[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2003100896A2 - Cellule elementaire pour pile a combustible a structure helicoïdale, procede de fabrication et pile a combustible comprenant une pluralite de cellules elementaires - Google Patents

Cellule elementaire pour pile a combustible a structure helicoïdale, procede de fabrication et pile a combustible comprenant une pluralite de cellules elementaires Download PDF

Info

Publication number
WO2003100896A2
WO2003100896A2 PCT/FR2003/001569 FR0301569W WO03100896A2 WO 2003100896 A2 WO2003100896 A2 WO 2003100896A2 FR 0301569 W FR0301569 W FR 0301569W WO 03100896 A2 WO03100896 A2 WO 03100896A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
exchange membrane
screw
electrodes
ion exchange
Prior art date
Application number
PCT/FR2003/001569
Other languages
English (en)
Other versions
WO2003100896A3 (fr
Inventor
Pascal Tiquet
Didier Marsacq
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to JP2004508439A priority Critical patent/JP4503432B2/ja
Priority to EP03755195A priority patent/EP1522112A2/fr
Priority to US10/484,041 priority patent/US7445863B2/en
Publication of WO2003100896A2 publication Critical patent/WO2003100896A2/fr
Publication of WO2003100896A3 publication Critical patent/WO2003100896A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell comprising a membrane of the ion exchange type as electrolyte, and more specifically a proton exchange membrane.
  • the invention relates to elementary cells for fuel cells as well as to their manufacturing methods, the elementary cells also called “electrode-membrane-electrode assemblies” conventionally comprising two electrodes between which the membrane is located. ion exchange.
  • the invention finds an application in the field of fuel cells of the PEMFC type (from the English “Proton Exchange Membrane Fuel Cell”), of the DMFC type (from the English “Direct Methanol Fuel Cell” ), or of the alkaline anion exchange type.
  • a fuel cell comprises a stack of elementary cells, within which an electrochemical reaction takes place between two reagents which are introduced continuously.
  • the fuel such as hydrogen for cells operating with hydrogen / oxygen mixtures, or methanol for cells operating with methanol / oxygen mixtures, is brought into contact with the anode, while the oxidant, generally the oxygen, is brought into contact with the cathode.
  • the two electrodes are separated by an electrolyte, of the ion exchange membrane type.
  • the electrochemical reaction splits into two half-reactions: an oxidation of the fuel taking place at the anode / electrolyte interface, producing in the case of hydrogen cells protons H + , which will pass through the electrolyte towards the cathode, as well as electrons joining the external circuit, in order to contribute to the production of electrical energy; a reduction of the oxidant ' taking place at the electrolyte / cathode interface, with production of water in the case of hydrogen fuel cells.
  • the electrochemical reaction takes place, strictly speaking, at the level of an electrode-membrane-electrode assembly.
  • the electrode-membrane-electrode assemblies are most often arranged in the form of a stack, the electrical continuity between the different assemblies being ensured by means of conductive plates, called bipolar plates.
  • bipolar plates preferably made of graphite or stainless steel, provide the electrical junction between the anode of an electrode-membrane-electrode assembly and the cathode of the adjacent assembly.
  • each electrode-membrane-electrode assembly is confined between two bipolar plates, the latter also fulfilling the function of distributing the reagents to the electrodes, and being able to have cooling elements in order to cope with possible overheating of the stack.
  • the fuel cells known from the prior art generally have an architecture of the “filter press” type, corresponding to a specific design in which the bipolar plates and the elementary cells have flat surfaces, assembled one on the other. the others by clamping the various elements.
  • the bipolar plates comprise a network of channels winding over the entire surface in contact with the cell elementary, in order to ensure the most homogeneous distribution of reagents possible towards an electrode of the cell.
  • the analyzes carried out made it possible to locate the deformations of the membrane in zones located at the level of the channels of the adjacent bipolar plates, these channels being initially intended to be taken up by the reagents.
  • the deformations encountered are largely explained by the non-homogeneity of the mechanical stresses exerted on the membrane during the tightening operation, these stresses being essentially concentrated on portions of the membrane facing the solid parts of the bipolar plates separating the various channels. It is specified that when the tightening operation is completed and the elementary cell maintained in position, the deformed parts of the membrane are blocked inside these channels, thus considerably reducing the lifetime of this membrane and of the cell. associated elementary.
  • the object of the invention is therefore firstly to propose an elementary cell for a fuel cell comprising two electrodes between which there is an ion exchange membrane, the cell at least partially remedying the drawbacks mentioned above relating to the embodiments of prior art. More specifically, the object of the invention is to present an elementary cell for a fuel cell whose design significantly increases the life of the ion exchange membrane. Furthermore, the present invention also aims to propose a method of manufacturing such an elementary cell.
  • the object of the invention is to present a fuel cell comprising a plurality of elementary cells such as those meeting the aim of the invention mentioned above.
  • the invention relates to an elementary cell for a fuel cell comprising two electrodes between which is located an ion exchange membrane.
  • one of the two electrodes has a threaded surface carrying the ion-exchange membrane, the assembly formed by this electrode and the ion-exchange membrane being able to be assembled in a screwed manner on a threaded surface belonging to the other of the two electrodes.
  • the elementary cell according to the invention is designed such that during assembly of the assembly formed by one of the two electrodes and the ion exchange membrane on the other of the electrodes, the exchange membrane d he ions is confined between two threaded surfaces, allowing it to be pressurized continuously as the screwing operation proceeds.
  • the mechanical stresses exerted on the membrane are substantially uniformly distributed over its entire surface in contact with the two electrodes, without presenting deformed zones as was the case in the achievements of the prior art.
  • the absence of significant deformations on the ion exchange membrane is partly due to the sinusoidal shape of the threads present on the threaded surfaces, these threads greatly minimizing the stress concentrations on the membrane maintained between these two surfaces.
  • the implementation of such an elementary cell does not favor the creation of zones of accelerated aging on the ion exchange membrane, which advantageously allows the latter not to be cracked, and therefore to have a considerably increased service life compared to that of the embodiments of the prior art.
  • the threaded surfaces of the two rigid electrodes do not allow the ion exchange membrane to have undulations when the cell comprising the cell is put into operation.
  • the swelling of the membrane resulting from its impregnation with water causes it to be pressed against the electrodes, so that the contact surfaces between these electrodes and the membrane are in no way reduced. Consequently, the electrochemical reaction takes place over a large part of the membrane, thus preventing accelerated aging of certain portions of this membrane.
  • an advantage of the present invention lies in the increase, compared with the embodiments of the prior art, of the exchange surfaces between the ion exchange membrane and the electrodes.
  • the elementary cell according to the invention has exchange surfaces of the helical type, consequently generating a growth in the current density which can be produced.
  • the ion exchange membrane has two threaded surfaces capable of cooperating respectively with the threaded surfaces of the two electrodes, all of these surfaces being produced so that they have the same pitch.
  • one of the two electrodes is constituted by a coating deposited on a screw, and the other of the two electrodes is constituted by a coating deposited on a nut formed in a substrate.
  • the screw and the substrate are respectively provided with at least one orifice into which at least one reagent is capable of being injected.
  • the ion-exchange membrane is carried by the electrode deposited on the screw, and each orifice provided in the substrate opens directly into a space at least partially delimited by the threaded surface of the 'electrode deposited on the nut, allowing the passage of each reagent in the interstices of a helical connection between the threaded surface of the electrode deposited on the nut and the ion exchange membrane.
  • the subject of the invention is also a fuel cell comprising a plurality of elementary cells such as that which is the subject of the invention and described above, the cells being electrically connected to each other and having a common substrate.
  • the exchange surface can be up to approximately twenty times greater than the exchange surface of a conventional battery of the prior art, of substantially identical dimensions.
  • the subject of the invention also relates to a method of manufacturing such an elementary cell for a fuel cell.
  • FIG. 1 shows a schematic front sectional view of an elementary cell according to a preferred embodiment of the present invention
  • - Figure 2 shows an enlarged view of part of the elementary cell shown in Figure 1
  • FIG. 3 represents a partial schematic view from above of a fuel cell comprising a plurality of elementary cells, such as that shown in FIG. 1.
