[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004077566A1 - 高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサおよび薄膜容量素子の製造方法 - Google Patents

高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサおよび薄膜容量素子の製造方法 Download PDF

Info

Publication number
WO2004077566A1
WO2004077566A1 PCT/JP2004/002118 JP2004002118W WO2004077566A1 WO 2004077566 A1 WO2004077566 A1 WO 2004077566A1 JP 2004002118 W JP2004002118 W JP 2004002118W WO 2004077566 A1 WO2004077566 A1 WO 2004077566A1
Authority
WO
WIPO (PCT)
Prior art keywords
layered compound
compound layer
bismuth layered
film
bismuth
Prior art date
Application number
PCT/JP2004/002118
Other languages
English (en)
French (fr)
Inventor
Yuki Miyamoto
Yukio Sakashita
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to US10/546,834 priority Critical patent/US7312514B2/en
Priority to JP2005502880A priority patent/JP4561629B2/ja
Priority to EP04713996A priority patent/EP1598872A1/en
Publication of WO2004077566A1 publication Critical patent/WO2004077566A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • C01G29/006Compounds containing, besides bismuth, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/957Making metal-insulator-metal device

Definitions

  • the present invention relates to a method of manufacturing a high dielectric constant insulating film, a thin film capacitor, a thin film multilayer capacitor, and a thin film capacitor.
  • a thin film capacitor using a single-layer dielectric thin film has been delayed in miniaturization of integrated circuits with active elements such as transistors, and has become a factor hindering the realization of ultra-high integrated circuits.
  • the reason why the miniaturization of thin-film capacitors was delayed was that the dielectric constant of the dielectric material used was low. Therefore, it is important to use a dielectric material with a high dielectric constant in order to reduce the size of a thin film capacitor and achieve a high capacitance.
  • the dielectric constant may decrease as the dielectric film becomes thinner.
  • leak characteristics and breakdown voltage were sometimes deteriorated due to holes formed in the dielectric film due to thinning.
  • the formed dielectric film had poor surface smoothness, and the rate of change of the dielectric constant with temperature also tended to deteriorate.
  • high-capacitance capacitors that do not contain lead have been desired because of the impact of lead compounds such as PMN on the environment.
  • each dielectric layer in order to reduce the size and increase the capacity of the multilayer ceramic capacitor, the thickness of each dielectric layer must be as small as possible (thinning), and the dielectric layer in a given size must be reduced. It is desired to increase the number of stacked layers as much as possible (multilayering).
  • a sheet method (a dielectric green sheet layer is formed on a carrier film using a paste for a dielectric layer by a doctor blade method or the like, and a paste for an internal electrode layer is printed thereon in a predetermined pattern.
  • a sheet method (a dielectric green sheet layer is formed on a carrier film using a paste for a dielectric layer by a doctor blade method or the like, and a paste for an internal electrode layer is printed thereon in a predetermined pattern.
  • the dielectric layer thinner than the ceramic raw material powder when producing a multilayer ceramic capacitor.
  • the multilayer ceramic capacitor is formed by a printing method (for example, by printing a plurality of dielectric layer pastes and internal electrode layer pastes alternately on a carrier film using a screen printing method and then peeling the carrier film). Also has the same problem.
  • the dielectric thin films formed by the methods described in these publications have poor surface smoothness, and if they are laminated too much, the electrodes may be short-circuited. As a result, at most about 12 to 13 layers are laminated. Only a few could be manufactured. For this reason, even if the capacitor could be miniaturized, high capacity could not be achieved.
  • m in the composition formula is a positive number from 1 to 8
  • symbol A is at least one element selected from Na, K, Pb, Ba, Sr, Ca and Bi
  • symbol B is F e, C o, Cr, Ga, Ti, Nb, Ta, Sb, V, Mo, and W, which are at least one element selected from the group consisting of a bismuth layered compound dielectric of Balta obtained by a sintering method.
  • the construction of the body is known per se.
  • composition represented by the above composition formula when the composition represented by the above composition formula is thinned (for example, 1 ⁇ or less) under any conditions (for example, the relationship between the substrate surface and the degree of c-axis orientation of the compound)
  • any conditions for example, the relationship between the substrate surface and the degree of c-axis orientation of the compound
  • a relatively high dielectric constant and low loss can be given, and a thin film with excellent leakage characteristics, improved withstand voltage, excellent temperature characteristics of dielectric constant, and excellent surface smoothness can be obtained.
  • a thin film with excellent leakage characteristics, improved withstand voltage, excellent temperature characteristics of dielectric constant, and excellent surface smoothness There was no disclosure of what could be done.
  • the present inventors have developed a composition for a thin film capacitor shown in PCT / JP02 / 08574, and filed an application beforehand. Further, the present inventors have further conducted experiments, and as a result, it has been found that the c-axis orientation degree of the compound can be further improved by adding Bi in excess of the stoichiometric composition of the bismuth layered compound. They found what they could do and filed an application earlier (Japanese Patent Application No. 2003-012086 and Japanese Patent Application No. 2003-0112088).
  • an excess amount of B i is from 2.5 to 7.5 mol 0/0 (0.4 mol or less with respect to the stoichiometric composition) and low in the experiment of the present inventors According to the results, it was found that this was insufficient to enhance the leakage current resistance.
  • the leakage resistance can be improved by improving the degree of c-axis orientation.
  • the present inventors have found that the dielectric constant is lower than that of a bismuth layered compound film not added.
  • Japanese Patent Application Laid-Open No. H11-121703 discloses that an oxide layer containing bismuth is formed as a buffer layer between a bismuth layered compound layer and a lower electrode, thereby suppressing the reaction with the base and suppressing the reaction.
  • a technique for avoiding the inhibition of the electrical connection is disclosed.
  • the buffer layer in this document is not a bismuth layered compound film containing excess bismuth, but the c-axis orientation is improved by forming the buffer layer. There is no technical idea to the effect.
  • the present invention has been made in view of such circumstances, and has as its object to provide a high-dielectric-constant insulating film having a high degree of c-axis orientation, particularly excellent leakage current resistance, and capable of improving the total dielectric constant.
  • Another object of the present invention is to provide a method of manufacturing a thin film capacitor, a thin film capacitor, and a thin film capacitor.
  • the present inventors have conducted intensive studies on the material and the crystal structure of the dielectric thin film used for the capacitor. As a result, the present inventors have found that a bismuth layered compound having a specific composition is used, and that the c-axis ([0 0 1] orientation) perpendicular to the substrate surface to form a dielectric thin film as a composition for a thin film capacitor, that is, a c-axis oriented film of a bismuth layered compound (thin film normal) with respect to the substrate surface.
  • the present inventors have proposed that the Bi of the bismuth layered compound is excessively contained in the composition at a predetermined excess content with respect to the stoichiometric composition of the bismuth layered compound, so that the leakage current resistance characteristics are improved. It has been found that the degree of c-axis orientation can be further improved by locating the second bismuth layered compound on the surface of the lower electrode.
  • the present inventors have found that the bismuth layered compound to which bismuth is excessively added is Since the dielectric constant is lower than that of the bismuth layered compound of the composition, by combining the bismuth layered compound with excessive addition of bismuth with the bismuth layered compound of the theoretical composition, the total dielectric constant is improved while improving the leakage current resistance. The present inventors have found that the rate can be improved, and have completed the present invention.
  • Composition formula (B i 2 ⁇ 2 ) 2+ (A m — i B m 0 3 m +! 2 — or B ⁇ 2 A m -1 B m 0 3 m + 3
  • Symbol m is a positive number
  • Symbol A is at least one element selected from Na, K, Pb, Ba, Sr, Ca and Bi
  • Symbol B is Fe, Co, Cr, Ga, Ti.
  • a first bismuth layered compound layer which is at least one element selected from Nb, Ta, Sb, V, Mo, W and Mn;
  • the first bismuth layered compound layer has at least a second bismuth layered compound layer that is stacked with bismuth in excess of the composition formula of the first bismuth layered compound layer.
  • the second bismuth layered compound layer contains excess bismuth, so that the high dielectric constant insulating film has improved leakage resistance.
  • the high dielectric constant insulating film of the present invention also has a first bismuth layered compound layer which is close to the theoretical composition in which bismuth is not excessive, and this layer has a higher dielectric constant than a layer in which bismuth is excessive. As a result, the total dielectric constant of the high dielectric constant insulating film is improved, and the capacitance is improved.
  • the present invention it is possible to provide a high-dielectric-constant insulating film having particularly excellent leakage current resistance and capable of improving the total dielectric constant. Further, by positioning the second bismuth layered compound on the surface of the lower electrode, the degree of c-axis orientation can be further improved.
  • This high dielectric constant insulating film is suitable for use as a dielectric film in a thin film capacitor or a dielectric film in a thin film multilayer capacitor.
  • the high dielectric constant insulating film of the present invention can be used, for example, in addition to a dielectric film of a thin film capacitor or a capacitor, for example, a gate insulating film of a semiconductor device, a gate electrode and a floating gate. It can also be used as an intermediate insulating film between them.
  • thin film in the present invention refers to a film of a material having a thickness of several A to several ⁇ m formed by various thin film forming methods, and having a thickness of several hundred ⁇ m or more formed by a sintering method. The purpose is to exclude thick-film pulp.
  • the thin film includes not only a continuous film that continuously covers a predetermined region, but also an intermittent film that intermittently covers an arbitrary interval.
  • the thin film may be formed on a part of the substrate surface, or may be formed on the entire surface.
  • the first bismuth layered compound layer and the second bismuth layered compound layer have the same theoretical composition formula except that the content of bismuth in the second bismuth layered compound layer is larger than that of the first bismuth layered compound layer.
  • Bismuth layered compound layer Layers having the same theoretical formula have better bonding properties at the lamination interface and also have higher c-axis orientation. However, in the present invention, these may be bismuth layered compound layers having different composition formulas.
  • the excess amount of bismuth contained in the second bismuth layered compound layer is larger than 0, preferably 0.1 mol times or more and 0.5 mol times or less, More preferably, it is 0.1 to 0.4 mole times. In such a range, the degree of c-axis orientation of the second bismuth layered compound layer is improved, and the degree of c-axis orientation of the first bismuth layered compound layer is also improved, so that leak resistance is improved.
  • the thickness of the second bismuth layered compound layer is smaller than the thickness of the first bismuth layered compound layer.
  • the thickness of the second bismuth layered compound layer is preferably 1 nm or more and less than 300 nm, more preferably 5 to 20 O nm, and particularly preferably 10 to 100 nm.
  • the second bismuth layered compound layer functions as a buffer layer for the first bismuth layered compound layer. If the thickness is too small, the function of improving the degree of c-axis orientation and improving leak resistance tends to decrease. If the thickness of the second bismuth layered compound layer is too thick, the first The thickness of the layered compound layer must be reduced, and the total dielectric constant tends to decrease.
  • the c-axis of the bismuth layered compound is oriented 100% perpendicular to the substrate surface, that is, it is particularly preferable that the bismuth layered compound has a c-axis orientation of 100%, but not necessarily.
  • the degree of c-axis orientation need not be 100%.
  • the degree of c-axis orientation of the second bismuth layered compound layer is 80% or more, and more preferably 90% or more.
  • the first bismuth layered compound layer preferably has a c-axis orientation of 80% or more, more preferably 90% or more.
  • the second bismuth layered compound layer may be a single layer, or may be composed of a plurality of layers. When it is composed of a plurality of layers, it may be composed of the same layer, but it may be composed of a plurality of layers having different excess amounts of bismuth. Further, the second bismuth layered compound layer may be composed of a layer in which the excess amount of bismuth gradually changes in the thickness direction.
  • the symbol m in the composition formula is not particularly limited, but is preferably 3, 4, or 5.
  • the first bismuth layered compound layer and / or the second bismuth layered compound layer may contain rare earth elements (Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, And at least one element selected from Dy, Ho, Er, Tm, Yb, and Lu).
  • rare earth elements Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, And at least one element selected from Dy, Ho, Er, Tm, Yb, and Lu.
  • the thin film capacitance element according to the present invention, A thin capacitive element in which a lower electrode, a dielectric thin film and an upper electrode are sequentially formed on a substrate,
  • the dielectric thin film is composed of the high dielectric constant insulating film described in the above (4) or (4).
  • the thin film capacitor examples include, but are not limited to, a capacitor having a conductor-insulator-conductor structure (for example, a single-layer thin-film capacitor, a multilayer-type thin-film multilayer capacitor, etc.) and a capacitor (for, for example, a DRAM). And the like.
  • a capacitor having a conductor-insulator-conductor structure for example, a single-layer thin-film capacitor, a multilayer-type thin-film multilayer capacitor, etc.
  • a capacitor for, for example, a DRAM.
