[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2002052623A1 - Electron beam exposure system and electron beam irradiation position calibrating member - Google Patents

Electron beam exposure system and electron beam irradiation position calibrating member Download PDF

Info

Publication number
WO2002052623A1
WO2002052623A1 PCT/JP2001/011524 JP0111524W WO02052623A1 WO 2002052623 A1 WO2002052623 A1 WO 2002052623A1 JP 0111524 W JP0111524 W JP 0111524W WO 02052623 A1 WO02052623 A1 WO 02052623A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
mark
substrate
electron
exposure apparatus
Prior art date
Application number
PCT/JP2001/011524
Other languages
French (fr)
Japanese (ja)
Inventor
Harunobu Muto
Hiroshi Yano
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Publication of WO2002052623A1 publication Critical patent/WO2002052623A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30433System calibration
    • H01J2237/30438Registration
    • H01J2237/30444Calibration grids

Definitions

  • the present invention relates to an electron beam exposure apparatus and a member for calibrating an irradiation position of an electron beam.
  • This application is related to the following Japanese patent application. For those designated countries that are allowed to be incorporated by reference to the literature, the contents described in the following application shall be incorporated into this application by reference, and shall be part of the description of this application.
  • a conventional electron beam exposure apparatus deflects an electron beam by a deflector and irradiates the electron beam on a predetermined region of a wafer. In order to irradiate a desired position on the wafer with the electron beam, it is necessary to correct the irradiation position of the electron beam in advance.
  • FIG. 1 shows a calibration member 12 in a conventional electron beam exposure apparatus 10.
  • the calibration member 12 includes a substrate 16 made of silicon or the like provided on the wafer stage 14, a mark portion 18 provided on the substrate 16, and an electron beam irradiated on the mark portion 18. And a detection unit 20 for detecting electrons radiated or scattered from the mark unit 18.
  • the electron beam exposure apparatus 10 deflects the electron beam by the deflector 22 and scans the mark section 18 with the electron beam.
  • the detector 20 detects electrons scattered from the mark 18 when the mark 18 is irradiated with an electron beam.
  • the electron beam exposure apparatus 10 detects the position of the edge from the timing at which the electron beam scans the edge of the mark section 18 and calibrates the irradiation position of the electron beam.
  • the detection section 20 when irradiating the mark section 18 with an electron beam, the detection section 20 also detects electrons scattered from the side surface of the edge of the mark section 18. There was a problem that would.
  • the detection unit 20 when the substrate 16 is irradiated with the electron beam, there is a problem that the detection unit 20 also detects electrons scattered from the substrate 16. Therefore, the detection unit 20 cannot accurately detect the position of the edge of the mark unit 16 and cannot detect the accurate irradiation position of the electron beam.
  • an object of the present invention is to provide an electron beam exposure apparatus and a calibration member that can solve the above-described problems. This object is achieved by a combination of features described in the independent claims.
  • the dependent claims define further advantageous embodiments of the present invention. Disclosure of the invention
  • an electron beam exposure apparatus for exposing a pattern on a wafer by using an electron beam, comprising: a wafer stage on which a wafer is placed; and a wafer stage.
  • An electron beam exposure apparatus comprising: a mark portion for detecting an irradiation position of an electron beam, wherein the mark portion has an upper area irradiated with the electron beam larger than a lower area. I will provide a.
  • the upper part may have two mutually perpendicular sides projecting from the lower part in a direction substantially perpendicular to the electron beam irradiation direction.
  • the electron beam exposure apparatus may further include a plurality of electron beam generators each generating an electron beam, and a plurality of mark units corresponding to the plurality of electron beam generators.
  • an electron beam exposure apparatus for exposing a pattern on a wafer with an electron beam comprising: a wafer stage on which a wafer is mounted; a substrate mounted on the wafer stage; A mark portion for detecting an irradiation position of the electron beam, wherein the substrate has a groove in a region adjacent to the mark portion.
  • the groove may be formed so as to extend downward along the electron beam irradiation direction.
  • the groove may be formed by etching the substrate using the mark as a mask. No.
  • the electron beam exposure apparatus may further include a plurality of electron beam generators each generating an electron beam, and a plurality of mark units corresponding to the plurality of electron beam generators.
  • a calibration member for calibrating an irradiation position of an electron beam in an electron beam exposure apparatus, wherein the calibration member is provided on the substrate and detects an irradiation position of the electron beam.
  • a mark part wherein the mark part has an upper area irradiated with the electron beam larger than a lower area.
  • the upper part may have two mutually perpendicular sides projecting from the lower part in a direction substantially perpendicular to the electron beam irradiation direction.
  • the calibration member may further include a plurality of mark portions arranged corresponding to the intervals between the electron beams.
  • a calibration member for calibrating an irradiation position of an electron beam in an electron beam exposure apparatus, wherein the calibration member is provided on the substrate and detects an irradiation position of the electron beam.
  • a calibration member wherein the substrate has a groove in a region in contact with the mark.
  • the groove may be formed so as to extend downward along the electron beam irradiation direction.
  • the groove may be formed by etching the substrate using the mark as a mask.
  • the calibration member may further include a plurality of mark portions arranged corresponding to the intervals between the electron beams.
  • a method of manufacturing a calibration member for calibrating an electron beam irradiation position in an electron beam exposure apparatus comprising: a mark for detecting an electron beam irradiation position on a substrate.
  • a method for manufacturing a calibration member comprising: a step of forming a groove; and a step of forming a groove by etching a substrate using a mark as a mask.
  • the step of forming the groove may include the step of providing the groove in a region adjacent to the mark on the substrate.
  • FIG. 1 is a cross-sectional view showing a calibration member in a conventional electron beam exposure apparatus.
  • FIG. 2 is a configuration diagram of the electron beam exposure apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a top view of the wafer stage according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing one embodiment of the calibration member shown in FIG.
  • FIG. 5 is a top view of the calibration member shown in FIG.
  • FIG. 6 is a sectional view showing another embodiment of the calibration member shown in FIG.
  • FIG. 7 is a top view of the calibration member according to one embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 2 shows a configuration of an electron beam exposure apparatus 100 according to the first embodiment of the present invention.
  • the electron beam exposure apparatus 100 includes an exposure unit 102 for performing a predetermined exposure process on a wafer 150 by an electron beam, and a control system 1 for controlling the operation of each component included in the exposure unit 102. 60.
  • the exposure unit 102 generates electron beams inside the housing 104, an electron beam forming unit 110 for forming a desired cross-sectional shape of the electron beams, and a wafer 15
  • the irradiation switching means 130 for independently switching whether or not to irradiate the electron beam for each electron beam, and the wafer projection system 140 for adjusting the direction and size of the image of the pattern transferred to the wafer 150 Including an electron optical system.
  • the exposure unit 102 includes a wafer stage 1502 on which a calibration member 200 for calibrating the electron beam deflection by the wafer 150 and the deflecting unit 144 is provided.
  • a stage system including a wafer stage drive unit 154 for driving the stage 152 is provided.
  • the calibration member 200 includes a substrate, and a mark portion provided on the substrate for detecting an irradiation position of the electron beam.
  • the exposure unit 102 further includes an electron detection unit 210 that detects electrons emitted or scattered from the calibration member 200 when the calibration member 200 is irradiated with an electron beam.
  • the exposure unit 102 may include a plurality of electron detection units 210.
  • the electron beam shaping means 110 includes a plurality of electron guns 112 for generating a plurality of electron beams, and a first shaping device having a plurality of openings for shaping the cross-sectional shape of the electron beam by passing the electron beam.
  • Member 1 1 4 and second molded member 1 2 2, 1st multi-axis electron lens 1 16 for independently converging multiple electron beams and adjusting the focus of electron beam 1st molded member 1 1 It has a first shaping / deflecting unit 118 and a second shaping / deflecting unit 120 for independently deflecting a plurality of electron beams passing through 4.
  • the irradiation switching means 130 independently converges the plurality of electron beams and adjusts the focal point of the electron beam, and deflects the plurality of electron beams independently for each electron beam.
  • An electron beam shielding member for shielding the electron beam deflected by the ranking electrode array.
  • the blanking electrode array 134 may be a blanking aperture array device.
  • the projection system 140 for C has a third multi-axis electron lens 142 that focuses a plurality of electron beams independently and reduces the irradiation diameter of the electron beam, and an electron beam that converges the electron beams independently.
  • a fifth multi-axis electron lens 148 that functions as an objective lens for the wafer 150 and converges a plurality of electron beams independently.
  • the deflecting unit 146 includes a plurality of deflectors.
  • the control system 160 includes a general control unit 170 and an individual control unit 180.
  • the individual control unit 180 includes an electron beam control unit 182, a multi-axis electron lens control unit 1884, a molding deflection control unit 1886, a blanking electrode array control unit 1888, and deflection control. It has a unit 190, a wafer stage control unit 192, and a detection signal processing unit 1994.
  • the general control unit 170 is, for example, a workstation, and is included in the individual control unit 180. It controls each control unit.
  • the electron beam control unit 18 controls the electron gun 11.
  • the multi-axis electronic lens controller 18 4 is composed of the first multi-axis electron lens 116, the second multi-axis electron lens 132, the third multi-axis electron lens 144, and the fourth multi-axis electron lens 14 Controls the current supplied to the fourth and fifth multi-axis electron lenses 148.
  • the shaping / deflecting control unit 186 controls the first shaping / deflecting unit 118 and the second shaping / deflecting unit 120.
  • the blanking electrode array controller 188 controls the voltage applied to the deflection electrodes included in the blanking electrode array 134.
  • the deflection control unit 190 controls the voltage applied to the deflection electrodes of the plurality of deflectors included in the deflection unit 146.
  • the wafer stage controller 192 controls the wafer stage driver 154 to move the wafer stage 152 to a predetermined position.
  • the detection signal processing section 194 outputs the amount of electrons detected by the electron detection section 210 to the overall control section 170 as a detection signal.
  • FIG. 3 is a top view of the wafer stage 152.
  • a wafer 150 and a calibration member 200 are mounted on the wafer stage 152.
  • the calibration member 200 is provided at a position on the wafer stage 152 different from the region where the wafer 150 is placed.
  • FIG. 4 is a cross-sectional view showing one embodiment of the calibration member 200 shown in FIG.
  • the calibration member 200 includes a substrate 202 formed of a material such as silicon that is unlikely to emit or scatter an electron beam, and a plurality of mark portions 204.
  • the mark portion 204 is preferably formed of a material that easily emits or scatters an electron beam, such as tantalum (T a) or tungsten (W).
  • the marked portion 204 has an upper area 204 a to be irradiated with the electron beam, and the area of the upper area 204 a is larger than that of the lower area 204 b.
  • the mark part 204 is preferably formed by, for example, dry etching so that the area of the upper part 204a is larger than the area of the lower part 204b.
  • the lower portion 204 b of the mark portion 204 may be a surface on the same plane as the surface of the substrate 202.
  • the plurality of mark portions 204 are preferably arranged at intervals substantially equal to the intervals between electron beams.
