[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2002012712A1 - Brennstoffeinspritzventil - Google Patents

Brennstoffeinspritzventil Download PDF

Info

Publication number
WO2002012712A1
WO2002012712A1 PCT/DE2001/002961 DE0102961W WO0212712A1 WO 2002012712 A1 WO2002012712 A1 WO 2002012712A1 DE 0102961 W DE0102961 W DE 0102961W WO 0212712 A1 WO0212712 A1 WO 0212712A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
armature
injection valve
valve according
extension
Prior art date
Application number
PCT/DE2001/002961
Other languages
English (en)
French (fr)
Inventor
Thomas Sebastian
Matthias Boee
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2002517968A priority Critical patent/JP4838482B2/ja
Priority to EP01960142A priority patent/EP1309791B1/de
Priority to DE50110166T priority patent/DE50110166D1/de
Priority to US10/110,253 priority patent/US6857584B2/en
Publication of WO2002012712A1 publication Critical patent/WO2002012712A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0635Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding
    • F02M51/066Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0635Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding
    • F02M51/0642Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto
    • F02M51/0653Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto the valve being an elongated body, e.g. a needle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0635Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding
    • F02M51/0642Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto
    • F02M51/0653Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto the valve being an elongated body, e.g. a needle valve
    • F02M51/0657Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto the valve being an elongated body, e.g. a needle valve the body being hollow and its interior communicating with the fuel flow