  • the second bismuth layered compound layer is laminated on the surface of the lower electrode, and the first bismuth layered compound layer is laminated on the surface of the second bismuth layered compound layer. It is relatively difficult to form a bismuth layered compound layer with a high c-axis orientation on the surface of an electrode made of a material on which crystals do not grow epitaxially, but the second bismuth layered compound containing an excessive amount of bismuth According to the layer, a bismuth layered compound layer having a high degree of c-axis orientation can be formed even on the surface of the electrode.
  • the c-axis in the second bismuth layered compound layer is oriented perpendicular to the surface of the lower electrode.
  • the c-axis in the first bismuth layered compound layer is also oriented perpendicular to the surface of the lower electrode according to the second bismuth layered compound layer, and the degree of orientation is also increased.
  • the thickness of the dielectric thin film is from 1 to 100 nm, more preferably from 10 to 500 nm.
  • the c-axis orientation is high, the leakage current resistance is particularly excellent, and the dielectric constant as a whole can be improved.
  • a thin film laminated capacitor in which a plurality of dielectric thin films and internal electrode thin films are alternately laminated on a substrate,
  • the dielectric thin film is constituted by the high dielectric constant insulating film according to any one of the above. [0 0 4 1]
  • the second bismuth layered compound layer is laminated on the surface of the internal electrode thin film, and the first bismuth layered compound layer is laminated on the surface of the second bismuth layered compound layer.
  • a second bismuth layered compound layer with excessive addition of bismuth is formed. According to this, a bismuth layered compound layer having a high degree of c-axis orientation can be formed also on the surface of the electrode.
  • the c-axis in the second bismuth layered compound layer is oriented perpendicular to the surface of the electrode thin film.
  • the c-axis in the first bismuth layered compound layer is also oriented perpendicular to the surface of the lower electrode according to the second bismuth layered compound layer, and the degree of orientation is also increased.
  • the dielectric thin film has a thickness of 1 to 100 nm, more preferably 10 to 50 nm.
  • the c-axis orientation is high, the leakage current resistance is particularly excellent, and the dielectric constant as a whole can be improved.
  • the method for manufacturing a thin film capacitor according to the present invention includes:
  • the method for forming the second bismuth layered compound layer is not particularly limited, and various thin film forming methods can be adopted, but it is preferable to use a solution method. That is, preferably, a solution for forming the second bismuth layered compound layer is applied to the surface of the lower electrode such that Bi of the bismuth layered compound is in an excessive content to form a coating film. Thereafter, the coating film is fired to form the second bismuth layered compound layer, and thereafter, the first bismuth layered compound layer is formed. According to the solution method, a bismuth-excess second bismuth layered compound layer can be easily formed. Can be.
  • the method for forming the first bismuth layered compound layer is not particularly limited, and various thin film forming methods can be adopted, but it is preferable to manufacture the first bismuth layered compound layer in the same manner as the second bismuth layered compound layer. . By unifying the manufacturing method, the manufacturing process can be simplified.
  • the temperature at which the coating film is fired is 700 to 900 ° C., which is the crystallization temperature of the coating film.
  • the temperature at which the coating film is dried is room temperature (25 ° C) to 400 ° C, more preferably 50 ° C to 300 ° C. C.
  • the temperature at which the coating film is calcined is 300 to 500 ° C.
  • FIG. 1A and 1B are schematic cross-sectional views showing a manufacturing process of a thin film capacitor according to one embodiment of the present invention.
  • FIG. 2 is a flowchart showing a manufacturing process of the thin film capacitor shown in FIG. 1
  • FIG. 3 is a schematic sectional view of a thin multi-layer capacitor according to another embodiment of the present invention.
  • a thin film capacitor in which a dielectric thin film is formed in a single layer will be described as an example of the thin film capacitor.
  • a thin film capacitor 2 includes a substrate 4 A lower electrode thin film 6 is formed on the substrate 4 with an insulating layer 5 interposed therebetween. On the lower electrode thin film 6, a dielectric thin film (high dielectric constant insulating film) 8 is formed. Then, as shown in FIG. 1B, an upper electrode thin film 10 is formed on the dielectric thin film 8.
  • the substrate 4 is not particularly limited, lattice-match well monocrystal (e.g., S r T i 0 3 single crystal, MgO single crystal, such as L a A 10 3 single crystal), an amorphous material (e.g., glass, fused quartz, such as S io 2 Bruno S i), Access other materials (, Z r 0 2 / S i, such as C E_ ⁇ 2 ZS i) consists of such.
  • the thickness of the substrate 4 is not particularly limited, and is, for example, about 100 to 1000 inches.
  • a silicon single crystal substrate is used as the substrate 4, and an insulating layer 5 made of a thermal oxide film (silicon oxide film) is formed on the surface thereof, and the lower electrode thin film 6 is formed on the surface thereof. Is formed.
  • the material for forming the lower electrode thin film 6 is not particularly limited as long as it is a material having conductivity. Platinum (Pt), ruthenium (Ru), rhodium (Rh), palladium (Pd), iridium (Ir), gold (Au), silver
  • S rRu0 3 C ARu_ ⁇ 3, S RV_ ⁇ 3, S r C r0 3, using S r Co0 3, L a N 0 3, N doped S r T i 0 3 conductive oxide having a perovskite structure such as, and mixtures thereof, may also be a lower electrode film 6.
  • the lower electrode thin film can be made of, for example, conductive glass such as ITO.
  • the thickness of the lower electrode thin film 6 is not particularly limited, but is preferably about 10 to 1000 II m, and more preferably about 50 to 200 nm.
  • the upper electrode thin film 10 can be made of the same material as the lower electrode thin film 6.
  • the thickness may be the same as that of the lower electrode thin film 6.
  • the dielectric thin film 8 is composed of a laminated film of a first bismuth layered compound layer 8a and a second bismuth layered compound layer 8b.
  • the second bismuth layered compound layer 8b is formed between the first bismuth layered compound layer 8a and the lower electrode thin film 6, and functions as a buffer layer for these.
  • First bismuth layer compound layer 8 a the composition formula: (B i 2 0 2) 2+ (A m -x B m O 3m + 1) 2 -, or B i 2 A m -x B m ⁇ 3m + Contains the bismuth layered compound represented by 3 .
  • a bismuth layer compound the (m-1) pieces of AB0 layered structure of upper and lower laminar base Ropusukai coat layer with continuous constitute Bae Robusukai preparative grating was Sanditsuchi with a layer of the pair of B i and O 3 Show.
  • the symbol m is not particularly limited as long as it is a positive number, and may be odd or even. If the symbol m is an even number, it has a mirror plane parallel to the c-plane, so that the spontaneous polarization components in the c-axis direction cancel each other out at the mirror plane, and are polarized in the c-axis direction. It has no axis. For this reason, paraelectricity is maintained, the temperature characteristics of the dielectric constant are improved, and low loss (low t an S) is realized. When the symbol m is an odd number, it also has a polarization axis in the c-axis direction, and the dielectric constant at the Curie point is higher than when ⁇ is an even number. In particular, increasing the symbol m can be expected to further increase the dielectric constant. However, in the present embodiment, the symbol m is 3, 4, 5 for reasons such as ease of manufacturing.
  • the symbol A is composed of at least one element selected from Na, K, Pb, Ba, Sr, Ca and Bi.
  • the symbol A is composed of two or more elements, their ratio is arbitrary.
  • the symbol B is composed of at least one element selected from Fe, Co, Cr, Ga, Ti, Nb, Ta, Sb, V, Mo, W and Mn.
  • the symbol B is composed of two or more elements, their ratio is arbitrary.
  • the second bismuth layered compound layer 8b is composed of the bismuth layered compound having the same theoretical composition formula as the first bismuth layered compound layer 8a, but is included in the second bismuth layered compound layer 8b.
  • B i is in excess of the composition formula: (B i 2 0 2 ) 2+ (A m _i B m 0 3m + 1 ) 2 , or B i 2 A m -x B »0 3m + 3 It is contained.
  • the excess amount of bismuth contained in the second bismuth layered compound layer 8b is larger than 0, preferably 0.1 mol times or more and 0.5 mol times or less, more preferably Is 0.1 to 0.4 mole times.
  • the degree of c-axis orientation of the second bismuth layered compound layer 8b is particularly improved, and the degree of c-axis orientation of the first bismuth layered compound layer 8a is also improved.
  • the overall leakage resistance of the steel is improved.
  • bismuth layered compound in which the composition formula above m is 3: in the case of B i 4 T i 3 0 12 bismuth layer compound expressed by an excess amount of B i is a B i terms, It is larger than 0, and preferably in the range of 0.1 mol times or more and 0.5 mol times or less.
  • the bismuth layer compound expressed by the formula when expressed in B i 4 + B T i 3 0 12 is the over-containing moles Fei B i in the bismuth layer compound, 0 yo Ri large, preferably Is in the range of 0.4 (0.1 mole times) ⁇ ⁇ ⁇ 2.0 (0.5 mole times).
  • composition formula is a bismuth layer compound is the above-mentioned m is 5:
  • an excess amount of B i is a B i terms, greater than 0 It is preferably in a range of 0.1 mol times or more and 0.5 mol times or less.
  • the bismuth layer compound expressed by the formula when table in S r 2 B i 4 + a T i 5 0 18 , the ⁇ is excessive molar number of B i in the bismuth layer compound, greater than 0 It is preferably in the range of 0.4 (0.1 mole times) ⁇ ⁇ 2.0 (0.5 mole times).
  • the second bismuth layered compound layer 8b bismuth is contained in excess relative to the stoichiometric composition, whereby the orientation of the bismuth layered compound in the [001] direction, that is, the c-axis The orientation is enhanced. That is, the second bismuth layered compound layer 8 b is formed such that the c-axis of the bismuth layered compound is oriented perpendicular to the substrate 4.
  • the degree of c-axis orientation of the second bismuth layered compound layer 8b is increased, the degree of c-axis orientation of the first bismuth layered compound layer 8a formed thereon is also increased. Note that if the first bismuth layered compound layer 8a having a theoretical composition that is not excessive in bismuth but has an excellent dielectric constant is to be formed directly on the surface of the lower electrode 6, the degree of c-axis orientation is reduced and leakage resistance is reduced. The characteristics will be degraded.
  • the c-axis orientation of the bismuth layered compound is particularly preferably 100%, but the c-axis orientation may not necessarily be 100%, and the bismuth layered compound is preferably 80 ° / 0 %.
  • the above, more preferably 90% or more, and even more preferably 95% or more should be c-axis oriented.
  • the degree of c-axis orientation F of the bismuth layered compound is defined by the following equation (1).
  • P0 is a polycrystal having a completely random orientation.
  • X-ray diffraction intensity of the axis that is, the sum of the reflection intensity I (00 1) from the (00 1) plane of a polycrystal with completely random orientation ⁇ ⁇ (00 1) and the polycrystal
  • P is the c-axis X-ray diffraction intensity of the bismuth layered compound, that is, the reflection intensity I from the (00 1) plane of the bismuth layered compound.
  • h, k, and 1 can each take any integer value of 0 or more.
  • the c-axis of the bismuth layered compound means a direction connecting a pair of (B i 2 ⁇ 2 ) 2+ layers, that is, a [001] direction.
  • the bismuth is excessively contained in the second bismuth layered compound layer 8b, so that the degree of c-axis orientation of the layer is also improved, and the first bismuth layered compound layer 8b formed thereon is also improved.
  • the degree of c-axis orientation of a is also improved.
  • this dielectric thin film 8 also has a first bismuth layered layer (a ligated compound layer 8a) close to the theoretical composition without bismuth excess, and this layer 8a is compared with the bismuth-excess layer 8b. As a result, the total dielectric constant of the dielectric thin film 8 is improved, and the capacitance is improved.
  • the present embodiment it is possible to provide a dielectric thin film 8 having a high degree of c-axis orientation, particularly having excellent leakage current resistance, and capable of improving the total dielectric constant.
  • the dielectric thin film 8 also has low loss (low t an S), and if t a ⁇ ⁇ decreases, the Q (1 / ta ⁇ ⁇ ) value increases.
  • the first bismuth layered compound layer 8a and / or the second bismuth layered compound layer 8b include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy , Ho, Er, Tm, Yb, and Lu may further contain at least one element (rare earth element Re).
  • the dielectric thin film 8 does not have the rare-earth element Re, it has excellent leakage characteristics as described later, but the leakage characteristics can be further improved by Re substitution.
  • the dielectric thin film 8 composed of the first bismuth layered compound layer 8a and the second bismuth layered compound layer 8b preferably has a total film thickness of 1 to 100 O nm, from the viewpoint of increasing the capacity. Is more preferably 1 to 500 nm.
  • the thickness of the second bismuth layered compound layer 8b is smaller than the thickness of the first bismuth layered compound layer 8a.
  • the second video The thickness of the smear layered compound layer 8b is 1 nm or more and less than 300 nm, more preferably 5 to 200 nm, and particularly preferably 10 to 100 nm.
  • the second bismuth layered compound layer 8b functions as a buffer layer of the first bismuth layered compound layer 8a. If the thickness is too small, the function of improving the c-axis orientation degree and improving the leak resistance is reduced. Tend to. If the thickness of the second bismuth layered compound layer 8b is too large, the thickness of the first bismuth layered compound layer 8a has to be reduced due to a demand for thinning, and the total dielectric constant decreases. Tend to.
  • the dielectric constant of the dielectric thin film 8 at 25 ° C. (room temperature) and a measurement frequency of 100 kHz (AC 20 mV) is preferably more than 100, more preferably 150 or more.
  • the first bismuth layered compound layer 8a and the second bismuth layered compound layer 8b are respectively formed by vacuum deposition, sputtering, pulsed laser deposition (PLD), metal organic chemical vapor deposition (metal- It can be formed using various thin film forming methods such as organic chemical vapor deposition (MOCVD), liquid phase method (CSD method) such as metal-organic decomposition method.
  • MOCVD organic chemical vapor deposition
  • CSD method liquid phase method