  • the plurality of mark portions 204 are provided corresponding to the positions where the plurality of electron guns 112 are provided.
  • the electron beam scans the mark portion 204, the electron beam does not irradiate the side surface of the edge of the mark portion 204. Little detection of electrons emitted or scattered on the side of the edge.
  • FIG. 5 is a top view of the calibration member 200 shown in FIG.
  • the upper part 204 a of the mark part 204 has two mutually perpendicular sides c and d that protrude from the lower part 204 b at least in a direction substantially perpendicular to the electron beam irradiation direction. preferable.
  • the upper part 204a and the lower part 204b have a rectangular shape.
  • the prescribed position X is preferably provided at a predetermined distance that is known from the sides c and d of each mark portion 204.
  • the specified position X may be the center of the mark portion 204. This makes it possible to calibrate the irradiation position of the electron beam in two directions substantially perpendicular to each other using one mark portion 204.
  • FIG. 6 is a sectional view partially showing another embodiment of the calibration member 200 shown in FIG.
  • the calibration member 200 has a substrate 202 and a plurality of mark portions 204 provided on the substrate 202 for detecting the irradiation position of the electron beam.
  • the substrate 202 has a groove 206 in a region adjacent to the mark 204.
  • the groove 206 may be formed substantially in the same plane as the side surface of the edge of the mark 204, and substantially perpendicular to the surface of the substrate 202.
  • the groove 206 may be formed by anisotropically etching the substrate 202 using the mark 204 as a mask.
  • the groove 206 may be formed so as to spread downward along the electron beam irradiation direction.
  • the groove portion 206 is preferably formed by anisotropically etching the substrate 202 using the mark portion 204 as a mask.
  • the groove portion 206 extends from a portion in contact with the mark portion 204 to another portion, and is formed in an undercut state in a portion of the mark portion 204. You can.
  • the groove 206 is formed on the substrate 2 using the mark 204 as a mask.
  • O2 is preferably formed by isotropic etching such as, for example, etching.
  • the groove portion 206 is provided in the substrate 202, radiation and scattering of the electron beam caused by irradiating the substrate 202 with the electron beam can be reduced.
  • the detecting section 210 hardly detects electrons emitted or scattered from the substrate 202. Therefore, the overall control unit 170 can accurately detect the position of the edge of the mark unit 204.
  • the mark portion 204 is formed on the upper portion 204 a to be irradiated with the electron beam similarly to the embodiment shown in FIGS. 4 and 5. It may be formed so that the area is larger than the area of the lower portion 204b. According to this configuration, when the electron beam scans the mark portion 204, the electron beam does not irradiate the side surface of the edge of the mark portion 204. Hardly detect the electrons emitted or scattered on the side of the edge of the. Further, since the groove portion 206 is provided in the substrate 202, radiation and scattering of the electron beam generated by irradiating the substrate 202 with the electron beam can be reduced. Hardly detects electrons emitted or scattered from the substrate 202. Therefore, the overall control unit 170 can more accurately detect the position of the edge of the mark unit 204.
  • FIG. 7 is a top view of the calibration member 200 according to one embodiment of the present invention.
  • the calibration member 200 is provided in a region of the wafer stage 152 where the wafer is mounted.
  • the calibration member 200 is formed on a substrate such as silicon, for example, and has a plurality of mark portions 204 as in the configuration shown in FIGS. 4 to 6.
  • the calibration member 200 since the calibration member 200 is placed in the region of the wafer stage 152 on which the wafer 150 is placed, all the electron beams generated by the electron beam exposure apparatus 100 are The irradiation position can be calibrated at the same time. Therefore, multiple electron beams can be calibrated quickly.
  • the electronic beam of the electron beam exposure apparatus 100 was The operation of the electron beam exposure apparatus 100 in the correction process for correcting the irradiation position of the system will be described. It is preferable that the wafer stage controller 192 moves the wafer stage 152 to a position where each of the plurality of electron beams irradiates the mark portion 204 of the calibration member 200. At this time, the electron beam is applied to the mark section 204, and the mark section 204 emits or scatters the irradiated electrons, so that the electron detection section 210 detects the electrons.
  • the general control section 170 controls the scanning start means to start the scanning of the electron beam to the mark section 204.
  • the scanning start means of the overall control unit 170 deflects the electron beam in the direction of the side c or d from the scan start position, and scans the electron beam from the scan start position until it passes the side c or d. While the mark section 204 is irradiated with the electron beam, the mark section 204 emits or scatters electrons, so the electron detection section 210 detects electrons. When the electron beam passes through the side c or the side d, the electron beam irradiates the substrate 202, and the substrate 202 hardly emits or scatters electrons. No longer detected.
  • the detection signal processing section 194 outputs the amount of electrons detected by the electron detection section 210 to the general control section 170 as a detection signal.
  • the overall control unit 170 can detect the timing at which the electron beam passes through the side c or the side d, the deflection unit 1 4 6 required for the electron beam to pass from the scanning start position to the side c or the side d. The amount of deflection of the deflector at can be detected. Based on the deflection amount of the deflector required for the electron beam to pass through the side c or the side d from the electron beam running start position, the general control unit 170 determines the specified position X in FIG. A deviation from the start position can be detected. Therefore, the overall control unit 170 can detect the irradiation position of the electron beam in the direction of the side c or the side d. It is preferable that the overall control unit 170 calculates a correction value for correcting the irradiation position of the electron beam based on the detected irradiation position of the electron beam.
  • the wafer stage control unit 192 may be configured such that each of the plurality of electron beams is provided in a predetermined area where the mark portion 204 of the substrate 202 of the calibration member 200 is not provided.
  • the wafer stage 152 may be moved to a position where the wafer is irradiated.
  • the electron beam is applied to the substrate 202, and the electrons are not emitted or scattered. Therefore, the electron detection unit 210 does not detect the electrons.
  • the general control unit 170 controls the scanning start means to supply power.
  • the sub-beam may be caused to travel from the scanning start position on the substrate 202 to pass through the edge of the mark portion 204.
  • the electron beam does not irradiate the side surface of the edge of the mark portion 204 when the electron beam travels through the mark portion 204. Little detection of electrons emitted or scattered on the side of the edge of 4. Therefore, the general control unit 100 can accurately detect the position of the edge of the mark portion 204.
  • the electron beam Since the groove portion 206 is provided in the substrate 202, the electron beam Since the emission and scattering of the electron beam generated by irradiating 202 can be reduced, the electron detecting section 210 hardly detects the electrons emitted or scattered from the substrate 202. Therefore, the overall control unit 170 can accurately detect the position of the edge of the mark unit 204.
  • the irradiation positions of a plurality of electron beams can be calibrated simultaneously. Therefore, multiple electron beams can be calibrated quickly.
  • the electron beam irradiation position is corrected based on the electron beam irradiation position, and then exposure processing is performed on the substrate 150.
  • the operation of the electron beam exposure apparatus 100 in the exposure process will be described.
  • the operation of irradiating the calibration member 200 with the electron beam is performed by the electron beam on the wafer 150 in the exposure process.
  • the operation may be substantially the same as the operation of irradiating.
  • Multiple electron guns 1 1 2 generate multiple electron beams.
  • the generated electron beam is applied to the first forming member 114 to be formed.
  • a plurality of electron beams may be generated by further including a unit for dividing the electron beam generated in the electron gun 112 into a plurality of electron beams.
  • the first multi-axis electron lens 1 16 independently focuses multiple electron beams shaped into a rectangle Then, the focus adjustment of the electron beam with respect to the second molding member 122 is performed independently for each electron beam.
  • the first shaping deflection unit 118 deflects a plurality of rectangularly shaped electron beams to a desired position with respect to the second shaping member independently for each electron beam.
  • the second shaping deflection unit 120 deflects the plurality of electron beams deflected by the first shaping deflection unit 118 in a direction substantially perpendicular to the second shaping member 122 independently for each electron beam. .
  • the second molding member 122 including a plurality of openings having a rectangular shape is preferably configured such that a plurality of electron beams having a rectangular cross-sectional shape applied to each of the openings is irradiated onto the wafer 150. It is further shaped into an electron beam having a rectangular cross-sectional shape.
  • the second multi-axis electron lens 132 independently converges the plurality of electron beams, and independently adjusts the focus of the electron beam with respect to the blanking electrode array 134 for each electron beam.
  • the electron beam focused by the second multi-axis electron lens 13 2 passes through a plurality of apertures included in the blanking electrode array 1 34.
  • the blanking electrode array control unit 188 controls whether or not to apply a voltage to a deflection electrode formed in the blanking electrode array 134 and provided near each aperture.
  • the blanking electrode array 134 switches whether or not to irradiate the wafer 150 with the electron beam based on the voltage applied to the deflection electrode.
  • the electron beam that is not deflected by the blanking electrode array 134 has its electron beam diameter reduced by the third multi-axis electron lens 142 and passes through an opening included in the electron beam shielding member 136.
  • Fourth multi-axis electron lens 1 4 4 force Converges multiple electron beams independently, adjusts the focus of the electron beam with respect to the deflection unit 1 46 independently for each electron beam, and adjusts the focus of the electron beam.
  • the light enters the deflector included in the deflecting unit 146.
  • the overall control unit 170 controls the deflection control unit 190 to correct the irradiation position of the electron beam based on the correction value calculated in the correction processing.
  • the deflection control unit 190 controls the deflection unit 146 based on an instruction from the general control unit 170 to deflect each electron beam, thereby correcting the irradiation position of the electron beam. I do.
  • the deflection control unit 190 controls the plurality of deflectors included in the deflection unit 146 independently.
  • the deflecting unit 146 deflects the plurality of electron beams incident on the plurality of deflectors to a desired exposure position on the wafer 150 independently for each electron beam.
  • the plurality of electron beams passing through the deflecting unit 146 are adjusted in focus with respect to the wafer 150 by the fifth multi-axis electron lens 148, and are irradiated on the wafer 150.
  • the wafer stage controller 192 moves the wafer stage 152 in a fixed direction.
  • the blanking electrode array control unit 188 determines apertures through which the electron beam passes based on the exposure pattern data, and performs power control for each aperture.
  • the aperture through which the electron beam passes is appropriately changed in accordance with the movement of the wafer 150, and the electron beam is deflected by the deflecting unit 146, thereby exposing the wafer 150 to a desired circuit pattern. It becomes possible.
  • the irradiation position of the electron beam can be appropriately calibrated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

A calibrating member (200) for calibrating an electron beam irradiation position in an electron beam exposure system, comprising a substrate (202), and a mark unit (204) provided on the substrate (202), for detecting an electron beam irradiation position. The mark unit (204) may have electron-beam-irradiated upper portion (204a) larger in area than a lower portion (204b). The substrate (202) may have a groove unit (206) in a region adjacent to the mark unit (204).

Description

明 細 書 電子ビーム露光装置及び電子ビームの照射位置の校正用部材 技術分野 ,  Description Electron beam exposure equipment and members for calibrating the irradiation position of electron beam
本発明は、電子ビーム露光装置及び電子ビームの照射位置の校正用部材に関す る。 また本出願は、 下記の日本特許出願に関連する。 文献の参照による組み込み が認められる指定国については、下記の出願に記載された内容を参照により本出 願に組み込み、 本出願の記載の一部とする。  The present invention relates to an electron beam exposure apparatus and a member for calibrating an irradiation position of an electron beam. This application is related to the following Japanese patent application. For those designated countries that are allowed to be incorporated by reference to the literature, the contents described in the following application shall be incorporated into this application by reference, and shall be part of the description of this application.
特願 2 0 0 0— 3 9 7 8 0 0 出願日 平成 1 2年 1 2月 2 7日 背景技術  Japanese Patent Application No. 2 0 0 0 3 9 7 8 0 0 Filing Date 1 2/27/2012 Background Art
従来、 電子ビームによりウェハにパターンを露光する電子ビーム露光装置が知ら れている。 従来の電子ビーム露光装置は、 電子ビームを偏向器により偏向させて電 子ビームをウェハの所定の領域に照射する。 電子ビームをウェハの所望の位置に照 射するために、 予め電子ビームの照射位置を補正しておく必要がある。  Conventionally, an electron beam exposure apparatus that exposes a pattern on a wafer by an electron beam has been known. A conventional electron beam exposure apparatus deflects an electron beam by a deflector and irradiates the electron beam on a predetermined region of a wafer. In order to irradiate a desired position on the wafer with the electron beam, it is necessary to correct the irradiation position of the electron beam in advance.
図 1は、 従来の電子ビーム露光装置 1 0における校正用部材 1 2を示す。 校正用 部材 1 2は、 ウェハステージ 1 4上に設けられたシリコンなどの基板 1 6と、 基板 1 6に設けられたマーク部 1 8と、 マーク部 1 8に電子ビームが照射された際にお けるマーク部 1 8から放射又は散乱された電子を検出する検出部 2 0とを含む。 電 子ビーム露光装置 1 0は、 偏向器 2 2により電子ビームを偏向させ、 電子ビームを マーク部 1 8に対して走査させる。 検出部 2 0は、 マーク部 1 8に電子ビームが照 射された際にマーク部 1 8から散乱された電子を検出する。 電子ビーム露光装置 1 0は、 電子ビームがマーク部 1 8のエッジを走査するタイミングから当該エッジの 位置を検出し、 電子ビームの照射位置を校正する。  FIG. 1 shows a calibration member 12 in a conventional electron beam exposure apparatus 10. The calibration member 12 includes a substrate 16 made of silicon or the like provided on the wafer stage 14, a mark portion 18 provided on the substrate 16, and an electron beam irradiated on the mark portion 18. And a detection unit 20 for detecting electrons radiated or scattered from the mark unit 18. The electron beam exposure apparatus 10 deflects the electron beam by the deflector 22 and scans the mark section 18 with the electron beam. The detector 20 detects electrons scattered from the mark 18 when the mark 18 is irradiated with an electron beam. The electron beam exposure apparatus 10 detects the position of the edge from the timing at which the electron beam scans the edge of the mark section 18 and calibrates the irradiation position of the electron beam.
しかし、 従来の電子ビーム露光装置においては、 マーク部 1 8に電子ビームを照 射する際、 検出部 2 0がマーク部 1 8のエッジの側面から散乱される電子も検出し てしまうという問題があった。 また、 基板 1 6に電子ビームが照射する際、 検出部 2 0が基板 1 6から散乱される電子も検出してしまうという問題もあった。 そのた め、 検出部 2 0はマーク部 1 6のエッジの位置を正確に検出することができず、 電 子ビームの正確な照射位置を検出することができなかった。 However, in the conventional electron beam exposure apparatus, when irradiating the mark section 18 with an electron beam, the detection section 20 also detects electrons scattered from the side surface of the edge of the mark section 18. There was a problem that would. In addition, when the substrate 16 is irradiated with the electron beam, there is a problem that the detection unit 20 also detects electrons scattered from the substrate 16. Therefore, the detection unit 20 cannot accurately detect the position of the edge of the mark unit 16 and cannot detect the accurate irradiation position of the electron beam.
そこで、 本発明は、 上記の課題を解決することのできる電子ビーム露光装置及ぴ 校正用部材を提供することを目的とする。 この目的は特許請求の範囲における独立 項に記載の特徴の組み合わせにより達成される。 また従属項は本発明の更なる有利 な具体例を規定する。 発明の開示  Therefore, an object of the present invention is to provide an electron beam exposure apparatus and a calibration member that can solve the above-described problems. This object is achieved by a combination of features described in the independent claims. The dependent claims define further advantageous embodiments of the present invention. Disclosure of the invention
このような目的を達成するために、本発明の第 1の形態によれば、電子 一ム によりウェハにパターンを露光する電子ビーム露光装置であって、ウェハを載置 するウェハステージと、 ウェハステージ上に設けられ、電子ビームの照射位置を 検出するためのマーク部とを備え、マーク部は、電子ビームが照射される上部の 面積が下部の面積よりも大きいことを特徴とする電子ビーム露光装置を提供す る。  According to a first embodiment of the present invention, there is provided an electron beam exposure apparatus for exposing a pattern on a wafer by using an electron beam, comprising: a wafer stage on which a wafer is placed; and a wafer stage. An electron beam exposure apparatus, comprising: a mark portion for detecting an irradiation position of an electron beam, wherein the mark portion has an upper area irradiated with the electron beam larger than a lower area. I will provide a.
上部は、 電子ビームの照射方向に実質的に垂直な方向に下部よりもそれぞれ突出 する互いに垂直な 2辺を有してもよい。  The upper part may have two mutually perpendicular sides projecting from the lower part in a direction substantially perpendicular to the electron beam irradiation direction.
電子ビーム露光装置は、 電子ビームをそれぞれ発生する複数の電子ビーム発生部 と、 複数の電子ビーム発生部に対応する複数のマーク部とをさらに備えてもよい。 本発明の第 2の形態によると、 電子ビームによりウェハにパターンを露光する電 子ビーム露光装置であって、 ウェハを載置するウェハステージと、 ウェハステージ に設置された基板と、 基板上に設けられ、 電子ビームの照射位置を検出するための マーク部とを備え、 基板は、 マーク部に隣接する領域に溝部を有することを特徴と する電子ビーム露光装置を提供する。  The electron beam exposure apparatus may further include a plurality of electron beam generators each generating an electron beam, and a plurality of mark units corresponding to the plurality of electron beam generators. According to a second aspect of the present invention, there is provided an electron beam exposure apparatus for exposing a pattern on a wafer with an electron beam, comprising: a wafer stage on which a wafer is mounted; a substrate mounted on the wafer stage; A mark portion for detecting an irradiation position of the electron beam, wherein the substrate has a groove in a region adjacent to the mark portion.
溝部は、 電子ビームの照射方向に沿って下部へ広がるように形成されてもよい。 溝部は、 マーク部をマスクとして基板をエッチングすることにより形成されてもよ い。 The groove may be formed so as to extend downward along the electron beam irradiation direction. The groove may be formed by etching the substrate using the mark as a mask. No.
電子ビーム露光装置は、 電子ビームをそれぞれ発生する複数の電子ビーム発生部 と、 複数の電子ビーム発生部に対応する複数のマーク部とをさらに備えてもよレ、。 本発明の第 3の形態によると、 電子ビーム露光装置における電子ビームの照射位 置を校正するための校正用部材であって、 基板と、 基板に設けられ、 電子ビームの 照射位置を検出するためのマーク部とを備え、 マーク部は、 電子ビームが照射さ れる上部の面積が下部の面積よりも大きいことを特徴とする校正用部材を提供する。 上部は、 電子ビームの照射方向に実質的に垂直な方向に下部よりもそれぞれ突出 する互いに垂直な 2辺を有してもよい。 校正用部材は、 電子ビームの間隔に対応し て配置された複数のマーク部をさらに備えてもよい。  The electron beam exposure apparatus may further include a plurality of electron beam generators each generating an electron beam, and a plurality of mark units corresponding to the plurality of electron beam generators. According to a third aspect of the present invention, there is provided a calibration member for calibrating an irradiation position of an electron beam in an electron beam exposure apparatus, wherein the calibration member is provided on the substrate and detects an irradiation position of the electron beam. And a mark part, wherein the mark part has an upper area irradiated with the electron beam larger than a lower area. The upper part may have two mutually perpendicular sides projecting from the lower part in a direction substantially perpendicular to the electron beam irradiation direction. The calibration member may further include a plurality of mark portions arranged corresponding to the intervals between the electron beams.
本発明の第 4の形態によると、 電子ビーム露光装置における電子ビームの照射位 置を校正するための校正用部材であって、 基板と、 基板に設けられ、 電子ビームの 照射位置を検出するためのマーク部とを備え、 基板は、 マーク部と陴接する領域 に溝部を有することを特徴とする校正用部材を提供する。  According to a fourth aspect of the present invention, there is provided a calibration member for calibrating an irradiation position of an electron beam in an electron beam exposure apparatus, wherein the calibration member is provided on the substrate and detects an irradiation position of the electron beam. A calibration member, wherein the substrate has a groove in a region in contact with the mark.
溝部は、 電子ビームの照射方向に沿って下部へ広がるように形成されてもよい。 溝部は、 マーク部をマスクとして基板をエッチングすることにより形成されてもよ レ、。 校正用部材は、 電子ビームの間隔に対応して配置された複数のマーク部をさら に備えてもよい。  The groove may be formed so as to extend downward along the electron beam irradiation direction. The groove may be formed by etching the substrate using the mark as a mask. The calibration member may further include a plurality of mark portions arranged corresponding to the intervals between the electron beams.
本発明の第 5の形態によると、 電子ビーム露光装置における電子ビームの照射位 置を校正するための校正用部材を製造する方法であって、 基板に電子ビームの照射 位置を検出するためのマーク部を形成する工程と、 マーク部をマスクとして基板を エッチングして溝部を形成する工程とを備えることを特徴とする校正用部材の製造 方法を提供する。 溝部を形成する工程は、 溝部を基板のマーク部に隣接する領域に 設ける工程を含んでもよレ、。  According to a fifth aspect of the present invention, there is provided a method of manufacturing a calibration member for calibrating an electron beam irradiation position in an electron beam exposure apparatus, comprising: a mark for detecting an electron beam irradiation position on a substrate. A method for manufacturing a calibration member, comprising: a step of forming a groove; and a step of forming a groove by etching a substrate using a mark as a mask. The step of forming the groove may include the step of providing the groove in a region adjacent to the mark on the substrate.
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、 これらの特徴群のサブコンビネーションも又発明となりうる。 図面の簡単な説明 Note that the above summary of the present invention does not enumerate all of the necessary features of the present invention, and a sub-combination of these features may also be an invention. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 従来の電子ビーム露光装置における校正用部材を示す断面図である。 図 2は、 本発明の第 1実施形態に係る電子ビーム露光装置の構成図である。 図 3は、 本発明の第 1実施形態に係るゥヱハステージの上面図である。  FIG. 1 is a cross-sectional view showing a calibration member in a conventional electron beam exposure apparatus. FIG. 2 is a configuration diagram of the electron beam exposure apparatus according to the first embodiment of the present invention. FIG. 3 is a top view of the wafer stage according to the first embodiment of the present invention.
図 4は、 図 3に示す校正用部材の一実施形態を示す断面図である。  FIG. 4 is a cross-sectional view showing one embodiment of the calibration member shown in FIG.
図 5は、 図 4に示す校正用部材の上面図である。  FIG. 5 is a top view of the calibration member shown in FIG.
図 6は、 図 3に示す校正用部材の他の実施形態を示す断面図である。  FIG. 6 is a sectional view showing another embodiment of the calibration member shown in FIG.
図 7は、 本発明の一実施形態に係る校正用部材の上面図である。 発明を実施するための最良の形態  FIG. 7 is a top view of the calibration member according to one embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 発明の実施の形態を通じて本発明を説明するが、 以下の実施形態は特許請 求の範囲に係る発明を限定するものではなく、 又実施形態の中で説明されている特 徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。  Hereinafter, the present invention will be described through embodiments of the present invention. However, the following embodiments do not limit the invention according to the scope of the patent request, and a combination of features described in the embodiments. Not all are essential to the solution of the invention.
図 2は、本発明の第 1の実施形態に係る電子ビーム露光装置 1 0 0の構成を示 す。電子ビーム露光装置 1 0 0は、電子ビームによりウェハ 1 5 0に所定の露光 処理を施すための露光部 1 0 2と、露光部 1 0 2に含まれる各構成の動作を制御 する制御系 1 6 0とを備える。  FIG. 2 shows a configuration of an electron beam exposure apparatus 100 according to the first embodiment of the present invention. The electron beam exposure apparatus 100 includes an exposure unit 102 for performing a predetermined exposure process on a wafer 150 by an electron beam, and a control system 1 for controlling the operation of each component included in the exposure unit 102. 60.
露光部 1 0 2は、 筐体 1 0 4内部で、 複数の電子ビームを発生し、 電子ビーム の断面形状を所望に成形する電子ビーム成形手段 1 1 0と、複数の電子ビームを ウェハ 1 5 0に照射するか否かを、電子ビーム毎に独立に切替える照射切替手段 1 3 0と、ウェハ 1 5 0に転写されるパターンの像の向き及びサイズを調整する ウェハ用投影系 1 4 0を含む電子光学系を備える。 また、 露光部 1 0 2は、 ゥェ ハ 1 5 0及び偏向部 1 4 6による電子ビームの偏向を校正するための校正用部 材 2 0 0を载置するウェハステージ 1 5 2と、ウェハステージ 1 5 2を駆動する ウェハステージ駆動部 1 5 4とを含むステージ系を備える。校正用部材 2 0 0は 、 基板と、 基板に設けられ、 電子ビームの照射位置を検出するためのマーク部と を有する。 露光部 1 0 2はさらに、校正用部材 2 0 0に電子ビームが照射されたときに校 正用部材 2 0 0から放射又は散乱される電子を検出する電子検出部 2 1 0を有 する。 露光部 1 0 2は、 複数の電子検出部 2 1 0を有してもよい。 The exposure unit 102 generates electron beams inside the housing 104, an electron beam forming unit 110 for forming a desired cross-sectional shape of the electron beams, and a wafer 15 The irradiation switching means 130 for independently switching whether or not to irradiate the electron beam for each electron beam, and the wafer projection system 140 for adjusting the direction and size of the image of the pattern transferred to the wafer 150 Including an electron optical system. Further, the exposure unit 102 includes a wafer stage 1502 on which a calibration member 200 for calibrating the electron beam deflection by the wafer 150 and the deflecting unit 144 is provided. A stage system including a wafer stage drive unit 154 for driving the stage 152 is provided. The calibration member 200 includes a substrate, and a mark portion provided on the substrate for detecting an irradiation position of the electron beam. The exposure unit 102 further includes an electron detection unit 210 that detects electrons emitted or scattered from the calibration member 200 when the calibration member 200 is irradiated with an electron beam. The exposure unit 102 may include a plurality of electron detection units 210.
電子ビーム成形手段 1 1 0は、 複数の電子ビームを発生させる複数の電子銃 1 1 2と、 電子ビームを通過させることにより、 電子ビームの断面形状を成形する複数 の開口部を有する第 1成形部材 1 1 4および第 2成形部材 1 2 2と、 複数の電子ビ ームを独立に収束し、 電子ビームの焦点を調整する第 1多軸電子レンズ 1 1 6と、 第 1成形部材 1 1 4を通過した複数の電子ビームを独立に偏向する第 1成形偏向部 1 1 8および第 2成形偏向部 1 2 0とを有する。  The electron beam shaping means 110 includes a plurality of electron guns 112 for generating a plurality of electron beams, and a first shaping device having a plurality of openings for shaping the cross-sectional shape of the electron beam by passing the electron beam. Member 1 1 4 and second molded member 1 2 2, 1st multi-axis electron lens 1 16 for independently converging multiple electron beams and adjusting the focus of electron beam 1st molded member 1 1 It has a first shaping / deflecting unit 118 and a second shaping / deflecting unit 120 for independently deflecting a plurality of electron beams passing through 4.
照射切替手段 1 3 0は、 複数の電子ビームを独立に収束し、 電子ビームの焦点を 調整する第 2多軸電子レンズ 1 3 2と、 複数の電子ビームを、 電子ビーム毎に独立 に偏向させることにより、 電子ビームをウェハ 1 5 0に照射するか否かを、 電子ビ ーム毎に独立に切替えるブランキング電極アレイ 1 3 4と、 電子ビームを通過させ る複数の開口部を含み、 ブランキング電極アレイ 1 3 4で偏向された電子ビームを 遮蔽する電子ビーム遮蔽部材 1 3 6とを有する。 他の例においてブランキング電極 アレイ 1 3 4は、 ブランキング ·アパーチャ · アレイ ·デバイスであってもよい。 ゥヱハ用投影系 1 4 0は、 複数の電子ビームを独立に集束し、 電子ビームの照射 径を縮小する第 3多軸電子レンズ 1 4 2と、 複数の電子ビームを独立に収束し、 電 子ビームの焦点を調整する第 4多軸電子レンズ 1 4 4と、 複数の電子ビームを、 ゥ エノ、 1 5 0の所望の位置に、 電子ビーム毎に独立に偏向する偏向部 1 4 6と、 ゥェ ハ 1 5 0に対する対物レンズとして機能し、 複数の電子ビームを独立に収束する第 5多軸電子レンズ 1 4 8とを有する。 偏向部 1 4 6は、 複数の偏向器を含む。 制御系 1 6 0は、統括制御部 1 7 0及び個別制御部 1 8 0を備える。個別制御 部 1 8 0は、 電子ビーム制御部 1 8 2と、 多軸電子レンズ制御部 1 8 4と、 成形 偏向制御部 1 8 6と、ブランキング電極アレイ制御部 1 8 8と、偏向制御部 1 9 0と、 ウェハステージ制御部 1 9 2と、検出信号処理部 1 9 4とを有する。 統括 制御部 1 7 0は、例えばワークステーションであって、個別制御部 1 8 0に含ま れる各制御部を統括制御する。電子ビーム制御部 1 8 2は、電子銃 1 1 2を制御 する。 多軸電子レンズ制御部 1 8 4は、 第 1多軸電子レンズ 1 1 6、第 2多軸電 子レンズ 1 3 2、第 3多軸電子レンズ 1 4 2、第 4多軸電子レンズ 1 4 4および 第 5多軸電子レンズ 1 4 8に供給する電流を制御する。 The irradiation switching means 130 independently converges the plurality of electron beams and adjusts the focal point of the electron beam, and deflects the plurality of electron beams independently for each electron beam. This includes a blanking electrode array 134 for independently switching whether or not the electron beam is irradiated on the wafer 150 for each electron beam, and a plurality of openings for passing the electron beam. An electron beam shielding member for shielding the electron beam deflected by the ranking electrode array. In another example, the blanking electrode array 134 may be a blanking aperture array device. The projection system 140 for C has a third multi-axis electron lens 142 that focuses a plurality of electron beams independently and reduces the irradiation diameter of the electron beam, and an electron beam that converges the electron beams independently. A fourth multi-axis electron lens 1444 for adjusting the focus of the beam, and a deflecting unit 1446 for independently deflecting a plurality of electron beams to a desired position of the electron beam 150 for each electron beam. A fifth multi-axis electron lens 148 that functions as an objective lens for the wafer 150 and converges a plurality of electron beams independently. The deflecting unit 146 includes a plurality of deflectors. The control system 160 includes a general control unit 170 and an individual control unit 180. The individual control unit 180 includes an electron beam control unit 182, a multi-axis electron lens control unit 1884, a molding deflection control unit 1886, a blanking electrode array control unit 1888, and deflection control. It has a unit 190, a wafer stage control unit 192, and a detection signal processing unit 1994. The general control unit 170 is, for example, a workstation, and is included in the individual control unit 180. It controls each control unit. The electron beam control unit 18 controls the electron gun 11. The multi-axis electronic lens controller 18 4 is composed of the first multi-axis electron lens 116, the second multi-axis electron lens 132, the third multi-axis electron lens 144, and the fourth multi-axis electron lens 14 Controls the current supplied to the fourth and fifth multi-axis electron lenses 148.
成形偏向制御部 1 8 6は、 第 1成形偏向部 1 1 8および第 2成形偏向部 1 2 0を 制御する。 ブランキング電極ァレイ制御部 1 8 8は、 ブランキング電極ァレイ 1 3 4に含まれる偏向電極に印加する電圧を制御する。 偏向制御部 1 9 0は、 偏向部 1 4 6に含まれる複数の偏向器が有する偏向電極に印加する電圧を制御する。 ウェハ ステージ制御部 1 9 2は、 ウェハステージ駆動部 1 5 4を制御し、 ウェハステージ 1 5 2を所定の位置に移動させる。 検出信号処理部 1 9 4は、 電子検出部 2 1 0が 検出した電子量を検出信号として統括制御部 1 7 0に出力する。  The shaping / deflecting control unit 186 controls the first shaping / deflecting unit 118 and the second shaping / deflecting unit 120. The blanking electrode array controller 188 controls the voltage applied to the deflection electrodes included in the blanking electrode array 134. The deflection control unit 190 controls the voltage applied to the deflection electrodes of the plurality of deflectors included in the deflection unit 146. The wafer stage controller 192 controls the wafer stage driver 154 to move the wafer stage 152 to a predetermined position. The detection signal processing section 194 outputs the amount of electrons detected by the electron detection section 210 to the overall control section 170 as a detection signal.
図 3は、 ウェハステージ 1 5 2の上面図である。 ウェハステージ 1 5 2上には、 ウェハ 1 5 0と、 校正用部材 2 0 0とが載置される。 本実施形態において、 校正用 部材 2 0 0は、 ウェハステージ 1 5 2における、 ウェハ 1 5 0が載置される領域と は異なる位置に設けられる。  FIG. 3 is a top view of the wafer stage 152. A wafer 150 and a calibration member 200 are mounted on the wafer stage 152. In this embodiment, the calibration member 200 is provided at a position on the wafer stage 152 different from the region where the wafer 150 is placed.
図 4は、 図 3に示す校正用部材 2 0 0の一実施形態を示す断面図である。 校正用 部材 2 0 0は、 例えばシリコンなどの電子ビームを放射又は散乱しにくい材料によ り形成された基板 2 0 2と、 複数のマーク部 2 0 4とを有する。 マーク部 2 0 4は 、 タンタル (T a ) 又はタングステン (W) などの電子ビームを放射又は散乱しや すい材料により形成されるのが好ましレ、。 本実施例において、 マーク部 2 0 4は、 電子ビームが照射される上部 2 0 4 aの面積が下部 2 0 4 bの面積よりも大きレ、。 マーク部 2 0 4は、 例えばドライエッチングにより上部 2 0 4 aの面積が下部 2 0 4 bの面積より大きくなるように形成されるのが好ましい。 ここで、 マーク部 2 0 4の下部 2 0 4 bとは、 基板 2 0 2の表面と同一平面上における面であってよい。 複数のマーク部 2 0 4は、電子ビームの間隔と実質的に等しい間隔に配置され るのが好ましい。 本実施形態において、複数のマーク部 2 0 4は、複数の電子銃 1 1 2のそれぞれが設けられた位置に対応して設けられる。 本実施例においては、 電子ビームがマーク部 2 0 4を走査する際に、 電子ビーム はマーク部 2 0 4のエッジの側面を照射しないので、 電子検出部 2 1 0はマーク部 2 0 4のエッジの側面において放射又は散乱される電子をほとんど検出しない。 そ のため統括制御部 1 7 0は、 マーク部 2 0 4のエツジの位置を正確に検出できる。 図 5は、 図 4に示す校正用部材 2 0 0の上面図である。 マーク部 2 0 4の上部 2 0 4 aは、 少なくとも電子ビームの照射方向に実質的に垂直な方向に下部 2 0 4 b よりもそれぞれ突出する互いに垂直な 2辺 c及ぴ dを有するのが好ましい。 本実施 形態において、 上部 2 0 4 a及び下部 2 0 4 bは矩形形状を有する。 電子ビームの 照射位置ずれがない場合、 電子ビームはマーク部 2 0 4の図中 Xで示す位置である 規定位置に照射される。 規定位置 Xは、 各マーク部 2 0 4の辺 c及び辺 dから既知 である所定の距離に設けられるのが好ましい。 規定位置 Xは、 マーク部 2 0 4の中 心であってよい。 これにより、 1つのマーク部 2 0 4を用いて、 実質的に互いに垂 直な 2方向の電子ビームの照射位置を校正できる。 FIG. 4 is a cross-sectional view showing one embodiment of the calibration member 200 shown in FIG. The calibration member 200 includes a substrate 202 formed of a material such as silicon that is unlikely to emit or scatter an electron beam, and a plurality of mark portions 204. The mark portion 204 is preferably formed of a material that easily emits or scatters an electron beam, such as tantalum (T a) or tungsten (W). In the present embodiment, the marked portion 204 has an upper area 204 a to be irradiated with the electron beam, and the area of the upper area 204 a is larger than that of the lower area 204 b. The mark part 204 is preferably formed by, for example, dry etching so that the area of the upper part 204a is larger than the area of the lower part 204b. Here, the lower portion 204 b of the mark portion 204 may be a surface on the same plane as the surface of the substrate 202. The plurality of mark portions 204 are preferably arranged at intervals substantially equal to the intervals between electron beams. In the present embodiment, the plurality of mark portions 204 are provided corresponding to the positions where the plurality of electron guns 112 are provided. In this embodiment, when the electron beam scans the mark portion 204, the electron beam does not irradiate the side surface of the edge of the mark portion 204. Little detection of electrons emitted or scattered on the side of the edge. Therefore, the general control section 170 can accurately detect the position of the edge of the mark section 204. FIG. 5 is a top view of the calibration member 200 shown in FIG. The upper part 204 a of the mark part 204 has two mutually perpendicular sides c and d that protrude from the lower part 204 b at least in a direction substantially perpendicular to the electron beam irradiation direction. preferable. In the present embodiment, the upper part 204a and the lower part 204b have a rectangular shape. When there is no deviation in the irradiation position of the electron beam, the electron beam is irradiated to a specified position of the mark portion 204, which is indicated by X in the figure. The prescribed position X is preferably provided at a predetermined distance that is known from the sides c and d of each mark portion 204. The specified position X may be the center of the mark portion 204. This makes it possible to calibrate the irradiation position of the electron beam in two directions substantially perpendicular to each other using one mark portion 204.
図 6は、 図 3に示す校正用部材 2 0 0の他の実施形態を部分的に示す断面図であ る。 校正用部材 2 0 0は、 基板 2 0 2と、 基板 2 0 2に設けられ、 電子ビームの照 射位置を検出するための複数のマーク部 2 0 4とを有する。 基板 2 0 2は、 マーク 部 2 0 4と隣接する領域に溝部 2 0 6を有する。  FIG. 6 is a sectional view partially showing another embodiment of the calibration member 200 shown in FIG. The calibration member 200 has a substrate 202 and a plurality of mark portions 204 provided on the substrate 202 for detecting the irradiation position of the electron beam. The substrate 202 has a groove 206 in a region adjacent to the mark 204.
図 6 ( a ) に示すように、 溝部 2 0 6は、 マーク部 2 0 4のエッジの側面と略同 —平面に基板 2 0 2の表面に対して略垂直に形成されてもよい。 溝部 2 0 6は、 マ ーク部 2 0 4をマスクとして、 基板 2 0 2を異方性エッチングすることにより形成 されてもよい。 図 6 ( b ) に示すように、 溝部 2 0 6は、 電子ビームの照射方向に 沿って下部へ広がるように形成されてもよい。 このとき溝部 2 0 6は、 マーク部 2 0 4をマスクとして、 基板 2 0 2を異方性エッチングすることにより形成されるの が好ましい。  As shown in FIG. 6 (a), the groove 206 may be formed substantially in the same plane as the side surface of the edge of the mark 204, and substantially perpendicular to the surface of the substrate 202. The groove 206 may be formed by anisotropically etching the substrate 202 using the mark 204 as a mask. As shown in FIG. 6 (b), the groove 206 may be formed so as to spread downward along the electron beam irradiation direction. At this time, the groove portion 206 is preferably formed by anisotropically etching the substrate 202 using the mark portion 204 as a mask.
図 6 ( c ) に示すように、 溝部 2 0 6は、 マーク部 2 0 4と接する部分から他の 部分へわたって、 マーク部 2 0 4の一部部分においてアンダーカッティングされた 状態に形成されてもよレ、。 溝部 2 0 6は、 マーク部 2 0 4をマスクとして、 基板 2 0 2を例えばゥエツトエツチングなどの等方性ェツチングにより形成されるのが好 ましい。 As shown in FIG. 6 (c), the groove portion 206 extends from a portion in contact with the mark portion 204 to another portion, and is formed in an undercut state in a portion of the mark portion 204. You can. The groove 206 is formed on the substrate 2 using the mark 204 as a mask. O2 is preferably formed by isotropic etching such as, for example, etching.
本実施例においては、 基板 2 0 2に溝部 2 0 6を設けているので、 電子ビームが 基板 2 0 2を照射することにより生じる電子ビームの放射及び散乱を低減させるこ とができるため、 電子検出部 2 1 0は基板 2 0 2から放射又は散乱された電子をほ とんど検出しない。 そのため、 統括制御部 1 7 0は、 マーク部 2 0 4のエッジの位 置を正確に検出できる。  In the present embodiment, since the groove portion 206 is provided in the substrate 202, radiation and scattering of the electron beam caused by irradiating the substrate 202 with the electron beam can be reduced. The detecting section 210 hardly detects electrons emitted or scattered from the substrate 202. Therefore, the overall control unit 170 can accurately detect the position of the edge of the mark unit 204.
さらに図 6 ( d ) に示すように、 本実施形態においても、 マーク部 2 0 4は、 図 4及び図 5に示した実施形態と同様に、 電子ビームが照射される上部 2 0 4 aの面 積が下部 2 0 4 bの面積よりも大きくなるように形成されてもよい。 この構成によ ると、 電子ビームがマーク部 2 0 4を走査する際に、 電子ビームはマーク部 2 0 4 のエッジの側面を照射しないので、 電子検出部 2 1 0はマーク部 2 0 4のエッジの 側面において放射又は散乱される電子をほとんど検出しない。 さらに基板 2 0 2に 溝部 2 0 6を設けているので、 電子ビームが基板 2 0 2を照射することにより生じ る電子ビームの放射及び散乱を低減させることができるため、 電子検出部 2 1 0は 基板 2 0 2から放射又は散乱された電子をほとんど検出しない。 そのため統括制御 部 1 7 0は、 マーク部 2 0 4のエッジの位置をより正確に検出できる。  Further, as shown in FIG. 6 (d), also in the present embodiment, the mark portion 204 is formed on the upper portion 204 a to be irradiated with the electron beam similarly to the embodiment shown in FIGS. 4 and 5. It may be formed so that the area is larger than the area of the lower portion 204b. According to this configuration, when the electron beam scans the mark portion 204, the electron beam does not irradiate the side surface of the edge of the mark portion 204. Hardly detect the electrons emitted or scattered on the side of the edge of the. Further, since the groove portion 206 is provided in the substrate 202, radiation and scattering of the electron beam generated by irradiating the substrate 202 with the electron beam can be reduced. Hardly detects electrons emitted or scattered from the substrate 202. Therefore, the overall control unit 170 can more accurately detect the position of the edge of the mark unit 204.
図 7は、 本発明の一実施形態に係る校正用部材 2 0 0の上面図である。 本実施形 態においては、 校正用部材 2 0 0は、 ウェハステージ 1 5 2のウェハが載置される 領域に設けられる。 校正用部材 2 0 0は、 例えばシリコンなどの基板に形成され、 図 4から図 6に示した構成と同様に、 複数のマーク部 2 0 4を有する。  FIG. 7 is a top view of the calibration member 200 according to one embodiment of the present invention. In the present embodiment, the calibration member 200 is provided in a region of the wafer stage 152 where the wafer is mounted. The calibration member 200 is formed on a substrate such as silicon, for example, and has a plurality of mark portions 204 as in the configuration shown in FIGS. 4 to 6.
本実施形態において、 校正用部材 2 0 0はウェハステージ 1 5 2のウェハ 1 5 0 が載置される領域に载置されるので、 電子ビーム露光装置 1 0 0が発生する全ての 電子ビームの照射位置を同時に校正できる。 そのため、 複数の電子ビームを迅速に 校正できる。  In the present embodiment, since the calibration member 200 is placed in the region of the wafer stage 152 on which the wafer 150 is placed, all the electron beams generated by the electron beam exposure apparatus 100 are The irradiation position can be calibrated at the same time. Therefore, multiple electron beams can be calibrated quickly.
図 2から図 6を参鹿して、 本実施形態に係る電子ビーム露光装置 1 0 0の動作を 説明する。 まず、 校正用部材 2 0 0を用いて電子ビーム露光装置 1 0 0の電子ビー ムの照射位置を補正する捕正処理における電子ビーム露光装置 1 0 0の動作を説明 する。 ウェハステージ制御部 1 9 2は、 複数の電子ビームのそれぞれが、 校正用部 材 2 0 0のマーク部 2 0 4に照射される位置にウェハステージ 1 5 2を移動するの が好ましい。 このとき電子ビームはマーク部 2 0 4に照射され、 マーク部 2 0 4は 照射された電子を放射又は散乱するため、 電子検出部 2 1 0は電子を検出する。 統括制御部 1 7 0は、 走査開始手段を制御してマーク部 2 0 4への電子ビームの 走查を開始する。 統括制御部 1 7 0の走査開始手段は、 電子ビームを走査開始位置 から辺 c又は辺 dの方向に偏向し、 電子ビームを走查開始位置から辺 c又は辺 dを 通過するまで走査させる。 電子ビームがマーク部 2 0 4に照射される間は、 マーク 部 2 0 4が電子を放射又は散乱するため、 電子検出部 2 1 0は電子を検出する。 電 子ビームが辺 c又は辺 dを通過すると、 電子ビームは基板 2 0 2に照射され、 基板 2 0 2はほとんど電子を放射又は散乱しないため、 電子検出部 2 1 0は電子をほと んど検出しなくなる。 検出信号処理部 1 9 4は、 電子検出部 2 1 0が検出した電子 量を検出信号として統括制御部 1 7 0に出力する。 統括制御部 1 7 0は、 電子ビー ムが辺 c又は辺 dを通過するタイミングを検出できるため、 電子ビームが走査開始 位置から辺 c又は辺 dを通過するまでに要した偏向部 1 4 6における偏向器の偏向 量を検出できる。 統括制御部 1 7 0は、 電子ビームの走查開始位置から電子ビーム が辺 c又は辺 dを通過するまでに要した偏向器の偏向量から、 図 5における規定位 置 Xと実際の走查開始位置とのずれを検出できる。 従って、 統括制御部 1 7 0は、 辺 c又は辺 dの方向における電子ビームの照射位置を検出できる。 統括制御部 1 7 0は、 検出した電子ビームの照射位置に基づいて当該電子ビームの照射位置を補正 するための補正値を算出するのが好ましい。 The operation of the electron beam exposure apparatus 100 according to the present embodiment will be described with reference to FIGS. First, the electronic beam of the electron beam exposure apparatus 100 was The operation of the electron beam exposure apparatus 100 in the correction process for correcting the irradiation position of the system will be described. It is preferable that the wafer stage controller 192 moves the wafer stage 152 to a position where each of the plurality of electron beams irradiates the mark portion 204 of the calibration member 200. At this time, the electron beam is applied to the mark section 204, and the mark section 204 emits or scatters the irradiated electrons, so that the electron detection section 210 detects the electrons. The general control section 170 controls the scanning start means to start the scanning of the electron beam to the mark section 204. The scanning start means of the overall control unit 170 deflects the electron beam in the direction of the side c or d from the scan start position, and scans the electron beam from the scan start position until it passes the side c or d. While the mark section 204 is irradiated with the electron beam, the mark section 204 emits or scatters electrons, so the electron detection section 210 detects electrons. When the electron beam passes through the side c or the side d, the electron beam irradiates the substrate 202, and the substrate 202 hardly emits or scatters electrons. No longer detected. The detection signal processing section 194 outputs the amount of electrons detected by the electron detection section 210 to the general control section 170 as a detection signal. Since the overall control unit 170 can detect the timing at which the electron beam passes through the side c or the side d, the deflection unit 1 4 6 required for the electron beam to pass from the scanning start position to the side c or the side d. The amount of deflection of the deflector at can be detected. Based on the deflection amount of the deflector required for the electron beam to pass through the side c or the side d from the electron beam running start position, the general control unit 170 determines the specified position X in FIG. A deviation from the start position can be detected. Therefore, the overall control unit 170 can detect the irradiation position of the electron beam in the direction of the side c or the side d. It is preferable that the overall control unit 170 calculates a correction value for correcting the irradiation position of the electron beam based on the detected irradiation position of the electron beam.
他の例においては、 ウェハステージ制御部 1 9 2は、 複数の電子ビームのそれぞ れが、 校正用部材 2 0 0の基板 2 0 2のマーク部 2 0 4が設置されていない所定の 領域に照射される位置にウェハステージ 1 5 2を移動してもよい。 このとき電子ビ ームは基板 2 0 2に照射され、 電子は放射又は散乱されないため、 電子検出部 2 1 0は電子を検出しない。 その後、 統括制御部 1 7 0は、 走査開始手段を制御して電 子ビームを基板 2 0 2上の走査開始位置からマーク部 2 0 4のエッジを通過するま で走查させてもよい。 In another example, the wafer stage control unit 192 may be configured such that each of the plurality of electron beams is provided in a predetermined area where the mark portion 204 of the substrate 202 of the calibration member 200 is not provided. The wafer stage 152 may be moved to a position where the wafer is irradiated. At this time, the electron beam is applied to the substrate 202, and the electrons are not emitted or scattered. Therefore, the electron detection unit 210 does not detect the electrons. After that, the general control unit 170 controls the scanning start means to supply power. The sub-beam may be caused to travel from the scanning start position on the substrate 202 to pass through the edge of the mark portion 204.
本実施形態においては、 電子ビームがマーク部 2 0 4を走查する際に、 電子ビー ムはマーク部 2 0 4のエッジの側面を照射しないので、 電子検出部 2 1 0はマーク 部 2 0 4のエッジの側面において放射又は散乱される電子をほとんど検出しない。 そのため統括制御部 1 Ί 0は、 マーク部 2 0 4のエッジの位置を正確に検出できる また、 本実施形態においては、 基板 2 0 2に溝部 2 0 6を設けているので、 電子 ビームが基板 2 0 2を照射することにより生じる電子ビームの放射及び散乱を低減 させることができるため、 電子検出部 2 1 0は基板 2 0 2から放射又は散乱された 電子をほとんど検出しない。 そのため、 統括制御部 1 7 0は、 マーク部 2 0 4のェ ッジの位置を正確に検出できる。  In the present embodiment, the electron beam does not irradiate the side surface of the edge of the mark portion 204 when the electron beam travels through the mark portion 204. Little detection of electrons emitted or scattered on the side of the edge of 4. Therefore, the general control unit 100 can accurately detect the position of the edge of the mark portion 204. In the present embodiment, since the groove portion 206 is provided in the substrate 202, the electron beam Since the emission and scattering of the electron beam generated by irradiating 202 can be reduced, the electron detecting section 210 hardly detects the electrons emitted or scattered from the substrate 202. Therefore, the overall control unit 170 can accurately detect the position of the edge of the mark unit 204.
さらに、 本実施形態においては、 複数のマーク部 2 0 4を有しているので、 複数 の電子ビームの照射位置を同時に校正できる。 そのため、 複数の電子ビームを迅速 に校正できる。  Furthermore, in the present embodiment, since there are a plurality of mark portions 204, the irradiation positions of a plurality of electron beams can be calibrated simultaneously. Therefore, multiple electron beams can be calibrated quickly.
以上の動作により、 電子ビーム照射位置に基づいて、 電子ビームの照射位置を補 正した後に、 ゥヱハ 1 5 0に露光処理を行う。 以下、 露光処理における電子ビーム 露光装置 1 0 0の動作を説明するが、 上述した捕正処理において校正用部材 2 0 0 に電子ビームを照射する動作は、 露光処理においてウェハ 1 5 0に電子ビームを照 射する動作と略同一であってよい。  With the above operation, the electron beam irradiation position is corrected based on the electron beam irradiation position, and then exposure processing is performed on the substrate 150. Hereinafter, the operation of the electron beam exposure apparatus 100 in the exposure process will be described. In the above-described correction process, the operation of irradiating the calibration member 200 with the electron beam is performed by the electron beam on the wafer 150 in the exposure process. The operation may be substantially the same as the operation of irradiating.
次に、 電子ビーム露光装置 1 0 0がゥヱハ 1 5 0に所望のパターンを露光する動 作を図 2に従って説明する。 複数の電子銃 1 1 2が、 複数の電子ビームを生成する 。 電子ビーム成形手段 1 1 0において、 発生された電子ビームは、 第 1成形部材 1 1 4に照射され、 成形される。 他の例においては、 電子銃 1 1 2において発生した 電子ビームを複数の電子ビームに分割する手段を更に有することにより、 複数の電 子ビームを生成してもよい。  Next, an operation in which the electron beam exposure apparatus 100 exposes a desired pattern to the wafer 150 will be described with reference to FIG. Multiple electron guns 1 1 2 generate multiple electron beams. In the electron beam forming means 110, the generated electron beam is applied to the first forming member 114 to be formed. In another example, a plurality of electron beams may be generated by further including a unit for dividing the electron beam generated in the electron gun 112 into a plurality of electron beams.
第 1多軸電子レンズ 1 1 6は、 矩形に成形された複数の電子ビームを独立に収束 し、 第 2成形部材 1 2 2に対する電子ビームの焦点調整を、 電子ビーム毎に独立に 行う。 第 1成形偏向部 1 1 8は、 矩形に成形された複数の電子ビームを、 電子ビー ム毎に独立して、 第 2成形部材に対して所望の位置に偏向する。 第 2成形偏向部 1 2 0は、 第 1成形偏向部 1 1 8で偏向された複数の電子ビームを、 電子ビーム毎に 独立に第 2成形部材 1 2 2に対して略垂直方向に偏向する。 矩形形状を有する複数 の開口部を含む第 2成形部材 1 2 2は、 各開口部に照射された矩形の断面形状を有 する複数の電子ビームを、 ウエノヽ 1 5 0に照射されるべき所望の矩形の断面形状を 有する電子ビームにさらに成形する。 The first multi-axis electron lens 1 16 independently focuses multiple electron beams shaped into a rectangle Then, the focus adjustment of the electron beam with respect to the second molding member 122 is performed independently for each electron beam. The first shaping deflection unit 118 deflects a plurality of rectangularly shaped electron beams to a desired position with respect to the second shaping member independently for each electron beam. The second shaping deflection unit 120 deflects the plurality of electron beams deflected by the first shaping deflection unit 118 in a direction substantially perpendicular to the second shaping member 122 independently for each electron beam. . The second molding member 122 including a plurality of openings having a rectangular shape is preferably configured such that a plurality of electron beams having a rectangular cross-sectional shape applied to each of the openings is irradiated onto the wafer 150. It is further shaped into an electron beam having a rectangular cross-sectional shape.
第 2多軸電子レンズ 1 3 2は、 複数の電子ビームを独立に収束して、 ブランキン グ電極ァレイ 1 3 4に対する電子ビームの焦点調整を、 電子ビーム毎に独立に行う 。 第 2多軸電子レンズ 1 3 2より焦点調整された電子ビームは、 ブランキング電極 アレイ 1 3 4に含まれる複数のアパーチャを通過する。  The second multi-axis electron lens 132 independently converges the plurality of electron beams, and independently adjusts the focus of the electron beam with respect to the blanking electrode array 134 for each electron beam. The electron beam focused by the second multi-axis electron lens 13 2 passes through a plurality of apertures included in the blanking electrode array 1 34.
ブランキング電極ァレイ制御部 1 8 8は、 ブランキング電極ァレイ 1 3 4に形成 された、 各アパーチャの近傍に設けられた偏向電極に電圧を印加するか否かを制御 する。 ブランキング電極アレイ 1 3 4は、 偏向電極に印加される電圧に基づいて、 電子ビームをウェハ 1 5 0に照射させるか否かを切替える。  The blanking electrode array control unit 188 controls whether or not to apply a voltage to a deflection electrode formed in the blanking electrode array 134 and provided near each aperture. The blanking electrode array 134 switches whether or not to irradiate the wafer 150 with the electron beam based on the voltage applied to the deflection electrode.
ブランキング電極アレイ 1 3 4により偏向されない電子ビームは、 第 3多軸電子 レンズ 1 4 2により電子ビーム径を縮小されて、 電子ビーム遮蔽部材 1 3 6に含ま れる開口部を通過する。 第 4多軸電子レンズ 1 4 4力 複数の電子ビームを独立に 収束して、 偏向部 1 4 6に対する電子ビームの焦点調整を、 電子ビーム毎に独立に 行い、 焦点調整をされた電子ビームは、 偏向部 1 4 6に含まれる偏向器に入射され る。  The electron beam that is not deflected by the blanking electrode array 134 has its electron beam diameter reduced by the third multi-axis electron lens 142 and passes through an opening included in the electron beam shielding member 136. Fourth multi-axis electron lens 1 4 4 force Converges multiple electron beams independently, adjusts the focus of the electron beam with respect to the deflection unit 1 46 independently for each electron beam, and adjusts the focus of the electron beam. The light enters the deflector included in the deflecting unit 146.
統括制御部 1 7 0は、 補正処理において算出した補正値に基づいて、 電子ビーム の照射位置を捕正すべく偏向制御部 1 9 0を制御する。 偏向制御部 1 9 0は、 統括 制御部 1 7 0からの指示に基づいて、 偏向部 1 4 6を制御して、 それぞれの電子ビ ームを偏向させることにより、 電子ビームの照射位置を補正する。  The overall control unit 170 controls the deflection control unit 190 to correct the irradiation position of the electron beam based on the correction value calculated in the correction processing. The deflection control unit 190 controls the deflection unit 146 based on an instruction from the general control unit 170 to deflect each electron beam, thereby correcting the irradiation position of the electron beam. I do.
偏向制御部 1 9 0が、 偏向部 1 4 6に含まれる複数の偏向器を独立に制御する。 偏向部 1 4 6は、 複数の偏向器に入射される複数の電子ビームを、 電子ビーム毎に 独立にウェハ 1 5 0の所望の露光位置に偏向する。 偏向部 1 4 6を通過した複数の 電子ビームは、 第 5多軸電子レンズ 1 4 8により、 ゥヱハ 1 5 0に対する焦点が調 整され、 ウェハ 1 5 0に照射される。 The deflection control unit 190 controls the plurality of deflectors included in the deflection unit 146 independently. The deflecting unit 146 deflects the plurality of electron beams incident on the plurality of deflectors to a desired exposure position on the wafer 150 independently for each electron beam. The plurality of electron beams passing through the deflecting unit 146 are adjusted in focus with respect to the wafer 150 by the fifth multi-axis electron lens 148, and are irradiated on the wafer 150.
露光処理中、 ウェハステージ制御部 1 9 2は、 一定方向にウェハステージ 1 5 2 を動かす。 ブランキング電極アレイ制御部 1 8 8は露光パターンデータに基づいて 、 電子ビームを通過させるアパーチャを定め、 各アパーチャに対する電力制御を行 う。 ウェハ 1 5 0の移動に合わせて、 電子ビームを通過させるアパーチャを適宜、 変更し、 さらに偏向部 1 4 6により電子ビームを偏向することによりウェハ 1 5 0 に所望の回路パタ一ンを露光することが可能となる。  During the exposure process, the wafer stage controller 192 moves the wafer stage 152 in a fixed direction. The blanking electrode array control unit 188 determines apertures through which the electron beam passes based on the exposure pattern data, and performs power control for each aperture. The aperture through which the electron beam passes is appropriately changed in accordance with the movement of the wafer 150, and the electron beam is deflected by the deflecting unit 146, thereby exposing the wafer 150 to a desired circuit pattern. It becomes possible.
以上、 本発明を実施の形態を用いて説明したが、 本発明の技術的範囲は上記実施 の形態に記載の範囲には限定されない。 上記実施の形態に、 多様な変更又は改良を 加えることができることが当業者に明らかである。 その様な変更又は改良を加えた 形態も本発明の技術的範囲に含まれ得ることが、 特許請求の範囲の記載から明らか である。 産業上の利用可能性  As described above, the present invention has been described using the embodiment, but the technical scope of the present invention is not limited to the scope described in the above embodiment. It is obvious to those skilled in the art that various changes or improvements can be added to the above-described embodiment. It is apparent from the description of the claims that embodiments with such changes or improvements can be included in the technical scope of the present invention. Industrial applicability
上記説明から明らかなように、 本発明によれば電子ビームの照射位置を適切に校 正できる。  As is clear from the above description, according to the present invention, the irradiation position of the electron beam can be appropriately calibrated.

Claims

請 求 の 範 囲 The scope of the claims
1 . 電子ビームによりウェハにパターンを露光する電子ビーム露光装置であって 前記ゥヱハを載置するゥヱハステージと、 1. An electron beam exposure apparatus for exposing a pattern on a wafer by an electron beam, wherein:
前記ゥヱハステージ上に設けられ、 前記電子ビームの照射位置を検出するための マーク部と  A mark portion provided on the stage for detecting an irradiation position of the electron beam;
を備 、 ,
前記マーク部は、 前記電子ビームが照射される上部の面積が下部の面積よりも大 きいことを特徴とする電子ビーム露光装置。  The electron beam exposure apparatus, wherein the mark portion has an upper area irradiated with the electron beam larger than a lower area.
2 . 前記上部は、 前記電子ビームの照射方向に実質的に垂直な方向に前記下部よ りもそれぞれ突出する互いに垂直な 2辺を有することを特徴とする請求項 1に記載 の電子ビーム露光装置。 .  2. The electron beam exposure apparatus according to claim 1, wherein the upper portion has two mutually perpendicular sides projecting from the lower portion in a direction substantially perpendicular to the irradiation direction of the electron beam. . .
3 . 前記電子ビームをそれぞれ発生する複数の電子ビーム発生部と、 3. A plurality of electron beam generators each generating the electron beam,
前記複数の電子ビーム発生部に対応する複数の前記マーク部と  A plurality of the mark portions corresponding to the plurality of the electron beam generators;
をさらに備えることを特徴とする請求項 1又は 2に記載の電子ビーム露光装置。 3. The electron beam exposure apparatus according to claim 1, further comprising:
4 . 電子ビームによりウェハにパターンを露光する電子ビーム露光装置であって 前記ウェハを載置するウェハステージと、 4. An electron beam exposure apparatus that exposes a pattern on a wafer with an electron beam, the wafer stage on which the wafer is mounted,
前記ウェハステージに設置された基板と、  A substrate installed on the wafer stage,
前記基板上に設けられ、 前記電子ビームの照射位置を検出するためのマーク部と を備え、  A mark portion provided on the substrate, for detecting an irradiation position of the electron beam,
前記基板は、 前記マーク部に隣接する領域に溝部を有することを特徴とする電子 ビーム露光装置。  An electron beam exposure apparatus, wherein the substrate has a groove in a region adjacent to the mark.
5 . 前記溝部は、 前記電子ビームの照射方向に沿って下部へ広がるように形成さ れることを特徴とする請求項 4に記載の電子ビーム露光装置。 5. The electron beam exposure apparatus according to claim 4, wherein the groove is formed so as to extend downward along the irradiation direction of the electron beam.
6 . 前記溝部は、 前記マーク部をマスクとして前記基板をエッチングすることに より形成されることを特徴とする請求項 4又は 5に記載の電子ビーム露光装置。 6. The groove is formed by etching the substrate using the mark as a mask. 6. The electron beam exposure apparatus according to claim 4, wherein the electron beam exposure apparatus is formed by:
7. 前記電子ビームをそれぞれ発生する複数の電子ビーム発生部と、 7. a plurality of electron beam generators for respectively generating the electron beams;
前記複数の電子ビーム発生部に対応する複数の前記マーク部と  A plurality of the mark portions corresponding to the plurality of the electron beam generators;
をさらに備えることを特徴とする請求項 4から 6のいずれかに記載の電子ビーム露 The electron beam exposure device according to any one of claims 4 to 6, further comprising:
8 . 電子ビーム露光装置における電子ビームの照射位置を校正するための校正用 部材であって、 8. A calibration member for calibrating an irradiation position of an electron beam in an electron beam exposure apparatus,
基板と、  Board and
前記基板に設けられ、 前記電子ビームの照射位置を検出するためのマーク部と を備え、  A mark portion provided on the substrate, for detecting an irradiation position of the electron beam,
前記マーク部は、 前記電子ビームが照射される上部の面積が下部の面積よりも大 きいことを特徴とする校正用部材。  The mark member is characterized in that an upper area irradiated with the electron beam has a larger area than a lower area.
9 . 前記上部は、 前記電子ビームの照射方向に実質的に垂直な方向に前記下部よ りもそれぞれ突出する互いに垂直な 2辺を有することを特徵とする請求項 8に記載 の校正用部材。  9. The calibration member according to claim 8, wherein the upper portion has two mutually perpendicular sides projecting from the lower portion in a direction substantially perpendicular to the irradiation direction of the electron beam.
1 0 . 前記電子ビームの間隔に対応して配置された複数の前記マーク部をさらに 備えることを特徴とする請求項 8又は 9に記載の校正用部材。  10. The calibration member according to claim 8, further comprising a plurality of the mark portions arranged corresponding to a distance between the electron beams.
1 1 . 電子ビーム露光装置における電子ビームの照射位置を校正するための校正 用部材であって、  1 1. A calibration member for calibrating the irradiation position of the electron beam in the electron beam exposure apparatus,
基板と、  Board and
前記基板に設けられ、 前記電子ビームの照射位置を検出するためのマーク部と を備え、  A mark portion provided on the substrate, for detecting an irradiation position of the electron beam,
前記基板は、 前記マーク部と隣接する領域に溝部を有することを特徴とする校正 用部材。  The calibration member, wherein the substrate has a groove in a region adjacent to the mark.
1 2 . 前記溝部は、 前記マ一ク部をマスクとして前記基板をエッチングすること により形成されることを特徴とする請求項 1 0に記載の校正用部材。 12. The calibration member according to claim 10, wherein the groove is formed by etching the substrate using the mark as a mask.
1 3 . 前記電子ビームの間隔に対応して配置された複数の前記マーク部をさらに 備えることを特徴とする請求項 1 1又は 1 2に記載の校正用部材。 13. The plurality of mark portions arranged corresponding to the intervals between the electron beams are further added. 13. The calibration member according to claim 11, wherein the calibration member is provided.
1 4 . 電子ビーム露光装置における電子ビームの照射位置を校正するための校正 用部材を製造する方法であって、  14. A method of manufacturing a calibration member for calibrating an irradiation position of an electron beam in an electron beam exposure apparatus,
基板に前記電子ビームの照射位置を検出するためのマーク部を形成する工程と、 前記マーク部をマスクとして前記基板をエッチングして溝部を形成する工程と を備えることを特徴とする校正用部材の製造方法。  Forming a mark portion for detecting the irradiation position of the electron beam on the substrate; and etching the substrate using the mark portion as a mask to form a groove portion. Production method.
1 5 . 前記溝部を形成する工程は、 前記溝部を前記基板の前記マーク部に隣接す る領域に設ける工程を含むことを特徴とする請求項 1 4に記載の校正用部材の製造 方法。  15. The method according to claim 14, wherein the step of forming the groove includes the step of providing the groove in a region of the substrate adjacent to the mark.
PCT/JP2001/011524 2000-12-27 2001-12-27 Electron beam exposure system and electron beam irradiation position calibrating member WO2002052623A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000397800A JP2002198298A (en) 2000-12-27 2000-12-27 Electron beam aligner, and calibrating member for electron beam irradiation position
JP2000-397800 2000-12-27

Publications (1)

Publication Number Publication Date
WO2002052623A1 true WO2002052623A1 (en) 2002-07-04

Family

ID=18862882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011524 WO2002052623A1 (en) 2000-12-27 2001-12-27 Electron beam exposure system and electron beam irradiation position calibrating member

Country Status (2)

Country Link
JP (1) JP2002198298A (en)
WO (1) WO2002052623A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323280A (en) * 1976-08-16 1978-03-03 Toshiba Corp Electoron ray exposure device
JPS558009A (en) * 1978-06-30 1980-01-21 Toshiba Corp Electronic beam exposure positioning marker
JPS55125628A (en) * 1979-03-22 1980-09-27 Chiyou Lsi Gijutsu Kenkyu Kumiai Position detecting mark for electron beam exposure
JPS5989415A (en) * 1982-11-15 1984-05-23 Mitsubishi Electric Corp Alignment of semiconductor substrate
JPS62243327A (en) * 1986-04-15 1987-10-23 Matsushita Electronics Corp Alignment mark for particle beam exposure
JPH08191042A (en) * 1995-01-11 1996-07-23 Hitachi Ltd Electron beam drawing apparatus and adjusting method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323280A (en) * 1976-08-16 1978-03-03 Toshiba Corp Electoron ray exposure device
JPS558009A (en) * 1978-06-30 1980-01-21 Toshiba Corp Electronic beam exposure positioning marker
JPS55125628A (en) * 1979-03-22 1980-09-27 Chiyou Lsi Gijutsu Kenkyu Kumiai Position detecting mark for electron beam exposure
JPS5989415A (en) * 1982-11-15 1984-05-23 Mitsubishi Electric Corp Alignment of semiconductor substrate
JPS62243327A (en) * 1986-04-15 1987-10-23 Matsushita Electronics Corp Alignment mark for particle beam exposure
JPH08191042A (en) * 1995-01-11 1996-07-23 Hitachi Ltd Electron beam drawing apparatus and adjusting method thereof

Also Published As

Publication number Publication date
JP2002198298A (en) 2002-07-12

Similar Documents

Publication Publication Date Title
US6804288B2 (en) Electron beam exposure apparatus and electron beam deflection apparatus
JP4327497B2 (en) Electron beam exposure apparatus, electron beam exposure method, semiconductor element manufacturing method, mask, and mask manufacturing method
JP4092280B2 (en) Charged beam apparatus and charged particle detection method
JP2018082120A (en) Multi charged particle beam lithography system
JP2006186125A (en) Charged particle beam exposure device and its exposure method
JP4368411B2 (en) Electron beam exposure system
JP2003234264A (en) Exposure method, electron beam exposure device and manufacturing method for electronic component
JP2002175968A (en) Electron beam exposure system and electron lens
JP2022146501A (en) Multi-charged particle beam lithography apparatus and adjustment method for the same
US10636616B2 (en) Aperture array alignment method and multi charged particle beam writing apparatus
JP4112791B2 (en) Electron beam correction method and electron beam exposure apparatus
WO2002052623A1 (en) Electron beam exposure system and electron beam irradiation position calibrating member
JPWO2002103765A1 (en) Electron beam exposure apparatus, electron beam exposure method, semiconductor element manufacturing method, and electron beam shape measurement method
WO2002041372A1 (en) Electron beam exposure system, electron beam exposure method, and production method for semiconductor element
JP4729201B2 (en) Electron beam correction method
JPH10208996A (en) Electron beam exposure device and manufacture of device using it
JP4246374B2 (en) Electron beam exposure apparatus, irradiation position detection method, and electron detection apparatus
JP4409044B2 (en) Electron beam exposure apparatus and electron beam deflection calibration method
JP2003323858A (en) Electron beam treatment device and measurement method of electron beam shape
WO2002103764A1 (en) Electron beam exposure system
JP4176131B2 (en) Charged beam apparatus and charged particle detection method
JP2002110532A (en) Electron beam aligner and method of correcting irradiation displacement of electron beams
JP2002190437A (en) Electron beam exposure system and calibration method therefor
JP2002110533A (en) Electron beam aligner and member for correction
JP2002141271A (en) Electron beam exposure system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642