヒドロフルフリル、 イソポルニル, ジシクロペン夕ニル, ジシクロペンテニル, ジシクロペンテ二ロキシェチル等の如き基を有す る (メタ) ァクリレ一ト等が挙げられる。
また、 多官能 (メタ) ァクリレートとしては例えば、 1, 3—ブチレ ングリコール、 1, 4—ブタンジオール、 1 , 5—ペン夕ンジオール、 3—メチルー 1 , 5 —ペンタンジオール、 1 , 6—へキサンジオール、 ネオペンチルダリコール、 1, 8 —オクタンジオール、 1 , 9—ノナン ジオール、 トリシクロデカンジメタノール、 エチレングリコ一ル、 ポリ エチレングリコ一ル、プロピレンダリコール、ジプロピレングリコール、 トリプロピレングリコール、 ポリプロピレングリコール等のジ (メタ) ァクリレート、 トリス (2—ヒドロキシェチル) イソシァヌレートのジ (メタ) ァクリレート、 ネオペンチルグリコ一ル 1モルに 4モル以上の エチレンォキサイドもしくはプロピレンォキサイドを付加して得たジォ 一ルのジ (メタ) ァクリレート、 ビスフエノール A 1モルに 2モルのェ チレンォキサイドもしくはプロピレンォキサイドを付加して得たジォー ルのジ (メ夕) ァクリレート、 トリメチロールプロパン 1モルに 3モル 以上のエチレンォキサイドもしくはプロピレンォキサイドを付加して得 たトリオールのジまたはトリ (メタ) ァクリレート、 ビスフエノール A 1モルに 4モル以上のエチレンォキサイドもしくはプロピレンォキサイ ドを付加して得たジオールのジ (メタ) ァクリレート、 トリメチ口一ル プロパントリ (メタ) ァクリレート、 ペンタエリスリ ト一ルトリ (メタ )ァクリレート、 ジペン夕エリスリトールのポリ (メタ) ァクリレート、 エチレンオキサイド変性リン酸 (メタ) ァクリレート、 エチレンォキサ イド変性アルキル化リン酸 (メタ) ァクリレート等が挙げられる。 また、 重合性モノマーと同時に併用できるものとしては、 重合性オリ ゴマーとしてポリエステル (メタ) ァクリレート、 ポリエーテル (メタ ) ァクリレート、 エポキシ (メタ) ァクリレ一卜、 ウレタン (メタ) ァ クリレート等がある。
更に、 本発明の光記録媒体に使用する光重合開始剤は、 用いる重合性 オリゴマーおよびノまたは重合性モノマーに代表される紫外線硬化性化 合物が硬化できる公知のものがいずれも使用できる。 光重合開始剤とし ては、 分子開裂型または水素引き抜き型のものが本発明の光記録媒体に 好適である。
このような例としては、 ベンゾインイソブチルエーテル、 2 , 4—ジ ェチルチオキサントン、 2—イソプロピルチォキサントン、 ベンジル、 2, 4, 6 —トリメチルベンゾィルジフエニルフォスフィンォキシド、 2 —ベンジル— 2 —ジメチルァミノ一 1— ( 4一モルフォリノフエ二ル ) 一ブタン一 1 一オン、 ビス (2, 6 —ジメトキシベンゾィル) 一 2 , 4 , 4 -卜リメチルペンチルフォスフィンォキシド等が好適に用いられ、 さらにこれら以外の分子開裂型のものとして、 1—ヒドロキシシクロへ キシルフェニルケトン、 ベンゾィンェチルエーテル、 ベンジルジメチル ケタール、 2—ヒドロキシ _ 2ーメチルー 1 一フエニルプロパン一 1 一 オン、 1 一 ( 4一イソプロピルフエニル) 一 2—ヒドロキシー 2 —メチ ルプロパン一 1一オンおよび 2—メチルー 1一 (4—メチルチオフエ二 ル) 一 2 一モルフオリノプロパン一 1—オン等を併用しても良いし、 さ らに水素引き抜き型光重合開始剤である、 ベンゾフエノン、 4—フエ二 ルベンゾフエノン、 ィソフタルフエノン、 4一ベンゾィル一 4 ' ーメチ ルージフエニルスルフィ ド等も併用できる。
また光重合開始剤に対する増感剤として例えば、 トリメチルァミン、 メチルジメタノールァミン、 トリエタノールァミン、 p—ジェチルアミ ノアセトフエノン、 p—ジメチルァミノ安息香酸ェチル、 p—ジメチル ァミノ安息香酸イソァミル、 N, N—ジメチルペンジルァミンおよび 4 , 4 ' 一ビス (ジェチルァミノ) ベンゾフエノン等の、 前述重合性成分 と付加反応を起こさないアミン類を併用することもできる。 もちろん、 上記光重合開始剤や増感剤は、 紫外線硬化性化合物への溶解性に優れ、 紫外線透過性を阻害しないものを選択して用いることが好ましい。
また、 カチオン系紫外線硬化性接着剤としては公知のすべての組成物 を用いることができ、 カチオン重合型の光開始剤を含むエポキシ樹脂が これに該当する。カチオン重合型の光開始剤としては、スルホニゥム塩、 ョードニゥム塩およびジァゾ二ゥム塩等がある。
ョ一ドニゥム塩の 1例を示すと以下の通りである。 ジフエニルョード ニゥム へキサフルォロホスフエ一ド、 ジフエ二ルョ一ドニゥム へキ サフルォロアンチモネート、 ジフエ二ルョードニゥム テトラフルォロ ポレー卜、 ジフエ二ルョ一ドニゥム テトラキス (ペン夕フルオロフェ ニル) ポレー卜、 ビス (ドデシルフェニル) ョードニゥム へキサフル ォロホスフェート、 ビス (ドデシルフェニル) ョ一ドニゥム へキサフ ルォロアンチモネート、 ビス (ドデシルフェニル) ョードニゥム テト ラフルォロポレート、 ビス (ドデシルフェニル) ョードニゥム
テトラキス (ペンタフルオロフェニル) ポレ一卜、 4一メチルフエ二 ルー 4— ( 1ーメチルェチル) フエ二ルョードニゥム へキサフルォロ ホスフエ一ト、 4一メチルフエニル— 4一 ( 1ーメチルェチル) フエ二 ルョ一ドニゥム へキサフルォロアンチモネ一ト、 4一メチルフエニル - 4 - ( 1ーメチルェチル) フエ二ルョードニゥム テトラフルォロポ レート、 4 _メチルフエ二ルー 4— ( 1ーメチルェチル) フエ二ルョー ドニゥム テトラキス (ペン夕フルオロフェニル) ポレート、 などが挙 げられる。
エポキシ樹脂は、 ビスフエノール A—ェピクロールヒドリン型、 脂環 式エポキシ、 長鎖脂肪族型、 臭素化エポキシ樹脂、 グリシジルエステル 型、 グリシジルエーテル型、 複素環式系等種々のものがいずれであって もかまわない。
エポキシ樹脂としては、 反射層にダメージを与えないよう、 遊離した フリーの塩素および塩素イオン含有率が少ないものを用いるのが好まし い。 塩素の量が 1重量%以下が好ましく、 より好ましくは 0 . 5重量% 以下である。
カチオン型紫外線硬化性樹脂 1 0 0重量部当たりのカチオン重合型光 開始剤の割合は通常、 0 . 1〜2 0重量部であり、 好ましくは 0 . 2〜 5重量部である。 なお、 紫外線光源の波長域の近紫外領域や可視領域の 波長をより有効に利用するため、 公知の光増感剤を併用することができ る。この際の光増感剤としては、例えばアントラセン、フエノチアジン、 ベンジルメチルケタール、 ベンゾフエノン、 ァセトフエノン等が挙げら れる。
また、 紫外線硬化性接着剤には、 必要に応じてさらにその他の添加剤 として、 熱重合禁止剤、 ヒンダ一ドフエノール、 ヒンダードァミン、 ホ スフアイト等に代表される酸化防止剤、 可塑剤およびエポキシシラン、 メルカプトシラン、 (メタ)アクリルシラン等に代表されるシランカップ リング剤等を、 各種特性を改良する目的で配合することもできる。 これ らは、 紫外線硬化性化合物への溶解性に優れたもの、 紫外線透過性を阻 害しないものを選択して用いる。
( e ) 第 2記録層 2 5について
第 2記録層 2 5は、 通常、 片面型記録媒体 (例えば C D— R , D V D
— R , D V D + R ) 等に用いる記録層よりも高感度である。 本発明の光 記録媒体においては、 入射した光ビームのパワーが第 1記録層 2 2や半 透明反射層 2 3の存在等で減少するため、 約半分程度のパワーで記録す るために、 特に感度が高い必要があるのである。
また、 良好な記録再生特性を実現するためには低発熱で高屈折率な色 素を用いることが望ましい。
ここで、 第 2記録層 2 5に用いる色素の屈折率 (記録光又は再生光の 波長に対する屈折率) は、 通常 1 . 0 0以上であり、 好ましくは 1 . 5 0以上である。 但し、 通常 3 . 0 0以下である。
また、 第 2記録層 2 5に用いる色素の消衰係数 (記録光又は再生光の 波長に対する消衰係数) は、 通常 0 . 5 0以下であり、 好ましくは 0 . 3 0以下である。 消衰係数が大きすぎると、 色素記録層による吸収が大 きくなりすぎ、 反射率が低くなつてしまう。 但し、 記録が行なわれるた めにはある程度吸収があることが好ましく、 下限は特に無いが、 通常 0 . 0 0 1以上である。
更に、 第 2記録層 2 5と反射層 2 6との組合せにおいて、 光の反射及 び吸収を適切な範囲とすることが望ましい。 記録感度を高くし、 かつ記 録時の熱干渉を小さくできる。
第 2記録層 2 5の材料、 成膜方法等についてはほぼ第 1記録層 22と 同様に説明されるため、 異なる点のみ説明する。
第 2記録層 2 5の膜厚は、 記録方法などにより適した膜厚が異なるた め、 特に限定するものではないが、 十分な変調度を得るためには通常 1 0 nm以上が好ましく、 より好ましくは 30 nm以上であり、 特に好ま しくは 50 nm以上である。 伹し、 適度な反射率を得るためには厚すぎ ない必要があるため、 通常 3 / m以下であり、 好ましくは 1 m以下、 より好ましくは 2 0 0 nm以下である。 ここで、 第 2記録層 2 5の膜厚 は、 通常、 厚膜部における膜厚をいう。
第 1記録層 22と第 2記録層 2 5とに用いる材料は同じでも良いし異 なっていてもよい。
( f ) 反射層 26について
反射層 26は、 高反射率である必要がある。 また、 高耐久性であるこ とが望ましい。
高反射率を確保するために、 反射層 26の厚さは通常、 20 nm以上 が好適である。 より好適には 30 nm以上である。 更に好ましくは 5 0 nm以上である。 但し、 生産のタクトタイムを短くし、 コストを下げる ためにはある程度薄いことが好ましく、 通常 40 0 nm以下とする。 よ り好ましくは 30 0 nm以下とする。
反射層 26の材料としては、 再生光の波長で反射率の十分高いもの、 例えば、 Au、 A l、 Ag、 Cu、 T i、 C r、 N i、 P t、 T a及び P dの金属を単独あるいは合金にして用いることが可能である。 この中 でも Au、 A l、 Agは反射率が高く反射層 26の材料として適してい る。 これらを主成分とする以外に他成分として下記のものを含んでいて も良い。 他成分の例としては、 Mg、 S e、 H f 、 V、 Nb、 Ru、 W、 Mn、 R e、 F e、 C o、 Rh、 I r.、 Cu、 Z n、 C d、 Ga、 I n、 S i、 G e、 Te、 P b、 P o、 S n、 B i及び希土類金属などの金属 及び半金属を挙げることができる。
中でも A gを主成分としているものはコス卜が安い点、 高反射率が出 やすい点、 更に後で述べる印刷受容層を設ける場合には地色が白く美し いものが得られる点等から特に好ましい。 ここで主成分とは含有率が 5 0 %以上のものをいう。
反射層 26は高耐久性 (高耐食性) を確保するため、 Agは純銀より も合金として用いるのが好ましい。
中でも Agを主成分とし、 T i、 Z n、 Cu、 P d、 Au及び希土類 金属よりなる群から選ばれる少なくとも 1種の元素を 0. 1〜 1 5原子 %含有することが好ましい。 T i、 Z n、 C u、 P d、 A u及び希土類 金属のうち 2種以上含む場合は、 各々 0. 1〜 1 5原子%でもかまわな いが、 それらの合計が 0. 1〜 1 5原子%であることが好ましい。 特に好ましい合金組成は、 Agを主成分とし、 T i、 Z n、 Cu、 P d、 Auよりなる群から選ばれる少なくとも 1種の元素を 0. 1〜 1 5 原子%含有し、 かつ少なくとも 1種の希土類元素を 0. 1〜 1 5原子% 含有するものである。希土類金属の中では、ネオジゥムが特に好ましい。 具体的には、 Ag P d Ct Ag CuAt Ag Cu AuNd, A g C uNdなどである。
反射層 26としては Auのみからなる層は高耐久性 (高耐食性) が高 く好適である。 ただし、 Ag合金に比べて高価である。
金属以外の材料で低屈折率薄膜と高屈折率薄膜を交互に積み重ねて多 層膜を形成し、 反射層 2 6として用いることも可能である。
反射層 26を形成する方法としては、 例えば、 スパッ夕法、 イオンプ レーティング法、 化学蒸着法、 真空蒸着法等が挙げられる。 また、 反射 層 2 6の上下に、 例えば反射率の向上、 記録特性の改善、 密着性の向上 等のために公知の無機系または有機系の中間層又は接着層を設けても良 い。
( g ) 第 2基板 2 7について
第 2基板 2 7は、 光記録媒体がある程度の剛性を有するよう、 形状安 定性を備えるのが望ましい。 即ち機械的安定性が高く、 剛性が大きいこ とが好ましい。
このような材料としては、例えばァクリル系樹脂、メタクリル系樹脂、 ポリカーボネート樹脂、 ポリオレフイン系樹脂 (特に非晶質ポリオレフ イン)、 ポリエステル系樹脂、 ポリスチレン樹脂、 エポキシ樹脂等の樹脂 からなるもの、 ガラスからなるものを用いることができる。
或いは、 第 2基板 2 7は、 複数の層から成るものであっても良く、 例 えばガラスや樹脂等の基板上に、 光硬化樹脂等の放射線硬化樹脂からな る樹脂層を設けたもの等も第 2基板として使用できる。
上述のように第 1基板 2 1が十分な形状安定性を備えていない場合は, 第 2基板 2 7は特に形状安定性が高い必要がある。 この点で吸湿性が小 さいことが望ましい。