Definitions

  • the invention relates to a fuel injector according to the preamble of the main claim.
  • an electromagnetically actuated fuel injection valve in which an armature interacts with an electrically excitable solenoid for electromagnetic actuation and the stroke of the armature is transmitted to a valve closing body via a valve needle.
  • the valve closing body interacts with a valve seat surface to form a sealing seat.
  • Several fuel channels are provided in the anchor.
  • the armature is reset using a return spring.
  • Magnet coil interacts.
  • the stroke of the armature is transmitted to a valve closing body via a valve needle.
  • a disadvantage of the fuel injection valves known from the abovementioned publications is, in particular, the lack of free flow space for the fuel, which is caused by the arrangement of the valve needle in a recess of the armature is conditioned. This results in large pressure differences between the upper and lower side of the armature, especially during the movement of the armature, since pressure equalization is impeded.
  • the diameter of holes drilled in the armature to allow the fuel to pass through is limited due to the necessary armature pole area and the limited space available.
  • Fuel injector and the resulting viscosity differences causes scatter in the switching times of the fuel injector, which in addition to the extended switching times lead to the metering of unevenly large amounts of fuel.
  • the fuel injector according to the invention with the characterizing features of the main claim has the advantage that the fuel can flow freely through the armature through a large armature bore and the openings which are provided in a cup-shaped extension of the armature.
  • the armature bore has the same diameter as an inner longitudinal opening of the inner pole of the magnet coil.
  • the pressure difference between the top and bottom of the anchor can thus be reduced to an arbitrarily small value.
  • the larger anchor hole can also reduce the effective anchor area and thus reduce the remaining pressure force acting on the anchor. This leads to shorter valve opening times and a reduction in the variation in switching times due to fluctuations in the pressure difference.
  • the pot-shaped extension of the armature can be formed in one piece with it or consist of two separate components.
  • the extension preferably has at least two openings, which accommodates a uniform flow through the extension. However, several or only one opening are also possible. The openings are accordingly separated from one another by an equal number of circular segments of the hollow cylindrical extension.
  • the components corresponding to the implementation of this principle are all arranged downstream of the armature, as a result of which the flow through the armature is not impeded.
  • FIG. 1A shows a schematic section through a first exemplary embodiment of a fuel injector according to the invention
  • FIG. 1B shows a section along the line IB-IB in Fig. 1,
  • Fig. 2 shows a schematic section through a second
  • Fig. 3 shows a schematic section through a third
  • Fig. 1 shows in a section . highly schematic sectional illustration of a longitudinal section through a first exemplary embodiment of a fuel injector 1 according to the invention.
  • the fuel injector 1 has a solenoid 2, which interacts with an armature 3.
  • the magnet coil 2 interacts with an inner pole 4 and an outer pole 5.
  • the outer pole 5 continues on the downstream side in a valve housing 6.
  • the armature 3 has an extension 7 which is of hollow cylindrical design and is arranged on a downstream side 34 of the armature 3.
  • the extension 7 has a base part 24 which closes off the extension 7 on the outflow side.
  • a return spring 9- is arranged in a 'inner recess 8, which is formed in the armature 3 and the extension 7, a return spring 9- is arranged.
  • the return spring 9 is preloaded by an adjusting sleeve 10 inserted into the inner pole 4 in a recess 11 of the inner pole 4.
  • a valve needle 13 is supported on an downstream end 12 of the extension 7.
  • the valve needle 13 is preferably welded to the bottom part 24 of the extension 7.
  • the valve needle 13 has at a downstream end 37 a valve closing body 14 which cooperates with a valve seat surface 16 formed on a valve seat body 15 to form a sealing seat.
  • the fuel injector 1 shown in FIG. 1A is an inwardly opening fuel injector 1.
  • a spray opening 17 is formed in the valve seat body 15.
  • the fuel ' is supplied via a central fuel supply 18, flows through the recess 11 of internal pole 4, and by the recess 8 of the extension 7, and exits through openings 20, which are characterized in more detail in Fig. 1B, from' the extension 7 from.
  • the fuel then flows through the valve housing 6 to the sealing seat.
  • the valve closing body 14 In the idle state of the fuel injection valve 1, the valve closing body 14 is held in sealing contact with the valve seat surface 16 by the pretensioning of the return spring 9. The fuel injector 1 is thus closed. If an excitation current is supplied to the magnet coil 2, the armature 3 is pulled in the direction of the inner pole 4 against the force of the return spring 9 after the magnetic field has built up sufficiently. After passing through an armature stroke predetermined by the size of a working gap 19, the armature 3 strikes an armature stop 22 formed on the inner pole 4 with an armature face 21 that is soaped against inflow. Fuel flows from the central fuel supply 18 through the recesses 11 and 8 and the openings 20 in the direction of the sealing seat.
  • Fig. '1B shows output point in a schematic sectional representation a section through the extension 7 taken along the line IB-IB in Fig. 1A.
  • the extension 7 is hollow cylindrical in its basic form and exists. of several segments 23, preferably at least two, between which there is a corresponding number of openings 20 in the circumferential direction.
  • the one shell part of the extension? forming segments 23 are preferably formed in one piece with the bottom part 24 of the extension 7.
  • the return spring 9 is supported on the bottom part 24.
  • the valve needle 13 is supported on the side of the base part 24 opposite the return spring 9, as described in more detail with reference to FIG. 1A.
  • the fuel which flows in centrally, flows out of the extension 7 through the recess 8 of the extension 7 and through the openings 20.