  • FIGS. 1 and 2 we see an elementary cell 1 for a fuel cell according to a preferred embodiment of the present invention.
  • the elementary cell 1 for example capable of delivering a power of between 10 and 50 k when it enters into the constitution of fuel cells of medium power, can be implemented in any type of cell such as PEMFC cells and DMFC batteries.
  • the elementary cell 1 comprises a substrate 2 preferably made of a porous material, in which a nut 4 is formed having a threaded surface 6.
  • the first electrode 8 can equally extend over the entire height of the threaded surface 6 of the nut 4, or only over a portion of this threaded surface 6.
  • the elementary cell 1 also includes a screw 12 preferably made of a porous material.
  • the pitch of the threaded surface 16 is identical to the pitch of the threaded surface 6 of the nut 4.
  • the second electrode 14 can equally extend over the entire height of the threaded surface 16 of the screw 12 , or only on a portion of this threaded surface 16.
  • the two electrodes 8 and 14 are deposited so that when the screw 12 is in place on the nut 4, these two electrodes 8 and 14 are opposite the one from the other and extend over an identical height.
  • the ion exchange membrane 20 is elastic and of diameter slightly less than the diameter of the threaded surface 18 of the second electrode 14, so that following a screw mounting, the two threaded surfaces concerned 18 and 22 are arranged relative to each other so as to marry completely.
  • the ion exchange membrane 20 is designed to extend all around the second electrode 14, but also includes an annular portion 23 connected to the part extending all around the second electrode 14, the annular portion 23 being located under the head 24 of the screw 12 of the elementary cell 1.
  • the assembly formed by the screw 12, the second electrode 14, the threaded surface 18 of the second electrode 14 and the ion exchange membrane 20 is assembled in a screwed manner on the threaded surface 10 of the first electrode 8.
  • the ion exchange membrane 20 is preformed so as to have a second threaded surface 26 capable of cooperate with the threaded surface 10 of the first electrode 8, in order to establish a helical connection between the first electrode 8 and the membrane 20 of the elementary cell 1.
  • the second threaded surface 26 of the membrane 20 is produced so as to have the same pitch as the other threaded surfaces 6,10,16,18 of the elementary cell 1, as well as of a diameter slightly greater than the diameter of the threaded surface
  • the substrate 2 of the elementary cell 1 comprises a cylindrical boss 28 in which the nut 4 is partially made, this boss 28 protruding outside a main body 30 of this substrate 2. It should be noted that cylindrical bump
  • the screw head 24 comprises an annular groove 34, at a lower surface intended to be pressed against the cylindrical boss 28 of the substrate 2.
  • an annular groove 36 is located at an upper surface of the cylindrical boss 28, and disposed substantially opposite the annular groove 34 provided on the screw 12, when the latter is assembled on the substrate 2 of the elementary cell 1.
  • O-ring seals 38, 40 are respectively intended to take place inside the annular grooves 34 and 36 and to come into contact with the annular portion 23 of the ion exchange membrane 20, so as to seal the elementary cell 1. It should be noted that this sealing is carried out in view of May maintain one or more reagents associated with each of the two electrodes 8 and 14, respectively in the substrate 2 and in the screw 12.
  • the screw 12 is provided at its head 24 with a preferentially threaded end piece 42 capable of cooperating with injection means (not shown) of one or more reagents intended to supply the second electrode 14.
  • the end piece 42 has internally a cylindrical orifice 44 of axis identical to the axis of the screw 12, this orifice 44 extending substantially all along the screw 12.
  • the or the reagents used are then able to borrow this orifice 44 in the form of a longitudinal channel, and to diffuse in the direction of the first electrode 8 by circulating inside the screw 12 produced in a porous material.
  • the helical contact zone between the threaded surface 18 of the second electrode 14 and the first threaded surface 22 of the membrane 20 then constitutes the exchange surface on which a first electrochemical reaction can take place.
  • the substrate 2 has at its lower surface a tip 46 preferably taking the form of a threaded bore, capable of cooperating with injection means.
  • the end piece 46 is extended by a cylindrical orifice 48 with an axis identical to the axis of the screw 12 and the nut 4 of the cell elementary 1.
  • the orifice 48 opens into a space 50 partially delimited by the threaded surface 10 of the first electrode 8.
  • the space 50 corresponds to a lower part of a hollowed out area defined by the nut 4 and / or the threaded surface 10 of the first electrode 8, this lower part being unoccupied by the screw 12 when it is assembled on the substrate 2.
  • the space 50 into which the cylindrical orifice 48 opens also delimited by the ion exchange membrane 20, the latter having in fact a substantially flat portion 52 in the form of a disc extending perpendicular to the axis of the screw 12, and forming a cap at the level of the threaded end of this screw 12. Consequently, the threaded part of the screw 12 and the second electrode 14 are entirely confined in the ion-exchange membrane 20, so that the reagents injected into the screw 12 cannot come into contact with the reagents injected into the substrate 2.
  • each reagent present in the space 50 is capable of infiltrating into interstices 51 of the existing helical connection between the first electrode 8 deposited on the nut 4, and the ion exchange membrane 20.
  • a conventional helical connection like that provided between the elements mentioned above is such that there are contact zones between the elements, as well as zones in which the two elements are located at a distance from each other. In the latter zones communicating with each other and also called interstices of the helical connection, the fluid or liquid reagents can circulate freely in order to be distributed throughout the connection homogeneously.
  • the interstices 51 allow the reagents to circulate homogeneously on the first electrode 8, while the contact zones between surface 10 and surface 26 have the function of serving as an exchange surface on which is capable of producing a second electrochemical reaction.
  • the reagent (s) would be injected into one or more orifices of any shape provided in the substrate 2, the latter then being made of a porous material capable of allowing the diffusion of the reagents to the first electrode 8.
  • the invention relates to a method for producing an elementary cell 1 for a fuel cell, such as that which has just been described.
  • the ion exchange membrane 20 is first preformed, in particular using the screw 12.
  • the membrane 20 can have first and second threaded surfaces 22 and 26, at a pitch identical to that of the threaded surface 16 of the screw 12.
  • the second electrode 14 is deposited in the form of a coating on the threaded surface 16 of the screw 12, the deposit s 'effecting according to conventional deposition techniques such as the CVD method (from the English “Chemical Vapor Deposition”), or from the PVD method (from the English “Physical Vapor Deposition”).
  • the coating obtained following the previous step is then machined so that the second electrode 14 is provided with the threaded surface 18, intended to receive the first threaded surface 22 of the ion exchange membrane 20.
  • the substrate 2 comprises a nut 4 on which a coating is deposited in order to produce the first electrode 8, still using the conventional deposition techniques mentioned above.
  • the coating obtained is then tapped so that the first electrode 8 has the threaded surface 10, intended to receive the second threaded surface 26 of the ion exchange membrane 20.
  • the second electrode 14 is assembled by screwing the ion exchange membrane 20 onto the threaded surface 18 of the second electrode 14. Note that as the membrane 20 is preformed to the diameter of the screw 12 and not to the diameter of the threaded surface 18 of the second electrode 14 which is greater than it, the membrane 20 completely follows the threaded surface 18 of this second electrode. Consequently, there are no gaps between the threaded surface 18 of the second electrode 14 and the first threaded surface 22 of the ion exchange membrane 20.
  • FIG. 3 there is partially shown a fuel cell 100 according to a preferred embodiment of the invention, the cell 100 comprising a plurality of elementary cells 1, such as that which has just been described.
  • the substrate 2 is common to all the elementary cells 1, and the nuts 4 carrying the screws 12 are arranged in a matrix fashion on this substrate 2.
  • the substrate 2 is then designed to supply each of the first electrodes 8 coating the nuts 4.
  • the electrodes 8 and 14 (not shown in FIG. 3) of the cells 1 are electrically connected together, so that the power delivered by the battery 100 corresponds to the sum of the powers generated by each elementary cell 1 constituting the stack 100.
  • the overall exchange surface of the battery 100 corresponding to the sum of the exchange surfaces of each of the elementary cells 1, is greatly increased compared to that obtained in fuel cells of the prior art.
  • the matrix arrangement of the elementary cells 1 makes it possible to carry out maintenance operations without dismantling the entire stack, insofar as each of the elements 1 is accessible individually.
  • the matrix arrangement facilitates the implantation of reserve elements, the latter being able to simply replace elements becoming defective and capable of being short-circuited.
  • various modifications can be made by those skilled in the art to the elementary cell 1, to the fuel cell 100 and to the method of manufacturing the elementary cell 1 which have just been described, only by way of non-illustrative examples. limiting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