第 2基板 2 7は透明である必要はないが、 透明とする場合には、 第 2 基板 2 7の屈折率 (記録光又は再生光の波長に対する屈折率) は、 通常 1 . 4 0以上であり、 好ましくは 1 . 4 5以上である。 伹し、 通常 1 . 7 0以下であり、 好ましくは 1 . 6 5以下である。
このような材料としては、 第 1基板 2 1に用いうる材料と同じものが 用い得るほか、 例えば、 A 1を主成分とした例えば A 1 一 M g合金等の A 1合金基板や、 M gを主成分とした例えば M g— Z n合金等の M g合 金基板、 シリコン、 チタン、 セラミックスのいずれかからなる基板やそ れらを組み合わせた基板などを用いることができる。
なお、 成形性などの高生産性、 コスト、 低吸湿性、 形状安定性などの 点から、 上述の樹脂が好ましく、 特に、 ポリ力一ポネートが好ましい。 耐薬品性、低吸湿性などの点からは、非晶質ポリオレフィンが好ましい。 また、 高速応答性などの点からは、 ガラス基板が好ましい。
光記録媒体に十分な剛性を持たせるために、 第 2基板 2 7はある程度 厚いことが好ましく、 厚さは 0 . 3 mm以上が好ましい。 但し薄いほう が記録再生装置の薄型化に有利であり、 好ましくは 3 mm以下である。 より好ましくは 1 . 5 mm以下である。
第 1基板 2 1と第 2基板 2 7の好ましい組合せの一例は、 第 1基板 2
1と第 2基板 2 7とが同一材料からなり、 厚さも同一である。 剛性が同 等でバランスが取れているので、 環境変化に対しても媒体として変形し にくく好ましい。 この場合、 環境が変化したときの変形の程度や方向も 両基板で同様であると好ましい。
他の好ましい組合せの一例は、第 1基板 2 1が 0 . 1 mm程度と薄く、 第 2基板 2 7が 1 . 1 mm程度と厚いものである。 対物レンズが記録層 に近づきやすく記録密度を上げやすいため好ましい。 このとき第 1基板 2 1はシート状であってもよく、 案内溝を有していなくても良い。 第 2基板 2 7には、 情報の記録又は再生の際に記録/再生光 (記録 再生ビ一ム ;例えばレーザ光) を案内するために用いられる溝 (案内溝 ) 3 2が螺旋状又は同心円状に設けられる。 このように第 2基板 2 7に 溝 3 2を設けると、 第 2基板 2 7の表面上に凹凸ができ、 その凹部 (溝 ) をグループといい、 凸部をランドという。 なお、 第 2基板 2 7上の溝 3 2は、 光の入射方向に対して凹部となる。
ここでは、 第 2記録層 2 5は、 第 2基板 2 7上に形成された反射層 2 6上に塗布形成されるので、 第 2基板 2 7のグループ (凹部) で膜厚が 厚くなり (この部分を厚膜部という)、 第 2基板 2 7のランド (凸部) で 膜厚が薄くなる (この部分を薄膜部という)。
本実施形態では、 後述するように、 溝 3 2の深さが浅くなつているた め、 グループ及び Z又はランドを記録トラックとして、 第 2記録層 2 5 へ情報の記録又は再生を行なうことができる。
例えばグループ記録とする場合には、 第 2基板 2 7の溝 3 2を、 所定 の振幅, 所定の周波数で半径方向に僅かに蛇行させることで、 ゥォブル が設けられる。 また、 第 2基板 2 7の溝 3 2間のランドにはある規則に したがった孤立ピット (アドレスピット) を形成し (これをランドプリ ピット, L P P ; Land Pre-P i t という)、 このランドプリピットによつ てアドレス情報を予め記録しておいても良い。 なお、 この他に必要に応 じ凹凸ピット (プリピット) を有することもある。
本実施形態では、 ランド記録を行なう場合には、 第 2基板 2 7の溝 3 2の溝壁を、 所定の振幅, 所定の周波数で半径方向に僅かに蛇行させる ことで、 ランドにゥォブルが設けられる。 また、 グループにピットを設 けることでァドレス情報や他の情報を予め記録しておいても良い。
このような凹凸を有する第 2基板 2 7は、 コストの観点から、 凹凸を 持つスタンパから樹脂を用いて射出成形により製造するのが好ましい。 ガラス等の基体上に光硬化性樹脂等の放射線硬化性樹脂からなる樹脂層 を設ける場合は、 樹脂層に記録トラックなどの凹凸を形成してもよい。 ( i ) バッファ一層 2 8について
ここでは、 透明接着層 2 4と第 2記録層 2 5との間に中間層としての バッファ一層 2 8を設けている。
バッファー層 2 8は 2つの層の混和を防止し、相溶を防ぐものである。 バッファ一層 2 8が混和現象を防止する以外の他の機能を兼ねていても 良い。 また必要に応じてさらに他の中間層を挟んでも良い。 バッファ一層 2 8の材料は、 第 2記録層 2 5や透明接着層 2 4と相溶 せず、 かつ、 ある程度の光透過性をもつ必要があるが、 公知の無機物及 び有機物が用いうる。 特性面からは、 好ましくは無機物が用いられる。 例えば、 (a)金属又は半導体、 (b)金属又は半導体の酸化物、 窒化物、 硫 化物、 酸硫化物、 フッ化物又は炭化物、 もしくは(c)非晶質カーボン、 な どが用いられる。 中でも、 ほぼ透明な誘電体からなる層や、 ごく薄い金 属層 (合金を含む) が好ましい。
具体的には、酸化珪素、特に二酸化珪素や、酸化亜鉛、酸化セリウム、 酸化ィットリゥム等の酸化物;硫化亜鉛、 硫化ィットリゥムなどの硫化 物;窒化珪素などの窒化物;炭化珪素;酸化物とィォゥとの混合物 (酸 硫化物);および後述の合金などが好適である。 また、 酸化珪素と硫化亜 鉛との 3 0 : 7 0〜 9 0 : 1 0程度 (重量比) の混合物も好適である。 また、 ィォゥと二酸化イットリウムと酸化亜鉛との混合物 (Y 22 S— Z n〇) も好適である。
金属や合金としては、銀、又は銀を主成分とし更にチタン、亜鉛、銅、 パラジウム、 及び金よりなる群から選ばれる少なくとも 1種の元素を 0 . 1〜 1 5原子%含有するものが好適である。 また、 銀を主成分とし、 少なくとも 1種の希土類元素を 0 . 1〜 1 5原子%含有するものも好適 である。 この希土類としては、 ネオジゥム、 プラセォジゥム、 セリウム 等が好適である。
その他、 バッファー層作製時に記録層の色素を溶解しないようなもの であれば樹脂層でも構わない。 特に、 真空蒸着や C V D法で作製可能な 高分子膜が有用である。
バッファ—層 2 8の厚さは 2 n m以上が好ましく、 より好ましくは 5 n m以上である。 バッファ一層 2 8の厚さが過度に薄いと、 上記の混和 現象の防止が不十分となる虞がある。但し 2 0 0 0 n m以下が好ましく、 より好ましくは 5 0 0 n m以下である。 バッファ一層 2 8が過度に厚い と、 混和防止には不必要であるばかりでなく、 光の透過率を低下させる おそれもある。 また無機物からなる層の場合には成膜に時間を要し生産 性が低下したり、 膜応力が高くなつたりする虞があり 2 0 O n m以下が 好ましい。 特に、 金属の場合は光の透過率を過度に低下させるため、 2 0 n m以下程度が好ましい。
なお、 このほか、 半透明反射層 2 3と透明接着層 2 4との間などに中 間層としてのバッファ一層を設けてもよい。
( j ) その他の層について
上記積層構造において、 必要に応じて任意の他の層を挟んでも良い。 或いは媒体の最外面に任意の他の層を設けても良い。
具体的には、記録層や反射層を保護するために保護層を設けても良い。 保護層の材料としては、 記録層や反射層を外力から保護するものであれ ば特に限定されない。 有機物質の材料としては、 熱可塑性樹脂、 熱硬化 性樹脂、電子線硬化性樹脂、紫外線硬化性樹脂等を挙げることができる。 また、 無機物質としては、 酸化ケィ素、 窒化ゲイ素、 M g F 2、 S n 0 2 等が挙げられる。
熱可塑性樹脂、 熱硬化性樹脂などは適当な溶剤に溶解して塗布液を調 製し、 これを塗布、 乾燥することによって形成することができる。 紫外 線硬化性樹脂は、 そのままもしくは適当な溶剤に溶解して塗布液を調製 した後にこの塗布液を塗布し、 U V光を照射して硬化させることによつ て形成することができる。 紫外線硬化性樹脂としては、 例えば、 ウレタ ンァクリレート、 エポキシァクリレート、 ポリエステルァクリレー卜な どのァクリレート系樹脂を用いることができる。 これらの材料は単独で あるいは混合して用いても良いし、 1層だけではなく多層膜にして用い ても良い。 保護層の形成方法としては、 記録層と同様にスピンコート法ゃキャス ト法等の塗布法やスパッタ法ゃ化学蒸着法等の方法が用いられるが、 こ の中でもスピンコート法が好ましい。
保護層の膜厚は、 一般に 0 . 1〜 1 0 0 i mの範囲であるが、 本発明 の光記録媒体においては、 1〜 5 0 i mが好ましい。
更に、 上記光記録媒体には、 必要に応じて、 記録光又は再生光の入射 面ではない面に、 インクジエツ卜、 感熱転写等の各種プリン夕、 或いは 各種筆記具にて記入 (印刷) が可能な印刷受容層を設けてもよい。
或いは、 本層構成の他に記録層を設けて記録層を 3層以上としても良 い。 また、 本層構成の光記録媒体を 2枚、 第 1基板 2 1を外側にして貼 合わせて、 記録層を 4層有する、 より大容量媒体とすることもできる。
ところで、 上述のように、 2つの色素含有記録層 2 2 , 2 5を有する 片面入射型光記録媒体では、 光入射側 (片面側) に近い側の第 1色素含 有記録層 2 2と遠い側の第 2色素含有記録層 2 5とを有するものとなる このため、 光を入射させる側から遠い側に位置する第 2色素含有記録層 2 5への情報の記録又は再生は、 第 1色素含有記録層 2 2を介して光を 入射させることによって行なわれることになる。
このような片面入射型光記録媒体では、一般的な光記録媒体と同様に、 光を入射させる側とは反対側の第 2基板 2 7に形成する溝 (案内溝, 凹 部) 3 2の深さを例えば 1 5 0 n m程度とすると、 第 2色素含有記録層 2 5の情報の記録又は再生を行なうのに必要な反射率が得られない場合 がある。
そこで、 本実施形態にかかる光記録媒体では、 第 2基板 2 7の溝 3 2 の深さを、 一般的な色素系光記録媒体の溝の深さとは異なり、 特定範囲 に浅くすることで、 溝形状を反映した反射層の形状変化が小さくなるよ うにして、 第 2色素含有記録層 2 5の情報の記録又は再生を行なうのに 十分な反射率が得られるようにしている。 このようにして十分に高い反 射率が得られるようになると、 DVD— ROMとの互換性も取り易くな る。 また、 第 2基板 2 7の溝の深さが浅くても良くなると、 案内溝を有 する第 2基板 2 7の生産性も向上し、 量産性が良くなる。
このように、 第 2基板 2 7の溝 3 2の深さを、 従来の一般的な色素系 光記録媒体とは異なり、 特定範囲に溝の深さを浅くすることで、 第 2色 素含有記録層 2 5の情報の記録又は再生を行なうのに十分な反射率が得 られるようになるため、 第 2色素含有記録層 2 5の薄膜部 2 5 B又は厚 膜部 2 5 Aの双方を記録トラックとして用いることができるようになる t つまり、 第 2基板 2 7のランド (凸部)、 即ち第 2記録層 2 5の凹部 (薄 膜部 2 5 B) に光を入射させて (照射して) 情報の記録又は再生を行な うこともできるし、 第 2基板 2 7のグループ(凹部)、 即ち第 2記録層 2 5の凸部 (厚膜部 2 5 A) に光を入射させて (照射して) 情報の記録又 は再生を行なうこともできる。
本実施形態にかかる光記録媒体では、 具体的に以下のように第 2基板
2 7の溝 3 2の深さを設定している。
まず、 第 2基板 2 7の溝 3 2の深さ (溝深さ) は、 記録再生波長を λ とすると、 1 / 1 0 0 X λ以上とするのが好ましい。 より好ましくは 2 / 1 0 0 Χ λ以上とし、 さらに好ましくは 3Z1 0 0 Χ λ以上とするの が好ましい。 反射率を十分に確保し、 トラッキングを安定的にかけるた めには、 この程度の深さがある方が好ましいからである。
例えば、 記録再生波長を λ = 6 5 0 nmとすると、 第 2基板 2 7の溝
3 2の深さは、 7 nm以上とするのが好ましい。 より好ましくは 1 3 n m以上とし、 さらに好ましくは 2 0 nm以上とする。
但し、 第 2基板 2 7の溝 3 2の深さは、 1 /6 X λ以下とするのが好 ましい。 より好ましくは 1Z8 Χ λ以下とし、 さらに好ましくは 1/1 0 Χλ以下とする。 反射層の形状変化を小さくして反射光量を確保し、 高反射率を得るためには、 溝を深くしすぎないことが望ましいためであ る。
例えば、 第 2基板 2 7の溝 32の深さは、 記録再生波長を λ = 65 0 nmとすると、 1 0 8 nm以下とするのが好ましい。 より好ましくは 8 1 nm以下とし、 さらに好ましくは 6 5 nm以下とする。
また、 第 2基板 2 7の溝 32の幅 (溝幅, G幅;半値幅) は、 トラッ クピッチを Tとして、 1 / 1 0 XT以上とするのが好ましい。 より好ま しくは 2 Z 1 0 XT以上とし、 さらに好ましくは 3/1 0 XT以上とす る。 これは、 溝幅が狭すぎると、 トラッキングがかかりにくくなる傾向 があるからである。
例えば、 トラックピッチを 740 nmとすると、 第 2基板 27の溝 3 2の幅は、 74 nm以上とするのが好ましい。 より好ましくは 148 η m以上とし、 さらに好ましくは 222 nm以上とする。
但し、 第 2基板 2 7の溝 32の幅は、 9Z 1 0 XT以下とするのが好 ましい。 より好ましくは 8Z1 0 XT以下とし、 さらに好ましくは 7/ 1 0 XT以下とする。 これは、 溝幅が広すぎると、 トラッキングがかか りにくくなり、 また、 記録を良好に行なうのが難しくなる傾向があるか らである。
例えば、 トラックピッチを 740 nmとすると、 第 2基板 27の溝 3
2の幅は、 6 66 nm以下とするのが好ましい。 より好ましくは 592 nm以下とし、 さらに好ましくは 5 1 8 nm以下とする。
上述のように、 本実施形態では、 第 2基板 27の溝 32の深さが、 一 般的な色素系光記録媒体の溝の深さよりも浅くなるようにしているが、 第 2基板 27の溝 3 2の深さは、 第 1基板 2 1の溝 3 1の深さよりも浅 くなるようにするのが好ましい。 例えば記録再生波長を 6 5 0 n mとして、 第 2基板 2 7の溝 3 2の深 さを 6 5 n m以下に設定し、 第 1基板 2 1の溝 3 1の深さを例えば 1 0 8 n m以上に設定するのが好ましい。 なお、 第 1基板 2 1及び第 2基板 2 7の溝深さの設定の組み合わせはこれに限られるものではなく、 第 2 基板 2 7の溝 3 2の深さが、 第 1基板 2 1の溝 3 1の深さよりも浅くな れば良い。
通常は、 第 2基板 2 7の溝 3 2の深さを、 第 1基板 2 1の溝 3 1の深 さよりも浅くすること、 中でも 9 0 %以下とするのが好ましく、 より好 ましくは 8 0 %以下であり、 更に好ましくは 7 0 %以下である。 但し、 通常、 第 1基板 2 1の溝 3 1の深さの 5 %以上であり、 好ましくは 1 0 %以上である。
また、 上述のような片面入射型光記録媒体では、 第 1色素含有記録層 2 2の凹部 (厚膜部 2 2 A) に記録トラックを設ければ良好な記録再生 特性が得られるのに対し、 第 2色素含有記録層 2 5の凹部 (厚膜部 2 5 A) に記録トラックを設けると、 より良好な記録再生特性 (例えば反射 率, 極性, 最大信号振幅など) が得られない場合がある。
そこで、 本実施形態にかかる光記録媒体では、 厚膜部 2 2 A及び薄膜 部 2 2 Bを有する第 1色素含有記録層 2 2と、 厚膜部 2 5 A及び薄膜部 2 5 Bを有する第 2色素含有記録層 2 5とを備える光記録媒体において、 光入射側 (片面側) に近い側の第 1色素含有記録層 2 2には、 その厚膜 部 2 2 Aに記録トラックを設け、 光入射側から遠い側の第 2色素含有記 録層 2 5には、 その薄膜部 2 5 Bに記録トラックを設けて、 より良好な 記録再生特性を得るようにしている。
上述のように、 第 2記録層 2 5では、 薄膜部 2 5 Bに記録すると、 記 録再生特性をさらに良好なものとすることができるのは、 以下の影響が あるためであると推定される。 つまり、 記録トラックにトラッキングを行ない、 良好に記録又は再生 するためには、 光ビームを照射した場合の凹部 (非トラック部) と凸部 (トラック部) との位相差 (光路長差) が重要となる。
第 1記録層 2 2では、 凹部における第 1記録層 2 2と半透明反射層 2 3との界面からの反射光と、 凸部における同界面からの反射光との差が 光路長差にあたる。 この光路長差は、 主に、 第 1記録層 2 2の凹部と凸 部の光入射側の面同士の距離 (第 1記録層 2 2の薄膜部 2 2 Bの第 1基 板 2 1側の面と、 厚膜部 2 2 Aの第 1基板 2 1側の面との距離) d l ( 図 1参照) と、 第 1記録層 2 2の凹部と凸部における膜厚差と、 第 1記 録層 2 2の複素屈折率と、第 1基板 2 1の複素屈折率とから求められる。 一方、 第 2記録層 2 5では、 凹部における第 2記録層 2 5と反射層 2 6との界面からの反射光と、 凸部における同界面からの反射光との差が 光路長差にあたる。 この光路長差は、 主に、 第 2記録層 2 5の凹部と凸 部の光入射側の面同士の距離 [第 2記録層 2 5の薄膜部 2 5 Bの透明接 着層 (中間層) 2 4側の面と、 厚膜部 2 5 Aの透明接着層 2 4側の面と の距離] d 2 (図 1参照) と、 第 2記録層 2 5の凹部と凸部における膜 厚差と、 第 2記録層 2 5の複素屈折率と、 透明接着層 2 4の複素屈折率 とから求められる。
この場合、 d 2は d 1と必然的に異なってしまう。 つまり、 記録層を 塗布して溝がある程度埋まった表面部の凹凸なので、 2は(1 1に比べ てかなり小さくなつてしまう。
このため、 光路長差、 ひいては位相差が第 1記録層 2 2とかなり異な る挙動を示し、 このため、 第 2記録層 2 5では薄膜部 2 5 Bに記録する のがより好ましくなると考えられる。
ところで、 第 2記録層 2 5の薄膜部 2 5 Bに記録トラックを設けるに は、 第 2記録層 2 5の薄膜部 2 5 Bを記録層として機能させるのに必要 な厚さを確保する必要がある。 つまり、 第 2記録層 2 5の薄膜部 2 5 B の厚さ (L膜厚) を所定厚さ (例えば 7 0 nm) 以上にするのが好まし い。 例えば、 色素を含む溶液をスピンコ一トすることによって第 2記録 層 2 5を形成する場合には、 記録層塗布条件としての色素濃度を変えた り、 スピン回転数を変えたりすることで、 第 2記録層 2 5の膜厚を所定 厚さ以上にすることができる。
ここで、第 2記録層 2 5の厚膜部 2 5 Aと薄膜部 2 5 Bとの膜厚差は、 記録再生波長を λとし、 第 2記録層 2 5の屈折率を ηとして、 1 / 1 0 0 X λΖη以上とするのが好ましい。 より好ましくは 2 Ζ 1 0 0 X λΖ η以上とし、 さらに好ましくは 3Ζ 1 0 0 X λΖη以上とする。
但し、 膜厚差は、 1Z3 Χ λ/η以下とするのが好ましい。 より好ま しくは 1 Ζ4 X λ/η以下とし、 さらに好ましくは 1 5 ΧλΖη以下 とする。
具体的には、 記録再生波長を λ = 6 5 0 nm、 第 2記録層 2 5の屈折 率を n = 2. 2とすると、 第 2記録層 2 5の厚膜部 2 5 Aと薄膜部 2 5 Bとの膜厚差は、 3 nm以上とするのが好ましい。 より好ましくは 6 n m以上とし、 さらに好ましくは 9 nm以上とする。 一方、 膜厚差は、 9 8 nm以下とするのが好ましい。 より好ましくは 74 nm以下とし、 さ らに好ましくは 5 9 nm以下とする。
一方、 第 1記録層 2 2の厚膜部 2 2 Aと薄膜部 2 2 Bとの膜厚差は、 記録再生波長を λとし、 第 1記録層 2 2の屈折率を ηとして、 1 /3 0 X (λ/η) 以上とするのが好ましい。 より好ましくは 2ノ 3 0 Χ (λ Ζη) 以上とし、 さらに好ましくは 3/3 0 X (λ/η) 以上とする。 但し、 膜厚差は、 4/4 X (λ/η) 以下とするのが好ましい。 より 好ましくは 4Ζ5 X (λ/η) 以下とし、 さらに好ましくは 4ノ 6 X ( λ/η) 以下とする。 具体的には、 記録再生波長を λ = 6 5 0 n m、 第 1記録層 2 2の屈折 率を n = 2 . 2とすると、 第 1記録層 2 2の厚膜部 2 2 Aと薄膜部 2 2 Bとの膜厚差は、 1 0 n m以上とするのが好ましい。 より好ましくは 2 0 n m以上とし、 さらに好ましくは 3 0 n m以上とする。 一方、 膜厚差 は、 2 9 5 n m以下とするのが好ましい。 より好ましくは 2 3 6 n m以 下とし、 さらに好ましくは 1 9 7 n m以下とする。
本実施形態では、第 1記録層 2 2の厚膜部 2 2 A及び薄膜部 2 2 Bは、 光入射側に位置する第 1基板 2 1の凹部及び凸部にそれぞれ対応して形 成されるため、 第 1基板 2 1のグループ (凹部)、 即ち、 光の入射方向に 突出する第 1記録層 2 2の凸部 (厚膜部 2 2 A) に記録トラックを設け るのが好ましい。
この場合、 光記録媒体の情報の記録又は再生は、 第 1基板 2 1のダル ーブ (凹部)、 即ち第 1記録層 2 2の凸部 (厚膜部 2 2 A) に光を入射さ せて (照射して) 情報の記録又は再生を行なうことになる。
一方、 本実施形態では、 第 2記録層 2 5の厚膜部 2 5 A及び薄膜部 2
5 Bは、 光入射側とは反対側に位置する第 2基板 2 7の凹部及び凸部に それぞれ対応して形成されるため、第 2基板 2 7のランド(凸部)、即ち、 光の入射方向に突出する第 2記録層 2 5の凸部 (薄膜部 2 5 B ) に記録 トラックを設けるのが好ましい。
この場合、 光記録媒体の情報の記録又は再生は、 第 2基板 2 7のラン ド (凸部)、 即ち第 2記録層 2 5の凸部 (薄膜部 2 5 B ) に光を入射させ て (照射して) 情報の記録又は再生を行なうことになる。
なお、 本発明の光記録媒体では、 第 1基板 2 1のグループに記録トラ ックを設ける一方、 第 2基板 2 7のランドに記録トラックを設けること があり、 それぞれの記録層の情報の記録又は再生の際にはトラッキング 極性を変えることが必要になる場合がある。 本実施形態では、 第 2基板 2 7の溝 3 2の深さを一般的な色素系光記 録媒体の溝の深さよりも浅くすることにより、 或いは光入射側から遠い 側の第 2色素含有記録層 2 5の薄膜部 2 5 Bに記録トラックを設けるこ とにより、 第 2色素含有記録層 2 5の情報の記録 ·再生特性を良好なも のとしているが、 これらの実施形態を組み合わせて、 第 2基板 2 7の溝 3 2の深さを浅くするとともに、 第 2色素含有記録層 2 5の薄膜部 2 5 Bに記録トラックを設けるようにするのが.. より好ましい。
これにより、 色素含有記録層 2 5の情報の記録又は再生を行なうのに 十分な反射率に加え、より良好な記録特性を安定して得ることが出来る。
( 2 ) 光記録媒体の製造方法
次に、 上述したように構成される光記録媒体の製造方法について説明 する。
まず、 透明な第 1基板 2 1上に、 色素を含む第 1記録層 2 2、 半透明 反射層 2 3をこの順に有する積層構造 (第 1情報記録体) を作製する。 一方、 第 2基板 2 7上に反射層 2 6、 色素を含む第 2記録層 2 5、 バッ ファー層 2 8をこの順に有する積層構造(第 2情報記録体)を作成する。 そして、 第 1情報記録体と第 2情報記録体とを、 互いに記録層を内側に して透明接着層 2 4を介して貼り合わせる。
具体的には、 まず、 表面に凹凸で溝及びランド、 プリピットが形成さ れた透明な第 1基板 2 1を、 射出成形または 2 P法 (凹凸を持つ樹脂ス タンパ等から光硬化性樹脂などの硬化性樹脂に転写、 硬化させて製造す る方法) 等により作製する。
次に、 少なくとも有機色素を溶媒に溶解させた後、 第 1基板 2 1の凹 凸を有する側の表面にスピンコ一ト等により成膜して第 1記録層 2 2を 形成する。
更にその上に、 A g合金などをスパッ夕、 蒸着することにより半透明 反射層 2 3を成膜して、 第 1情報記録体を作製する。
次に、 表面に凹凸で溝及びランド、 ピットが形成された第 2基板 2 7 を、 射出成形または 2 P法等により作成する。 第 2基板 2 7の凹凸を有 する側の表面に、 A g合金などをスパッ夕、 蒸着することにより反射膜 2 6を成膜する。
更に、 少なくとも有機色素を溶媒に溶解させた後、 スピンコート等に より成膜して第 2記録層 2 5を形成する。
次いで、 誘電体などをスパッ夕することによりバッファ一層 2 8を成 膜して、 第 2情報記録体を作製する。
そして、 第 1情報記録体上に紫外線硬化性樹脂等の接着剤を塗布した のち、 第 2情報記録体を載置し、 高速回転、 押圧等により接着剤を全面 に広げる。 これは、 接着層の膜厚が所定範囲になるように調節しつつ行 なう。
その後、 第 1情報記録体側から半透明反射層 2 3を介して紫外線を照 射し、 紫外線硬化性樹脂等の接着剤を硬化させて接着させることで、 光 記録媒体が製造される。
なお、紫外線を媒体の側面から照射することもできる。いずれにせよ、 この紫外線により色素記録層がダメージを受けないように注意が必要で ある。 また、 感圧式両面テープを用い、 第 1情報記録体と第 2情報記録 体との間にそのテープを挟んで押圧することにより、 接着層を形成する こともできる。 或いは、 遅延硬化型の接着剤を使用し、 第 1情報記録体 上に接着剤をスクリーン印刷等で塗布し紫外線を照射してから第 2情報 記録体を載置し、 押圧しても接着層を形成できる。 但し、 遅延硬化型接 着剤は通常、 不透明である場合が多い。
次に、 案内溝 (凹凸) を有する基板 2 1 , 2 7の作製方法について説 明する。 例えば、 これらの基板 2 1, 2 7に凹凸 (溝) を形成するには、 所望 の凹凸を有する金属スタンパを用い、 射出成形によって樹脂材に凹凸を 転写することで第 1基板 2 1を作製するとともに-. その逆の凹凸を有す る金属スタンパを用いて射出成形によって樹脂材に凹凸を転写すること で第 2基板 2 7を作製する方法がある。
特に、 記録トラックに、 例えばゥォブルを付与することで、 同期情報 , アドレス情報等をもたせることがある。
本実施形態では、 上述したように、 第 1記録層 2 2の厚膜部 2 2 Aに 記録トラックを設け、 第 2記録層 2 5の薄膜部 2 5 Bに記録トラックを 設けるため、 第 1基板 2 1の凹部及び第 2基板 2 7の凸部にゥォブルを 付与することになる。
第 1基板 2 1の凹部にゥォブルを付与する場合の手順は、 次のように なる。
まず、 ガラス基板 Zフォトレジスト上に、 ビームを蛇行させながら露 光し、 現像し、 凹凸原盤を得る。 この凹凸原盤では、 通常、 凹部 (溝部 ) にゥォブルがある。
次に、 この凹凸原盤を用いてスタンパを作製し、 作製されたスタンパ を用いて射出成形によって凹凸 (溝, 案内溝) を有する第 1基板 2 1を 作製する。 この場合、 スタンパの凸部にゥォブルがあるため、 第 1基板 2 1の凹部にゥォブルができることになる。
しかしながら、 第 2基板 2 7の凸部にゥォブルを付与するためには、 スタンパの凹部にゥォブルがあることが必要である。 このため、 上述の 方法では第 2基板 2 7の凸部にゥォブルを付与することができない。 そこで、 まず、 上述の第 1基板 2 1に凹凸 (溝, 案内溝) を形成する のに用いたスタンパと同様の手法でスタンパを作製する。 但し、 凹凸の 形状 (溝深さ, 溝幅, 蛇行の幅など) は第 2基板 2 7に形成すべき凹凸 5215
に合わせて変更が必要である。
次に、 このスタンパから凹凸を転写して、 逆の凹凸を有するネガ型ス タンパを作製する。 この場合、 スタンパの凸部にゥォブルがあるため、 ネガ型スタンパの凹部にゥォブルができることになる。
次に、 このネガ型スタンパを用いて射出成形によって凹凸 (溝, 案内 溝) を有する第 2基板 2 7を作製する。 この場合、 ネガ型スタンパの凹 部にゥ才ブルがあるため、 第 2基板 2 7の凸部にゥォブルができること になる。
( 3 ) 光記録媒体の記録再生方法
次に、 本実施形態にかかる光記録媒体の記録再生方法について説明す る。
上述のように構成される光記録媒体への記録は、 記録層に直径 0 . 5 〜 1 m程度に集束したレーザ光を第 1基板 2 1側から照射することに より行なう。 レーザ光の照射された部分には、 レーザ光エネルギーの吸 収による、 分解、 発熱、 溶解等の記録層の熱的変形が起こり、 光学特性 が変化する。
一方、 記録された情報の再生は、 レーザ光により、 光学特性の変化が 起きている部分と起きていない部分の反射率の差を読みとることにより 仃っ。
2層の記録層には以下のようにして個別に記録再生する。 集束したレ
—ザの集束位置をナイフエッジ法、 非点収差法、 フーコー法等で得られ るフォーカスエラー信号によって、 第 1記録層 2 2と第 2記録層 2 5と は区別できる。 すなわち、 レーザ光を集束する対物レンズを上下に動か すと、 レーザの集束位置が第 1記録層 2 2に対応する位置と第 2記録層 2 5に対応する位置で、 それぞれ S字カーブが得られる。 どちらの S字 カーブをフォーカスサ一ポに用いるかにより、 第 1記録層 2 2と第 2記 録層 2 5のどちらを記録再生するかを選択可能である。
本実施形態では、 第 1記録層 2 2の情報の記録又は再生の際には、 第 1基板 2 1のグループ(凹部)、 即ち第 1記録層 22の凸部 (厚膜部 22 A) に光を入射させて(照射して)情報の記録又は再生を行なう。一方、 第 2記録層 2 5の情報の記録又は再生の際には、 第 2基板 2 7のランド (凸部)、 即ち第 2記録層 2 5の凸部 (薄膜部 2 5 B) に光を入射させて (照射して) 情報の記録又は再生を行なうことが好ましい。
本実施形態の光記録媒体について使用されるレーザ光は、 Nい He— C d、 A r、 He— Ne、 ルビー、 半導体、 色素レーザなどが挙げられ るが、 軽量であること、 コンパクトであること、 取り扱いの容易さ等か ら半導体レーザが好適である。
使用されるレーザ光は、高密度記録のため波長は短いほど好ましいが、 特に 3 5 0〜5 3 0 nmのレーザ光が好ましい。 かかるレーザ光の代表 例としては、 中心波長 40 5 nm、 4 1 0 nm、 5 1 5 nmのレ一ザ光 が挙げられる。 波長 3 50〜 53 0 nmの範囲のレーザ光の一例は、 4 0 5 nm, 4 1 0 nmの青色または 5 1 5 n mの青緑色の高出力半導体 レーザを使用することにより得ることができるが、その他、例えば、 (a ) 基本発振波長が 740〜960 nmの連続発振可能な半導体レーザ、 または (b) 半導体レーザによって励起され、 且つ基本発振波長が 74 0〜96 0 nmの連続発振可能な固体レーザのいずれかを第二高調波発 生素子(SHG)により波長変換することによつても得ることができる。 上記の SHGとしては、 反転対称性を欠くピエゾ素子であればいかな るものでもよいが、 KDP、 ADP、 BNN、 KN、 LB〇、 化合物半 導体などが好ましい。 第二高調波の具体例としては、 基本発振波長が 8 60 nmの半導体レ一ザの場合、 その倍波の 430 nm、 また半導体レ 一ザ励起の固体レーザの場合は、 C r ドープした L i S r A 1 F6 結晶 (基本発振波長 8 6 0 n m)からの倍波の 4 3 0 n mなどが挙げられる。
( 4 ) 作用 ·効果
したがって、 本実施形態にかかる光記録媒体, 光記録媒体の製造方法 及び光記録媒体の記録再生方法によれば、 片面側から光を入射させて情 報の記録又は再生を行なう複数の記録層 2 2 , 2 5を有する光記録媒体 において、 光を入射させる側から遠い側に位置する第 2記録層 2 5の薄 膜部 2 5 Bに光を入射させて第 2記録層 2 5の情報の記録又は再生を行 なうため、 光を入射させる側から遠い側に位置する第 2記録層 2 5の情 報の記録又は再生に際して十分な反射率及び良好な記録再生特性 (例え ば反射率, 極性, 最大信号振幅など) が得られるという利点がある。 こ の結果、 複数の記録層 2 2 , 2 5のいずれにおいても良好な記録再生特 性が得られることになる。
( 5 ) その他
なお、 本実施形態では、 貼り合わせ型のデュアルレイヤタイプの片面 入射型 D V D— Rに本発明を適用した例を説明したが、 これに限られる ものではなく、 片面側から光を入射させて情報の記録又は再生を行なう 色素含有記録層を有する光記録媒体であれば、 他の構成の光記録媒体で あっても本発明を適用することができる。
例えば、 図 2に示すように、 ディスク状の透明な (光透過性の) 第 1 基板 (第 1光透過性基板) 1上に、 色素を含む第 1記録層 (第 1色素含 有記録層) 2、 半透明の反射層 (半透明反射層) 3、 中間樹脂層 (中間 層) 4、 色素を含む第 2記録層 (第 2色素含有記録層) 5、 反射層 6、 第 2基板 7 8 (接着層 7と基体 8とからなる) をこの順に有してなる、 積層型のデュアルレイヤタイプの片面入射型 D V D— Rに本発明を適用 することもできる。 なお、 符号 1 1, 1 2は案内溝(溝, 凹部) である。 この場合、 光を入射させる側から遠い側に位置する第 2記録層 5の情 報の記録又は再生には、 第 2基板 7 8 (光を入射させる側とは反対側の 基板) に設けられる案内溝 (溝, 凹部) 1 2が用いられるため、 十分な 反射率が得られるにょうにするためには、 この案内溝 1 2の深さを、 記 録再生波長を λとして、 ΐ Ζ ΐ 0 0 Χ λ〜 1 / 6 Χ λの範囲内とすれば 良い。
また、 良好な記録再生特性が得られるようにするためには、 第 2基板 7 8の溝 (グループ, 凹部) 1 2、 即ち、 第 2記録層 5の凹部 (薄膜部 ) に記録トラックを設けるのが好ましい。 つまり、 第 2基板 7 8の溝 ( グループ, 凹部) 1 2、 即ち第 2記録層 5の凹部 (薄膜部) に光を入射 させて (照射して) 情報の記録又は再生を行なうようにするのが好まし い。
ただし、 本発明は、 特に、 貼り合わせ型のデュアルレイヤタイプの片 面入射型光記録媒体に適用すると、 その効果が高く、 好ましい。 即ち、 案内溝を有する第 1基板上に、 少なくとも、 第 1の色素を含有する第 1 色素含有記録層と半透明反射層とを順次積層させてなる第 1情報記録体 と、 案内溝を有する第 2基板上に、 少なくとも、 反射層と第 2の色素を 含有する第 2色素含有記録層とを順次積層させてなる第 2情報記録体と を備え、 第 1情報記録体と第 2情報記録体とを基板と反対側の面を対向 させ、 光学的に透明な接着層を介して貼り合わされてなり、 第 1基板側 から光を入射させて情報の記録又は再生を行なう光記録媒体に適用する と、 その効果が高い。
このような媒体では、 2枚の情報記録体を逆向きに貼り合わせてなる ので、 入射光側から見たときの、 色素含有記録層による案内溝の埋まり 方やダル一ブ部とランド部との光路長差が両記録層で異なったものとな りやすいため、 第 2基板の最適な溝深さが第 1基板とは異なり、 より浅 い溝が最適値となりやすいものと考えられる。 また、 例えば、 いわゆる基板面入射型の光記録媒体だけでなく、 いわ ゆる膜面入射型の光記録媒体に本発明を適用することもできる。つまり、 例えば、 基体 (保護層や基板などを含む), 色素含有記録層, 反射層, 案 内溝を有する基板を備え、 基体側 (基板の反対側) から光を入射させて 色素含有記録層の情報の記録又は再生を行なう光記録媒体 (一の色素含 有記録層を備える光記録媒体) に本発明を適用することもできる。
この場合、 基板 (光を入射させる側とは反対側の基板) に設けられる 案内溝 (溝, 凹部) で十分な反射が得られるようにするために、 基板の 案内溝の深さを、 記録再生波長を λとして、 1 " 1 0 0 Χ λ〜 1 / 6 Χ λの範囲内とすれば良い。
これにより、 基板の反対側から光を入射させて色素含有記録層の情報 の記録又は再生を行なうに際し、 十分な反射率が得られるという利点が ある。 この結果、 良好な記録再生特性が得られることになる。
なお、 本発明は上記の実施形態に限定されるものではなく、 本発明の 趣旨を逸脱しない範囲で種々変形して実施することができる。
[実施例]
次に、実施例によって本発明を更に詳細に説明する。なお、本発明は、 以下の実施例によって限定されるものではない。
(光記録媒体の作製)
本実施例及び比較例の光記録媒体は、 例えば、 案内溝を有する第 1基 板上に、 少なくとも、 第 1の色素を含有する第 1色素含有記録層と半透 明反射層とを順次積層させてなる第 1情報記録体と、 案内溝を有する第 2基板上に、 少なくとも、 反射層と第 2の色素を含有する第 2色素含有 記録層とを順次積層させてなる第 2情報記録体とを備え、 第 1情報記録 体と第 2情報記録体とを基板の反対側の面を対向させ、 光学的に透明な 接着層を介して貼り合わされてなる。 以下、 第 2情報記録体の作製を中心に説明する。
まず、マザ一スタンパ(ネガ型スタンパ) を用い、射出成形によって、 トラックピッチ 740 nm、 所定の溝深さ及び溝幅の案内溝を有する、 厚さ 0. 6mmのポリ力一ポネート製の第 2基板 (屈折率 1. 5 6) を 作製した。
次に、 この第 2基板上に、 A gを 9 7 a t om%以上含む銀合金をス パッ夕して反射層を形成した。
次いで、 この反射層上に、 含金属ァゾ色素のォク夕フルォロペンタノ ール溶液を所定の塗布条件 (色素濃度) でスピンコートし、 1 0 0°Cで 30分乾燥して、 第 2色素含有記録層を形成した。 ここでは、 塗布条件 を変えることで、 第 2色素含有記録層の膜厚が所定の膜厚になるように した。 本記録層の屈折率は 2. 2 5、 消衰係数は 0. 02であった。 次に、 この第 2色素含有記録層上に、 Agを 9 7 a t om%以上含む 銀合金, (Z n S) 8。 (S i〇2) 20, S i 02のいずれかをスパッ夕し てバッファ一層を形成し、 その上に、 紫外線硬化樹脂 (日本化薬製 S P C— 92 0) を膜厚約 5〜 7 mの厚さにスピンコートして、 保護層を 形成した。
そして、 通常、 この保護層上に、 ラジカル系紫外線硬化樹脂 (接着剤 ) をスピンコートして塗布し、 別途作製した記録層 (第 1記録層) を含 む第 1基板の反射層側と貼り合わせて、 光記録媒体を作製する。
但し、 ここでは、 第 1情報記録体の影響をなくし、 第 2記録層の特性 を精密に評価できるように、 第 1情報記録体としては、 記録層及び半透 明反射層を有しない、 厚さ 0. 6 mmの溝のないポリカーボネート基板 (屈折率 1. 56) を用いた。 硬化後の接着層の屈折率は 1. 5 3であ つた。
(測定方法) 波長 6 57 nm (NA==0. 6 5) の半導体レーザを搭載した評価機 (パルステック社製 DDU— 1 00 0, 最大記録パワー 1 5 mW) を用 レ まず、 未記録の第 2記録層の反射率を測定し、 次いで、 記録線速度 3. 8m/s ( 1倍速) で、 8一 1 6変調の EFM +信号を、 記録信号 のアシンメトリーがほぼ 0となる記録パワーで記録し、 その反射率, 記 録信号の極性及び最大信号振幅 (最長マークの振幅 ; いわゆる Modulation; I 14/ 1 14 H) を測定した。
なお、 本実施例においては、 反射率 2 5 %以上を優れているとし、 反 射率 30 %をより優れているとした。 通常、 DVD— ROMと互換性を 取るためには、 第 2記録層の未記録部の反射率は十数%あれば良い。 本 実施例は、 第 1記録層及び半透明反射層を有しないので、 実際よりも反 射率が高めに出る傾向があるが、 本実施例において反射率 2 5 %以上が 得られれば、 実際の第 1情報記録体の影響を考慮しても十数%の反射率 が得られると考える。
また、 DVD— ROM等との互換性を取るためには、 記録信号の極性 は H t o Lが望ましい。
さらに、 最大信号振幅は一般に大きい方が好ましい。 通常、 0. 5以 上が望ましく、 更に望ましくは 0. 6以上である。 ただし、 最大信号振 幅は記録層の膜厚、 溝形状、 記録パワー、 記録パルス波形 (記録ストラ テジ一) 等を調整することにより改善することが可能であるため、 反射 率さえ十分であれば最大信号振幅の値が小さくても光記録媒体として使 用可能である。 例えば、 高い記録パワーで記録することにより、 記録マ —クのトラック方向の幅を広くすることにより、 最大信号振幅は大きく することができる。
各実施例及び比較例の反射率、 極性、 最大信号振幅の測定結果は下記 表 1に示すようになった。 なお、 記録再生波長 λ = 6 57 nmの時、 溝深さ 1Z1 0 0 Xえ〜 1 Z6 X λの関係を満たすには、 溝深さが 6. 5 7 n m〜 1 0 9. 5 nm の範囲にある必要がある。
1]
Figure imgf000052_0001
(実施例 1)
実施例 1では、 第 2基板に、 溝深さ 6 5 nm (ほぼ λΖΐ 0に相当) , 溝幅 (G幅) 32 0 nm, ランド幅 (L幅) 420 nmとなるように 案内溝を形成した。
また、 バッファ一層は A g合金をスパッ夕して形成した。 そして、 塗 布条件としての色素濃度を 3. 5 5 w t %として含金属ァゾ色素をスピ ンコートして第 2記録層を形成した。
このようにして形成した第 2記録層の溝部分の膜厚 (厚膜部, G膜厚 ) は 8 5 n mであり、 ランド部分の膜厚 (薄膜部, L膜厚) は 7 0 n m であった。
このようにして作製した光記録媒体に、 上述のような条件でグループ' 部の反射率を測定したところ、 表 1に示すように、 反射率は 3 0 . 7 % であった。
記録信号の極性及び最大信号振幅を測定したところ、 表 1に示すよう に 記録信号の極性は H t o L、 最大信号振幅は 0 . 1よりも小さかつ た (記録パワー 1 5 mWで記録した場合)。但し、 記録層の膜厚等を調整 することにより最大信号振幅は改善できるため、 この様な光記録媒体で も使用可能と思われる。
(実施例 2 )
実施例 2では、 上述の実施例 1と同様にして作製した光記録媒体に、 上述のような条件でランド部の反射率を測定した。 その結果、 表 1に示 すように、 反射率は 4 0 . 0 %であった。
記録信号の極性及び最大信号振幅を測定したところ、 表 1に示すよう に、 記録信号の極性は H t o L、 最大信号振幅は 0 . 7 9であった。 このように、 グループ記録をランド記録に代えても、 記録 ·再生に必 要な反射率は得られることがわかった。
また、 実施例 1と同様にして作製した光記録媒体であっても、 本実施 例 2のようにランド記録を行なえば、 記録 ·再生に必要な特性が得られ ることがわかった。
(実施例 3 )
実施例 3では、 バッファ一層を S i 0 2とした以外は上述の実施例 2 と同様にして反射率を測定したところ、 表 1に示すように、 反射率は 2 8 . 1 %であった。
このように、 バッファ一層を A g合金から S i 〇2に代えても、 記録 •再生に必要な反射率は得られることがわかった。
(実施例 4)
実施例 4では、 塗布条件としての色素濃度を 4. 43wt %とするこ とで、第 2記録層の溝部分の膜厚(厚膜部, G膜厚) を 100 nmとし、 ランド部分の膜厚 (薄膜部, L膜厚) を 80 nmとした点 (即ち、 第 2 記録層の厚膜部と薄膜部の膜厚差を 20 nmとした点) 以外は、 上述の 実施例 2と同様にして、 反射率を測定したところ、 表 1に示すように、 反射率は 27. 4 %であった。
このように、 第 2記録層の膜厚を変えても、 記録 '再生に必要な反射 率は得られることがわかった。
(実施例 5)
実施例 5では、 バッファ一層を ZnS— S i〇2とした以外は上述の 実施例 4と同様にして反射率を測定したところ、 表 1に示すように、 反' 射率は 26. 7 %であった。
このように、 バッファ一層を A g合金から Z n S— S i〇2に代えて も、 記録 ·再生に必要な反射率は得られることがわかった。
(実施例 6)
実施例 6では、 塗布条件としての色素濃度を 4. 43wt %とするこ とで、第 2記録層の溝部分の膜厚(厚膜部, G膜厚) を 100 nmとし、 ランド部分の膜厚 (薄膜部, L膜厚) を 80 nmとした点 (即ち、 第 2 記録層の厚膜部と薄膜部の膜厚差を 20 nmとした点) 以外は、 上述の 実施例 3と同様にして、 反射率を測定したところ、 表 1に示すように、 反射率は 29. 7 %であった。
このように、 第 2記録層の膜厚を変えても、 記録 '再生に必要な反射 率は得られることがわかった。
(実施例 7) 実施例 7では、 第 2基板に、 溝深さ 50 nm (ほぼ λΖΐ 3に相当) , 溝幅 (G幅) 41 0 nm, ランド幅 (L幅) 3 30 nmとなるように 案内溝を形成した。
また、 バッファ一層は A g合金をスパッタして形成した。 そして、 塗 布条件としての色素濃度を 3. 5 5 w t %として含金属ァゾ色素をスピ ンコートして第 2記録層を形成した。
このようにして形成した第 2記録層の溝部分の膜厚 (厚膜部, G膜厚 ) は 1 0 5 nmであり、 ランド部分の膜厚 (薄膜部, L膜厚) は 7 5 η mであった。
このようにして作製した光記録媒体に、 上述のような条件でグループ 部の反射率を測定したところ、 表 1に示すように、 反射率は 40. 1 % であった。
このように、 上述の実施例 1と比べて、 第 2基板の溝深さを浅くする と、 反射率が高くなることがわかった。
(実施例 8)
実施例 8では、 バッファ一層を S i 02とした以外は上述の実施例 7 と同様にして反射率を測定したところ、 表 1に示すように、 反射率は 3 0. 9 %であった。
記録信号の極性及び最大信号振幅を測定したところ、 表 1に示すよう に、 記録信号の極性は H t o L、 最大信号振幅は 0. 36であった。 伹 し、 記録層の膜厚等を調整することにより最大信号振幅は改善できるた め、 この様な光記録媒体でも使用可能と思われる。
このように、 バッファ一層を Ag合金から S i〇2に代えても、 記録 •再生に必要な反射率は得られることがわかった。
(実施例 9)
実施例 9では、 塗布条件としての色素濃度を 4. 43 w t %とするこ とで、第 2記録層の溝部分の膜厚(厚膜部, G膜厚) を 1 30 nmとし、 ランド部分の膜厚 (薄膜部, L膜厚) を 9 5 nmとした点 (即ち、 第 2 記録層の厚膜部と薄膜部の膜厚差を 3 5 nmとした点) 以外は、 上述の 実施例 7と同様にして、 反射率を測定したところ、 表 1に示すように、 反射率は 2 9. 1 %であった。
記録信号の極性及び最大信号振幅を測定したところ、 表 1に示すよう に、 記録信号の極性は H t 0 L、 最大信号振幅は L S (感度不能で記録 不能;記録パワー 1 5 mWで記録した場合) であった。 但し、 記録層の 膜厚等を調整することにより最大信号振幅は改善できるため、 この様な 光記録媒体でも使用可能と思われる。
このように、 第 2記録層の膜厚を変えても、 記録 '再生に必要な反射 率は得られることがわかった。
(実施例 1 0)
実施例 1 0では、 バッファ一層を Z n S— S i〇2とした以外は上述 の実施例 9と同様にして反射率を測定したところ、 表 1に示すように、 反射率は 3 1. 3 %であった。
記録信号の極性及び最大信号振幅を測定したところ、 表 1に示すよう に、 記録信号の極性は H t o L、 最大信号振幅は 0. 3 1であった。 伹 し、 記録層の膜厚等を調整することにより最大信号振幅は改善できるた め、 この様な光記録媒体でも使用可能と思われる。
このように、 Ά、つファー層を A g合金から Z n S— S i 02に代えて も、 記録 ·再生に必要な反射率は得られることがわかった。
(実施例 1 1)
実施例 1 1では、 塗布条件としての色素濃度を 4. 43 w t %とする ことで、 第 2記録層の溝部分の膜厚 (厚膜部, G膜厚) を l O O nmと し、 ランド部分の膜厚 (薄膜部, L膜厚) を 8 0 nmとした点 (即ち、 第 2記録層の厚膜部と薄膜部の膜厚差を 2 0 n mとした点) 以外は、 上 述の実施例 8と同様にして、 反射率を測定したところ、 表 1に示すよう に、 反射率は 3 1 . 2 %であった。
記録信号の極性及び最大信号振幅を測定したところ、 表 1に示すよう に、記録信号の極性は H t o L、最大信号振幅は 0 . 3であった。但し、 記録層の膜厚等を調整することにより最大信号振幅は改善できるため、 この様な光記録媒体でも使用可能と思われる。
このように、 第 2記録層の膜厚を変えても、 記録 ·再生に必要な反射 率は得られることがわかった。
(実施例 1 2 )
実施例 1 2では、上述の実施例 7と同様にして作製した光記録媒体に、 上述のような条件でランド部の反射率を測定した。 その結果、 表 1に示 すように、 反射率は 4 5 . 3 %であった。
このように、 グループ記録をランド記録に代えても、 記録 ·再生に必 要な反射率は得られることがわかった。
(実施例 1 3 )
実施例 1 3では、 バッファ一層を Z n S— S i 0 2とした以外は上述 の実施例 1 2と同様にして反射率を測定したところ、表 1に示すように、 反射率は 2 9 . 0 %であった。
このように、 バッファー層を A g合金から Z n S— S i〇2に代えて も、 記録 ·再生に必要な反射率は得られることがわかった。
(実施例 1 4 )
実施例 1 4では、上述の実施例 8と同様にして作製した光記録媒体に、 上述のような条件でランド部の反射率を測定した。 その結果、 表 1に示 すように、 反射率は 3 6 . 4 %であった。
記録信号の極性及び最大信号振幅を測定したところ、 表 1に示すよう に、 記録信号の極性は H t o L、 最大信号振幅は 0 · 7 4であった。 このように、 グループ記録をランド記録に代えても、 記録 '再生に必 要な反射率は得られることがわかった。
また、 バッファ一層を S i 0 2とし、 第 2記録層の膜厚, 溝形状を変 えても良い記録再生特性が得られることがわかつた。
また、 同様にして作製した光記録媒体であっても、 実施例 8のように グループ記録を行なうと、 記録 ·再生に必要な特性が得られないのに対 し、 本実施例 1 4のようにランド記録を行なえば、 記録 ·再生に必要な 特性が得られることがわかった。
(実施例 1 5 )
実施例 1 5では、上述の実施例 9と同様にして作製した光記録媒体に、 上述のような条件でランド部の反射率を測定した。 その結果、 表 1に示 すように、 反射率は 3 1 . 1 %であった。
記録信号の極性及び最大信号振幅を測定したところ、 表 1に示すよう に、 記録信号の極性は H t o L、 最大信号振幅は 0 . 7 1であった。 このように、 グループ記録をランド記録に代えても、 記録 ·再生に必 要な反射率は得られることがわかった。
また、 バッファ一層を S i〇2から A g合金に代え、 第 2記録層の膜 厚を変えても良い記録 ·再生特性が得られることがわかった。
さらに、 同様にして作製した光記録媒体であっても、 実施例 9のよう にグループ記録を行なうと、 記録 ·再生に必要な特性が得られないのに 対し、 本実施例 1 5のようにランド記録を行なえば、 記録 ·再生に必要 な特性が得られることがわかった。
(実施例 1 6 )
実施例 1 6では、 上述の実施例 1 0と同様にして作製した光記録媒体 に、 上述のような条件でランド部の反射率を測定した。 その結果、 表 1 に示すように、 反射率は 3 8 . 2 %であった。
記録信号の極性及び最大信号振幅を測定したところ、 表 1に示すよう に、 記録信号の極性は H t 0 L、 最大信号振幅は 0 . 6 6であった。 このように、 グループ記録をランド記録に代えても、 記録 '再生に必 要な反射率は得られることがわかった。
また、 バッファ一層を A g合金から Z n S— S i〇2に代えても良い 記録 ·再生特性が得られることがわかった。
さらに、 同様にして作製した光記録媒体であっても、 実施例 1 0のよ うにグループ記録を行なうと、 記録 ·再生に必要な特性が得られないの に対し、 本実施例 1 6のようにランド記録を行なえば、 記録 '再生に必 要な特性が得られることがわかった。
(実施例 1 7 )
実施例 1 7では、 上述の実施例 1 1と同様にして作製した光記録媒体 に、 上述のような条件でランド部の反射率を測定した。 その結果、 表 1 に示すように、 反射率は 3 6 . 1 %であった。
記録信号の極性及び最大信号振幅を測定したところ、 表 1に示すよう に、 記録信号の極性は H t o L、 最大信号振幅は 0 . 7 3であった。 このように、 グループ記録をランド記録に代えても、 記録 ·再生に必 要な反射率は得られることがわかった。
また、 バッファ一層を A g合金から S i 0 2に代えても良い記録 '再 生特性が得られることがわかった。
さらに、 同様にして作製した光記録媒体であっても、 実施例 1 1のよ うにグループ記録を行なうと、 記録 ·再生に必要な特性が得られないの に対し、 本実施例 1 7のようにランド記録を行なえば、 記録 ·再生に必 要な特性が得られることがわかった。
(実施例 1 8 ) 実施例 1 8では、 第 2基板に、 溝深さ 3 0 n m (ほぼ λ / 2 0に相当 ) , 溝幅 ( G幅) 2 2 0 n m, ランド幅 ( L幅) 5 2 0 n mとなるように 案内溝を形成した。
また、 バッファ一層は A g合金をスパッタして形成した。 そして、 塗 布条件としての色素濃度を 3 . 1 0 w t %として含金属ァゾ色素をスピ ンコートして第 2記録層を形成した。
このようにして形成した第 2記録層の溝部分の膜厚 (厚膜部, G膜厚 ) は 1 1 0 n mであり、 ランド部分の膜厚 (薄膜部, L膜厚) は 7 0 n mであった。
このようにして作製した光記録媒体に、 上述のような条件でグループ 部の反射率を測定したところ、 表 1に示すように、 反射率は 4 3 . 0 % であった。
このように、 上述の実施例 7と比べて、 第 2基板の溝深さを浅くする と、 反射率が高くなることがわかった。
(実施例 1 9 )
実施例 1 9では、 バッファー層を Z n S— S i 0 2とした以外は上述 の実施例 1 8と同様にして反射率を測定したところ、表 1に示すように、 反射率は 3 9 . 0 %であった。
記録信号の極性及び最大信号振幅を測定したところ、 表 1に示すよう に、 記録信号の極性は H t o L、 最大信号振幅は 0 . 2 2であった。 伹 し、 記録層の膜厚等を調整することにより最大信号振幅は改善できるた め、 この様な光記録媒体でも使用可能と思われる。
このように、 バッファ一層を A g合金から Z n S— S i〇2に代えて も、 記録 ·再生に必要な反射率は得られることがわかった。
(実施例 2 0 )
実施例 2 0では、 バッファ一層を S i 0。とした以外は上述の実施例 1 8と同様にして反射率を測定したところ、 表 1に示すように、 反射率 は 43. 2 %であった。
記録信号の極性及び最大信号振幅を測定したところ、 表 1に示すよう に、 記録信号の極性は H t o L、 最大信号振幅は 0. 1 1であった。 伹 し、 記録層の膜厚等を調整することにより最大信号振幅は改善できるた め、 この様な光記録媒体でも使用可能と思われる。
このように、 バッファー層を A g合金から S i O 2に代えても、 記録 •再生に必要な反射率は得られることがわかった。
(実施例 2 1 )
実施例 2 1では、 塗布条件としての色素濃度を 3. 5 5w t %とする ことで、 第 2記録層の溝部分の膜厚 (厚膜部, G膜厚) を 1 3 5 nmと し、 ランド部分の膜厚 (薄膜部, L膜厚) を 9 0 nmとした点 (即ち、 第 2記録層の厚膜部と薄膜部の膜厚差を 45 nmとした点) 以外は、 上 述の実施例 1 8と同様にして、 反射率を測定したところ、 表 1に示すよ うに、 反射率は 3 0. 2 %であった。
記録信号の極性及び最大信号振幅を測定したところ、 表 1に示すよう に、 記録信号の極性は H t 0 L、 最大信号振幅は 0. 1よりも小さかつ た (記録パヮ一 1 5 mWで記録した場合) であった。 但し、 記録層の膜 厚等を調整することにより最大信号振幅は改善できるため、 この様な光 記録媒体でも使用可能と思われる。
このように、 第 2記録層の膜厚を変えても、 記録 '再生に必要な反射 率は得られることがわかった。
(実施例 2 2)
実施例 2 2では、 バッファ一層を Z n S— S i〇2とした以外は上述 の実施例 2 1と同様にして反射率を測定したところ、表 1に示すように、 反射率は 4 1 · 7 %であった。 このように、 バッファ一層を A g合金から Z n S - S i 02に代えて も、 記録 ·再生に必要な反射率は得られることがわかった。
(実施例 23 )
実施例 2 3では、 塗布条件としての色素濃度を 3. 5 5 w t %とする ことで、 第 2記録層の溝部分の膜厚 (厚膜部, G膜厚) を 1 3 5 nmと し、 ランド部分の膜厚 (薄膜部, L膜厚) を 90 nmとした点 (即ち、 第 2記録層の厚膜部と薄膜部の膜厚差を 45 nmとした点) 以外は、 上 述の実施例 2 0と同様にして、 反射率を測定したところ、 表 1に示すよ うに、 反射率は 3 8. 9 %であった。
記録信号の極性及び最大信号振幅を測定したところ、 表 1に示すよう に、 記録信号の極性は H t o L、 最大信号振幅は 0. 1 7であった。 伹 し、 記録層の膜厚等を調整することにより最大信号振幅は改善できるた め、 この様な光記録媒体でも使用可能と思われる。
このように、 第 2記録層の膜厚を変えても、 記録 ·再生に必要な反射 率は得られることがわかった。
(実施例 24)
実施例 24では、 上述の実施例 1 8と同様にして作製した光記録媒体 に、 上述のような条件でランド部の反射率を測定したところ、 表 1に示 すように、 反射率は 49. 1 %であった。
このように、 グループ記録をランド記録に代えても、 記録 ·再生に必 要な反射率は得られることがわかった。
(実施例 2 5)
実施例 25では、 上述の実施例 1 9と同様にして作製した光記録媒体 に、 上述のような条件でランド部の反射率を測定したところ、 表 1に示 すように、 反射率は 43. 9 %であった。
記録信号の極性及び最大信号振幅を測定したところ、 表 1に示すよう に、 記録信号の極性は H t o L、 最大信号振幅は 0 . 7 2であった。 このように、 バッファ一層を A g合金から Z n S— S i 0 2に代えて も、 記録 ·再生に必要な反射率は得られることがわかった。
また、 バッファ一層を Z n S— S i 0 2とする場合に、 第 2記録層の 膜厚, 溝幅, ランド幅を変えると、 より良い記録 '再生特性が得られる ことがわかった。
さらに、 同様にして作製した光記録媒体であっても、 実施例 1 9のよ うにグループ記録を行なうと、 記録 ·再生に必要な特性が得られないの に対し、 本実施例 2 5のようにランド記録を行なえば、 記録 ·再生に必 要な特性が得られることがわかった。
(実施例 2 6 )
実施例 2 6では、 上述の実施例 2 0と同様にして作製した光記録媒体 に、 上述のような条件でランド部の反射率を測定したところ、 表 1に示 すように、 反射率は 4 9 . 5 %であった。
記録信号の極性及び最大信号振幅を測定したところ、 表 1に示すよう に、 記録信号の極性は H t o L、 最大信号振幅は 0 . 5 8であった。 このように、 グループ記録をランド記録に代えても、 記録 ·再生に必 要な反射率は得られることがわかった。
また、 ノ ッファー層を Z n S— S i〇2から S i〇2に代えると、 反射 率は良くなるものの、 最大信号振幅がやや悪くなるが、 記録 ·再生に必 要な特性は得られることがわかつた。
さらに、 同様にして作製した光記録媒体であっても、 実施例 2 0のよ うにグループ記録を行なうと、 記録 ·再生に必要な特性が得られないの に対し、 本実施例 2 6のようにランド記録を行なえば、 記録 ·再生に必 要な特性が得られることがわかった。
(実施例 2 7 ) 実施例 2 7では、 上述の実施例 2 1と同様にして作製した光記録媒体 に、 上述のような条件でランド部の反射率を測定したところ、 表 1に示 すように、 反射率は 3 3 . 9 %であった。
記録信号の極性及び最大信号振幅を測定したところ、 表 1に示すよう に、 記録信号の極性は H t ο L、 最大信号振幅は 0 . 7 9であった。 このように、 グループ記録をランド記録に代えても、 記録 ·再生に必 要な反射率は得られることがわかった。
また、 バッファー層を Z n S - S i〇2から A g合金に代え、 第 2記 録層の膜厚を変えると、 反射率はやや悪くなるものの、 最大信号振幅は 良くなり、 記録 ·再生に必要な特性は得られることがわかった。
さらに、 同様にして作製した光記録媒体であっても、 実施例 2 1のよ うにグループ記録を行なうと、 記録 ·再生に必要な特性が得られないの に対し、 本実施例 2 7のようにランド記録を行なえば、 記録 ·再生に必 要な特性が得られることがわかった。
(実施例 2 8 )
実施例 2 8では、 上述の実施例 2 2と同様にして作製した光記録媒体 に、 上述のような条件でランド部の反射率を測定したところ、 表 1に示 すように、 反射率は 4 7 . 9 %であった。
このように、 グループ記録をランド記録に代えても、 記録,再生に必 要な反射率は得られることがわかった。
(実施例 2 9 )
実施例 2 9では、 上述の実施例 2 3と同様にして作製した光記録媒体 に、 上述のような条件でランド部の反射率を測定したところ、 表 1に示 すように、 反射率は 4 4 . 2 %であった。
記録信号の極性及び最大信号振幅を測定したところ、 表 1に示すよう に、 記録信号の極性は H t ο L、 最大信号振幅は 0 . 5 5であった。 このように、 グループ記録をランド記録に代えても、 記録 '再生に必 要な反射率は得られることがわかった。
また、 バッファ一層を A g合金から S i 〇2に代えると、 反射率は良 くなるものの、 最大信号振幅がやや悪くなるが、 記録 ·再生に必要な特 性は得られることがわかった。
さらに、 同様にして作製した光記録媒体であっても、 実施例 2 3のよ うにグループ記録を行なうと、 記録 ·再生に必要な特性が得られないの に対し、 本実施例 2 9のようにランド記録を行なえば、 記録 ·再生に必 要な特性が得られることがわかった。
(比較例 1)
比較例 1では、 第 2基板に、 溝深さ 1 20 nm (ほぼ λΖ5. 5に相 当), 溝幅 (G幅) 3 30 nm, ランド幅 (L幅) 4 1 0 nmとなるよう に案内溝を形成した。
また、 バッファ一層は Ag合金をスパッ夕して形成した。 そして、 塗 布条件としての色素濃度を 1. 9 Ow t %として含金属ァゾ色素をスピ ンコ一卜して第 2記録層を形成した。
このようにして形成した第 2記録層の溝部分の膜厚 (厚膜部, G膜厚 ) は 70 nmであり、 ランド部分の膜厚 (薄膜部, L膜厚) は 3 0 nm であった。
このようにして作製した光記録媒体に、 上述のような条件でグループ 部の反射率を測定したところ、 表 1に示すように、 反射率は 9. 0 %で あった。
このように、上述の各実施例と比較して、第 2基板の溝深さが深いと、 記録 ·再生に必要な反射率が得られないことがわかった。
(比較例 2)
比較例 2では、 バッファ一層を S i〇2とした以外は上述の比較例 1 と同様にして反射率を測定したところ、 表 1に示すように、 反射率は 6 . 5 %であった。
このように、 バッファ一層を Ag合金から S i 02に代えても、 記録 •再生に必要な反射率は得られないことがわかった。
(比較例 3)
比較例 3では、 第 2基板に、 溝深さ 1 60 nm (ほぼ λΖ 4に相当) , 溝幅 (G幅) 3 1 0 nm, ランド幅 (L幅) 430 nmとなるように 案内溝を形成した。
また、 バッファ一層は Ag合金をスパッ夕して形成した。 そして、 塗 布条件としての色素濃度を 1. 90w t %として含金属ァゾ色素をスピ ンコートして第 2記録層を形成した。
このようにして形成した第 2記録層の溝部分の膜厚 (厚膜部, G膜厚 ) は 7 5 nmであり、 ランド部分の膜厚 (薄膜部, L膜厚) は 20 nm であった。
このようにして作製した光記録媒体に、 上述のような条件でグループ 部の反射率を測定したところ、 表 1に示すように、 反射率は 1 2. 9 % であった。
このように、 上述の比較例 1と比較して、 第 2基板の溝深さを深くす ると、 反射率は高くなるものの、 記録 ·再生に必要な反射率は得られな いことがわかった。
(比較例 4)
比較例 4では、 バッファ一層を S i 02とした以外は上述の比較例 3 と同様にして反射率を測定したところ、 表 1に示すように、 反射率は 1 9. 9 %であった。
このように、 バッファ一層を A g合金から S i〇2に代えても、 反射 率は高くなるものの、 記録 ·再生に必要な反射率は得られないことがわ 力、つた。
(まとめ)
上述の各比較例 1〜4のように、 第 2基板の溝の深さを例えば 1 2 0 nm, 1 60 nmとすると、 光を入射させる側から遠い側に位置する第 2色素含有記録層の情報の記録又は再生に必要な反射率が得られないの に対し、 上述の各実施例 1〜2 9のように、 第 2基板の溝の深さを、 例 えば 6 5 nm以下に浅くすれば、 ランド記録, グループ記録のいずれの 場合であっても、 光を入射させる側から遠い側に位置する第 2色素含有 記録層の情報の記録又は再生に必要な反射率が得られることがわかった < また、 上述の実施例 1、 8〜 1 1、 1 9〜2 1 , 2 3では、 グループ 記録とすると、 光を入射させる側から遠い側に位置する第 2色素含有記 録層の情報の記録又は再生に必要な記録再生特性 (極性, 最大信号振巾;
) が得られ難かったのに対し、 上述の実施例 2、 14〜 1 7、 2 5〜 2 7、 2 9では、 ランド記録とすると、 光を入射させる側から遠い側に位 置する第 2色素含有記録層の情報の記録又は再生に必要な記録再生特性 (極性, 最大信号振幅) が得られることがわかった。
なお、 上述の各実施例においては、 第 1情報記録体の影響をなくし、 できるだけ精密に第 2記録層の特性を評価するために、 第 1情報記録体 として、記録層及び半透明反射層を有しない、溝のない基板を用いたが、 通常の第 1情報記録体を用いても、 第 2記録層の評価には大きな影響は ない。
また、 実施例 1〜29の媒体では、 記録 '再生の最も重要な要件であ る十分な反射率が得られているが、溝深さ以外の構成を適宜選ぶことで、 他の記録再生特性にも優れた光記録媒体を得ることができると思われる。 また、 実施例 2、 14〜 1 7、 2 5〜27、 29の媒体では、 記録層 膜厚以外の構成を適宜選ぶことで、 他の記録再生特性にも優れた光記録 媒体を得ることができると思われる。
この出願は、 2003年 4月 14日に日本で出願された特願 2 0 0 3 - 1 0 948 6号及び 200 3年 4月 1 5日に日本で出願された特願 2 0 03 - 1 1 057 9号に基づいており、 その全体が引用によって援用 される。

Claims

請 求 の 範 囲
1. 案内溝を有する第 1基板, 第 1色素含有記録層, 半透明反射層, 第 2色素含有記録層,反射層,案内溝を有する第 2基板を少なくとも備え、 前記第 1基板側から光を入射させて前記第 1色素含有記録層及ぴ前記第 2色素含有記録層の情報の記録又は再生を行なう光記録媒体であって、 前記第 2基板の案内溝の深さが、 記録再生波長を λとして、 1Z1 0 0 Χλ〜 ΐΖ6 Χλの範囲内であることを特徴とする、 光記録媒体。
2. 案内溝を有する第 1基板, 第 1色素含有記録層, 半透明反射層, 第 2色素含有記録層,反射層,案内溝を有する第 2基板を少なくとも備え、 前記第 1基板側から光を入射させて前記第 1色素含有記録層及び前記第 2色素含有記録層の情報の記録又は再生を行なう光記録媒体であって、 前記第 2基板の案内溝の深さが、 前記第 1基板の案内溝の深さよりも 浅いことを特徴とする、 光記録媒体。
3. 案内溝を有する第 1基板上に、 少なくとも、 第 1の色素を含有する 第 1色素含有記録層と半透明反射層とを順次積層させてなる第 1情報記 録体と、 案内溝を有する第 2基板上に、 少なくとも、 反射層と第 2の色 素を含有する第 2色素含有記録層とを順次積層させてなる第 2情報記録 体とを備え、 前記第 1情報記録体と前記第 2情報記録体とを基板の反対 側の面を対向させ、光学的に透明な接着層を介して貼り合わされてなり、 前記第 1基板側から光を入射させて情報の記録又は再生を行なう光記録 媒体であって、
前記第 2基板の案内溝の深さが、 記録再生波長を λとして、 1ノ 1 0
0 Χ λ〜 1/6 Χ λの範囲内であることを特徴とする、 光記録媒体。
4 . 片面側から光を入射させて情報の記録又は再生を行なう複数の色素 含有記録層を有する光記録媒体であって、
光を入射させる側から遠い側に位置する色素含有記録層の情報の記録 又は再生に用いられる案内溝の深さが、 記録再生波長を λとして、 1 Z 1 0 0 Xえ〜 1 / 6 X λの範囲内であることを特徴とする、光記録媒体。
5 . 色素含有記録層, 反射層, 案内溝を有する基板を少なくとも備え、 前記基板の反対側から光を入射させて色素含有記録層の情報の記録又は 再生を行なう光記録媒体であつて、
前記基板の案内溝の深さが、 記録再生波長を λとして、 1 / 1 0 0 Χ 入〜 1 Z 6 X Aの範囲内であることを特徴とする、 光記録媒体。
6 . 第 1色素含有記録層と第 2色素含有記録層とを備え、 片面側から光 を入射させて前記第 1色素含有記録層及び前記第 2色素含有記録層の情 報の記録又は再生を行なう光記録媒体の記録再生方法であって、
前記第 2色素含有記録層は厚膜部及び薄膜部を有し、 前記第 2色素含 有記録層の情報の記録又は再生は、 前記第 1色素含有記録層を介して前 記薄膜部に光を入射させて行なうことを特徴とする、 光記録媒体の記録 再生方法。
7 . 前記第 2色素含有記録層の厚膜部及び薄膜部が、 光を入射させる側 の反対側に備えられる基板の凹部及び凸部にそれぞれ対応して形成され ていることを特徴とする、 請求の範囲第 6項に記載の光記録媒体の記録 再生方法。
8 . 前記第 1色素含有記録層は厚膜部及び薄膜部を有し、 前記第 1色素 含有記録層の情報の記録又は再生は、 前記厚膜部に光を入射させて行な うことを特徴とする、 請求の範囲第 6項又は第 7項に記載の光記録媒体 の記録再生方法。
9 . 前記第 1色素含有記録層の厚膜部及び薄膜部が、 光を入射させる側 に備えられる基板の凹部及び凸部にそれぞれ対応して形成されているこ とを特徴とする、請求の範囲第 8項に記載の光記録媒体の記録再生方法。
1 0 . 案内溝を有する第 1基板上に、 少なくとも、 第 1の色素を含有す る第 1色素含有記録層と半透明反射層とを順次積層させてなる第 1情報 記録体と、 案内溝を有する第 2基板上に、 少なくとも、 反射層と第 2の 色素を含有する第 2色素含有記録層とを順次積層させてなる第 2情報記 録体とを備え、 前記第 1情報記録体と前記第 2情報記録体とを基板の反 対側の面を対向させ、 光学的に透明な接着層を介して貼り合わされてな り、 前記第 1基板側から光を入射させて情報の記録又は再生を行なう光 記録媒体であって、
前記第 2色素含有記録層が、 厚膜部及び薄膜部を有し、 前記薄膜部に 光を入射させて情報の記録又は再生を行なうように構成されることを特 徴とする、 光記録媒体。
1 1 . 前記第 1色素含有記録層が、 厚膜部及び薄膜部を有し、 前記厚膜 部に光を入射させて情報の記録又は再生を行なうように構成されること を特徴とする、 請求の範囲第 1 0項記載の光記録媒体。
1 2 . 片面側から光を入射させて情報の記録又は再生を行う複数の色素 含有記録層を有する光記録媒体であって、
光を入射させる側から遠い側に位置する色素含有記録層が、 厚膜部及 び薄膜部を有し、 前記薄膜部に光を入射させて情報の記録又は再生を行 なうように構成されることを特徴とする、 光記録媒体。
1 3 . 請求の範囲第 1項〜第 5項及び第 1 0項〜第 1 2項のいずれか 1 項に記載の光記録媒体を製造する光記録媒体の製造方法であって、 ネガ型スタンパを用いて前記第 2基板又は前記基板上に案内溝を形成 する工程を含むことを特徴とする、 光記録媒体の製造方法。
PCT/JP2004/005215 2003-04-14 2004-04-12 光記録媒体及びその記録再生方法 WO2004093070A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04726915A EP1615214A4 (en) 2003-04-14 2004-04-12 OPTICAL RECORDING MEDIUM AND ASSOCIATED RECORDING / REPRODUCING METHOD
US11/176,749 US7672215B2 (en) 2003-04-14 2005-07-07 Optical recording medium and recording/reading method therefor
US12/360,904 US7907503B2 (en) 2003-04-14 2009-01-28 Optical recording medium and recording/reading method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003109486 2003-04-14
JP2003-109486 2003-04-14
JP2003-110579 2003-04-15
JP2003110579A JP2004318985A (ja) 2003-04-15 2003-04-15 光記録媒体,光記録媒体の記録再生方法及び光記録媒体の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/176,749 Continuation US7672215B2 (en) 2003-04-14 2005-07-07 Optical recording medium and recording/reading method therefor

Publications (1)

Publication Number Publication Date
WO2004093070A1 true WO2004093070A1 (ja) 2004-10-28

Family

ID=33302205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005215 WO2004093070A1 (ja) 2003-04-14 2004-04-12 光記録媒体及びその記録再生方法

Country Status (4)

Country Link
US (2) US7672215B2 (ja)
EP (2) EP1615214A4 (ja)
TW (1) TWI320926B (ja)
WO (1) WO2004093070A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662496A3 (en) * 2004-11-30 2006-12-13 Kabushiki Kaisha Toshiba Information storage medium, stamper disc apparatus and management information playback method
WO2007037205A1 (ja) * 2005-09-27 2007-04-05 Tdk Corporation 光記録媒体
WO2007037204A1 (ja) * 2005-09-27 2007-04-05 Tdk Corporation 光記録媒体

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100421163C (zh) * 2003-11-12 2008-09-24 三菱化学媒体股份有限公司 制备光学记录介质的方法和透光性压模
CN101714369B (zh) 2004-07-16 2013-04-24 三菱化学媒体株式会社 光记录介质及光记录介质的光记录方法
WO2006109722A1 (ja) * 2005-04-07 2006-10-19 Mitsubishi Kagaku Media Co., Ltd. 光記録媒体
TW200639846A (en) * 2005-05-11 2006-11-16 Prodisc Technology Inc Optical information storage medium
US8675464B2 (en) * 2005-11-03 2014-03-18 Cinram Group, Inc. Dual sided optical storage media and method for making same
US7684309B2 (en) * 2005-11-03 2010-03-23 Cinram International Inc. Multi-purpose high-density optical disc
DE602006021462D1 (de) * 2005-12-02 2011-06-01 Ricoh Co Ltd Mehrschichtiges optisches informationsaufzeichnung
US7910191B1 (en) * 2006-03-09 2011-03-22 Cinram International Inc. Method for forming light-transmitting cover layer for optical recording medium
US20110096655A1 (en) * 2006-03-09 2011-04-28 Cinram International Inc. Forming light-transmitting cover layer for recording medium
JP2007287227A (ja) * 2006-04-14 2007-11-01 Toshiba Corp 追記型情報記録媒体及びディスク装置
JP2007323719A (ja) * 2006-05-31 2007-12-13 Toshiba Corp 光ディスク、情報記録方法、情報再生方法
JP2008004151A (ja) * 2006-06-21 2008-01-10 Toshiba Corp 片面多層光ディスク、bca記録装置、bca記録方法及び光ディスク装置
JP2008016073A (ja) * 2006-06-30 2008-01-24 Toshiba Corp 追記型情報記録媒体及びディスク装置
JP2008010128A (ja) * 2006-06-30 2008-01-17 Toshiba Corp 情報記録媒体及びディスク装置
JP2009146549A (ja) * 2007-12-18 2009-07-02 Kobe Steel Ltd 光情報記録媒体
US7986602B2 (en) 2008-02-12 2011-07-26 International Business Machines Corporation Apparatus and method to set a rotation rate for an optical and holographic data storage medium
US7995444B2 (en) 2008-02-12 2011-08-09 International Business Machines Corporation Apparatus and method to store and retrieve information using an optical holographic data storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10505188A (ja) * 1995-04-07 1998-05-19 松下電器産業株式会社 光学的情報記録媒体、その製造方法、その製造装置及び光学的情報記録再生装置
JPH1139657A (ja) * 1997-07-22 1999-02-12 Toshiba Corp 光ディスク及びその再生装置
JP2001023237A (ja) * 1999-07-02 2001-01-26 Pioneer Electronic Corp 情報記録媒体

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410248A (ja) 1990-04-26 1992-01-14 Fuji Photo Film Co Ltd 情報記録媒体
JPH0449540A (ja) 1990-06-19 1992-02-18 Fuji Photo Film Co Ltd 情報記録媒体
US5863702A (en) * 1995-03-28 1999-01-26 Toray Industries, Inc. Optical recording media
TW351809B (en) 1995-03-28 1999-02-01 Toray Industries Method for recording on photo record media
JPH1166622A (ja) * 1997-08-25 1999-03-09 Taiyo Yuden Co Ltd 光情報媒体とその記録再生方法
JP3501638B2 (ja) 1997-11-12 2004-03-02 キヤノン株式会社 記録装置
JP3907292B2 (ja) 1997-12-04 2007-04-18 ヤンマー株式会社 油圧サーボ機構のパイロット圧力制御装置
EP0957477A3 (en) * 1998-05-15 2003-11-05 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, recording and reproducing method therefor and optical information recording and reproduction apparatus
JP2000311384A (ja) * 1999-04-26 2000-11-07 Fuji Photo Film Co Ltd 光情報記録媒体
JP3689612B2 (ja) * 2000-01-26 2005-08-31 株式会社日立製作所 情報記録媒体
JP2001344812A (ja) * 2000-06-02 2001-12-14 Fuji Photo Film Co Ltd 光情報記録媒体
JP2003109246A (ja) * 2000-09-29 2003-04-11 Matsushita Electric Ind Co Ltd 光ディスクとその作製方法
JP4150155B2 (ja) * 2000-10-10 2008-09-17 株式会社日立製作所 情報記録媒体、情報の記録方法、再生方法、記録記録装置及び情報再生装置
JP2003099989A (ja) 2001-09-25 2003-04-04 Ricoh Co Ltd 光記録媒体用基板の製造方法と該基板を用いた光記録媒体
JP3871113B2 (ja) 2001-09-28 2007-01-24 株式会社日立製作所 通信端末装置、通信確立方法、および該方法に係るプログラム
JP3842094B2 (ja) 2001-10-01 2006-11-08 矢崎総業株式会社 端子接続部構造
JP2003303447A (ja) 2002-04-04 2003-10-24 Hitachi Maxell Ltd 光記録媒体
JP2004013947A (ja) * 2002-06-04 2004-01-15 Victor Co Of Japan Ltd 情報記録担体、再生装置、記録装置、記録再生装置、再生方法、記録方法及び記録再生方法
PT1518229E (pt) * 2002-06-18 2009-11-05 Koninkl Philips Electronics Nv Suporte de armazenamento de dados óptico
AU2003259412A1 (en) * 2002-08-29 2004-03-19 Koninklijke Philips Electronics N.V. Multi-stack optical data storage medium and use of such medium
US20050213467A1 (en) * 2002-12-17 2005-09-29 Yoshihiro Noda Optical recording medium, and recording/reading method and recording/reading apparatus for optical recording medium
AU2003289079A1 (en) * 2002-12-20 2004-07-14 Mitsubishi Chemical Corporation Optical recording medium, method recording optical recording medium, and recorder
JP2005004944A (ja) * 2003-05-16 2005-01-06 Ricoh Co Ltd 光記録媒体及びその記録再生方法と装置
WO2005104117A1 (ja) * 2004-04-23 2005-11-03 Mitsubishi Kagaku Media Co., Ltd. 光記録媒体
WO2006004119A1 (ja) * 2004-07-06 2006-01-12 Mitsubishi Kagaku Media Co., Ltd. 光記録媒体
WO2006109722A1 (ja) * 2005-04-07 2006-10-19 Mitsubishi Kagaku Media Co., Ltd. 光記録媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10505188A (ja) * 1995-04-07 1998-05-19 松下電器産業株式会社 光学的情報記録媒体、その製造方法、その製造装置及び光学的情報記録再生装置
JPH1139657A (ja) * 1997-07-22 1999-02-12 Toshiba Corp 光ディスク及びその再生装置
JP2001023237A (ja) * 1999-07-02 2001-01-26 Pioneer Electronic Corp 情報記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1615214A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662496A3 (en) * 2004-11-30 2006-12-13 Kabushiki Kaisha Toshiba Information storage medium, stamper disc apparatus and management information playback method
WO2007037205A1 (ja) * 2005-09-27 2007-04-05 Tdk Corporation 光記録媒体
WO2007037204A1 (ja) * 2005-09-27 2007-04-05 Tdk Corporation 光記録媒体

Also Published As

Publication number Publication date
TW200501106A (en) 2005-01-01
EP2063425A1 (en) 2009-05-27
TWI320926B (en) 2010-02-21
US7907503B2 (en) 2011-03-15
US20090141616A1 (en) 2009-06-04
EP1615214A1 (en) 2006-01-11
US20050243699A1 (en) 2005-11-03
EP1615214A4 (en) 2008-07-23
US7672215B2 (en) 2010-03-02

Similar Documents

Publication Publication Date Title
US7907503B2 (en) Optical recording medium and recording/reading method therefor
US7801000B2 (en) Recording/reading method for an optical recording medium using an irradiating a laser beam
JP2009259399A (ja) 光記録媒体、光記録媒体の記録方法
JP2004199757A (ja) 光記録媒体,光記録媒体の記録再生方法及び光記録媒体の記録再生装置
JP4322105B2 (ja) 光記録媒体の記録方法及び記録装置
JP4642539B2 (ja) 光記録媒体
JP2004247024A (ja) 光記録媒体及びその記録再生方法
JP4238170B2 (ja) 光記録媒体
JP2006236574A (ja) 光記録媒体,光記録媒体の記録再生方法及び光記録媒体の記録再生装置
US7371449B2 (en) Optical recording medium
JP4171674B2 (ja) 光記録媒体、光記録媒体の膜厚測定方法、膜厚制御方法、製造方法、膜厚測定装置及び膜厚制御装置
JP4050993B2 (ja) 光記録媒体、光記録媒体の膜厚測定方法、膜厚制御方法及び製造方法
JP4238518B2 (ja) 光記録媒体及びその製造方法
US20070297315A1 (en) Optical Recording Medium
JP2003331473A (ja) 光記録媒体
JP3978402B2 (ja) 光記録媒体の製造方法及び光記録媒体用積層体の製造方法
WO2004055790A1 (ja) 光記録媒体、光記録媒体の記録再生方法及び記録再生装置
JP2004288264A (ja) 光記録媒体、光記録媒体の製造方法
JP2005071396A (ja) 光記録媒体の記録方法及び記録装置
JP4603996B2 (ja) 光記録媒体
JP2006236476A (ja) 光記録媒体
JP2004318985A (ja) 光記録媒体,光記録媒体の記録再生方法及び光記録媒体の製造方法
JP2004213859A (ja) 光記録媒体,光記録媒体の記録再生方法及び光記録媒体の記録再生装置
JP2006048905A (ja) 光記録媒体
JP2008226328A (ja) 光情報記録媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1285/KOLNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004726915

Country of ref document: EP

Ref document number: 11176749

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048055973

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004726915

Country of ref document: EP