[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2002103798A1 - Memoire magnetique et procede de commande associe, ainsi qu'appareil de memoire magnetique comprenant celle-ci - Google Patents

Memoire magnetique et procede de commande associe, ainsi qu'appareil de memoire magnetique comprenant celle-ci Download PDF

Info

Publication number
WO2002103798A1
WO2002103798A1 PCT/JP2002/006093 JP0206093W WO02103798A1 WO 2002103798 A1 WO2002103798 A1 WO 2002103798A1 JP 0206093 W JP0206093 W JP 0206093W WO 02103798 A1 WO02103798 A1 WO 02103798A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory
magnetic
current
layer
layers
Prior art date
Application number
PCT/JP2002/006093
Other languages
English (en)
French (fr)
Inventor
Masayoshi Hiramoto
Nozomu Matsukawa
Akihiro Odagawa
Mitsuo Satomi
Yasunari Sugita
Yoshio Kawashima
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP02736165A priority Critical patent/EP1398835A4/en
Publication of WO2002103798A1 publication Critical patent/WO2002103798A1/ja
Priority to US10/695,731 priority patent/US6950333B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1693Timing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5607Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using magnetic storage elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/10Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Definitions

  • the present invention relates to a magnetic memory and a driving method thereof,
  • Tunnel magnetoresistive (TMR) devices include a tunnel (barrier) layer and a pair of magnetic layers sandwiching it.
  • TMR element a spin tunnel effect based on a difference in a relative angle of a magnetization direction between a pair of magnetic layers is used.
  • the spin valve type TMR element includes, as a pair of magnetic layers, a fixed magnetic layer in which magnetization is relatively hard to rotate and a free magnetic layer in which magnetization is relatively easy to rotate.
  • the free magnetic layer functions as a memory layer in which information is recorded as a magnetization direction. .,
  • the following problems are expected to occur in the MRAM in which the TMR elements are arranged in a matrix shape as a magnetic memory as the degree of integration increases.
  • the magnetic memory of the present invention includes two or more memory layers and two or more tunnel layers stacked in the thickness direction of the layers, wherein the two or more memory layers are electrically connected in series, A resistance change ⁇ ⁇ caused by magnetization reversal in a first layer group composed of at least one selected from the two or more memory layers, and a second layer group composed of at least one selected from the two or more memory layers Are different from each other in the resistance change ⁇ 2 caused by the magnetization reversal in
  • a multi-valued magnetic memory can be obtained.
  • Multi-level memory enables information to be recorded at a high density while miniaturizing the memory.
  • Non-destructive reading of information is possible from the magnetic memory of the present invention.
  • the resistance change of the memory can be measured as a voltage change or a current change when a constant current or a constant voltage is applied.
  • the present invention also provides a driving method suitable for the magnetic memory.
  • the magnetization reversal in the memory layer is performed by a magnetic field generated by a plurality of currents including a current passing through the memory layer in the thickness direction.
  • the current is selected from the two or more memory layers and passes through at least one layer to be subjected to magnetization reversal in the thickness direction.
  • the above driving method is basically applicable to all magnetoresistive elements capable of flowing a current in the thickness direction of a layer and magnetic memories using the same, and is not limited to MR elements. It may be used for driving a so-called CPP (Current Perpendicular to Plane) GMR element.
  • smooth magnetization reversal can be realized. Smooth magnetization reversal is effective in reducing erroneous recording in a highly integrated magnetic memory.
  • FIG. 1A and 1B are cross-sectional views each showing a basic configuration of a magnetoresistive element that can be used in the magnetic memory of the present invention.
  • FIG. 2 is a cross-sectional view showing a basic configuration of a magnetoresistive element that can be used in the magnetic memory of the present invention, together with peripheral members.
  • FIG. 3A and 3B are cross-sectional views each showing an embodiment of the magnetic memory of the present invention.
  • FIG. 5 is a diagram showing a state observed from directions different from each other by 90 °.
  • FIG. 4 is a cross-sectional view showing another embodiment of the magnetic memory of the present invention.
  • FIG. 5 is a drawing for explaining memory values in the magnetic memory of the present invention.
  • FIG. 6 is a diagram for explaining the maximum memory value in the magnetic memory of the present study.
  • FIG. 7 is a cross-sectional view showing an embodiment of a magnetic memory according to the present invention, in which a magnetoresistive element including a plurality of memory layers is used.
  • FIG. 8 is a circuit diagram showing an example of a method for extracting an output from the magnetic memory of the present invention.
  • 9A and 9B are cross-sectional views each showing another embodiment of the magnetic memory of the present invention.
  • FIG. 10 is a cross-sectional view showing another embodiment using a magnetoresistive element including a plurality of memory layers, which is one embodiment of the magnetic memory of the present invention.
  • FIG. 11 is a plan view showing an embodiment of a magnetic memory device in which a plurality of magnetic memories of the present invention are arranged in an in-plane direction.
  • FIG. 12 is a plan view showing another embodiment of the magnetic memory device of the present invention.
  • FIG. 13 is a cross-sectional view for explaining the positional relationship of the conductors in the magnetic memory device of FIG.
  • FIGS. 14A and 14B are diagrams respectively showing examples of magnetization switching curves of the memory layer.
  • FIG. 15 is a diagram for explaining the relationship between the magnetization switching curve of the memory layer and the resultant magnetic field that enables the magnetization reversal.
  • FIG. 16 is a plan view showing a relative relationship between easy axes of magnetization of respective memory layers in the magnetic memory device of the present invention.
  • FIG. 17A and Fig. 17B show the magnetization angle depending on the angle ⁇ formed by the easy axis of the memory layer.
  • FIG. 6 is a diagram showing the slope of a switching curve and further explaining the magnetization reversal due to a combined magnetic field in this case.
  • FIG. 18 is a plan view showing an example of the relationship between the magnetic field easy axes of the memory layers arranged in the in-plane direction in the memory device of the present invention.
  • FIGS. 19A to 19E are plan views each showing an example of the surface shape of the memory layer.
  • FIGS. 20A to 20C are drawings for explaining an example of the driving method of the present invention
  • FIG. 20A is a cross-sectional view of a magnetic memory
  • FIG. 2 OB is a relationship between a recording current and time
  • FIG. 20C is a plan view of the memory layer.
  • FIGS. 21A and 21B are cross-sectional views of a magnetic memory for explaining another example of the driving method of the present invention.
  • FIG. 21A shows a write operation
  • FIG. 21B shows a read operation. Are respectively shown.
  • FIGS. 22A and 22B are cross-sectional views of a magnetic memory for explaining another example of the driving method of the present invention.
  • FIG. 22A shows a write operation
  • FIG. 22B shows a read operation. Are respectively shown.
  • FIG. 23 is a circuit diagram showing an example of a system LSI using the magnetic memory of the present invention.
  • FIG. 24 is a plan view showing another example of the magnetic memory device in which the magnetic memory of the present invention is arranged in the in-plane direction.
  • FIG. 25 is a magnetization switching curve showing the magnetization reversal due to the current Iw passing through the lead line and the current IB passing through the bit line.
  • FIG. 26 is a plan view showing another example of the arrangement of elements in the magnetic memory device of the present invention.
  • FIG. 27 is a cross-sectional view of the magnetic memory manufactured in the example of the present invention.
  • the resistance change of the first layer group selected from a plurality of memory layers is provided. And the resistance change ⁇ R 2 of the second layer group are different from each other.
  • the number of memory layers included in these memory layer groups is not limited, both the first layer group and the second layer group may be formed of one memory layer.
  • the magnetic memory of the present invention may have a form in which two or more magnetoresistive elements (TMR elements) are stacked in the layer thickness direction.
  • the TMR element includes at least one memory layer and at least one tunnel layer constituting the magnetic memory.
  • the magnetic memory is provided with two or more recording conductors for writing information.
  • it is preferable that at least one recording lead selected from the two or more recording leads is disposed between a pair of TMR elements selected from the two or more TMR elements and adjacent to each other.
  • the TMR element, at least one recording lead, and the force are alternately arranged. If the distance between the recording lead and the memory layer is reduced, the amount of current required for magnetization reversal can be reduced.
  • the magnetic memory of the present invention includes two or more TMR elements stacked in the thickness direction of the layers, and the two or more TMR elements include two TMR elements having different outputs from each other.
  • a memory containing N TMR elements should have at least (N + 1) recording conductors.
  • N is an integer of 2 or more.
  • the TMR element may include only one memory layer, but may include two or more memory layers.
  • This TMR element includes at least two elements selected from the memory layers constituting the magnetic memory.
  • This TMR element At least two tunnel layers may be included.
  • at least two memory layers included in one TMR element may include two memory layers having different resistance changes caused by magnetization reversal.
  • the magnetic memory of the present invention includes a TMR element including at least two memory layers stacked in a layer thickness direction and having different outputs from each other.
  • two tunnel layers having different film thicknesses may be formed.
  • the tunnel resistance of the laminate which can be described as a pinned magnetic layer / tunnel layer / memory layer (free magnetic layer)
  • the spin tunnel effect is also affected. Since the tunnel resistance changes, the resistance change can be changed even if the rate of change in the tunnel resistance due to the magnetization reversal is constant. Adjusting the thickness of the tunnel layer is one of the methods for controlling the resistance change due to the magnetization reversal of the memory layer.
  • the magnetic memory of the present invention can provide up to 2N steps of resistance change.
  • N is an integer of 2 or more.
  • the magnetic memory of the present invention can be a 2N- valued memory at the maximum.
  • N is an integer of 2 or more.
  • M is an integer of 1 or more and (N-1) or less.
  • I ⁇ Rmin is preferably set to a value equal to or higher than the detection limit, and a force S depending on the detection element and 50 mV or more are appropriate.
  • N is not particularly limited, but is preferably about 2 to 10 in consideration of operation speed, output, cost, and the like. If N becomes too large, the resistance of the entire magnetic memory increases, and RC delay and the like cannot be ignored. In addition, the output also decreases, and the roughness of the layer surface increases with the increase in the number of stacked layers, and the manufacturing yield decreases.
  • the magnetic memory includes a pair of memory layers adjacent to each other in the thickness direction of the layers and having different easy axis directions of magnetization.
  • the angle between the easy axis directions is
  • the angle is preferably from 20 ° to 90 °. Adjusting the direction of the axis of easy magnetization makes it possible to control the magnetization reversal of each memory layer and prevent malfunctions.
  • the magnetic memory of the present invention may be controlled by a nonlinear element electrically connected to two or more memory layers.
  • the non-linear element include, for example, a switch element and a rectifying element.
  • a non-linear element for example, between each recording lead It is good to arrange a rectifier. This is because it is easy to control the current flowing through each element.
  • a magnetic memory device such as a MRAM
  • a plurality of memories may be arranged in the in-plane direction of the layer.
  • This memory device preferably includes a pair of memory layers adjacent to each other in the in-plane direction of the layers and having different easy axis directions of magnetization. As described above, the angle between the easy axis directions is 2
  • the angle is preferably from 0 ° to 90 °.
  • the magnetic memory further includes, for example, a system. Available for LSI.
  • the drive method of this invention uses a current that passes through at least the memory layer to be subjected to magnetization reversal in the thickness direction of this layer.
  • a second current that flows along the in-plane direction of the layer and generates a magnetic field along the magnetization direction after the magnetization reversal may be used.
  • the application of the second current is terminated after the application of the first current is terminated.
  • the magnetic field generated by the second current preferably acts on the surface of the memory layer in the same direction as the magnetization direction of the inverted memory layer.
  • a magnetic field generated by a third current flowing in the in-plane direction of the layer and different from the second current may be further applied. Also in this case, it is preferable that the application of the second current is started after the application of the third current is started. Further, it is preferable that the application of the second current is terminated after the application of the third current is terminated. As in the above, it is due to smooth magnetization reversal.
  • the first current and the third current may be applied simultaneously, or may be currents branched from the same recording lead.
  • the magnetic field generated by the third current before the first current branches and the magnetic field generated by the first current are the memory layers to be subjected to magnetization reversal. It is preferable to act to rotate the magnetization directions in the same direction.
  • the magnetization reversal in the two layers may be reversed at the same time by applying at least a magnetic field generated by a current flowing through a conductor extending between the two layers.
  • FIG. 1A and 1B show an example of the structure of a magnetoresistive element that can be used in the magnetic memory of the present invention.
  • the magnetoresistive element (TMR element) has at least one tunnel layer 2 And two ferromagnetic layers 1 and 3 sandwiching this layer 2 (Fig. 1A).
  • TMR element the relative magnetization angle changes between the magnetization direction of the free magnetic layer (memory layer) 3 and the magnetization direction of the fixed magnetic layer 1 with the change in the magnetization direction.
  • the change in the magnetization relative angle is detected as a voltage change or a current change in a circuit including these layers 1, 2, and 3 as a part.
  • a bias tunnel layer 4 and a nonmagnetic conductive layer 5 may be further laminated (FIG. 1B).
  • the bias dependence of the MR change rate can be improved by the via stone layer 4.
  • the TMR element may include a plurality of fixed magnetic layers or free magnetic layers.
  • a laminated body such as a fixed magnetic layer Z tunnel layer Z free magnetic layer / tunnel layer Z fixed magnetic layer, free magnetic layer Z tunnel layer / fixed magnetic layer tunnel layer Z free magnetic layer is used. Element.
  • the free magnetic layer (memory layer) 3 has uniaxial anisotropy or multiaxial anisotropy, so that the magnetization direction is in a bistable state or a multistable state. Then, even after the externally applied magnetic field has disappeared, the magnetization direction is stored as information.