L'invention concerne une cellule élémentaire (1) pour pile à combustible comprenant deux électrodes entre lesquelles se situe une membrane échangeuse d'ions (20). Selon l'invention, l'une des deux électrodes présente une surface filetée portant la membrane échangeuse d'ions (10), l'ensemble formé par cette électrode et la membrane échangeuse d'ions (10) étant apte à être assemblé de façon vissée sur une surface filetée appartenant à l'autre des deux électrodes. L'invention se rapporte également à une pile à combustible munie d'une pluralité de cellules élémentaires 1.

Description

CELLULE ELEMENTAIRE POUR PILE A COMBUSTIBLE A STRUCTURE HELICOÏDALE, PROCEDE DE FABRICATION ET PILE A COMBUSTIBLE COMPRENANT UNE PLURALITE DE CELLULES
ELEMENTAIRES
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention se rapporte à une pile à combustible comprenant une membrane du type échangeuse d'ions comme électrolyte, et plus spécifiquement une membrane échangeuse de protons.
Plus particulièrement, l'invention a trait à des cellules élémentaires pour piles à combustible ainsi qu'à leurs procédés de fabrication, les cellules élémentaires également appelées « assemblages électrode-membrane-électrode » comportant de façon classique deux électrodes entre lesquelles se situe la membrane échangeuse d'ions.
A titre d'exemples, l'invention trouve une application dans le domaine des piles à combustible du type PEMFC (de l'anglais « Proton Exchange Membrane Fuel Cell ») , du type DMFC (de l'anglais « Direct Methanol Fuel Cell ») , ou encore du type alcaline échangeuse d'anions. ETAT DE LA TECHNIQUE ANTERIEURE
De manière générale, une pile à combustible comporte un empilement de cellules élémentaires, au sein desquelles a lieu une réaction électrochimique entre deux réactifs qui sont introduits de manière continue. Le combustible, tel que l'hydrogène pour les piles fonctionnant avec des mélanges hydrogène/oxygène, ou le méthanol pour des piles fonctionnant avec des mélanges méthanol/oxygène, est amené au contact de l'anode, alors que le comburant, généralement l'oxygène, est amené au contact de la cathode. Les deux électrodes sont séparées par un électrolyte, de type membrane échangeuse d'ions. La réaction électrochimique, dont l'énergie est convertie en énergie électrique, se scinde en deux demi-réactions : une oxydation du combustible se déroulant à l'interface anode/électrolyte, produisant dans le cas des piles à hydrogène des protons H+, qui vont traverser l' électrolyte en direction de la cathode, ainsi que des électrons rejoignant le circuit extérieur, afin de concourir à la production d'énergie électrique ; une réduction du comburant ' se déroulant à l'interface électrolyte/cathode, avec production d'eau dans le cas des piles à hydrogène.
La réaction électrochimique a lieu, à proprement parler, au niveau d'un assemblage électrode- membrane-électrode .
Pour assurer le fonctionnement d'appareils électriques, il est nécessaire d'obtenir une puissance électrique largement supérieure à la puissance délivrée par une seule cellule élémentaire ou assemblage électrode-membrane-électrode. Dans cette optique, les assemblages électrode-membrane-électrode sont disposés le plus souvent sous forme d'empilement, la continuité électrique entre les différents assemblages étant assurée au moyen de plaques conductrices, dites plaques bipolaires. Ces plaques bipolaires, de préférence réalisées en graphite ou en acier inoxydable, assurent la jonction électrique entre l'anode d'un assemblage électrode-membrane-électrode et la cathode de l'assemblage adjacent. Ainsi, elles permettent d'assurer les plus grandes conductivités électriques possibles, de manière à éviter les chutes ohmiques préjudiciables au rendement de la pile. De cette façon, chaque assemblage électrode-membrane-électrode est confiné entre deux plaques bipolaires, ces dernières remplissant également la fonction de distribution des réactifs aux électrodes, et pouvant présenter des éléments de refroidissement afin de faire face aux éventuelles surchauffes de l'empilement.
En outre, les piles à combustible connues de l'art antérieur disposent généralement d'une architecture du type « filtre-presse », correspondant à une conception spécifique dans laquelle les plaques bipolaires et les cellules élémentaires disposent de surfaces planes, assemblées les unes sur les autres par serrage des divers éléments.. De plus, dans les piles à combustible classiques de l'art antérieur, les plaques bipolaires comprennent un réseau de canaux serpentant sur toute la surface en contact avec la cellule élémentaire, afin d'assurer une distribution de réactifs la plus homogène possible en direction d' une électrode de la cellule.
Cependant, après avoir effectué des analyses optiques à la lumière polarisée, on a pu se rendre compte que l'opération de serrage des plaques bipolaires sur une cellule élémentaire entraînait des déformations de la membrane échangeuse d'ions.
En effet, les analyses réalisées ont permis de localiser les déformations de la membrane dans des zones situées au niveau des canaux des plaques bipolaires adjacentes, ces canaux étant initialement prévus pour être empruntés par les réactifs. Les déformations rencontrées s'expliquent en grande partie par la non-homogénéité des sollicitations mécaniques exercées sur la membrane lors de l'opération de serrage, ces sollicitations étant essentiellement concentrées sur des portions de la membrane en regard des parties pleines des plaques bipolaires séparant les divers canaux. Il est précisé que lorsque l'opération de serrage est achevée et la cellule élémentaire maintenue en position, les parties déformées de la membrane sont bloquées à l'intérieur de ces canaux, réduisant ainsi considérablement la durée de vie de cette membrane et de la cellule élémentaire associée.
De plus, lors du fonctionnement de la cellule élémentaire, il a également été remarqué que la membrane échangeuse d'ions avait tendance à se gonfler, provoquant des ondulations au niveau des parties de la membrane se situant à l'intérieur des canaux des plaques bipolaires adjacentes. Or il s'avère que les ondulations engendrées participent largement à l'apparition d'un inconvénient majeur, résidant dans la diminution de la surface de contact entre cette membrane ondulée et les électrodes de la cellule élémentaire, cette diminution se traduisant directement par la réduction de la surface d'échange ionique entre ces différents éléments. L'inconvénient mentionné ci- dessus entraîne alors une localisation de l'activité électrochimique aux seules portions de la membrane en contact avec les électrodes, ces portions étant uniquement constituées par le sommet des ondulations apparues lors du gonflement de la membrane.
Bien entendu, la localisation très spécifique de l'activité électrochimique provoque un vieillissement accéléré de la membrane échangeuse d'ions au niveau des portions concernées, ce vieillissement localisé conduisant à la formation de fissures pouvant engendrer un court-circuit de la pile, lorsque le niveau de dégradation est tel que les fissures se sont propagées jusqu'à devenir débouchantes .