  • the size of the recess 8 and the openings 20 between the segments 23 ensures that the fuel can flow through the fuel injector 1 without being significantly stowed on the armature 3.
  • the fuel injection valve 1 according to the invention can be operated particularly advantageously if the so-called pre-stroke principle is used.
  • the armature 3 is initially accelerated and undergoes a partial stroke during which the valve needle 13 is not yet taken along. Only after a first armature stop has been reached is the valve needle taken along by suitable devices against the force of a second return spring.
  • the fuel injector 1 is additionally constructed so that the additional components which enable the partial stroke are arranged downstream of the armature 3 in the outflow direction, the magnetic circuit remains unaffected by the partial stroke.
  • the diameter of the inner pole 4 can be be chosen smaller, whereby the effective magnetic pole area and thus the acting magnetic force are increased.
  • FIGS. 2 and 3 Two exemplary embodiments of the fuel injection valve 1 according to the invention in connection with the pre-stroke principle are described in more detail with reference to FIGS. 2 and 3. Corresponding components are provided in FIGS. 2 and 3 with the same reference numerals as in FIG. 1A.
  • FIG. 2 shows a comparison with FIG. 1A somewhat enlarged partial sectional view of a 'second
  • Embodiment of the fuel injector 1 according to the invention Embodiment of the fuel injector 1 according to the invention.
  • the extension 7 of the armature 3 has a recess 25 in the base part 24, which is penetrated by the valve needle 13.
  • the valve needle 13 At its inlet end 36, the valve needle 13 has a flange 26 which has a projecting collar 27.
  • the valve needle 13 is preferably welded to the flange 26, but can also be made in one piece with this.
  • the first return spring 9 is supported on the collar 27 of the flange 26.
  • a second return spring 28 is clamped between the collar 27 and the base part 24.
  • the spring constant of the second return spring 28 is considerably smaller than the spring constant of the first return spring 9 in order to enable the armature 3 to move without the valve needle 13.
  • the first return spring 9 presses the valve needle 13 over the collar 27 of the flange 26 onto the sealing seat.
  • the armature 3 lies on an armature support 29 which is annular in the valve housing 6. If the solenoid 2, not shown in FIG. 2, is energized, the armature 3 moves in the direction of the inner pole 4. At this time, the armature 3 only has to move against the force of the second return spring 28, since the spring constant of the second Return spring 28 is so small, the armature 3 .that in its movement is not significantly inhibited 'is, however, the valve needle 13 remains in the rest ,.
  • the armature strikes 3 with its Zulaufseifigen armature face 21 on the armature stop 22 on the inner pole. 4
  • the fuel injector 1 remains in the open position. If the coil current is switched off, the armature 3 falls from the inner pole 4 due to the force of the first return spring 9 together with the flange 26 and the valve needle 13 which is non-positively connected to the flange 26. The closing movement takes place in one go over the entire stroke, as a result of which the fuel injection valve 1 can be closed quickly.
  • FIG. 3 shows an excerpted, schematic sectional illustration of a third exemplary embodiment of the fuel injector 1 according to the invention in connection with the pre-stroke principle.
  • valve needle 13 in the present exemplary embodiment is designed as a hollow cylinder and thereby takes over the function of the rudimentary extension 7.
  • the valve needle 13 has transverse outflow openings 31.
  • the extension 7 of the armature 3 is designed without a bottom part 24 in the present exemplary embodiment, but is instead ' welded to a sleeve 32 which is penetrated by the valve needle 13.
  • the valve needle 13 has a collar 33 at its inlet-soapy end, which is pressed against the outflow-side armature end face 34 by the second return spring 28, which is clamped between the sleeve 32 and the collar 33.
  • the first return spring 9 is guided in the recess 8 of the armature 3 and is supported on the inlet end 36 of the valve needle 13.
  • the sum of the cross-sectional areas of the transverse outflow openings 31 of the valve needle 13 should be greater than or at least equal to the cross-sectional area of the recess 8 of the armature 3.
  • the armature 3 As in the exemplary embodiment in FIG. 2, first runs through a preliminary stroke which corresponds to a height of the preliminary stroke gap 30 between the sleeve 32 and the collar 33 of the valve needle 13. As soon as the sleeve 32 strikes the collar 33, the armature 3 takes the valve needle 13 against the force of the first return spring 9. After passing through the forward stroke or closing the working gap 19 between the armature end face 21, which is ready for intake and the armature stop 22 of the inner pole 4, the armature 3 strikes the inner pole 4. As long as the solenoid coil 2 is energized, the fuel injector 1 remains in the open position.
  • the armature 3 drops from the inner pole 4 after the magnetic field is sufficiently reduced by the force of the first return spring 9 and the fuel injector 1 is closed.
  • An inner recess 35 of the valve needle 13 is slightly smaller in diameter than the recess 11 of the inner pole 4 or the recess 8 of the armature 3. As a result, a slight back pressure can form on the collar 33, which supports the functioning of the fuel injection valve 1 by making a small contribution to the closing force.
  • the invention is. not limited to the illustrated embodiments and z. B. also applicable for outward opening fuel injection valves 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Ein Brennstoffeinspritzventil (1), insbesondere ein Brennstoffeinspritzventil (1) für Brennstoffeinspritzanlagen von Brennkraftmaschinen, weist eine Magnetspule (2), einen in einer Schliessrichtung von einer Rückstellfeder (9) beaufschlagten Anker (3) und eine mit dem Anker (3) kraftschlüssig in Verbindung stehende Ventilnadel (13) zur Betätigung eines Ventilschliesskörpers (14), der zusammen mit einer Ventilsitzfläche (16) einen Dichtsitz bildet, auf. Der Anker (3) weist einen topfförmigen axialen Fortsatz (7) auf, in welchem mindestens eine Öffnung (20) ausgebildet ist.

Description

Brennstoffeinspritzventil
Stand der Technik
Die Erfindung geht aus von einem Brennstoffeinspritzventil nach der Gattung des Hauptanspruchs .
Aus der DE 196 26 576 AI ist bereits ein elektromagnetisch betätigbares Brennstoffeinspritzventil bekannt, bei welchem zur elektromagnetischen Betätigung ein Anker mit einer elektrisch erregbaren Magnetspule zusammenwirkt und der Hub des Ankers über eine Ventilnadel auf einen Ventilschließkörper übertragen wird. Der Ventilschließkörper wirkt mit einer Ventilsitzfläche zu einem Dichtsitz zusammen. Im Anker sind mehrere Brennstoffkanäle vorgesehen. Die Rückstellung des Ankers erfolgt mit einer Rückstellfeder.
Auch aus der DE 195 03 821 AI ist ein elektromagnetisch
"betätigbares Brennstoffeinspritzventil bekannt, bei welchem ebenfalls ein Anker mit einer elektrisch erregbaren
Magnetspule zusammenwirkt. Der Hub des Ankers wird über eine Ventilnadel auf einen Ventilschließkörper übertragen.
Nachteilig an den aus den obengenannten Druckschriften bekannten Brennstoffeinspritzventilen ist insbesondere der mangelnde freie Strömungsraum für den Brennstoff, was durch die Anordnung der Ventilnadel in einer Ausnehmung des Ankers bedingt ist. Dadurch kommt es, insbesondere während der Bewegung des Ankers, zu großen Druckdifferenzen zwischen- der Ankerober- und der Ankerunterseite, da der Druckausgleich behindert wird. Der Durchmesser von Bohrungen, welche im Anker angebracht sind, um dem Brennstoff den Durchtritt zu ermöglichen, ist aufgrund der notwendigen Ankerpolfläche und des geringen räumlichen Platzangebots begrenzt.
Nachteilig ist ferner, daß die hydraulische Druckkraft durch den Brennstoff auf den Anker insbesondere zu größeren Ventilöffnungszeiten führt, was sich entsprechend auf die zugemessene Brennstoffmenge auswirkt. Andererseits werden durch Schwankungen in der Druckdifferenz, beispielsweise bei unterschiedlichen Temperaturen des
Brennstoffeinspritzventils und dadurch resultierenden Viskositätsunterschieden, Streuungen in den Schaltzeiten des Brennstoffeinspritzventils verursacht, welche zusätzlich zu den verlängerten Schaltzeiten zur Zumessung ungleichmäßig großer Brennstoffmengen führen.
Vorteile der Erfindung
Das erfindungsgemäße Brennstoffeinspritzventil mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß durch eine große Ankerbohrung sowie die Öffnungen, welche in einem topfförmigen Fortsatz des Ankers angebracht sind, der Brennstoff ungehindert den Anker durchströmen kann. Idealerweise weist die Ankerbohrung den gleichen Durchmesser auf wie eine innere Längsδffnung des Innenpols der Magnetspule. Die Druckdifferenz zwischen Ankeroberseite und -Unterseite ist dadurch auf einen beliebig kleinen Wert verkleinerbar. Durch die größere Ankerbohrung kann zudem die wirksame Ankerfläche verkleinert und damit die restliche auf den Anker wirkende Druckkraft reduziert werden. Dies führt zu kürzeren Ventilöffnungszeiten und zu einer Reduzierung der Streuung in den Schaltzeiten durch Schwankungen in der Druckdifferenz . Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterentwicklungen des ' im Hauptanspruch angegebenen Brennstoffeinspritzventils möglich.
Der topfför ige Fortsatz des Ankers kann mit diesem einstückig ausgebildet sein oder aus zwei getrennten Bauteilen bestehen.
Der Fortsatz weist vorzugsweise mindestens zwei Öffnungen auf, was einer gleichmäßigen Durchströmung des Fortsatzes entgegenkommt. Es sind jedoch auch mehrere oder nur eine Öffnung möglich. Die Öffnungen sind dementsprechend durch eine gleich große Anzahl von Kreissegementen des hohlzylindrisc ausgeführten Fortsatzes voneinander getrennt .
Von Vorteil ist insbesondere die Verbindung der erfindungsgemäßen Maßnahmen mit dem sogenannten Vorhubprinzip, welches ebenfalls verkürzte Öffnungszeiten ermöglicht .
Vorteilhafterweise sind die zur Umsetzung dieses Prinzips entsprechenden Bauteile sämtlich in Abströmrichtung nach dem Anker angeordnet, wodurch die Durchströmung des Ankers nicht behindert wird.
Besonders vorteilhaft ist die Verwendung einer hohlzylindrischen Ventilnadel, welche axial verschiebbar in dem Fortsatz des Ankers angeordnet ist und von Brennstoff durchströmt wird.
Zeichnung
' Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen: Fig. 1A einen schematischen Schnitt durch ein erstes Ausführungsbeispiel eines erfindungsgemäßen Brennstoffeinspritzventils,
Fig. 1B einen Schnitt entlang der Linie IB-IB in Fig. 1,
Fig. 2 einen schematischen Schnitt durch ein zweites
Ausführungsbeispiel des erfindungsgemäßen
Brennstoffeinspritzventils, und
Fig. 3 einen schematischen Schnitt durch ein drittes
Ausführungsbeispiel des erfindungsgemäßen
Brennstoffeinspritzventils .
Beschreibung der Ausführungsbeispiele
Fig. 1 zeigt in einer ausschnittsweisen, . stark schematisierten Schnittdarstellung einen Längsschnitt durch ein erstes Ausführungsbeispiel eines erfindungsgemäßen Brennstoffeinspritzventils 1.
Das Brennstoffeinspritzventil 1 weist eine Magnetspule 2 auf-, welche mit einem Anker 3 zusammenwirkt. Die Magnetspule 2 wirkt mit einem Innenpol 4 und einem Außenpol 5 zusammen. Der Außenpol 5 setzt sich abströmseitig in einem Ventilgehäuse 6 fort.
