WO2002063663A1 - Electron beam exposure apparatus and exposure method - Google Patents
Electron beam exposure apparatus and exposure method Download PDFInfo
- Publication number
- WO2002063663A1 WO2002063663A1 PCT/JP2002/000715 JP0200715W WO02063663A1 WO 2002063663 A1 WO2002063663 A1 WO 2002063663A1 JP 0200715 W JP0200715 W JP 0200715W WO 02063663 A1 WO02063663 A1 WO 02063663A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electron beam
- exposure
- sectional shape
- cross
- pattern
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/302—Controlling tubes by external information, e.g. programme control
- H01J37/3023—Programme control
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/317—Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
- H01J37/3174—Particle-beam lithography, e.g. electron beam lithography
- H01J37/3177—Multi-beam, e.g. fly's eye, comb probe
Definitions
- the present invention relates to an electron beam exposure apparatus and an exposure method.
- This application is related to the following Japanese patent application. For those designated countries that are allowed to be incorporated by reference to the literature, the contents described in the following application are incorporated into this application by reference and are incorporated in the description of this application.
- Patent application 2 0 0 1— 0 2 7 0 1 0 Filing date February 2, 2001 Background technology
- exposure processing is performed using exposure data common to a plurality of electron beam exposure apparatuses. Also, when exposing the same pattern to a wafer in a plurality of electron beam exposure apparatuses, the exposure processing is performed using exposure time data common to the plurality of electron beam exposure apparatuses.
- an object of the present invention is to provide an electron beam exposure apparatus and an exposure method that can solve the above-mentioned problems. This object is achieved by a combination of features described in the independent claims.
- the dependent claims define further advantageous embodiments of the present invention. Disclosure of the invention
- an electron beam exposure apparatus for exposing a pattern on a wafer by using an electron beam, wherein exposure data indicating a pattern to be exposed is obtained.
- a data memory for storing, receiving the exposure data, a pattern generating section for generating cross-sectional shape information for defining a cross-sectional shape of the electron beam based on the received exposure data, and receiving the cross-sectional shape information;
- An irradiation time determination unit that determines an irradiation time, which is a time for irradiating the wafer with the electron beam based on the irradiation time.
- the data memory may further store exposure time data indicating an irradiation time, and the irradiation time determining unit may determine the irradiation time by correcting the exposure time data based on the received cross-sectional shape information.
- the data memory further includes a pattern data memory storing exposure data including cross-sectional shape identification information that is information for identifying a cross-sectional shape of the electron beam, and storing the cross-sectional shape information in association with the cross-sectional shape identification information.
- the generator may extract and output the cross-sectional shape information stored in the pattern data memory in association with the cross-sectional shape identification information included in the received exposure data.
- An electron beam shaping means for shaping the cross-sectional shape of the electron beam is further provided.
- the pattern data memory stores the shape of the electron beam transferred to the wafer when the electron beam shaping means actually shapes the electron beam based on the exposure data.
- the apparatus further includes electron beam shaping means for shaping the cross-sectional shape of the electron beam into a rectangle, and the cross-sectional shape information includes information on a length of two sides of a rectangle which is a cross-sectional shape of the electron beam formed by the electron beam shaping means.
- the pattern generation unit may extract and output the lengths of two sides of the rectangle stored in the pattern data memory based on the cross-sectional shape identification information.
- the irradiation time determination unit further includes a pattern correction coefficient memory for storing a pattern correction coefficient, which is a correction coefficient for correcting the exposure time based on the cross-sectional shape of the electron beam, in association with the cross-sectional shape information.
- the cross-sectional shape information output by the pattern generator The irradiation time may be determined based on the pattern correction coefficients stored in the pattern correction coefficient memory in association with each other.
- the data processing apparatus may further include an exposure sequence control unit that notifies the data memory of an exposure area to be irradiated with the electron beam on the wafer, and the irradiation time determination unit may determine the irradiation time further based on the exposure area.
- a field data memory for storing a field correction coefficient identification information for identifying a field correction coefficient which is a correction coefficient for correcting an exposure time in the exposure area in association with the exposure area;
- the control unit may extract and output the field correction coefficient identification information stored in the field data memory in association with the exposure area notified to the data memory.
- the apparatus further includes a field correction coefficient memory for storing a field correction coefficient in association with the field correction coefficient identification information, and the irradiation time determining unit associates the field correction coefficient identification information output by the exposure sequence control unit with the field correction coefficient memory.
- the irradiation time may be determined based on the field correction coefficient stored in the field correction coefficient memory.
- the irradiation time may be determined based on the determined cross-sectional shape information.
- FIG. 1 shows a configuration of an electron beam exposure apparatus 100 according to one embodiment of the present invention.
- FIG. 2 shows an example of the configuration of the control system 140 according to the present embodiment.
- FIG. 3 shows an example of the flow of the exposure method according to the present embodiment.
- FIG. 1 shows a configuration of an electron beam exposure apparatus 100 according to one embodiment of the present invention.
- the electron beam exposure apparatus 100 includes an exposure unit 150 for performing a predetermined exposure process on the wafer 44 with an electron beam, and a control system 1 for controlling the operation of each component included in the exposure unit 150. 40 is provided.
- the exposure unit 150 generates an electron beam inside the housing 8 and irradiates the wafer 44 with the electron beam forming means 110 for generating a plurality of electron beams and shaping the cross-sectional shape of the electron beam as desired.
- Irradiation switching means 1 12 for independently switching whether or not to perform for each electron beam; and projection system 1 14 for C which adjusts the direction and size of the image of the pattern transferred to C 4 4
- An electronic optical system is provided.
- the exposure unit 150 includes a stage system including a wafer stage 46 on which a wafer 44 on which a pattern is to be exposed is mounted, a wafer for driving the wafer stage 46, and a stage driving unit 48. .
- the electron beam shaping means 110 includes an electron beam generator 10 for generating a plurality of electron beams, and a first shaping device having a plurality of openings for shaping the cross-sectional shape of the electron beam by passing the electron beam.
- a first shaping / deflecting section 18 and a second shaping / deflecting section 20 for independently deflecting the electron beam.
- the electron beam generator 10 has a plurality of electron guns 104 and a substrate 106 on which the electron guns 104 are formed.
- the electron gun 104 is a power sword that generates thermionic electrons.
- a Darlid 102 formed to surround the node 12 and stabilizing the thermoelectrons generated by the force source 12.
- the force sword 12 and the grid 102 are electrically insulated.
- the electron beam generator 10 forms an electron gun array by providing a plurality of electron guns 104 at predetermined intervals on a base material 106.
- the first molded member 14 and the second molded member 22 desirably have a grounded metal film of platinum or the like on the surface irradiated with the electron beam.
- the cross-sectional shape of the plurality of openings included in the first molding member 14 and the second molding member 22 may have a spread along the electron beam irradiation direction in order to efficiently pass the electron beam. . Further, it is preferable that the plurality of openings included in the first molded member 14 and the second molded member 22 be formed in a rectangular shape.
- the irradiation switching means 1 1 and 2 independently converge a plurality of electron beams and adjust the focus of the electron beam.
- the second multi-axis electron lens 24 and independently deflect the plurality of electron beams for each electron beam.
- a blanking electrode array 26 that independently switches whether or not to irradiate the electron beam onto the wafer 44 for each electron beam, and a plurality of openings through which the electron beam passes, the An electron beam shielding member 28 for shielding the deflected electron beam.
- the blanking electrode array 26 may be a blanking aperture array.
- the wafer projection system 114 converges multiple electron beams independently and reduces the beam diameter of the electron beam.
- a fifth multi-axis electron lens 62 that functions as a lens and converges a plurality of electron beams independently.
- the control system 140 includes a general control unit 130 and an individual control unit 120.
- the individual control section 120 includes an electron beam control section 80, a multi-axis electron lens control section 82, a shaping deflection control section 84, a blanking electrode array control section 86, and a deflection control section 92.
- n general controller 1 3 0 and a Wehasute over di controller 9 6, for example, a workstation der
- each control unit included in the individual control unit 120 is collectively controlled.
- the electron beam controller 80 controls the electron beam generator 10.
- the multi-axis electronic lens control unit 82 includes the first multi-axis electronic lens 16, the second multi-axis electronic lens 24, the third multi-axis electronic lens 34, the fourth multi-axis electronic lens 36 and the fifth The current supplied to the multi-axis electron lens 62 is controlled.
- the molding deflection control unit controls the first molding deflection unit 18 and the second molding deflection unit 20.
- the blanking electrode array controller 86 controls the voltage applied to the deflection electrodes included in the blanking electrode array 26.
- the deflection control unit 92 controls the voltage applied to the deflection electrodes of the plurality of deflectors included in the deflection unit 60.
- Wafer stage control section 96 controls wafer stage drive section 48 to move wafer stage 46 to a predetermined position.
- the electron beam generator 10 generates a plurality of electron beams.
- the generated electron beam is applied to the first forming member 14 to be formed.
- the first multi-axis electron lens 16 independently converges a plurality of rectangularly shaped electron beams, and independently adjusts the focus of the electron beam on the second formed member 22 for each electron beam.
- the first shaping deflection unit 18 deflects a plurality of rectangularly shaped electron beams to a desired position with respect to the second shaping member independently for each electron beam.
- the second shaping / deflecting unit 20 deflects the plurality of electron beams deflected by the first shaping / deflecting unit 18 in a direction substantially perpendicular to the second shaping member 22 independently for each electron beam.
- the second forming member 22 including a plurality of openings having a rectangular shape is configured to emit a plurality of electron beams having a rectangular cross-sectional shape applied to each opening to a desired rectangular shape to be applied to the wafer 44. It is further shaped into an electron beam having a cross-sectional shape.
- the second multi-axis electron lens 24 converges the plurality of electron beams independently, and performs the focus adjustment of the electron beam to the blanking electrode array 26 independently for each electron beam.
- the electron beam focused by the second multi-axis electron lens 24 passes through a plurality of apertures included in the blanking electrode array 26.
- Electrode array controller 86 is formed on blanking electrode array 26 Also, it controls whether or not to apply a voltage to the deflection electrode provided near each aperture.
- the blanking electrode array 26 switches whether or not to irradiate the electron beam onto the wafer 44 based on the voltage applied to the deflection electrode.
- the electron beam that is not deflected by the blanking electrode array 26 has its electron beam diameter reduced by the third multi-axis electron lens 34, and passes through the opening included in the electron beam shielding member 28.
- the fourth multi-axis electron lens 36 independently converges the plurality of electron beams, performs focus adjustment of the electron beam with respect to the deflecting unit 60 independently for each electron beam, and the focus-adjusted electron beam is The light enters the deflector included in the deflecting unit 60.
- the deflection controller 92 independently controls the plurality of deflectors included in the deflection unit 60.