  • the first bismuth layered compound layer 8a and the second bismuth layered compound layer 8b can be particularly manufactured by the following method.
  • Second bismuth layered compound layer 8 b is, for example, the stoichiometric composition formula shall apply in S r B i 4 T i 4 0 15 bismuth layer compound expressed by, when the bismuth is excessively added, A toluene solution of 2-ethylhexanoic acid Sr, a 2-ethylhexanoic acid solution of 2-ethylhexanoic acid Bi, and a toluene solution of 2-ethylhexanoic acid Ti are prepared.
  • this raw material solution is applied on the lower electrode 6 shown in FIG.
  • the coating method is not particularly limited, and a method such as spin coating, dip coating, spraying, or painting with a brush can be used.
  • a coating film of, for example, about 1 to 300 nm can be formed.
  • this coating film is dried in air to evaporate the solvent in the coating film.
  • the drying temperature is from room temperature to about 400 ° C.
  • the dried coating film is calcined (not crystallized) in an oxygen atmosphere.
  • the calcining temperature is about 200 to 700 ° C.
  • the process from application to calcination may be repeated one or more times on the applied film after the calcination.
  • the thickness of the unfired coating film before firing is too large, it tends to be difficult to obtain a well-crystallized c-axis oriented bismuth layered compound film after firing.
  • the applied film is subjected to main firing (also simply referred to as “firing” or “crystallization”).
  • the temperature at the time of the main baking is performed under a temperature condition at which the coating film is crystallized, and the temperature is preferably from 700 to 900C.
  • the atmosphere during the main firing is not particularly limited, but is an oxygen gas atmosphere.
  • the main baking after the repetition of the application and the calcination may be repeated one or more times.
  • the thickness of the unfired coating film in one main firing is 200 nm or less, preferably 10 to 200 nin, after one firing. It is preferable to set so that If the coating film thickness before firing is too thick, after firing. It tends to be difficult to obtain a well-crystallized c-axis oriented bismuth layered compound film. [0 0 8 7]
  • a raw material solution for forming the first bismuth layered compound layer 8a shown in FIG. 1 is prepared.
  • the adjustment of the raw material is performed so that the amount of bismuth added in the theoretical composition formula is not excessive.
  • the first bismuth layered compound layer 8a is formed on the second bismuth layered layer ⁇ (bonded compound layer 8b) in the same manner as in the case of forming the second bismuth layered compound layer 8b. .
  • the second bismuth layered compound layer 8 b and the first bismuth layered compound layer 8 a thus obtained have their c-axis oriented perpendicular to the substrate 4.
  • the degree of c-axis orientation of these bismuth layered compounds is preferably at least 80%, more preferably at least 90%, further preferably at least 95%.
  • the heat treatment is preferably performed at a temperature of 500-900C.
  • Such a dielectric thin film 8 and a thin film capacitor 2 using the same have a relatively high dielectric constant and low loss, are excellent in leakage resistance, have improved withstand voltage, and have excellent temperature characteristics of dielectric constant. Excellent surface smoothness.
  • Such a dielectric thin film 8 and a thin film capacitor 2 have excellent frequency characteristics and voltage characteristics.
  • a thin film multilayer capacitor in which a dielectric thin film is formed in multiple layers will be described as an example of a thin film capacitor.
  • the thin-film multilayer capacitor 20 has a capacitor body 22.
  • the capacitor element 22 is placed on the substrate 4a, 80, and a plurality of internal electrode thin films 24 and 26 are alternately arranged, and a protective layer 30 is formed so as to cover the dielectric thin film 80 arranged at the outermost position.
  • a pair of external electrodes 28, 29 are formed at both ends of the capacitor body 22, and the pair of external electrodes 28, 29 are alternately formed inside the capacitor body 22. It is electrically connected to the exposed end faces of the disposed internal electrode thin films 24 and 26 to form a capacitor circuit.
  • the shape of the capacitor body 22 is not particularly limited, but is usually a rectangular parallelepiped.
  • the dimensions are not particularly limited, but are, for example, about vertical (0.01 to 10 mm) X horizontal (0.01 to 1 O mm) X height (0.01 to: L mm). You.
  • the substrate 4a is made of the same material as the substrate 4 of the first embodiment described above.
  • Each dielectric thin film 80 has the same configuration as the dielectric thin film 8 of the first embodiment described above.
  • the internal electrode thin films 24 and 26 are made of the same material as the lower electrode thin film 6 and the upper electrode thin film 10 of the first embodiment.
  • External electrodes 2 8 the material of the 2 9 particularly limited Sarezu, C a R u 0 3 and S r conductive oxide such as R U_ ⁇ 3; C u and C u alloys there have is N i and N i Base metals such as alloys; precious metals such as Pt, Ag, Pd and Ag_Pd alloys;
  • the thickness is not particularly limited, but may be, for example, about 10 to 100 nm.
  • the material of the protective layer 30 is not particularly limited, but is composed of, for example, a silicon oxide film, an aluminum oxide film, or the like.
  • the thin film multilayer capacitor 20 is formed by applying a mask such as a metal mask on the substrate 4 a to form a first-layer internal electrode thin film 24, and then forming a dielectric thin film 8 on the internal electrode thin film 24. Then, a second-layer internal electrode thin film 26 is formed on the dielectric thin film 80. After repeating such a process a plurality of times, the outermost dielectric thin film 80 opposite to the substrate 4a is covered with a protective film 30 so that the internal electrode thin film 2 is formed on the substrate 4a.
  • a capacitor body 22 is formed in which a plurality of 4, 26 and dielectric thin films 80 are alternately arranged. By covering with the protective film 30, the influence of moisture in the air on the inside of the capacitor body 22 can be reduced.
  • the odd-numbered internal electrode thin film 24 is electrically connected to the external electrode 28 and electrically connected to the negative external electrode 28.
  • the inner electrode thin film 26 of the layer is electrically connected to the other external electrode 29 to conduct, and the thin film multilayer capacitor 20 is obtained.
  • the substrate 4a made of an amorphous material.
  • the dielectric thin film 80 used in this embodiment has a relatively high dielectric constant even when thin, and has good surface smoothness. As described above, preferably, 50 or more layers can be provided. Therefore, it is possible to provide a thin-film multilayer capacitor 20 which is small and can provide a relatively high capacitance.
  • the average change rate ( ⁇ ) of the dielectric constant with respect to the temperature in at least the temperature range of 55 ° C. to + 150 ° C.
  • the temperature is preferably within 500 ppm / ° C (reference temperature 25 ° C), and more preferably within ⁇ 300 ppm / ° C.
  • the second bismuth layered compound layer 8b shown in FIG. 1 is represented by a stoichiometric composition formula B i 4 T ia Oi 2 (B i T), and a composition formula: B i 2 A m -i B m 0 3m
  • B i 4 T ia Oi 2 B i T
  • B i 2 A m -i B m 0 3m B i 2 A m -i B m 0 3m
  • the following solutions were prepared to be composed of the bismuth layered compound represented by Ti 32. [0 1 0 1]
  • a 2-ethylhexanoic acid solution of 2-ethylhexanoic acid B i and a toluene solution of 2-ethylhexanoic acid T i were prepared as raw material solutions. That is, compared to the case where (2 + ⁇ ) mole of 2-ethylhexanoic acid B i and 3 moles of Ti of 2-ethylhexanoic acid are mixed at a stoichiometric ratio, B i These two solutions were mixed and diluted with toluene so that the addition amount of ⁇ became larger by ⁇ mol, to obtain a raw material solution.
  • the raw material solution (0.5 molar times) and several kinds of raw material solutions were prepared.
  • the raw material solution the stoichiometric yarn ⁇ B i 4 T ia 0 12 is, so as to be contained at a concentration of 0.1 mol Z liter, was diluted with toluene.
  • These raw material solutions were each filtered in a clean booth by a PTF E syringe filter having a pore diameter of 0.2 / m into a glass container that had been cleaned in a clean room.
  • a substrate 4 was prepared separately from these raw material solutions.
  • the substrate 4 was a silicon single crystal (100) substrate, and an insulating layer 5 as a silicon oxide film was formed on the surface of the substrate 4 by a thermal oxidation process.
  • the thickness of the insulating layer 5 was 0.5 ⁇ m.
  • a lower electrode 6 made of a Pt thin film was formed to a thickness of 0.1 m by a sputtering method.
  • the area of the substrate 4 was 5 watts X I Oram.
  • This substrate 4 is prepared in a number of types of raw material solutions, each is set on a spin coater, and a raw material solution for forming the second bismuth layered compound layer 8 b is first formed on the surface of the lower electrode 6 on the substrate 4. About 10 liters were added, and spin coating was performed under the conditions of 400 rpm and 20 seconds to form a coating film on the surface of the lower electrode 6. It In order to evaporate the solvent of each coating film, the substrate 4 was put in a thermostat (air inside) set at 150 ° C. and dried for 10 minutes. After 10 minutes, the substrate 4 is taken out and, as shown in FIG. 1A, the second bismuth layered compound layer 8b is formed so that a part of the surface of the lower electrode 6 is exposed. Some were wiped off.
  • each substrate 4 was placed in an annular furnace in order to calcine the coating film.
  • oxygen is flowing at 0.3 liters, and the temperature is raised to 400 ° C at a rate of 10 ° K / min.
  • the rate of cooling is 10 ° KZ.
  • the temperature was reduced in minutes.
  • the calcination was performed under a temperature condition that does not crystallize the coating film. .
  • each substrate was placed in an annular furnace in order to fully bake the calcined film.
  • oxygen was flowed at 5 millilitre tonnage, the temperature was raised to 850 ° C at a heating rate of 80 ° K / min, and after holding at 850 ° C for 30 minutes, the cooling rate was 80 ° KZ The temperature was lowered in minutes to obtain a second bismuth layered compound layer 8b.
  • Table 1 shows several kinds of film thicknesses of the second bismuth layered compound layer 8b after the main firing were prepared.
  • the first bismuth layered compound layer 8a is formed on the second bismuth layered compound layer 8b after the main firing, and the second bismuth layered compound layer 8b described above except that bismuth is not excessive. Under the same conditions, coating, drying, calcining and main baking were repeated again to form a film.
  • the film thickness of the first bismuth layered compound layer 8a after the main firing was 30 Onm.
  • each dielectric thin film 8 composed of the first bismuth layered compound layer 8a and the second bismuth layered compound layer 8 as shown in FIG. was formed by a sputtering method, and samples of a plurality of types of thin film capacitors were produced.
  • the electrical characteristics (dielectric constant, t an S, loss Q value, leak current, short-circuit ratio) of the obtained capacitor samples and the temperature characteristics of the dielectric constant were evaluated.
  • Dielectric constant (no unit) was measured at room temperature (25 ° C) and measurement frequency of 100 kHz using an impedance analyzer (HP 4194A) for the capacitor sample.
  • Leakage current resistance (unit: AZcm 2 ) was measured at an electric field strength of 50 kVZcm.
  • Table 1 shows the results.
  • the first bismuth layered compound layer was abbreviated as a first layer
  • the second bismuth layered compound layer was abbreviated as a second layer
  • the main firing temperature was abbreviated as T 2.
  • the excess Bi content in the second bismuth layered compound layer 8b is larger than 0, preferably 0.1 to 0.5 times, more preferably 0.1 to 0.4 times. It was confirmed that when the molar ratio was larger, the degree of c-axis orientation was improved without lowering the dielectric constant, the leakage current was small, and the leakage resistance was excellent.
  • the thickness of the second bismuth layered compound layer is smaller than the thickness of the first bismuth layered compound layer, and the thickness of the second bismuth layered compound layer is 1 m or more and less than 300 nm,
  • the thickness is more preferably from 5 to 200 nm, and particularly preferably from 20 to 200 nm, it is possible to improve the degree of c-axis orientation, to reduce the leakage current, and to have excellent leakage resistance characteristics without lowering the dielectric constant. It could be confirmed.
  • Second layer composition T2 (.C) Second layer thickness (nm) Second layer orientation (%) First layer composition First layer film (run)
  • the dielectric When the value is 0.1 to 0.4 mole times, the dielectric is 0 to 1 mole times or more. It was confirmed that the c-axis orientation was improved, the leakage current was small, and the leakage resistance was excellent, without reducing the rate.
  • the thickness of the second bismuth layered compound layer is smaller than the thickness of the first bismuth layered compound layer, and the thickness of the second bismuth layered compound layer is 1 nm or more and less than 300 nm,
  • the thickness is more preferably 5 to 200 nm, and particularly preferably 20 to 200 nm, it is confirmed that the c-axis orientation degree is improved, the leak current is small, and the leak resistance is excellent, without lowering the dielectric constant. did it.
  • Second layer composition T2 (° C) Second layer thickness (nm) Second layer orientation (3 ⁇ 4) First layer composition First layer thickness (nm) First layer orientation Dielectric Rate Leakage lightning current (A / cm 2 )
  • the excess Bi content in the second bismuth layered compound layer 8b is larger than 0, preferably 0.1 mol times or more and 0.5 mol times or less, and more preferably 0.1 mol times or less. It was confirmed that when the molar ratio was 4 moles, the degree of c-axis orientation was improved, the leak current was small, and the leak resistance was excellent, without lowering the dielectric constant.
  • the thickness of the second bismuth layered compound layer was smaller than the thickness of the first bismuth layered compound layer, and the thickness of the second bismuth layered compound layer was 1 nm or more and 300 nm or more. Less, more preferably 5 to 200 nm, and particularly preferably 10 to 100 nm, the c-axis orientation is improved without lowering the dielectric constant, and the leakage current is small. It was confirmed that it had excellent leak resistance.
  • a high dielectric constant insulating film, a thin film capacitive element, which has a high degree of c-axis orientation, is particularly excellent in leakage current resistance characteristics, and can improve the dielectric constant in daughter.
  • a method for manufacturing a thin film multilayer capacitor and a thin film capacitor can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Structural Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Semiconductor Memories (AREA)
  • Inorganic Insulating Materials (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

明 細 書 高誘電率絶縁膜、 薄膜容量素子、 薄膜積層コンデンサおよび薄膜容量素子の製 造方法 技術分野
【0 0 0 1】
本発明は、 高誘電率絶縁膜、 薄膜容量素子、 薄膜積層コンデンサおよび薄膜容 量素子の製造方法に関する。
背景技術
【0 0 0 2】
近年、 電子部品の分野では、 電子回路の高密度化 ·高集積化に伴い、 各種電子 回路に必須の回路素子である容量素子などの一層の小型化および高性能化が望ま れている。
【0 0 0 3】
たとえば、 単層の誘電体薄膜を用いた薄膜コンデンサは、 トランジスタなどの 能動素子との集積回路において、 小型化が遅れており、 超高集積回路の実現を阻 害する要因となっている。 薄膜コンデンサの小型化が遅れていたのは、 これに用 いる誘電体材料の誘電率が低かったためである。 したがって、 薄膜コンデンサを 小型化し、 しかも高い容量を実現するためには、 高い誘電率を持つ誘電体材料を 用いることが重要である。
【0 0 0 4】
また、 近年、 容量密度の観点から、 次世代 D R AM (ギガビット世代) 用のキ ャパシタ材料が従来の S i 0 2 と S i 3 N 4 の積層膜では対応しきれなくなって おり、 より高い誘電率を持つ材料系が注目されている。 このような材料系の中で T a Ο χ ( ε =〜3 0 ) の適用が主として検討されていたが、 他の材料の開発も 活発に行われるようになってきている。
【0 0 0 5】
一方、 比較的高い誘電率を持つ誘電体材料として、 (B a , S r ) T i 0 3 一 l 一 ( B S T) や、 P b (M g x 3 N 2 / 3 ) 0 3 ( P N) が知られている。
【0 0 0 6】
そこで、 この種の誘電体材料を用いて薄膜容量素子を構成すれば、 その小型化 ' を図ることができるのではないかとも考えられる。
【0 0 0 7】
しかしながら、 この種の誘電体材料を用いた場合、 誘電体膜の薄層化に伴って 誘電率が低下することがあった。 また、 薄層化に伴って誘電体膜に生じる孔によ り、 リーク特性や耐圧が劣化することもあった。 さらに、 形成された誘電体膜は、 表面平滑性が悪く、 さらには温度に対する誘電率の変化率が悪化する傾向もあつ た。 なお、 近年、 P MNなどの鉛化合物の環境へ与える影響の大きさから、 鉛を 含有しない高容量コンデンサが望まれている。
【0 0 0 8】
これに対し、 積層セラミックコンデンサの小型化おょぴ大容量化を実現するに は、 1層あたりの誘電体層の厚みを可能な限り薄くし (薄層化) 、 所定サイズに おける誘電体層の積層数を可能な限り増やすこと (多層化) が望まれる。
【0 0 0 9】
しかしながら、 たとえばシート法 (誘電体層用ペーストを用いてキャリアフィ ルム上にドクターブレード法などにより誘電体グリーンシート層を形成し、 この 上に内部電極層用ペーストを所定パターンで印刷した後、 これらを 1層ずつ剥離、 積層していく方法) により積層セラミックコンデンサを製造する場合に、 セラミ ック原料粉末よりも誘電体層を薄く形成することは不可能であり、 しかも誘電体 層の欠陥によるショートゃ内部電極切れなどの問題から、 誘電体層をたとえば 2 /x m以下に薄層化することは困難であった。 また、 1層あたりの誘電体層を薄層 化した場合には、 積層数にも限界があった。 なお、 印刷法 (たとえばスクリーン 印刷法を用いて、 キャリアフィルム上に誘電体層用ペーストと内部電極層用ぺー ス トとを交互に複数印刷した後、 キャリアフィルムを剥離する方法) により積層 セラミックコンデンサを製造する場合も同様の問題を有している。
【0 0 1 0】
このような理由により、 積層セラミックコンデンサの小型化および高容量化に は限界があった。 そこで、 この問題を解決するために種々の提案がなされている
(たとえば、 特開 2000— 1 240 56号公報、 特開平 1 1— 2 14 245号 公報、 特開昭 56— 1 44 523号公報、 特開平 5— 335 1 7 3号公報、 特開 平 5— 33 5 1 74号公報など) 。
【00 1 1】
これらの公報では、 CVD法、 蒸着法、 スパッタリング法などの各種薄莫形成 方法を用いて、 誘電体薄膜と電極薄膜とを交互に積層する積層セラミックコンデ ンサの製造方法が開示されている。
【00 1 2】
しかしながら、 これらの公報に記載の方法により形成される誘電体薄膜は、 表 面平滑性が悪く、 あまりに多く積層すると電極がショートすることがあり、 これ により、 せいぜい 1 2〜1 3層程度の積層数のものしか製造することができなか つた。 このため、 コンデンサを小型化できても、 高容量化を達成することはでき なかった。
【00 1 3】
なお、 文献 「ビスマス層状構造強誘電体セラミックスの粒子配向とその圧電 ' 焦電材料への応用」 竹中正、 京都大学工学博士論文 (1 984) の第 3章の第 2 3~ 7 7頁に示すように、 組成式: (B i 2 02 ) 2+ (Am_! Bm 03m+1) 2一、 または B i 2 Am-i Bm 03ra+3で表され、 前記組成式中の記号 mが 1〜8の正数、 記号 Aが Na、 K、 P b、 B a、 S r、 C aおよび B iから選ばれる少なくとも 1つの元素、 記号 Bが F e、 C o、 C r、 Ga、 T i、 Nb、 T a、 S b、 V、 Moおよび Wから選ばれる少なくとも 1つの元素である糸且成物が、 焼結法により 得られるバルタのビスマス層状化合物誘電体を構成すること自体は知られている。
【00 1 4】
しかしながら、 この文献には、 上記の組成式で表される組成物を、 どのような 条件 (たとえば基板の面と化合物の c軸配向度との関係) で薄膜化 (たとえば 1 μπχ以下) した場合に、 薄くしても、 比較的高誘電率かつ低損失を与えることが でき、 リーク特性に優れ、 耐圧が向上し、 誘電率の温度特性に優れ、 表面平滑性 にも優れる薄膜を得ることができるかについては、 何ら開示されていなかった。 【0015】
そこで、 本発明者等は、 PCT/J P 02ノ 08574に示す薄膜容量素子用 組成物を開発し、 先に出願している。 また、 本発明者等は、 さらに実験を進めた 結果、 ビスマス層状化合物の化学量論的糸且成よりも B iを過剰に含有させること により、 化合物の c軸配向度をさらに向上させることができることを見出し、 先 に出願している (特願 2003-01 2086号およぴ特願 2003— 0120 88号) 。
【0016】
また、 文献 「2001年応用物理学会誌 V o 1. 40 (2001) p p. 29 77— 2982、 P a r t 1, No. 4 B, A r i l 2001」 には、 、 (B i , L a) 4T i 3012の誘電体薄膜において、 B iを過剰に添加することに より、 c軸配向度を向上させることができる旨の報告がある。 しかしながら、 こ の文献では、 組成式: (B i 2 02 ) 2+ (Am-! Bm 03m+1) 、 または B i 2 Am-i Bm 03m+3で表されるビスマス層状化合物の内の mが奇数のビスマス層状 化合物を開示するのみである。 また、 この文献では、 B iの過剰添加量が、 2. 5〜7. 5モル0 /0 (化学量論的組成に対して 0. 4モル以下) と低く、 本発明者 等の実験によれば、 耐リーク電流特性を高めるためには不十分であることが判明 した。
【001 7】
また、 上記文献のように、 B iを過剰に添加したビスマス層状ィヒ合物膜では、 c軸配向度を向上させて耐リーク特性を向上させることはできるが、 B iを過乗 IJ に添加させないビスマス層状化合物膜に比較して誘電率が低下することが本発明 者等により見出された。
【0018】
さらに、 特開平 1 1— 1 21 703号公報には、 ビスマス層状化合物層と下部 電極との間に、 ビスマスを含む酸化物層をバッファ層として形成することにより、 下地との反応を抑制すると共に電気的接合の阻害を回避する技術が開示してある。 しかしながら、 この文献におけるバッファ層は、 ビスマスが過剰なビスマス層状 化合物膜ではなく、 そのバッファ層を形成することにより c軸配向度を向上させ る旨の技術的思想はない。
発明の開示
【0 0 1 9】
本発明は、 このような実状に鑑みてなされ、 その目的は、 c軸配向度が高く、 特に耐リーク電流特性に優れ、 しかもトータルでの誘電率を向上させることがで きる高誘電率絶縁膜、 薄膜容量素子、 薄膜積層コンデンサおよび薄膜容量素子の 製造方法を提供することである。
【0 0 2 0】
本発明者等は、 コンデンサに用いられる誘電体薄膜の材質とその結晶構造に関 して鋭意検討した結果、 特定組成のビスマス層状化合物を用い、 しかも該ビスマ ス層状化合物の c軸 ( [ 0 0 1 ] 方位) を基板面に対して垂直に配向させて薄膜 容量素子用組成物としての誘電体薄膜を構成することにより、 すなわち基板面に 対してビスマス層状化合物の c軸配向膜 (薄膜法線が c軸に平行) を形成するこ とにより、 薄くしても、 比較的高誘電率かつ低損失 ( t a n Sが低い) を与える ことができ、 リーク特性に優れ、 耐圧が向上し、 誘電率の温度特性に優れ、 表面 平滑性にも優れる薄膜容量素子用組成物、 およびこれを用いた薄膜容量素子を提 供できることを見出した。 また、 このような薄膜容量素子用組成物を誘電体薄膜 として用いることにより、 積層数を増大させることができ、 小型で比較的高容量 を与えうる薄膜積層コンデンサを提供できることも見出した。 さらに、 このよう な組成物を高誘電率絶縁膜として用いることにより、 薄膜容量素子以外の用途に も適用することが可能であることを見出した。
【0 0 2 1】
さらに、 本発明者等は、 ビスマス層状化合物の B iを、 ビスマス層状化合物の 化学量論的組成に対して、 所定の過剰含有量で、 組成物に過剰に含有させること で、 耐リーク電流特性を向上させることができ、 更に、 第 2ビスマス層状化合物 を下部電極の表面に位置することで、 より c軸配向度を向上させることを見出し た。
【0 0 2 2】
さらにまた、 本発明者等は、 ビスマス過剩添加のビスマス層状化合物が、 理論 組成のビスマス層状ィヒ合物よりも誘電率が低下することから、 ビスマス過剰添加 のビスマス層状化合物を理論組成のビスマス層状化合物と組み合わせることで、 耐リーク電流特性を向上させつつ、 トータルでの誘電率を向上させることができ ることを見出し、 本発明を完成させるに至った。
【0023】
すなわち、 本発明に係る高誘電率絶縁膜は、
組成式: (B i 22 ) 2+ (Am— i Bm 03m +!) 2—、 または B ϊ 2 Am-1 Bm 03m+3で表され、 前記組成式中の記号 mが正数、 記号 Aが Na、 K、 Pb、 B a、 S r、 C aおよび B iから選ばれる少なくとも 1つの元素、 記号 Bが F e、 C o、 C r、 Ga、 T i、 Nb、 Ta、 S b、 V、 Mo、 Wおよび Mnから選ばれる少 なくとも 1つの元素である第 1ビスマス層状化合物層と、
前記第 1ビスマス層状化合物層と積層され、 前記第 1ビスマス層状化合物層の 前記組成式よりもビスマスが過剰に含有してある第 2ビスマス層状化合物層とを 少なくとも有する。
【0024】
本発明に係る高誘電率絶縁膜によれば、 第 2ビスマス層状化合物層ではビスマ スが過剰に含有してあることから、 高誘電率絶縁膜における耐リーク特性が向上 する。 また、 本発明の髙誘電率絶縁膜では、 ビスマスが過剰でない理論組成に近 い第 1ビスマス層状化合物層をも合わせ持ち、 この層は、 ビスマスが過剰な層に 比べて誘電率が高い。 その結果、 高誘電率絶縁膜のトータルでの誘電率が向上し、 静電容量が向上する。
【0025】
したがって、 本発明では、 特に耐リーク電流特性に優れ、 しかもトータルでの 誘電率を向上させることができる高誘電率絶縁膜を提供することができる。 更に、 第 2ビスマス層状化合物を下部電極の表面に位置することで、 より c軸配向度を 向上させることができる。 この高誘電率絶縁膜は、 薄膜容量素子における誘電体 膜、 あるいは薄膜積層コンデンサにおける誘電体膜として用いて好適である。 な お、 本発明の高誘電率絶縁膜は、 薄膜容量素子またはコンデンサの誘電体膜以外 に、 たとえば半導体装置のゲート絶縁膜、 ゲート電極とフローテイングゲートと の間の中間絶縁膜などとしても用いることができる。
【0 0 2 6】
本発明でいう 「薄膜」 とは、 各種薄膜形成法により形成される厚さ数 Aから数 μ m程度の材料の膜をいい、 焼結法により形成される厚さ数百 μ m程度以上の厚 膜のパルク (塊) を除く趣旨である。 薄膜には、 所定の領域を連続的に覆う連続 膜の他、 任意の間隔で断続的に覆う断続膜も含まれる。 薄膜は、 基板面の一部に 形成してあってもよく、 あるいは全部に形成してあってもよい。
【0 0 2 7】
好ましくは、 第 1 ビスマス層状化合物層と第 2ビスマス層状化合物層とは、 第 2ビスマス層状化合物層におけるビスマスの含有量が、 第 1 ビスマス層状化合物 層に比較して多い以外は同じ理論組成式を持つビスマス層状化合物層である。 同 じ理論糸且成式を持つ層同士の方が、 積層界面における接合性に優れていると共に、 c軸配向度も向上する。 ただし、 本発明では、 これらは、 異なる組成式を持つビ スマス層状化合物層であっても良い。
【0 0 2 8】
前記第 1 ビスマス層状化合物層の前記組成式に対して、 前記第 2ビスマス層状 化合物層に含まれるビスマスの過剰量は、 0より大きく、 好ましくは 0 . 1モル 倍以上 0 . 5モル倍以下、 さらに好ましくは 0 . 1〜0 . 4モル倍である。 この ような範囲にある場合に、 第 2ビスマス層状化合物層の c軸配向度が向上すると 共に、 第 1 ビスマス層状化合物層の c軸配向度も向上し、 耐リーク特性が良くな る。
【0 0 2 9】
好ましくは、 前記第 2ビスマス層状化合物層の厚みが、 前記第 1 ビスマス層状 化合物層の厚みよりも薄い。 この場合において、 好ましくは、 前記第 2ビスマス 層状化合物層の厚みが、 1 n m以上 3 0 0 n m未満、 さらに好ましくは 5〜 2 0 O n m、 特に好ましくは 1 0〜 1 0 0 である。 第 2ビスマス層状化合物層は、 第 1 ビスマス層状化合物層のバッファ層として機能し、 その厚みが薄すぎると、 c軸配向度を向上させて耐リーク特性を向上させる機能が低下する傾向にある。 また、 第 2ビスマス層状化合物層の厚みが厚すぎると、 薄層化の要請から第 1 ビ スマス層状化合物層の厚みを薄くせざるを得なくなり、 トータルでの誘電率が低 下する傾向にある。
【0030】
本発明では、 ビスマス層状ィ匕合物の c軸が基板面に対して垂直に 100%配向 していること、 すなわちビスマス層状化合物の c軸配向度が 100%であること が特に好ましいが、 必ずしも c軸配向度が 100%でなくてもよい。