  • a higher magnetoresistance change rate (MR change rate) can be obtained as the relative magnetic angle increases, so that the free magnetic layer 3 is provided with a bi-stable state in the magnetization direction, that is, imparted with uniaxial anisotropy. It is preferable to set one easy axis.
  • the magnetization direction of the free magnetic layer 3 is reversed by the external magnetic field between the magnetization direction of the fixed magnetic layer 1 and the parallel (same direction) or antiparallel (opposite direction).
  • the property can be introduced by shape anisotropy derived from the shape of the layer, but is not limited thereto, and may be imparted by another method. Other methods include heat treatment of the free magnetic layer in a magnetic field, film formation in a magnetic field, introduction of anisotropy by oblique deposition, and the like.
  • the pinned magnetic layer 1 rotates the magnetization direction by being magnetically coupled to a high coercivity layer, a laminated ferrimagnetic layer, an antiferromagnetic layer, and the like on the surface opposite to the tunnel layer 2. It is preferable to make it difficult.
  • the high coercive force layer is preferably formed from a material having a coercive force of 100 Oe or more, such as CoPt, FePt, CoCrPt, CoTaPt, FeTaPt, and FeCrPt.
  • the antiferromagnetic layer may be formed from a Mn-containing antiferromagnetic material such as PtMn, PtPdMn, FeMn, IrMn, and NiMn.
  • the laminated ferrilayer is a laminate of a magnetic film and a non-magnetic film.
  • the magnetic film is, for example, Co or a Co alloy such as FeCo, CoFeNi, CoNi, CoZrTa, CoZrB, and CoZrNb.
  • Both magnetic layers 1 and 3 are preferably formed of the following materials at least near the interface between the tunnel layers.
  • 1 Fe, Co, Ni, FeCo alloy, NiFe alloy, CoNi alloy or NiFeCo alloy 2 FeN, Fe iN, FeAIN, FeSiN, FeTaN, FeCoN, FeCoTiN, FeCo (Al, Si) N, FeCoTaN etc.
  • T is at least one selected from Fe, Co and Ni
  • M is selected from Mg, Ca, Ti, Zr, Hf, V, Nb, Ta, Cr, Al, Si, Mg, Ge, Ga
  • A is at least one selected from N, B, 0, F, and C
  • 3 a compound represented by the formula (Co, Fe) E, where E is Ti, Zr, Hf, V, Nb, At least one selected from Ta, Cu, and B; 4 FeCr, FeSiAl, FeSi, FeAl, FeCoSi, FeCoAl, FeCoSiAl, FeCoTi, Fe (Ni) (Co) Pt, Fe (Ni) (Co) Pd, Fe (Ni ) (Co) Rh, Fe (Ni) (Co) Ir, Fe (Ni) (Co) Ru, FePt, and other compounds represented by the formula TL, where T is at least selected from Fe, Co, and Ni.
  • L is Cu, Ag, Au, Pd, Pt, Rh, Ir, Ru, Os, R, Si, Ge, Al, Ga, Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf , La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm,, Yb, Lu That at least one; 5 Fe 3 0 4, the material of formula XMnSb
  • X is at least one selected from Ni, Cu, Pt), a half-metal material represented by LaSrMnO, LaCaSrMnO, CrO 2 ; At least one selected from Hf, V, Nb, Ta, Cr, Ni, Zn, D is at least one selected from V, Cr, Mn, Fe, Co, Ni, J is C, At least one selected from N, 0, F, S) or a formula RDG such as GaMnN, AlMnN, GaAMnN, AlBMnN (where R is one selected from B, Al, Ga, Ga, In, and D is The same as above, G is at least one selected from C, N, 0, P, and S) magnetic semiconductors; ⁇ spine oxides such as lopskite oxides and ferrites; garnet oxides; Ferromagnetic metal oxides such as CaB 6 and CaMgB, or ferromagnetic materials to which lanthanides such as La are added.
  • RDG such as GaMnN, AlMnN,
  • the tunnel layer 2 and the bias tunnel layer 4 are insulators or semiconductors, but IIa to VIa groups including Mg, Ti, Zr, Hf, V, Nb, Ta, and Cr (new IUPAC display) Lanthanide containing La, Ce, lib containing Zn, B, Al, ⁇ Ga, Si ⁇ : element selected from group Ivb (groups 12 to 14) and F, 0 Compounds with at least one element selected from, C, ⁇ , ⁇ are suitable.
  • Typical insulators for the tunnel layer are oxides, nitrides, and oxynitrides of A1.
  • the magnetoresistive element actually becomes a part of the multilayer film formed on the substrate 10 (FIG. 2).
  • a pair of electrodes 6 and 9 are arranged so as to sandwich the element shown in FIG. IB, and an interlayer insulating film 8 is arranged between these electrodes.
  • Multilayer films can be formed using conventional methods such as pulsed laser deposition (PLD), ion beam deposition (IBD), cluster ion beam, RF, DC, ECR (Electron Cyclotron Resonance), helicon, ICP (
  • the film may be formed by various sputtering methods such as inductively coupled plasma, a facing target, MBE (Molecular Beam Epitaxy), or ion plating.
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • plating method a sol-gel method, or the like may be used.
  • the tunnel layer reacts a thin film precursor made of a predetermined metal or alloy in a suitable atmosphere containing predetermined elements, molecules, ions, and radicals. Specifically, fluorination, oxidation, carbonization, nitridation, boride Equally, it may be made. F, as thin film precursor
  • Nonstoichiometric compounds containing 0, C, N, and B at a stoichiometric ratio or less may be used.
  • a tunnel in the case of forming an A1 2 0 3 film as the insulating layer is deposited by A1 or A10 x (X ⁇ 1.5) an inert gas atmosphere or Ar + 0 2 atmosphere, then
  • Oxide in 0 2 or 0 2 + inert gas to form a film Oxidation or the like may be performed by generating plasma.
  • a method used in a semiconductor process or a GMR head fabrication process may be applied.
  • This method includes physical or chemical etching methods such as ion milling, RIE (Reactive Ion Etching) and FIB (Focused Ion Beam), stepper technology for forming fine patterns, and photolithography technology using EB method. included.
  • CMP Chemical Mechanical PoHshing
  • cluster-one ion beam etching may be used to planarize the surface of the electrodes and the like.
  • a plurality of magnetoresistive elements 11, 12, 13 are laminated on a substrate, and a recording lead is arranged between these elements (Figs. 3A and 3B). .
  • the element shown in FIG. 1B is used as the magnetoresistive element.
  • These elements 11, 12, 13 constitute an element group electrically connected to each other in series, and this element group is connected to the MOSFET, which is the switch element 51.
  • a rectifying element or the like for example, a diode, a Coulomb-type package element, a tunnel diode, or the like may be used.
  • Non-linear elements such as switch elements and rectifier elements play a role of electrically separating a group of elements that are in contact with each other.
  • switch elements and rectifier elements play a role of electrically separating a group of elements that are in contact with each other.
  • circuit it is advisable to design the circuit so that up to about 10,000 memory cells are combined as one block and electrically separated from other blocks in order to maintain the sense sensitivity.
  • the word line 31 and the bit line 21 may be used.
  • bit line 21 and word Line 32 is used, and for element 13 word line 32 and bit line 22 are used.
  • a pair of recording conductors are arranged so as to sandwich each element, and a combined magnetic field generated by a current flowing through these conductors is applied to each element.
  • the direction in which the word lines 31 and 32 extend and the direction in which the bit lines 21 and 22 extend form an angle of 90 ° with each other, and are in a so-called “twist” position with each other.
  • the word lines 31 and 32 are electrically insulated from each element.
  • the bit lines 21 and 22 are electrically connected to each element and are also used as sense lines for reading information.
  • conductors such as word lines and bit lines are preferably formed of Cu, A1, or the like.
  • a magnetic field for recording information is generated. It can be efficiently applied to the device.
  • the recording conductor is not limited to a single conductor, but may be composed of a plurality of conductors extending in parallel with each other (FIG. 4).
  • the word lines 31 and 32 and the bit lines 21 and 22 are each composed of two conductors.
  • This configuration is suitable for recording information using a higher recording frequency (for example, 200 MHz or more) than the configuration using a single recording conductor (Fig. 3A, B).
  • a recording conductor composed of multiple lines at least one of the conductors is preferably kept at a constant potential, for example, a Durand potential.
  • Writing of information may be performed simultaneously on a plurality of elements.
  • it is easy to prevent erroneous recording due to magnetic crosstalk, etc., by selecting elements 11 and 13 that do not share the recording conductor, but elements 11 and 12 that share the recording conductor.
  • the selection of (12, 13) is advantageous from the viewpoint of power consumption.
  • the capacitor arranged in parallel with the power supply may be charged during the non-generation time of the recording current, and the recording current may be supplied simultaneously from the power supply, the capacitor and the power, or only from the capacitor when writing information.
  • the amount of information that can be written to the magnetic memory shown in Figs. 3A, 3B, and 4 is discussed below.
  • AR must be greater than or equal to the minimum detectable output value.
  • the minimum ⁇ (I X ⁇ Rmin) should be 50 mV or more. This is because the output detection element can be manufactured at low cost.
  • the memory value obtained from the N memory layers connected in series with each other is a maximum of 2N- 1 .
  • vs. minimum output change I delta Rmin it is preferable maximum output is I ARminX 2 ⁇ _ or more.
  • Micromax th but, Micromax is 1 or more (N-1) an integer) with respect to the low output change I AR M, low output change to M + 1 th I AR M + 1 is, I AR M X 2
  • each element is the product of the MR change rate at the measurement bias or measurement current and the element resistance R. Adjustment of the element resistance R, for example, the thickness of the tunnel insulating layer It can be easily performed by control.
  • Multi-level memory can also be realized by stacking multiple memory layers in one element instead of stacking magneto-resistive elements (Fig. 7). For example, as shown in FIG. 7, if a tunnel layer 72, a free magnetic layer (memory layer) 73, and a bias tunnel layer 74 are further stacked on the device shown in FIG. 1B, 2 One memory layer 3, 73 can be included. In this device, a tunneling layer 2, 72, free magnetic layers 3, 72, and bias tunnel layers 4, 74 are sequentially stacked on both sides of the fixed magnetic layer 1.
  • a recording magnetic field is also applied to the memory layers 3 and 73 of this element using the bit line 21 and the word line 31 that are in a “twisted” position with respect to each other. Make memory selection.
  • the magnetoresistive elements may be stacked as shown in FIGS. 3A and 3B.
  • the coercive force (magnetization reversal magnetic field) of the memory layers may be changed to facilitate individual writing to each memory layer.
  • the coercive force can be adjusted by controlling the material, film thickness, and crystal structure, and furthermore, by increasing the number of memory layers.
  • the shape anisotropy may be given to the memory layer in consideration of the direction in which the external magnetic field is applied.
  • the number of memory layers included in one element may be three or more.
  • the thickness of the laminates 1 to 4 and 72 to 74 including the fixed magnetic layer, the free magnetic layer, and the tunnel layer be 500 nm or less. I will.
  • the detection circuit of the output from the magnetic memory is preferably connected to the comparison memory via a differential amplifier (FIG. 8). In this way, by adopting the output difference from the comparative resistance including the wiring resistance, the wiring resistance and the reference element resistance are canceled. I can do it. Use of this detection circuit makes it possible to easily achieve high SZN.
  • a similar memory can be realized by using rectifiers 52, 53, and 54 represented by a diode and a tunnel diode instead of the switch element 51 (FIGS. 9A and 9B).
  • the rectifying elements 52, 53, 54 are interposed between the recording conductors, so that the resistance change of the magnetoresistive elements 11, 12, 13 can be read out individually.
  • the word springs 31 and 32 are used for reading information together with the bit lines 21 and 22 which are also used as sense lines.
  • Element 11 has a resistance change between word line 31 and bit line
  • element 12 has a resistance change between bit line 21 and code line 32
  • element 13 has a resistance change between word line 32 and code line 32.
  • the resistance change between the bit line 22 and the bit line 22 is read out as a voltage or current change. In this mode, since the elements are electrically isolated, it is easy to improve the SZN.
  • a rectifying element 52 may be used instead of the switch element 51 (FIG. 10).
  • the magnetic memory of the present invention is not limited to the configuration exemplified above, and may further have an element or a memory layer, and may appropriately change wiring.
  • the magnetic memories may be arranged in a matrix so as to form a predetermined number of memory columns and rows (FIG. 11). Magnetic memory 101, 102 ⁇ 2 01, 2 ⁇ 2 ⁇ 303 Placed at the intersection.
  • the recording current to these recording conductors is controlled by switch elements 70, 170, 270... 71, 171, 271. This control is performed by the so-called two-current matching method.
  • the switch element 70 In the example shown in FIG. 11, the switch element 70,
  • the coupling lines 81 and 82 are connected between the lead lines 31 and 131 and the lead lines 32 and 132, respectively. Placed between. With the coupling lines 81 and 82, occurrence of erroneous recording in a pair of adjacent magnetoresistive elements 11, 11 (12, 11; 13; 11) can be suppressed.
  • the coupling line is preferably kept at a predetermined constant potential, for example, a ground potential.
  • the self-magnetic layer may be provided with -axis anisotropy for recording information.
  • the switching magnetic field curve of the free magnetic layer provided with uniaxial anisotropy is not an ideal shape having fourfold symmetry (FIG. 14A), but is an asteroid curve obtained by extending this curve in the direction of the hard axis. ( Figure 14B).
  • This tendency is attributed to a memory layer in which the anisotropy in the direction perpendicular to the film surface is not uniform, such as a two-layer film in which a soft magnetic film and a high coercivity film are laminated, that is, a memory layer including at least two magnetic films. , Is remarkable.
  • a switching magnetic field curve may have a multiaxially stable shape.
  • FIG. 17A When the easy axes of magnetization of the two memory layers having the magnetization switching curves shown in FIG. 14A are tilted by a predetermined angle ⁇ with respect to each other, a magnetization reversal region appears within one switching curve and outside the other curve.
  • Figure 17A When a magnetic field indicated by point A is applied, magnetization reversal occurs only in the memory layer whose switching curve is indicated by a, and when a magnetic field indicated by point B is applied, a switching curve is applied only in the memory layer indicated by b. A magnetization reversal occurs. By utilizing this, it is possible to record information on a predetermined memory layer while suppressing magnetic crosstalk.
  • the angle of the axis of easy magnetization can be represented by the angle between the longitudinal directions of the memory layers 3a and 3b (FIG. 17B). In this case, the preferred range of the angle is 20 ° to 70 °.
  • the surface shape of the element is shown as a rectangle for convenience, the surface shape of the element is not limited to a rectangle (FIGS. 198 to 19E).
  • the preferable range of the angle formed by the easy magnetization axis is 20 ° to 90 °.
  • the axes of easy magnetization of the memory layers adjacent to each other are oriented in different directions, preferably 20 ° to 90 °, more preferably 20 ° to 70 °. If the direction is made, magnetic crosstalk can be suppressed (Fig. 18).
  • the layers are arranged at an angle of 20 ° to 70 ° with the easy axis direction of the layer.
  • the memory layers may be arranged such that the directions of the axes of easy magnetization adjacent to each other in the direction perpendicular to the plane of the layer (the thickness direction of the layer) are different from each other (FIG. 16).
  • the memory layer surface 120 of the second tier in which the memory layers are arranged in a matrix shape is replaced by the memory layer surfaces 110, 130 of the first tier and the third tier of the memory layer. It is pinched.
  • Memory layer 1 21 included in the second layer memory layer surface 1 20 221, 222, 223, 321, 322, 323 are not only the memory layers adjacent in the in-plane direction, but also the memory layers adjacent to the layer in the direction perpendicular to the plane. The directions are different from each other.
  • the memory layer 222 is located between the memory layers 122, 221, 223, 322, 212, and 232 adjacent thereto.
  • the axes of easy magnetization are different from each other.
  • the angle formed by the axis of easy magnetization is set to 90 °, assuming the case where the magnetization switching curve is represented by FIG. 14B.
  • the surface shape of the memory layer is rectangular (FIG. 19A), but the surface shape of the memory layer is not limited to this (FIGS. 19B to 19E).
  • Polygons Fig. 19B
  • ellipses Fig. 19C
  • polygons whose interior angles exceed 90 ° Fig. 19D, Fig. 19E
  • the rectangular shape of the memory and the reliability of information retention are improved.
  • the magnetization reversal of the memory layer is usually performed with the switch element turned off.
  • the switch element is turned on when a sense current is passed to read an output change according to the magnetization state of the memory layer.
  • the direction in which the magnetization in the memory layer rotates can be determined (Fig. 2OA).
  • FIG. 2 in the OA, when the magnetization of the memory layer (free magnetic layer) 3 is reversed, the switch element 51 is turned on, and a current 63 passes through the element in the thickness direction of the element.
  • a magnetic field 43 surrounds the memory layer in the in-plane direction. This magnetic field 43 makes the rotation of the magnetization in the memory layer smoother.
  • 'Currents 61 and 62 may also flow through the bit line 21 and the lead line 31 in the in-plane direction of the layer to generate magnetic fields 41 and 42, respectively.
  • the application of the current 62 flowing through the lead wire 31 starts (ends) after the application (current) of the current 63 flowing through the switch element 51 starts (ends). 20B).
  • the magnetic field 43 generated by the current 63 induces the rotation of the magnetization, and the magnetic field 42 generated by the current 62 directs the rotating magnet in a predetermined direction.
  • the current is branched and supplied from the bit line 21 also serving as the sense line to the switch element 51, so that the currents 61 and 63 flow simultaneously. .
  • the magnetic fields 41 and 43 are applied in a direction crossing the magnetization direction 33 of the memory layer 3 (transverse direction of the layer), and the magnetization direction 33 becomes unstable (FIG. 20C).
  • the disturbance of magnetization which is the starting point of the magnetization reversal, occurs at both ends of the layer.
  • the disturbance of magnetization at one end is more likely to occur than the disturbance force s.
  • the direction of magnetization rotation is clockwise (clockwise) when viewed along the direction in which the current 63 passes, in other words, when viewed from above the FIG. 2OA.
  • the rotation of the magnetization direction starts.
  • the current 62 flowing through the word line 32 may be reversed in FIG.
  • the directions of the currents 61 and 63 should be reversed.
  • the read operation from the memory layer 3 can be performed by the current 63.
  • FIG. 21A and 21B show a read operation by the sense current 64.
  • the driving method of the present invention can be applied to a conventional TMR element having one memory layer, but the magnetic method in which two or more memory layers are stacked in the thickness direction of the layer. It can also be applied to memory.
  • the density of the memory layer is high, and it may be difficult to smoothly switch the magnetic field in a predetermined memory layer using the conventional driving method.
  • a programmable memory with a memory function or a reconfigurable memory such as the one shown in Figure 23, can be fabricated.
  • a programmable memory with a memory function or a reconfigurable memory such as the one shown in Figure 23, can be fabricated.
  • an example using the memory 100 shown in FIG. 7 is shown, but usable magnetic memories are not limited to this.
  • Rc is the on resistance of FET2
  • Rv is the resistance of the stack including the total of four tunnel layers.
  • Rvp when the magnetization direction in a given memory layer is parallel to the magnetization direction in the pinned magnetic layer is Rvp
  • Rv when it is antiparallel is Rvap
  • the resistance is relatively high.
  • Vd ⁇ Vo ViX (Rvap + Rc) / (Ei + Rvap + Rc)
  • Vo Vi X (Rvp + Rc) / (Ri + Rvp + Rc)
  • This circuit can be used as a nonvolatile programmable element when a logic circuit is used as a load circuit, and can be used for nonvolatile storage of a still image or the like when a display circuit is used as a load circuit. It is also possible to use as a system LSI integrating these functions. Note that the FETs in FIG. 23 can each be manufactured on a wafer.
  • the magnetic memory may be packaged with a magnetic shield as shown in the following embodiments. It is preferable to similarly add a magnetic shield to memory devices such as MRAMs and system LSIs. This is because malfunction due to external magnetic noise can be suppressed. Magnetic shield is used for general-purpose magnetic materials It is enough to form more. Example
  • an integrated memory was fabricated on a CMOS substrate using magnetic memory consisting of three stages of magnetoresistive elements.
  • the integrated memory was enclosed in a ceramic package, and the entire package was coated with a ⁇ thick NiFe film as a magnetic shield.
  • the magnetic memories were arranged in a matrix, as in Fig. 11, and the magnetic memories R1, R2, 13, ... for comparison were arranged for each memory column (Fig. 24). These magnetic memories were also constituted by three-stage magnetoresistive elements. The magnetic memories were arranged so as to have a size of 256 ⁇ 256 (the total number of magnetoresistive elements was 256 ⁇ 256 ⁇ 3). There were 256 magnetic memories for comparison. In each magnetic memory, the following laminated structure was manufactured as the first-stage magnetoresistive element.
  • the numerical values in Kakko are units in nm
  • the film thickness of force A10 is the film thickness of metal A1 before oxidation (the same applies hereinafter).
  • the tunnel layer is made of A10 and the memory layer is made of NiFe.
  • PtMn is an antiferromagnetic layer that makes it difficult for the magnetization of the fixed magnetic layer (CoFe / Ru / CoFe) to be relatively reversed.
  • the second-stage magnetoresistive element was manufactured in the same manner as the first-stage element, except that the two layers of AlO (l.O) were changed to AXl.06).
  • the third-stage magnetoresistive element was fabricated in the same manner as the first-stage element, except that the two layers of AlO (lO) were each set to ⁇ 1 ⁇ (1.12). After fabricating these devices, they were heat-treated at 280 ° C for 1 hour at 5 kOe to set unidirectional anisotropy in PtMn. Then, the surface shape of each layer in each element was processed such that the direction of the unidirectional anisotropy was the longitudinal direction. That is, the surface shape of the element was set to 0.2 ⁇ 0.3 ⁇ such that the left and right directions in FIG. 3A correspond to the longitudinal direction of each layer.
  • each magnetoresistive element was 40 mV for the first stage, 80 mV for the second stage, and 160 mV for the third stage, excluding the wiring resistance and the resistance of CMOS.
  • a current was applied to the bit line 22 and a magnetic field was applied to the element 13 in the lateral direction. After that, a current was applied to the element spring 32 and the magnetization of the element 13 was inverted.
  • the time (current pulse width) for supplying current to the bit line and word line is 25 nsec (nanosecond), and the pulse from the lead line reaches 10 nsec after the current pulse from the bit line reaches the device. Controlled to.
  • the read operation will be described. First, the switching elements 70, 71, and RS corresponding to the magnetic memory 101 and the corresponding comparative magnetic memory R1 were addressed. Next, a sense current was supplied to the magnetic memory 101 and the comparative magnetic memory R1.
  • the outputs Vmem and Vref obtained from both elements 101 and R1 were amplified by the circuit shown in FIG. 8, and it was determined which of the eight memory values the obtained output value was.
  • the sense current is shunted to the magnetic memory to be read and the comparison magnetic memory.
  • the magnetic memory and the comparison magnetic memory may be separated from each other in order to reduce the fluctuation of the bias and the minimum value of the read voltage.
  • the magnetoresistive elements in the same stage were simultaneously written.
  • element 301 and element 301 are selected every other row or column in the row or column direction.
  • efficient writing can be performed while suppressing magnetic crosstalk, and power consumption can be suppressed.
  • it is preferable to reduce the load on the power supply by using the charging and discharging of a capacitor unit (not shown) provided in parallel with each wiring.
  • a circuit for controlling input / output signals using a shift register or a buffer memory may be used in combination.
  • An integrated memory was fabricated by arranging a magnetic memory composed of magnetoresistive elements having two memory layers 3, 73 as shown in FIG. 7 on a CMOS substrate in a matrix.
  • the integrated memory was provided with the same magnetic shield as in the first embodiment.
  • the formation of the bias tunnel layers 4 and 74 at both ends is omitted.
  • Example 2 The arrangement of the magnetic memory was the same as in Example 1 (FIG. 24).
  • the total number of memories is 256 ⁇ 256 ⁇ 2.
  • the magnetoresistive element had the following film configuration.
  • Writing and reading can be performed in the same manner as in the first embodiment. Also, with this MRAM, by reading out one element at a time in eight basic frames, a total of 2 x 8 bits of memory can be read simultaneously.
  • an integrated memory was fabricated on a glass substrate using magnetic memory consisting of three stages of magnetoresistive elements.
  • the integrated memory was subjected to the same magnetic sinking as in the first embodiment.
  • the magnetic memories were arranged as shown in FIG. Magnetic memory, 2 5 6 X
  • the array was arranged to be 256 (the total number of magneto-resistive elements was 256 x 25 x 3), and this magnetic memory group was used as one frame to produce a total of eight frames of MRAM.
  • the film configuration of the magnetoresistive element was as follows for all three elements.
  • the tunnel layer is formed of A1O
  • the memory layer is formed of Fe.
  • A1O in contact with Ta is a bias tunnel layer.
  • This multilayer film was subjected to the same heat treatment as in Example 1 and processing of the layer in consideration of unidirectional anisotropy (the left-right direction in FIG. 9A was taken as the longitudinal direction of the layer).
  • Diodes having a pin structure were fabricated as rectifiers 52, 53, and 54 between the magnetoresistive elements from the forward direction, respectively.
  • each layer of the pin was formed by the CVD method.
  • the i-layer is composed of SiH 4 and H 2
  • the n-layer is
  • each magnetoresistive element was 120 mV, excluding wiring resistance and diode resistance.
  • the magnetic memory 101 to be read and the comparison magnetic memory R1 are addressed. Thereafter, the lead lines 31 and 32 are dropped to the ground potential, and the bit line 22 and the word line 32 are connected to each other. A sense current of the same magnitude was applied between the bit line 21 and the word line 31. Thereafter, in the same manner as in Example 1, first, the memory value of the element 11 was determined, and then the memory value of the element 12 was determined. Thus, the memory values of the two magnetoresistive elements 11 and 12 constituting one magnetic memory 101 were read. (Example 4)
  • An integrated memory was fabricated using a magnetoresistive element having two memory layers shown in FIG. 10 on a glass substrate.
  • the integrated memory was provided with the same magnetic shield as in the first embodiment.
  • the magnetic memories were arranged as occupied in Figure 24.
  • the magnetic memory is arranged so as to have a size of 256 x 256 (the total number of memory layers is 256 x 256 x 2).
  • the MRAM of eight frames in total is used.
  • the magnetoresistive element had the following film configuration.
  • the tunnel layer is A10
  • the memory layer is formed of Fe.
  • A10 in contact with Ta is a bias tunnel layer.
  • This multilayer film was subjected to the same heat treatment as in Example 1 and processing of the layer in consideration of unidirectional anisotropy (the left-right direction in FIG. 10 was taken as the longitudinal direction of the layer).
  • the left-right direction in FIG. 10 was taken as the longitudinal direction of the layer.
  • the coercive forces of the two memory layers (Fe) were comparable. I that the output change in the magnetization reversal of the memory layers, except the resistance of wiring resistance and a diode, the memory layer 7 3 of the lower electrode side 40 mV, t these outputs were 80mV about the memory layer 3 of the upper electrode side
  • the change was determined in the same manner as in Example 2.
  • An integrated memory was fabricated on a CMOS substrate using magnetic memory consisting of multiple stages of magnetoresistive elements as shown in Fig.3. However, here, the number of element stages was set to two.
  • the integrated memory was provided with the same magnetic shield as in the first embodiment.
  • the magnetic memories were arranged as shown in FIG.
  • the magnetic memory was arranged so as to have a size of 256 ⁇ 256 (the total number of magnetoresistive elements was 256 ⁇ 256 ⁇ 2).
  • the following laminated structure was manufactured as the first-stage magnetoresistive element.
  • the following laminated structure was manufactured ( lower electrode / Ta (3) rMn (20) / CoFe (3) / Ru (0.9) / CoFe (3) / AlO (1.06 ) / CoFe (0.5) /NiFe(2)/CoFe(0.5)/AlO(1.06)/CoFe(3)/Ru(0.9)/CoFe(3) IrMn (20) / Ta (3) / top
  • the tunnel layer is made of A10 and the memory layer is made of CoFe (0.5) / iFe (2) / Co: Fe (0.5).
  • the second-stage element is provided with unidirectional anisotropy so as to be orthogonal to PtMn by forming IrMn in a magnetic field, and then the direction of this unidirectional anisotropy extends in the longitudinal direction.
  • the surface shape of the layer was processed to 0.2 ⁇ 0.3 ⁇ (the left-right direction in Fig. 3 was taken as the short direction).
  • the integrated memory obtained in this way is referred to as “Memory ⁇ ”.
  • a first-stage device was fabricated in the same manner as above, and a second-stage device was prepared in the same manner as in the first stage except that AlO (l) was changed to ⁇ 1 ⁇ (1.06).
  • AlO (l) was changed to ⁇ 1 ⁇ (1.06).
  • the direction of the one-way anisotropy and the longitudinal direction of the layer were matched between the first stage and the second stage (the left-right direction in FIG. 3 was defined as the longitudinal direction).
  • each magnetoresistive element is 60 mV in the first stage and 120 mV in the second stage, excluding the wiring resistance and the resistance of CMOS.
  • the first-stage elements 1 1 1, 1 1 2, 2 1 1, 2 1 2 and the second-stage elements 1 2 1, 1 2 2, 2 2 1, The reading accuracy was improved by arranging them so that they did not overlap each other in the thickness direction.
  • the first-stage element was heat-treated at 280 ° C for 1 hour in an atmosphere of 5 lcOe after film formation to impart unidirectional anisotropy to PtMn.
  • the element shape of each layer was machined to 0.2 ⁇ 0.3 ⁇ so that the directions were the same (the left-right direction in FIG. 3A was the longitudinal direction).
  • the second-stage element is provided with unidirectional anisotropy perpendicular to PtMn by depositing IrMn in a magnetic field, and then this unidirectional anisotropy is oriented in the longitudinal direction.
  • the element shape of each layer was processed to be 0.2 ⁇ ⁇ 0.3 ⁇ (the left and right directions in Fig. 3 ⁇ ⁇ ⁇ were taken as short sides).
  • the output of each device was 60 mV in the first stage and 120 mV in the second stage, excluding wiring resistance and CMOS resistance.
  • the memory layer is a multilayer of at least two magnetic films or at least two magnetic films and at least one non-magnetic film as in memories I to ⁇ , the switching magnetization curve becomes a simple four-fold It will break from symmetry. As a result, it is thought that the number of erroneous records decreased.
  • the following configuration was adopted as the magnetoresistive element.
  • A10 (1.3) is the bias tunnel layer 4
  • Fe (2) is the memory layer 3
  • AlO (lO) is the tunnel layer 2
  • CoFe (3) / Ru (0.9) / CoFe ( 3) is the fixed magnetic layer 1.
  • PtMn (3) is an antiferromagnetic layer not shown.
  • the position of the word line is adjusted so that the upper end of the word line 31 and the memory A plurality of devices were prepared in which the distance d from the lower end of the layer 3 was changed within the range of 40 to LOOrnn.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)
  • Thin Magnetic Films (AREA)