- the deflecting unit 60 deflects the plurality of electron beams incident on the plurality of deflectors to a desired exposure position on the wafer 44 independently for each electron beam.
- the plurality of electron beams that have passed through the deflecting unit 60 are adjusted in focus by the fifth multi-axis electron lens 62, and irradiate the wafer 44.
- the wafer stage control unit 96 controls the wafer stage drive unit 48 to move the wafer stage 46 in a certain direction.
- the blanking electrode array control unit 86 determines apertures through which the electron beam passes based on the exposure pattern data, and controls power for each aperture.
- the aperture through which the electron beam passes is appropriately changed in accordance with the movement of the 44, and the electron beam is deflected by the deflecting unit 60, whereby a desired circuit pattern can be exposed on the wafer 44.
- FIG. 2 shows an example of the configuration of the control system 140 according to the present embodiment.
- the control system 140 includes a general control unit 130 and an individual control unit 120.
- the general control unit 130 includes a central processing unit 132 that controls the control unit 140 in general, and an exposure pattern storage unit 138 that stores an exposure pattern to be exposed to the Ueno 44.
- An exposure pattern generation unit 134 that generates exposure data that is an exposure pattern in an area to be exposed by each electron beam based on the design data stored in the exposure pattern storage unit 138;
- An exposure sequence control unit 1442 for controlling a sequence, and a correction unit for correcting an exposure time in the exposure region in association with an exposure region to be irradiated with an electron beam.
- a field data memory 160 for storing field correction coefficient identification information for identifying a field correction coefficient which is a number
- a data memory 136 for storing exposure data, and an exposure data are provided for each electron beam.
- An electron beam correction unit 148 that generates deflection data to be supplied to the molding deflection control unit 84 and the deflection control unit 92 based on the irradiation time.
- a pattern correction coefficient which is a correction coefficient for correcting the exposure time based on the cross-sectional shape of the electron beam, in association with the irradiation time determining unit 144 to be determined and the cross-sectional shape information defining the cross-sectional shape of the electron beam.
- Pattern correction coefficient memory 162 that stores the field correction coefficient memory that stores the field correction coefficient in association with the field correction teacher identification information, and determines the irradiation time.
- 1 4 4 that have a clock generating unit 1 4 6 for generating a blanking clock supplied to the blanking electrode Arei controller 8 6 based on the irradiation time determined by.
- the electron beam correction unit 148 includes a pattern generation unit 152 that generates cross-sectional shape information that defines the cross-sectional shape of the electron beam based on the exposure data, and a cross-section that is information that identifies the cross-sectional shape of the electron beam
- a pattern data memory 158 for storing cross-sectional shape information in association with the shape identification information, and a shaping deflection for generating shaping deflection data for the first shaping deflection unit 18 and the second shaping deflection unit 20
- a deflector correction circuit 156 for generating deflection data for the deflection unit 60.
- the individual control unit 120 includes a shaping / deflecting control unit 84 that controls the first shaping / deflecting unit 18 and the second shaping / deflecting unit 20; a deflection control unit 92 that controls the deflecting unit 60; A blanking electrode array controller 86 for controlling the ranking electrode array 26.
- the exposure data generation section 1334 generates exposure data based on the exposure pattern stored in the exposure pattern storage section 1338, and stores it in the data memory 1336.
- the data memory 136 is preferably a buffer storage unit for temporarily storing exposure data, and stores and outputs the exposure data for each exposure area in the order of exposure.
- the exposure data includes exposure time data indicating the irradiation time, which is the time for irradiating the electron beam onto the wafer 44, and the interruption of the electron beam. It is preferable to have cross-sectional shape identification information that is information for identifying the surface shape, and information on the exposure position with respect to the exposure region.
- the exposure sequence control unit 142 instructs the data memory 1336 to specify an exposure area, and outputs exposure data.
- the pattern generating section 152 extracts the cross-sectional shape information stored in the pattern data memory 158 in association with the cross-sectional shape identification information included in the exposure data received from the data memory 1336. Then, the pattern generating section 152 notifies the extracted cross-sectional shape information to the shaping deflector correction circuit 154 and the deflector correction circuit 156. In addition, the pattern generation unit 152 notifies the irradiation time determination unit 144 of the extracted cross-sectional shape information. Further, the exposure sequence control unit 142 extracts the field correction coefficient identification information stored in the field data memory 160 in association with the exposure area notified to the data memory 136, and the irradiation time determination unit. Notify 1 4 4
- the irradiation time determination unit 144 extracts the pattern correction coefficient stored in the pattern correction coefficient memory 162 in association with the cross-sectional shape information received from the pattern generation unit 152. Further, the irradiation time determination unit 144 extracts the field correction coefficient stored in the field correction coefficient memory 164 in association with the field correction coefficient identification information received from the exposure sequence control unit 142. . The irradiation time determining unit 144 corrects the exposure time data included in the exposure data using the pattern correction coefficient and the field correction coefficient, and irradiates the electron beam onto the wafer 44. Determine the irradiation time.
- the pattern correction coefficient and the field correction coefficient are magnifications for correcting the exposure time data
- the irradiation time determination unit 144 calculates the exposure time data by multiplying the exposure time data by the pattern correction coefficient and the field correction coefficient. Calculate the irradiation time.
- the clock generation circuit 144 generates a blanking clock to be supplied to the blanking electrode array control unit 86. Generate. Then, the blanking electrode array control unit 86 controls the blanking electrode array 26 using the blanking clock generated by the clock generation circuit 144.
- the shaping deflector correction circuit 154 based on the cross-sectional shape information received from the pattern generator 152, forms shaping deflection data to be supplied to the shaping deflection controller 84. Generate Then, the shaping / deflecting control unit 84 controls the first shaping / deflecting unit 18 and the second shaping / deflecting unit 20 based on the shaping / deflecting data received from the shaping / deflecting device correction circuit 1554. Further, the deflector correction circuit 156 generates deflection data to be supplied to the deflection control unit 92 based on the exposure position information received from the pattern generation circuit 152. The deflection controller 92 controls the deflection unit 60 based on the deflection data received from the deflector correction circuit 156.
- the exposure data stored in the data memory 136 is not data unique to the electron beam exposure apparatus 100, but may be data that can be used in another electron beam exposure apparatus.
- the cross-sectional shape information generated by the pattern generating section 152 is data unique to the electron beam exposure apparatus 100, and is transferred to the wafer 44 when an electron beam is formed by the exposure data. It is preferably determined based on the shape of the electron beam and stored in the pattern data memory 158.
- the finolade correction coefficient identification information stored in the field data memory 160 is address information of the field correction coefficient memory 164. Further, it is preferable that the field correction coefficient identification information is determined based on the exposure amount when the electron beam is irradiated based on the exposure data, and is stored in the field data memory 160. Further, it is preferable that the field correction coefficient identification information is stored in association with the exposure area so that the exposure amount becomes equal in all the exposure areas.
- the cross-sectional shape identification information may be the cross-sectional shape information before being corrected, and more preferably, is the address information of the pattern data memory 158 storing the corrected cross-sectional shape information.
- the cross-sectional shape information may be information on the length of two orthogonal sides of a rectangle which is the cross-sectional shape of the electron beam formed by the electron beam forming means 110.
- the pattern data memory 158 may store the length of the two sides in association with the cross-sectional shape identification information.
- the pattern generating unit 152 extracts the length of the two sides stored in the pattern data memory 158 in association with the cross-sectional shape identification information included in the exposure data received from the data memory 1336. May be output.
- the electron beam exposure apparatus 100 based on the cross-sectional shape information of the electron beam and the exposure area on the wafer! By correcting the irradiation time of the electron beam to the wafer, the pattern can be accurately exposed to the wafer.
- the pattern data memory 158, field data memory 160, pattern correction coefficient memory 162, and field correction coefficient memory 164 correction processing of the exposure time of the electron beam and exposure Processing can be efficiently performed in parallel.
- the corrected irradiation time is used for the exposure process without storing it for a long time. Can be greatly reduced.
- the information stored in the pattern data memory 158 and the field data memory 160 is updated by actually performing the exposure processing, the irradiation time of the electron beam based on the characteristics of each electron beam exposure apparatus is determined. Can be corrected.
- FIG. 3 shows an example of the flow of the exposure method according to the present embodiment.
- the exposure data generation section 134 generates exposure data based on the exposure pattern stored in the exposure pattern storage section 138 (S100). Then, when the electron beam is formed by the exposure data, the shape of the electron beam transferred to the wafer is obtained (S102). Then, the pattern data memory 158 stores the cross-sectional shape information determined based on the acquired shape of the electron beam in association with the cross-sectional shape identification information (S104).
- the pattern generating section 152 extracts the cross-sectional shape information stored in the pattern data memory 158 in association with the cross-sectional shape identification information included in the exposure data (S106). Then, the irradiation time determination unit 144 uses the pattern correction coefficient stored in the pattern correction coefficient memory 162 and the field correction coefficient stored in the field correction coefficient memory 164 to calculate the exposure data. The exposure time data contained in the electronic beam is corrected to determine the irradiation time of the electron beam (S108).
- the click generation circuit 144 generates a blanking clock based on the irradiation time determined by the irradiation time determination unit 144 (S110).
- the blanking electrode array controller 86 uses a blanking clock to control the blanking electrode array. 26 is controlled, and the wafer 44 is exposed for the irradiation time determined by the irradiation time determination unit 144 (S112). This is the end of the flow of the exposure method of the present example.
- the irradiation time of the electron beam to the wafer is corrected based on the cross-sectional shape information of the electron beam and the exposure area on the wafer, so that the pattern on the wafer can be accurately formed. Can be exposed.
- the pattern data memory 158, field data memory 160, pattern correction coefficient memory 162, and field correction coefficient memory 164 correction processing of the exposure time of the electron beam and exposure Processing can be efficiently performed in parallel.
- the corrected irradiation time is used for the exposure process without storing it for a long time. The amount of data stored in the device can be significantly reduced.
- the information stored in the pattern data memory 158 and the field data memory 160 is updated by actually performing the exposure processing, the irradiation time of the electron beam based on the characteristics of each electron beam exposure apparatus is determined. Can be corrected.
- an electron beam exposure apparatus and an exposure method capable of correcting the irradiation time of an electron beam on a wafer and accurately exposing a pattern on the wafer. Can be.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Electron Beam Exposure (AREA)
Abstract
An electron beam exposure apparatus for exposing a pattern on a wafer comprises a data memory for storing exposure data indicating a pattern to be exposed on the wafer, a pattern generating section for receiving exposure data to generate sectional shape information for defining the sectional shape of an electron beam on the basis of the received exposure data, and an irradiation time determining section for receiving sectional shape information to determine an irradiation time that is the time to irradiate the wafer with the electron beam on the basis of the received sectional shape information.