Par ailleurs, il est à noter que lors de l'assemblage par serrage d'une plaque bipolaire et d'une cellule élémentaire, un joint d'étanchéité situé entre ces deux éléments est conçu pour être déformé, afin d'assurer une parfaite étanchéité entre ces différents éléments. Cependant, d'autres observations effectuées ont également conduit à la conclusion que la déformation du joint d'étanchéité engendrait inévitablement la déformation d'une partie de la membrane échangeuse d' ions se trouvant à proximité de ce joint d'étanchéité. Ainsi, on a pu remarquer que la forme retenue du type section carrée pour les électrodes, la membrane et la plaque bipolaire n'est en aucun cas adaptée pour permettre à la membrane de supporter les déformations du joint d'étanchéité, survenant lors de l'opération de serrage. Par conséquent, les déformations des parties de la membrane situées à proximité du joint d'étanchéité subissent également un vieillissement accéléré, pouvant provoquer la formation spontanée de fissures localisées sur cette membrane.
EXPOSÉ DE L' INVENTION
L' invention a donc tout d' abord pour but de proposer une cellule élémentaire pour pile à combustible comprenant deux électrodes entre lesquelles se situe une membrane échangeuse d'ions, la cellule remédiant au moins partiellement aux inconvénients mentionnés ci-dessus relatifs aux réalisations de l'art antérieur. Plus précisément, le but de l'invention est de présenter une cellule élémentaire pour pile à combustible dont la conception augmente de façon significative la durée de vie de la membrane échangeuse d' ions . Par ailleurs, la présente invention a également pour but de proposer un procédé de fabrication d'une telle cellule élémentaire.
Enfin, le but de l'invention est de présenter une pile à combustible comportant une pluralité de cellules élémentaires telles que celles répondant au but de l'invention mentionné ci-dessus. Pour ce faire, l'invention a pour objet une cellule élémentaire pour pile à combustible comprenant deux électrodes entre lesquelles se situe une membrane échangeuse d'ions. Selon l'invention, l'une des deux électrodes présente une surface filetée portant la membrane échangeuse d'ions, l'ensemble formé par cette électrode et la membrane échangeuse d'ions étant apte à être assemblé de façon vissée sur une surface filetée appartenant à l'autre des deux électrodes. Avantageusement, la cellule élémentaire selon l'invention est conçue de telle sorte que lors de l'assemblage de l'ensemble formé par l'une des deux électrodes et la membrane échangeuse d'ions sur l'autre des électrodes, la membrane échangeuse d'ions se trouve confinée entre deux surfaces filetées, lui permettant d'être mise sous pression de manière continue au fur et à mesure du déroulement de l'opération de vissage. De cette façon, lorsque l'opération d'assemblage est achevée, les sollicitations mécaniques s' exerçant sur la membrane sont sensiblement uniformément réparties sur toute sa surface en contact avec les deux électrodes, sans présenter de zones déformées comme cela était le cas dans les réalisations de l'art antérieur. Notons à cet effet que l'absence de déformations significatives sur la membrane échangeuse d' ions est en partie due à la forme sinusoïdale des filets présents sur les surfaces filetées, ces filets minimisant fortement les concentrations de contraintes sur la membrane maintenue entre ces deux surfaces. Ainsi, la mise en œuvre d'une telle cellule élémentaire ne favorise pas la création de zones de vieillissement accéléré sur la membrane échangeuse d'ions, ce qui permet avantageusement à cette dernière de ne pas être fissurée, et de présenter par conséquent une durée de vie considérablement augmentée par rapport à celle des réalisations de l'art antérieur.
Par ailleurs, avec un tel agencement de moyens, les surfaces filetées des deux électrodes rigides n'autorisent pas à la membrane échangeuse d'ions de présenter des ondulations lors de la mise en fonctionnement de la pile comportant la cellule. En effet, le gonflement de la membrane provenant de son imprégnation d'eau provoque son plaquage contre les électrodes, de sorte que les surfaces de contact entre ces électrodes et la membrane ne sont en aucun cas diminuées. En conséquence, la réaction électrochimique s'effectue sur une grande partie de la membrane, interdisant ainsi le vieillissement accéléré de certaines portions de cette membrane.
En outre, un avantage de la présente invention réside dans l'augmentation, par rapport aux réalisations de l'art antérieur, des surfaces d'échange entre la membrane échangeuse d'ions et les électrodes. En effet, tandis que les éléments de l'art antérieur présentent des surfaces de contact sensiblement planes, la cellule élémentaire selon l'invention dispose en revanche de surfaces d'échange du type hélicoïdale, engendrant par conséquent une croissance de la densité de courant pouvant être produit.
De façon préférentielle, la membrane échangeuse d' ions présente deux surfaces filetées aptes à coopérer respectivement avec les surfaces filetées des deux électrodes, l'ensemble de ces surfaces étant réalisé de manière à ce qu'elles disposent du même pas. Ainsi, il est possible de réaliser la membrane échangeuse d'ions selon un film préformé au pas des surfaces filetées des deux électrodes.
Préférentiellement, l'une des deux électrodes est constituée par un revêtement déposé sur une vis, et l'autre des deux électrodes est constituée par un revêtement déposé sur un écrou formé dans un substrat.
Dans une telle configuration, on peut alors prévoir que la vis et le substrat sont réalisés dans un matériau poreux apte à autoriser une diffusion de réactifs en direction des électrodes. De plus, la vis et le substrat sont respectivement munis d'au moins un orifice dans lequel au moins un réactif est susceptible d'être injecté.
Selon un mode de réalisation préféré de la présente invention, la membrane échangeuse d'ions est portée par l'électrode déposée sur la vis, et chaque orifice prévu dans le substrat débouche directement dans un espace au moins partiellement délimité par la surface filetée de l'électrode déposée sur l' écrou, autorisant le passage de chaque réactif dans des interstices d'une liaison hélicoïdale entre la surface filetée de l'électrode déposée sur l' écrou et la membrane échangeuse d'ions.
Par ailleurs, l'invention a également pour objet une pile à combustible comprenant une pluralité de cellules élémentaires telles que celle objet de l'invention et décrite ci-dessus, les cellules étant connectées électriquement entre elles et disposant d'un substrat commun. A titre d'exemple, en agençant les écrous sous forme matricielle, la surface d'échange peut être jusqu'à environ vingt fois supérieure à la surface d'échange d'une pile conventionnelle de l'art antérieur, de dimensions sensiblement identiques.
Enfin, l'objet de l'invention concerne également un procédé de fabrication d'une telle cellule élémentaire pour pile à combustible. D'autres avantages et caractéristiques de l'invention apparaîtront dans la description détaillée non limitative ci-dessous.
BRÈVE DESCRIPTION DES DESSINS
Cette description sera faite au regard des dessins annexés parmi lesquels ; la figure 1 représente une vue schématique en coupe de face d'une cellule élémentaire selon un mode de réalisation préféré de la présente invention ; - la figure 2 représente une vue à plus grande échelle d'une partie de la cellule élémentaire représentée sur la figure 1 ; et la figure 3 représente une vue schématique partielle de dessus d'une pile à combustible comprenant une pluralité de cellules élémentaires, telles que celle représentée sur la figure 1.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PRÉFÉRÉS