Description

明 細 書 磁気メモリとその駆動方法、 およびこれを用いた磁気メモリ装置 技術分野
本発明は、 磁気メモリとその駆動方法に関し、 さらにこのメモリを用いた
" (MR AM) 等の磁気メモリ装置に関する。
背景技術
トンネル磁気抵抗効果 (TMR) 素子は、 トンネル (バリア) 層とこれを 挟持する一対の磁性層を含んでいる。 TMR素子では、 一対の磁性層におけ る磁化方向の相対角度の相違に基づくスピントンネル効果が利用される。 ス ピンバルブ型の TMR素子には、 一対の磁性層として、 磁化が相対的に回転 しにくい固定磁性層と、 磁ィ匕が相対的に回転しやすい自由磁性層とが含まれ ている。 自由磁性層は、 情報が磁化方向として記録されるメモリ層として機 能する。 . ,
'
TMR素子を磁気メモリとしてマトリ'ックス状に配置した MR AMでは、 高集積化の進行に伴って、 以下の問題が生じることが予想されている.。
1 . 素子間隔の減少に伴う磁気クロストークにより生じる記録エラー。
2. 磁性体の微細化に伴う磁化反転磁界の増加および記録電流の増大。
3 . 配線の微細化に伴う記録電流の制限。
4. 配線の微細化に伴う抵抗上昇により生じる読み出し時の S ZNの低下 c これらの問題により、 例えば GbitZin2以上に至るまでに高い集積度の達成 は困難であると考えられている。
発明の開示
本発明の磁気メモリは、 層の厚さ方向に積層された 2以上のメモリ層と 2 以上のトンネル層とを含み、 2以上のメモリ層が電気的に直列に接続され、 上記 2以上のメモリ層から選ばれる少なくとも 1つからなる第 1層群におけ る磁化反転により生じる抵抗変化 ΔΙ^と、 上記 2以上のメモリ層から選ばれ る少なくとも 1つからなる第 2層群における磁化反転により生じる抵抗変化 ΔΙ 2とが互いに相違する。
本楽明によれば、 多値ィ匕した磁気メモリを得ることができる。 メモリの多 値化は、 メモリの微細化を抑制しつつ、 情報を高密度で記録することを可能 とする。 本宪明の磁気メモリからは、 情報の非破壌読み出しが可能である。 メモリの抵抗変化は、 定電流または定電圧を印加したときの電圧変化または 電流変化として測定できる。
本発明は、 上記磁気メモリに適した駆動方法も提供する。 この駆動方法で は、 メモリ層における磁化反転が、 このメモリ層を厚さ方向に通過する電流 を含む複数の電流により生じる磁界により行われる。 この駆動方法を本発明 の磁気メモリに適用する場合は、 上記電流が、 上記 2以上のメモリ層から選 ばれ、 磁化反転の対象となる少なくとも 1つの層を厚さ方向に通過する。 た だし、 上記駆動方法は、 基本的には、 層の厚さ方向に電流を流しうるすべて の磁気抵抗素子、 およびこれを用いた磁気メモリ、 に適用が可能であり、 Τ MR素子に限らず、 いわゆる C P P (Current Perpendicular to Plane) 一 G MR素子の駆動に用いてもよい。
本発明によれば、 円滑な磁化反転を実現できる。 円滑な磁化反転は、 集積 度が高い磁気メモリにおける誤記録の低減に有効である。
図面の簡単な説明
図 1 A、 図 1 Bは、 それぞれ、 本発明の磁気メモリに用いうる磁気抵抗素 子の基本構成を示す断面図である。
図 2は、 本発明の磁気メモリに用いうる磁気抵抗素子の基本構成を周辺の 部材とともに示す断面図である。
図 3 A、 図 3 Bは、 ともに本発明の磁気メモリの一形態を示す断面図であ り、 互いに 9 0 ° 相違する方向から観察した状態を示した図である。
図 4は、 本発明の磁気メモリの別の一形態を示す断面図である。
図 5は、 本発明の磁気メモリにおけるメモリ値を説明するための図面であ る。
図 6は、 本究明の磁気メモリにおける最大メモリ値を説明するための図面 である。
図 7は、 本発明の磁気メモリの一形態であって、 複数のメモリ層を含む磁 気抵抗素子を用いた形態を示す断面図である。
図 8は、 本発明の磁気メモリから出力を取り出す方法の一例を示すための 回路図である。
図 9 A、 図 9 Bは、 それぞれ、 本発明の磁気メモリのまた別の一形態を示 す断面図である。
図 1 0は、 本発明の磁気メモリの一形態であって、 複数のメモリ層を含む 磁気抵抗素子を用いた別の形態を示す断面図である。
図 1 1は、 本発明の磁気メモリを面内方向に複数個配列した磁気メモリ装 置の一形態を示す平面図である。
図 1 2は、 本発明の磁気メモリ装置の別の一形態を示す平面図である。 図 1 3は、 図 1 2の磁気メモリ装置における導線の位置関係を説明するた めの断面図である。
図 1 4 A、 図 1 4 Bは、 それぞれ、 メモリ層の磁化スィツチング曲線の例 を示す図である。
図 1 5は、 メモリ層の磁化スイッチング曲線と、 磁化反転を可能とする合 成磁界との関係を説明するための図である。
図 1 6は、 本発明の磁気メモリ装置における各メモリ層の磁化容易軸の相 対的な関係を示すための平面図である。
図 1 7 A、 図 1 7 Bは、 メモリ層の磁化容易軸がなす角度 αによる磁化ス ィツチング曲線の傾きを示し、 さらにこの場合の合成磁界による磁化反転を 説明するための図である。
図 1 8は、 本発明のメモリ装置において、 面内方向に配置されたメモリ層 の磁界容易軸の関係の一例を示す平面図である。
図 1 9 A〜図 1 9 Eは、 それぞれ、 メモリ層の面形状の例を示すための平 面図である。
図 2 0 A〜図 2 0 Cは、 本発明の駆動方法の一例を説明するための図面で あり、 図 2 O Aは磁気メモリの断面図であり、 図 2 O Bは記録電流と時間と の関係を示す図であり、 図 2 0 Cはメモリ層の平面図である。
図 2 1 A、 図 2 1 Bは、 本発明の駆動方法の別の例を説明するための磁気 メモリの断面図であり、 図 2 1 Aは書き込み動作を、 図 2 1 Bは読み出し動 作をそれぞれ示す。
図 2 2 A、 図 2 2 Bは、 本発明の駆動方法の別の例を説明するための磁気 メモリの断面図であり、 図 2 2 Aは書き込み動作を、 図 2 2 Bは読み出し動 作をそれぞれ示す。
図 2 3は、 本発明の磁気メモリを用いたシステム L S Iの一例を示す回路 図である。
図 2 4は、 本発明の磁気メモリを面内方向に配置した磁気メモリ装置の別 の一例を示す平面図である。
図 2 5は、 ヮード線を通過する電流 Iwおよびビット線を通過する電流 IB よる磁化反転を示すための磁化スィツチング曲線である。
図 2 6は、 本発明の磁気メモリ装置における素子の配置の別の例を示す平 面図である。
図 2 7は、 本発明の実施例で作製した磁気メモリの断面図である。
発明の実施の形態
本発明の磁気メモリでは、 複数のメモリ層から選ばれる第 1層群の抵抗変 化 Δ Rェと第 2層群の抵抗変化 Δ R 2とが互いに相違する。 これらメモリ層群 に含まれるメモリ層の数に制限はないが、 第 1層群および第 2層群がともに 1つのメモリ層から構成されていてもよい。
抵抗変化 と抵抗変化 2との間には (ただし、 く A R 2) 、 以 下の関係式 (1 ) が成立することが好ましい。
A R i X 2≤A R 2 ( 1 )
式 (1 ) の関係が成立すると、 2つのメモリ層群からの出力の分離が容易 となる。
本発明の磁気メモリは、 2以上の磁気抵抗素子 (TMR素子) が層の厚さ 方向に積層された形態であってもよい。 TMR素子は、 磁気メモリを構成す るメモリ層とトンネル層とをそれぞれ少なくとも 1つ含むことになる。 磁気 メモリには、 情報の書き込みのために 2以上の記録導線が配置される。 この 場合、 上記 2以上の TMR素子から選ばれ、 互いに隣接する一対の TMR素 子の間に、 上記 2以上の記録導線から選ばれる少なく'とも 1本の記録導線が 配置されていることが好ましい。 TMR素子と少なくとも 1本の記録導線と 力 交互に配置されていることがより好ましい。 記録導線とメモリ層との距 離が小さくなると、 磁化反転に要する電流量を削減できるからである。 本発明の磁気メモリは、 その一形態において、 層の厚さ方向に積層された 2以上の TMR素子を含み、 この 2以上の TMR素子が、 互いに出力が相違 する 2つの TMR素子を含む。
この磁気メモリでは、 各 TMR素子を挟持するように記録導線を配置する とよい。 N個の TMR素子を含むメモリには、 少なくとも (N + 1 ) 本の記 録導線を配置するとよい。 ただし、 Nは 2以上の整数である。
TMR素子は、 1つのメモリ層のみを含んでいてもよいが、 2以上のメモ リ層を含んでいてもよい。 この TMR素子は、 磁気メモリを構成するメモリ 層から選ばれる少なくとも 2つを含むことになる。 この TMR素子は、 少な くとも 2つのトンネル層を含んでいてもよい。 この場合、 1つの TMR素子 に含まれる少なくとも 2つのメモリ層に、 磁化反転により生じる抵抗変化が 互いに相違する 2つのメモリ層が含まれていてもよい。
本発明の磁気メモリは、 その別の一形態において、 層の厚さ方向に積層さ れ、 互いに出力が相違する少なくとも 2つのメモリ層を含む TMR素子を備 えている。
磁化反転により生じる抵抗変化が互いに相違する 2つのメモリ層を形成す るためには、 例えば、 互いに膜厚が相違する 2つのトンネル層を形成すると よい。 トンネル層の厚さに応じて、 固定磁性層/トンネノレ層/メモリ層 (自 由磁性層) として表記できる積層体のトンネル抵抗は変化する。 また、 スピ ントンネル効果も影響を受ける。 トンネル抵抗が変化するため、 磁化反転に 伴うトンネル抵抗変化率が一定であつたとしても、 抵抗変化を変えることが できる。 トンネル層の膜厚の調整は、 メモリ層の磁化反転に伴う抵抗変化を 制御する方法の一つである。
N個のメモリ層を含む場合、 本発明の磁気メモリは、 最大 2 N段階の抵抗変 化を提供できる。 ただし、 Nは 2以上の整数である。 換言すれば、 本発明の 磁気メモリは、 最大で 2 N値のメモリとなりうる。
N番目のメモリ層における抵抗変化を Δ RN、 Δ RNの最小値を Δ Rmin、 A RNの最大値を A Rmaxと表示したときに、 以下の関係式 (2 ) が成立する ことが好ましい。
Δ Rmax≥厶 RminX 2 N1 ( 2 )
ただし、 Nは 2以上の整数である。
さらに、 M番目に小さい A RNを Δ Ι Μと表示したときに、 以下の関係式 ( 3 ) が成立することが好ましい。
A RMX 2≤A RM+ 1 ( 3 )
ただし、 Mは 1以上 (N— 1 ) 以下の整数である。 磁気メモリに含まれる 2以上のメモリ層の厚さ方向に沿つて定電流 Iを通 過させる場合には、 N番目のメモリ層の磁化反転に伴って出力変化 I が 生じる。 関係式 (2 ) および/または (3 ) が成立すると、 多値化を実現し ながら、 各メモリ層の磁化反転に伴う出力変化を分離しやすくなる。
なお、 I Δ Rminは検出限界以上に設定することが好ましく、 検出素子に もよる力 S、 50 mV以上が適当である。
上記関係式において、 Nは、 特に制限されないが、 動作速度、 出力、 コス ト等を考慮すると、 2〜1 0程度が好ましい。 Nが大きくなり過ぎると、 磁 気メモリ全体の抵抗が高くなり、 R C遅延等が無視できなくなる。 また、 出 力も低下し、 積層数の増加に伴う層表面のラフネスが大きくなつて製造歩留 まりが低下する。
磁気メモリには、 層の厚さ方向に隣接し、 磁化容易軸方向が互いに相違す る一対のメモリ層が含まれることが好ましい。 磁化容易軸方向がなす角度は
2 0 ° 以上 9 0 ° 以下が好適である。 磁化容易軸方向を調整すると、 各メモ リ層の磁化反転を制御しゃすくなり、 誤動作を防止しゃすくなる。
本発明の磁気メモリは、 2以上のメモリ層と電気的に接続された非線形素 子により制御するとよい。 非線形素子の例には、 例えばスィッチ素子、 整流 素子が含まれる。 2以上の TMR素子を直列に接続し、 各 TMR素子の間に 少なくとも 1本の記録導線を TMR素子と電気的に接続するように配置する 場合、 各記録導線の間それぞれに、 非線形素子、 例えば整流素子を配置する とよい。 各素子を導通する電流を制御しやすくなるからである。
上記磁気メモリを MR AM等の磁気メモリ装置 (メモリデバイス) として 用いる場合、 複数のメモリを層の面内方向に配置するとよい。 このメモリ装 置は、 層の面内方向に隣接し、 磁化容易軸方向が互いに相違する一対のメモ リ層を含むことが好ましい。 上記と同様、 磁化容易軸方向がなす角度は 2
0 ° 以上 9 0 ° 以下が好適である。 上記磁気メモリは、 さらに例えばシステ ム L S Iに利用できる。
本亮明の駆動方法では、 少なくとも磁化反転の対象とするメモリ層を、 こ の層の厚さ方向に通過する電流が利用される。 この第 1電流に加えて、 層の 面内方向に沿って流れ、 上記磁化反転後の磁化方向に沿った磁界を発生させ る第 2電流を用いてもよい。 この場合は、 第 1電流の印加を開始した後に、 第 2電流の印加を開始するとよい。 また、 第 1電流の印加を終了した後に、 第 2電流の印加を終了するとよい。 こうして電流印加の開始および Zまたは 終了を調整すると、 より円滑な磁化反転を実現できる。 第 2電流により生じ る磁界は、 メモリ層の面において、 反転した後のメモリ層の磁化方向と同一 方向に作用することが好ましい。
層の面内方向であって第 2電流とは異なる方向に沿って流れる第 3電流に より生じる磁界をさらに印加してもよい。 この場合も、 第 3電流の印加を開 始した後に、 第 2電流の印加を開始するとよい。 また、 第 3電流の印加を終 了した後に、 第 2電流の印加を終了するとよい。 上記と同様、 円滑な磁化反 転のためである。
第 1電流および第 3電流は、 同時に印加してもよく、 同一の記録導線から 分岐した電流としてもよい。 第 3電流から分岐して第 1電流を供給する場合 は、 第 1電流が分岐する前の第 3電流から生じる磁界と、 第 1電流から生じ る磁界とが、 磁化反転の対象とするメモリ層における磁化方向を同一方向に 回転させるように作用させることが好ましい。
また、 2つの層における磁化反転を、 少なくとも、 これら 2つの層の間を 伸長する導線を流れる電流により生じる磁界を印加して、 同時に反転させて ちょい。
以下、 図面を参照しながら、 本発明の形態についてさらに説明する。 図 1 A、 Bに、 本発明の磁気メモリに使用可能な磁気抵抗素子の構造を例 示する。 磁気抵抗素子 (TMR素子) は、 少なくとも、 1つのトンネル層 2 と、 この層 2を挟持する 2つの強磁性層 1, 3とを含んでいる (図 1 A) 。 この TMR素子では、 自由磁性層 (メモリ層) 3における磁化方向の変化に 伴い、 この磁化方向と固定磁性層 1の磁化方向との間に磁化相対角の変化が 生じる。 磁化相対角の変化は、 これらの層 1, 2 , 3を一部に含む回路の電 圧変化または電流変化として検出される。
TMR素子には、 さらに他の層を付加してもよく、 例えばさらにバイアス トンネル層 4と非磁性導電層 5とを積層しても構わない (図 1 B ) 。 バイァ ストンネノレ層 4により、 MR変化率のバイアス依存性を改善できる。
TMR素子に、 複数の固定磁性層または自由磁性層を含ませてもよい。 こ のような TMR素子としては、 固定磁性層 Zトンネノレ層 Z自由磁性層/トン ネル層 Z固定磁性層、 自由磁性層 Zトンネル層/固定磁性層 トンネル層 Z 自由磁性層のような積層体を含む素子が挙げられる。
自由磁性層 (メモリ層) 3は、一軸異方性または多軸異方性を有すること により、 磁化方向が 2安定状態または多安定状態となる。 そして、 外部から 印加される磁界が消失した後にも、 磁化方向を情報として記憶する。 通常、 磁ィ匕相対角が大きくなるほど高い磁気抵抗変化率 (MR変化率) が得られる ため、 自由磁性層 3には、 磁化方向の 2安定状態を導入すること、 即ち一軸 異方性を付与して 1つの磁化容易軸を設定することが好ましい。 2安定状態 を導入すると、 自由磁性層 3の磁化方向は、 外部磁界により、 固定磁性層 1 の磁化方向と平行 (同一方向) または反平行 (反対方向) との間を反転する, 一軸異方性は、 層の形状に由来する形状異方性により導入できるが、 これ に限らず、 他の方法により付与してもよい。 他の方法には、 自由磁性層の磁 界中での熱処理、 磁界中での成膜、 斜め蒸着による異方性の導入等が含まれ る。