Description
明 細 書 電子ビーム露光装置及び露光方法 技術分野 Description Electron beam exposure apparatus and exposure method
本発明は、 電子ビーム露光装置及ぴ露光方法に関する。 また本出願は、 下記の 日本特許出願に関連する。文献の参照による組み込みが認められる指定国につい ては、下記の出願に記載された内容を参照により本出願に組み込み、本出願の記 載の一部とする。 The present invention relates to an electron beam exposure apparatus and an exposure method. This application is related to the following Japanese patent application. For those designated countries that are allowed to be incorporated by reference to the literature, the contents described in the following application are incorporated into this application by reference and are incorporated in the description of this application.
特願 2 0 0 1— 0 2 7 0 1 0 出願日 平成 1 3年 2月 2日 背景技術 Patent application 2 0 0 1— 0 2 7 0 1 0 Filing date February 2, 2001 Background technology
従来の電子ビーム露光装置では、 複数の電子ビーム露光装置に共通な露光データ を用いて露光処理を行っている。 そして、 複数の電子ビーム露光装置においてゥェ ハに同じパターンを露光する場合においても、 複数の電子ビーム露光装置に共通の 露光時間データにより露光処理を行っている。 In a conventional electron beam exposure apparatus, exposure processing is performed using exposure data common to a plurality of electron beam exposure apparatuses. Also, when exposing the same pattern to a wafer in a plurality of electron beam exposure apparatuses, the exposure processing is performed using exposure time data common to the plurality of electron beam exposure apparatuses.
従来の電子ビーム露光装置では、 個々の電子ビーム露光装置の特性による電子ビ ームの照射時間の補正がなされていないため、 それぞれの電子ビーム露光装置が共 通の露光データを用いて露光処理を行った場合でも、 電子ビーム露光装置の個体差 に起因して露光量に差が生じていた。 そのため、 それぞれの電子ビーム露光装置に おいて、 ウェハに所望のパターンを露光することが困難であるという問題を生じて いた。 In conventional electron beam lithography systems, the irradiation time of the electron beam is not corrected based on the characteristics of each electron beam lithography system, so that each electron beam lithography system performs exposure processing using common exposure data. Even when the test was performed, there was a difference in the exposure amount due to the individual difference of the electron beam exposure apparatus. Therefore, in each electron beam exposure apparatus, there has been a problem that it is difficult to expose a desired pattern on a wafer.
そこで本発明は、上記の課題を解決することのできる電子ビーム露光装置及ぴ 露光方法を提供することを目的とする。この目的は請求の範囲における独立項に 記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な 具体例を規定する。
発明の開示 Therefore, an object of the present invention is to provide an electron beam exposure apparatus and an exposure method that can solve the above-mentioned problems. This object is achieved by a combination of features described in the independent claims. The dependent claims define further advantageous embodiments of the present invention. Disclosure of the invention
このような目的を達成するために、 本発明の第 1の形態によると、 電子ビームに より、 ウェハにパターンを露光する電子ビーム露光装置であって、 ゥヱハに露光す べきパターンを示す露光データを格納するデータメモリと、露光データを受け取り、 受け取った露光データに基づいて、 電子ビームの断面形状を規定する断面形状情報 を発生するパターン発生部と、 断面形状情報を受け取り、 受け取った断面形状情報 に基づいて、 電子ビームをウェハに照射する時間である照射時間を決定する照射時 間決定部とを備える。 According to a first aspect of the present invention, there is provided an electron beam exposure apparatus for exposing a pattern on a wafer by using an electron beam, wherein exposure data indicating a pattern to be exposed is obtained. A data memory for storing, receiving the exposure data, a pattern generating section for generating cross-sectional shape information for defining a cross-sectional shape of the electron beam based on the received exposure data, and receiving the cross-sectional shape information; An irradiation time determination unit that determines an irradiation time, which is a time for irradiating the wafer with the electron beam based on the irradiation time.
データメモリは、 照射時間を指示する露光時間データをさらに格納し、 照射時間 決定部は、 受け取った断面形状情報に基づいて、 露光時間データを補正し、 照射時 間を決定してもよい。 The data memory may further store exposure time data indicating an irradiation time, and the irradiation time determining unit may determine the irradiation time by correcting the exposure time data based on the received cross-sectional shape information.
データメモリは、 電子ビームの断面形状を識別する情報である断面形状識別情報 を含む露光データを格納し、 断面形状識別情報に対応づけて、 断面形状情報を格納 するパターンデータメモリをさらに備え、 パターン発生部は、 受け取った露光デー タに含まれる断面形状識別情報に対応づけてパターンデータメモリに格納された断 面形状情報を抽出して出力してもよい。 The data memory further includes a pattern data memory storing exposure data including cross-sectional shape identification information that is information for identifying a cross-sectional shape of the electron beam, and storing the cross-sectional shape information in association with the cross-sectional shape identification information. The generator may extract and output the cross-sectional shape information stored in the pattern data memory in association with the cross-sectional shape identification information included in the received exposure data.
電子ビームの断面形状を成形する電子ビーム成形手段をさらに備え、 パターンデ 一タメモリは、 電子ビーム成形手段が露光データにより実際に電子ビームを成形し た場合にウェハに転写された電子ビームの形状に基づいた断面形状情報を格納して よレ、。 An electron beam shaping means for shaping the cross-sectional shape of the electron beam is further provided. The pattern data memory stores the shape of the electron beam transferred to the wafer when the electron beam shaping means actually shapes the electron beam based on the exposure data. Store the cross-sectional shape information based on the information.
電子ビームの断面形状を矩形に成形する電子ビーム成形手段をさらに備え、 断面 形状情報は、 電子ビーム成形手段によって成形される電子ビームの断面形状である 矩形の 2辺の長さの情報を含み、パターン発生部は、断面形状識別情報に基づいて、 パターンデータメモリに格納される矩形の 2辺の長さを抽出して出力してもよい。 断面形状情報に対応づけて、 電子ビームの断面形状に基づく露光時間の補正を行 うための補正係数であるパターン捕正係数を格納するパターン補正係数メモリをさ らに備え、 照射時間決定部は、 パターン発生部によって出力された断面形状情報に
対応づけてパターン捕正係数メモリに格納されたパターン補正係数に基づいて、 照 射時間を決定してもよい。 The apparatus further includes electron beam shaping means for shaping the cross-sectional shape of the electron beam into a rectangle, and the cross-sectional shape information includes information on a length of two sides of a rectangle which is a cross-sectional shape of the electron beam formed by the electron beam shaping means. The pattern generation unit may extract and output the lengths of two sides of the rectangle stored in the pattern data memory based on the cross-sectional shape identification information. The irradiation time determination unit further includes a pattern correction coefficient memory for storing a pattern correction coefficient, which is a correction coefficient for correcting the exposure time based on the cross-sectional shape of the electron beam, in association with the cross-sectional shape information. The cross-sectional shape information output by the pattern generator The irradiation time may be determined based on the pattern correction coefficients stored in the pattern correction coefficient memory in association with each other.
ウェハにおいて電子ビームを照射すべき領域である露光領域をデータメモリに通 知する露光シーケンス制御部をさらに備え、 照射時間決定部は、 露光領域にさらに 基づいて、 照射時間を決定してもよい。 The data processing apparatus may further include an exposure sequence control unit that notifies the data memory of an exposure area to be irradiated with the electron beam on the wafer, and the irradiation time determination unit may determine the irradiation time further based on the exposure area.
露光領域に対応づけて、 当該露光領域における露光時間を補正するための補正係 数であるフィールド捕正係数を識別するフィ一ノレド補正係数識別情報を格納するフ ィールドデータメモリをさらに備え、 露光シーケンス制御部は、 データメモリに通 知した露光領域に対応づけてフィールドデータメモリに格納されたフィールド補正 係数識別情報を抽出して出力してもよい。 A field data memory for storing a field correction coefficient identification information for identifying a field correction coefficient which is a correction coefficient for correcting an exposure time in the exposure area in association with the exposure area; The control unit may extract and output the field correction coefficient identification information stored in the field data memory in association with the exposure area notified to the data memory.
フィールド補正係数識別情報に対応づけて、 フィールド捕正係数を格納するフィ 一ルド補正係数メモリをさらに備え、 照射時間決定部は、 露光シーケンス制御部に よって出力されたフィールド補正係数識別情報に対応づけてフィールド補正係数メ モリに格納されたフィールド捕正係数に基づレ、て、 照射時間を決定してもよい。 本発明の第 2の形態によると、 電子ビームにより、 ウェハにパターンを露光する 露光方法であって、 ウェハに露光すべきパターンを示す露光データに基づいて、 電 子ビームの断面形状を規定する断面形状情報を発生するパターン発生段階と、 断面 形状情報に基づいて、 電子ビームをウェハに照射する時間である照射時間を決定す る照射時間決定段階と、 照射時間に基づいて、 電子ビームを照射してウェハを露光 する露光段階とを備える The apparatus further includes a field correction coefficient memory for storing a field correction coefficient in association with the field correction coefficient identification information, and the irradiation time determining unit associates the field correction coefficient identification information output by the exposure sequence control unit with the field correction coefficient memory. The irradiation time may be determined based on the field correction coefficient stored in the field correction coefficient memory. According to a second aspect of the present invention, there is provided an exposure method for exposing a pattern on a wafer with an electron beam, wherein the cross-section defines a cross-sectional shape of the electron beam based on exposure data indicating a pattern to be exposed on the wafer. A pattern generation step for generating shape information; an irradiation time determining step for determining an irradiation time that is a time for irradiating the wafer with the electron beam based on the cross-sectional shape information; and an electron beam irradiation based on the irradiation time. An exposure step of exposing the wafer by
電子ビームをゥェハに照射し、 ゥェハに転写された電子ビームの形状を取得する 取得段階と、 電子ビームの形状に基づいて、 断面形状情報を決定する断面形状情報 決定段階とをさらに備え、 照射時間決定段階は、 決定された断面形状情報に基づい て、 照射時間を決定してもよい。 Irradiating the electron beam onto the wafer and obtaining the shape of the electron beam transferred to the wafer; and obtaining a cross-sectional shape information based on the shape of the electron beam. In the determining step, the irradiation time may be determined based on the determined cross-sectional shape information.
なお上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、 これらの特徴群のサブコンビネーションも又発明となりうる。
図面の簡単な説明 The above summary of the present invention does not list all of the necessary features of the present invention, and a sub-combination of these features may also be an invention. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施形態に係る電子ビーム露光装置 1 0 0の構成を示す。 図 2は、 本実施形態に係る制御系 1 4 0の構成の一例を示す。 FIG. 1 shows a configuration of an electron beam exposure apparatus 100 according to one embodiment of the present invention. FIG. 2 shows an example of the configuration of the control system 140 according to the present embodiment.
図 3は、 本実施形態に係る露光方法のフローの一例を示す。 発明を実施するための最良の形態 以下、 図面を参照して本発明の実施の形態の一例を説明する。 FIG. 3 shows an example of the flow of the exposure method according to the present embodiment. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.
図 1は、 本発明の一実施形態に係る電子ビーム露光装置 1 0 0の構成を示す。 電子ビーム露光装置 1 0 0は、電子ビームによりウェハ 4 4に所定の露光処理を 施すための露光部 1 5 0と、露光部 1 5 0に含まれる各構成の動作を制御する制 御系 1 4 0を備える。 FIG. 1 shows a configuration of an electron beam exposure apparatus 100 according to one embodiment of the present invention. The electron beam exposure apparatus 100 includes an exposure unit 150 for performing a predetermined exposure process on the wafer 44 with an electron beam, and a control system 1 for controlling the operation of each component included in the exposure unit 150. 40 is provided.
露光部 1 5 0は、 筐体 8内部で、 複数の電子ビームを発生し、 電子ビームの断面 形状を所望に成形する電子ビーム成形手段 1 1 0と、 複数の電子ビームをウェハ 4 4に照射するか否かを、 電子ビーム毎に独立に切替える照射切替手段 1 1 2と、 ゥ ヱハ 4 4に転写されるパターンの像の向き及ぴサイズを調整するゥヱハ用投影系 1 1 4を含む電子光学系を備える。 また、 露光部 1 5 0は、 パターンを露光すべきゥ ェハ 4 4を載置するウェハステージ 4 6と、 ウェハステージ 4 6を駆動するウエノ、 ステージ駆動部 4 8とを含むステージ系を備える。 The exposure unit 150 generates an electron beam inside the housing 8 and irradiates the wafer 44 with the electron beam forming means 110 for generating a plurality of electron beams and shaping the cross-sectional shape of the electron beam as desired. Irradiation switching means 1 12 for independently switching whether or not to perform for each electron beam; and projection system 1 14 for C which adjusts the direction and size of the image of the pattern transferred to C 4 4 An electronic optical system is provided. Further, the exposure unit 150 includes a stage system including a wafer stage 46 on which a wafer 44 on which a pattern is to be exposed is mounted, a wafer for driving the wafer stage 46, and a stage driving unit 48. .
電子ビーム成形手段 1 1 0は、 複数の電子ビームを発生させる電子ビーム発生部 1 0と、 電子ビームを通過させることにより、 電子ビームの断面形状を成形する複 数の開口部を有する第 1成形部材 1 4及び第 2成形部材 2 2と、 複数の電子ビーム を独立に収束し、 電子ビームの焦点を調整する第 1多軸電子レンズ 1 6と、 第 1成 形部材 1 4を通過した複数の電子ビームを独立に偏向する第 1成形偏向部 1 8及ぴ 第 2成形偏向部 2 0とを有する。 The electron beam shaping means 110 includes an electron beam generator 10 for generating a plurality of electron beams, and a first shaping device having a plurality of openings for shaping the cross-sectional shape of the electron beam by passing the electron beam. The member 14 and the second molded member 22, the first multi-axis electron lens 16 for independently converging a plurality of electron beams and adjusting the focal point of the electron beam, and the plurality of lenses that have passed through the first molded member 14. A first shaping / deflecting section 18 and a second shaping / deflecting section 20 for independently deflecting the electron beam.
電子ビーム発生部 1 0は、 複数の電子銃 1 0 4と、 電子銃 1 0 4が形成される基 材 1 0 6とを有する。 電子銃 1 0 4は、 熱電子を発生させる力ソード 1 2と、 カソ
ード 1 2を囲むように形成され、 力ソード 1 2で発生した熱電子を安定させるダリ ッド 1 0 2とを有する。 力ソード 1 2とグリッド 1 0 2とは、 電気的に絶縁される のが望ましい。 本実施例において、 電子ビーム発生部 1 0は、 基材 1 0 6に、 複数 の電子銃 1 0 4を、 所定の間隔に有することにより、 電子銃ァレイを形成する。 第 1成形部材 1 4及び第 2成形部材 2 2は、 電子ビームが照射される面に、 接地 された白金などの金属膜を有することが望ましい。 第 1成形部材 1 4及び第 2成形 部材 2 2に含まれる複数の開口部の断面形状は、 電子ビームを効率よく通過させる ために、 電子ビームの照射方向に沿って広がりを有してもよい。 また、 第 1成形部 材 1 4及び第 2成形部材 2 2に含まれる複数の開口部は、 矩形に形成されるのが好 ましい。 The electron beam generator 10 has a plurality of electron guns 104 and a substrate 106 on which the electron guns 104 are formed. The electron gun 104 is a power sword that generates thermionic electrons. And a Darlid 102 formed to surround the node 12 and stabilizing the thermoelectrons generated by the force source 12. Preferably, the force sword 12 and the grid 102 are electrically insulated. In the present embodiment, the electron beam generator 10 forms an electron gun array by providing a plurality of electron guns 104 at predetermined intervals on a base material 106. The first molded member 14 and the second molded member 22 desirably have a grounded metal film of platinum or the like on the surface irradiated with the electron beam. The cross-sectional shape of the plurality of openings included in the first molding member 14 and the second molding member 22 may have a spread along the electron beam irradiation direction in order to efficiently pass the electron beam. . Further, it is preferable that the plurality of openings included in the first molded member 14 and the second molded member 22 be formed in a rectangular shape.
照射切替手段 1 1 2は、 複数の電子ビームを独立に収束し、 電子ビームの焦点を 調整する第 2多軸電子レンズ 2 4と、 複数の電子ビームを、 電子ビーム毎に独立に 偏向させることにより、 電子ビームをウェハ 4 4に照射する力否かを、 電子ビーム 毎に独立に切替えるプランキング電極アレイ 2 6と、 電子ビームを通過させる複数 の開口部を含み、 プランキング電極アレイ 2 6で偏向された電子ビームを遮蔽する 電子ビーム遮蔽部材 2 8とを有する。 また、 他の実施例においてブランキング電極 アレイ 2 6は、 ブランキング ·アパーチャ ·アレイであってもよい。 The irradiation switching means 1 1 and 2 independently converge a plurality of electron beams and adjust the focus of the electron beam.The second multi-axis electron lens 24 and independently deflect the plurality of electron beams for each electron beam. In this case, a blanking electrode array 26 that independently switches whether or not to irradiate the electron beam onto the wafer 44 for each electron beam, and a plurality of openings through which the electron beam passes, the An electron beam shielding member 28 for shielding the deflected electron beam. In another embodiment, the blanking electrode array 26 may be a blanking aperture array.
ウェハ用投影系 1 1 4は、 複数の電子ビームを独立に収束し、 電子ビームの照射 径を縮小する第 3多軸電子レンズ 3 4と、 複数の電子ビームを独立に収束し、 電子 ビームの焦点を調整する第 4多軸電子レンズ 3 6と、 複数の電子ビームを、 ウェハ 4 4の所望の位置に、 電子ビーム毎に独立に偏向する偏向部 6 0と、 ウエノヽ 4 4に 対する対物レンズとして機能し、 複数の電子ビームを独立に収束する第 5多軸電子 レンズ 6 2とを有する。 The wafer projection system 114 converges multiple electron beams independently and reduces the beam diameter of the electron beam. A fourth multi-axis electron lens 36 for adjusting the focus, a deflecting unit 60 for deflecting a plurality of electron beams to desired positions on the wafer 44 independently for each electron beam, and an objective for the Ueno ヽ 44 A fifth multi-axis electron lens 62 that functions as a lens and converges a plurality of electron beams independently.
制御系 1 4 0は、 統括制御部 1 3 0及ぴ個別制御部 1 2 0を備える。 個別制御部 1 2 0は、 電子ビーム制御部 8 0と、 多軸電子レンズ制御部 8 2と、 成形偏向制御 部 8 4と、 ブランキング電極アレイ制御部 8 6と、 偏向制御部 9 2と、 ウェハステ ージ制御部 9 6とを有する n 統括制御部 1 3 0は、 例えばワークステーションであ
つて、 個別制御部 1 2 0に含まれる各制御部を統括制御する。 電子ビーム制御部 8 0は、 電子ビーム発生部 1 0を制御する。 多軸電子レンズ制御部 8 2は、 第 1多軸 電子レンズ 1 6、 第 2多軸電子レンズ 2 4、 第 3多軸電子レンズ 3 4、 第 4多軸電 子レンズ 3 6及ぴ第 5多軸電子レンズ 6 2に供給する電流を制御する。 The control system 140 includes a general control unit 130 and an individual control unit 120. The individual control section 120 includes an electron beam control section 80, a multi-axis electron lens control section 82, a shaping deflection control section 84, a blanking electrode array control section 86, and a deflection control section 92. , n general controller 1 3 0 and a Wehasute over di controller 9 6, for example, a workstation der Thus, each control unit included in the individual control unit 120 is collectively controlled. The electron beam controller 80 controls the electron beam generator 10. The multi-axis electronic lens control unit 82 includes the first multi-axis electronic lens 16, the second multi-axis electronic lens 24, the third multi-axis electronic lens 34, the fourth multi-axis electronic lens 36 and the fifth The current supplied to the multi-axis electron lens 62 is controlled.
成形偏向制御部は、 第 1成形偏向部 1 8及ぴ第 2成形偏向部 2 0を制御する。 ブ ランキング電極アレイ制御部 8 6は、 ブランキング電極アレイ 2 6に含まれる偏向 電極に印加する電圧を制御する。 偏向制御部 9 2は、 偏向部 6 0に含まれる複数の 偏向器が有する偏向電極に印加する電圧を制御する。 ウェハステージ制御部 9 6は 、 ウェハステージ駆動部 4 8を制御し、 ウェハステージ 4 6を所定の位置に移動さ せる。 The molding deflection control unit controls the first molding deflection unit 18 and the second molding deflection unit 20. The blanking electrode array controller 86 controls the voltage applied to the deflection electrodes included in the blanking electrode array 26. The deflection control unit 92 controls the voltage applied to the deflection electrodes of the plurality of deflectors included in the deflection unit 60. Wafer stage control section 96 controls wafer stage drive section 48 to move wafer stage 46 to a predetermined position.