En référence aux figures 1 et 2, on voit une cellule élémentaire 1 pour pile à combustible selon un mode de réalisation préféré de la présente invention.
La cellule élémentaire 1, par exemple susceptible de délivrer une puissance comprise entre 10 et 50 k lorsqu'elle entre dans la constitution de piles à combustible de puissance moyenne, peut être mise en œuvre dans tout type de pile tel que les piles PEMFC et les piles DMFC.
La cellule élémentaire 1 comprend un substrat 2 réalisé de préférence dans un matériau poreux, dans lequel est pratiqué un écrou 4 présentant une surface filetée 6.
Une première électrode 8, de préférence en graphite, silicium, céramique ou mousse métallique, est déposée sous forme de revêtement sur la surface filetée 6 de l' écrou 4, et présente également une surface filetée 10 de diamètre inférieur et de pas identique à la surface filetée 6 de l' écrou 4. La première électrode 8 peut indifféremment s'étendre sur toute la hauteur de la surface filetée 6 de l' écrou 4, ou seulement sur une portion de cette surface filetée 6.
La cellule élémentaire 1 comporte également une vis 12 réalisée de préférence dans un matériau poreux. Une seconde électrode 14, de préférence en graphite, silicium, céramique ou mousse métallique, est déposée sous forme de revêtement sur une surface filetée 16 de la vis 12, et présente également une surface filetée 18 de diamètre supérieur et de pas identique à la surface filetée 16 de la vis 12. Notons que le pas de la surface filetée 16 est identique au pas de la surface filetée 6 de l' écrou 4. De la même façon que pour la première électrode 8 de la cellule élémentaire 1, la seconde électrode 14 peut indifféremment s'étendre sur toute la hauteur de la surface filetée 16 de la vis 12, ou seulement sur une portion de cette surface filetée 16. De préférence, les deux électrodes 8 et 14 sont déposées de sorte que lorsque la vis 12 est en place sur l' écrou 4, ces deux électrodes 8 et 14 sont en regard l'une de l'autre et s'étendent sur une hauteur identique.
Une membrane échangeuse d'ions 20, de préférence du type film préformé au pas des surfaces filetées 6,10,16,18, est monté sur la surface filetée 18 de la seconde électrode 14, de manière à ce qu'une première surface filetée 22 de la membrane échangeuse d'ions 20 soit en contact surfacique avec la surface filetée 18 de la seconde électrode 14. Pour ce faire, on pourra par exemple prévoir que la membrane échangeuse d' ions 20 est élastique et de diamètre légèrement inférieur au diamètre de la surface filetée 18 de la seconde électrode 14, afin que suite à un montage par vissage, les deux surfaces filetées concernées 18 et 22 soient disposées l'une par rapport à l'autre de façon à s'épouser totalement. Il est précisé que la membrane échangeuse d'ions 20 est conçue pour s'étendre tout autour de la seconde électrode 14, mais comprend également une portion annulaire 23 reliée à la partie s' étendant tout autour de la seconde électrode 14, la portion annulaire 23 étant située sous la tête 24 de la vis 12 de la cellule élémentaire 1. L'ensemble formé par la vis 12, la seconde électrode 14, la surface filetée 18 de la seconde électrode 14 et la membrane échangeuse d'ions 20 est assemblé de façon vissée sur la surface filetée 10 de la première électrode 8. Pour faciliter le vissage et limiter les déformations de cette membrane 20 lors de l'opération d'assemblage de l'ensemble, il est possible de prévoir que la membrane échangeuse d' ions 20 est préformée de manière à disposer d'une seconde surface filetée 26 apte à coopérer avec la surface filetée 10 de la première électrode 8, afin d'établir une liaison hélicoïdale entre la première électrode 8 et la membrane 20 de la cellule élémentaire 1 .
Ainsi, la seconde surface filetée 26 de la membrane 20 est réalisée de façon à disposer du même pas que les autres surfaces filetées 6,10,16,18 de la cellule élémentaire 1, ainsi que d'un diamètre légèrement supérieur au diamètre de la surface filetée
10 de la première électrode 8. De cette façon, lorsque l'ensemble mentionné ci-dessus est assemblé sur le substrat 2 de la cellule 1, la membrane échangeuse d'ions 20 est mise sous pression entre les deux surfaces filetées 10,18 des deux électrodes 8,14 de la cellule. En outre, toujours en référence aux figures
1 et 2, le substrat 2 de la cellule élémentaire 1 comprend un bosselage cylindrique 28 dans lequel est partiellement réalisé l' écrou 4, ce bosselage 28 faisant saillie en dehors d'un corps principal 30 de ce substrat 2. Il est à noter que le bosselage cylindrique
28 est muni de préférence d'une pluralité d'ailettes 32 facilitant le refroidissement de la cellule 1, ces ailettes 32 prenant la forme de couronnes cylindriques espacées et agencées autour de la surface extérieure du bosselage 28. De plus, la tête de vis 24 comprend une gorge annulaire 34, au niveau d'une surface inférieure destinée à être plaquée contre le bosselage cylindrique 28 du substrat 2. De la même manière, une gorge annulaire 36 est située au niveau d'une surface supérieure du bosselage cylindrique 28, et disposée sensiblement en regard de la gorge annulaire 34 prévue sur la vis 12, lorsque celle-ci est assemblée sur le substrat 2 de la cellule élémentaire 1. Des joints d'étanchéité toriques 38,40 sont respectivement destinés à prendre place à l'intérieur des gorges annulaires 34 et 36 et à entrer en contact avec la portion annulaire 23 de la membrane échangeuse d' ions 20, de manière à réaliser l'étanchéité de la cellule élémentaire 1. Notons que cette étanchéité est réalisée en vue de maintenir un ou des réactifs associés à chacune des deux électrodes 8 et 14, respectivement dans le substrat 2 et dans la vis 12.
A cet effet, la vis 12 est munie au niveau de sa tête 24 d'un embout 42 préférentiellement fileté, susceptible de coopérer avec des moyens d'injection (non représentés) d'un ou plusieurs réactifs destinés à alimenter la seconde électrode 14. L'embout 42 dispose intérieurement d'un orifice cylindrique 44 d'axe identique à l'axe de la vis 12, cet orifice 44 s' étendant sensiblement tout le long de la vis 12. Le ou les réactifs utilisés sont alors en mesure d'emprunter cet orifice 44 en forme de canal longitudinal, et de diffuser en direction de la première électrode 8 en circulant à l'intérieur de la vis 12 réalisée dans un matériau poreux. La zone de contact hélicoïdale entre la surface filetée 18 de la seconde électrode 14 et la première surface filetée 22 de la membrane 20 constitue alors la surface d'échange sur laquelle peut s'effectuer une première réaction électrochimique.
Bien entendu, il est également envisageable de prévoir d'autres orifices de formes quelconques dans la vis 12, sans sortir du cadre de l'invention.
Par ailleurs, le substrat 2 comporte au niveau de sa surface inférieure un embout 46 prenant préférentiellement la forme d'un alésage fileté, susceptible de coopérer avec des moyens d'injection
(non représentés) d'un ou plusieurs réactifs destinés à alimenter la première électrode 8. L'embout 46 est prolongé par un orifice cylindrique 48 d'axe identique à l'axe de la vis 12 et de l' écrou 4 de la cellule élémentaire 1. L'orifice 48 débouche à l'intérieur d'un espace 50 délimité partiellement par la surface filetée 10 de la première électrode 8. Comme l'illustre la figure 1, l'espace 50 correspond à une partie inférieure d'une zone évidée définie par l' écrou 4 et/ou la surface filetée 10 de la première électrode 8, cette partie inférieure étant non-occupée par la vis 12 lorsqu'elle est assemblée sur le substrat 2. De plus, il est précisé que l'espace 50 dans lequel débouche l'orifice cylindrique 48 est également délimité par la membrane échangeuse d' ions 20, cette dernière disposant en effet d'une portion sensiblement plane 52 en forme de disque s' étendant perpendiculairement à l'axe de la vis 12, et formant capuchon au niveau de l'extrémité filetée de cette vis 12. En conséquence, la partie filetée de la vis 12 et la seconde électrode 14 sont entièrement confinées dans la membrane échangeuse d'ions 20, de sorte que les réactifs injectés dans la vis 12 ne puissent pas entrer en contact avec les réactifs injectés dans le substrat 2.
Le ou les réactifs utilisés sont alors en mesure d'emprunter l'orifice 48 en forme de canal longitudinal, et de pénétrer à l'intérieur de l'espace 50. Ainsi, dans une telle configuration, chaque réactif présent dans l'espace 50 est capable de s'infiltrer dans des interstices 51 de la liaison hélicoïdale existante entre la première électrode 8 déposée sur l' écrou 4, et la membrane échangeuse d'ions 20. En effet, une liaison hélicoïdale classique comme celle prévue entre les éléments mentionnés ci-dessus est telle qu' il existe des zones de contact entre les éléments, ainsi que des zones dans lesquelles les deux éléments sont situés à distance l'un de l'autre. Dans ces dernières zones communiquant entre elles et également appelées interstices de la liaison hélicoïdale, les réactifs fluides ou liquides peuvent circuler librement afin de se répartir tout le long de la liaison de façon homogène. Notons que lorsque l'on adopte une telle conception pour la cellule élémentaire 1, les interstices 51 permettent de faire circuler les réactifs de façon homogène sur la première électrode 8, tandis que les zones de contact entre la surface 10 et la surface 26 ont pour fonction de servir de surface d' échange sur laquelle est apte à se produire une seconde réaction électrochimique.
Bien entendu, il est également envisageable de prévoir une solution classique dans laquelle le ou les réactifs seraient injectés dans un ou plusieurs orifices de formes quelconques prévus dans le substrat 2, ce dernier étant alors réalisé dans un- matériau poreux apte à autoriser la diffusion des réactifs en direction de la première électrode 8.
Par ailleurs, l'invention concerne un procédé de réalisation d'une cellule élémentaire 1 pour pile à combustible, comme celle qui vient d'être décrite.
Selon un mode de réalisation préféré de ce procédé, la membrane échangeuse d'ions 20 est d'abord préformée, notamment à l'aide de la vis 12. Ainsi, suite à cette opération réalisée de préférence sous vide, la membrane 20 peut disposer des première et seconde surfaces filetées 22 et 26, au pas identique à celui de la surface filetée 16 de la vis 12. Ensuite, la seconde électrode 14 est déposée sous forme de revêtement sur la surface filetée 16 de la vis 12, le dépôt s' effectuant selon les techniques classiques de dépôt telles que la méthode CVD (de l'anglais « Chemical Vapor Déposition ») , ou de la méthode PVD (de l'anglais « Physical Vapor Déposition ») . Le revêtement obtenu suite à l'étape précédente est ensuite usiné pour que la seconde électrode 14 soit munie de la surface filetée 18, destinée à recevoir la première surface filetée 22 de la membrane échangeuse d'ions 20.
De la même manière, le substrat 2 comprend un écrou 4 sur lequel il est déposé un revêtement afin de réaliser la première électrode 8, toujours en utilisant les techniques classiques de dépôt mentionnées ci-dessus. Le revêtement obtenu est ensuite taraudé afin que la première électrode 8 dispose de la surface filetée 10, destinée à recevoir la seconde surface filetée 26 de la membrane échangeuse d'ions 20.
Une fois les électrodes 8 et 14 effectuées, on procède à l'assemblage par vissage de la membrane échangeuse d'ions 20 sur la surface filetée 18 de seconde électrode 14. Notons que comme la membrane 20 est préformée au diamètre de la vis 12 et non au diamètre de la surface filetée 18 de la seconde électrode 14 qui lui est supérieur, la membrane 20 épouse totalement la surface filetée 18 de cette seconde électrode. Par conséquent, il n'existe pas d'interstices entre la surface filetée 18 de la seconde électrode 14, et la première surface filetée 22 de la membrane échangeuse d'ions 20.
Enfin, il ne reste plus qu'à visser l'ensemble formé par la membrane échangeuse d'ions 20, la seconde électrode 14 et la vis 12, sur la surface filetée 10 de la première électrode 8, de manière à obtenir la cellule élémentaire 1 dont la membrane échangeuse d'ions 20 est sous pression entre les deux électrodes 8 et 14.
En référence à la figure 3, il est partiellement représenté une pile à combustible 100 selon une mode de réalisation préféré de l'invention, la pile 100 comprenant une pluralité de cellules élémentaires 1, telles que celle qui vient d'être décrite.
Dans ce mode de réalisation préféré, le substrat 2 est commun à toutes les cellules élémentaires 1, et les écrous 4 portant les vis 12 sont disposés de façon matricielle sur ce substrat 2. Le substrat 2 est alors conçu pour alimenter chacune des premières électrodes 8 revêtant les écrous 4. De plus, les électrodes 8 et 14 (non représentées sur la figure 3) des cellules 1 sont reliées électriquement entre elles, afin que la puissance délivrée par la pile 100 corresponde à la somme des puissances générées par chaque cellule élémentaire 1 constituant la pile 100. Ainsi, pour un encombrement extrêmement réduit, la surface d'échange globale de la pile 100, correspondant à la somme des surfaces d' échange de chacune des cellules élémentaires 1, est largement augmentée par rapport à celle obtenue dans les piles à combustible de l'art antérieur. ' En effet, à titre d'exemple et pour un substrat 2 de section carrée d'environ 25 cm2, on est facilement en mesure de multiplier par vingt la valeur de la surface d'échange par rapport à une pile classique de l'art antérieur, utilisant une plaque bipolaire de mêmes dimensions que celles du substrat 2. Notons que l'augmentation de la surface d'échange est provoquée d'une part en raison de la multiplicité des cellules élémentaires 1 agencées sur le même substrat 2, et d'autre part en raison de la forme hélicoïdale des surfaces d'échange. De plus, de part le nombre important de cellules élémentaires 1 présentes sur le substrat 2, lorsque l'une ou un nombre faible d'entre elles sont endommagées, l'ensemble des autres cellules 1 est capable de maintenir la production d'une puissance sensiblement identique à celle produite par toutes les cellules 1.
Par ailleurs, il est précisé que la disposition matricielle des cellules élémentaires 1 permet d'effectuer des opérations de maintenance sans démonter l'ensemble de la pile, dans la mesure où chacun des éléments 1 est accessible individuellement. D'autre part, la disposition matricielle facilite l'implantation d'éléments de réserve, ces derniers pouvant simplement remplacer des éléments devenant défectueux et aptes à se mettre en court-circuit. Bien entendu, diverses modifications peuvent être apportées par l'homme du métier à la cellule élémentaire 1, à la pile à combustible 100 et au procédé de fabrication de la cellule élémentaire 1 qui viennent d'être décrits, uniquement à titre d'exemples non limitatifs.