固定磁性層 1は、 トンネル層 2と反対側の面において、 高保磁力層、 積層 フェリ、 反強磁性層等と磁気的に結合させることにより、 磁化方向を回転し にくくすることが好ましい。
高保磁力層は、 CoPt, FePt, CoCrPt, CoTaPt, FeTaPt, FeCrPt等の保磁力 が 100 Oe以上である材料から形成するとよい。 反強磁性層は、 PtMn、 PtPdMn, FeMn、 IrMn、 NiMn等の Mn含有反強磁性材料から形成するとよ い。 積層フェリは、 磁性膜と非磁性膜の積層体であるが、 磁性膜としては、 例えば Coまたは FeCo, CoFeNi, CoNi, CoZrTa, CoZrB CoZrNb等の Co合金 を、 非磁性膜としては厚みが 0.2〜: 1.1 nm程度の Cu, Ag, Au, Ru, Rh, Ir, Ee, Osまたはこれらの金属の合金もしくは酸化物を、 それぞれ用いるとよい。 両磁性層 1, 3は、 少なくともトンネル層の界面近傍において、 以下の材 料により形成することが好ましい。 ① Fe, Co, Ni, FeCo合金, NiFe合金、 CoNi合金または NiFeCo合金;② FeN, Fe iN, FeAIN, FeSiN, FeTaN, FeCoN, FeCoTiN, FeCo(Al,Si)N, FeCoTaN等の式 TMAで示される化合物、 ただし、 Tは Fe, Co, Niから選ばれる少なくとも 1種、 Mは Mg, Ca, Ti, Zr, Hf, V, Nb, Ta, Cr, Al, Si, Mg, Ge, Gaから選ばれる少なくとも 1種、 Aは N, B, 0, F, Cから選ばれる少なくとも 1種;③式 (Co, Fe)Eで示される化合物、 ただし、 Eは Ti, Zr, Hf, V, Nb, Ta, Cu, Bから選ばれる少なくとも 1種;④ FeCr, FeSiAl, FeSi,FeAl, FeCoSi, FeCoAl, FeCoSiAl, FeCoTi, Fe(Ni)(Co)Pt, Fe(Ni)(Co)Pd, Fe(Ni)(Co)Rh, Fe(Ni)(Co)Ir, Fe(Ni)(Co)Ru, FePt等に代表され る式 TLで示される化合物、 ただし、 Tは Fe,Co,Niから選ばれる少なくとも 1種、 Lは Cu, Ag, Au, Pd, Pt, Rh, Ir, Ru, Os, R , Si, Ge, Al, Ga, Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, ,Yb, Luから選ばれる少なくとも 1種;⑤ Fe304、 式 XMnSbで示される材料
(ただし、 Xは Ni, Cu, Ptから選ばれる少なくとも 1種) , LaSrMnO, LaCaSrMnO, CrO2に代表されるハーフメタル材料;⑥式 QDJ (ただし、 Q は Sc, Y,ランタノィド, Ti, Zr, Hf, V, Nb, Ta, Cr, Ni, Znから選ばれる少なく とも 1種、 Dは V, Cr, Mn, Fe, Co, Niから選ばれる少なくとも 1種、 Jは C, N, 0, F, Sから選ばれる少なくとも 1種) 、 あるいは GaMnN, AlMnN, GaAMnN, AlBMnN等の式 RDG (ただし、 Rは B, Al, Ga, Ga, Inから選ば れた 1種、 Dは上記に同じ、 Gは C,N,0,P, Sから選ばれる少なくとも 1 種) に代表される磁性半導体;⑦ぺロプスカイト型酸化物、 フェライト等の スピネル型酸化物、 ガーネット型酸化物;⑧ CaB6, CaMgB等のアル力リ土類 金属の酸化物、 またはこれに La等のランタノィドを添加した強磁性体。
トンネル層 2およびバイアストンネル層 4には、 絶縁体または半導体であ れば特に制限はないが、 Mg, Ti, Zr, Hf, V, Nb, Ta, Crを含む IIa~VIa族 (新 IUPAC表示では 2 ~ 6族) 元素、 La, Ceを含むランタノィド、 Zn, B, Al, · Ga, Siを含む lib〜: Ivb族 (1 2〜1 4族) 元素から選ばれる元素と、 F, 0, C, Ν, Βから選ばれる少なくとも 1種の元素との化合物が適当である。 代表的な トンネル層用絶縁体は、 A1の酸化物、 窒化物、 酸窒化物である。
磁気抵抗素子は、 実際には、 基板 1 0上に形成された多層膜の一部となる (図 2 ) 。 例えば図 I Bに示した素子を挟持するように、 一対の電極 6, 9 が配置され、 これら電極間には層間絶縁膜 8が配置される。
多層膜は、 従来から用いられてきた方法、 例えば、 パルスレーザデポジシ ヨン (P L D) 、 イオンビームデポジション (I B D) 、 クラスターイオン ビーム、 R F、 D C、 E C R (Electron Cyclotron Resonance) 、 ヘリコン、 I C P (Inductively Coupled Plasma) 、 対向ターゲット等の各種スパッタ リング法、 MB E (Molecular Beam Epitaxy) 、 イオンプレーティング法に より成膜すればよい。 これらいわゆる P VD (Physical Vapor Deposition) 法に加え、 C V D (Chemical Vapor Deposition) 法、 メツキ法、 ゾルーゲル 法等を用いても構わない。
トンネル層は、 所定の金属または合金からなる薄膜前駆体を、 所定の元素、 分子、 イオン、 ラジカルを含む適当な雰囲気内で反応させ、 具体的にはフッ 化、 酸化、 炭化、 窒化、 硼化等して、 作製してもよレ、。 薄膜前駆体として、 F, 0, C, N, Bを化学量論比以下の割合で含む不定比化合物を用いても構わない。 例えばトンネル絶縁層として A1203膜を成膜する場合には、 A1または A10x (X≤1.5) を不活性ガス雰囲気中または Ar+02雰囲気中で成膜し、 次いで
02または 02+不活性ガス中で酸化させて成膜するとよレ、。 酸化等は、 プラズ マを発生させて行ってもよい。
形成した膜の微細加工の手段としては、 半導体プロセスや GMRへッド作 製プロセス等で用いられる手法を適用すればよい。 この手法には、 イオンミ リング、 R I E (Reactive Ion Etching) 、 F I B (Focused Ion Beam) 等 の物理的または化学的エッチング法、 微細パターン形成のためのステッパー 技術、 E B法等を用いたフォトリソグラフィー技術が含まれる。 電極等の表 面の平坦化のために、 CMP (Chemical Mechanical PoHshing) やクラスタ 一イオンビームエッチングを用いてもよい。
本宪明では、 例えば、 基板上に複数の磁気抵抗素子 1 1, 1 2, 1 3を積 層し、 これらの素子の間に、 記録用の導線が配置される (図 3 A, B ) 。 な お、 図 3 A, Bでは、 磁気抵抗素子として、 図 1 Bに示した素子が使用され ている。
これらの素子 1 1, 1 2 , 1 3は電気的に互いに直列に接続された素子群 を構成し、 この素子群は、 スィッチ素子 5 1である MOSFETに接続される。 スィツチ素子に代えて、 整流素子等、 例えばダイオード、 クーロンブ口ッケ イド素子、 トンネルダイオード等を用いてもよい。
スィツチ素子や整流素子等の非線形素子は、 P粦接する素子群を電気的に分 離する役割を担う。 非線形素子を配置しない場合には、 センス感度を保持す るために、 最大個数 1万個程度のメモリセゾ ^合体を 1ブロックとして、 他 のブロックと電気的に切り離す設計をするとよい。
素子 1 1への磁界の印加には、 基本的には、 ワード線 3 1およびビット線 2 1を使用すればよい。 同様に、 素子 1 2に対してはビット線 2 1とワード 線 3 2が、 素子 1 3に対してはワード線 3 2とビット線 2 2が使用される。 このメモリでは、 各素子を挟持するように、 一対の記録導線 (ワード線、 ビ ット線) が配置され、 これら導線を流れる電流により生じる合成磁界が各素 子に印加される。
ワード線 3 1, 3 2が伸長する方向とビット線 2 1, 2 2が伸長する方向 とは互いに 9 0 ° の角度をなし、 互いにいわゆる 「ねじれ」 の位置にある。 このメモリでは、 ワード線 3 1, 3 2は各素子と電気的に絶縁されている。 しかし、 ビット線 2 1 , 2 2は各素子と電気的に接続されており、 情報を読 み出すためのセンス線としても使用される。 なお、 ワード線、 ビット線等の 導線は、 Cu, A1等により形成するとよい。
この形態のように、 互いに直列に接続した素子の間にヮード線とビット線 とを、 交互に、 かつ伸長する方向が互いに直交するように介在させると、 情 報の記録のための磁界を各素子に効率的に印加できる。
記録導線は、 単線に限らず、 互いに平行に伸長する複数の導線から構成し てもよい (図 4 ) 。 図 4のメモリでは、 ワード線 3 1, 3 2およびビット線 2 1 , 2 2を、 それぞれ 2本の導線から構成している。 この形態は、 単線路 の記録導線を用いた形態 (図 3 A, B) と比較して、 高い記録周波数 (例え ば 2 0 0 MH z以上) を用いた情報の記録に適している。 なお、 複線路から なる記録導線では、 少なくとも 1本の導線を定電位、 例えばダランド電位に 保持しておくとよい。
情報の書き込みは、 複数の素子について同時に行ってもよい。 複数ビット の記録情報の書き込みを行う場合は、 記録導線を共用しない素子 1 1, 1 3 を選択すると磁気クロストーク等による誤記録を防止しやすいが、 記録導線 を共用する素子 1 1 , 1 2 ( 1 2, 1 3 ) の選択は、 消費電力の観点から有 利である。
複数ビットを同時記録する際には、 瞬間最大消費電力が電源の許容量を上 回ることも想定される。 この場合には、 記録電流の非発生時間において電源 と並列に配置したコンデンサを充電し、 情報の書き込み時に、 電源とコンデ ンサと力 ら同時に、 またはコンデンサのみから記録電流を供給すればよい。 図 3A, 図 3B、 図 4に示した磁気メモリに書き込み可能な情報量につい て、 以下に検討する。 電圧検知を例にとると、 磁気抵抗素子の出力変化は Δ P (ΔΡ= I XAR: ARは抵抗変化量) と表示できる。 素子 11による出 力変化を ΔΡい 素子 12による出力変化を ΔΡ2 (ΔΡ2=2 ΔΡ1) 、 素子 13による出力変化を ΔΡ3 (APs^S APj とすると、 取りうるメモリ値 は 7通りとなる (図 5) 。
一方、 素子 13による出力変化 ΔΡ3を 3 Δ ではなく 4 とすると、 取りうるメモリ値は 8 (23) 通りとなる (図 6) 。
ただし、 図 5、 図 6において、 ARは、 検出可能な最小出力値以上とする 必要がある。 最小の ΔΡ ( I X Δ Rmin) は、 50 mV以上とするとよい。 出力 検出素子を安価に作製できるからである。
互いに直列に接続された N個のメモリ層から得られるメモリ値は、 最大で 2N1となる。 これを実現するためには、 最小出力変化 I Δ Rminに対し、 最 大出力が I ARminX 2Ν_ 以上であることが好ましい。 また、 Μ番目 (ただ し、 Μは 1以上 (N—1) 以下の整数) に低い出力変化 I ARMに対し、 M+ 1番目に低い出力変化 I ARM+1が、 I ARMX 2以上であることが好ましい ( 各素子についての は、 測定バイアスまたは測定電流での MR変化率と 素子抵抗 Rの積となる。 の調整は、 素子抵抗 Rの調整、 例えばトンネル 絶縁層の膜厚の制御により容易に行うことができる。
なお、 以上では、 電圧検知について示したが、 電流検知の場合についても 同様の関係を成立させればよ 、。
磁気抵抗素子を積層するのではなく、 1つの素子内において複数のメモリ 層を積層することによつても、 メモリの多値化は実現できる (図 7) 。 例えば図 7に示したように、 図 1 Bに示した素子に、 さらにトンネノレ層 7 2、 自由磁性層 (メモリ層) 7 3、 バイアストンネル層 7 4を積層すれば、 1つの素子内に 2つのメモリ層 3, 7 3を含ませることができる。 この素子 では、 固定磁性層 1を中心として、 この両側に、 トンネノレ層 2 , 7 2、 自由 磁性層 3、 7 2、 バイアストンネル層 4 , 7 4が順次積層されている。
この素子のメモリ層 3, 7 3に対しても、 互いに 「ねじれ」 の位置にある ビット線 2 1とワード線 3 1とを用いて記録磁界を印加し、 スィッチ素子 5 1を用いて、 このメモリの選択を行うとよレ、。 この磁気抵抗素子を図 3 A、 図 3 Bに示したように積層してもよい。
1つの素子に複数のメモリ層が存在する場合、 各メモリ層への個別の書き 込みを容易にするために、 メモリ層の保磁力 (磁化反転磁界) を変化させて もよい。 保磁力の調整は、 材料、 膜厚、 結晶構造の制御によって、 さらには メモリ層の多層化によって行えばよい。 外部磁界が印加される方向を考慮し つつ、 メモリ層に形状異方性を与えてもよい。
1つの磁気抵抗素子内に存在する複数のメモリ層 3, 7 3の保磁力が実質 的に同一であっても、 ビット線 2 1およびワード線 3 1に対するメモリ層の 位置の相違を利用すれば、 メモリ層への個別の書き込みは可能である。 メモ リ層と記録導線との距離に応じて、 磁化反転に要する電流量は相違するから である。 この操作の具体例は、 図 1 5を参照して後述する。
1つの素子に含ませるメモリ層の数は、 3以上であってもよい。 し力 し、 記録導線との距離が大きくなりすぎないように、 固定磁性層、 自由磁性層、 トンネル層を含む積層体 1〜 4 , 7 2〜 7 4の厚さは、 500nm以下が好適で める。
磁気メモリからの出力の検出回路は、 差動増幅器を介して比較用メモリと 接続することが好ましい (図 8 ) 。 このように、 配線抵抗を含めた比較抵抗 との出力差を採用することにより、 配線抵抗および基準素子抵抗をキャンセ ノレできる。 この検出回路を用いると、 高 SZN化が容易に実現できる。
スィツチ素子 51に代えて、 ダイォード、 トンネルダイォードに代表され る整流素子 52, 53, 54を用いても、 同様のメモリを実現できる (図 9 A, 図 9B) 。
このメモリでは、 整流素子 52, 53, 54を、 各記録導 if泉の間に介在さ せているため、 磁気抵抗素子 1 1, 12, 13の抵抗変化を個別に読み出す ことができる。 このメモリでは、 センス線としても用いられるビット線 21 22とともに、 ワード泉 31, 32も情報の読み出しに用いられる。 素子 1 1については、 ワード線 31とビット線 21との間の抵抗変化が、 素子 12 については、 ビット線 21とヮード線 32との間の抵抗変化が、 素子 13に ついては、 ヮード線 32とビット線 22との間の抵抗変化が、 電圧または電 流変化として読み出される。 この形態では、 素子が電気的に分離されている ため、 SZNの向上を図りやすい。
図 4に示した素子においても、 スィツチ素子 51に代えて、 整流素子 52 を用いてもよい (図 10) 。
本発明の磁気メモリは、 上記に例示した構成に限らず、 素子またはメモリ 層をさらに積層してもよく、 適宜、 配線を変更してもよい。
以下、 磁気メモリの面内方向における配置について説明する。