Der •• Anker 3 weist einen Fortsatz 7 auf, welcher hohlzylindrisch ausgebildet ist und an einer abstromseitigen Seite 34 des Ankers 3 angeordnet ist. Der Fortsatz 7 weist ein Bodenteil 24 auf, der den Fortsatz 7 abströmseitig abschließt. In einer 'inneren Ausnehmung 8, welche in dem Anker 3 und dem Fortsatz 7 ausgebildet ist, ist eine Rückstellfeder 9- angeordnet. Die Rückstellfeder 9 wird durch eine in den Innenpol 4 eingeschobene Einstellhülse 10 in einer Ausnehmung 11 des Innenpols 4 auf Vorspannung gebracht . An einem abstromseitigen Ende 12 des Fortsatzes 7 stützt sich eine Ventilnadel 13 ab. Die Ventilnadel 13 ist mit dem Bodenteil 24 des Fortsatzes 7 vorzugsweise verschweißt. Die Ventilnadel 13 weist an einem abstromseitigen Ende 37 einen Ventilschließkörper 14 auf, der mit einer an einem Ventilsitzkörper 15 ausgebildeten Ventilsitzfläche 16 zu einem Dichtsitz zusammenwirkt.
Bei dem in Fig. 1A dargestellten Brennstoffeinspritzventil 1 handelt es sich um ein nach innen öffnendes Brennstoffeinspritzventil 1. In dem Ventilsitzkörper 15 ist eine Abspritzöffnung 17 ausgebildet. Der Brennstoff' wird über eine zentrale Brennstoffzufuhr 18 zugeleitet, strömt durch die Ausnehmung 11 des Innenpols 4 sowie durch die Ausnehmung 8 des Fortsatzes 7 und tritt durch Öffnungen 20, welche in Fig. 1B näher gekennzeichnet sind, aus' dem Fortsatz 7 aus. Danach strömt der Brennstoff durch das Ventilgehäuse 6 zum Dichtsitz.
Im Ruhezustand des Brennstoffeinspritzventils 1 wird der Ventilschließkörper 14 durch die Vorspannung der Rückstellfeder 9 in dichtender Anlage an der Ventilsitzfläche 16 gehalten. Das Brennstoffeinspritzventil 1 ist somit geschlossen. Wird der Magnetspule 2 ein Erregerstrom zugeführt , wird der Anker 3 entgegen der Kraft der Rückstellfeder 9 nach genügendem Aufbau des Magnetfeldes in Richtung Innenpol 4 gezogen. Nach Durchlaufen eines durch die Größe eines ' Arbeitsspalts 19 vorgegebenen Ankerhubs schlägt der Anker 3 mit einer Zulaufseifigen Ankerstirnseite 21 an einen am Innenpol 4 ausgebildeten Ankeranschlag 22 an. Brennstoff strömt von der zentralen Brennstoffzufuhr 18 durch die Ausnehmungen 11 und 8 sowie die Öffnungen 20 in Richtung Dichtsitz.
Wird der die Magnetspule 2 erregende Strom abgeschaltet, fällt nach genügendem Abbau des Magnetfeldes der Anker 3 durch die Kraft der Rückstellfeder 9 vom Innenpol 4 ab, wodurch sich die Ventilnadel 13 in Abströmrichtung bewegt, der Ventilschließkörper 14 auf der Ventilsitz läche 16 aufsetzt und das Brennstoffeinspritzventil 1 geschlossen wird.
Fig.' 1B zeigt in einer auszugsweisen schematisierten Schnittdarstellung einen Schnitt durch den Fortsatz 7 entlang der Linie IB-IB in Fig. 1A.
Der Fortsatz 7 ist in seiner Grundform hohlzylindrisch ausgeführt und besteht. aus mehreren Segmenten 23, vorzugsweise mindestens zwei, zwischen denen sich in Umf ngsrichtung eine entsprechende Anzahl von Öffnungen 20 befindet. Die ein Mantelteil des Fortsatzes? bildenden Segmente 23 sind vorzugsweise einstückig mit dem Bodenteil 24 des Fortsatzes 7 ausgebildet. Auf dem Bodenteil 24 stützt sich die Rückstellfeder 9 ab. An der der Rückstellfeder 9 gegenüberliegenden Seite des Bodenteils 24 stützt sich die Ventilnadel 13 ab, wie anhand von Fig. 1A näher beschrieben. Der Brennstoff, welcher zentral zufließt, strömt durch die Ausnehmung 8 des Fortsatzes 7 und durch die Öffnungen 20 aus dem Fortsatz 7 heraus. Durch die Größe der Ausnehmung 8 sowie der Öffnungen 20 zwischen den Segmenten 23 wird sichergestellt, daß der Brennstoff das Brennstoffeinspritzventil 1 durchfließen kann, ohne sich signifikant an dem Anker 3 zu stauen.
Das erfindungsgemäße Brennstoffeinspritzventil 1 läßt sich besonders vorteilhaft betreiben, wenn das sogenannte Vorhubprinzip verwendet wird. Dabei wird der Anker 3 zunächst vorbeschleunigt und durchläuft einen Teilhub, während dessen die Ventilnadel 13 noch nicht mitgenommen wird. Erst nach Erreichen eines ersten Ankeranschlags wird die Ventilnadel über geeignete Vorrichtungen gegen die Kraft einer zweiten Rückstellfeder mitgenommen.
Wird ' zusätzlich das Brennstoffeinspritzventil 1 so konstruiert, daß die den Teilhub ermöglichenden zusätzlichen Bauteile in Abströmrichtung nach dem Anker 3 angeordnet sind, bleibt der Magnetkreis durch den Teilhub unbeeinflußt. Dadurch kann unter anderem der Durchmesser des Innenpols 4 kleiner gewählt werden, wodurch die effektive magnetische Polfläche und somit die wirkende Magnetkraft vergrößert werden.
Anhand der Figuren 2 und 3 werden zwei Ausführungsbeispiele des erfindungsgemäßen Brennstoffeinspritzventils 1 in Verbindung mit dem Vorhubprinzip näher beschrieben. Übereinstimmende Bauteile sind in den Figuren 2 und 3 mit gegenüber Fig. 1A übereinstimmenden 'Bezugszeichen versehen.
Fig. 2 zeigt in einer gegenüber Fig. 1A etwas vergrößerten teilweisen Schnittdarstellung ein ' zweites
Ausführungsbeispiel des erfindungsgemäßen Brennstoffeinspritzventils 1.