Claims

REVENDICATIONS
1. Cellule élémentaire (1) pour pile à combustible (100) comprenant deux électrodes (8,14) entre lesquelles se situe une membrane échangeuse d'ions (20), caractérisée en ce que l'une desdites deux électrodes (14) présente une surface filetée (18) portant la membrane échangeuse d'ions (20), l'ensemble formé par cette électrode (14) et la membrane échangeuse d'ions (20) étant apte à être assemblé de façon vissée sur une surface filetée (10) appartenant à l'autre desdites deux électrodes (8).
2. Cellule élémentaire (1) selon la revendication 1, caractérisée en ce que la membrane échangeuse d'ions (20) présente deux surfaces filetées (22,26) aptes à coopérer respectivement avec les surfaces filetées (18,10) desdites deux électrodes (14,8) .
3. Cellule élémentaire (1) selon la revendication 2, caractérisée en ce que les surfaces filetées (10,18,22,26) desdites deux électrodes (8,14) et de la membrane échangeuse d'ions (20) ont le même pas.
4. Cellule élémentaire (1) selon l'une quelconque des revendications précédentes, caractérisée en ce que la membrane échangeuse d'ions (20) est un film préformé.
5. Cellule élémentaire (1) selon l'une quelconque des revendications précédentes, caractérisée en ce que l'une desdites deux électrodes (14) est constituée par un revêtement déposé sur une vis (12), et en ce que l'autre desdites deux électrodes (8) est constituée par un revêtement déposé sur un écrou (4) formé dans un substrat (2) .
6. Cellule élémentaire (1) selon la revendication 5, caractérisée en ce que la vis (12) et le substrat (2) sont réalisés dans un matériau poreux apte à autoriser une diffusion de réactifs en direction des électrodes (8,14).
7. Cellule élémentaire (1) selon la revendication 5 ou la revendication 6, caractérisée en ce que la vis (12) est munie d'au moins un orifice (42) dans lequel au moins un réactif est susceptible d'être injecté.
8. Cellule élémentaire (1) selon l'une quelconque des revendications 5 à 7, caractérisée en ce que le substrat (2) est muni d'au moins un orifice (48) dans lequel au moins un réactif est susceptible d'être inj ecté .
9. Cellule élémentaire (1) selon la revendication 8, caractérisée en ce que la membrane échangeuse d'ions (20) est portée par l'électrode (14) déposée sur ladite vis (12), et en ce que chaque orifice (48) prévu dans le substrat (2) débouche directement dans un espace (50) au moins partiellement délimité par la surface filetée (10) de l'électrode (8) déposée sur l'écrou (4), autorisant le passage de chaque réactif dans des interstices (51) d'une liaison hélicoïdale entre la surface filetée (10) de l'électrode (8) déposée sur l'écrou (4), et la membrane échangeuse d'ions (20).
10. Pile à combustible (100), caractérisée en ce qu'elle comprend une pluralité de cellules élémentaires (1) selon l'une quelconque des revendications précédentes, lesdites cellules (1) étant connectées électriquement entre elles.
11. Pile à combustible (100) selon la revendication 10, caractérisée en ce que les cellules élémentaires (1) comportent un substrat (2) commun dans lequel des écrous (4) sont pratiqués de façon à être disposés de façon matricielle.
12. Procédé de fabrication d'une cellule élémentaire (1) pour pile à combustible (100) selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu' il comprend les étapes suivantes : préformage de la membrane échangeuse d'ions (20) à l'aide d'une vis (12) ; - dépôt d'un revêtement sur la vis (12) afin de créer une électrode (14) ; usinage du revêtement réalisé afin d'obtenir la surface filetée (18) de cette électrode
(14) ; - dépôt d'un revêtement sur un écrou (4) afin de créer une autre électrode (8) ; taraudage du revêtement réalisé afin d'obtenir la surface filetée (10) de cette autre électrode (8) ; - vissage de la membrane échangeuse d'ions
(20) sur la surface filetée (18) de l'électrode (14) portée par la vis (12) ;
- vissage de l'ensemble constitué par la membrane échangeuse d'ions (20), la vis (12) et l'électrode (14) portée par la vis (12), sur la surface filetée (10) de l'autre électrode (8).
PCT/FR2003/001569 2002-05-27 2003-05-23 Cellule elementaire pour pile a combustible a structure helicoïdale, procede de fabrication et pile a combustible comprenant une pluralite de cellules elementaires WO2003100896A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004508439A JP4503432B2 (ja) 2002-05-27 2003-05-23 螺旋形の構造を有する燃料電池のための基本セル、該セルの製造方法および複数の基本セルを備える燃料電池
EP03755195A EP1522112A2 (fr) 2002-05-27 2003-05-23 CELLULE ELEMENTAIRE POUR PILE A COMBUSTIBLE A STRUCTURE HELICOÏDALE, PROCEDE DE FABRICATION ET PILE A COMBUSTIBLE COMPRENANT UNE PLURALITE DE CELLULES ELEMENTAIRES
US10/484,041 US7445863B2 (en) 2002-05-27 2003-05-23 Fuel cell with helical structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/06422 2002-05-27
FR0206422A FR2840109B1 (fr) 2002-05-27 2002-05-27 Cellule elementaire pour pile a combustible a structure helicoidale, procede de fabrication et pile a combustible comprenant une plurialite de cellules elementaires