本実施形態に係る電子ビーム露光装置 1 0 0の動作について説明する。 まず、 電 子ビーム発生部 1 0が、 複数の電子ビームを生成する。 電子ビーム発生部 1 0にお いて、 発生された電子ビームは、 第 1成形部材 1 4に照射され、 成形される。 第 1多軸電子レンズ 1 6は、 矩形に成形された複数の電子ビームを独立に収束し 、 第 2成形部材 2 2に対する電子ビームの焦点調整を、 電子ビーム毎に独立に行う 。 第 1成形偏向部 1 8は、 矩形に成形された複数の電子ビームを、 電子ビーム毎に 独立して、 第 2成形部材に対して所望の位置に偏向する。 第 2成形偏向部 2 0は、 第 1成形偏向部 1 8で偏向された複数の電子ビームを、 電子ビーム毎に独立に第 2 成形部材 2 2に対して略垂直方向に偏向する。 矩形形状を有する複数の開口部を含 む第 2成形部材 2 2は、 各開口部に照射された矩形の断面形状を有する複数の電子 ビームを、 ウェハ 4 4に照射されるべき所望の矩形の断面形状を有する電子ビーム にさらに成形する。 The operation of the electron beam exposure apparatus 100 according to the present embodiment will be described. First, the electron beam generator 10 generates a plurality of electron beams. In the electron beam generator 10, the generated electron beam is applied to the first forming member 14 to be formed. The first multi-axis electron lens 16 independently converges a plurality of rectangularly shaped electron beams, and independently adjusts the focus of the electron beam on the second formed member 22 for each electron beam. The first shaping deflection unit 18 deflects a plurality of rectangularly shaped electron beams to a desired position with respect to the second shaping member independently for each electron beam. The second shaping / deflecting unit 20 deflects the plurality of electron beams deflected by the first shaping / deflecting unit 18 in a direction substantially perpendicular to the second shaping member 22 independently for each electron beam. The second forming member 22 including a plurality of openings having a rectangular shape is configured to emit a plurality of electron beams having a rectangular cross-sectional shape applied to each opening to a desired rectangular shape to be applied to the wafer 44. It is further shaped into an electron beam having a cross-sectional shape.
第 2多軸電子レンズ 2 4は、 複数の電子ビームを独立に収束して、 ブランキング 電極アレイ 2 6に対する電子ビームの焦点調整を、 電子ビーム毎に独立に行う。 第 2多軸電子レンズ 2 4より焦点調整された電子ビームは、 プランキング電極アレイ 2 6に含まれる複数のアパーチャを通過する。 The second multi-axis electron lens 24 converges the plurality of electron beams independently, and performs the focus adjustment of the electron beam to the blanking electrode array 26 independently for each electron beam. The electron beam focused by the second multi-axis electron lens 24 passes through a plurality of apertures included in the blanking electrode array 26.
'電極ァレイ制御部 8 6は、 ブランキング電極ァレイ 2 6に形成され
た、 各アパーチャの近傍に設けられた偏向電極に電圧を印加するか否かを制御する 。 ブランキング電極アレイ 2 6は、 偏向電極に印加される電圧に基づいて、 電子ビ ームをウェハ 4 4に照射させるか否かを切替える。 'Electrode array controller 86 is formed on blanking electrode array 26 Also, it controls whether or not to apply a voltage to the deflection electrode provided near each aperture. The blanking electrode array 26 switches whether or not to irradiate the electron beam onto the wafer 44 based on the voltage applied to the deflection electrode.
プランキング電極アレイ 2 6により偏向されない電子ビームは、 第 3多軸電子レ ンズ 3 4により電子ビーム径を縮小されて、 電子ビーム遮蔽部材 2 8に含まれる開 口部を通過する。 第 4多軸電子レンズ 3 6が、 複数の電子ビームを独立に収束して 、 偏向部 6 0に対する電子ビームの焦点調整を、 電子ビーム毎に独立に行い、 焦点 調整をされた電子ビームは、 偏向部 6 0に含まれる偏向器に入射される。 The electron beam that is not deflected by the blanking electrode array 26 has its electron beam diameter reduced by the third multi-axis electron lens 34, and passes through the opening included in the electron beam shielding member 28. The fourth multi-axis electron lens 36 independently converges the plurality of electron beams, performs focus adjustment of the electron beam with respect to the deflecting unit 60 independently for each electron beam, and the focus-adjusted electron beam is The light enters the deflector included in the deflecting unit 60.
偏向制御部 9 2が、 偏向部 6 0に含まれる複数の偏向器を独立に制御する。 偏向 部 6 0は、 複数の偏向器に入射される複数の電子ビームを、 電子ビーム毎に独立に ウェハ 4 4の所望の露光位置に偏向する。 偏向部 6 0を通過した複数の電子ビーム は、 第 5多軸電子レンズ 6 2により、 ゥヱハ 4 4に対する焦点が調整され、 ウェハ 4 4に照射される。 The deflection controller 92 independently controls the plurality of deflectors included in the deflection unit 60. The deflecting unit 60 deflects the plurality of electron beams incident on the plurality of deflectors to a desired exposure position on the wafer 44 independently for each electron beam. The plurality of electron beams that have passed through the deflecting unit 60 are adjusted in focus by the fifth multi-axis electron lens 62, and irradiate the wafer 44.
露光処理中、ウェハステージ制御部 9 6は、ウェハステージ駆動部 4 8を制御し、 ウェハステージ 4 6を一定方向に移動させる。 ブランキング電極アレイ制御部 8 6 は露光パターンデータに基づいて、 電子ビームを通過させるアパーチャを定め、 各 アパーチャに対する電力制御を行う。 ゥヱハ 4 4の移動に合わせて、 電子ビームを 通過させるアパーチャを適宜、 変更し、 さらに偏向部 6 0により電子ビームを偏向 することによりウェハ 4 4に所望の回路パターンを露光することが可能となる。 図 2は、 本実施形態に係る制御系 1 4 0の構成の一例を示す。 制御系 1 4 0は、 統括制御部 1 3 0及び個別制御部 1 2 0 ¾:備える。 統括制御部 1 3 0は、 制御部 1 4 0を統括制御する中央処理部 1 3 2と、 ウエノヽ 4 4に対して露光すべき露光パタ ーンを格納する露光パターン格納部 1 3 8と、 露光パターン格納部 1 3 8に格納さ れた設計データに基づいて、 各電子ビームが露光すべき領域における露光パターン である露光データを生成する露光パターン生成部 1 3 4と、 露光処理一般のシーケ ンスを制御する露光シーケンス制御部 1 4 2と、 電子ビームを照射すべき領域であ る露光領域に対応づけて、 当該露光領域における露光時間を補正するための補正係
数であるフィールド補正係数を識別するフィールド補正係数識別情報を格納するフ ィールドデータメモリ 1 6 0と、 露光データを記憶するデータメモリ 1 3 6と、 電 子ビーム毎に設けられており、 露光データに基づいて成形偏向制御部 8 4及び偏向 制御部 9 2に供給する偏向データを生成する電子ビーム毎補正部 1 4 8と、 電子ビ ームをウェハ 4 4に照射する時間である照射時間を決定する照射時間決定部 1 4 4 と、 電子ビームの断面形状を規定する断面形状情報に対応づけて、 電子ビームの断 面形状に基づく露光時間の補正を行うための補正係数であるパターン補正係数を格 納するパターン補正係数メモリ 1 6 2と、 フィールド補正係教識別情報に対応づけ て、 フィールド捕正係数を格納するフィールド補正係数メモリ 1 6 4と、 照射時間 決定部 1 4 4によって決定された照射時間に基づいてブランキング電極ァレイ制御 部 8 6に供給するブランキングクロックを発生するクロック発生部 1 4 6とを有す る。 During the exposure processing, the wafer stage control unit 96 controls the wafer stage drive unit 48 to move the wafer stage 46 in a certain direction. The blanking electrode array control unit 86 determines apertures through which the electron beam passes based on the exposure pattern data, and controls power for each aperture. (C) The aperture through which the electron beam passes is appropriately changed in accordance with the movement of the 44, and the electron beam is deflected by the deflecting unit 60, whereby a desired circuit pattern can be exposed on the wafer 44. . FIG. 2 shows an example of the configuration of the control system 140 according to the present embodiment. The control system 140 includes a general control unit 130 and an individual control unit 120. The general control unit 130 includes a central processing unit 132 that controls the control unit 140 in general, and an exposure pattern storage unit 138 that stores an exposure pattern to be exposed to the Ueno 44. An exposure pattern generation unit 134 that generates exposure data that is an exposure pattern in an area to be exposed by each electron beam based on the design data stored in the exposure pattern storage unit 138; An exposure sequence control unit 1442 for controlling a sequence, and a correction unit for correcting an exposure time in the exposure region in association with an exposure region to be irradiated with an electron beam. A field data memory 160 for storing field correction coefficient identification information for identifying a field correction coefficient which is a number, a data memory 136 for storing exposure data, and an exposure data are provided for each electron beam. And an electron beam correction unit 148 that generates deflection data to be supplied to the molding deflection control unit 84 and the deflection control unit 92 based on the irradiation time. A pattern correction coefficient, which is a correction coefficient for correcting the exposure time based on the cross-sectional shape of the electron beam, in association with the irradiation time determining unit 144 to be determined and the cross-sectional shape information defining the cross-sectional shape of the electron beam. Pattern correction coefficient memory 162 that stores the field correction coefficient memory that stores the field correction coefficient in association with the field correction teacher identification information, and determines the irradiation time. 1 4 4 that have a clock generating unit 1 4 6 for generating a blanking clock supplied to the blanking electrode Arei controller 8 6 based on the irradiation time determined by.
電子ビーム毎補正部 1 4 8は、 露光データに基づいて、 電子ビームの断面形状を 規定する断面形状情報を発生するパターン発生部 1 5 2と、 電子ビームの断面形状 を識別する情報である断面形状識別情報に対応づけて、 断面形状情報を格納するパ ターンデータメモリ 1 5 8と、 第 1成形偏向部 1 8及ぴ第 2成形偏向部 2 0に対す る成形偏向データを生成する成形偏向器用補正回路 1 5 4と、 偏向部 6 0に対する 偏向データを生成する偏向器用補正回路 1 5 6とを含む。 個別制御部 1 2 0は、 第 1成形偏向部 1 8及ぴ第 2成形偏向部 2 0を制御する成形偏向制御部 8 4と、 偏向 部 6 0を制御する偏向制御部 9 2と、 ブランキング電極アレイ 2 6を制御するブラ ンキング電極アレイ制御部 8 6とを有する。 The electron beam correction unit 148 includes a pattern generation unit 152 that generates cross-sectional shape information that defines the cross-sectional shape of the electron beam based on the exposure data, and a cross-section that is information that identifies the cross-sectional shape of the electron beam A pattern data memory 158 for storing cross-sectional shape information in association with the shape identification information, and a shaping deflection for generating shaping deflection data for the first shaping deflection unit 18 and the second shaping deflection unit 20 And a deflector correction circuit 156 for generating deflection data for the deflection unit 60. The individual control unit 120 includes a shaping / deflecting control unit 84 that controls the first shaping / deflecting unit 18 and the second shaping / deflecting unit 20; a deflection control unit 92 that controls the deflecting unit 60; A blanking electrode array controller 86 for controlling the ranking electrode array 26.