Um das Prinzip des Vorhubs einsetzen zu können, weist der Fortsatz 7 des Ankers 3 im Bodenteil 24 eine Ausnehmung 25 auf, welche von der Ventilnadel 13 durchgriffen wird. An ihrem Zulaufseifigen Ende 36 weist die Ventilnadel 13 einen Flansch 26 auf, der einen hervorkragenden Kragen 27 besitzt. Die Ventilnadel 13 ist mit dem Flansch 26 vorzugsweise verschweißt, kann aber auch mit diesem einstückig ausgeführt sein. Auf dem Kragen 27 des Flansches 26 stützt sich die erste Rückstellfeder 9 ab. Zwischen dem Kragen 27 und dem Bodenteil 24 ist eine zweite Rückstellfeder 28 eingespannt. Die Federkonstante der zweiten Rückstellfeder 28 ist dabei erheblich kleiner als die Federkonstante der ersten Rückstellfeder 9, um eine Bewegung des Ankers 3 ohne die Ventilnadel 13 zu ermöglichen.
Im Ruhezustand des Brennstoffeinspritzventils 1 drückt die erste Rückstellfeder 9 die Ventilnadel 13 über den Kragen 27 des Flansches 26 auf den Dichtsitz. Der Anker 3 liegt dabei auf einer Ankeraufläge 29, welche ringförmig im Ventilgehäuse 6 ausgebildet ist. Wird die in Fig. 2 nicht näher dargestellte Magnetspule 2 bestromt, bewegt sich der Anker 3 in Richtung des Innenpols 4. Zu diesem Zeitpunkt muß sich der Anker 3 lediglich entgegen der Kraft der zweiten Rückstellfeder 28 bewegen, da die Federkonstante der zweiten Rückstellfeder 28 so gering ist, .daß der Anker 3 in seiner Bewegung nicht wesentlich gehemmt' wird, die Ventilnadel 13 jedoch noch in Ruhe bleibt,. Nach Durchlaufen eines Vorhubs , welcher der Höhe eines Vorhubspalts 30 zwischen dem Bodenteil 24 des Fortsatzes 7 und dem Flansch 26 der Ventilnadel 13 entspricht, schlägt das Bodenteil 24 des Fortsatzes 7 am Flansch 26 an und der Anker 3 nimmt die Ventilnadel 13 über den Flansch 26 entgegen der Kraft der ersten Rückstellfeder 9 in Hubrichtung mit, wodurch das Brennstoffeinspritzventil 1 geöffnet wird.
Sobald der 'Arbeitsspalt 19 geschlossen ist, schlägt der Anker 3 mit seiner Zulaufseifigen Ankerstirnseite 21 am Ankeranschlag 22 des Innenpols 4 an. Solange die Magnetspule 2 bestromt wird, verbleibt das Brennstoffeinspritzventil 1 in der Offenstellung. Wird der Spulenstrom abgeschaltet, fällt der Anker 3 durch die Kraft der ersten Rückstellfeder 9 zusammen mit dem Flansch 26 und der mit dem Flansch 26 kraftschlüssig in Verbindung stehenden Ventilnadel 13 vom Innenpol 4 ab. Die Schließbewegung erfolgt in einem Zug über den Gesamthub, wodurch das Brennstoffeinspritzventil 1 schnell geschlossen werden kann.
Fig. 3 zeigt in einer auszugsweisen, schematisierten Schnittdarstellung ein drittes Ausführungsbeispiel des erfindungsgemäßen Brennstoffeinspritzventils 1 in Verbindung mit dem Vorhubprinzip .
Im Gegensatz zu dem in Fig. 2 dargestellten Ausführungsbeispiel ist die Ventilnadel 13 im vorliegenden Ausführungsbeispiel als Hohlzylinder gestaltet und übernimmt dadurch die Funktion des nurmehr rudimentär ausgebildeten Fortsatzes 7. Die Ventilnadel 13 weist quer verlaufende Ausströmöffnungen 31 auf. Der Fortsatz 7 des Ankers 3 ist im vorliegenden Ausführungsbeispiel ohne Bodenteil 24 ausgebildet, ist statt dessen' jedoch mit einer Hülse 32 verschweißt, welche von der Ventilnadel 13 durchgriffen wird. Die Ventilnadel 13 -weist an ihrem Zulaufseifigen Ende einen Kragen 33 auf, welcher durch die zweite Rückstellfeder 28, welche zwischen der Hülse 32 und dem Kragen 33 eingespannt ist, gegen die abströmseitige Ankerstirnfläche 34 gedrückt wird. In der Ausnehmung 8 des Ankers 3 ist die erste Rückstellfeder 9 geführt, welche sich auf dem Zulaufseifigen Ende 36 .der Ventilnadel 13 abstützt. Die Summe der Querschnittsflächen der quer verlaufenden Ausströmöffnungen 31 der Ventilnadel 13 sollte größer als oder wenigstens gleich der Querschnittsfläche der Ausnehmung 8 des Ankers 3 sein.
Wird die Magnetspule 2 bestromt, durchläuft der Anker 3 wie im Ausführungsbeispiel der Fig. 2 zunächst einen Vorhub, welcher einer Höhe des Vorhubspalts 30 zwischen der Hülse 32 und dem Kragen 33 der Ventilnadel 13 entspricht. Sobald die Hülse 32 am Kragen 33 anschlägt, nimmt der Anker 3 entgegen der Kraft der ersten Rückstellfeder 9 die Ventilnadel 13 mit. Nach Durchlaufen des Vorhubs bzw. Schließen des Arbeitsspalts 19 zwischen der zulaufseifigen Ankerstirnseite 21 und dem Ankeranschlag 22 des Innenpols 4 schlägt der Anker 3 am Innenpol 4 an. Solange die Magnetspule 2 bestromt wird, verbleibt das Brennstoffeinspritzventil 1 in geöffneter Stellung.
Wird der die Magnetspule 2 erregende Strom abgeschaltet, fällt der -Anker 3 nach genügendem Abbau des Magnetfeldes durch die Kraft der ersten Rückstellfeder 9 vom Innenpol 4 ab und das Brennstoffeinspritzventil 1 wird geschlossen.
Eine innere Ausnehmung 35 der Ventilnadel 13 ist im Durchmesser geringfügig kleiner als die Ausnehmung 11 des Innenpols 4 bzw. die Ausnehmung 8 des Ankers 3 ausgebildet. Dadurch kann sich auf dem Kragen 33 ein geringfügiger Staudruck ausbilden, der die Funktionsweise des Brennstoffeinspritzventils 1 durch einen geringfügigen Beitrag zur Schließkraft unterstützt . Die Erfindung ist . nicht auf die dargestellten Ausführungsbeispiele beschränkt und z. B. auch für nach außen öffnende Brennstoffeinspritzventile 1 anwendbar.