磁気メモリは、 所定の数のメモリ列およびメモリ行を形成するように、 マ トリックス状に配置するとよい (図 1 1) 。 磁気メモリ 101, 102··· 2 01, 2 Ο 2··· 301 ··· 303···は、 ワード線 31, 131, 231··· とビット線 21, 121, 221 ···との交点に配置される。 これら記録導線 への記録電流は、 それぞれに配置されたスィツチ素子 70, 170, 27 0 ··· 71 , 171, 271 ···により制御される。 この制御は、 いわゆる 2 電流一致方式により行われる。 図 1 1に示した例では、 スィツチ素子 70,
71のみが on状態となって、 ワード線 3 1とビット線 21とが交差する位置 に配置された磁気メモリ 101が選択され、 このメモリ 101に記録磁界が 印加される。
スィツチ素子によるァドレッシングの時間を高速化する場合、 あるいは記 録導線の間隔を狭めると、 記録導線の間に誘導結合電流または容量性結合電 流が発生し、 磁気クロストークが生じることがある。 この磁気クロストーク を抑制するためには、 記録導線め間に、 結合線 8 1, 1 81, 28 1 ··· 9: 191, 291 ···を配置するとよい (図 12) 。
結合線は、 層の厚さ方向に存在する記録導線の間それぞれに配置するとよ い (図 13) 。 即ち、 例えば、 ビット線 21, 22の伸長方向に隣接する磁 気メモリ 101, 201の間において、 結合線 81, 82は、 それぞれ、 ヮ ード線 31 , 1 31の間、 ヮード線 32, 132の間に配置される。 結合線 81, 82により、 隣接する一対の磁気抵抗素子 11, 1 1 1 (12, 1 1 2 ; 13, 1 1 3) における誤記録の発生を抑制できる。 結合線は、 所定の 定電位、 例えばグランド電位に保持しておくとよい。
上述のように、 自¾磁性層 (メモリ層) には、 情報の記録のためにー軸異 方性を付与するとよい。 一軸異方性が付与された自由磁性層におけるスィッ チング磁界曲線は、 4回対称である理想的な形状ではなく (図 14A) 、 こ の曲線を磁ィ匕困難軸方向に引き伸ばしたァステロイド曲線 (図 14B) とな ることがある。 この傾向は、 軟磁性膜と高保磁力膜とを積層した 2層膜のよ うに、 膜面垂直方向における異方性が一様ではないメモリ層、 即ち少なくと も 2つの磁性膜を含むメモリ層、 において顕著となる。 非磁性膜を挟む一対 の磁性膜が静磁結合した積層体からなるメモリ層においては、 スィツチング 磁界曲線が多軸安定な形状になる場合もある。
図 14 Aに示した磁化スィツチング曲線を有する 2つのメモリ層の磁化容 易軸を互いに所定の角度 αだけ傾けると、 一方のスイッチング曲線内であつ て他方の曲線外である磁化反転領域が出現する (図 17A) 。 図 17 Αにお ける点 Aで示される磁界を印加すると、 スイッチング曲線が aで示されるメ モリ層においてのみ磁化反転が生じ、 点 Bで示される磁界を印加すると、 ス ィツチング曲線が bで示されるメモリ層においてのみ磁化反転が生じる。 これを利用すると、 磁気クロストークを抑制しながら、 所定のメモリ層へ の情報の記録を行うことができる。 なお、 メモリ層の磁化容易軸が形状異方 性に依存している場合、 磁化容易軸の角度 は、 メモリ層 3 a、 3 bの長手 方向がなす角度により表示できる (図 17B) 。 この場合、 角度ひの好まし い範囲は 20° ~70° である。 なお、 便宜的に素子の面形状を矩形として 示したが、 素子の面形状が矩形に限られるわけではない (図 198〜図19 E) 。
同様に、 図 14Bに示した磁化スイッチング曲線についても、 2つのメモ リ層の磁化容易軸を互いに異ならせることにより、 一方のメモリ層のみを磁 化反転できる磁界領域を出現させることができる (図 1 5) 。 この場合、 磁 化容易軸がなす好ましい角度の範囲は 20° 〜90° である。
従って、 磁気メモリをマトリ ックス状に配列したメモリ装置において、 互 いに隣接するメモリ層の磁化容易軸を互いに異なる方向、 好ましくは 20 ° 〜90° 、 より好ましくは 20° 〜70° の角度をなす方向とすると、 磁気 クロストークを抑制できる (図 18) 。 図 18に示した MR AMでは、 各メ モリ層 201, 202, 203 ··· 21 1, 212, 213 ··· 221 , 22 2, 223···が、 層の面内方向について隣接するメモリ層の磁化容易軸方向 と 20° 〜70° の角度をなすように配置されている。
メモリ層は、 さらに、 層の面垂直方向 (層の厚さ方向) に隣接する磁化容 易軸方向が互いに異なるように配置してもよい (図 16) 。 図 16に示した メモリ装置では、 メモリ層がマトリックス状に配置された第 2段のメモリ層 面 120が、 メモリ層がなす第 1段おょぴ第 3段のメモリ層面 1 10, 13 0に挟持されている。 第 2段のメモリ層面 1 20に含まれるメモリ層 1 21 122, 123··· 221, 222, 223 ··· 321, 322, 323は、 面内方向において隣接するメモリ層とのみならず、 当該層と面垂直方向に隣 接するメモリ層とも、 磁化容易軸方向が互いに異なるように配置されている, この配置によれば、 メモリ層 222は、 これに隣接する上下左右すベてのメ モリ層 122, 221, 223, 322, 212, 232との間において、 磁化容易軸が互いに相違している。
なお、 図 16では、 磁化スィツチング曲線が図 14 Bで表される場合を想 定して、 磁化容易軸がなす角度ひが 90° に設定されている。
図 16、 図 18では、 メモリ層の面形状を矩形としたが (図 19A) 、 メ モリ層の面形状はこれに限らない (図 19 B〜図 19 E) 。 メモリ層の形状 を、 頂角近傍が内側にせり出した曲線となるように変形した多角形 (図 19 B) 、 楕円 (図 19C) 、 内角が 90° を超える多角形 (図 19D、 図 19 E) とすると、 メモリの角形形状や情報保持の信頼性が向上する。
メモリ層の磁化反転は、 通常、 スィッチ素子を off状態にして行われる。 ス イッチ素子を on状態とするのは、 センス電流を流してメモリ層の磁化状態に 応じた出力変化を読み出す場合である。
し力 し、 メモリ層を層の厚さ方向に通過する電流を用いると、 メモリ層に おける磁化が回転する方向を決定することができる (図 2 OA) 。 図 2 OA では、 メモリ層 (自由磁性層) 3の磁化を反転させる際に、 スィッチ素子 5 1が on状態となって素子を層の厚さ方向に通過する電流 63が流れ、 これに 伴い、 メモリ層を面内方向に囲む磁界 43が発生する。 この磁界 43は、 メ モリ層における磁化の回転をより円滑にする。 'ビット線 21およびヮード線 31にもそれぞれ層の面内方向に電流 61, 62を流し、 磁界 41, 42を 発生させてもよい。
ヮード線 31を流れる電流 62の印加は、 スイツチ素子 51を流れる電流 63の印加を開始 (終了) した後に、 開始 (終了) することが好ましい (図 20B) 。 電流 63により発生する磁界 43は磁化の回転を誘導し、 電流 6 2により発生する磁界 42は回転する磁ィ匕を所定方向に向けるからである。 なお、 この磁気抵抗素子では、 センス線を兼用するビット線 21からスイツ チ素子 51へと電流が分岐して供給されるため、 電流 61, 63は同時に流 れることになる。 .
図 2 OBにおける時間 1\では、 メモリ層 3の磁化方向 33を横切る方向 (層の短手方向) に磁界 41, 43が印加されて磁化方向 33が不安定とな る (図 20C) 。 磁界 41のみでは、 磁化反転の基点となる磁化の乱れは層 の両端で生じるが、 磁界 43を同時に印加することにより、 一方の端部にお いて磁化の乱れ力 sより生じやすくなる。 この場合、 磁化回転の方向は、 電流 63が通過する方向に沿って見た時に、 換言すれば図 2 OAの上方から見た 時に、 時計回り (右回り) となる。 こうして磁化方向の回転が始まる。
時間 T2では、 さらに、 当初の磁化方向と逆向き (反平行) の磁界 42が印 加され、 時間 Τ 3では磁界 41, 42の印加が終了して磁化方向 33が決定づ けられる (図 2 OC) 。
反転した磁化を元に戻すためには、 図 2 OAにおいて、 ワード線 32を流 れる電流 62を逆向きにするとよい。 磁化の回転を左回り (反時計回り) と する場合は、 電流 61, 63の向きを逆にすればよい。
この素子においても、 メモリ層 3からの読み出し動作は、 電流 63により 行うことができる。
これらの書き込み 読み込み動作は、 スィッチ素子 51に代えて、 整流素 子 52を用いた場合 (図 21A、 B) 、 これら素子を用いない場合 (図 22 A, B) において、 同様である。 図 21 B、 図 22Bは、 センス電流 64に よる読み出し動作を示す。
以上のように、 本発明の駆動方法は、 1つのメモリ層を有する従来型の T MR素子に適用できるが、 層の厚さ方向に 2以上のメモリ層が積層された磁 気メモリにも適用できる。 この磁気メモリでは、 メモリ層の密度が高く、 従 来の駆動方法では所定のメモリ層における円滑な磁ィヒ反転が困難となること があるから、 上記方法を適用したときの効果も大きい。
上記で作製したメモリを用いれば、 図 2 3に基本回路を示したような、 メ モリ機能を搭載したプログラマブルメモリ、 あるいはリコンフィギュアプル メモリを作製できる。 ここでは、 図 7に示したメモリ 1 0 0を用いた例を示 したが、 使用可能な磁気メモリはこれに限らない。
図 2 3では、 Vo-Vix
Figure imgf000023_0001
ここで、 Rcは FET2の on抵抗であり、 Rvは合計 4つのトンネル層を含む積層体の抵 抗である。 所定のメモリ層における磁化方向が固定磁性層における磁化方向 と平行なときの Rvを Rvp、 反平行なときの Rvを Rvapとし、 反平行の時の 抵抗が相対的に高いとすると、 負荷回路とのゲート電圧 Vdと、 磁気抵抗素子 の抵抗の関係を
Vd<Vo= ViX (Rvap +Rc)/(Ei+Rvap+Rc)
Vd>Vo= Vi X (Rvp +Rc)/(Ri+Rvp+Rc)
のようにすることで、 不揮発性リコンフィギュアブルメモリとして用いるこ とができる。
この回路は、 負荷回路として論理回路を用いた場合は不揮発プログラマプ ル素子として、 負荷回路として表示回路を用いた場合は静止画像等の不揮発 保存のために使用できる。 また、 これら複数の機能を集積したシステム L S Iとして用いることも可能である。 なお、 図 2 3の F E Tはそれぞれウェハ 上に作製することが可能である。
なお、 以下の実施例に示すように、 磁気メモリは磁気シールドによりパッ ケージするとよい。 MR AM等のメモリ装置およびシステム L S I等につい ても、 同様に磁気シールドを加えることが好ましい。 外部からの磁気ノイズ による誤動作を抑制できるからである。 磁気シールドは、 汎用の磁性材料に より形成すれば足りる。 実施例
(実施例 1 )
CMOS基板上に、 図 3に示したように 3段の磁気抵抗素子からなる磁気メ モリで集積メモリを作製した。 集積メモリはセラミックパッケージに封入し、 パッケージ全体には、 厚さ ΙΟΟμιηの NiFe膜を磁気シールドとしてメツキし た。
磁気メモリは、 図 1 1と同様、 マトリ ックス状に配列し、 さらに、 メモリ 列ごとに、 比較のための磁気メモリ R 1, R 2 , 1 3 · · ·を配置した (図 2 4 ) 。 これらの磁気メモリも、 3段からなる磁気抵抗素子により構成した。 磁気メモリは、 2 5 6 X 2 5 6 (磁気抵抗素子の総数は 2 5 6 X 2 5 6 X 3 個) となるように配列した。 比較のための磁気メモリは 2 5 6個配置した。 各磁気メモリにおいて、 第 1段目の磁気抵抗素子として、 以下に示す積層 構造を作製した。
下部電極/ Ta(3)/PtMn(20)/CoFe(3)/Ru(0.9)/CoFe(3)/AlO(1.0)/NiFe(2)/ AlO(1.0)/CoFe(3) Ru(0.9)/CoFe(3)/PtMn(20)/ a(3)/上部電極
ここで、 カツコ内の数値は、 単位は nmとする膜厚である力 A10の膜厚 は、 酸化前の金属 A1の膜厚である (以下において、 同様) 。
この素子では、 トンネノレ層は A10により、 メモリ層は NiFeにより、 それ ぞれ形成されている。 PtMnは、 固定磁性層 (CoFe/Ru/CoFe) の磁化を相対 的に反転しにくくするための反強磁性層である。
第 2段目の磁気抵抗素子は、 2層の AlO(l.O)をそれぞれ A Xl.06)とした以 外は、 第 1段目の素子と同様にして作製した。
第 3段目の磁気抵抗素子は、 2層の AlO(l.O)をそれぞれ Α1Ο(1.12)とした以 外は、 第 1段目の素子と同様にして作製した。 これらの素子を作製した後、 5 kOe、 280°Cで 1時間熱処理し、 PtMnに一 方向異方性を設定した。 その後、 各素子における各層の面形状が、 この一方 向異方性の向きが長手方向となるように加工した。 即ち、 図 3 Aにおける左 右方向が各層の長手方向となるように、 素子の面形状を 0.2μπιΧ0.3μιηとし た。
各磁気抵抗素子からの出力は、 配線抵抗や CMO Sの抵抗を除き、 1段目 が 40 mV、 2段目力 S 80 mV、 3段目が 160 mVであった。
ワード線とビット線との合成磁界により、 3段からなる一連の磁気メモリ に 3ビットずつメモリを記録した。 図 3、 図 2 4を参照して説明すると、 ま ず、 書き込むべき磁気メモリ 1 0 1のスィッチ素子 7 0, 7 1をアドレツシ ングした。 次いで、 素子 1 1, 1 2の間を伸長するビット線 2 1に電流を流 し、 これらの素子に対して、 素子の短手方向に磁界を印加しながら、 ワード 線 3 1, 3 2に同時に電流を流し、 素子 1 1, 1 2の磁化反転を一度に行つ た。 このように 2以上の素子の磁化反転を同時に行ったのは、 消費電力を削 減するためである。 ' 続いて、 ビット線 2 2に電流を流し、 素子 1 3に対して短手方向に磁界を 印加した後、 ヮード泉 3 2に電流を流し、 素子 1 3の磁化反転を行った。 なお、 ビット線およびワード線に電流を流す時間 (電流のパルス幅) は、 25 nsec (ナノ秒) であり、 ビット線からの電流パルスが素子に到達した 10 nsec後にヮード線からのパルスが到達するように制御した。
次に、 読み出し操作を示す。 まず、 磁気メモリ 1 0 1およびこれに対応す る比較磁気メモリ R 1に対応するスィツチ素子 7 0 , 7 1 , R Sをアドレツ シングした。 次いで、 磁気メモリ 1 0 1および比較磁気メモリ R 1にセンス 電流を流,した。
両素子 1 0 1, R 1から得た出力 Vmem、 Vrefを、 図 8に示した回路で增 幅し、 得られた出力値が 8通りのメモリ値のいずれであるかを判定した。 図 2 4に示した回路では、 センス電流が、 読み出すべき磁気メモリと比較 磁気メモリとに分流する。 スィッチ素子を追加する必要があるが、 バイアス の変動や読み取り電圧の最小値を引き下げるために、 磁気メモリと比較磁気 メモリとを別回路 してもよい。
さらに、 複数の磁気メモリにおいて、 同一段にある磁気抵抗素子を同時に 書き込んだ。 ここでは、 素子 1 0 1とともに、 行または列方向に 1つおきに 素子 3 0 1 · · · 1 0 3 · · · 3 0 3 · · ·を選択した。 このように、 行および列方向 に隣接しない素子に同時に書き込むと、 磁気クロストークを抑制しながら、 効率的な書き込みが可能となり、 消費電力も抑制できる。 この場合は、 各配 線に並列に設けたコンデンサ部 (図示省略) の充放電を利用することにより 電源の負担を軽減するとよい。
複数の素子への同時書き込みと、 電流の分流を抑制する読み取りとを組み 合わせると、 書き込みの信号と読み取りの信号とが時間軸に対して異なるこ とになる。 この場合は、 シフトレジスタやバッファメモリを用いて、 入出力 の信号を制御する回路を併用するとよい。
(実施例 2 )