次に、 本実施形態における制御部 1 4 0の動作について説明する。 露光データ生 成部 1 3 4は、 露光パターン格納部 1 3 8に格納された露光パターンに基づいて、 露光データを生成し、 データメモリ 1 3 6に格納する。 データメモリ 1 3 6は、 露 光データを一時的に格納するバッファ記憶部であることが好ましく、 露光領域毎の 露光データを露光する順に記憶し出力する。 当該露光データは、 電子ビームをゥェ ハ 4 4に照射する時間である照射時間を指示する露光時間データ、 電子ビームの断
面形状を識別する情報である断面形状識別情報、 及び露光領域に対する露光位置の 情報を有することが好ましい。 Next, the operation of the control unit 140 in the present embodiment will be described. The exposure data generation section 1334 generates exposure data based on the exposure pattern stored in the exposure pattern storage section 1338, and stores it in the data memory 1336. The data memory 136 is preferably a buffer storage unit for temporarily storing exposure data, and stores and outputs the exposure data for each exposure area in the order of exposure. The exposure data includes exposure time data indicating the irradiation time, which is the time for irradiating the electron beam onto the wafer 44, and the interruption of the electron beam. It is preferable to have cross-sectional shape identification information that is information for identifying the surface shape, and information on the exposure position with respect to the exposure region.
次に、露光シーケンス制御部 1 4 2は、データメモリ 1 3 6に露光領域を指示し、 露光データを出力させる。 パターン発生部 1 5 2は、 データメモリ 1 3 6から受け 取つた露光データに含まれる断面形状識別情報に対応づけて、 パターンデータメモ リ 1 5 8に格納される断面形状情報を抽出する。そして、パターン発生部 1 5 2は、 抽出した断面形状情報を成形偏向器用補正回路 1 5 4及び偏向器用補正回路 1 5 6 に通知する。 また、 パターン発生部 1 5 2は、 抽出した断面形状情報を照射時間決 定部 1 4 4に通知する。 また、 露光シーケンス制御部 1 4 2は、 データメモリ 1 3 6に通知した露光領域に対応づけてフィールドデータメモリ 1 6 0に格納されるフ ィールド捕正係数識別情報を抽出し、 照射時間決定部 1 4 4に通知する。 Next, the exposure sequence control unit 142 instructs the data memory 1336 to specify an exposure area, and outputs exposure data. The pattern generating section 152 extracts the cross-sectional shape information stored in the pattern data memory 158 in association with the cross-sectional shape identification information included in the exposure data received from the data memory 1336. Then, the pattern generating section 152 notifies the extracted cross-sectional shape information to the shaping deflector correction circuit 154 and the deflector correction circuit 156. In addition, the pattern generation unit 152 notifies the irradiation time determination unit 144 of the extracted cross-sectional shape information. Further, the exposure sequence control unit 142 extracts the field correction coefficient identification information stored in the field data memory 160 in association with the exposure area notified to the data memory 136, and the irradiation time determination unit. Notify 1 4 4
次に、 照射時間決定部 1 4 4は、 パターン発生部 1 5 2から受け取った断面形状 情報に対応づけて、 パターン補正係数メモリ 1 6 2に格納されるパターン補正係数 を抽出する。 また、 照射時間決定部 1 4 4は、 露光シーケンス制御部 1 4 2から受 け取つたフィールド補正係数識別情報に対応づけて、 フィールド補正係数メモリ 1 6 4に格納されるフィールド補正係数を抽出する。 そして、 照射時間決定部 1 4 4 は、 パターン捕正係数及ぴフィールド補正係数を用いて、 露光データに含まれる露 光時間データを補正して、 電子ビームをウェハ 4 4に照射する時間である照射時間 を決定する。 例えば、 パターン補正係数及ぴフィールド捕正係数は、 露光時間デー タを補正する倍率であり、 照射時間決定部 1 4 4は、 露光時間データに、 パターン 補正係数及びフィールド補正係数を乗算することにより、 照射時間を算出する。 次に、 ク口ック発生回路 1 4 6は、 照射時間決定部 1 4 4によつて決定された照 射時間に基づいて、 ブランキング電極アレイ制御部 8 6に供給するブランキングク ロックを生成する。 そして、 ブランキング電極アレイ制御部 8 6は、 クロック発生 回路 1 4 6が生成したブランキングクロックを用いてブランキング電極アレイ 2 6 を制御する。 また、 成形偏向器用補正回路 1 5 4は、 パターン発生部 1 5 2から受 け取った断面形状情報に基づいて、 成形偏向制御部 8 4に供給する成形偏向データ
を生成する。 そして、 成形偏向制御部 8 4は、 成形偏向器補正回路 1 5 4から受け 取った成形偏向データにより第 1成形偏向部 1 8及び第 2成形偏向部 2 0を制御す る。 また、 偏向器用補正回路 1 5 6は、 パターン発生回路 1 5 2から受け取った露 光位置の情報に基づいて、 偏向制御部 9 2に供給する偏向データを生成する。 そし て、 偏向制御部 9 2は、 偏向器補正回路 1 5 6から受け取った偏向データにより偏 向部 6 0を制御する。 Next, the irradiation time determination unit 144 extracts the pattern correction coefficient stored in the pattern correction coefficient memory 162 in association with the cross-sectional shape information received from the pattern generation unit 152. Further, the irradiation time determination unit 144 extracts the field correction coefficient stored in the field correction coefficient memory 164 in association with the field correction coefficient identification information received from the exposure sequence control unit 142. . The irradiation time determining unit 144 corrects the exposure time data included in the exposure data using the pattern correction coefficient and the field correction coefficient, and irradiates the electron beam onto the wafer 44. Determine the irradiation time. For example, the pattern correction coefficient and the field correction coefficient are magnifications for correcting the exposure time data, and the irradiation time determination unit 144 calculates the exposure time data by multiplying the exposure time data by the pattern correction coefficient and the field correction coefficient. Calculate the irradiation time. Next, based on the irradiation time determined by the irradiation time determination unit 144, the clock generation circuit 144 generates a blanking clock to be supplied to the blanking electrode array control unit 86. Generate. Then, the blanking electrode array control unit 86 controls the blanking electrode array 26 using the blanking clock generated by the clock generation circuit 144. Further, the shaping deflector correction circuit 154, based on the cross-sectional shape information received from the pattern generator 152, forms shaping deflection data to be supplied to the shaping deflection controller 84. Generate Then, the shaping / deflecting control unit 84 controls the first shaping / deflecting unit 18 and the second shaping / deflecting unit 20 based on the shaping / deflecting data received from the shaping / deflecting device correction circuit 1554. Further, the deflector correction circuit 156 generates deflection data to be supplied to the deflection control unit 92 based on the exposure position information received from the pattern generation circuit 152. The deflection controller 92 controls the deflection unit 60 based on the deflection data received from the deflector correction circuit 156.
データメモリ 1 3 6に格納された露光データは、 当該電子ビーム露光装置 1 0 0 に固有のデータではなく、 他の電子ビーム露光装置においても、 使用され得るデー タであってよい。 また、 パターン発生部 1 5 2が発生する断面形状情報は、 当該電 子ビーム露光装置 1 0 0に固有のデータであり、 露光データにより電子ビームを成 形した場合にウェハ 4 4に転写された電子ビームの形状に基づいて決定され、 パタ ーンデータメモリ 1 5 8に格納されることが好ましい。 また、 フィールドデータメ モリ 1 6 0に格納されるフィーノレド補正係数識別情報は、 フィールド補正係数メモ リ 1 6 4のアドレス情報であることが好ましい。 また、 フィールド補正係数識別情 報は、露光データにより電子ビームが照射された場合の露光量に基づいて決定され、 フィールドデータメモリ 1 6 0に格納されることが好ましい。 さらに、 フィールド 補正係数識別情報は、 全ての露光領域において等しい露光量になるように、 露光領 域に対応づけて格納されることが好ましい。 The exposure data stored in the data memory 136 is not data unique to the electron beam exposure apparatus 100, but may be data that can be used in another electron beam exposure apparatus. The cross-sectional shape information generated by the pattern generating section 152 is data unique to the electron beam exposure apparatus 100, and is transferred to the wafer 44 when an electron beam is formed by the exposure data. It is preferably determined based on the shape of the electron beam and stored in the pattern data memory 158. It is preferable that the finolade correction coefficient identification information stored in the field data memory 160 is address information of the field correction coefficient memory 164. Further, it is preferable that the field correction coefficient identification information is determined based on the exposure amount when the electron beam is irradiated based on the exposure data, and is stored in the field data memory 160. Further, it is preferable that the field correction coefficient identification information is stored in association with the exposure area so that the exposure amount becomes equal in all the exposure areas.
また、 断面形状識別情報は、 補正される前の断面形状情報であってもよく、 さら に、 補正された断面形状情報を格納するパターンデータメモリ 1 5 8のァドレス情 報であることが好ましい。 また、 断面形状情報は、 電子ビーム成形手段 1 1 0によ つて成形される電子ビームの断面形状である矩形の直交する 2辺の長さの情報であ つてもよい。 この場合、 パターンデータメモリ 1 5 8は、 断面形状識別情報に対応 づけて、 当該 2辺の長さを格納してもよい。 また、 パターン発生部 1 5 2は、 デー タメモリ 1 3 6から受け取った露光データに含まれる断面形状識別情報に対応づけ て、 パターンデータメモリ 1 5 8に格納される当該 2辺の長さを抽出して出力して もよい。
本実施形態による電子ビーム露光装置 1 0 0によれば、 電子ビームの断面形状情 報及ぴウェハにおける露光領域に基づ!、て、 ウェハに対する電子ビームの照射時間 を補正することにより、精度よくゥェハにパターンを露光することができる。また、 パターンデータメモリ 1 5 8、 フィールドデータメモリ 1 6 0、 パターン補正係数 メモリ 1 6 2、 及ぴフィールド補正係数メモリ 1 6 4を用いることにより、 電子ビ ームの照射時間の補正処理と露光処理とを並行して効率よく行うことができる。 ま た、 電子ビームの照射時間の補正処理と露光処理とを並行して行うことにより、 補 正された照射時間を長時間記憶しておくことなく露光処理に用いるため、 電子ビー ム露光装置内に格納されるデータの量を大幅に低減させることができる。 さらに、 実際に露光処理を行うことによりパターンデータメモリ 1 5 8及ぴフィールドデー タメモリ 1 6 0に格納される情報を更新するため、 個々の電子ビーム露光装置の特 性に基づく電子ビームの照射時間の補正ができる。 Further, the cross-sectional shape identification information may be the cross-sectional shape information before being corrected, and more preferably, is the address information of the pattern data memory 158 storing the corrected cross-sectional shape information. Further, the cross-sectional shape information may be information on the length of two orthogonal sides of a rectangle which is the cross-sectional shape of the electron beam formed by the electron beam forming means 110. In this case, the pattern data memory 158 may store the length of the two sides in association with the cross-sectional shape identification information. Further, the pattern generating unit 152 extracts the length of the two sides stored in the pattern data memory 158 in association with the cross-sectional shape identification information included in the exposure data received from the data memory 1336. May be output. According to the electron beam exposure apparatus 100 according to the present embodiment, based on the cross-sectional shape information of the electron beam and the exposure area on the wafer! By correcting the irradiation time of the electron beam to the wafer, the pattern can be accurately exposed to the wafer. In addition, by using the pattern data memory 158, field data memory 160, pattern correction coefficient memory 162, and field correction coefficient memory 164, correction processing of the exposure time of the electron beam and exposure Processing can be efficiently performed in parallel. In addition, by performing the electron beam irradiation time correction process and the exposure process in parallel, the corrected irradiation time is used for the exposure process without storing it for a long time. Can be greatly reduced. Furthermore, since the information stored in the pattern data memory 158 and the field data memory 160 is updated by actually performing the exposure processing, the irradiation time of the electron beam based on the characteristics of each electron beam exposure apparatus is determined. Can be corrected.