Claims

10
Ansprüche
15 1. Brennstoffeinspritzventil (1), insbesondere
• Brennstoffeinspritzventil (1) für Brennstoffeinspritzanlagen von Brennkraftmaschinen, mit einer Magnetspule (2) , einem in einer Schließrichtung von einer Rückstellfeder (9) beaufschlagten Anker (3) und einer mit dem Anker (3)
20 kraftschlüssig in Verbindung stehenden Ventilnadel (13) zur Betätigung eines Ventilschließkörpers (14), der zusammen mit einer Ventilsitzfläche (16) einen Dichtsitz bildet, dadurch gekennzeichnet, daß der Anker (3) einen topfförmigen axialen Fortsatz (7)
25 aufweist, in welchem mindestens eine Öffnung (20) ausgebildet ist.
2. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, 30 daß der Anker (3) eine innere Ausnehmung (8) aufweist, in welcher die Rückstellfeder (9) eingesetzt ist.
3. Brennstoffeinspritzventil nach Anspruch 1 oder 2 , dadurch gekennzeichnet,
35 daß der Fortsatz (7) aus mindestens zwei ein Mantelteil bildenden Segmenten (23) und einem Bodenteil (24) besteht.
4. Brennstoffeinspritzventil nach Anspruch 3 , dadurch gekennzeichnet, daß der Fortsatz (7) kraftschlüssig mit dem Anker (3) in Verbindung steht .
5. Brennstoffeinspritzventil nach Anspruch 4, dadurch gekennzeichnet, daß die Rückstellfeder (9) zwischen einer Einstellhülse (10) und dem Bodenteil (24) des Fortsatzes (7) eingespannt ist.
6. Brennstoffeinspritzventil nach einem 'der Ansprüche 3' bis 5, dadurch gekennzeichnet, daß die Ventilnadel (13) kraftschlüssig mit dem Fortsatz (7) in Verbindung steht .
7. Brennstoffeinspritzventil nach einem der Ansprüche 3 bis
6, dadurch gekennzeichnet, daß das Bodenteil (24) des Fortsatzes (7) eine Ausnehmung
(25) aufweist, welche von der Ventilnadel (13) durchgriffen wird.
8. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Ventilnadel (13) an einem Zulaufseifigen Ende (36) kraftschlüssig mit einem Flansch (26) verbunden ist.
9. Brennstoffeinspritzventil nach Anspruch 8, dadurch gekennzeichnet, daß der Flansch (26) einen Kragen (27) aufweist, auf dem sich die Rückstellfeder (9) abstützt.
10. Brennstoffeinspritzventil nach Anspruch 9, dadurch gekennzeichnet, daß sich der Anker (3) im Ruhezustand des Brennstoffeinspritzventils (1) auf einer Ankerauflage (29) •abstützt .
11. Brennstoffeinspritzventil nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß zwischen dem Kragen (27) des Flansches (26) und dem Bodenteil (24) eine zweite Rückstellfeder (28) eingespannt ist .
12. Brennstoffeinspritzventil nach einem der Ansprüche 1' bis 7, dadurch gekennzeichnet, daß der Fortsatz (7) mit einer Hülse (32) verbunden ist, in welcher die Ventilnadel (13) verschiebbar angeordnet ist.
13. Brennstoffeinspritzventil nach Anspruch 12, dadurch gekennzeichnet, daß das Zulaufseifige Ende (36) der Ventilnadel (13) einen Kragen (33) aufweist, welcher zwischen einer abstromseitigen Ankerstirnfläche (34) und der Hülse (32) angeordnet ist.
14. Brennstoffeinspritzventil nach Anspruch 13, dadurch gekennzeichnet, daß zwischen dem Kragen (33) der Ventilnadel (13) und der Hülse (32) eine zweite Rückstellfeder (28) angeordnet ist.
15. Brennstoffeinspritzventil nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß die Ventilnadel (13) hohlzylindrisch ausgebildet ist und mindestens zwei Ausströmöffnungen (31) aufweist.
16. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß der Anker (3) mit einem zum elektromagnetischen Kreis gehörenden Innenpol (4) zusammenwirkt, der Innenpol (4) und der Anker (3) jeweils eine innere Ausnehmung (11, 8) aufweisen, und der Durchmesser der Ausnehmung (8) des Ankers (3) dem Durchmesser der Ausnehmung (11) des Innenpols (4) entspricht .
17. Brennstoffeinspritzventil nach Anspruch 15, dadurch gekennzeichnet, daß die Summe der Ouerschnittsfl chen der Ausströmöffnungen (31) größer als oder wenigstens gleich der Querschnittsfläche der Ausnehmung (8) des Ankers (3) ist.
PCT/DE2001/002961 2000-08-10 2001-08-03 Brennstoffeinspritzventil WO2002012712A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002517968A JP4838482B2 (ja) 2000-08-10 2001-08-03 燃料噴射弁
EP01960142A EP1309791B1 (de) 2000-08-10 2001-08-03 Brennstoffeinspritzventil
DE50110166T DE50110166D1 (de) 2000-08-10 2001-08-03 Brennstoffeinspritzventil
US10/110,253 US6857584B2 (en) 2000-08-10 2001-08-03 Fuel injection valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10039077.3 2000-08-10
DE10039077A DE10039077A1 (de) 2000-08-10 2000-08-10 Brennstoffeinspritzventil

Publications (1)

Publication Number Publication Date
WO2002012712A1 true WO2002012712A1 (de) 2002-02-14

Family

ID=7651995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002961 WO2002012712A1 (de) 2000-08-10 2001-08-03 Brennstoffeinspritzventil

Country Status (5)

Country Link
US (1) US6857584B2 (de)
EP (1) EP1309791B1 (de)
JP (1) JP4838482B2 (de)
DE (2) DE10039077A1 (de)
WO (1) WO2002012712A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2333297A1 (de) 2009-12-11 2011-06-15 Continental Automotive GmbH Ventilanordnung für ein Einspritzventil und Einspritzventil
EP2365205A1 (de) 2010-03-03 2011-09-14 Continental Automotive GmbH Einspritzventil
WO2013189639A1 (de) * 2012-06-20 2013-12-27 Robert Bosch Gmbh Einspritzventil
JP2014134208A (ja) * 2014-04-23 2014-07-24 Hitachi Automotive Systems Ltd 電磁吸入弁を備えた高圧燃料供給ポンプ

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004024533A1 (de) * 2004-05-18 2005-12-15 Robert Bosch Gmbh Brennstoffeinspritzventil
ITBO20050295A1 (it) * 2005-04-29 2006-10-30 Magneti Marelli Powertrain Spa Inietore di carburante con attuatore elettromagnetico
US7779854B2 (en) * 2007-01-12 2010-08-24 Caterpillar Inc Valve member to armature coupling system and fuel injector using same
US8387599B2 (en) 2008-01-07 2013-03-05 Mcalister Technologies, Llc Methods and systems for reducing the formation of oxides of nitrogen during combustion in engines
US8561598B2 (en) * 2008-01-07 2013-10-22 Mcalister Technologies, Llc Method and system of thermochemical regeneration to provide oxygenated fuel, for example, with fuel-cooled fuel injectors
EP2166220B1 (de) * 2008-09-19 2012-02-29 Continental Automotive GmbH Einspritzventil
JP4935882B2 (ja) * 2009-03-05 2012-05-23 株式会社デンソー 燃料噴射弁
DE102010043097A1 (de) * 2010-10-29 2012-05-03 Robert Bosch Gmbh Druckregelventil
US9115325B2 (en) 2012-11-12 2015-08-25 Mcalister Technologies, Llc Systems and methods for utilizing alcohol fuels
JP6264966B2 (ja) * 2014-03-14 2018-01-24 株式会社デンソー 燃料噴射装置
EP3343079B1 (de) 2015-08-25 2021-03-10 Hitachi Automotive Systems, Ltd. Magnetventil
EP3153700A1 (de) * 2015-10-08 2017-04-12 Continental Automotive GmbH Ventilgruppe für ein einspritzventil, einspritzventil und verfahren zur montage eines einspritzventils