CMOS基板上に、 図 7に示したような 2つのメモリ層 3 , 7 3,を有する磁 気抵抗素子からなる磁気メモリを、 マトリックス状に配列して集積メモリを 作製した。 集積メモリには、 実施例 1と同様の磁気シールドを施した。 ただ し、 図 7に示した層のうち、 両端のバイアストンネル層 4, 7 4の形成は省 略した。
磁気メモリの配列は、 実施例 1と同様とした (図 2 4 ) 。 この集積メモリ では、 メモリ総数が 2 5 6 X 2 5 6 X 2個となる。 この集積メモリを 1つの フレームとして、 合計 8フレームの MR AMを作製した。
磁気抵抗素子は、 以下の膜構成とした。
下部電極/ Ta(3)/NiFeCr(4)/NiFe(2)/AlO(1.0)/CoFe(3)/Ru(0.8)/CoFe(3)/
Figure imgf000027_0001
¾Γι^α> 択した任意のメモリ層への書き込みが可能となる。
書き込みおよび読み出しは、 実施例 1と同様にして行うことができる。 ま た、 この MR AMでは、 8つの基本フレームで同時に 1素子ずつについて読 み出しを行うことにより、 合計 2 X 8ビットのメモリの読み出しを同時に行 うことができる。
(実施例 3 )
ガラス基板上に、 図 9に示したように 3段の磁気抵抗素子からなる磁気メ モリで集積メモリを作製した。 集積メモリには、 実施例 1と同様の磁気シー ノレドを施した。
磁気メモリは、 図 2 4に示したように配列した。 磁気メモリは、 2 5 6 X
2 5 6 (磁気抵抗素子の総数は 2 5 6 X 2 5 6 X 3個) となるように配列し、 この磁気メモリ群を 1フレームとして、 合計 8フレームの MRAMを作製し た。
磁気抵抗素子の膜構成は、 3つの素子すべてにおいて、 以下のとおりとし た。
下部電極/ Ta(3)/PtMn(20)/CoFe(3)/Ru(0.9)/CoFe(3)/AlO(1.0)/Fe(2)/AlO(1.3) /Ta(3)/上部電極
この素子では、 トンネノレ層が A1Oにより、 メモリ層が Feにより、 それぞれ 形成されている。 Taに接する A1Oはバイアストンネル層である。
この多層膜に対しては、 実施例 1と同様の熱処理と、 一方向異方性を考慮 した層の加工を行った (図 9 Aにおける左右方向を層の長手方向とした) 。 各磁気抵抗素子の間には、 それぞれ、 順方向側から pin構造を有するダイ オードを整流素子 5 2, 5 3, 5 4として作製した。 ここで、 pinの各層は C VD法により成膜した。 p層は、 0.5%B2H6 / H2 = 100 sccm、 H2=100 sccm、 SiH4= 100 sccm の条件で作製した。 i層は SiH4と H2により、 n層は、
0.5%PH3/H2=100 sccm, H2=100 sccm、 SiH4=50 sccmの条件で作製した。 ここで、 「0.5%」 は H2に対する割合を示す。 なお、 これらのダイオードと磁 気抵抗素子または配線との間には Tiバッファ層を形成した。
各磁気抵抗素子の出力は、 配線抵抗やダイオード抵抗を除き、 120mVであ つた。
各素子への書き込みは、 実施例 1と同様にして行った。
図 9、 図 2 4を参照して読み出し動作を説明する。 まず、 読み出すべき磁 気メモリ 1 0 1と比較磁気メモリ R 1とをアドレッシングし、 その後、 ヮー ド線 3 1, 3 2をグランド電位に落とし、 ビット線 2 2とワード線 3 2との 間、 およぴビット線 2 1とワード線 3 1との間に同じ大きさのセンス電流を 流した。 以降は、 実施例 1と同様にして、 まず、 素子 1 1のメモリ値を判定 し、 続いて素子 1 2のメモリ値を判定した。 こうして、 1つの磁気メモリ 1 0 1を構成する 2つの磁気抵抗素子 1 1, 1 2のメモリ値を読み取った。 (実施例 4 )
ガラス基板上に、 図 1 0に示した 2つのメモリ層を有する磁気抵抗素子で 集積メモリを作製した。 集積メモリには、 実施例 1と同様の磁気シールドを 施した。
磁気メモリは、 図 2 4に占めたように配列した。 磁気メモリは 2 5 6 X 2 5 6 (メモリ層の総数は 2 5 6 X 2 5 6 X 2個) となるように配列し、 この 磁気メモリ群を 1フレームとして、 合計 8フレームの MR AMを作製した。 磁気抵抗素子は、 以下の膜構成とした。
下部電極/ Ta(3)/AlO(1.3)/Fe(2)/AlO(1.0)/CoFe(3)/Ru(0.8)/CoFe(3)/
PtMn(20)/CoFe(3)/Ru(0.8)/CoFe(3)/AlO(1.06)/Fe(2)/AlO(1.3)/Ta(3)/上部電極 この素子では、 トンネル層が A10により、 メモリ層が Feにより、 それぞれ 形成されている。 Taに接する A10は、 バイアストンネル層である。
この多層膜に対しては、 実施例 1と同様の熱処理と、 一方向異方性を考慮 した層の加工を行った (図 1 0における左右方向を層の長手方向とした) 。 外部コイルによる均一磁界を印加して、 MR変化率を測定したところ、 2 つのメモリ層 (Fe) の保磁力は同程度であった。 各メモリ層の磁化反転によ る出力変化は、 配線抵抗やダイオードの抵抗を除き、 下部電極側のメモリ層 7 3について 40mV、 上部電極側のメモリ層 3について 80mV程度であった t これらの出力変化は、 実施例 2と同様にして求めた。
以下、 実施例 2と同様にして、 一つの素子を構成するメモリ層について個 別に情報を書き込んだ、 また、 センス線を兼用するビット線 2 1からワード 線 3 1へとセンス電流を流して、 書き込んだ情報の読み出しを行った。
(実施例 5 )
CMOS基板上に、 図 3に示したような多段の磁気抵抗素子からなる磁気メ モリで集積メモリを作製した。 ただし、 ここでは、 素子の段数は 2とした。 集積メモリには、 実施例 1と同様の磁気シールドを施した。
磁気メモリは、 図 2 4に示したように配列した。 磁気メモリは、 2 5 6 X 2 5 6 (磁気抵抗素子の総数は 2 5 6 X 2 5 6 X 2個) となるように配列し た。
各磁気メモリにおいて、 第 1段の磁気抵抗素子として、 以下に示す積層構 造を作製した。
下部電極/ Ta(3)/PtMn(20)/CoFe(3)/Ru(0.9)/CoFe(3)/AlO(1.0)/CoFe(0.5) /NiFe(2)/CoFe(0.5)/AlO(1.0)/CoFe(3) Ru(0.9)/CoFe(3)/PtMn(20) /Ta(3)/上部 電極
引き続き、 第 2段の磁気抵抗素子として、 以下に示す積層構造を作製した ( 下部電極/ Ta(3) rMn(20)/CoFe(3)/Ru(0.9)/CoFe(3)/AlO(1.06)/CoFe(0.5) /NiFe(2)/CoFe(0.5)/AlO(1.06)/CoFe(3)/Ru(0.9)/CoFe(3) IrMn(20)/Ta(3)/上部 これらの素子では、 トンネル層は A10により、 メモリ層は CoFe(0.5) / iFe(2)/Co:Fe(0.5)により、 それぞれ形成されている。 なお、 第 1段の素子は、 成膜後、 実施例 1と同様の条件で PtMnに一方向 異方性を付与し、 この一方向異方性の方向が長手方向になるように、 層の面 形状を 0.2μηι Χ 0.3μηιに加工した (図 3における左右方向を長手方向とし た) 。
—方、 第 2段の素子は、 IrMnを磁界中で成膜することにより、 PtMnと直 交するように一方向異方性を設け、 その後、 この一方向異方性の方向が長手 方向になるように、 層の面形状を 0.2μηιΧ 0.3μιηに加工した (図 3における 左右方向を短手方向とした) 。 こうして得た集積メモリを 「メモリ Α」 とす る。
比較のために、 上記と同様に第 1段の素子を作製し、 さらに第 2段の素子 として、 AlO(l)を Α1Ο(1.06)とした以外は第 1段と同様にして、 「メモリ Β」 を作製した。 ただし、 ここでは、 第 1段と第 2段との間において、 一方向異 方性の方向および層の長手方向は一致させた (図 3における左右方向を長手 方向とした) 。
上記両集積メモリにおいて、 各磁気抵抗素子の出力は、 配線抵抗や CMO Sの抵抗を除き、 第 1段が 60mV、 第 2段が 120mVである。
こうして得た集積メモリについて、 第 1段の素子に、 ビット線 2 1により 層の短手方向に磁界を印加し、 さらにワード線 3 1から磁界を印加して、 磁 化反転を行う操作を繰り返した。 この繰り返し反転後の第 2段の素子におけ るメモリの誤記録の確率を測定したところ、 メモリ Aでは 1 0一8/回、 メモ リ Bでは 1 0— 6/回であった。 ただし、 誤記録には、 読み出しの際の誤差に よるものも含まれる。
追加のメモリを作製して検討したところ、 第 1段の素子における長手方向 と第 2段の素子の長手方向とが、 互いに 2 0 ° 以上 9 0 ° 以下の角度をなし ていると、 誤記録が明らかに低減した。 面内方向に隣接する素子の間におい ても、 層の長手方向を互いに異ならせることは、 誤記録の減少に有効であつ た。
さらに、 図 2 6に示したように、 第 1段の素子 1 1 1, 1 1 2 , 2 1 1, 2 1 2と、 第 2段の素子 1 2 1 , 1 2 2 , 2 2 1 , 2 2 2とが厚さ方向に互 いに重ならないように配置すると、 読み取り精度が向上した。
引き続き、 以下に示す素子を用い、 上記と同様にして、 集積メモリを作製 した。
• メモリ I
第 1段
下部電極/ Ta(3)/PtMn(20)/CoFe(3)/Ru(0.9)/CoFe(3)/AlO(1.0)
/NiFe(2)/Ru(0.9)/NiFe(4)/AlO(l.0)/CoFe(3)/PtMn(20) /Ta(3)/上部電極
第 2段
下部電極/ Ta(3)/IrMn(20)/CoFe(3)/Ru(0.9)/CoFe(3)/AlO(1.06)
/NiFe(2)/Ru(0.9)/ NiFe(4)/AlO(l.06)/CoFe(3) PtMn(20) /Ta(3)/上部電極 , メモリ II
第 1段
下部電極/ Ta(3)/PtMn(20)/CoFe(3)/Ru(0.9)/CoFe(3)/AlO(1.0)
/NiFe(2)/Ru(0.9)/NiFe(2)/Ru(0.9)/NiFe(2)/AlO(l.0)/CoFe(3)/Ru(0.9)/CoFe(3) /PtMn(20)/Ta(3)/上部電極
第 2段
下部電極/ Ta(3)/IrMn(20)/CoFe(3)/Ru(0.9)/CoFe(3)/AlO(1.06)
/NiFe(2)/Ru(0.9)/NiFe(2)/Ru(0.9)/NiFe(2)/AlO(l.06)/CoFe(3)/Ru(0.9)/CoFe(3) /PtMn(20)/Ta(3)/上部電極
■ メモリ III
第 1段
下部電極/ Ta(3)/PtMn(20)/CoFe(3)/Ru(0.9)/CoFe(3)/AlO(1.0)
/NiFe(l)/CoFe(l) /AlO(1.0)/Co;Fe(3)/Ru(0.9)/Co;Fe(3) PtMii(20)/Ta(3)/上部電 第 2段
下部電極/ Ta(3)/IrMn(20)/CoFe(3)/Ru(0.9)/CoFe(3)/AlO(1.06)
/NiFe(l)/Co;Fe(l)/AlO(1.06)/CoFe(3)/Ru(0.9)/CoFe(3) PtMn(20)/Ta(3)/上部電 極
■メモリ IV
第 1段
下部電極/ Ta(3)/PtMn(20)/CoFe(3)/Ru(0.9)/CoFe(3)/AlO(1.0)/NiFe(2) /A10(l .0)/CoFe(3) Ru(0.9)/CoFe(3) PtMn(20) /Ta(3)/上部電極
第 2段
下部電極/ Ta(3) IrMn(20)/CoFe(3) Ru(0.9)/CoFe(3)/AlO(1.06) iFe(2) /AlO(1.06)/CoFe(3) Ru(0.9)/CoFe(3) PtMn(20) /Ta(3)/上部電極 メモリ I〜ΠΙでは多層膜がメモリ層として用いられている。 メモリ Iにお いてメモリ層は NiFe(2)/Ru(0.9)/ NiFe(4)であり、 メモリ IIにおいてメモリ層 は NiFe(2)/Ru(0.9)/ NiFe(4)/E (0.9)/ NiFe(4)であり、 メモリ IIIにおいてメモ リ層は NiFe(l)/CoFe(l)である。 これに対し、 メモリ IVにおけるメモリ層は NiFe(2)である。
各メモリにおいて、 第 1段の素子は、 成膜後 280°C、 5 lcOeの雰囲気で 1 時間熱処理し、 PtMnに一方向異方性を付与した後、 一方向異方性の方向が長 手方向になるように、 各層の素子形状を 0.2μηιΧ 0.3μιηに加工した (図 3 A の左右方向を長手とした) 。
各メモリにといて、 第 2段の素子は、 IrMn を磁界中で成膜することにより、 PtMnと直交する一方向異方性を設けた後、 この一方向異方性の方向が長手方 向となるように、 各層の素子形状を 0·2μιη Χ 0·3μιηに加工した (図 3 Αの左 右方向を短手方向とした) 。 各素子の出力は、 配線抵抗や CMOSの抵抗を除き、 第 1段が 60mV、 第 2 段が 120mVであった。
こうして得た各メモリについて、 第 1段の素子に、 ビット線 2 1により層 の短手方向に磁界を印加し、 さらにワード線 3 1から磁界を印加して、 磁ィ匕 反転を行う操作を繰り返した。 この繰り返し反転後の第 2段の素子における メモリの誤記録の確率を測定したところ、 メモリ I〜: [IIでは 10一8/回、 メ モリ IVでは 10_6/回であった。 ただし、 誤記録には、 読み出しの際の誤差 によるものも含まれる。
メモリ I〜ΙΠのように、 メモリ層が少なくとも 2種の磁性膜または少なく とも 2種の磁性膜と少なくとも 1種の非磁性膜との多層膜であると、 スィッ チング磁化曲線は単純な 4回対称から崩れることになる。 この結果、 誤記録 が減少したものと考えられる。
(実施例 6 )
CMOS基板上に、 図 2 7に示した構成の磁気抵抗素子をマトリックス状に 配置した MR AMを作製し、 記録方法について検討した。
磁気抵抗素子としては、 以下の構成を採用した。
下部電極/ Ta(3)/AlO(1.3) Fe(2)/AlO(1.0)/CoFe(3)/Ru(0.9)/CoFe(3)/PtMn(20) /Ta(3)/上部電極
ここで、 A10(1.3)はバイアストンネル層 4であり、 Fe(2)はメモリ層 3であ り、 AlO(l.O)はトンネル層 2であり、 CoFe(3)/Ru(0.9)/CoFe(3)は固定磁性層 1である。 PtMn(3)は、 図示を省略する反強磁性層である。
多層膜は、 成膜後、 280°C、 5 kOeの雰囲気で 1時間熱処理し、 PtMnに一 方向異方性を付与した後、 この一方向異方性の方向が長手方向になるように. 各層の素子形状を 0.1μιηΧ0.15μηιに加工した (図 2 7の左右方向を長手方向 とした) 。
本実施例では、 ワード線の位置を調整して、 ワード線 3 1の上端とメモリ 層 3の下端との距離 dを 40〜; LOOrnnの範囲で適宜変更した複数の素子を作製 した。
まず、 ヮード線 3 1およびビット線 2 1に電流 6 1 , 6 2を流して、 発生 した合成磁界によりメモリ層の磁化反転を試みた。 dが大きくなるにつれて 磁化反転は困難となった。
さらに電流 6 3を流して磁化反転を行ったところ、 dの全範囲において、 誤記録の確率は減少した。 このとき、 ビット線 2 1を流れる分岐前の電流 6 1 aによる磁界の向きと電流 6 3による磁界の向きとは一致させた。
ビット線 2 1を流れる電流 6 1 a、 6 1 bの向きを逆方向として、 分岐前 の電流による磁界の向きと電流による磁界の向きとを逆にしたところ、 誤記 録減少の効果は得られなかった。 分岐後よりも相対的に大きい分岐前のビッ ト線を流れる電流による磁界が、 メモリ層を垂直に流れる電流による反転ァ シスト効果の発揮を妨げたためと考えられる。

Claims

請求の範囲
1. 層の厚さ方向に積層された 2以上のメモリ層と 2以上のトンネル層とを 含み、 前記 2以上のメモリ層が電気的に直列に接続され、 前記 2以上のメモ リ層から選ばれる少なくとも 1つからなる第 1層群における磁化反転により 生じる抵抗変化と、 前記 2以上のメモリ層から選ばれる少なくとも 1つから なる第 2層群における磁化反転により生じる抵抗変化とが互いに相違する磁 気メモリ。
2. 前記第 1層群の抵抗変化を い 前記第 2層群の抵抗変化を AR2とし て、 以下の関係式が成立する請求項 1に記載の磁気メモリ。
^R1χ 2≤^R2
ただし、 厶!^<厶1 2である。
3. 2以上の磁気抵抗素子を含み、 前記 2以上の磁気抵抗素子のそれぞれが、 前記 2以上のメモリ層から選ばれる少なくとも 1つと、 前記 2以上のトンネ ル層から選ばれる少なくとも 1つとを含み、 かつ
2以上の記録導線をさらに含み、 前記 2以上の磁気抵抗素子から選ばれ、 互 ヽに隣接する一対の磁気抵抗素子の間に、 前記 2以上の記録導線から選ば れる少なくとも 1本の記録導線が配置されている請求項 1に記載の磁気メモ ya
4. 前記 2以上のメモリ層から選ばれる少なくとも 2つの層を含む磁気抵抗 素子を含み、 前記少なくとも 2つの層に、 磁化反転により生じる抵抗変化が 互いに相違する 2つのメモリ層が含まれる請求項 1に記載の磁気メモリ。
5. 前記 2以上のトンネル層が、 互いに膜厚が相違する 2つのトンネル層を 含む請求項 1に記載の磁気メモリ。
6. 前記 2以上のメモリ層から選ばれる N番目のメモリ層における抵抗変化 を ARN、 前記 ARNの最小値を ARmin、 前記 Δ RNの最大値を Δ Rmaxと表 示したときに、 以下の関係式が成立する請求項 1に記載の磁気メモリ。
Δ Rmax≥ Δ RminX 2N1
ただし、 Nは 2以上の整数である。
7. 前記 2以上のメモリ層から選ばれる N番目のメモリ層における抵抗変化 を ARN、 M番目に小さい ARNを ARMと表示したときに、 以下の関係式が成 立する請求項 1に記載の磁気メモリ。
Δ RMX -ί! = Δ RM+1
ただし、 Nは 2以上の整数であり、 Mは 1以上 (N—1) 以下の整数であ る。
8. 前記 2以上のメモリ層が、 層の厚さ方向に隣接し、 磁化容易軸方向が互 いに相違する一対のメモリ層を含む請求項 1に記載の磁気メモリ。
9. 前記磁化容易軸方向がなす角度が 20° 以上 90° 以下である請求項 8 に記載の磁気メモリ。
10. 前記一対のメモリ層の少なくとも一方が、 2以上の磁性膜を含む積層 体である請求項 8に記載の磁気メモリ。
11. 前記 2以上のメモリ層と電気的に接続された非線形素子を含む請求項 1に記載の磁気メモリ。
1 2 . 請求項 1に記載の磁気メモリを層の面内方向に複数個配置した磁気メ モリ装置。
1 3 . 層の面内方向に隣接し、 磁ィヒ容易軸方向が互いに相違する一対のメモ リ層を含む請求項 1 2に記載の磁気メモリ装置。
1 4. 請求項 1に記載の磁気メモリを含むシステム L S I。
1 5 · 請求項 1に記載の磁気メモリの駆動方法であって、
前記 2以上のメモリ層から選ばれる少なくとも 1つの層における磁化反転 を、 当該少なくとも 1つの層を厚さ方向に通過する電流を含む複数の電流に より生じる磁界により行う磁気メモリの駆動方法。
1 6 . 前記複数の電流が、 前記厚さ方向に流れる電流を第 1電流として、 前 記 2以上のメモリ層の面内方向に沿って流れ、 前記磁化反転後の磁化方向に 沿つた磁界を発生させる第 2電流を含む請求項 1 5に記載の磁気メモリの駆 動方法。
1 7 . 前記第 1電流の印加を開始した後に、 前記第 2電流の印加を開始する 請求項 1 6に記載の磁気メモリの駆動方法。
1 8 . 前記複数の電流が、 .前記面内方向であって前記第 2電流とは異なる方 向に流れる第 3電流をさらに含み、 前記第 3電流の印加を開始した後に、 前 記第 2電流の印加を開始する請求項 1 7に記載の磁気メモリの駆動方法。
1 9 . 前記複数の電流が、 前記面内方向であって前記第 2電流とは異なる方 向に流れる第 3電流をさらに含み、 前記第 3電流から分岐して前記第 1電流 が供給される請求項 1 6に記載の磁気メモリの駆動方法。
2 0 . 前記 2以上のメモリ層から選ばれる 2つの層における磁化反転を、 少 なくとも、 前記 2つの層の間を伸長する導線を流れる電流により生じる磁界 を印加して、 同時に反転させる請求項 1 5に記載の磁気メモリの駆動方法。 2 1 . メモリ層を有する磁気メモリの駆動方法であって、
前記メモリ層における磁化反転を、 当該メモリ層を厚さ方向に通過する電 流を含む複数の電流により生じる磁界により行う磁気メモリの駆動方法。
2 2 . 前記複数の電流が、 前記厚さ方向に流れる電流を第 1電流として、 前 記メモリ層の面内方向に沿って流れ、 前記磁化反転後の磁ィヒ方向に沿った磁 界を発生させる第 2電流を含む請求項 2 1に記載の磁気メモリの駆動方法。
2 3 . 前記第 1電流の印加を開始した後に、 前記第 2電流の印加を開始する 請求項 2 2に記載の磁気メモリの駆動方法。
2 4 . 前記複数の電流が、 前記面内方向であって前記第 2電流とは異なる方 向に流れる第 3電流をさらに含み、 前記第 3電流の印加を開始した後に、 前 記第 2電流の印加を開始する請求項 2 3に記載の磁気メモリの駆動方法。 2 5 . 前記複数の電流が、 前記面内方向であって前記第 2電流とは異なる方 向に流れる第 3電流をさらに含み、 前記第 3電流から分岐して前記第 1電流 が供給される請求項 2 2に記載の磁気メモリの駆動方法。
PCT/JP2002/006093 2001-06-19 2002-06-19 Memoire magnetique et procede de commande associe, ainsi qu'appareil de memoire magnetique comprenant celle-ci WO2002103798A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02736165A EP1398835A4 (en) 2001-06-19 2002-06-19 MAGNETIC MEMORY AND ASSOCIATED CONTROL METHOD, AND MAGNETIC MEMORY DEVICE COMPRISING THE SAME
US10/695,731 US6950333B2 (en) 2001-06-19 2003-10-24 Magnetic memory and method for driving the same, and magnetic memory device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001184480 2001-06-19
JP2001-184480 2001-06-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/695,731 Continuation US6950333B2 (en) 2001-06-19 2003-10-24 Magnetic memory and method for driving the same, and magnetic memory device using the same

Publications (1)

Publication Number Publication Date
WO2002103798A1 true WO2002103798A1 (fr) 2002-12-27

Family

ID=19024233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006093 WO2002103798A1 (fr) 2001-06-19 2002-06-19 Memoire magnetique et procede de commande associe, ainsi qu'appareil de memoire magnetique comprenant celle-ci

Country Status (4)

Country Link
US (1) US6950333B2 (ja)
EP (1) EP1398835A4 (ja)
CN (1) CN1270323C (ja)
WO (1) WO2002103798A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1403875A3 (en) * 2002-09-30 2004-12-01 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory allowing high density

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3906212B2 (ja) * 2003-03-11 2007-04-18 株式会社東芝 磁気ランダムアクセスメモリ
KR100612854B1 (ko) * 2004-07-31 2006-08-21 삼성전자주식회사 스핀차지를 이용한 자성막 구조체와 그 제조 방법과 그를구비하는 반도체 장치 및 이 장치의 동작방법
JP4941649B2 (ja) * 2004-08-25 2012-05-30 日本電気株式会社 メモリセル及び磁気ランダムアクセスメモリ
WO2006022367A1 (ja) * 2004-08-26 2006-03-02 Nec Corporation 磁気抵抗素子及び磁気ランダムアクセスメモリ
RU2310928C2 (ru) 2004-10-27 2007-11-20 Самсунг Электроникс Ко., Лтд. Усовершенствованное многоразрядное магнитное запоминающее устройство с произвольной выборкой и способы его функционирования и производства
KR100590563B1 (ko) 2004-10-27 2006-06-19 삼성전자주식회사 멀티 비트 자기 메모리 소자와 그 동작 및 제조 방법
KR100604913B1 (ko) 2004-10-28 2006-07-28 삼성전자주식회사 멀티 비트 셀 어레이 구조를 가지는 마그네틱 램
US7272028B2 (en) * 2005-05-27 2007-09-18 Infineon Technologies Ag MRAM cell with split conductive lines
JP2006332527A (ja) * 2005-05-30 2006-12-07 Renesas Technology Corp 磁気記憶素子
FR2889623A1 (fr) * 2005-08-03 2007-02-09 St Microelectronics Sa Resistance variable
DE102005040557A1 (de) * 2005-08-26 2007-03-01 Infineon Technologies Ag Integrierte Speicherschaltung mit einem resistiven Speicherelement sowie ein Verfahren zur Herstellung einer solchen Speicherschaltung
US7345855B2 (en) * 2005-09-07 2008-03-18 International Business Machines Corporation Tunnel barriers based on rare earth element oxides
US7539047B2 (en) * 2007-05-08 2009-05-26 Honeywell International, Inc. MRAM cell with multiple storage elements
US8719610B2 (en) 2008-09-23 2014-05-06 Qualcomm Incorporated Low power electronic system architecture using non-volatile magnetic memory
US7940551B2 (en) * 2008-09-29 2011-05-10 Seagate Technology, Llc STRAM with electronically reflective insulative spacer
US7826256B2 (en) * 2008-09-29 2010-11-02 Seagate Technology Llc STRAM with compensation element
US8411494B2 (en) 2009-07-21 2013-04-02 Alexander Mikhailovich Shukh Three-dimensional magnetic random access memory with high speed writing
US8331141B2 (en) 2009-08-05 2012-12-11 Alexander Mikhailovich Shukh Multibit cell of magnetic random access memory with perpendicular magnetization
US9257483B2 (en) 2010-01-13 2016-02-09 Hitachi, Ltd. Magnetic memory, method of manufacturing the same, and method of driving the same
US8988934B2 (en) 2010-07-27 2015-03-24 Alexander Mikhailovich Shukh Multibit cell of magnetic random access memory with perpendicular magnetization
US8976577B2 (en) 2011-04-07 2015-03-10 Tom A. Agan High density magnetic random access memory
US9070456B2 (en) 2011-04-07 2015-06-30 Tom A. Agan High density magnetic random access memory
JP2021044444A (ja) * 2019-09-12 2021-03-18 キオクシア株式会社 磁気記憶装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306014A (ja) * 1995-04-28 1996-11-22 Matsushita Electric Ind Co Ltd メモリー素子
JPH11354728A (ja) * 1998-06-09 1999-12-24 Canon Inc 磁性薄膜メモリおよびその記録再生駆動方法
US6169689B1 (en) * 1999-12-08 2001-01-02 Motorola, Inc. MTJ stacked cell memory sensing method and apparatus
JP2001015611A (ja) * 1999-07-01 2001-01-19 Mitsubishi Electric Corp 半導体装置の製造方法
JP2001338487A (ja) * 2000-03-24 2001-12-07 Sharp Corp 磁気メモリ、磁気メモリの製造方法
JP2002246567A (ja) * 2001-02-14 2002-08-30 Toshiba Corp 磁気ランダムアクセスメモリ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19744095A1 (de) * 1997-10-06 1999-04-15 Siemens Ag Speicherzellenanordnung
US5930164A (en) * 1998-02-26 1999-07-27 Motorola, Inc. Magnetic memory unit having four states and operating method thereof
US5982660A (en) * 1998-08-27 1999-11-09 Hewlett-Packard Company Magnetic memory cell with off-axis reference layer orientation for improved response
JP2001084756A (ja) * 1999-09-17 2001-03-30 Sony Corp 磁化駆動方法、磁気機能素子および磁気装置
TW495745B (en) * 2000-03-09 2002-07-21 Koninkl Philips Electronics Nv Magnetic field element having a biasing magnetic layer structure
JP4050446B2 (ja) * 2000-06-30 2008-02-20 株式会社東芝 固体磁気メモリ
US6587370B2 (en) * 2000-11-01 2003-07-01 Canon Kabushiki Kaisha Magnetic memory and information recording and reproducing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306014A (ja) * 1995-04-28 1996-11-22 Matsushita Electric Ind Co Ltd メモリー素子
JPH11354728A (ja) * 1998-06-09 1999-12-24 Canon Inc 磁性薄膜メモリおよびその記録再生駆動方法
JP2001015611A (ja) * 1999-07-01 2001-01-19 Mitsubishi Electric Corp 半導体装置の製造方法
US6169689B1 (en) * 1999-12-08 2001-01-02 Motorola, Inc. MTJ stacked cell memory sensing method and apparatus
JP2001338487A (ja) * 2000-03-24 2001-12-07 Sharp Corp 磁気メモリ、磁気メモリの製造方法
JP2002246567A (ja) * 2001-02-14 2002-08-30 Toshiba Corp 磁気ランダムアクセスメモリ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1398835A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1403875A3 (en) * 2002-09-30 2004-12-01 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory allowing high density
US6949779B2 (en) 2002-09-30 2005-09-27 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory
US7470963B2 (en) 2002-09-30 2008-12-30 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory

Also Published As

Publication number Publication date
US20040085807A1 (en) 2004-05-06
EP1398835A1 (en) 2004-03-17
US6950333B2 (en) 2005-09-27
CN1529910A (zh) 2004-09-15
EP1398835A4 (en) 2006-03-29
CN1270323C (zh) 2006-08-16

Similar Documents

Publication Publication Date Title
WO2002103798A1 (fr) Memoire magnetique et procede de commande associe, ainsi qu&#39;appareil de memoire magnetique comprenant celle-ci
JP4371781B2 (ja) 磁気セル及び磁気メモリ
US8456898B2 (en) Magnetic element having perpendicular anisotropy with enhanced efficiency
US9042165B2 (en) Magnetoresistive effect element, magnetic memory cell using same, and random access memory
KR100413174B1 (ko) 자기 저항 소자
US8604569B2 (en) Magnetoresistive element
JP3660927B2 (ja) 磁気抵抗効果素子とこれを用いた磁気抵抗効果型磁気ヘッド、磁気記録装置および磁気抵抗効果型メモリー装置
US6845038B1 (en) Magnetic tunnel junction memory device
CN100533589C (zh) 磁单元和磁存储器
JP2771128B2 (ja) 磁気抵抗効果素子、これを用いた磁気抵抗効果型ヘッド、メモリー素子、及び増幅素子
TWI222763B (en) Magnetic logic element and magnetic logic element array
US6839273B2 (en) Magnetic switching device and magnetic memory using the same
US20120155164A1 (en) Multibit Cell of Magnetic Random Access Memory With Perpendicular Magnetization
WO2010137679A1 (ja) 磁気抵抗効果素子及びそれを用いたランダムアクセスメモリ
JP3699954B2 (ja) 磁気メモリ
JP2009521807A (ja) スピントランスファー方式により電流書き込みを行ない、かつスピントランスファートルクによる書き込み電流密度を小さくした磁性素子
KR20080029852A (ko) 자기저항 효과 소자 및 자기저항 랜덤 액세스 메모리
US20130001717A1 (en) Perpendicular mram with mtj including laminated magnetic layers
JP2003008105A (ja) 磁気抵抗素子および磁気メモリ
JP6567272B2 (ja) 磁性多層スタック
JP2003298023A (ja) 磁気メモリ及び磁気メモリ装置
JP3527230B2 (ja) 磁気メモリの駆動方法
JP2004014806A (ja) 磁気抵抗素子および磁気メモリ
JP4387955B2 (ja) 磁気抵抗効果素子
JP2012186303A (ja) 磁気メモリ及び磁気メモリ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: EXCEPT/SAUF US, EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR)

WWE Wipo information: entry into national phase

Ref document number: 2002736165

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10695731

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 028121341

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002736165

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002736165

Country of ref document: EP