【0031】
好ましくは、 前記第 2ビスマス層状化合物層の c軸配向度が 80%以上、 さら に好ましくは 90%以上である。 また、 好ましくは、 前記第 1ビスマス層状化合 物層の c軸配向度が 80%以上、 さらに好ましくは 90%以上である。 これらの 層の c軸配向度を向上させることで、 高誘電率絶縁膜における耐リーク特性を向 上させることができる。
【0032】
前記第 2ビスマス層状化合物層は、 単層でも良いが、 複数の層で構成されても 良い。 複数の層で構成する場合には、 同じ層で構成しても良いが、 ビスマスの過 剰量が異なる複数の層で構成しても良い。 また、 その第 2ビスマス層状化合物層 は、 ビスマスの過剰量が層厚方向に徐々に変化する層で構成しても良い。
【0033】
本発明において、 前記組成式中の記号 mは、 特に限定されないが、 好ましくは 3, 4, 5のいずれかである。 m=3, 4, 5の組成の時に、 特に本発明の作用 効果が向上する。
【0034】
本発明では、 第 1ビスマス層状化合物層および/または第 2ビスマス層状化合 物層に、 希土類元素 (S c、 Y、 L a、 Ce、 P r、 Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 E r、 Tm、 Y bおよび L uから選ばれる少なくとも 1つの元素) をさらに含ませても良い。 希土類元素を含有させることで、 リーク 特性を一層優れたものとすることができる。
【0035】
本発明に係る薄膜容量素子は、 基板上に、 下部電極、 誘電体薄膜および上部電極が順次形成してある薄莫容量 素子であって、
前記誘電体薄膜が、 上記のレ、ずれかに記載の高誘電率絶縁膜で構成してある。
【0 0 3 6】
薄膜容量素子としては、 特に限定されないが、 導電体一絶縁体一導電体構造を 有するコンデンサ (たとえば単層型の薄膜コンデンサゃ積層型の薄膜積層コンデ ンサなど) やキャパシタ (たとえば D R AM用など) などが挙げられる。
【0 0 3 7】
好ましくは、 前記下部電極の表面に前記第 2ビスマス層状化合物層が積層して あり、 前記第 2ビスマス層状化合物層の表面に前記第 1 ビスマス層状化合物層が 積層してある。 結晶がェピタキシャル成長しない材料の電極の表面では、 c軸配 向度の高いビスマス層状化合物層を形成することが比較的困難であるが、 ビスマ スが過剰に添加してある第 2ビスマス層状化合物層によれば、 電極の表面に対し ても、 c軸配向度の高いビスマス層状化合物層を形成することができる。
【0 0 3 8】
その第 2ビスマス層状化合物層における c軸は、 下部電極の表面に対して垂直 に配向している。 第 1 ビスマス層状化合物層における c軸も、 第 2ビスマス層状 化合物層に従い、 下部電極の表面に対して垂直に配向し、 その配向度も高くなる。
【0 0 3 9】
好ましくは、 前記誘電体薄膜の厚さが、 l〜1 0 0 0 n m、 さらに好ましくは 1 0〜5 0 0 n mである。 本発明では、 誘電体薄膜の厚みを薄くしても、 c軸配 向度が高く、 特に耐リーク電流特性に優れ、 しかもトータルでの誘電率を向上さ せることができる。
【0 0 4 0】
本発明に係る薄膜積層コンデンサは、
基板上に、 誘電体薄膜と内部電極薄膜とが交互に複数積層してある薄膜積層コ ンデンサであって、
前記誘電体薄膜が、 上記のいずれかに記載の高誘電率絶縁膜で構成してあるこ とを特徴とする。 【0 0 4 1】
好ましくは、 前記内部電極薄膜の表面に前記第 2ビスマス層状化合物層が積層 してあり、 前記第 2ビスマス層状化合物層の表面に前記第 1ビスマス層状化合物 層が積層してある。 結晶がェピタキシャル成長しない材料の電極の表面では、 c 軸配向度の高いビスマス層状化合物層を形成することが比較的困難であるが、 ビ スマスが過剰に添加してある第 2ビスマス層状化合物層によれば、 電極の表面に 対しても、 c軸配向度の高いビスマス層状化合物層を形成することができる。
【0 0 4 2】
その第 2ビスマス層状化合物層における c軸は、 電極薄膜の表面に対して垂直 に配向している。 第 1ビスマス層状ィ匕合物層における c軸も、 第 2ビスマス層状 化合物層に従い、 下部電極の表面に対して垂直に配向し、 その配向度も高くなる。
【0 0 4 3】
好ましくは、 前記誘電体薄膜の厚さが、 l〜1 0 0 0 n m、 さらに好ましくは 1 0〜5 0 O n mである。 本発明では、 誘電体薄膜の厚みを薄くしても、 c軸配 向度が高く、 特に耐リーク電流特性に優れ、 しかもトータルでの誘電率を向上さ せることができる。
【0 0 4 4】
本発明に係る薄膜容量素子の製造方法は、
前記下部電極の表面に前記第 2ビスマス層状ィヒ合物層を形成する工程と、 前記第 2ビスマス層状化合物層の表面に前記第 1 ビスマス層状化合物層を形成 する工程と、 を有する。
【0 0 4 5】
第 2ビスマス層状化合物層を形成するための方法としては、 特に限定されず、 各種の薄膜形成法を採用することができるが、 溶液法を用いることが好ましい。 すなわち、 好ましくは、 前記第 2ビスマス層状化合物層を構成するための溶液を、 前記ビスマス層状化合物の B iが過剰含有量となるように、 前記下部電極の表面 に塗布して塗布膜を形成し、 その後に前記塗布膜を焼成して前記第 2ビスマス層 状化合物層を形成し、 その後に前記第 1ビスマス層状化合物層を形成する。 溶液 法によれば、 ビスマスが過剰な第 2ビスマス層状化合物層を容易に形成すること ができる。
【0 0 4 6】
なお、 第 1ビスマス層状化合物層を形成するための方法は、 特に限定されず、 各種の薄膜形成方法を採用することができるが、 第 2ビスマス層状化合物層と同 様にして製造することが好ましい。 製造方法を統一することにより製造工程を簡 素化することができる。
【0 0 4 7】
'好ましくは、 前記塗布膜を前記下部電極の表面に形成した後、 前記塗布膜を乾 燥させ、 その後に前記塗布膜を、 当該塗布膜が結晶化しない温度で仮焼きし、 そ の後に、 前記塗布膜を焼成する。 仮焼きを行うことで、 重ねて塗布することも可 能になると共に、 その後の焼成工程における結晶化が容易になる。
【0 0 4 8】
好ましくは、 前記塗布膜を焼成する温度が、 前記塗布膜の結晶化温度である 7 0 0〜9 0 0 ° Cである。 好ましくは、 前記塗布膜を乾燥させる温度が、 室温 ( 2 5 ° C ) 〜4 0 0 ° C、 さらに好ましくは 5 0 ° C〜3 0 0。 Cである。 好 ましくは、 前記塗布膜を仮焼きする温度が 3 0 0〜 5 0 0 ° Cである。
図面の簡単な説明
【0 0 4 9】
図 1 Aおよび図 1 Bは本発明の一実施形態に係る薄膜コンデンサの製造過程を 示す概略断面図、
図 2は図 1に示す薄膜コンデンサの製造過程を示すフローチャート図、 図 3は本発明の他の実施形態に係る薄莫積層コンデンサの概略断面図である。 発明を実施するための最良の態様
【0 0 5 0】
以下、 本発明を図面に示す実施形態に基づき詳細に説明する。
第 1実施形態
本実施形態では、 薄膜容量素子として、 誘電体薄膜を単層で形成する薄膜コン デンサを例示して説明する。
図 1 Aに示すように、 本発明の一実施形態に係る薄膜コンデンサ 2は、 基板 4 を有し、 この基板 4の上には、 絶縁層 5を介して下部電極薄膜 6が形成されてい る。 下部電極薄膜 6の上には誘電体薄膜 (高誘電率絶縁膜) 8が形成されている。 そして、 図 1 Bに示すように、 誘電体薄膜 8の上には上部電極薄膜 10が形成さ れる。
【0051】
基板 4としては、 特に限定されないが、 格子整合性の良い単結晶 (たとえば、 S r T i 03 単結晶、 MgO単結晶、 L a A 103 単結晶など) 、 アモルファス 材料 (たとえば、 ガラス、 溶融石英、 S i o2 ノ S iなど) 、 その他の材料 (た とえば、 Z r 02 /S i、 C e〇2 ZS iなど) などで構成される。 基板 4の厚 みは、 特に限定されず、 たとえば 100~1000 in程度である。
【0052】
本実施形態では、 基板 4としては、 シリコン単結晶基板を用い、 その表面に熱 酸化膜 (シリコン酸ィヒ膜) 力 ら成る絶縁層 5が形成してあり、 その表面に下部電 極薄膜 6が形成される。 下部電極薄膜 6を形成する材料は、 導電性を有する材料 であれば、 格別限定されるものではなく、 白金 (P t) 、 ルテニウム (Ru) 、 ロジウム (Rh) 、 パラジウム (P d) 、 イリジウム (I r) 、 金 (Au) 、 銀
(Ag) 、 銅 (Cu) 、 ニッケル (N i ) などの金属おょぴこれらを主成分とす る合金や、 S rRu03、 C aRu〇3、 S rV〇3、 S r C r03、 S r Co03、 L a N i 03、 N ドープ S r T i 03などのぺロブスカイト構造を有する導電性 酸化物およびこれらの混合物を用いて、 下部電極薄膜 6を形成することもできる。
【0053】
基板 4にアモルファス材料を用いる場合の下部電極薄膜としては、 たとえば、 I TOなどの導電性ガラスで構成することもできる。
第 2ビスマス層状化合物を下部電極 6の表面に位置させることで、 [001]方 位に配向した下部電極はもちろん、 アモルファス、 無配向、 [001]方位以外
(例えば [1 1 1]方位) に配向した電極を用いた場合でも、 c軸配向度が高い誘 電体膜を極めて容易に製造することができる。
下部電極薄膜 6の厚みは、 特に限定されないが、 好ましくは 10〜1000 II m、 より好ましくは 50〜200 nm程度である。 【0054】
上部電極薄膜 10としては、 前記下部電極薄膜 6と同様の材質で構成すること ができる。 また、 その厚みも、 下部電極薄膜 6と同様とすればよい。
【0055】
誘電体薄膜 8は、 本実施形態では、 第 1ビスマス層状化合物層 8 aと第 2ビス マス層状化合物層 8 bとの積層膜で構成される。 第 2ビスマス層状化合物層 8 b は、 第 1ビスマス層状化合物層 8 aと下部電極薄膜 6との間に形成され、 これら のバッファ層として機能する。
【0056】
第 1ビスマス層状化合物層 8 aは、 組成式: (B i 2 02 ) 2+ (Am-x Bm O 3m+1) 2—、 または B i 2 Am-x Bm3m+3で表されるビスマス層状化合物を含有 する。 一般に、 ビスマス層状化合物は、 (m— 1) 個の AB03 で構成されるぺ ロブスカイ ト格子が連なった層状べロプスカイ ト層の上下を、 一対の B iおよび Oの層でサンドィツチした層状構造を示す。
【0057】
上記式中、 記号 mは正数であれば特に限定されず、 奇数でも偶数でも良い。 な お、 記号 mが偶数であると、 c面と平行に鏡映面を持っため、 該鏡映面を境とし て自発分極の c軸方向成分は互いにうち消し合って、 c軸方向に分極軸を有さな いこととなる。 このため、 常誘電性が保持されて、 誘電率の温度特性が向上する とともに、 低損失 (t a n Sが低い) が実現される。 また、 記号 mが奇数である と、 c軸方向にも分極軸を有し、 πιが偶数の場合よりキュリー点での誘電率が上 昇する。 特に、 記号 mを大きくすることで、 誘電率の一層の上昇が期待できる。 ただし、 本実施形態では、 製造の容易性などの理由から、 記号 mは、 3, 4, 5 である。
【0058】
上記式中、 記号 Aは、 Na、 K、 Pb、 B a、 S r、 C aおよび B iから選ば れる少なくとも 1つの元素で構成される。 なお、 記号 Aを 2つ以上の元素で構成 する場合において、 それらの比率は任意である。
【0059】 上記式中、 記号 Bは、 F e、 Co、 C r、 Ga、 T i、 Nb、 Ta、 Sb、 V、 Mo、 Wおよび Mnから選ばれる少なくとも 1つの元素で構成される。 なお、 記 号 Bを 2つ以上の元素で構成する場合において、 それらの比率は任意である。
【0060】
本実施形態では、 第 2ビスマス層状化合物層 8 bは、 第 1ビスマス層状化合物 層 8 aと同じ理論組成式のビスマス層状化合物で構成してあるが、 第 2ビスマス 層状化合物層 8 bに含まれる B iが、 前記組成式: (B i 2 02 ) 2+ (Am_i B m 03m+1) 2 、 または B i 2 Am-x B» 03m+3に対して、 過剰に含有してある。 たとえば、 上記の組成式に対して、 第 2ビスマス層状化合物層 8 bに含まれるビ スマスの過剰量は、 0より大きく、 好ましくは 0. 1モル倍以上 0. 5モル倍以 下、 さらに好ましくは 0. 1〜0.4モル倍である。 このような範囲にある場合に、 第 2ビスマス層状化合物層 8 bの c軸配向度が特に向上すると共に、 第 1ビスマ ス層状化合物層 8 aの c軸配向度も向上し、 誘電体薄膜 8の全体としての耐リー ク特性が良くなる。
【0061】
たとえば上記の mが 3であるビスマス層状化合物である組成式: B i 4 T i 3 012で表されるビスマス層状化合物の場合には、 その B iの過剰含有量は、 B i 換算で、 0より大きく、 好ましくは 0. 1モル倍以上 0. 5モル倍以下の範囲で ある。
【0062】
あるいは、 このビスマス層状化合物を、 組成式: B i 4 + B T i 3 012で表した 場合には、 ビスマス層状化合物における B iの過剰含有モル数であるひは、 0よ り大きく、 好ましくは 0. 4 (0. 1モル倍) ≤ α ≤ 2. 0 (0. 5モル倍) の 範囲である。
【0063】
また、 上記の mが 4であるビスマス層状化合物である組成式: S r B i 4 T i O i 5, あるいは、 S rxC ayB azB i 4 T i 4 015 (ただし、 x + y + z = 1 0≤x≤ 1, 0≤y≤ 1, 0≤ z≤ 1 ) の場合には、 その B iの過剰含有量は、 B i換算で、 0より大きく、 好ましくは 0. 1モル倍以上 0. 5モル倍以下の範 囲である。
【0064】
あるいは、 このビスマス層状化合物を、 組成式: S r B i 4+α T i 4 015、 あ るいは、 S r xC ayB a zB i 4 + a T i 4 015 (ただし、 x + y + z = l、 0≤ x ≤ 1 , 0≤y≤ l 0≤ z≤ 1) で表した場合には、 ビスマス層状化合物におけ る B iの過剰含有モル数である αは、 0より大きく、 好ましくは 0. 4 (0. 1 モル倍) ≤ α≤ 2. 0 (0. 5モル倍) の範囲である。
【006 5】