Publications (2)

Publication Number Publication Date
WO2003100896A2 true WO2003100896A2 (fr) 2003-12-04
WO2003100896A3 WO2003100896A3 (fr) 2005-02-17

Family

ID=29415096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/001569 WO2003100896A2 (fr) 2002-05-27 2003-05-23 Cellule elementaire pour pile a combustible a structure helicoïdale, procede de fabrication et pile a combustible comprenant une pluralite de cellules elementaires

Country Status (6)

Country Link
US (1) US7445863B2 (fr)
EP (1) EP1522112A2 (fr)
JP (1) JP4503432B2 (fr)
CN (1) CN100539281C (fr)
FR (1) FR2840109B1 (fr)
WO (1) WO2003100896A2 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033694B2 (en) * 2003-04-07 2006-04-25 Hewlett-Packard Development Company, L.P. Threaded fuel cell assembly
US9786944B2 (en) * 2008-06-12 2017-10-10 Massachusetts Institute Of Technology High energy density redox flow device
US8722226B2 (en) 2008-06-12 2014-05-13 24M Technologies, Inc. High energy density redox flow device
US11909077B2 (en) 2008-06-12 2024-02-20 Massachusetts Institute Of Technology High energy density redox flow device
WO2011084649A2 (fr) * 2009-12-16 2011-07-14 Massachusetts Institute Of Technology Dispositif à écoulement redox à haute densité d'énergie
FR2955665B1 (fr) * 2010-01-26 2012-02-24 Commissariat Energie Atomique Dispositif de detection d'eau autonome comprenant une source d'hydrogene
US9362583B2 (en) 2012-12-13 2016-06-07 24M Technologies, Inc. Semi-solid electrodes having high rate capability
US8993159B2 (en) 2012-12-13 2015-03-31 24M Technologies, Inc. Semi-solid electrodes having high rate capability
CN114324369B (zh) * 2022-03-11 2022-06-07 北京新研创能科技有限公司 双极板表面划痕检测系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3467553A (en) * 1966-06-29 1969-09-16 Leesona Corp Fuel cell construction with involute reactant flow directing means
DE29611057U1 (de) * 1996-06-24 1997-10-23 Fritze, Claus-Rüdiger, 21502 Geesthacht Brennstoffzelle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9026302D0 (en) * 1990-12-04 1991-01-23 Programme 3 Patent Holdings Electrolyte holder
US5336570A (en) * 1992-08-21 1994-08-09 Dodge Jr Cleveland E Hydrogen powered electricity generating planar member
JP2002008683A (ja) * 2000-06-27 2002-01-11 Mitsubishi Nuclear Fuel Co Ltd 固体電解質型燃料電池
US7033694B2 (en) * 2003-04-07 2006-04-25 Hewlett-Packard Development Company, L.P. Threaded fuel cell assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3467553A (en) * 1966-06-29 1969-09-16 Leesona Corp Fuel cell construction with involute reactant flow directing means
DE29611057U1 (de) * 1996-06-24 1997-10-23 Fritze, Claus-Rüdiger, 21502 Geesthacht Brennstoffzelle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 05, 3 mai 2002 (2002-05-03) & JP 2002 008683 A (MITSUBISHI NUCLEAR FUEL CO LTD), 11 janvier 2002 (2002-01-11) *

Also Published As

Publication number Publication date
JP4503432B2 (ja) 2010-07-14
US20050069752A1 (en) 2005-03-31
US7445863B2 (en) 2008-11-04
EP1522112A2 (fr) 2005-04-13
FR2840109A1 (fr) 2003-11-28
WO2003100896A3 (fr) 2005-02-17
CN1623246A (zh) 2005-06-01
FR2840109B1 (fr) 2004-07-09
JP2005527958A (ja) 2005-09-15
CN100539281C (zh) 2009-09-09

Similar Documents

Publication Publication Date Title
EP1672726B1 (fr) Plaque bipolaire pour pile à combustible
EP2033249B1 (fr) Plaque bipolaire pour pile à combustible, et pile à combustible à distribution de fluide améliorée mettant en oeuvre de telles plaques
EP3012892B1 (fr) Dispositif électrochimique à empilement
EP1522112A2 (fr) CELLULE ELEMENTAIRE POUR PILE A COMBUSTIBLE A STRUCTURE HELICOÏDALE, PROCEDE DE FABRICATION ET PILE A COMBUSTIBLE COMPRENANT UNE PLURALITE DE CELLULES ELEMENTAIRES
EP3891835A1 (fr) Pile à combustible comprenant au moins un organe de traction intégré
FR3059469A1 (fr) Cellule electrochimique redox en flux a shunt reduit
BE1027327B1 (fr) Compresseur a etat solide et procede pour fournir une contre-pression sur un empilement de cellules de compresseur a l'etat solide
BE1027326B1 (fr) Plaque de champ d'écoulement et compresseur comprenant une telle plaque
EP1826851A1 (fr) Elément de centrage pour un empilement de cellules électrochimiques
EP2729981B1 (fr) Procédé de réalisation d'un joint d'étanchéité entre des composants d'une pile à combustible et procédé de fabrication d'une pile à combustible correspondant
EP1645006A2 (fr) Pile a combustible dans laquelle un fluide circule sensiblement parallelement a la membrane electrolytique et procede de fabrication d'une telle pile a combustible
EP3618157A1 (fr) Empilement de cellules électrochimiques rédox en flux à shunt réduit
FR2865853A1 (fr) Pile a combustible a moyens elastiquement deformables d'absorption des dilitations et vehicule automobile correspondant.
FR3079676A1 (fr) Plaque bipolaire a canaux ondules
FR3116389A1 (fr) Dispositif de serrage pour un empilement electrochimique, et assemblage forme par le dispositif de serrage et l’empilement electrochimique
FR3097377A1 (fr) Pile à combustible PEMFC
WO2019092375A2 (fr) Accumulateur electrochimique a architecture bipolaire specifique
EP2729983B1 (fr) Bride d'alimentation et de serrage pour un module de pile à combustible, et système de pile à combustible associé
WO2003075390A2 (fr) Pile à combustible, cellule ou groupe de cellules appartenant à une telle pile, kit de remplacement pour cette cellule et son procédé de fabrication
WO2021014104A1 (fr) Pile à combustible à membrane polymère électrolyte
WO2020128322A1 (fr) Plaque bipolaire pour pile a combustible
FR2932612A1 (fr) Plaque separatrice a double gorge pour pile a combustible
FR3091044A1 (fr) Plaque bipolaire pour pile a combustible
FR3017245A1 (fr) Empilement d'assemblages membrane/electrodes allege

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2003755195

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10484041

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004508439

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038011557

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003755195

Country of ref document: EP