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946107A (en) * 1988-11-29 1990-08-07 Pacer Industries, Inc. Electromagnetic fuel injection valve
US4984549A (en) * 1984-03-05 1991-01-15 Coltec Industries Inc. Electromagnetic injection valve
DE19503821A1 (de) 1995-02-06 1996-08-08 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil
US5570842A (en) * 1994-12-02 1996-11-05 Siemens Automotive Corporation Low mass, through flow armature
DE19626576A1 (de) 1996-07-02 1998-01-08 Bosch Gmbh Robert Brennstoffeinspritzventil
WO1999053189A1 (de) * 1998-04-11 1999-10-21 Robert Bosch Gmbh Brennstoffeinspritzventil
US6079642A (en) * 1997-03-26 2000-06-27 Robert Bosch Gmbh Fuel injection valve and method for producing a valve needle of a fuel injection valve

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315373A (ja) * 1986-07-05 1988-01-22 Kan Oteru 楽譜五線検出方式
DE4003228A1 (de) * 1990-02-03 1991-08-22 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
DE4125155C1 (de) * 1991-07-30 1993-02-04 Robert Bosch Gmbh, 7000 Stuttgart, De
US5397055A (en) * 1991-11-01 1995-03-14 Paul; Marius A. Fuel injector system
US5544816A (en) * 1994-08-18 1996-08-13 Siemens Automotive L.P. Housing for coil of solenoid-operated fuel injector
US5625946A (en) * 1995-05-19 1997-05-06 Siemens Automotive Corporation Armature guide for an electromechanical fuel injector and method of assembly
JPH10122083A (ja) * 1996-10-15 1998-05-12 Zexel Corp 燃料噴射弁

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4984549A (en) * 1984-03-05 1991-01-15 Coltec Industries Inc. Electromagnetic injection valve
US4946107A (en) * 1988-11-29 1990-08-07 Pacer Industries, Inc. Electromagnetic fuel injection valve
US5570842A (en) * 1994-12-02 1996-11-05 Siemens Automotive Corporation Low mass, through flow armature
DE19503821A1 (de) 1995-02-06 1996-08-08 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil
DE19626576A1 (de) 1996-07-02 1998-01-08 Bosch Gmbh Robert Brennstoffeinspritzventil
US6079642A (en) * 1997-03-26 2000-06-27 Robert Bosch Gmbh Fuel injection valve and method for producing a valve needle of a fuel injection valve
WO1999053189A1 (de) * 1998-04-11 1999-10-21 Robert Bosch Gmbh Brennstoffeinspritzventil

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2333297A1 (de) 2009-12-11 2011-06-15 Continental Automotive GmbH Ventilanordnung für ein Einspritzventil und Einspritzventil
WO2011069793A1 (en) * 2009-12-11 2011-06-16 Continental Automotive Gmbh Valve assembly for an injection valve and injection valve
US9316191B2 (en) 2009-12-11 2016-04-19 Continental Automotive Gmbh Valve assembly for an injection valve and injection valve
EP2365205A1 (de) 2010-03-03 2011-09-14 Continental Automotive GmbH Einspritzventil
WO2013189639A1 (de) * 2012-06-20 2013-12-27 Robert Bosch Gmbh Einspritzventil
US9394869B2 (en) 2012-06-20 2016-07-19 Robert Bosch Gmbh Fuel injector
JP2014134208A (ja) * 2014-04-23 2014-07-24 Hitachi Automotive Systems Ltd 電磁吸入弁を備えた高圧燃料供給ポンプ

Also Published As

Publication number Publication date
JP4838482B2 (ja) 2011-12-14
EP1309791B1 (de) 2006-06-14
DE50110166D1 (de) 2006-07-27
US6857584B2 (en) 2005-02-22
JP2004506130A (ja) 2004-02-26
US20030102386A1 (en) 2003-06-05
EP1309791A1 (de) 2003-05-14
DE10039077A1 (de) 2002-02-21

Similar Documents

Publication Publication Date Title
EP1012469B1 (de) Brennstoffeinspritzventil
EP1431567B1 (de) Brennstoffeinspritzventil für Verbrennungskraftmaschinen
EP1309791B1 (de) Brennstoffeinspritzventil
DE2910441C2 (de)
EP1118765A2 (de) Brennstoffeinspritzventil für Verbrennungskraftmaschinen
EP1966479B1 (de) Elektromagnetisch betätigbares ventil
DE3502410A1 (de) Elektromagnetisch betaetigbares kraftstoffeinspritzventil
EP3559437B1 (de) Ventil zum zumessen eines fluids
DE19756103A1 (de) Brennstoffeinspritzventil
DE102016202945A1 (de) Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil
DE19601019A1 (de) Einspritzventil, insbesondere zum direkten Einspritzen von Kraftstoff in einen Brennraum eines Verbrennungsmotors
DE102016220364A1 (de) Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil
EP1423603A1 (de) Brennstoffeinspritzventil
DE102016220326A1 (de) Ventil zum Zumessen eines gasförmigen oder flüssigen Kraftstoffs
EP3141737B1 (de) Ventil zum zumessen eines fluids
WO2002053906A1 (de) Verbindung zwischen einem anker und einer ventilnadel eines brennstoffeinspritzventils
DE102006049253A1 (de) Brennstoffeinspritzventil
DE10063260A1 (de) Brennstoffeinspritzventil
DE10063261B4 (de) Brennstoffeinspritzventil
EP1195516B1 (de) Brennstoffeinspritzventil
EP3387247B1 (de) Elektromagnetisch betätigbares einlassventil und hochdruckpumpe mit einlassventil
DE102019210614A1 (de) Ventil zum Zumessen eines Fluids und Brennstoffeinspritzanlage
EP2873849A1 (de) Ventil zum Zumessen von Fluid
DE102019205301A1 (de) Ventil zum Zumessen eines Fluids
DE102015226248A1 (de) Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 517968

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2001960142

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10110253

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001960142

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001960142

Country of ref document: EP