さらに、 上記の mが 5であるビスマス層状化合物である組成式: S r 2B i 4 T i 5 018の場合には、 その B iの過剰含有量は、 B i換算で、 0より大きく、 好 ましくは 0. 1モル倍以上 0. 5モル倍以下の範囲である。
【00 6 6】
あるいは、 このビスマス層状化合物を、 組成式: S r 2B i 4 + a T i 5 018で表 した場合には、 ビスマス層状化合物における B iの過剰含有モル数である αは、 0より大きく、 好ましくは 0. 4 (0. 1モル倍) ≤ α≤ 2. 0 ( 0. 5モル倍) の範囲である。
【006 7】
本実施形態では、 第 2ビスマス層状化合物層 8 bにおいて、 ビスマスを、 化学 量論的組成に対して過剰に含有させることで、 ビスマス層状化合物の [00 1] 方位への配向性、 すなわち c軸配向性が高められている。 すなわち、 ビスマス層 状化合物の c軸が、 基板 4に対して垂直に配向するように第 2ビスマス層状化合 物層 8 bが形成される。
【0068】
第 2ビスマス層状化合物層 8 bの c軸配向度が高められると、 その上に形成さ れる第 1ビスマス層状化合物層 8 aの c軸配向度も向上する。 なお、 ビスマスが 過剰ではないが誘電率に優れる理論組成の第 1ビスマス層状化合物層 8 aを、 直 接に下部電極 6の表面に形成しょうとすると、 c軸の配向度が低下し、 耐リーク 特性が低下することになる。
【00 69】 本発明では、 ビスマス層状化合物の c軸配向度が 100%であることが特に好 ましいが、 必ずしも c軸配向度が 100%でなくてもよく、 ビスマス層状化合物 は、 好ましくは 80°/0以上、 より好ましくは 90%以上、 さらに好ましくは 95 %以上が c軸配向していればよい。
【0070】
ここでいうビスマス層状化合物の c軸配向度 Fは、 次式 (1) によって定義さ れる。
F (%) = (P-P 0) / (1 -P 0) X I 00 … (1)
式 (1) において、 P0は、 完全にランダムな配向をしている多結晶体の。軸の X線回析強度、 すなわち、 完全にランダムな配向をしている多結晶体の (00 1) 面からの反射強度 I (00 1) の合計 Σ Ι (00 1) と、 その多結晶体の各結晶 面 (h k 1 ) からの反射強度 I (h k 1 ) の合計∑ I (h k 1 ) との比 ( {∑ I
(00 1) /∑ I (h k 1 ) } ) であり、 Pは、 ビスマス層状化合物の c軸の X 線回析強度、 すなわち、 ビスマス層状化合物の (00 1) 面からの反射強度 I
(00 1) の合計∑ I (00 1) と、 そのビスマス層状化合物の各結晶面 (hk 1 ) からの反射強度 I (h k 1 ) の合計∑ I (h k 1 ) との比 ( {∑ I (00 1) /∑ I (h k 1 ) } ) である。 ここに、 h、 k、 1は、 それぞれ、 0以上の任意 の整数値を取ることができる。
ここに、 P 0は定数であるから、 (00 1 ) 面からの反射強度 I (00 1) の 合計∑ I (00 1 ) と、 各結晶面 (hk I) からの反射強度 I (hk l ) の合計 ∑ I (hk 1) が等しいとき、 すなわち、 P=lのときに、 異方性を有する材料 の c軸配向度 Fは 100%となる。
【0071】
なお、 ビスマス層状化合物の c軸とは、 一対の (B i 22 ) 2+層同士を結ぶ 方向、 すなわち [001] 方位を意味する。
【0072】
本実施形態では、 第 2ビスマス層状化合物層 8 bではビスマスが過剰に含有し てあることから、 その層の c軸配向度も向上すると共に、 その上に形成される第 1ビスマス層状化合物層 8 aの c軸配向度も向上する。 その結果、 誘電体薄膜 8 における耐リーク特性が向上する。 また、 この誘電体薄膜 8では、 ビスマスが過 剰でない理論組成に近い第 1ビスマス層状^ (匕合物層 8 aをも合わせ持ち、 この層 8 aは、 ビスマスが過剰な層 8 bに比べて誘電率が高い。 その結果、 誘電体薄膜 8のトータルでの誘電率が向上し、 静電容量が向上する。
【0073】
したがって、 本実施形態では、 c軸配向度が高く、 特に耐リーク電流特性に優 れ、 しかもト一タルでの誘電率を向上させることができる誘電体薄膜 8を提供す ることができる。 また、 この誘電体薄膜 8は、 低損失 (t a n Sが低い) でもあ り、 t a η δが減少すれば、 Q (1/ t a η δ) 値は上昇する。
【0074】
第 1ビスマス層状化合物層 8 aおよび/または第 2ビスマス層状化合物層 8 b には、 S c、 Y、 L a、 C e、 P r、 Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 D y、 Ho、 E r、 Tm、 Y bおよび L uから選ばれる少なくとも 1つの元素 (希 土類元素 Re) をさらに含有させても良い。 希土類元素による置換量は、 mの値 により異なるが、 たとえば m= 3の場合、 化学量論的組成式: B i 2 A2-x Re x B3 012において、 好ましくは 0. 4≤x≤ l. 8、 より好ましくは 1. 0≤ x≤ 1. 4である。 希土類元素を、 この範囲で置換することで、 リーク特性をさ らに向上させることができる。
【0075】
なお、 誘電体薄膜 8は、 希土類元素 Reを有していなくとも、 後述するように リーク特性に優れるものではあるが、 Re置換によりリーク特性を一層優れたも のとすることができる。
【0076】
第 1ビスマス層状化合物層 8 aと第 2ビスマス層状化合物層 8 bとから成る誘 電体薄膜 8は、 トータルでの膜厚が 1〜100 O n mであることが好ましく、 高 容量化の点からは、 より好ましくは 1 ~500 nmである。
【0077】
また、 本実施形態では、 第 2ビスマス層状化合物層 8 bの厚みは、 第 1ビスマ ス層状化合物層 8 aの厚みよりも薄い。 この場合において、 好ましくは、 第 2ビ スマス層状化合物層 8 bの厚みが、 1 nm以上 300 nm未満、 さらに好ましく は 5〜200 nm、 特に好ましくは 1 0〜1 00 nmである。 第 2ビスマス層状 化合物層 8 bは、 第 1ビスマス層状化合物層 8 aのバッファ層として機能し、 そ の厚みが薄すぎると、 c軸配向度を向上させて耐リーク特性を向上させる機能が 低下する傾向.にある。 また、 第 2ビスマス層状化合物層 8 bの厚みが厚すぎると、 薄層化の要請から第 1 ビスマス層状化合物層 8 aの厚みを薄くせざるを得なくな り、 トータルでの誘電率が低下する傾向にある。
【0 078】
誘電体薄膜 8では、 25°C (室温) および測定周波数 1 00 kHz (AC 20 mV) における誘電率が、 1 00超であることが好ましく、 より好ましくは 1 5 0以上である。
【0 0 7 9】
第 1 ビスマス層状化合物層 8 aおよぴ第 2ビスマス層状化合物層 8 bは、 それ ぞれ、 真空蒸着法、 スパッタリング法、 パルスレーザー蒸着法 (PLD) 、 有機 金属化学気相成 法 (metal-organic chemical vapor deposition: MO C V D) 、 有機金属分解法 (metal- organic decomposition) などの液相法 (CSD法) 、 な どの各種薄膜形成法を用いて形成することができる。 とくに低温で、 誘電体層を 形成する必要がある場合には、 プラズマ CVD、 光 CVD、 レーザー CVD、 光 CSD、 レーザ一 C SD法を用いることが好ましい。
【0 08 0】
本実施形態では、 第 1ビスマス層状化合物層 8 aおよび第 2ビスマス層状化合 物層 8 bは、 特に、 次に示す方法で製造することができる。
【0 08 1】
図 2に示すように、 まず、 図 1に示す第 2ビスマス層状化合物層 8 bを形成す ることになる原料溶液を調整する。 第 2ビスマス層状化合物層 8 bが、 たとえば 化学量論的組成式: S r B i 4 T i 4 015で表されるビスマス層状化合物であつ て、 ビスマスが過剰に添加される場合には、 2—ェチルへキサン酸 S rのトルェ ン溶液と、 2—ェチルへキサン酸 B iの 2—ェチルへキサン酸溶液と、 2—ェチ ルへキサン酸 T iのトルエン溶液とを準備する。 すなわち、 2—ェチルへキサン 酸 S rを 1モノレと、 2—ェチルへキサン'酸 B iを (4 + α ) モルと、 2—ェチル へキサン酸 T iを 4モルとのように、 化学量論比で混合する場合に比較して、 B iの添加量が αモル多くなるように、 これらの二つの溶液を混合し、 トルエンで 希釈し、 原料溶液を得ることができる。
【0 0 8 2】
次に、 この原料溶液を、 図 1 Αに示す下部電極 6の上に塗布する。 塗布法とし ては、.特に限定されず、 スピンコート法、 ディップコート法、 スプレー法、 刷毛 で塗るなどの方法を用いることができる。 一回の塗布により、 たとえば 1 ~ 3 0 0 n m程度の塗布膜を形成することができる。 この塗布膜は、 図 2に示すように、 塗布膜中の溶媒を蒸発させるために、 空気中で乾燥させる。 その乾燥温度は、 室 温〜 4 0 0 ° C程度である。
【0 0 8 3】
次に、 この乾燥後の塗布膜を、 酸素雰囲気下で仮焼き (結晶化させない) する。 仮焼き温度は、 2 0 0〜7 0 0 ° C程度である。
【0 0 8 4】
なお、 その仮焼き後の塗布膜の上に、 塗布から仮焼きまでの工程を、 1回以上 繰り返し行っても良い。 ただし、 焼成前での未焼成の塗布膜の膜厚が厚すぎると、 焼成後に、 良好に結晶化した c軸配向のビスマス層状化合物膜を得られ難くなる 傾向にある。
【0 0 8 5】
その後に、 その塗布膜の本焼成 (単に、 「焼成」 または 「結晶化」 とも言う) を行う。 本焼成時の温度は、 塗布膜が結晶化する温度条件で行い、 その温度は、 好ましくは 7 0 0〜9 0 0 ° Cである。 本焼成時の雰囲気は、 特に限定されない が、 酸素ガス雰囲気である。
【0 0 8 6】
なお、 塗布から仮焼きの繰り返し後の本焼成を、 1回以上繰り返してもよい。 ただし、 本焼成に際しては、 一回の本焼成時における未焼成の塗布膜の膜厚が、 一回の焼成後での膜厚が 2 0 0 n m以下、 好ましくは 1 0〜2 0 0 n inになるよ うに設定することが好ましい。 焼成前での塗布膜の膜厚が厚すぎると、 焼成後に. 良好に結晶化した c軸配向のビスマス層状化合物膜を得られ難くなる傾向にある。 【0 0 8 7】
次に、 図 2に示すように、 図 1に示す第 1ビスマス層状化合物層 8 aを形成す ることになる原料溶液を調整する。 原料の調整に際しては、 ビスマスが過剰でな い理論組成式のビスマス添加量となるように行う。 そのこと以外は、 第 2ビスマ ス層状化合物層 8 bを形成する場合と同様にして、 第 1ビスマス層状化合物層 8 aを、 第 2ビスマス層状 ^(匕合物層 8 bの上に形成する。
【0 0 8 8】
このようにして得られた第 2ビスマス層状化合物層 8 bおよぴ第 1ビスマス層 状化合物層 8 aは、 それらの c軸が、 基板 4に対して垂直に配向している。 それ らのビスマス層状化合物の c軸配向度は、 好ましくは 8 0 %以上、 より好ましく は 9 0 %以上、 さらに好ましくは 9 5 %以上である。
【0 0 8 9】
その後に、 図 1 Bに示すように、 スパッタリング法などで、 上部電極 1 0が形 成され、 p O 2 = 2 0〜1 0 0 % (酸素分圧) で熱処理される。 熱処理は、 好まし くは 5 0 0〜 9 0 0 ° Cの温度で行われる。
【0 0 9 0】
このような誘電体薄膜 8およぴこれを用いた薄膜コンデンサ 2は、 比較的高誘 電率かつ低損失であり、 耐リーク特性に優れ、 耐圧が向上し、 誘電率の温度特性 に優れ、 表面平滑性にも優れる。
【0 0 9 1】
また、 このような誘電体薄膜 8および薄膜コンデンサ 2は、 周波数特性や電圧 特性にも優れる。
【0 0 9 2】
第 2実施形態
本実施形態では、 薄膜容量素子として、 誘電体薄膜を多層で形成する薄膜積層 コンデンサを例示して説明する。
図 3に示すように、 本発明の二実施形態に係る薄膜積層コンデンサ 2 0は、 コ ンデンサ素体 2 2を有する。 コンデンサ素体 2 2は、 基板 4 a上に、 誘電体薄莫 8 0と、 内部電極薄膜 2 4 , 2 6とが交互に複数配置してあり、 しかも最外部に 配置される誘電体薄膜 8 0を覆うように保護層 3 0が形成してある多層構造を持 つ。 コンデンサ素体 2 2の両端部には、 一対の外部電極 2 8, 2 9が形成してあ り、 該一対の外部電極 2 8 , 2 9は、 コンデンサ素体 2 2の内部で交互に複数配 置された内部電極薄膜 2 4 , 2 6の露出端面に電気的に接続されてコンデンサ回 路を構成する。 コンデンサ素体 2 2の形状は、 特に限定されないが、 通常、 直方 体状とされる。 また、 その寸法は特に限定されないが、 たとえば縦 (0 . 0 1〜 1 0 mm) X横 (0 . 0 1〜1 O mm) X高さ (0 . 0 1〜: L mm) 程度とされ る。
【0 0 9 3】
基板 4 aは、 上述した第 1実施形態の基板 4と同様の材質で構成される。 各誘 電体薄膜 8 0は、 上述した第 1実施形態の誘電体薄膜 8と同様な構成である。
【0 0 9 4】
内部電極薄膜 2 4 , 2 6は、 上述した第 1実施形態の下部電極薄膜 6 , 上部電 極薄膜 1 0と同様の材質で構成される。 外部電極 2 8, 2 9の材質は、 特に限定 されず、 C a R u 0 3 や S r R u〇3 などの導電性酸化物; C uや C u合金ある いは N iや N i合金等の卑金属; P t、 A g、 P dや A g _ P d合金などの貴金 属;などで構成される。 その厚みは、 特に限定きれないが、 たとえば 1 0〜1 0 0 0 n m程度とすればよい。 保護層 3 0の材質は、 特に限定されないが、 たとえ ばシリコン酸化膜、 アルミニウム酸化膜などで構成される。
【0 0 9 5】
薄膜積層コンデンサ 2 0は、 基板 4 a上に、 たとえばメタルマスクなどのマス クを施して 1層目の内部電極薄膜 2 4を形成した後、 この内部電極薄膜 2 4の上 に誘電体薄膜 8 0を形成し、 この誘電体薄膜 8 0の上に 2層目の内部電極薄膜 2 6を形成する。 このような工程を複数回繰り返した後、 基板 4 aとは反対側の最 外部に配置される誘電体薄膜 8 0を保護膜 3 0で被覆することにより、 基板 4 a 上に内部電極薄膜 2 4 , 2 6と誘電体薄膜 8 0とが交互に複数配置されたコンデ ンサ素体 2 2が形成される。 保護膜 3 0で被覆することで、 コンデンサ素体 2 2 の内部に対する大気中の水分の影響を小さくすることができる。 そして、 コンデ ンサ素体 22の両端部に、 デイツピングゃスパッタ等によって、 外部電極 28, 29を形成すると、 奇数層目の内部電極薄膜 24がー方の外部電極 28と電気的 に接続されて導通し、 偶数層目の内部電極薄膜 26が他方の外部電極 29と電気 的に接続されて導通し、 薄膜積層コンデンサ 20が得られる。
【0096】
本実施形態では、 製造コス トを低下させる観点からは、 アモルファス材料で構 成された基板 4 aを用いることがより好ましい。
【0097】
本実施形態で用いる誘電体薄膜 80は、 第 1実施形態の誘電体薄膜 8と同様に、 薄くしても比較的高誘電率であり、 しかも表面平滑性が良好なので、 その積層数 を 20層以上、 好ましくは 50層以上とすることが可能である。 このため、 小型 で比較的高容量を与えうる薄膜積層コンデンサ 20を提供することができる。
【0098】
以上のような本実施形態に係る薄膜コンデンサ 2およぴ薄膜積層コンデンサ 2 0では、 少なくとも一 55°C〜+150°Cの温度範囲における温度に対する誘電 率の平均変化率 (Δ ε) 、 ± 500 p pm/°C以内 (基準温度 25 °C) である ことが好ましく、 より好ましくは ±300 p pm/°C以内である。
【0099】
次に、 本発明の実施の形態をより具体化した実施例を挙げ、 本発明をさらに詳 細に説明する。 但し、 本発明は、 これらの実施例のみに限定されるものではない。
【0100】
実施例 1
図 2に示すように、 まず、 図 1に示す第 2ビスマス層状化合物層 8 bを形成す ることになる原料溶液を調整した。 本実施例では、 第 2ビスマス層状化合物層 8 bを、 化学量論的組成式 B i 4 T i a Oi2 (B i T) で表され、 組成式: B i 2 Am-i Bm 03m+3において、 記号 m= 3、 記号 A2 =B i 2 および記号 B3 =T i 3 として表されるビスマス層状化合物よりも、 ビスマスが過剰に含有される組 成式: B i 4 + α T i 3 2で表されるビスマス層状化合物で構成するために、 次 に示す溶液を準備した。 【0 1 0 1】
まず、 2—ェチルへキサン酸 B iの 2—ェチルへキサン酸溶液と、 2—ェチル へキサン酸 T iのトルエン溶液とを、 原料溶液として準備した。 すなわち、 2— ェチルへキサン酸 B iを (4 + α) モルと、 2—ェチルべキサン酸 T iを 3モル とのように、 化学量論比で混合する場合に比較して、 B iの添加量が αモル多く なるように、 これらの二つの溶液を混合し、 トルエンで希釈し、 原料溶液を得た。
【0 1 0 2】
B iの過剰含有量を示す αとしては、 0、 0. 4 (0. 1モル倍) 、 0. 8 ( 0. 2モル倍) 、 1. 2 (0. 3モル倍) 、 1. 6 ( 0. 4モル倍) 、 2. 0
(0. 5モル倍) と、 数種類の原料溶液を準備じた。 これらの数種類の原料溶液 においては、 原料溶液中に、 化学量論的糸且成の B i 4 T i a 012が、 0. 1モル Zリットルの濃度で含まれるように、 トルエンで希釈した。 これらの原料溶液は、 それぞれクリーンブース内で、 孔径 0. 2 / mの PTF E製シリンジフィルタに よって、 クリーンルーム内で洗浄済のガラス製容器内に濾過した。
【0 1 0 3】
また、 第 1ビスマス層状化合物層 8 aを形成することになる原料溶液を、 α = 0となる以外は、 前記の第 2ビスマス層状化合物層 8 aとなるための原料溶液と 同様にして準備した。
【0 1 0 4】
さらに、 これらの原料溶液とは別に、 基板 4を準備した。 基板 4は、 シリコン 単結晶 (1 0 0) 基板であり、 その基板 4の表面に、 熱酸化処理によりシリコン 酸化膜である絶縁層 5を形成した。 絶縁層 5の膜厚は、 0. 5 μ mであった。 そ の絶縁層 5の表面に、 P t薄膜から成る下部電極 6を、 スパッタリング法により 0. 1 mの厚さで形成した。 基板 4の面積は、 5醒 X I Oramであった。
【0 1 0 5】
この基板 4を、 原料溶液の種類の数で準備し、 それぞれをスピンコータにセッ トし、 基板 4における下部電極 6の表面に、 まず第 2ビスマス層状化合物層 8 b を形成するための原料溶液を 1 0 リツトルほど添加し、 4 0 0 0 r pmおよび 20秒の条件で、 スピンコートし、 下部電極 6の表面に塗布膜を形成した。 それ ぞれの塗布膜の溶媒を蒸発させるために、 150° Cに設定しておいた恒温槽 (内部は空気) に基板 4を入れ、 10分間乾燥させた。 10分後に、 基板 4を取 り出し、 図 1 Aに示すように、 下部電極 6の表面の一部を露出させるように、 第 2ビスマス層状化合物層 8 bを形成することになる塗布膜の一部を拭き取った。
【0106】
次に、 塗布膜を仮焼きするために、 それぞれの基板 4を、 環状炉内に入れた。 この環状炉では、 0. 3リットル 分で酸素をフローしてあり、 昇温速度 10° K/分で 400° Cまで昇温し、 400° Cで 10分保持後に、. 降温速度 10° KZ分で温度を低下させた。 仮焼きでは、 塗布膜を結晶化させない温度条件で行 つた。 .
【0107】
次に、 仮焼きした膜を本焼成するために、 それぞれの基板を、 環状炉内に入れ た。 この環状炉では、 5ミリリツトルノ分で酸素をフローしてあり、 昇温速度 8 0° K/分で 850° Cまで昇温し、 850° Cで 30分保持後に、 降温速度 8 0° KZ分で温度を低下させ、 第 2ビスマス層状化合物層 8 bを得た。 この本焼 成後の第 2ビスマス層状化合物層 8 bの膜厚は、 下記の表 1に示すように、 数種 類のものを準備した。
【0108】
その後に、 この本焼成後の第 2ビスマス層状化合物層 8 bの上に、 第 1ビスマ ス層状化合物層 8 aを、 ビスマスが過剰でない以外は上述の第 2ビスマス層状化 合物層 8 bと同じ条件で、 塗布、 乾燥、 仮焼きおよび本焼成を再度繰り返して形 成した。 第 1ビスマス層状化合物層 8 aの本焼成後の膜厚は 30 Onmであった。
【0109】
第 2ビスマス層状化合物層 8 bおよぴ第 1ビスマス層状化合物層 8 aの結晶構 造を X線回折 (XRD) 測定したところ、 [001] 方位に配向していること、 すなわちシリコン単結晶基板 4の表面に対して垂直に c軸配向していることが確 認できた。 また、 それぞれの化合物層について、 c軸配向度 F (%) を求めた。 c軸配向度 (%) は、 測定した XRDパターンにより 10〜35度の範囲で Lott gering法を適用して求めた。 結果を、 表 1に示す。 【01 10】
次に、 第 1ビスマス層状化合物層 8 aおよび第 2ビスマス層状化合物層 8わか ら成る各誘電体薄膜 8の表面に、 図 1 Bに示すように、 0. Ιπιπιφの P t製上 部電極 10をスパッタリング法により形成し、 複数種類の薄膜コンデンサのサン プルを作製した。
【0 1 1 1】
得られたコンデンササンプルの電気特性 (誘電率、 t a n S、 損失 Q値、 リー ク電流、 ショート率) および誘電率の温度特性を評価した。
誘電率 (単位なし) は、 コンデンササンプルに対し、 インピーダンスアナライ ザ一 (HP 4194 A) を用いて、 室温 (25°C) 、 測定周波数 100 kH z
(AC 2 OmV) の条件で測定された静電容量と、 コンデンササンプルの電極寸 法およぴ電極間距離とから算出した。
【01 12】
耐リーク電流特性 (単位は AZcm2 ) は、 電界強度 50 k VZcmで測定し た。
【01 13】
これらの結果を表 1に示す。 なお、 表 1では、 第 1ビスマス層状化合物層を第 1層と略記し、 第 2ビスマス層状化合物層を第 2層と略記し、 本焼成温度を T 2 と略記した。
Figure imgf000028_0001
【01 14】
表 1に示すように、 第 2ビスマス層状化合物層 8 bにおける B i過剰含有量は、 0より大きく、 好ましくは 0. 1モル倍以上 0. 5モル倍以下、 さらに好ましく は 0. 1〜0.4モル倍である時に、 誘電率を低下させることなく、 c軸配向度が 向上すると共に、 リーク電流が少なく、 耐リーク特性に優れることが確認できた。
【0 1 15】
また、 表 1に示すように、 第 2ビスマス層状化合物層の厚みが、 第 1ビスマス 層状化合物層の厚みよりも薄く、 しかも、 第 2ビスマス層状化合物層の厚みが、 1 m以上 300 n m未満、 さらに好ましくは 5〜200 nm、 特に好ましくは 20〜200 nmである場合に、 誘電率を低下させることなく、 c軸配向度が向 上すると共に、 リーク電流が少なく、 耐リーク特性に優れることが確認できた。
【01 16】
実施例 2
本実施例では、 第 1ビスマス層状化合物層 8 aを、 ィヒ学量論的組成式 S r B i 4T i 4Oi5 (S B T i ) で表され、 組成式: B i 2 Am-x Bm 03m+3において、 記号 m=4、 記号 A3 = S r +B i 2および記号 B4 =T i 4 として表されるビス マス層状化合物で構成し、 第 2ビスマス層状化合物層 8 bを、 ビスマスが過剰に 含有される組成式: S r B i 4 + αΤ i 4015で表されるビスマス層状ィヒ合物で構成 した以外は、 実施例 1と同様にして、 コンデンササンプルを作製し、 実施例 1と 同様な試験を行った。 結果を表 2に示す。
表 2
S-2
m=4
過剽 Bi量 (mol倍) 第 2層組成 T2(。C) 第 2層膜厚 (nm) 第 2層配向度 (%) 第 1層組成 第 1層膜厘 (run)
0 0 SrBi4Ti4015 850 20 30 SrBi4Ti4015 300
0.1 0.4 SrBi4.4Ti4015 850 20 84 300
850 100 91 300
850 300 64 300
0.2 0.8 SrBi4.8Ti4015 850 20 85 300
850 100 95 300
850 300 75 300
0.3 1.2 SrBi5.2Ti4015 850 100 97 300
0.4 1.6 SrBi5.6Ti4015 850 100 98 300
0.5 2.0 SrBi6.0Ti4O15 850 100 70 300
【01 17】
表 2に示すように、 第 2ビスマス層状化合物層 8 bにおける B i過剰含有量は、
0一よ-り-大き—く丁好ましぐは 0 1モル倍以上 0-「 5モル倍以-下マ—さ —に好ま tぐ— は 0. 1〜0.4モル倍である時に、 誘電率を低下させることなく、 c軸配向度が 向上すると共に、 リーク電流が少なく、 耐リーク特性に優れることが確認できた。
【01 18】
また、 表 2に示すように、 第 2ビスマス層状化合物層の厚みが、 第 1ビスマス 層状化合物層の厚みよりも薄く、 しかも、 第 2ビスマス層状化合物層の厚みが、 1 n m以上 300 n m未満、 さらに好ましくは 5〜200nm、 特に好ましくは 20〜200 nmである場合に、 誘電率を低下させることなく、 c軸配向度が向 上すると共に、 リーク電流が少なく、 耐リーク特性に優れることが確認できた。
【0119】
実施例 3
本実施例では、 第 1ビスマス層状化合物層 8 aを、 化学量論的組成式 S r 2B i 4T i 518で表され、 組成式: B i 2 Am-! Bm 03m+3において、 記号 m=5、 記号 A4 =S r 2 + B i 2および記号 B5 =T i 5 として表されるビスマス層状化 合物で構成し、 第 2ビスマス層状化合物層 8 bを、 ビスマスが過剰に含有される 組成式: S r 2B i Λ+αΤ i s018で表されるビスマス層状化合物で構成した以外は、 実施例 1と同様にして、 コンデンササンプルを作製し、 実施例 1と同様な試験を 行った。 結果を表 3に示す。
表 3
表 3
m=5
過剰 Bi量 (mol倍) 第 2層組成 T2(°C) 第 2層膜厚 (nm) 第 2層配向度 (¾) 第 1層組成 第 1層膜厚 (nm) 第 1層配向度 誘電率 リーク雷流 (A/cm2)
0 0 Sr2Bi4Ti5018 850 20 20 Sr2Bi4Ti5018 300 15 320 5*10"6
0.1 0.4 Sr2Bi4.4Ti5018 850 5 90 † 300 90 320 1*10"8
850 20 85 † 300 85 315 1*10一8
850 100 B5 ΐ 300 83 315 1*10一 β
850 200 82 ΐ 300 80 300 1*1 ο"β
850 300 50 τ 300 40 300 7*10'6
0.2 0.8 Sr2Bi4.8Ti50t8 850 5 90 300 90 310 l*10"fl
850 20 90 300 90 310 1*10"0
850 100 85 300 85 312 1*10一8
850 300 60 300 40 300
0.3 1.2 Sr2Bi5.2Ti5018 850 20 95 300 93 290 1*10一8
850 100 94 300 93 295 1*10"a
850 300 60 300 45 285 5* 0"6
0.4 1.6 Sr2Bi5-6Ti5018 850 20 97 300 95 280 1*10"8
850 100 95 300 95 280 1*10"B
850 300 60 ' 300 40 250
0.5 2.0 Sr2Bi6.0Ti5O18 850 100 65 300 50 260 o"5
850 300 60 300 45 240
ふ 【0 1 2 0】
表 3に示すように、 第 2ビスマス層状化合物層 8 bにおける B i過剰含有量は、 0より大きく、 好ましくは 0 . 1モル倍以上 0 . 5モル倍以下、 さらに好ましく は 0 . 1〜0 . 4モル倍である時に、 誘電率を低下させることなく、 c軸配向度が 向上すると共に、 リーク電流が少なく、 耐リーク特性に優れることが確認できた。
【0 1 2 1】
また、 表 3に示すように、 第 2ビスマス層状化合物層の厚みが、 第 1 ビスマス 層状化合物層の厚みよりも薄く、 しかも、 第 2ビスマス層状化合物層の厚みが、 1 n m以上 3 0 0 n m未満、 さらに好ましくは 5〜 2 0 0 n m、 特に好ましくは 1 0〜 1 0 0 n mである場合に、 誘電率を低下させることなく、 c軸配向度が向 上すると共に、 リーク電流が少なく、 耐リーク特性に優れることが確認できた。
【0 1 2 2】
以上説明してきたように、 本発明によれば、 c軸配向度が高く、 特に耐リーク 電流特性に優れ、 しかもドータルでの誘電率を向上させることができる高誘電率 絶縁膜、 薄膜容量素子、 薄膜積層コンデンサおよび薄膜容量素子の製造方法を提 供することができる。

Claims

請 求 の 範 囲
1. 組成式: (B i 22 ) 2+ (Am-i Bm 03m+i) 、 または B i
2 Am-i Bm3m+3で表され、 前記組成式中の記号 mが正数、 記号 Aが Na、 K、 Pb、 B a、 S r、 C aおよび B iから選ばれる少なくとも 1つの元素、 記号 B が F e、 Co、 C r、 Ga、 T i、 Nb、 Ta、 S b、 V、 Mo、 Wおよび Mn から選ばれる少なくとも 1つの元素である第 1ビスマス層状化合物層と、
前記第 1ビスマス層状化合物層と積層され、 前記第 1ビスマス層状化合物層の 前記組成式よりもビスマスが過剰に含有してある第 2ビスマス層状化合物層とを 少なくとも有する高誘電率絶縁膜。
2. 前記第 1ビスマス層状化合物層の前記組成式に対して、 前記第 2 ビスマス層状化合物層に含まれるビスマスの過剰量が、 0. 1モル倍以上 0. 5 モル倍以下である請求項 1に記載の高誘電率絶縁膜。
3. 前記第 2ビスマス層状化合物層の厚みが、 前記第 1ビスマス層状 化合物層の厚みよりも薄いことを特徴とする請求項 1または 2に記載の高誘電率
4. 前記第 2ビスマス層状化合物層の厚みが、 1 nm以上 300 nm 未満である請求項 3に記載の高誘電率絶縁膜。
5. 前記第 2ビスマス層状化合物層の c軸配向度が 80%以上である 請求項 1〜 4のいずれかに記載の高誘電率絶縁膜。
6. 前記第 1ビスマス層状化合物層の c軸配向度が 80%以上である 請求項 1〜 5のいずれかに記載の高誘電率絶縁膜。
7. 前記第 2ビスマス層状化合物層は、 ビスマスの過剰量が異なる複 数の層で構成してある請求項 1〜 6のいずれかに記載の高誘電率絶縁膜。
8 . 前記第 2ビスマス層状化合物層は、 ビスマスの過剰量が層厚方向 に徐々に変化する層で構成してある請求項 1〜 6のいずれかに記載の高誘電率絶
9 . 前記組成式中の記号 mが 3 , 4 , 5のいずれかであることを特徴 とする請求項 1〜8のいずれかに記載の高誘電率絶縁膜。
1 0 . 基板上に、 下部電極、 誘電体薄膜および上部電極が順次形成し てある薄膜容量素子であって、
前記誘電体薄膜が、 請求項 1〜 9のいずれかに記載の高誘電率絶縁膜で構成し てあることを特徴とする薄膜容量素子。
1 1 . 前記下部電極の表面に前記第 2ビスマス層状化合物層が積層し てあり、 前記第 2ビスマス層状化合物層の表面に前記第 1 ビスマス層状化合物層 が積層してある請求項 1 0に記載の薄膜容量素子。
1 2 . 前記第 2ビスマス層状化合物層における c軸が前記下部電極の 表面に対して垂直に配向している請求項 1 0または 1 1に記載の薄膜容量素子。
1 3 . 前記誘電体薄膜の厚さが、 l〜1 0 0 0 n mである請求項 1 0 〜1 2のいずれかに記載の薄膜容量素子。
.
1 4 . 基板上に、 誘電体薄膜と内部電極薄膜とが交互に複数積層して ある薄膜積層コンデンサであって、
前記誘電体薄膜が、 請求項 1〜 9のいずれかに記載の高誘電率絶緣膜で構成し てあることを特徴とする薄膜積層コンデンサ。
1 5 . 前記内部電極薄膜の表面に前記第 2ビスマス層状化合物層が積 層してあり、 前記第 2ビスマス層状化合物層の表面に前記第 1ビスマス層状化合 物層が積層してある請求項 1 4に記載の薄膜積層コンデンサ。
1 6 . 前記第 2ビスマス層状化合物層における c軸が前記内部電極薄 膜の表面に対して垂直に配向している請求項 1 4または 1 5に記載の薄膜積層コ ンデンサ。
1 7 . 前記誘電体薄膜の厚さが、 1〜1 0 0 0 n mである請求項 1 4 〜1 6のいずれかに記載の薄膜積層コンデンサ。
1 8 . 請求項 1 0〜 1 3のいずれかに記載の薄膜容量素子を製造する ための方法であって、
前記下部電極の表面に前記第 2ビスマス層状化合物層を形成する工程と、 前記第 2ビスマス層状化合物層の表面に前記第 1 ビスマス層状化合物層を形成 する工程と、 を有する薄膜容量素子の製造方法。
1 9 . 前記第 2ビスマス層状ィ匕合物層を構成するための溶液を、 前記 ビスマス層状化合物の B iが過剰含有量となるように、 前記下部電極の表面に塗 布して塗布膜を形成し、 その後に前記塗布膜を焼成して前記第 2ビスマス層状ィ匕 合物層を形成し、 その後に前記第 1ビスマス層状化合物層を形成する請求項 1 8 に記載の薄膜容量素子の製造方法。
2 0 . 前記塗布膜を前記下部電極の表面に形成した後、 前記塗布膜を 乾燥させ、 その後に前記塗布膜を、 当該塗布膜が結晶化しない温度で仮焼きし、 その後に、 前記塗布膜を焼成する請求項 1 9に記載の薄膜容量素子の製造方法。
2 1 . 前記塗布膜を焼成する温度が、 前記塗布膜の結晶化温度である 7 0 0〜9 0 0 ° Cである請求項 2 0に記載の薄膜容量素子の製造方法。
PCT/JP2004/002118 2003-02-27 2004-02-24 高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサおよび薄膜容量素子の製造方法 WO2004077566A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/546,834 US7312514B2 (en) 2003-02-27 2004-02-24 High-permittivity insulation film, thin film capacity element, thin film multilayer capacitor, and production method of thin film capacity element
JP2005502880A JP4561629B2 (ja) 2003-02-27 2004-02-24 薄膜積層コンデンサ
EP04713996A EP1598872A1 (en) 2003-02-27 2004-02-24 High dielectric constant insulating film, thin-film capacitive element, thin-film multilayer capacitor, and method for manufacturing thin-film capacitive element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-051838 2003-02-27
JP2003051838 2003-02-27

Publications (1)

Publication Number Publication Date
WO2004077566A1 true WO2004077566A1 (ja) 2004-09-10

Family

ID=32923374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002118 WO2004077566A1 (ja) 2003-02-27 2004-02-24 高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサおよび薄膜容量素子の製造方法

Country Status (7)

Country Link
US (1) US7312514B2 (ja)
EP (1) EP1598872A1 (ja)
JP (1) JP4561629B2 (ja)
KR (1) KR20050108368A (ja)
CN (1) CN1781190A (ja)
TW (1) TWI244660B (ja)
WO (1) WO2004077566A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173679A (ja) * 2005-12-26 2007-07-05 Murata Mfg Co Ltd 圧電セラミックおよびその製造方法ならびに圧電共振子およびその製造方法
JP2012148495A (ja) * 2011-01-19 2012-08-09 Seiko Epson Corp 液体噴射ヘッド及び液体噴射装置、並びに圧電素子
JP2016164901A (ja) * 2015-03-06 2016-09-08 国立研究開発法人物質・材料研究機構 ビスマス系誘電体用電極及びキャパシタ
CN117049871A (zh) * 2023-09-04 2023-11-14 桂林理工大学 一类氧化铋基中低熵氧离子导体材料及其制备方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI261273B (en) * 2004-04-26 2006-09-01 Tdk Corp Composition for thin film capacitive device, insulating film with high dielectric constant, thin film capacitive device, thin-film laminated capacitor and process for producing thin film capacitive device
JP2005327932A (ja) * 2004-05-14 2005-11-24 Shinko Electric Ind Co Ltd 多層配線基板及びその製造方法
US20060289976A1 (en) * 2005-06-23 2006-12-28 Intel Corporation Pre-patterned thin film capacitor and method for embedding same in a package substrate
JP4462432B2 (ja) * 2005-08-16 2010-05-12 セイコーエプソン株式会社 ターゲット
US20070132065A1 (en) * 2005-12-08 2007-06-14 Su Jae Lee Paraelectric thin film structure for high frequency tunable device and high frequency tunable device with the same
US7911315B2 (en) * 2006-07-28 2011-03-22 Honeywell International Inc. Miniature pressure sensor assembly for catheter
JP4931148B2 (ja) * 2007-10-02 2012-05-16 富士フイルム株式会社 ペロブスカイト型酸化物積層体及び圧電素子、液体吐出装置
JP5407775B2 (ja) * 2009-03-31 2014-02-05 Tdk株式会社 薄膜コンデンサの製造方法及び薄膜コンデンサ
TWI400457B (zh) * 2010-11-19 2013-07-01 Ind Tech Res Inst 萃取材料介電常數的裝置及其方法
JP5812243B2 (ja) * 2010-12-09 2015-11-11 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置、圧電素子、超音波デバイス及びirセンサー
KR101596460B1 (ko) 2011-10-01 2016-02-26 인텔 코포레이션 온-칩 커패시터 및 그 조립 방법
US9007141B2 (en) * 2012-05-23 2015-04-14 Nxp B.V. Interface for communication between voltage domains
KR101309479B1 (ko) 2012-05-30 2013-09-23 삼성전기주식회사 적층 칩 전자부품, 그 실장 기판 및 포장체
US20130320813A1 (en) * 2012-06-04 2013-12-05 Tdk Corporation Dielectric device
CN103839779A (zh) * 2014-03-17 2014-06-04 上海华虹宏力半导体制造有限公司 形成高密度电容器结构的方法以及电容器结构
JP6519735B2 (ja) * 2014-03-24 2019-05-29 セイコーエプソン株式会社 圧電素子及び圧電素子応用デバイス
KR101808794B1 (ko) * 2015-05-07 2018-01-18 주식회사 모다이노칩 적층체 소자
US10770230B2 (en) 2017-07-04 2020-09-08 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and method of manufacturing the same
CN107204331B (zh) * 2017-07-07 2019-08-23 上海华虹宏力半导体制造有限公司 多层电容器的制造方法
CN110277493A (zh) * 2018-03-14 2019-09-24 山东建筑大学 一种新型的具有较低漏电的多层结构
CN111960821B (zh) * 2020-07-27 2022-04-12 苏州瑞玛精密工业股份有限公司 一种微波介质陶瓷材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244656A (ja) * 1988-03-25 1989-09-29 Fujitsu Ltd 半導体装置の製造方法
JPH05251655A (ja) * 1992-03-04 1993-09-28 Fujitsu Ltd 半導体装置の製造方法
JPH08306231A (ja) * 1995-03-08 1996-11-22 Sharp Corp 強誘電体薄膜被覆基板及びその製造方法及び強誘電体薄膜被覆基板によって構成された不揮発性メモリ
JPH1056142A (ja) * 1996-05-30 1998-02-24 Oki Electric Ind Co Ltd 半導体記憶素子およびその形成方法
JPH10200059A (ja) * 1997-01-10 1998-07-31 Sharp Corp 強誘電体薄膜素子及びその製造方法
JPH11121703A (ja) * 1997-10-15 1999-04-30 Nec Corp Bi層状強誘電体薄膜の製造方法
JP2000169297A (ja) * 1998-09-29 2000-06-20 Sharp Corp 酸化物強誘電体薄膜の製造方法、酸化物強誘電体薄膜及び酸化物強誘電体薄膜素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144523A (en) 1980-04-11 1981-11-10 Tdk Electronics Co Ltd Method of manufacturing laminated capacitor
JPH05335173A (ja) 1992-05-28 1993-12-17 Murata Mfg Co Ltd 積層セラミック電子部品及びその製造方法
JPH05335174A (ja) 1992-05-28 1993-12-17 Murata Mfg Co Ltd 積層セラミック電子部品
DE69730377T2 (de) * 1996-05-30 2005-09-01 Oki Electric Industry Co., Ltd. Permanente Halbleiterspeicherzelle und deren Herstellungsverfahren
JPH11214245A (ja) 1998-01-23 1999-08-06 Murata Mfg Co Ltd 薄膜積層コンデンサおよびその製造方法
US20020153543A1 (en) * 1998-09-29 2002-10-24 Takeshi Kijima Method for manufacturing oxide ferroelectric thin film oxide ferroelectric thin film and oxide ferroelectric thin film element
JP4228437B2 (ja) 1998-10-21 2009-02-25 株式会社村田製作所 薄膜積層コンデンサおよびその製造方法
US6891714B2 (en) * 2003-02-26 2005-05-10 Tdk Corporation Multi-layered unit including electrode and dielectric layer
US6958900B2 (en) * 2003-02-26 2005-10-25 Tdk Corporation Multi-layered unit including electrode and dielectric layer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244656A (ja) * 1988-03-25 1989-09-29 Fujitsu Ltd 半導体装置の製造方法
JPH05251655A (ja) * 1992-03-04 1993-09-28 Fujitsu Ltd 半導体装置の製造方法
JPH08306231A (ja) * 1995-03-08 1996-11-22 Sharp Corp 強誘電体薄膜被覆基板及びその製造方法及び強誘電体薄膜被覆基板によって構成された不揮発性メモリ
JPH1056142A (ja) * 1996-05-30 1998-02-24 Oki Electric Ind Co Ltd 半導体記憶素子およびその形成方法
JPH10200059A (ja) * 1997-01-10 1998-07-31 Sharp Corp 強誘電体薄膜素子及びその製造方法
JPH11121703A (ja) * 1997-10-15 1999-04-30 Nec Corp Bi層状強誘電体薄膜の製造方法
JP2000169297A (ja) * 1998-09-29 2000-06-20 Sharp Corp 酸化物強誘電体薄膜の製造方法、酸化物強誘電体薄膜及び酸化物強誘電体薄膜素子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173679A (ja) * 2005-12-26 2007-07-05 Murata Mfg Co Ltd 圧電セラミックおよびその製造方法ならびに圧電共振子およびその製造方法
WO2007074566A1 (ja) * 2005-12-26 2007-07-05 Murata Manufacturing Co., Ltd. 圧電セラミックおよびその製造方法ならびに圧電共振子およびその製造方法
KR101021740B1 (ko) * 2005-12-26 2011-03-15 가부시키가이샤 무라타 세이사쿠쇼 압전 세라믹 및 그 제조방법 및 압전 공진자 및 그제조방법
JP2012148495A (ja) * 2011-01-19 2012-08-09 Seiko Epson Corp 液体噴射ヘッド及び液体噴射装置、並びに圧電素子
JP2016164901A (ja) * 2015-03-06 2016-09-08 国立研究開発法人物質・材料研究機構 ビスマス系誘電体用電極及びキャパシタ
CN117049871A (zh) * 2023-09-04 2023-11-14 桂林理工大学 一类氧化铋基中低熵氧离子导体材料及其制备方法
CN117049871B (zh) * 2023-09-04 2024-05-17 桂林理工大学 一种氧化铋基中低熵氧离子导体材料及其制备方法

Also Published As

Publication number Publication date
US7312514B2 (en) 2007-12-25
JPWO2004077566A1 (ja) 2006-06-08
TW200503011A (en) 2005-01-16
CN1781190A (zh) 2006-05-31
KR20050108368A (ko) 2005-11-16
EP1598872A1 (en) 2005-11-23
US20060091494A1 (en) 2006-05-04
JP4561629B2 (ja) 2010-10-13
TWI244660B (en) 2005-12-01

Similar Documents

Publication Publication Date Title
WO2004077566A1 (ja) 高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサおよび薄膜容量素子の製造方法
JP4108602B2 (ja) 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子および薄膜積層コンデンサ
JP4706479B2 (ja) 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサおよび薄膜容量素子の製造方法
JP4623005B2 (ja) 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサおよび薄膜容量素子の製造方法
WO2004077460A1 (ja) 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサ、電子回路および電子機器
JP3856142B2 (ja) 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子および薄膜積層コンデンサ
JP4529902B2 (ja) 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサおよび薄膜容量素子の製造方法
JPH10214947A (ja) 薄膜誘電体素子
JP2004165596A (ja) 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサ、電子回路および電子機器
JP4088477B2 (ja) 薄膜容量素子および薄膜積層コンデンサ
JP4604939B2 (ja) 誘電体薄膜、薄膜誘電体素子およびその製造方法
WO2004077463A1 (ja) 電極層および誘電体層を含む積層体ユニット
EP1598870A1 (en) Thin-film capacitative element and electronic circuit or electronic equipment including the same
JP2004165372A (ja) コンデンサ複合回路素子およびicカード
JP2020033220A (ja) 誘電体組成物および電子部品
JP2005191153A (ja) キャパシタ及びその製造方法、並びに半導体装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005502880

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006091494

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10546834

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057016007

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004713996

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048113165

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057016007

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004713996

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10546834

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004713996

Country of ref document: EP