図 3は、 本実施形態に係る露光方法のフローの一例を示す。 まず、 露光データ生 成部 1 3 4は、 露光パターン格納部 1 3 8に格納された露光パターンに基づいて、 露光データを生成する (S 1 0 0 )。 そして、 当該露光データにより電子ビームを成 形した場合にウェハに転写された電子ビームの形状を取得する(S 1 0 2 )。そして、 パターンデータメモリ 1 5 8は、 断面形状識別情報に対応づけて、 取得した電子ビ ームの形状に基づいて決定された断面形状情報を格納する (S 1 0 4 )。 FIG. 3 shows an example of the flow of the exposure method according to the present embodiment. First, the exposure data generation section 134 generates exposure data based on the exposure pattern stored in the exposure pattern storage section 138 (S100). Then, when the electron beam is formed by the exposure data, the shape of the electron beam transferred to the wafer is obtained (S102). Then, the pattern data memory 158 stores the cross-sectional shape information determined based on the acquired shape of the electron beam in association with the cross-sectional shape identification information (S104).
次に、 パターン発生部 1 5 2は、 露光データに含まれる断面形状識別情報に対応 づけてパターンデータメモリ 1 5 8に格納される断面形状情報を抽出する (S 1 0 6 )。 そして、 照射時間決定部 1 4 4は、パターン補正係数メモリ 1 6 2に格納され るパターン捕正係数、 及ぴフィールド補正係数メモリ 1 6 4に格納されるフィール ド補正係数を用いて、 露光データに含まれる露光時間データを補正して、 電子ビー ムの照射時間を決定する (S 1 0 8 )。 Next, the pattern generating section 152 extracts the cross-sectional shape information stored in the pattern data memory 158 in association with the cross-sectional shape identification information included in the exposure data (S106). Then, the irradiation time determination unit 144 uses the pattern correction coefficient stored in the pattern correction coefficient memory 162 and the field correction coefficient stored in the field correction coefficient memory 164 to calculate the exposure data. The exposure time data contained in the electronic beam is corrected to determine the irradiation time of the electron beam (S108).
次に、 ク口ック発生回路 1 4 6は、 照射時間決定部 1 4 4によって決定された照 射時間に基づいて、 ブランキングクロックを生成する (S 1 1 0 )。 プランキング電 極アレイ制御部 8 6は、 プランキングクロックを用いて、 ブランキング電極アレイ
2 6を制御し、 照射時間決定部 1 4 4によつて決定された照射時間でウェハ 4 4を 露光する (S 1 1 2 )。 以上で、 本例の露光方法のフローを終了する。 Next, the click generation circuit 144 generates a blanking clock based on the irradiation time determined by the irradiation time determination unit 144 (S110). The blanking electrode array controller 86 uses a blanking clock to control the blanking electrode array. 26 is controlled, and the wafer 44 is exposed for the irradiation time determined by the irradiation time determination unit 144 (S112). This is the end of the flow of the exposure method of the present example.
本実施形態による電子ビーム露光装置 1 0 0によれば、 電子ビームの断面形状情 報及びウェハにおける露光領域に基づいて、 ウェハに対する電子ビームの照射時間 を補正することにより、精度よくウェハにパターンを露光することができる。また、 パターンデータメモリ 1 5 8、 フィールドデータメモリ 1 6 0、 パターン補正係数 メモリ 1 6 2、 及ぴフィールド補正係数メモリ 1 6 4を用いることにより、 電子ビ ームの照射時間の補正処理と露光処理とを並行して効率よく行うことができる。 ま た、 電子ビームの照射時間の捕正処理と露光処理とを並行して行うことにより、 補 正された照射時間を長時間記憶しておくことなく露光処理に用いるため、 .電子ビー ム露光装置内に格納されるデータの量を大幅に低減させることができる。 さらに、 実際に露光処理を行うことによりパターンデータメモリ 1 5 8及ぴフィールドデー タメモリ 1 6 0に格納される情報を更新するため、 個々の電子ビーム露光装置の特 性に基づく電子ビームの照射時間の補正ができる。 According to the electron beam exposure apparatus 100 of the present embodiment, the irradiation time of the electron beam to the wafer is corrected based on the cross-sectional shape information of the electron beam and the exposure area on the wafer, so that the pattern on the wafer can be accurately formed. Can be exposed. In addition, by using the pattern data memory 158, field data memory 160, pattern correction coefficient memory 162, and field correction coefficient memory 164, correction processing of the exposure time of the electron beam and exposure Processing can be efficiently performed in parallel. In addition, by performing the electron beam irradiation time correction process and the exposure process in parallel, the corrected irradiation time is used for the exposure process without storing it for a long time. The amount of data stored in the device can be significantly reduced. Furthermore, since the information stored in the pattern data memory 158 and the field data memory 160 is updated by actually performing the exposure processing, the irradiation time of the electron beam based on the characteristics of each electron beam exposure apparatus is determined. Can be corrected.
以上、本発明を実施の形態を用いて説明したが、上記実施形態はクレームにか かる発明を限定するものではなく、また実施形態の中で説明されている特徴の組 み合わせの全てが発明の解決手段に必須であるとは限らない。 また、本発明の技, 術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態に、多様 な変更又は改良を加えることができる。そのような変更又は改良を加えた形態も 本発明の技術的範囲に含まれ得ることが、 請求の範囲の記載から明らかである。 産業上の利用可能性 As described above, the present invention has been described using the embodiments. However, the above embodiments do not limit the claimed invention, and all combinations of the features described in the embodiments are not limited to the invention. Is not necessarily essential to the solution of the above. The technical and technical scope of the present invention is not limited to the scope described in the above embodiment. Various changes or improvements can be added to the above embodiment. It is apparent from the description of the appended claims that embodiments with such changes or improvements can be included in the technical scope of the present invention. Industrial applicability
以上の説明から明らかなように、本発明によれば、 ウェハに対する電子ビーム の照射時間を補正し、精度よくウェハにパターンを露光することができる電子ビ ーム露光装置及び露光方法を提供することができる。
As is apparent from the above description, according to the present invention, there is provided an electron beam exposure apparatus and an exposure method capable of correcting the irradiation time of an electron beam on a wafer and accurately exposing a pattern on the wafer. Can be.
Claims
1 . 電子ビームにより、 ウェハにパターンを露光する電子ビーム露光装置であつ て、 1. An electron beam exposure apparatus that exposes a pattern on a wafer with an electron beam,
前記ウェハに露光すべきパターンを示す露光データを格納するデータメモリと、 前記露光データを受け取り、 受け取った前記露光データに基づいて、 前記電子ビ ームの断面形状を規定する断面形状情報を発生するパターン発生部と、 A data memory for storing exposure data indicating a pattern to be exposed on the wafer; receiving the exposure data; and generating cross-sectional shape information for defining a cross-sectional shape of the electronic beam based on the received exposure data. A pattern generator,
前記断面形状情報を受け取り、 受け取った前記断面形状情報に基づいて、 前記電 子ビームを前記ウェハに照射する時間である照射時間を決定する照射時間決定部と ' を備えることを特徴とする電子ビーム露光装置。 An electron beam irradiation unit that receives the cross-sectional shape information, and determines an irradiation time that is a time for irradiating the wafer with the electron beam based on the received cross-sectional shape information. Exposure equipment.
2 . 前記データメモリは、 前記照射時間を指示する露光時間データをさらに格納 し、 2. The data memory further stores exposure time data indicating the irradiation time,
前記照射時間決定部は、 受け取った前記断面形状情報に基づいて、 前記露光時間 データを補正し、 前記照射時間を決定する The irradiation time determination unit corrects the exposure time data based on the received cross-sectional shape information, and determines the irradiation time.
ことを特徴とする請求項 1に記載の電子ビーム露光装置。 . 2. The electron beam exposure apparatus according to claim 1, wherein: .
3 . 前記データメモリは、 前記電子ビームの前記断面形状を識別する情報である 断面形状識別情報を含む前記露光データを格納し、 3. The data memory stores the exposure data including cross-sectional shape identification information that is information for identifying the cross-sectional shape of the electron beam,
前記断面形状識別情報に対応づけて、 前記断面形状情報を格納するパターンデー タメモリをさらに備え、 A pattern data memory that stores the cross-sectional shape information in association with the cross-sectional shape identification information;
前記パターン発生部は、 受け取った前記露光データに含まれる前記断面形状識別 情報に対応づけて前記パターンデータメモリに格納された前記断面形状情報を抽出 して出力する The pattern generator extracts and outputs the cross-sectional shape information stored in the pattern data memory in association with the cross-sectional shape identification information included in the received exposure data.
ことを特 ί敷とする請求項 1に記載の電子ビーム露光装置。 2. The electron beam exposure apparatus according to claim 1, wherein the electron beam exposure apparatus is characterized in that:
4 . 前記電子ビームの前記断面形状を成形する電子ビーム成形手段をさらに備え、 前記パターンデータメモリは、 前記電子ビーム成形手段が前記露光データにより 実際に前記電子ビームを成形した場合に前記ウェハに転写された前記電子ビームの 形状に基づいた前記断面形状情報を格納する
ことを特徴とする請求項 3に記載の電子ビーム露光装置。 4. The apparatus further comprises an electron beam shaping means for shaping the cross-sectional shape of the electron beam, wherein the pattern data memory is transferred to the wafer when the electron beam shaping means actually shapes the electron beam based on the exposure data. Storing the cross-sectional shape information based on the shape of the obtained electron beam. 4. The electron beam exposure apparatus according to claim 3, wherein:
5 . 前記電子ビームの前記断面形状を矩形に成形する電子ビーム成形手段をさら に備え、 5. An electron beam shaping means for shaping the cross-sectional shape of the electron beam into a rectangle is further provided.
前記断面形状情報は、 前記電子ビーム成形手段によつて成形される前記電子ビー ムの前記断面形状である矩形の 2辺の長さの情報を含み、 The cross-sectional shape information includes information on the lengths of two sides of a rectangle that is the cross-sectional shape of the electron beam formed by the electron beam forming means,
前記パターン発生部は、 前記断面形状識別情報に基づいて、 前記パターンデータ メモリに格納される前記矩形の前記 2辺の長さを抽出して出力する The pattern generation unit extracts and outputs the lengths of the two sides of the rectangle stored in the pattern data memory based on the cross-sectional shape identification information.
ことを特徴とする請求項 3に記載の電子ビーム露光装置。 4. The electron beam exposure apparatus according to claim 3, wherein:
6 . 前記断面形状情報に対応づけて、 前記電子ビームの断面形状に基づく露光時 間の補正を行うための捕正係数である前記パターン補正係数を格納するパターン補 正係数メモリをさらに備え、 6. A pattern correction coefficient memory storing the pattern correction coefficient, which is a correction coefficient for performing exposure time correction based on the cross-sectional shape of the electron beam, in association with the cross-sectional shape information,
前記照射時間決定部は、 前記パタ一ン発生部によって出力された前記断面形状情 報に対応づけて前記パタ一ン補正係数メモリに格納された前記パタ一ン補正係数に 基づいて、 前記照射時間を決定する The irradiation time determination unit is configured to determine the irradiation time based on the pattern correction coefficient stored in the pattern correction coefficient memory in association with the cross-sectional shape information output by the pattern generation unit. Determine
ことを特徴とする請求項 4に記載の電子ビーム露光装置。 5. The electron beam exposure apparatus according to claim 4, wherein:
7 . 前記ゥヱハにおいて前記電子ビームを照射すべき領域である露光領域を前記 データメモリに通知する露光シーケンス制御部をさらに備え、 7. An exposure sequence control unit for notifying the data memory of an exposure area which is an area to be irradiated with the electron beam in the step (c),
前記照射時間決定部は、 前記露光領域にさらに基づいて、 前記照射時間を決定す る The irradiation time determining unit determines the irradiation time further based on the exposure area.
ことを特徴とする請求項 1に記載の電子ビーム露光装置。 2. The electron beam exposure apparatus according to claim 1, wherein:
8 . 前記露光領域に対応づけて、 当該露光領域における露光時間を補正するため の補正係数であるフィールド補正係数を識別するフィールド補正係数識別情報を格 納するフィールドデータメモリをさらに備え、 8. A field data memory storing field correction coefficient identification information for identifying a field correction coefficient that is a correction coefficient for correcting an exposure time in the exposure area in association with the exposure area,
前記露光シーケンス制御部は、 前記データメモリに通知した前記露光領域に対応 づけて前記フィールドデータメモリに格納された前記フィールド補正係数識別情報 を抽出して出力する The exposure sequence control unit extracts and outputs the field correction coefficient identification information stored in the field data memory in association with the exposure area notified to the data memory.
ことを特徴とする請求項 7に記載の電子ビーム露光装置。
The electron beam exposure apparatus according to claim 7, wherein:
9 . 前記フィールド捕正係数織別情報に対応づけて、 前記フィールド捕正係数を 格納するフィールド補正係数メモリをさらに備え、 9. A field correction coefficient memory for storing the field correction coefficient in association with the field correction coefficient weaving information,
前記照射時間決定部は、 前記露光シーケンス制御部によって出力された前記フィ ールド補正係数識別情報に対応づけて前記フィールド補正係数メモリに格納された 前記フィールド補正係数に基づいて、 前記照射時間を決定する The irradiation time determination unit determines the irradiation time based on the field correction coefficient stored in the field correction coefficient memory in association with the field correction coefficient identification information output by the exposure sequence control unit.
ことを特^^とする請求項 8に記載の電子ビーム露光装置。 9. The electron beam exposure apparatus according to claim 8, wherein:
1 0 . 電子ビームにより、 ウェハにパターンを露光する露光方法であって、 前記ウェハに露光すベきパターンを示す露光データに基づいて、 前記電子ビーム の断面形状を規定する断面形状情報を発生するパターン発生段階と、 10. An exposure method for exposing a pattern on a wafer with an electron beam, wherein cross-sectional shape information for defining a cross-sectional shape of the electron beam is generated based on exposure data indicating a pattern to be exposed on the wafer. A pattern generation stage,
前記断面形状情報に基づいて、 前記電子ビームを前記ウェハに照射する時間であ る照射時間を決定する照射時間決定段階と、 An irradiation time determining step of determining an irradiation time that is a time for irradiating the wafer with the electron beam based on the cross-sectional shape information;
前記照射時間に基づいて、 前記電子ビームを照射して前記ゥェハを露光する露光 段階と An exposure step of exposing the wafer by irradiating the electron beam based on the irradiation time;
を備えることを特徴とする露光方法。 An exposure method, comprising:
1 1 . 前記電子ビームを前記ウェハに照射し、 前記ゥヱハに転写された前記電子 ビームの形状を取得する取得段階と、 11. An obtaining step of irradiating the electron beam onto the wafer and obtaining a shape of the electron beam transferred to the wafer;
前記電子ビームの前記形状に基づいて、 前記断面形状情報を決定する断面形状情 報決定段階と Determining a cross-sectional shape information based on the shape of the electron beam;
をさらに備え、 Further comprising
前記照射時間決定段階は、 決定された前記断面形状情報に基づいて、 前記照射時 間を決定する In the irradiation time determining step, the irradiation time is determined based on the determined cross-sectional shape information.
ことを特徴とする請求項 1 0に記載の露光方法。
The exposure method according to claim 10, wherein:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-27010 | 2001-02-02 | ||
JP2001027010A JP4199425B2 (en) | 2001-02-02 | 2001-02-02 | Electron beam exposure apparatus and exposure method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002063663A1 true WO2002063663A1 (en) | 2002-08-15 |
Family
ID=18891732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/000715 WO2002063663A1 (en) | 2001-02-02 | 2002-01-30 | Electron beam exposure apparatus and exposure method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4199425B2 (en) |
WO (1) | WO2002063663A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03173119A (en) * | 1989-12-01 | 1991-07-26 | Hitachi Ltd | Electron beam drawing apparatus |
JPH04177717A (en) * | 1990-11-09 | 1992-06-24 | Fujitsu Ltd | Charged particle beam aligner and exposing method |
JPH04278516A (en) * | 1991-03-07 | 1992-10-05 | Nec Corp | Electron beam aligner |
JPH05160009A (en) * | 1991-12-09 | 1993-06-25 | Mitsubishi Electric Corp | Charged beam lithography device and pattern forming method using charged beam |
JPH10242025A (en) * | 1997-02-27 | 1998-09-11 | Jeol Ltd | Variable area type method for plotting electron beam |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07105328B2 (en) * | 1986-11-26 | 1995-11-13 | 株式会社東芝 | Charged beam exposure device |
JP3330306B2 (en) * | 1997-05-14 | 2002-09-30 | 東芝機械株式会社 | Charged beam drawing method |
US6014200A (en) * | 1998-02-24 | 2000-01-11 | Nikon Corporation | High throughput electron beam lithography system |
JP2000021731A (en) * | 1998-07-02 | 2000-01-21 | Advantest Corp | Charged particle beam aligner |
-
2001
- 2001-02-02 JP JP2001027010A patent/JP4199425B2/en not_active Expired - Fee Related
-
2002
- 2002-01-30 WO PCT/JP2002/000715 patent/WO2002063663A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03173119A (en) * | 1989-12-01 | 1991-07-26 | Hitachi Ltd | Electron beam drawing apparatus |
JPH04177717A (en) * | 1990-11-09 | 1992-06-24 | Fujitsu Ltd | Charged particle beam aligner and exposing method |
JPH04278516A (en) * | 1991-03-07 | 1992-10-05 | Nec Corp | Electron beam aligner |
JPH05160009A (en) * | 1991-12-09 | 1993-06-25 | Mitsubishi Electric Corp | Charged beam lithography device and pattern forming method using charged beam |
JPH10242025A (en) * | 1997-02-27 | 1998-09-11 | Jeol Ltd | Variable area type method for plotting electron beam |
Also Published As
Publication number | Publication date |
---|---|
JP2002231610A (en) | 2002-08-16 |
JP4199425B2 (en) | 2008-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5069331B2 (en) | Electron beam exposure system | |
WO2002058118A1 (en) | Electron beam exposure device and electron beam deflection device | |
US7041988B2 (en) | Electron beam exposure apparatus and electron beam processing apparatus | |
JP3658235B2 (en) | Electron gun, drawing apparatus using electron gun, and electron beam application apparatus | |
JP4156862B2 (en) | Electron beam exposure apparatus and electron beam processing apparatus | |
JP4959723B2 (en) | Electron gun and electron beam exposure apparatus | |
US9336980B2 (en) | Electron beam writing apparatus, and method for adjusting convergence half angle of electron beam | |
WO2002047135A1 (en) | Electron beam exposure system and electron lens | |
JP4246373B2 (en) | Electron beam generation apparatus and electron beam exposure apparatus | |
JP2023160972A (en) | Charged particle beam lithography device and charged particle beam lithography method | |
JP2002289517A (en) | Electron beam proximity exposure system and method | |
WO2002063663A1 (en) | Electron beam exposure apparatus and exposure method | |
JP4112791B2 (en) | Electron beam correction method and electron beam exposure apparatus | |
WO2002041372A1 (en) | Electron beam exposure system, electron beam exposure method, and production method for semiconductor element | |
JP7192254B2 (en) | Multi-charged particle beam drawing device and its adjustment method | |
JP2005026241A (en) | Electron beam generating device and electron beam exposure device | |
WO2002061812A1 (en) | Electron beam exposure device and electron lens | |
JP2002150989A (en) | Electron-beam exposure, system and electron lens | |
JPS62160648A (en) | Focusing ion beam device | |
JP2002260988A (en) | Electron beam exposure system, electron beam shaping device, and method for electron beam exposure | |
JP2004039457A (en) | Electron beam forming device, electron beam exposure device, and electron beam control method | |
JP2003323858A (en) | Electron beam treatment device and measurement method of electron beam shape | |
JP2002190447A (en) | Electron beam projection exposure system | |
WO2002052623A1 (en) | Electron beam exposure system and electron beam irradiation position calibrating member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): DE US |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |