[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2002040140A1 - Perfectionnements apportes aux procedes de reparation par obturation des fibres creuses des membranes, notamment d'ultra-, nano-, et hyper-filtration - Google Patents

Perfectionnements apportes aux procedes de reparation par obturation des fibres creuses des membranes, notamment d'ultra-, nano-, et hyper-filtration Download PDF

Info

Publication number
WO2002040140A1
WO2002040140A1 PCT/FR2001/003476 FR0103476W WO0240140A1 WO 2002040140 A1 WO2002040140 A1 WO 2002040140A1 FR 0103476 W FR0103476 W FR 0103476W WO 0240140 A1 WO0240140 A1 WO 0240140A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
fibers
membranes
fiber
plug
Prior art date
Application number
PCT/FR2001/003476
Other languages
English (en)
Inventor
Nouhad Abidine
Patrick Sauvade
Original Assignee
Aquasource
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquasource filed Critical Aquasource
Priority to AU2002223043A priority Critical patent/AU2002223043A1/en
Publication of WO2002040140A1 publication Critical patent/WO2002040140A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/102Detection of leaks in membranes

Definitions

  • the present invention relates to a method for repairing ultra-, nano- and hyper-filtration membranes, in particular in the configuration of hollow fibers, these membranes being used in particular in the separation operations implemented in particular in installations. treatment of liquids, for example aqueous effluents. These repairs can be carried out on new fibers, or on used fibers, the objective being to restore the integrity of the fibers, that is to say their total impermeability to compounds and particles of size greater than their cut-off thresholds. .
  • the invention also applies to the repair of microfiltration fibers, gas permeation, pervaporation etc.
  • microfiltration and ultrafiltration membranes make it possible, during permeation, to carry out the clarification and disinfection of the water passing through them in order to eliminate bacteria, viruses and other parasites.
  • the hollow fibers of such membranes have a geometry that is particularly suitable for ensuring good retention of dissolved and particulate species.
  • the hollow fibers are self-supporting, the bonding made at the two ends of a hollow fiber module ensures, on the one hand a perfect seal of the fibers with respect to each other and on the other hand a sealing between the entire bundle of fibers molded in a resin (constituting the head plate of a module, formed during the potting operation) and the external envelope of the module (casing or pressure tube).
  • a technique sometimes used consists, after potting, in strengthening the external protection of the hollow fibers, by brushing the fibers with a sufficiently fluid resin, this operation being sometimes called “varnishing". This varnishing then ensures perfect sealing of the porous section of the fibers, sections which could allow the migration of viruses, bacteria, microorganisms, macromolecules and other products and solutes of low mass found in water.
  • the hollow fibers of the membrane separation modules ensure good disinfection of water, or even other liquids or fluids.
  • the fibers break, particularly during bundling, potting or casing operations. These ruptures, more or less numerous, are linked to manufacturing defects or to natural or forced aging of the bran material. When such ruptures are noted, it becomes necessary to repair the broken fibers, failing which the module equipped with hollow fibers would no longer be able to fully ensure viral or bacteriological disinfection.
  • the first method consists in pushing into the damaged fiber a cylindrical obturator, also called "nail” having a dimension appropriate to the internal diameter of the fiber.
  • a cylindrical obturator also called "nail” having a dimension appropriate to the internal diameter of the fiber.
  • Some module manufacturers offer conical nails for this purpose, in order to facilitate their installation.
  • the quality of this repair can be further improved by brushing the fiber with a mono or two-component adhesive, in order to perfect and consolidate the sealing of the repair thus carried out.
  • the disadvantage of this technique lies in the frequency of defective adhesions between the two materials (nail and fiber) resulting from the small contact surface and / or possible crosslinking / polymerization defects of said adhesive.
  • the second method consists in injecting a two-component adhesive into the fiber identified as broken or "leaky". After injection of the adhesive using a needle, the latter is removed and the crosslinking of the adhesive is awaited.
  • the major drawback of this technique lies in the fact that, during the injection of small amounts of adhesive, cross-linking the product is time consuming. Therefore, before restarting the repaired module, there is a waiting period which can prove to be penalizing since it can reach 24 hours before complete crosslinking. It should also be mentioned that the crosslinking kinetics are linked to the ambient temperature prevailing on the site. Therefore, in cold weather, the crosslinking of the adhesive requires a longer duration and is sometimes even impossible. Thus, it is common to have to wait until the day after the repair before being able to reassemble the module, comprising the repaired defective fiber, on the filtration assembly.
  • the present invention has set itself the objective of providing a simple method, easy to implement and with immediate results, that is to say a method according to which in particular the duration of repair no longer constitutes a limit to the operation of the membranes and thanks to which the duration and the quality of the repair no longer depend on the ambient temperature, nor on the quality or history of the fibers to be repaired . Furthermore, thanks to the invention, the separation and permeability performance of the membranes are immediately and fully restored.
  • this invention relates to a method for repairing ultra-, nano- and hyper-filtration membranes, in particular in fiber configuration.
  • tubular hollow which consists, after detection and localization of a leak in a damaged fiber, in injecting a crosslinkable adhesive therein, this process being characterized in that a plug of a precisely dosed amount of is injected into the damaged fiber a mono-component synthetic adhesive and the curing of said adhesive plug is carried out by crosslinking / polymerization under ultraviolet radiation with a focusing of this radiation on the section of the fiber to be repaired, under a high flux density in the form of a beam parallel, via a waveguide.
  • an adhesive which is a synthetic resin and the height of the adhesive plug injected is of the order of 6 +/- 1 mm.
  • an adhesive stopper with the height mentioned above close to 5 to 7 mm, by injection either manually or using conventional apparatuses injection of adhesive fitted with precise dosers and pistons driven by a controlled pressure of compressed air; - that the adhesive thus injected did not flow after its installation;
  • the injected adhesive could be crosslinked over its entire height; that the crosslinking / polyerization time of the adhesive was approximately 30 seconds under intense ultraviolet radiation whose parallel beam was focused on the section of the fiber to be repaired using a waveguide.
  • adhesives crosslinkable under ultraviolet radiation and having a fairly wide viscosity range can be used. It is then possible to repair hollow fibers having internal diameters of, for example, between 0.3 and 2.0 mm.
  • adhesives which can be used according to the invention, mention may in particular be made of glues sold commercially by the companies PERMABOND (adhesive UN 9110) and HERAEUS (adhesive FLOWLI ⁇ E).
  • glues sold commercially by the companies PERMABOND (adhesive UN 9110) and HERAEUS (adhesive FLOWLI ⁇ E).
  • any system can be used to focus the UV radiation on the section of the fiber to be repaired, for example the device “Translux CL. »Marketed by the firm HERAEUS.
  • the new fibers are immersed in a solution containing hydrochloric acid at pH 1 for two consecutive days;
  • the new fibers are immersed in an aqueous sodium hydroxide solution at pH 10, for 24 hours;
  • the new fibers are immersed in a solution containing citric acid at a pH close to 3, for 24 hours;
  • the new fibers are immersed in a chlorine solution containing 500 ppm of active chlorine, for 24 hours.
  • the present invention is not limited to the examples of implementation described above, but that it encompasses all variants thereof, in particular, as already mentioned, the invention is not limited to the repair of only ultra-, nano and hyper-filtration fibers, but it can also be applied to the repair in particular of microfiltration fibers of gas permeation, of pervaporation etc ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Procédé de réparation de membranes, telles que notamment d'ultra-, nano- et hyper-filtration, en particulier en configuration de fibres creuses tubulaires qui consiste, après détection et localisation d'une fuite dans une fibre endommagée, à y injecter un adhésif réticulable, ce procédé étant caractérisé en ce que l'on injecte dans la fibre endommagée un bouchon d'une quantité précisément dosée d'un adhésif synthétique mono-composant et on effectue le durcissement dudit bouchon d'adhésif par réticulation/polymérisation sous rayonnement ultra-violet avec une focalisation de ce rayonnement sur la section de la fibre à réparer, sous une forte densité de flux sous forme de faisceau parallèle, par l'intermédiaire d'un guide d'onde.

Description

Perfectionnements apportés aux procédés de réparation par obturation des fibres creuses des membranes, notamment d'ultra-, nano- et hyper-filtration
La présente invention est relative à un procédé de réparation des membranes d'ultra-, nano- et hyper- filtration, en particulier en configuration de fibres creuses, ces membranes étant utilisées notamment dans les opérations de séparation mises en œuvre en particulier dans les installations de traitement de liquides, par exemple d'effluents aqueux. Ces réparations peuvent être effectuées sur des fibres neuves, ou sur des fibres usagées, l'objectif étant de restaurer l'intégrité des fibres, c'est-à-dire leur imperméabilité totale aux composés et particules de taille supérieure à leurs seuils de coupure.
L'invention s'applique également à la réparation des fibres de microfiltration, de permëation de gaz, de pervaporation etc..
On sait que les membranes de microfiltration et d'ultrafiltration permettent, au cours de la perméation, d'effectuer la clarification et la désinfection des eaux qui les traverse afin d'éliminer les bactéries, virus et autres parasites.
On sait également que les fibres creuses de telles membranes possèdent une géométrie particulièrement adaptée en vue d'assurer une bonne rétention des espèces dissoutes et particulaires . Les fibres creuses sont auto-supportées, les collages faits aux deux extrémités d'un module à fibres creuses assurent, d'une part une étanchéité parfaite des fibres les unes par rapport aux autres et d'autre part une étanchéité entre l'ensemble du faisceau de fibres moulées dans une résine (constituant la plaque de tête d'un module, formé lors de l'opération d'empotage) et l'enveloppe externe du module (carter ou tube de pression) .
En ce qui concerne la réalisation de tels modules à fibres creuses, on peut se reporter par exemple au Mémento Technique de l'Eau, 1989, Tome 2, Chapitre 15, édité par DEGREMONT .
Une technique parfois utilisée consiste, après l'empotage, à renforcer la protection externe des fibres creuses, en badigeonnant les fibres avec une résine suffisamment fluide, cette opération étant parfois appelée « vernissage ». Ce vernissage assure par la suite un bouchage parfait de la section poreuse des fibres, sections qui pourraient permettre la migration des virus, bactéries, microorganismes, macromolécules et autres produits et solutés de faible masse se trouvant dans l'eau.
Normalement, lorsqu'elles sont fabriquées selon les règles de l'art, les fibres creuses des modules de séparation par membranes assurent une bonne désinfection des eaux, voire d'autres liquides ou fluides. Cependant, malgré tous les soins apportés à leur fabrication, il peut survenir des ruptures de fibres, notamment lors des opérations de mise en faisceau, d'empotage ou de mise en carter. Ces ruptures, plus ou moins nombreuses, sont liées aux défauts de fabrication ou au vieillissement naturel ou forcé du matériau me branaire. Lorsque de telles ruptures sont constatées, il devient nécessaire de réparer les fibres cassées, faute de quoi le module équipé de fibres creuses ne serait plus en mesure d'assurer pleinement la désinfection virale ou bactériologique. Il existe dans l'état actuel de la technique de nombreux procédés pouvant être utilisés pour détecter la présence des fibres cassées ou qui fuient . On peut par exemple se référer à FR-A-2 775 440. Une fois identifiée, une fibre endommagée doit être réparée le plus rapidement possible afin de ne pas endommager les fibres auxquelles elle est intégrée, ces dommages pouvant résulter notamment d'une pollution du compartiment perméat .
II existe divers procédés permettant de réparer les fibres endommagées. A titre d'exemples, on en décrira ci- après deux qui sont les plus particulièrement représentatifs et les plus largement utilisés à l'heure actuelle.
Le premier procédé consiste à pousser dans la fibre endommagée un obturateur cylindrique, encore appelé « clou » présentant une dimension appropriée au diamètre interne de la fibre. Certains fabricants de modules proposent à cet effet des clous de forme conique, de manière à faciliter leur mise en place. De plus, on peut encore améliorer la qualité de cette réparation en badigeonnant la fibre avec un adhésif mono ou bi-composant , afin de parfaire et de consolider l'étanchéité de la réparation ainsi effectuée. L'inconvénient de cette technique réside dans la fréquence des adhérences défectueuses entre les deux matériaux (clou et fibre) résultant de la faible surface de contact et/ou d'éventuels défauts de réticulation/polymérisation dudit adhésif.
Le deuxième procédé consiste à injecter un adhésif bi- composant dans la fibre identifiée comme rompue ou « fuyarde ». Après injection de l'adhésif à l'aide d'une aiguille, on retire cette dernière et on attend la reticulation de l'adhésif. L'inconvénient majeur de cette technique réside dans le fait que, lors de l'injection de petites quantités d'adhésif, la reticulation du produit exige beaucoup de temps. De ce fait, avant remise en route du module réparé, il existe un délai d'attente qui peut se révéler pénalisant étant donné qu' il peut atteindre 24 heures avant reticulation complète. Il convient également de mentionner que la cinétique de reticulation est liée à la température ambiante régnant sur le site. De ce fait, par temps froid, la reticulation de l'adhésif exige une durée plus longue et elle est même parfois impossible. Ainsi, il est courant de devoir attendre le lendemain de la réparation avant de pouvoir remonter le module, comportant la fibre défectueuse réparée, sur l'ensemble de filtration.
Les autres procédés actuellement disponibles sont dans l'ensemble plus adaptés aux réparations effectuées en usine par les fabricants de modules eux-mêmes et ils sont trop difficiles à mettre en œuvre sur un module équipé de fibres, éventuellement humides, par des opérateurs peu expérimentés .
Afin de pallier les inconvénients des procédés de réparation mentionnés ci-dessus, la présente invention s'est fixé pour objectif d'apporter un procédé simple, facile à mettre en œuvre et aux résultats immédiats, c'est- à-dire un procédé selon lequel notamment la durée de réparation ne constitue plus une limite à l'exploitation des membranes et grâce auquel la durée et la qualité de la réparation ne dépendent plus de la température ambiante, ni de la qualité ou de l'historique des fibres devant être réparées. En outre, grâce à l'invention, les performances de séparation et de perméabilité des membranes sont immédiatement et intégralement restaurées .
En conséquence, cette invention concerne un procédé de réparation de membranes d'ultra-, nano- et hyper- filtration, en particulier en configuration de fibres creuses tubulaires qui consiste, après détection et localisation d'une fuite dans une fibre endommagée, à y injecter un adhésif réticulable, ce procédé étant caractérisé en ce que l'on injecte dans la fibre endommagée un bouchon d'une quantité précisément dosée d'un adhésif synthétique mono-composant et on effectue le durcissement dudit bouchon d'adhésif par réticulation/polymérisation sous rayonnement ultra-violet avec une focalisation de ce rayonnement sur la section de la fibre à réparer, sous une forte densité de flux sous forme de faisceau parallèle, par l'intermédiaire d'un guide d'onde.
Selon un mode de mise en œuvre de la présente invention, on utilise un adhésif qui est une résine synthétique et la hauteur du bouchon d'adhésif injecté est de l'ordre de 6 +/- 1 mm.
Pour la mise au point de cette nouvelle technique, il a fallu vaincre deux préjugés résultant des phénomènes décrits ci-dessus dont les conséquences pouvaient être cumulatives :
- tout d'abord, l'Homme de l'art sait, notamment par la littérature disponible que la reticulation sous rayonnement ultra-violet des polymères et monomères ne peut se faire que sous des épaisseurs assez faibles. Il est donc généralement admis que, pour réaliser un bouchon d'adhésif, par exemple pour réparer une fibre creuse, il n'est pas possible d'obtenir une reticulation complète sur une épaisseur supérieure à 1 mm, ce qui n'est ni suffisant, ni sécurisant pour l'Homme de l'art ;
- ensuite, le fait d'injecter un adhésif dans une fibre creuse sur une hauteur inférieure à 1 mm est techniquement très difficile et la question reste posée du devenir de l'excès d'adhésif non polymérisé/réticulé, donc instable. Ces considérations démontrent que l'Homme de l'art était détourné par ses connaissances de l'état de la technique d'envisager une réparation des fibres creuses par injection d'un bouchon d'adhésif d'épaisseur relativement importante .
Dans le cadre de la présente invention, on a pu vérifier :
- qu'il était possible de mettre en place, par un geste simple, un bouchon d'adhésif présentant la hauteur mentionnée ci-dessus voisine de 5 à 7 mm, par injection soit manuellement, soit à l'aide des appareils classiques d'injection d'adhésif équipés de doseurs précis et de pistons mus par une pression contrôlée d'air comprimé ; - que l'adhésif ainsi injecté ne coulait pas après sa mise en place ;
- que l'adhésif injecté pouvait être réticulé sur toute sa hauteur ; que le temps de réticulation/poly érisation de l'adhésif était d'environ 30 secondes sous un rayonnement ultra-violet intense dont le faisceau parallèle était focalisé sur la section de la fibre à réparer en utilisant un guide d'onde.
Pour la mise en œuvre de la présente invention, on peut utiliser plusieurs adhésifs réticulables sous rayonnement ultra-violet et présentant une gamme de viscosité assez large. Il est alors possible de réparer des fibres creuses présentant des diamètres internes compris par exemple entre 0,3 et 2,0 mm. A titre d'exemples d'adhésifs utilisables selon l'invention, on peut citer notamment des colles vendues dans le commerce par les sociétés PERMABOND (adhésif UN 9110) et HERAEUS (adhésif FLOWLIΝE) . En ce qui concerne le dispositif permettant d'assurer la reticulation de l'adhésif, on peut utiliser tout système permettant de focaliser le rayonnement UV sur la section de la fibre à réparer, par exemple le dispositif « Translux CL. » commercialisé par la firme HERAEUS .
Afin de vérifier la tenue des réparations effectuées selon l'invention, sur des fibres à base d'acétate de cellulose, on a effectué sur ces dernières divers prétraitements :
- les fibres sont neuves, propres et exemptes de tous résidus de fabrication ;
- les fibres neuves sont plongées dans une solution contenant de l'acide chlorhydrique à pH 1 et ce durant deux jours consécutifs ;
- les fibres neuves sont plongées dans une solution aqueuse de soude à pH 10, durant 24 heures ;
- les fibres neuves sont plongées dans une solution contenant de l'acide citrique à pH voisin de 3, durant 24 heures ;
- les fibres neuves sont plongées dans une solution de chlore à 500 ppm de chlore actif, durant 24 heures.
On a effectué d'autres trempages qui concernaient des fibres neuves et des fibres usagées prélevées sur un module expertisé ayant cinq années de service, les trempages étant effectués dans des lessives potentiellement utilisables au contact des fibres en acétate de cellulose. Il s'agissait de lessives de la gamme « Ultrasil » de la Sté ECOLAB et de la gamme « Permaclean » commercialisée par la Sté AQUAZUR.
Dans tous les cas mentionnés ci-dessus, toutes les réparations ont tenu et il ne s'est produit aucun incident.
Sur toutes les fibres ainsi réparées, il est arrivé que certaines finissent par éclater, par mise sous pression croissante, mais loin de la zone réparée et sans que la réparation soit endommagée. On notera que dans le cas des fibres à base d'acétate de cellulose, de tels éclatements se produisent lorsqu'on atteint des pressions appliquées comprises entre 15 et 24.105 Pa., suivant que les fibres aient été vieillies, attaquées par des acides, des bases, des oxydants ou qu'elles étaient neuves.
Il a également été possible de vérifier que le procédé de l'invention s'appliquait à des fibres à base d'autres matériaux que l'acétate de cellulose. Ainsi, on a pu faire des essais sur des fibres creuses à base de polysulfone naturel, de polyéthersulfone, d' éthylcellulose, ainsi que de polysulfone modifié par addition d'un polymère hydrophile que l'on a pris le soin de réticuler. Dans tous les cas, les fibres avaient des diamètres internes différents, sensiblement proches de 0,5 à 1,2 mm. Toutes les réparations ont été réussies et elles ont tenu.
Enfin, on a effectué des tests afin de vérifier la tenue dans le temps des réparations effectuées selon l'invention. En effet, il aurait pu se produire des endommagements probablement en raison d'un interface pouvant se trouver sur le pourtour interne des fibres qui n'aurait pas suffisamment réticulé. Dans ce but, on a procédé à la réparation, selon le procédé objet de l'invention, des fibres neuves et des fibres colmatées en y implantant des bouchons d'adhésif. Après reticulation, tous les échantillons ont été testés sur un banc de vieillissement mécanique dans les conditions suivantes : durée de filtration égale à 30 secondes = durée de rétrolavage ; pression de filtration interne égale à X ; pression de rétrolavage externe égale à Y. Durant ce test, on a appliqué les valeurs suivantes pour X et Y :
X = Y = 3.105 Pa. puis 4.105 Pa. X ≈ 3.105 Pa. et Y = 4.105 Pa .
X = 4.10 Pa. et Y = 3.10b Pa .
Les essais ont été poursuivis jusqu'à l'obtention d'un nombre de cycles supérieur à 100.000 sans qu'il soit constaté d' endommagement des bouchons d'adhésif. Il se confirme donc que ces bouchons ont une excellente tenue dans le temps et qu'ils n'altèrent pas la durée de vie potentielle des fibres objet des tests, laquelle est supérieure à douze années hors vieillissement chimique.
Il ressort donc des résultats des tests effectués sur des fibres réparées en mettant en œuvre le procédé de l'invention, que celles-ci retrouvent immédiatement leurs performances mécaniques et séparatives d'origine. En effet, quel que soit le type de « fatigue » que les fibres aient subi (attaque acide, basique, bactériologique ou par des détergents) les bouchons d'adhésif formés selon l'invention adhèrent, de façon irréversible, à la membrane et ne se décollent plus de la fibre réparée. Par ailleurs, le fait que l'on ait observé, après réparation, que les fibres soumises à une pression interne croissante éclatent toujours en dehors des emplacements comportant des bouchons d'adhésif, démontre bien la très grande fiabilité des réparations effectuées par la mise en œuvre du procédé objet de l'invention.
Il demeure bien entendu que la présente invention n'est pas limitée aux exemples de mise en oeuvre décrits ci-dessus, mais qu'elle en englobe toutes les variantes, en particulier, ainsi qu'on l'a déjà mentionné, l'invention n'est pas limitée à la réparation des seules fibres d'ultra-, nano et hyper-filtration, mais elle peut également s'appliquer à la réparation notamment de fibres de microfiltration de perméation de gaz, de pervaporation etc....

Claims

REVENDICATIONS
1 - Procédé de réparation de membranes, notamment d'ultra-, nano- et hyper-filtration, en particulier en configuration de fibres creuses tubulaires qui consiste, après détection et localisation d'une fuite dans une fibre endommagée, à y injecter un adhésif réticulable, ce procédé étant caractérisé en ce que l'on injecte dans la fibre endommagée un bouchon d'une quantité précisément dosée d'un adhésif synthétique mono-composant et on effectue le durcissement dudit bouchon d'adhésif par réticulation/polymérisation sous rayonnement ultra-violet avec une focalisation de ce rayonnement sur la section de la fibre à réparer, sous une forte densité de flux sous forme de faisceau parallèle, par l'intermédiaire d'un guide d' onde .
2 - Procédé selon la revendication 1, caractérisé en ce que l'on utilise un adhésif qui est une résine synthétique.
3 - Procédé selon la revendication 1, caractérisé en ce que la hauteur du bouchon d'adhésif injecté est de l'ordre de 6 +/- 1 mm.
PCT/FR2001/003476 2000-11-20 2001-11-08 Perfectionnements apportes aux procedes de reparation par obturation des fibres creuses des membranes, notamment d'ultra-, nano-, et hyper-filtration WO2002040140A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002223043A AU2002223043A1 (en) 2000-11-20 2001-11-08 Improvements to methods for repairing by sealing hollow fibres of membranes, in particular, ultrafiltration, nanofiltration, and hyperfiltration membranes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/14969 2000-11-20
FR0014969A FR2816851B1 (fr) 2000-11-20 2000-11-20 Perfectionnements apportes au procedes de reparation par obturation des fibres creuses des membranes, notamment d'ultra-, nano- et hyper-filtration

Publications (1)

Publication Number Publication Date
WO2002040140A1 true WO2002040140A1 (fr) 2002-05-23

Family

ID=8856675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/003476 WO2002040140A1 (fr) 2000-11-20 2001-11-08 Perfectionnements apportes aux procedes de reparation par obturation des fibres creuses des membranes, notamment d'ultra-, nano-, et hyper-filtration

Country Status (3)

Country Link
AU (1) AU2002223043A1 (fr)
FR (1) FR2816851B1 (fr)
WO (1) WO2002040140A1 (fr)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106004A1 (fr) * 2002-06-18 2003-12-24 U.S. Filter Wastewater Group, Inc. Procedes pour minimiser l'effet de la perte d'integrite dans des modules a membranes a fibres creuses
US7335301B2 (en) 2002-11-22 2008-02-26 Koch Membrane Systems, Inc. Fold protection for spiral filtration modules utilizing UV cured adhesive and method of providing same
US7718057B2 (en) 2005-10-05 2010-05-18 Siemens Water Technologies Corp. Wastewater treatment system
US7718065B2 (en) 2004-04-22 2010-05-18 Siemens Water Technologies Corp. Filtration method and apparatus
US7862719B2 (en) 2004-08-20 2011-01-04 Siemens Water Technologies Corp. Square membrane manifold system
US7931463B2 (en) 2001-04-04 2011-04-26 Siemens Water Technologies Corp. Apparatus for potting membranes
US7938966B2 (en) 2002-10-10 2011-05-10 Siemens Water Technologies Corp. Backwash method
US7951295B2 (en) 2005-12-07 2011-05-31 Dow Global Technologies Llc Insertion-point seal for spiral wound module
US8048306B2 (en) 1996-12-20 2011-11-01 Siemens Industry, Inc. Scouring method
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8372282B2 (en) 2002-12-05 2013-02-12 Siemens Industry, Inc. Mixing chamber
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
EP2722099A1 (fr) * 2011-06-16 2014-04-23 Mitsubishi Rayon Co., Ltd. Procédé de réparation d'un module d'une membrane à fibre creuse et module de membrane à fibre creuse
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
CN105727752A (zh) * 2016-05-11 2016-07-06 贵州省材料产业技术研究院 一种高强度抗污染抗菌中空纤维纳滤膜的制备方法及产品
US9498753B2 (en) 2012-03-15 2016-11-22 Koch Membrane Systems, Inc. Method for sealing hollow fiber membranes
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9815031B2 (en) 2016-03-29 2017-11-14 Sabic Global Technologies B.V. Porous membranes and associated separation modules and methods
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10080996B2 (en) 2014-05-01 2018-09-25 Sabic Global Technologies B.V. Skinned, asymmetric poly(phenylene ether) co-polymer membrane; gas separation unit, and preparation method thereof
US10207230B2 (en) 2014-05-01 2019-02-19 Sabic Global Technologies B.V. Composite membrane with support comprising poly(phenylene ether) and amphilphilic polymer; method of making; and separation module thereof
US10252220B2 (en) 2014-05-01 2019-04-09 Sabic Global Technologies B.V. Porous asymmetric polyphenylene ether membranes and associated separation modules and methods
US10307717B2 (en) 2016-03-29 2019-06-04 Sabic Global Technologies B.V. Porous membranes and associated separation modules and methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10358517B2 (en) 2014-05-01 2019-07-23 Sabic Global Technologies B.V. Amphiphilic block copolymer; composition, membrane, and separation module thereof; and methods of making same
US10421046B2 (en) 2015-05-01 2019-09-24 Sabic Global Technologies B.V. Method for making porous asymmetric membranes and associated membranes and separation modules
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110559865B (zh) * 2019-08-14 2022-02-25 浙江理工大学 一种超滤膜污染或膜损伤的修复方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206412A (ja) * 1984-03-28 1985-10-18 Nitto Electric Ind Co Ltd 中空糸膜分離モジユ−ルの端面補修方法
SU1348350A1 (ru) * 1986-01-22 1987-10-30 Всесоюзный научно-исследовательский и проектный институт мономеров с опытным заводом Способ герметизации дефектов в мембране
WO1999010089A1 (fr) * 1997-08-26 1999-03-04 Bpt - Biopure Technologies Ltd. Procede de remise en etat d'une membrane presentant des imperfections
FR2775440A1 (fr) * 1998-03-02 1999-09-03 Suez Lyonnaise Des Eaux Procede de controle de l'integrite des modules de filtration a fibres creuses

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206412A (ja) * 1984-03-28 1985-10-18 Nitto Electric Ind Co Ltd 中空糸膜分離モジユ−ルの端面補修方法
SU1348350A1 (ru) * 1986-01-22 1987-10-30 Всесоюзный научно-исследовательский и проектный институт мономеров с опытным заводом Способ герметизации дефектов в мембране
WO1999010089A1 (fr) * 1997-08-26 1999-03-04 Bpt - Biopure Technologies Ltd. Procede de remise en etat d'une membrane presentant des imperfections
FR2775440A1 (fr) * 1998-03-02 1999-09-03 Suez Lyonnaise Des Eaux Procede de controle de l'integrite des modules de filtration a fibres creuses

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 198822, Derwent World Patents Index; AN 1988-153421, XP002173993 *
PATENT ABSTRACTS OF JAPAN vol. 0100, no. 67 (C - 333) 15 March 1986 (1986-03-15) *

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048306B2 (en) 1996-12-20 2011-11-01 Siemens Industry, Inc. Scouring method
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US7931463B2 (en) 2001-04-04 2011-04-26 Siemens Water Technologies Corp. Apparatus for potting membranes
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US7344645B2 (en) * 2002-06-18 2008-03-18 Siemens Water Technologies Corp. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
CN100503018C (zh) * 2002-06-18 2009-06-24 西门子水技术公司 使空心纤维隔膜模块的完整性损失的影响减至最小的方法
AU2003232518B2 (en) * 2002-06-18 2008-09-11 Evoqua Water Technologies Llc Methods of minimising the effect of integrity loss in hollow fibre membrane modules
WO2003106004A1 (fr) * 2002-06-18 2003-12-24 U.S. Filter Wastewater Group, Inc. Procedes pour minimiser l'effet de la perte d'integrite dans des modules a membranes a fibres creuses
KR100977323B1 (ko) * 2002-06-18 2010-08-20 지멘스 워터 테크놀로지스 코포레이션 중공 섬유 멤브레인 모듈에서 무결성 손실 효과를 최소화하는 방법
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US7160463B2 (en) 2002-06-18 2007-01-09 U.S. Filter Wastewater Group, Inc. Methods of minimizing the effect of integrity loss in hollow fibre membrane modules
US7938966B2 (en) 2002-10-10 2011-05-10 Siemens Water Technologies Corp. Backwash method
US7335301B2 (en) 2002-11-22 2008-02-26 Koch Membrane Systems, Inc. Fold protection for spiral filtration modules utilizing UV cured adhesive and method of providing same
US8372282B2 (en) 2002-12-05 2013-02-12 Siemens Industry, Inc. Mixing chamber
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US7718065B2 (en) 2004-04-22 2010-05-18 Siemens Water Technologies Corp. Filtration method and apparatus
US7862719B2 (en) 2004-08-20 2011-01-04 Siemens Water Technologies Corp. Square membrane manifold system
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US7722769B2 (en) 2005-10-05 2010-05-25 Siemens Water Technologies Corp. Method for treating wastewater
US7718057B2 (en) 2005-10-05 2010-05-18 Siemens Water Technologies Corp. Wastewater treatment system
US7951295B2 (en) 2005-12-07 2011-05-31 Dow Global Technologies Llc Insertion-point seal for spiral wound module
US8142657B2 (en) 2005-12-07 2012-03-27 Dow Global Technologies Llc Insertion-point seal for spiral wound module
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8623202B2 (en) 2007-04-02 2014-01-07 Siemens Water Technologies Llc Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8622222B2 (en) 2007-05-29 2014-01-07 Siemens Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
EP2722099A4 (fr) * 2011-06-16 2014-11-05 Mitsubishi Rayon Co Procédé de réparation d'un module d'une membrane à fibre creuse et module de membrane à fibre creuse
EP2722099A1 (fr) * 2011-06-16 2014-04-23 Mitsubishi Rayon Co., Ltd. Procédé de réparation d'un module d'une membrane à fibre creuse et module de membrane à fibre creuse
US10898862B2 (en) 2011-06-16 2021-01-26 Mitsubishi Chemical Corporation Hollow fiber membrane module repair method and hollow fiber membrane module
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9498753B2 (en) 2012-03-15 2016-11-22 Koch Membrane Systems, Inc. Method for sealing hollow fiber membranes
US9968888B2 (en) 2012-03-15 2018-05-15 Koch Membrane Systems, Inc. Method for sealing hollow fiber membranes
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10252221B2 (en) 2014-05-01 2019-04-09 Sabic Global Technologies B.V. Porous asymmetric polyphenylene ether membranes and associated separation modules and methods
US10358517B2 (en) 2014-05-01 2019-07-23 Sabic Global Technologies B.V. Amphiphilic block copolymer; composition, membrane, and separation module thereof; and methods of making same
US10080996B2 (en) 2014-05-01 2018-09-25 Sabic Global Technologies B.V. Skinned, asymmetric poly(phenylene ether) co-polymer membrane; gas separation unit, and preparation method thereof
US10252220B2 (en) 2014-05-01 2019-04-09 Sabic Global Technologies B.V. Porous asymmetric polyphenylene ether membranes and associated separation modules and methods
US10207230B2 (en) 2014-05-01 2019-02-19 Sabic Global Technologies B.V. Composite membrane with support comprising poly(phenylene ether) and amphilphilic polymer; method of making; and separation module thereof
US10421046B2 (en) 2015-05-01 2019-09-24 Sabic Global Technologies B.V. Method for making porous asymmetric membranes and associated membranes and separation modules
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10307717B2 (en) 2016-03-29 2019-06-04 Sabic Global Technologies B.V. Porous membranes and associated separation modules and methods
US9815031B2 (en) 2016-03-29 2017-11-14 Sabic Global Technologies B.V. Porous membranes and associated separation modules and methods
CN105727752B (zh) * 2016-05-11 2018-08-14 贵州省材料产业技术研究院 一种高强度抗污染抗菌中空纤维纳滤膜的制备方法及产品
CN105727752A (zh) * 2016-05-11 2016-07-06 贵州省材料产业技术研究院 一种高强度抗污染抗菌中空纤维纳滤膜的制备方法及产品

Also Published As

Publication number Publication date
FR2816851B1 (fr) 2003-09-26
AU2002223043A1 (en) 2002-05-27
FR2816851A1 (fr) 2002-05-24

Similar Documents

Publication Publication Date Title
WO2002040140A1 (fr) Perfectionnements apportes aux procedes de reparation par obturation des fibres creuses des membranes, notamment d'ultra-, nano-, et hyper-filtration
JP5637214B2 (ja) 中空糸膜モジュールの補修方法および中空糸膜モジュール
US20100147763A1 (en) Modified porous membranes, methods of membrane pore modification, and methods of use thereof
US10183256B2 (en) In situ repairing technique for compromised polymeric membranes
US7674382B2 (en) Method of cleaning fouled and/or scaled membranes
KR20110115856A (ko) 내오염성이 향상된 친수성 분리막의 제조방법 및 상기 방법으로 제조된 친수성 분리막
FR2749190A1 (fr) Procede et installation pour tester in situ l'integrite des membranes de filtration
FR2810259A1 (fr) Procede de fabrication d'une membrane de nanofiltration, et membrane obtenue
WO2007080260A1 (fr) Procede et dispositif de test d'integrite de membranes de filtration.
KR20160022619A (ko) 친수성 분리막의 제조방법 및 상기 방법으로 제조된 친수성 분리막
EP0250327B1 (fr) Elément d'ultrafiltration, d'hyperfiltration ou de déminéralisation, son procédé de fabrication et son utilisation pour le traitement d'effluents liquides radioactifs
FR3014330A1 (fr) Procede de controle de l'integrite de membranes de filtration durant leur fonctionnement
EP1289634B1 (fr) Procede de controle de l'integrite d'un module, ou d'un systeme de modules, de nanofiltration ou d'osmose inverse
JP5811738B2 (ja) 中空糸膜モジュールの補修方法及び中空糸膜モジュール
US20100038301A1 (en) Submerged type hollow fiber membrane module and method for manufacturing the same
JP5399568B2 (ja) 中空糸膜モジュールの検査方法
CN116528968A (zh) 多孔中空纤维膜及完整性试验方法
JP4538732B2 (ja) 中空糸膜モジュ−ルのリーク検出方法およびリ−ク検出装置
KR20100077469A (ko) 중공사 분리막의 수선방법
JP7122941B2 (ja) バイオポリマー除去装置、及び水処理システム
WO2016042254A1 (fr) Membranes filtrantes a base d'ether de cellulose
NL1039736C2 (en) Capillary filtration membrane with an improved recovery and method for obtaining an improved recovery.
JPH11165046A (ja) 中空糸膜モジュールの欠陥検出方法
Cui et al. Structure and properties of membrane at different ages in drinking water treatment
Shafie Polydimethylsiloxane & poly (4-methyl-1-pentene) as gutter layer and P84 polyimide coated composite hollow fiber membranes for N₂/CO₂ and CO₂/CH₄ separation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP