[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2001012614A1 - N-oxyl-radikale - Google Patents

N-oxyl-radikale Download PDF

Info

Publication number
WO2001012614A1
WO2001012614A1 PCT/EP2000/008040 EP0008040W WO0112614A1 WO 2001012614 A1 WO2001012614 A1 WO 2001012614A1 EP 0008040 W EP0008040 W EP 0008040W WO 0112614 A1 WO0112614 A1 WO 0112614A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxyl
radical
radicals
polymerization
atoms
Prior art date
Application number
PCT/EP2000/008040
Other languages
English (en)
French (fr)
Inventor
Susanne Brinkmann-Rengel
Sylke Haremza
Heinz Friedrich Sutoris
David Christie
Roman Benedikt Raether
Jizhuang Cao
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to US10/048,988 priority Critical patent/US6639033B1/en
Priority to EP00960475A priority patent/EP1204648A1/de
Publication of WO2001012614A1 publication Critical patent/WO2001012614A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/301,4-Oxazines; Hydrogenated 1,4-oxazines not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/04Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/341,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/121,4-Thiazines; Hydrogenated 1,4-thiazines not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3462Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/357Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/30Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing heterocyclic ring with at least one nitrogen atom as ring member

Definitions

  • the present invention relates to N-oxyl radicals, N-oxyl radical formers and their use in the radical polymerization of ethylenically unsaturated monomers.
  • N-oxyl radicals and N-oxyl radical formers which are derived from a secondary A in which does not have any hydrogen atoms on the ⁇ -C atoms are known. They are or form extremely stable radicals and can usually be represented as pure substances.
  • Such stable N-oxyl radicals are used, inter alia, as inhibitors of undesired radical polymerizations (cf., for example, US Pat. No. 5,322,960).
  • Another application of such stable N-oxyl radicals is that their presence enables a certain control of radical-initiated polymerizations of compounds (monomers) having at least one ethylenically unsaturated group (cf. e.g. EP-A 135280, US-A 5,412,047 and US-A 5,322,912).
  • Radically initiated polymerizations of monomers usually have the disadvantage that the molecular weight of the polymer chains does not increase linearly with the polymerization conversion and that the polymer chains of the resulting polymer generally do not have a uniform molecular weight.
  • EP-A-0 869 137 discloses a polymerization process for the preparation of (meth) acrylates-containing homo- or block copolymers in the presence of certain nitroxyls of the piperazinone or morpholone structure type.
  • DE-A-2 351 865 discloses, among other things, the compound 2,2,6,6-tetramethyl-l-aza-4-thiacyclohexane-1,4,4-trioxide. The use of this compound to control radical polymerizations is neither taught nor suggested.
  • the object of the present invention was therefore to provide new N-oxyl radicals or formers of new N-oxyl radicals, in the presence of which the controlled radical polymerization leads to higher conversions in a shorter time. They should also be suitable for carrying out controlled free-radical polymerizations of non-styrenic monomers, in particular of esters of acrylic and / or methacrylic acid.
  • X is S, NR 5 , O or SO and
  • R 1 , R 2 , R 3 , R 4 and R 5 independently of one another represent organic radicals or
  • R 1 and R 2 and / or R 3 and R 4 together with the carbon atom bearing them represent a ring consisting of at least 3 atoms.
  • the object is also achieved by a process of free-radically initiated polymerization of ethylenically unsaturated monomers, which is characterized in that the polymerization is carried out in the presence of N-oxyl radicals of the formula I, where X can additionally stand for SO 2 .
  • the N-oxyl radicals of the general formula I are formed by a spiro ring system, formed from R 1 and R 2 and / or R 3 and R 4 together with the carbon atom carrying them, particularly preferably from R 1 and R 2 together with the C atom carrying them.
  • a spiro ring system formed from R 1 and R 2 and / or R 3 and R 4 together with the carbon atom carrying them, particularly preferably from R 1 and R 2 together with the C atom carrying them.
  • two non-adjacent ring atoms can be bridged by a divalent organic radical and / or the ring can be fused to another ring.
  • the ring formed from R 1 and R 2 or R 3 and R 4 together with the C atom carrying them consists of 3 to 10, preferably three, five, six or seven atoms, the free valences of the ring forming atoms with hydrogen and / or organic radicals, preferably C 1 -C 2 alkyl groups, preferably C 1 -C 4 alkyl groups (e.g. the methyl, ethyl, n-propyl, iso-propyl, n- Butyl, iso-butyl and tert-butyl group) are saturated.
  • Aryl groups can also be considered as such saturating residues. Among them, the phenyl and naphthyl groups are preferred.
  • the ring is a saturated ring and usually the ring-forming atoms are carbon atoms, but the ring-forming atoms can also be e.g. B. include one or two heteroatoms, such heteroatoms being primarily N, O and / or S.
  • the invention relates in particular to N-oxyl radicals of the general formula I, in which R 1 , R 2 , R 3 , R 4 and R 5 are, independently of one another, C 1 -C 2 -alkyl, C 5 -C 8 cycloalkyl, C 7 -C 2 o-aralkyl, optionally substituted C 6 -C ⁇ o-aryl, heteroaryl,
  • R 6 for optionally branched -C 20 alkylene
  • R 7 each independently for H, -CC 20 alkyl, optionally interrupted by oxygen atoms C 3 -C 20 cycloalkyl or aryl
  • R 8 each independently for C 1 -C 0 -alkyl or aryl
  • R 9 for a chemical bond or optionally branched -C-C 0 alkylene
  • R 10 is H, C 1 -C 20 alkyl, aryl or an alkali metal
  • k for 0 or 1
  • n represents an integer from 1 to 100
  • R 3 and R 4 together for an oxygen atom and / or R 1 and R 2 and / or R 3 and R 4 together with the C atom carrying them form a carbocyclic ring consisting of 3 to 10 atoms, in which 1 or 2 C atoms can be replaced by 0, S or N and / or in which two non-adjacent atoms can be bridged via a divalent organic radical, preferably C ⁇ -C 3 alkylene, and / or that with another, preferably 5- or 6-membered ring can be fused.
  • a divalent organic radical preferably C ⁇ -C 3 alkylene
  • the substituents include C x - to C 6 -alkyl, Cx to C 6 -alkoxy, -S0 3 H, S0 3 M (where M is an alkali metal, e.g. Na or K) ) or N0 2 in consideration.
  • Heteroaryl preferably stands for heteroaromatic five-membered rings with 1, 2, 3 or 4 heteroatoms selected from O, S or N.
  • N-oxyl radicals have the general formula II:
  • R 3 and R 4 independently of one another are C 1 -C 4 -alkyl, phenyl, naphthyl or an aromatic five-membered ring or R 3 and R 4 together stand for - (CH 2 ) 0 - and p and o independently of one another others represent an integer from 2 to 8, preferably 4 to 6.
  • Peroxides such as H 2 O, t-butylhydroxyperoxide, cumene hydroperoxide, peracids such as metachloroperbenzoic acid, ⁇ -chloroperbenzoic acid, peracetic acid, p-nitrobenzoic acid, perbenzoic acid or magnesium monoperoxyphthalate are suitable as oxidizing agents.
  • the oxidation can be carried out in an inert solvent such as CH 2 C1 2 , petroleum ether, toluene, xylene or benzene.
  • M alkali metal, e.g. B. Na or K
  • a mono- or disubstituted 2-aminoethanol is used here with a cyclic ketone and a haloform, e.g. B. chloroform or bromoform, in the presence of an alkali metal hydroxide, optionally under phase transfer conditions, converted to a substituted alkali metal hydroxyethylaminoacetate.
  • a cyclic ketone and a haloform e.g. B. chloroform or bromoform
  • the resulting amine can e.g. B. reduced with lithium aluminum hydride and converted into a diol.
  • N-oxyl radical instead of converting the amine directly into an N-oxyl radical according to the invention, it can also be subjected to a wide variety of modifications in a manner known per se in order to subsequently obtain N-oxyl radicals modified in a correspondingly oxidative manner (but of course it can the N-oxyl radical can also be modified as such).
  • the invention also relates to N-oxyl radical formers, which are characterized in that by ho olytic cleavage, for. B. by thermolysis, a chemical bond as a fragment of an N-oxyl radical according to the invention. They have the general formula III
  • T stands for an organic radical with a molecular weight of 15 or more, preferably from 29 to 500,000. T stands for. B. for
  • R 11 , R 12 and R 13 are independently hydrogen, C ! -C -alkyl, phenyl, a cyano or ester group, or a polymer chain of units of ethylenically unsaturated monomers.
  • N-oxyl radical formers III can be obtained by reacting N-oxyl radicals of the formula I with a radical initiator, optionally in the presence of ethylenically unsaturated monomers.
  • N-oxyl radical formers III, in which T stands for a polymer chain are in a simple manner, for. B. obtainable by radically polymerizing a small amount of monomers using a radical polymerization initiator (e.g. peroxide, hydroperoxide and / or azo compound) in the presence of an N-oxyl radical I and then cleaning the polymerization product by falling over (cf. e.g. DE-A 19735225).
  • T can e.g. B. 1 to 100,000, preferably 3 to 50,000, comprise monomer units.
  • those disclosed in US Pat. No. 5,021,481 can be used analogously.
  • the invention also relates to a process for the radical-initiated polymerization of ethylenically unsaturated monomers, which is characterized in that the polymerization takes place in the presence of N-oxyl radicals of the formula I. After he- Processes according to the invention can polymerize pure monomers or monomer mixtures.
  • the method according to the invention is usually carried out at elevated temperature, for. B. 50 to 200 ° C, preferably 60 to 180 ° C.
  • elevated temperature for. B. 50 to 200 ° C, preferably 60 to 180 ° C.
  • the reaction times are generally 30 minutes to 6 days, in particular 1 hour to 60 hours.
  • cooling e.g. B. to room temperature, the reaction can be stopped or frozen.
  • the polymer can then be isolated and optionally washed and dried.
  • Thermal initiation of the polymerization without the addition of a radical initiator is particularly suitable for the polymerization of styrene or styrene-containing monomer mixtures.
  • the process according to the invention is particularly suitable for the production of block copolymers. These are obtained by successively polymerizing different monomers or monomer mixtures of different compositions.
  • the procedure is preferably such that at least one first monomer is polymerized in the presence of the N-oxyl radicals to obtain an intermediate polymer, the intermediate polymer is optionally isolated and at least one second monomer is polymerized in the presence of the intermediate polymer.
  • step d) the block copolymer is isolated and, if appropriate, washed and dried.
  • step c) can be repeated one or more times, a third or further monomer being used instead of the second ethylenically unsaturated monomer.
  • Monomer mixtures can also be used instead of pure monomers. “Different monomers” are also understood to mean monomer mixtures of different compositions.
  • the blocks of a block copolymer obtained according to the invention can accordingly represent homo- or copolymer blocks.
  • the isolation of the intermediate polymer is recommended when the highest possible purity, sharp block boundaries or high homogeneity within the blocks are desired.
  • the isolation of the intermediate polymer prevents unreacted first monomer from being incorporated into the block of the second monomer that forms. Isolation of the intermediate polymer or the block copolymer can, for. B. done by failures.
  • the monomers polymerizable according to the invention include olefins, such as, for. B. ethylene, vinyl aromatic monomers such as styrene, ⁇ -methylstyrene, o-chlorostyrene or vinyltoluenes, 1,1- and 1,2-diphenylethylene, vinyl and vinylidene halides such as vinyl and vinylidene chloride, esters of vinyl alcohol and 1 to 12 C.
  • olefins such as, for. B. ethylene
  • vinyl aromatic monomers such as styrene, ⁇ -methylstyrene, o-chlorostyrene or vinyltoluenes
  • 1,1- and 1,2-diphenylethylene vinyl and vinylidene halides
  • vinyl and vinylidene chloride esters of vinyl alcohol and 1 to 12 C.
  • VEOVA X is a trade name of Shell and stands for vinyl esters of carboxylic acids, which are also known as Versatic X acids are), esters of allyl alcohol and monocarboxylic acids having 1 to 12 carbon atoms such as allyl acetate, allyl propionate, allyl n-butyrate and allyl laurate, esters of ⁇ , ⁇ -monoethylenically unsaturated mono- and dicarboxylic acids preferably having 3 to 6 carbon atoms such as, in particular, acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid, with alkanols which generally have 1 to 12, preferably 1 to 8 and in particular 1 to 4, carbon atoms, such as particularly Acrylic acid and methacrylic acid methyl, e
  • Dimethylacrylamide also vinylsulfonic acid and its water-soluble salts and N-vinylpyrrolidone are suitable. This also applies for those monomers which usually increase the internal strength of the resulting polymers and which normally have an epoxy, hydroxyl or N-methylol group.
  • examples of these are N-alkylolamides of ⁇ , ⁇ -monoethylenically unsaturated carboxylic acids having 3 to 10 C atoms and their ethers with alkanols having 1 to 4 C atoms, among which the N-methylolacrylamide and the N-methylolmethacrylamide are very particularly preferred are.
  • vinylaromatic monomers, dienes or (meth) acrylic acid esters or mixtures thereof are used as monomers.
  • the monomers used are selected from styrene, ⁇ -methylstyrene, vinyltoluene, diphenylethylene, acrylonitrile, butadiene, isoprene, n-butyl acrylate, methyl methacrylate or mixtures thereof.
  • At least one vinylaromatic monomer if appropriate in a mixture with other monomers, is polymerized.
  • At least one diene is polymerized.
  • At least one (meth) acrylic acid ester is polymerized.
  • the process according to the invention can be carried out as solution, substance, precipitation, suspension, emulsion, mini-emulsion and microemulsion polymerization or inverse radical emulsion polymerization.
  • the polymerization can be carried out batchwise, semi-continuously or continuously.
  • radical polymerization initiators can be peroxides, hydroperoxides, peresters, percarbonates, persulfates, azo compounds or compounds with an unstable carbon-carbon bond. They can be both oil-soluble and water-soluble and are adapted to the chosen polymerization medium and the chosen polymerization temperature in a manner known per se. Redox initiator systems are also suitable.
  • Suitable initiators are hydrogen peroxide, tert-butyl hydroperoxide, di-tert-butyl peroxide, tert-amylhydroperoxide, dibenzoyl peroxide, potassium or sodium, ammonium peroxodisulfate, methyl ethyl ketone peroxide, dilauryl peroxide, cumyl hydroperoxide, dicumyl peroxide and azonitrile peroxide.
  • Redox initiator systems include e.g. As sodium disulfite, sodium sulfite, ascorbic acid, iso-ascorbic acid, sodium formaldehyde sulfoxylate and the like in conjunction with suitable oxidizing agents, such as the initiators mentioned above.
  • the amount of radical initiator is preferably 10 -6 to 33 mol%, in particular 10 -4 to 10 mol%, based on the monomers.
  • the kalen for a controlled radical polymerization to be used amount of the inventive N-oxyl radicalized or N-oxyl radical formers generally 10 ⁇ 4 to 33 mol .-%, usually 0.005 up to 20 mol%.
  • the molar ratio between N-oxyl radicals and radical centers which arise when the polymerization initiator disintegrates is generally chosen to be 0.25 to 5, frequently 0.4 to 4, for a controlled radical-initiated polymerization.
  • the polymers prepared by the process according to the invention preferably have a molecular weight in the range from about 500 to about 500,000.
  • the conversion of monomer to polymer can be up to 99% by weight.
  • the monomers are emulsified in water, for which emulsifiers are used.
  • Suitable anionic, cationic and neutral (non-ionic) emulsifiers known to the person skilled in the art are suitable as emulsifiers.
  • Anionic emulsifiers are e.g. B. alkali metal salts of higher fatty acids with 10 to 30 carbon atoms such as palmitic, stearic and oleic acid, alkali metal salts of sulfonic acids with z. B. 10 to 16 carbon atoms, especially sodium salts of alkyl or alkylarylsulfonic acids, alkali metal salts of half esters of phthalic acid, and alkali metal salts of resin acids such as abietic acid.
  • Cationic emulsifiers are e.g. B.
  • Neutral emulsifiers are e.g. B. ethoxylated fatty alcohols, ethoxylated fatty acids or ethoxylated phenols and fatty acid esters of polyhydric alcohols such as Pentaerythritol or sorbitol. Initiators which are poorly soluble in the monomer but readily soluble in water are preferably used for the emulsion polymerization. Peroxosulfates such as potassium, sodium or ammonium peroxodisulfate are therefore preferably used, or redox systems.
  • Buffer substances such as Na 2 HP0 4 / NaH 2 P0 4 or Na citrate / citric acid can be used as further additives in the polymerization in order to set an essentially constant pH.
  • Molecular weight regulators for example mercaptans such as t-dodecyl mercaptan, or ethylhexyl thioglycolate can also be used.
  • mercaptans such as t-dodecyl mercaptan, or ethylhexyl thioglycolate can also be used.
  • These further additives can be added continuously or discontinuously at the beginning and / or during the preparation of the emulsion and / or during the polymerization.
  • an emulsion is prepared from the monomers, water and emulsifiers by allowing high shear forces to act.
  • Homogenizers known to those skilled in the art are used for this, such as pressure homogenizers, devices with a rotor-stator system or colloid mills or ultrasound devices.
  • protective colloids are cellulose derivatives such as carboxymethyl cellulose and hydroxymethyl cellulose, poly-N-vinylpyrrolidone, polyvinyl alcohol and polyethylene oxide, anionic polymers such as polyacrylic acid and their copolymers and cationic polymers such as poly-N-vinylimidazole. The amount of this
  • Protective colloids are preferably 0.1 to 5% by weight, based on the total mass of the emulsion. Suitable protective colloids are described, for example, in Encyclopedia of Polymer Science and Engineering, Vol. 16, (1989) p. 448, published by J. Wiley.
  • the monomers used are soluble in the continuous phase (eg solvent or solvent mixture), but the resulting polymers are insoluble or only soluble to a limited extent and therefore precipitate out during the polymerization. Bulk polymerizations in which the resulting polymer is insoluble in the monomer and therefore precipitate out are also possible.
  • the monomers are polymerized without the addition of a reaction medium using the monomer-soluble initiators mentioned, ie the monomers are the reaction medium. It can also be initiated thermally.
  • an organic solvent such as toluene, cyclohexane, ethylbenzene or dimethyl sulfoxide is used or is also used to dilute the monomers.
  • the process according to the invention can also be carried out as a combined process in which at least two of the polymerization processes described above are combined with one another.
  • Mass / solution, solution / precipitation, mass / suspension and mass / emulsion should be mentioned in particular, starting with the former and ending with the latter.
  • the N-oxyl radical depending on its solubility behavior, either as such or dissolved in organic solvents such as alcohols, e.g. As methanol and / or ethanol, ethyl acetate, dimethylformamide, toluene, ethylbenzene, cyclohexane or benzene or mixtures thereof can be used. Also preferred is the addition of the N-oxyl radical in the form of a solution in a monomer or monomer mixture to be polymerized.
  • organic solvents such as alcohols, e.g. As methanol and / or ethanol, ethyl acetate, dimethylformamide, toluene, ethylbenzene, cyclohexane or benzene or mixtures thereof.
  • organic solvents such as alcohols, e.g. As methanol and / or ethanol, ethyl acetate, dimethylformamide, toluene, ethylbenzene
  • inorganic or organic acids such as 3-indole butyric acid, indolylacetic acid, or organic sulfonic acids, such as camphorsulfonic acid or p-toluenesulfonic acid (cf.
  • the process according to the invention is usually carried out at an absolute pressure in the range from normal pressure to 60 bar, preferably up to 45 bar.
  • the polymers obtainable by the process according to the invention can be used as such or blended with other polymers and / or additives.
  • Such other polymers are in particular thermoplastic polymers.
  • Such polymers include polyesters such as polyethylene terephthalate and polybutylene terephthalate, polycarbonates, polyamides, polyoxymethylene, polystyrene, polyolefins such as polyethylene and polypropylene, polyvinyl chloride and styrene copolymers such as polystyrene acrylonitrile.
  • additives come usual additives, such as. B. lubricants or mold release agents, pigments, dyes, flame retardants, antioxidants, light stabilizers, fibrous and powdery fillers or reinforcing agents or antistatic agents, as well as other additives, or mixtures thereof.
  • Suitable lubricants and mold release agents are e.g. B. fatty acids such as stearic acids, stearyl alcohol, fatty acid esters with 6 to 20 carbon atoms such. B. stearic acid esters, metal salts of fatty acids such as. B. Ca, Al, Zn stearate, fatty acid amides such as stearic acid amides, and silicone oils, montan waxes and those based on polyethylene and polypropylene, further hydrocarbon oils, paraffins and carboxylic acid esters from long-chain carboxylic acids and ethanol, fatty alcohols, glycerol , Ethanediol, pentaerythritol or other alcohols.
  • B. fatty acids such as stearic acids, stearyl alcohol, fatty acid esters with 6 to 20 carbon atoms such.
  • B. stearic acid esters metal salts of fatty acids such as. B. Ca, Al, Zn stearate,
  • Pigments are, for example, titanium dioxide, phthalocyanines, ultramarine blue, iron oxides or carbon black, and the class of organic pigments.
  • Dyes are to be understood as all dyes which can be used for the transparent, semi-transparent or non-transparent coloring of polymers, in particular those which are suitable for coloring styrene copolymers. Dyes of this type are known to the person skilled in the art.
  • antioxidants are, for example, sterically hindered phenols, hydroquinones, various substituted representatives of this group and mixtures thereof. They are commercially available as Topanol or Irganox.
  • Suitable light stabilizers are e.g. B. various substituted resorcinols, salicylates, benzotriazoles, cinnamic acid compounds, organic phosphites and phosphonites, benzophenones, HALS (hindered amine light stabilizers), such as z. B. are commercially available as Tinuvin.
  • Esters and / or amides of ⁇ - (3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid and / or benzotriazoles can also be used as stabilizers.
  • Possible antioxidants are mentioned by way of example in EP-A-698,637 and EP-A-669,367.
  • 2, 6-di-tert-butyl-4-hy- can be used as phenolic antioxidants droxyphenyl propionate and N, N '-Di- (3, 5-di-tert-butyl-4-hydroxy-phenyl-propionyl) hexamethylene diamine.
  • fibrous or pulverulent fillers are carbon or glass fibers in the form of glass fabrics, glass mats or glass silk rovings, cut glass, glass balls and tungstenonite, particularly preferably glass fibers. If glass fibers are used, they can be equipped with a size and an adhesion promoter for better compatibility with the blend components. Glass fibers can be incorporated both in the form of short glass fibers and in the form of continuous fibers (rovings).
  • Suitable particulate fillers are carbon black, amorphous silica, magnesium carbonate (chalk), powdered quartz, mica, bentonite, talc, feldspar or in particular calcium silicates such as wollastonite and kaolin.
  • Suitable antistatic agents are, for example, amine derivatives such as N, N-bis (hydroxyalkyl) alkylamines or alkylene amines, polyethylene glycol esters and glycerol mono- and distearates, and mixtures thereof.
  • the individual additives are used in the usual amounts.
  • the additives are usually used in an amount of 0 to 50% by weight, based on the total of block copolymers and additives.
  • the mixing of the polymers produced according to the invention with the other polymers and / or additives takes place continuously or discontinuously according to mixing methods known per se, for example with melting in an extruder, Banbury mixer, kneader, roller mill or calender.
  • mixing methods known per se, for example with melting in an extruder, Banbury mixer, kneader, roller mill or calender.
  • the components can also be mixed "cold” and the mixture is only melted and homogenized during processing.
  • the mixtures obtained can be pelletized or granulated, for example, or processed by generally known methods, for example by extrusion, injection molding, foaming with blowing agents, or calendering.
  • the radicals and radical formers according to the invention are also suitable as inhibitors for preventing an undesired radical-initiated polymerization of monomers, ie for stabilizing monomers (as stabilizers).
  • the invention therefore also relates to the use of the N-oxyl radicals according to the invention for stabilizing ethylenically unsaturated monomers against undesired radical-initiated polymerization.
  • the Use concentrations for this are generally 0.001 to 0.1 mol%, based on the monomers.
  • the radicals and radical formers according to the invention are also suitable for stabilizing inanimate organic material against light and heat.
  • Organic materials include z. B. cosmetic preparations such as ointments and lotions, pharmaceutical formulations, photographic recording materials, in particular photographic emulsions, intermediates for plastics and lacquers, but in particular plastics and lacquers themselves.
  • the radicals or radical formers according to the invention can be used above all to stabilize plastics when they are processed or used. You will the plastics z. B. added during or before processing.
  • the tests were carried out in bulk in melted glass tubes. The total mass of each sample was 70 g. Each sample was degassed by bubbling with nitrogen before melting. The melted sample tubes were immersed in aluminum safety containers in a thermostatted oil bath at the desired temperature. The experiments were carried out using styrene as a monomer, benzoyl peroxide as an initiator and in each case an N-oxyl radical. TEMPO (1) and the N-oxyl radical (2) were included for comparison. The following table shows the amounts used, the polymerization time, the conversion achieved, the number average molecular weight ( ⁇ Mn>) and the polydispersity of the polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Beschrieben werden N-Oxyl-Radikale der Formel (I) worin X für S, NR<5>, O, SO oder SO2 steht und R<1>, R<2>, R<3>, R<4> und R<5> unabhängig voneinander für organische Reste stehen oder R<1> und R<2> und/oder R<3> und R<4> gemeinsam mit dem sie tragenden Kohlenstoffatom für einen aus wenigstens 3 Atomen bestehenden Ring stehen. Die N-Oxyl-Radikale eignen sich zur Kontrolle radikalischer Polymerisationen sowie zur Stabilisierung ethylenisch ungesättigter Monomere gegen unerwünschte Polymerisation.

Description

N-Oxyl-Radikale
Beschreibung
Die vorliegende Erfindung betrifft N-Oxyl-Radikale, N-Oxyl-Radikalbildner und ihre Verwendung bei der radikalischen Polymerisation ethylenisch ungesättigter Monomeren.
N-Oxyl-Radikale und N-Oxyl-Radikalbildner, die sich von einem sekundären A in ableiten, welches keine Wasserstoffatome an den α-C-Atomen trägt, sind bekannt. Sie sind bzw. bilden äußerst stabile Radikale und sind in der Regel als Reinsubstanz darstellbar.
Unter anderem finden solche stabilen N-Oxyl-Radikale als Inhibitoren unerwünschter radikalischer Polymerisationen Verwendung (vgl. z. B. US-A 5,322,960). Eine weitere Anwendung solcher stabiler N-Oxyl-Radikale besteht darin, dass ihr Beisein eine gewisse Kontrolle von radikalisch initiierten Polymerisationen von wenigstens eine ethylenisch ungesättigte Gruppe aufweisenden Verbindungen (Monomeren) ermöglicht (vgl. z. B. EP-A 135280, US-A 5,412,047 und US-A 5,322,912).
Üblicherweise weisen radikalisch initiierte Polymerisationen von Monomeren nämlich den Nachteil auf, dass das Molekulargewicht der Polymerketten nicht linear mit dem Polymerisationsumsatz zunimmt und dass die Polymerketten des resultierenden Polymerisats in der Regel kein einheitliches Molekulargewicht aufweisen. Das heißt, das durch radikalisch initiierte Polymerisation erhältliche Poly- merisat ist bezüglich der Eigenschaft "Molekulargewicht" in der Regel nicht monodispers, sondern weist normalerweise einen diesbezüglichen Polydispersitätsindex PDI von > 2 auf (PDI = Mw/Mn, mit Mw = gewichtsmittleres Molekulargewicht des Polymerisats und Mn = zahlenmittleres Molekulargewicht des Polymerisats). Beide vorgenannten Erscheinungsbilder werden auf Abbruchreaktionen infolge irreversibler Kombination wachsender freier radikalischer Polymerisatkettenenden zurückgeführt .
Der kontrollierende Einfluss von stabilen N-Oxyl-Radikalen (die normalerweise nicht in der Lage sind, eine radikalische Polymerisation von Monomeren auszulösen) liegt vermutlich darin begründet, dass die stabilen N-Oxyl-Radikale reaktive radikalische Enden einer wachsenden Polymerisatkette nicht irreversibel termi-
Figure imgf000003_0001
Figure imgf000003_0002
Die US 4,528,370 betrifft polysubstituierte 2-Morpholone. Soweit in dieser Druckschrift Nitroxyl-Verbindungen angesprochen sind, ist nur die Herstellung der Nitroxyle von Vorläuferverbindungen in Form von substituierten Hydroxyethylaminoacetaten erwähnt.
Die EP-A-0 869 137 offenbart ein Polymerisationsverfahren zur Herstellung (Meth)acrylate enthaltender Homo- oder Blockcopoly- mere in Gegenwart bestimmter Nitroxyle des Piperazinon- oder Mor- pholon-Strukturtyps .
Die bekannten radikalisch initiierten Polymerisationsverfahren in Gegenwart von Nitroxylradikalen zeigen allerdings den Nacheil, dass zur Erreichung praktikabler Umsätze lange Reaktionszeiten erforderlich sind.
Die DE-A-2 351 865 offenbart unter anderem die Verbindung 2,2,6, 6-Tetramethyl-l-aza-4-thiacyclohexan-l , 4 , 4-trioxid. Die Verwendung dieser Verbindung zur Kontrolle radikalischer Polymerisationen ist weder gelehrt noch nahegelegt.
Die Aufgabe der vorliegenden Erfindung bestand daher darin, neue N-Oxyl-Radikale bzw. Bildner neuer N-Oxyl-Radikale zur Verfügung zu stellen, in deren Gegenwart die kontrollierte radikalische Polymerisation in kürzerer Zeit zu höheren Umsätzen führt. Sie sol- len sich außerdem zur Durchführung kontrollierter radikalischer Polymerisationen nicht-styrolischer Monomere, insbesondere von Estern der Acryl- und/oder Methacrylsäure, eignen.
Erfindungsgemäß wird diese Aufgabe durch N-Oxyl-Radikale der allgemeinen Formel I gelöst,
Figure imgf000004_0001
worin X für S, NR5, O oder SO steht und
R1, R2, R3, R4 und R5 unabhängig voneinander für organische Reste stehen oder
R1 und R2 und/oder R3 und R4 gemeinsam mit dem sie tragenden Kohlenstoffato für einen aus wenigstens 3 Atomen bestehenden Ring stehen. Die Aufgabe wird außerdem durch ein Verfahren der radikalisch initiierten Polymerisation von ethylenisch ungesättigten Monomeren gelöst, das dadurch gekennzeichnet ist, dass die Polymerisation in Gegenwart von N-Oxyl-Radikalen der Formel I erfolgt, wo- bei X zusätzlich für S02 stehen kann.
Die N-Oxyl-Radikale der allgemeinen Formel I sind in einer bevorzugten Ausführungsform durch ein spiro-Ringsystem, gebildet aus R1 und R2 und/oder R3 und R4 gemeinsam mit dem sie tragenden C-Atom, besonders bevorzugt aus R1 und R2 gemeinsam mit dem sie tragenden C-Atom, gekennzeichnet. In dem Ring können zwei nicht benachbarte Ringatome über einen zweiwertigen organischen Rest verbrückt sein und/oder der Ring kann mit einem weiteren Ring anelliert sein. Zweckmäßigerweise besteht der aus R1 und R2 oder R3 und R4 gemein- sam mit dem sie tragenden C-Atom gebildete Ring aus 3 bis 10, vorzugsweise aus drei, fünf, sechs oder sieben Atomen, wobei die freien Valenzen der den Ring bildenden Atome mit Wasserstoff und/ oder organischen Resten, vorzugsweise Cι-C-Alkylgruppen, vorzugsweise Cι-C -Alkylgruppen (z. B. die Methyl-, Ethyl-, n-Pro- pyl-, iso-Propyl-, n-Butyl-, iso-Butyl- und tert . -Butylgruppe ) , abgesättigt sind. Es kommen als solche absättigenden Reste aber auch Arylgruppen in Betracht. Unter diesen sind die Phenyl- und die Naphthylgruppe bevorzugt. Im Normalfall ist der Ring ein gesättigter Ring und in der Regel handelt es sich bei den ringbil- denden Atomen um Kohlenstoffatome, doch können die ringbildenden Atome auch z. B. ein oder zwei Heteroatome umfassen, wobei als solche Heteroatome vor allem N, O und/oder S in Betracht kommen.
Die Erfindung betrifft insbesondere N-Oxyl-Radikale der allgemei- nen Formel I, worin R1, R2, R3, R4 und R5 unabhängig voneinander für Cι-C2rj-Alkyl, C5-C8-Cycloalkyl, C7-C2o-Aralkyl, gegebenenfalls substituierte C6-Cιo-Aryl, Heteroaryl,
- R6 - OR7 -R6— 0 CH2-CH-θ4-R7 R6 — 0 - C — R8 n
(CH2)k
I H
O O - R6 - OSiR8 3 , - R9 - C - OR10, - R9 - C -NR7 2 oder - R9 - CN
stehen, worin
R6 für gegebenenfalls verzweigtes Cι-C20-Alkylen; R7 jeweils unabhängig für H, Cι-C20-Alkyl, gegebenenfalls durch Sauerstoffatome unterbrochenes C3-C20-Cycloalkyl oder Aryl; R8 jeweils unabhängig für Cι-C 0-Alkyl oder Aryl; R9 für eine chemische Bindung oder gegebenenfalls verzweigtes Cι-C 0-Alkylen; und R10 für H, C1-C20-Alkyl, Aryl oder ein Alkalimetall; k für 0 oder 1; und n für eine ganze Zahl von 1 bis 100 steht,
oder R3 und R4 gemeinsam für ein Sauerstoffatom und/oder R1 und R2 und/oder R3 und R4 gemeinsam mit dem sie tragenden C-Atom einen aus 3 bis 10 Atomen bestehenden carbocyclischen Ring bilden, in dem 1 oder 2 C-Atome durch 0, S oder N ersetzt und/oder in dem zwei nicht benachbarte Atome über einen zweiwertigen organischen Rest, vorzugsweise Cχ-C3-Alkylen, verbrückt sein können und/oder der mit einem weiteren, vor- zugsweise 5- oder 6-gliedrigen Ring anelliert sein kann.
Soweit Arylreste substituiert sind, kommen als Substituenten unter anderem Cx- bis C6-Alkyl, Cx- bis C6-Alkoxy, -S03H, S03M (wobei M für ein Alkalimetall, z. B. Na oder K steht) oder N02 in Be- tracht.
"Heteroaryl" steht vorzugsweise für heteroaromatische Fünfringe mit 1, 2, 3 oder 4 unter O, S oder N ausgewählten Heteroatomen.
R1 und R2 und/oder R3 und R4 können gemeinsam mit dem sie tragenden C-Atom z. B. folgende Ringsysteme ausbilden:
Figure imgf000006_0001
Besonders bevorzugte N-Oxyl-Radikale weisen die allgemeine Formel II auf:
Figure imgf000006_0002
worin X die bereits angegebene Bedeutung hat,
R3 und R4 unabhängig voneinander für Cι-C4-Alkyl, Phenyl, Naphthyl oder einen aromatischen Fünfring stehen oder R3 und R4 zusammen für -(CH2)0- stehen und p und o unabhängig vonein- ander für eine ganze Zahl von 2 bis 8, vorzugsweise 4 bis 6, stehen.
Die Herstellung von Verbindungen I ist über verschiedene an sich bekannte Syntheseschritte möglich. In der Regel erfolgt sie über ein sekundäres Amin, dessen
N- H Gruppe oxidativ in die entsprechende N-Oxyl Gruppe
N- O" überführt wird.
Als Oxidationsmittel kommen Peroxide, wie H20 , t-Butylhydroxyper- oxid, Cumolhydroperoxid, Persäuren, wie Metachlorperbenzoesäure, α-Chlorperbenzoesäure, Peressigsäure, p-Nitrobenzoesäure, Perben- zoesäure oder Magnesiummonoperoxyphthalat in Betracht. Die Oxida- tion kann in einem inerten Lösungsmittel wie CH2C12 , Petrolether, Toluol, Xylol oder Benzol erfolgen.
Die Ausgangsamine der Formel IV
Figure imgf000007_0001
worin R1, R2, R3, R4 und R5 die bereits angegebene Bedeutung haben, können z. B. wie folgt erhalten werden (mit X = O) :
Rl
R3 C=0 + CHC13 R3 R1
R I I
H0-CH2-C-NH2 HO-CH2-C-NH-C-COOM I MOH I ι R4 R4 R2
M = Alkalimetall, z. B. Na oder K
Figure imgf000007_0002
Ein mono- oder disubstituiertes 2-Aminoethanol wird hierbei mit einem cyclischen Keton und einem Haloform, z. B. Chloroform oder Bromoform, in Gegenwart eines Alkalimetallhydroxids , gegebenenfalls unter Phasentransferbedingungen, zu einem substituierten Alkalimetallhydroxyethylaminoacetat umgesetzt. Dieses kann unter Säurekatalyse cyclisiert werden. Hinsichtlich der Reaktionsbedin- gungen wird auf die US-A-4 , 528,370 verwiesen.
Das entstandene Amin kann z. B. mit Lithium-Aluminiumhydrid reduziert und in ein Diol überführt werden.
Figure imgf000008_0001
Anschließend erfolgt die Cyclisierung unter Säurekatalyse z. B, mit Methansulfonsäure.
Figure imgf000008_0002
(IV)
Hinsichtlich der Reaktionsbedingungen sei auf J. T. Lai, Synthe- sis 2 (1984) S. 122-124 verwiesen. A ine der Formel IV, in denen X für S, NR5, SO oder S02 steht, können auf analoge Weise aus entsprechenden Ausgangsmaterialien hergestellt werden.
Anstatt das Amin unmittelbar in ein erfindungsgemäßes N-Oxyl-Radikal zu überführen, kann es auch auf an sich bekannte Weise verschiedensten Modifikationen unterworfen werden, um danach oxida- tiv in entsprechender Weise modifizierte N-Oxyl-Radikale zu er- halten (selbstverständlich kann aber auch das N-Oxyl-Radikal als solches modifiziert werden) .
Die Erfindung betrifft außerdem N-Oxyl-Radikalbildner, die dadurch gekennzeichnet sind, dass durch ho olytische Spaltung, z. B. durch Thermolyse, einer chemischen Bindung als ein Fragment ein erfindungsgemäßes N-Oxyl-Radikal entsteht. Sie weisen die allgemeine Formel III auf
Figure imgf000009_0001
worin die Symbole X, R1, R2, R3 und R4 die bereits angegebene Be- deutung haben und T für einen organischen Rest mit einem Molekulargewicht von 15 oder mehr, vorzugsweise von 29 bis 500.000, steht. T steht z. B. für
Rll
— C — Rl
Rl3
worin R11, R12 und R13 unabhängig voneinander für Wasserstoff, C!-C -Alkyl, Phenyl, eine Cyano- oder Estergruppe stehen, oder eine polymere Kette aus Einheiten ethylenisch ungesättigter Mono- mere. Der Rest CfR11) (R12) (R13) steht z. B. für Methyl, Ethyl, t- Butyl, Cyclohexyl, Octyl, Phenyl, C(CN)(CH3)2, CHPhCH3 oder CH(CH3)COOR, (R = z. B. Cχ-C4-Alkyl ) .
Die N-Oxylradikalbildner III sind durch Umsetzung von N-Oxyl-Ra- dikalen der Formel I mit einem radikalischen Initiator, gegebenenfalls in Gegenwart von ethylenisch ungesättigten Monomeren, erhältlich. N-Oxylradikalbildner III, in denen T für eine polymere Kette steht, sind in einfacher Weise z. B. dadurch erhältlich, dass man eine geringe Menge an Monomeren mittels eines radikalischen Polymerisationsinitiators (z. B. Peroxid, Hydroperoxid und/oder Azoverbindung) im Beisein eines N-Oxyl-Radikals I radikalisch polymerisiert und anschließend das Polymerisationsprodukt durch Umfallen reinigt (vgl. z. B. DE-A 19735225). T kann z. B. 1 bis 100.000, vorzugsweise 3 bis 50.000, Monomereinheiten umfassen. Als weitere Verfahren zur Herstellung von erfindungsgemäßen N-Oxyl-Radikalbildnern können diejenigen, die in der US-A 5,021,481 offenbart werden, analog angewendet werden.
Die Erfindung betrifft außerdem ein Verfahren der radikalisch initiierten Polymerisation von ethylenisch ungesättigten Monomeren, dass dadurch gekennzeichnet ist, dass die Polymerisation in Ge- genwart von N-Oxyl-Radikalen der Formel I erfolgt. Nach dem er- findungsgemäßen Verfahren können reine Monomere oder Monomergemi- sche polymerisiert werden.
Das erfindungsgemäße Verfahren erfolgt in der Regel bei erhöhter Temperatur, z. B. 50 bis 200 °C, vorzugsweise 60 bis 180 °C. Zur Durchführung des Verfahrens kann z. B. ein Gemisch von (1) entweder (i) Nitroxylradikal und gegebenenfalls radikalischem Initiator oder (ii) Nitroxylradikalbildner ; und (2) wenigstens einem ethylenisch ungesättigten Monomer erwärmt werden. Die Reaktions- Zeiten betragen im Allgemeinen 30 min bis 6 Tage, insbesondere 1 Stunde bis 60 Stunden. Durch Abkühlen, z. B. auf Raumtemperatur, kann die Umsetzung beendet oder eingefroren werden. Anschließend kann das Polymerisat isoliert und gegebenenfalls gewaschen und getrocknet werden.
Eine thermische Initiierung der Polymerisation unter Verzicht auf den Zusatz eines radikalischen Initiators kommt vor allem bei der Polymerisation von Styrol oder Styrol enthaltenden Monomergemi- schen in Betracht.
Das erfindungsgemäße Verfahren eignet sich insbesondere zur Herstellung von Blockcopolymeren. Diese werden erhalten, indem sukzessive unterschiedliche Monomere oder Monomerengemische unterschiedlicher Zusammensetzung polymerisiert werden. Hierzu geht man vorzugsweise so vor, dass wenigstens ein erstes Monomer in Gegenwart der N-Oxyl-Radikale unter Erhalt eines Intermediärpolymerisats polymerisiert wird, das Intermediärpolymerisat gegebenenfalls isoliert wird und wenigstens ein zweites Monomer in Gegenwart des Intermediärpolymerisats polymerisiert wird.
Im Einzelnen ist ein Verfahren bevorzugt, bei dem man
a) ein Gemisch von (1) entweder (i) radikalischem Initiator und Nitroxylradikal oder (ii) Nitroxylradikalbildner; und (2) we- nigstens einem ersten ethylenisch ungesättigtem Monomer unter Erhalt eines Intermediärpolymerisats erwärmt,
b) das Intermediärpolymerisat gegebenenfalls isoliert,
c) zu dem Intermediärpolymerisat wenigstens ein von dem ersten
Monomer verschiedenes zweites ethylenisch ungesättigtes Monomer gibt und das Gemisch unter Erhalt eines Blockcopolymerisats erwärmt, und
d) das Blockcopolymerisat isoliert und gegebenenfalls wäscht und trocknet. Um höhere Blockcopolymerisate zu erhalten, kann der Schritt c) einfach oder mehrfach wiederholt werden, wobei anstelle des zweiten ethylenisch ungesättigten Monomers ein drittes oder weiteres Monomer verwendet wird. Es können anstelle reiner Monomere auch Monomerengemische verwendet werden. Unter "verschiedene Monomeren" werden auch Monomerengemische unterschiedlicher Zusammensetzung verstanden. Die Blöcke eines erfindungsgemäß erhaltenen Blockcopolymers können demzufolge Homo- oder Copolymerblöcke darstellen.
Die Isolierung des Intermediärpolymerisats wird dann empfohlen, wenn eine möglichst hohe Reinheit, scharfe Blockgrenzen oder eine hohe Homogenität innerhalb der Blöcke angestrebt sind. Durch die Isolierung des Intermediärpolymerisats wird verhindert, dass un- umgesetztes erstes Monomer in den sich bildenden Block des zweiten Monomers eingebaut wird. Eine Isolierung des Intermediärpolymerisats oder des Blockcopolymerisats kann z. B. durch Ausfällen erfolgen.
Zu den erfindungsgemäß polymerisierbaren Monomeren zählen Ole- fine, wie z. B. Ethylen, vinylaromatische Monomere wie Styrol, α-Methylstyrol, o-Chlorstyrol oder Vinyltoluole, 1,1- und 1,2-Di- phenylethylen, Vinyl- und Vinylidenhalogenide wie Vinyl- und Vinylidenchlorid, Ester aus Vinylalkohol und 1 bis 12 C-Atome aufweisenden Monocarbonsauren wie Vinylacetat, Vinylpropionat, Vinyl-n-butyrat, Vinyllaurat sowie im Handel erhältliche Monomere VEOVA® 9 - 11 (VEOVA X ist ein Handelsname der Firma Shell und steht für Vinylester von Carbonsäuren, die auch als Versatic X- Säuren bezeichnet werden) , Ester aus Allylalkohol und 1 bis 12 C- Atome aufweisenden Monocarbonsauren wie Allylacetat, Allylpropio- nat, Allyl-n-butyrat und Allyllaurat, Ester aus vorzugsweise 3 bis 6 C-Atome aufweisenden α,ß-monoethylenisch ungesättigten Mono- und Dicarbonsäuren, wie insbesondere Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure und Itaconsäure, mit im allgemeinen 1 bis 12, vorzugsweise 1 bis 8 und insbesondere 1 bis 4 C-Atome aufweisenden Alkanolen, wie besonders Acrylsäure- und Methacrylsäure- methyl-, -ethyl-, -n-butyl-, -iso-butyl, -tert.-butyl- und -2-ethylhexylester, Maleinsäuredimethylester oder Maleinsäure-n- butylester, Nitrile α,ß-monoethylenisch ungesättigter Carbon- säuren, wie Acrylnitril, sowie C _8-konjugierte Diene wie 1,3- Butadien und Isopren. Aber auch 3 bis 6 C-Atome aufweisende α,ß-monoethylenisch ungesättigte Mono- und Dicarbonsäuren und deren Aluide wie z. B. Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure, Itaconsäure, Acrylamid und Methacrylamid, N-Methyla- crylamid, N-Ethylacrylamid, N-Isopropylacrylamid und N,N'-
Dimethylacrylamid, ferner Vinylsulfonsäure und deren wasserlösliche Salze sowie N-Vinylpyrrolidon sind geeignet. Dies gilt ebenso für solche Monomere, die üblicherweise die innere Festigkeit der resultierenden Polymerisate erhöhen und die normalerweise eine Epoxy-, Hydroxy- oder N-Methylolgruppe aufweisen. Beispiele hierfür sind N-Alkylolamide von 3 bis 10 C-Atome aufweisenden α,ß-monoethylenisch ungesättigten Carbonsäuren sowie deren Ether mit 1 bis 4 C-Atome aufweisenden Alkanolen, unter denen das N-Me- thylolacrylamid und das N-Methylolmethacrylamid ganz besonders bevorzugt sind.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden vinylaromatische Monomere, Diene oder (Meth)acryl- säureester oder Gemische davon als Monomere eingesetzt. Insbesondere sind die eingesetzten Monomere unter Styrol, α-Methylstyrol, Vinyltoluol, Diphenylethylen, Acrylnitril, Butadien, Isopren, n-Butylacrylat, Methylmethacrylat oder Gemischen davon ausgewählt .
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird wenigstens ein vinylaromatisches Monomer, ge- gebenenfalls im Gemisch mit weiteren Monomeren, polymerisiert.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird wenigstens ein Dien, gegebenenfalls im Gemisch mit weiteren Monomeren, polymerisiert.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird wenigstens ein (Meth)acrylsäureester, gegebenenfalls im Gemisch mit weiteren Monomeren, polymerisiert.
Das erfindungsgemäße Verfahren kann als Lösungs-, Substanz-, Fäl- lungs-, Suspensions-, Emulsions-, Miniemulsions- und Mikroemul- sionspolymerisation oder inverse radikalische Emulsionspolymerisation durchgeführt werden. Die Polymerisation kann absatzweise, semikontinuierlich oder kontinuierlich durchgeführt werden.
Als radikalische Polymerisationsinitiatoren kommen prinzipiell alle diejenigen in Betracht, die in der Lage sind, eine radikalische Polymerisation auszulösen. Es kann sich dabei sowohl um Peroxide, Hydroperoxide, Perester, Percarbonate, Persulfate, Azoverbindungen oder Verbindungen mit einer labilen Kohlenstoff- Kohlenstoff-Bindung handeln. Sie können sowohl öllöslich als auch wasserlöslich sein und werden dem gewählten Polymerisationsmedium und der gewählten Polymerisationstemperatur in an sich bekannter Weise angepaßt. Es eignen sich auch Redoxinitatorsysteme. Spezielle Beispiele geeigneter Initiatoren sind Wasserstoffperoxid, tert-Butylhydroperoxid, di-tert-Butylperoxid, tert-Amylhy- droperoxid, Dibenzoylperoxid, Kalium- oder Natrium-, Amonium- peroxodisulfat, Methylethylketonperoxid, Dilaurylperoxid, Cumyl- hydroperoxid, Dicumylperoxid und Azodiisobutyronitril. Redoxini- tiatorsysteme umfassen z. B. Natriumdisulfit, Natriumsulfit, Ascorbinsäure, Iso-ascorbinsäure, Natriumformaldehyd-sulfoxylat und dergleichen in Verbindung mit geeigneten Oxidationsmitteln, wie den vorstehend genannten Initiatoren.
Die Menge an radikalischem Initiator beträgt bevorzugt 10-6 bis 33 Mol.-%, insbesondere 10-4 bis 10 Mol.-%, bezogen auf die Monomeren.
Bezogen auf die molare Menge an radikalisch zu polymerisierenden Monomeren beträgt die für eine kontrollierte radikalische Polymerisation zu verwendende Menge an erfindungsgemäßen N-Oxyl-Radi- kalen oder N-Oxyl-Radikalbildnern in der Regel 10~4 bis 33 Mol.-%, meist 0,005 bis 20 Mol.-%. Das molare Verhältnis zwischen N-Oxyl- Radikalen und Radikalzentren, die beim Zerfall des Polymerisationsinitiators entstehen, wird in der Regel für eine kontrollierte radikalisch initiierte Polymerisation zu 0,25 bis 5, häufig zu 0,4 bis 4 gewählt.
Vorzugsweise weisen die nach dem erfindungsgemäßen Verfahren hergestellten Polymerisate ein Molekulargewicht im Bereich von etwa 500 bis etwa 500.000 auf. Der Umsatz von Monomer zu Polymer kann bis zu 99 Gew.-% betragen.
Bei der Emulsionspolymerisation und ihren Varianten (Mikroemul- sion, Miniemulsion) werden die Monomeren in Wasser emulgiert, wozu Emulgatoren mitverwendet werden.
Als Emulgatoren eignen sich die dem Fachmann bekannten anioni- sehen, kationischen und neutralen (nicht-ionogenen) Emulgatoren. Anionische Emulgatoren sind z. B. Alkalimetallsalze von höheren Fettsäuren mit 10 bis 30 C-Atomen wie Palmitin-, Stearin- und Öl- säure, Alkalimetallsalze von Sulfonsäuren mit z. B. 10 bis 16 C- Atomen, insbesondere Natriumsalze von Alkyl- oder Alkylarylsul- fonsäuren, Alkalimetallsalze von Halbestern der Phthalsäure, und Alkalimetallsalze von Harzsäuren wie Abietinsäure. Kationische Emulgatoren sind z. B. Salze langkettiger, insbesondere ungesättigter Amine mit 12 bis 18 C-Atomen, oder quaternäre Ammoniumverbindungen mit längerkettigen Olefin- oder Paraffinresten (also Salze quaternisierter Fettamine). Neutrale Emulgatoren sind z. B. ethoxylierte Fettalkohole, ethoxylierte Fettsäuren oder ethoxy- lierte Phenole und Fettsäureester von mehrwertigen Alkoholen wie Pentaerythrit oder Sorbit. Für die Emulsionspolymerisation werden bevorzugt Initiatoren verwendet, die in dem Monomeren schlecht löslich, in Wasser dagegen gut löslich sind. Es werden daher bevorzugt Peroxosulfate wie Kalium-, Natrium- oder Ammoniumperoxo- disulfat verwendet, oder auch Redox-Systeme .
Als weitere Zusatzstoffe können bei der Polymerisation Puffersubstanzen wie Na2HP04 / NaH2P04 oder Na-citrat/Citronensäure verwendet werden, um einen im Wesentlichen konstant bleibenden pH-Wert einzustellen. Weiterhin können Molekulargewichtsregler, etwa Mer- captane wie t-Dodecylmercaptan, oder Ethylhexylthioglycolat mitverwendet werden. Diese weiteren Zusatzstoffe können kontinuierlich oder diskontinuierlich am Anfang und/oder während der Herstellung der Emulsion und/oder während der Polymerisation, zuge- fügt werden.
Bei der Miniemulsionspolymerisation wird aus den Monomeren, Wasser und den Emulgatoren eine Emulsion bereitet, indem man hohe Scherkräfte einwirken läßt. Dazu verwendet man Homogenisatoren, die dem Fachmann bekannt sind, wie Druckhomogenisatoren, Geräte mit Rotor-Stator-System bzw. Kolloidmühlen oder Ultraschallvorrichtungen.
Bei der Suspensionspolymerisation und ihren Varianten (Mikrosus- pension) werden die Monomeren in Wasser dispergiert, wozu Schutzkolloide mitverwendet werden. Als Schutzkolloide eignen sich Cel- lulosederivate wie Carboxymethylcellulose und Hydroxymethylcellu- lose, Poly-N-vinylpyrrolidon, Polyvinylalkohol und Polyethylen- oxid, anionische Polymere wie Polyacrylsäure und deren Copolymere und kationische wie Poly-N-vinylimidazol. Die Menge dieser
Schutzkolloide beträgt vorzugsweise 0,1 bis 5 Gew.-%, bezogen auf die Gesamtmasse der Emulsion. Geeignete Schutzkolloide sind beispielsweise in Encyclopedia of Polymer Science and Engineering, Vol. 16, (1989) S. 448, Verlag J. Wiley, beschrieben.
Bei der Fällungspolymerisation sind die eingesetzten Monomere in der kontinuierlichen Phase (z. B. Lösungsmittel oder Lösungsmittelgemisch) löslich, die entstehenden Polymere sind jedoch nicht oder nur begrenzt löslich und fallen daher während der Polymeri- sation aus. Auch Substanzpolymerisationen, bei denen das entstehende Polymer im Monomer unlöslich ist und daher ausfällt, sind möglich.
Bei der Substanz- bzw. Massepolymerisation werden die Monomeren ohne Zugabe eines Reaktionsmediums unter Verwendung der genannten monomerlösliehen Initiatoren polymerisiert, d.h. die Monomeren sind das Reaktionsmedium. Es kann auch thermisch initiiert werden.
Bei der Lösungspolymerisation wird ein organisches Lösungsmittel wie Toluol, Cyclohexan, Ethylbenzol oder Dimethylsulfoxid verwendet oder zur Verdünnung der Monomeren mitverwendet.
Das erfindungsgemäße Verfahren kann auch als kombiniertes Verfahren ausgeführt werden, bei dem mindestens zwei der zuvor be- schriebenen Polymerisationsverfahren miteinander kombiniert werden. Hier sind insbesondere Masse/Lösung, Lösung/Fällung, Masse/ Suspension und Masse/Emulsion zu nennen, wobei mit dem erstgenannten begonnen und mit dem letztgenannten beendet wird.
Das N-Oxyl-Radikal kann je nach seinem Löslichkeitsverhalten entweder als solches, oder gelöst in organischen Lösungsmitteln, wie Alkoholen, z. B. Methanol und/oder Ethanol, Ethylacetat, Dime- thylformamid, Toluol, Ethylbenzol, Cyclohexan oder Benzol oder Gemischen davon, verwendet werden. Bevorzugt ist auch die Zugabe des N-Oxyl-Radikals in Form einer Lösung in einem zu polymerisierenden Monomer bzw. Monomerengemisch.
Durch Zugabe von anorganischen oder organischen Säuren, wie 3-In- dolbuttersäure, Indolylessigsäure, oder organischen Sulfonsäuren, wie Camphersulfonsäure oder p-Toluolsulfonsäure (vgl.
US-A-5,322 , 912 ) oder durch Zugabe von Dimethylsulfoxid (vgl. US-A-5,412 , 047 ) oder 2-Fluor-l-methylpyridinium-p-toluolsulfonat (vgl. Macromolecules 28 (1995) 8453 ff) zum Polymerisationsgemisch kann die Polymerisationsgeschwindigkeit des erfindungsgemä- ßen Verfahrens in der Regel erhöht werden.
Das erfindungsgemäße Verfahren wird üblicherweise bei einem Absolutdruck im Bereich von Normaldruck bis 60 bar, bevorzugt bis 45 bar durchgeführt.
Die nach dem erfindungsgemäßen Verfahren erhältlichen Polymere können als solche verwendet werden oder mit anderen Polymeren und/oder Zusatzstoffen abgemischt werden.
Solche anderen Polymere sind insbesondere thermoplastische Polymere . Zu solchen Polymeren zählen Polyester wie Polyethylen- terephthalat und Polybutylenterephthalat, Polycarbonate, Polyamide, Polyoxymethylen, Polystyrol, Polyolefine wie Polyethylen und Polypropylen, Polyvinylchlorid und Styrolcopolymere wie Poly- styrolacrylnitril. Als Zusatzstoffe kommen übliche Zusatzstoffe, wie z. B. Gleitoder Entformungsmittel, Pigmente, Farbstoffe, Flammschutzmittel, Antioxidantien, Stabilisatoren gegen Lichteinwirkung, faser- und pulverförmige Füll- oder Verstärkungsmittel oder Antistatika, so- wie andere Zusatzstoffe, oder deren Mischungen, in Betracht.
Geeignete Gleit- und Entformungsmittel sind z. B. Fettsäuren wie etwa Stearinsäuren, Stearylalkohol, Fettsäureester mit 6 bis 20 C-Atomen wie z. B. Stearinsäureester, Metallsalze der Fettsäuren wie z. B. Ca-, AI-, Zn-stearat, Fettsäureamide wie Stearinsäurea- mide, sowie Siliconöle, Montanwachse und solche auf Basis von Po- lyethylen und Polypropylen, weiterhin Kohlenwasserstoff-Öle, Paraffine und Carbonsäureester aus langkettigen Carbonsäuren und Ethanol, Fettalkoholen, Glycerin, Ethandiol, Pentaerythrit oder anderen Alkoholen.
Pigmente sind beispielsweise Titandioxid, Phthalocyanine, Ultramarinblau, Eisenoxide oder Ruß, sowie die Klasse der organischen Pigmente.
Unter Farbstoffen sind alle Farbstoffe zu verstehen, die zur transparenten, halbtransparenten oder nichttransparenten Einfarbung von Polymeren verwendet werden können, insbesondere solche, die zur Einfarbung von Styrolcopolymeren geeignet sind. Derartige Farbstoffe sind dem Fachmann bekannt.
Als Flammschutzmittel können z. B. die dem Fachmann bekannten ha- logenhaltigen oder phosphorhaltigen Verbindungen, Magnesiumhydroxid, sowie andere gebräuchliche Verbindungen, oder deren Mischun- gen verwendet werden.
Geeignete Antioxidantien (Wärmestabilisatoren) sind etwa sterisch gehinderte Phenole, Hydrochinone, verschiedene substituierte Vertreter dieser Gruppe, sowie deren Mischungen. Sie sind etwa als Topanol oder Irganox im Handel erhältlich.
Geeignete Stabilisatoren gegen Lichteinwirkung sind z. B. verschiedene substituierte Resorcine, Salicylate, Benzotriazole, Zimtsäureverbindungen, organische Phosphite und Phosphonite, Ben- zophenone, HALS (Hindered Amine Light Stabilizers), wie sie z. B. als Tinuvin kommerziell erhältlich sind.
Als Stabilisatoren können ebenso Ester und/oder Amide der ß- ( 3 , 5-Di-tert . -butyl-4-hydroxyphenyl) -propionsäure und/oder Benz- triazole eingesetzt werden. Beispielhaft sind mögliche Antioxidantien in EP-A-698,637 und EP-A-669,367 erwähnt. Insbesondere kann man als phenolische Antioxidantien 2, 6-Di-tert .-butyl-4-hy- droxyphenyl-propionat und N,N ' -Di- ( 3 , 5-di-tert . -butyl-4-hydroxy- phenyl-propionyl ) -hexamethylendiamin verwenden.
Als Beispiele für faserförmige bzw. pulverförmige Füllstoffe seien Kohlenstoff- oder Glasfasern in Form von Glasgeweben, Glasmatten oder Glasseidenrovings, Schnittglas, Glaskugeln sowie Wol- lastonit genannt, besonders bevorzugt Glasfasern. Bei der Verwendung von Glasfasern können diese zur besseren Verträglichkeit mit den Blendkomponenten mit einer Schlichte und einem Haftvermittler ausgerüstet sein. Die Einarbeitung der Glasfasern kann sowohl in Form von Kurzglasfasern als auch in Form von Endlosfasern (Ro- vings ) erfolgen.
Als teilchenförmige Füllstoffe eignen sich Ruß, amorphe Kiesel- säure, Magnesiumcarbonat (Kreide), gepulverter Quarz, Glimmer, Bentonite, Talkum, Feldspat oder insbesondere Calciumsilikate wie Wollastonit und Kaolin.
Geeignete Antistatika sind beispielsweise Aminderivate wie N,N- Bis (hydroxyalkyl)alkylamine oder -alkylenamine, Polyethylenglyco- lester und Glycerinmono- und -distearate, sowie deren Mischungen. Die einzelnen Zusatzstoffe werden in den jeweils üblichen Mengen verwendet. Üblicherweise verwendet man die Zusatzstoffe in einer Menge von 0 bis 50 Gew.-%, bezogen auf die Summe aus Blockcopoly- meren und Zusatzstoffen.
Die Abmischung der erfindungsgemäß hergestellten Polymere mit den anderen Polymeren und/oder Zusatzstoffen erfolgt kontinuierlich oder diskontinuierlich nach an sich bekannten Mischverfahren, beispielsweise unter Aufschmelzen in einem Extruder, Banbury-Mi- scher, Kneter, Walzenstuhl oder Kalander. Die Komponenten können jedoch auch "kalt" vermischt werden und das Gemisch wird erst bei der Verarbeitung aufgeschmolzen und homogenisiert.
Die erhaltenen Mischungen können beispielsweise pelletiert oder granuliert, oder nach allgemein bekannten Verfahren, beispielsweise durch Extrusion, Spritzguss, Aufschäumen mit Treibmitteln, oder Kalandrierung verarbeitet werden.
Die erfindungsgemäßen Radikale und Radikalbildner eignen sich ferner als Inhibitoren zur Unterbindung einer unerwünschten radikalisch initiierten Polymerisation von Monomeren, d. h., zur Stabilisierung von Monomeren (als Stabilisatoren) . Die Erfindung betrifft daher auch die Verwendung der erfindungsgemäßen N-Oxyl- Radikale zur Stabilisierung von ethylenisch ungesättigten Monomeren gegen unerwünschte radikalisch initiierte Polymerisation. Die Einsatzkonzentrationen betragen hierzu im Allgemeinen 0,001 bis 0,1 Mol.-%, bezogen auf die Monomeren.
Die erfindungsgemäßen Radikale und Radikalbildner sind ferner zur Stabilisierung von unbelebtem organischen Material gegen Licht und Wärme geeignet. Unter organischem Material sind z. B. kosmetische Präparate, wie Salben und Lotionen, Arzneimittelformulierungen, photographische AufZeichnungsmaterialien, insbesondere photographische Emulsionen, Vorprodukte für Kunststoffe und Lacke, insbesondere jedoch Kunststoffe und Lacke selbst zu verstehen. Die erfindungsgemäßen Radikale bzw. Radikalbildner können vor allem zur Stabilisierung von Kunststoffen bei deren Verarbeitung oder Verwendung angewandt werden. Sie werden den Kunststoffen z. B. während oder vor der Verarbeitung zugesetzt.
Die Erfindung wird durch die folgenden Beispiele näher veranschaulicht .
Beispiel 1: 8, 8-Dimethyl-10-oxa-7-aza-spiro[5.5]undecan-7-oxyl
MCPBA
Figure imgf000018_0002
Figure imgf000018_0001
Zu 11,7 g 3, 3-Pentamethylen-5, 5-dimethyl-morpholin in 350 ml Methylenchlorid werden bei 0 °C 22,6 g 3-Chlorperoxybenzoesäure in- nerhalb von 2 Stunden portionsweise zugegeben. Es wird anschließend 12 Stunden gerührt, wobei man die Temperatur auf 23 °C erhöht. Anschließend werden 175 ml gesättigter NaHC03-Lösung zugegeben. Die organische Phase wird abgetrennt, mit 150 ml 20%iger Na2S03-Lösung und dreimal mit je 150 ml Wasser ausgeschüttelt. Die organische Phase wird mit MgS0 getrocknet, filtriert und im Vakuum eingeengt. Ausbeute: 12,3 g.
Beispiel 2: 7 , 7-Dimethyl-9-oxa-6-aza-spiro[4.5 ]decan-6-oxyl
Figure imgf000018_0003
Zu 11,4 g 3, 3-Tetramethylen-5, 5-dimethyl-morpholin in 200 ml Methylenchlorid werden bei 0 °C 19,6 g 3-Chlorperoxybenzoesäure innerhalb von 2 Stunden portionsweise zugegeben. Es wird anschließend 12 Stunden gerührt, wobei man die Temperatur auf 23 °C erhöht. Anschließend wird gesättigte NaHC03-Lösung zugegeben bis die Gas-entwicklung aufhört. Die organische Phase wird abgetrennt, mit 25 ml 20%iger Na2S03-Lösung und dreimal mit je 25 ml Wasser ausgeschüttelt. Die organische Phase wird mit MgS0 getrocknet, filtriert und im Vakuum eingeengt. Ausbeute: 12,1 g.
Beispiel 3: Polymerisationsbeispiele:
Es wurden die folgenden N-Oxyl-Radikale verwendet:
Figure imgf000019_0001
Die Versuche wurden in Substanz in abgeschmolzenen Glasrohren durchgeführt. Die Gesamtmasse jeder Probe betrug 70 g. Jede Probe wurde vor dem Abschmelzen durch Durchleiten von Stickstoff entgast. Die abgeschmolzenen Probenrohre wurden in Alu-Sicherheits- behältern in einem thermostatisierten Ölbad bei der gewünschten Temperatur eingetaucht. Die Versuche wurden unter Verwendung von Styrol als Monomer, Benzoylperoxid als Initiator und jeweils eines N-Oxyl-Radikals durchgeführt. TEMPO (1) und das N-Oxyl-Radi- kal (2) wurden zum Vergleich mit aufgenommen. Die folgende Ta- belle zeigt die eingesetzten Mengen, die Polymerisationsdauer, den erreichten Umsatz, das zahlenmittlere Molekulargewicht (<Mn>) und die Polydispersität des Polymeren.
Figure imgf000019_0002
Figure imgf000020_0001
* Vergleichsbeispiel χ ) "fest" bedeutet einen Umsatz von > 90

Claims

Patentansprüche
1. N-Oxyl-Radikale der allgemeinen Formel I,
Figure imgf000021_0001
worin X für S, NR5, 0 oder SO steht und
R1, R2, R3, R4 und R5 unabhängig voneinander für organische Reste stehen oder
R1 und R2 und/oder R3 und R4 gemeinsam mit dem sie tragenden Kohlenstoffatom für einen aus wenigstens 3 Atomen bestehenden Ring stehen.
2. N-Oxyl-Radikale nach Anspruch 1, dadurch gekennzeichnet, dass R1, R2, R3, R4 und R5 unabhängig voneinander für Cι-C 0-Alkyl, C5-Cg-Cycloalkyl, C7-C2o-Aralkyl, gegebenenfalls substituiertes C6-Cχo-Aryl, Heteroaryl,
O -R6-OR7 , -R6_o— CH2-CH-0--R7 ^ _ R6 _ 0 - C - R8 (CH2)k n
I H
O 0
— R6-OSiR8 3, — R9 — C— OR10, — R9 — C— NR7 2 oder -R9— CN
stehen, worin
R6 für gegebenenfalls verzweigtes Cι-C2u-Alkylen; R7 jeweils unabhängig für H, Cι-C2u-Alkyl, gegebenenfalls durch Sauerstoffatome unterbrochenes C3-C20-Cycloalkyl oder Aryl; R8 jeweils unabhängig für Cι-C υ-Alkyl oder Aryl; R9 für eine chemische Bindung oder gegebenenfalls verzweigtes Cχ-C o-Alkylen; und Rio für H, C1-C2o-Alkyl, Aryl oder ein Alkalimetall; k für 0 oder 1 ; und n für eine ganze Zahl von 1 bis 100 steht,
oder R1 und R2 und/oder R3 und R4 gemeinsam mit dem sie tragenden C-Atom einen aus 3 bis 10 Atomen bestehenden carbocy- clischen Ring bilden, in dem 1 oder 2 C-Atome durch 0, S oder N ersetzt und/oder in dem zwei nicht benachbarte Atome über einen zweiwertigen organischen Rest verbrückt sein können und/oder der mit einem weiteren Ring anelliert sein kann.
3. N-Oxyl-Radikale nach Anspruch 2 der allgemeinen Formel II
Figure imgf000022_0001
worin X die in Anspruch 1 angegebene Bedeutung hat,
R3 und R4 unabhängig voneinander für Cι-C -Alkyl, Phenyl,
Naphthyl oder einen aromatischen Fünfring stehen oder R3 und R4 zusammen für -(CH2)0- stehen und p und o unabhängig voneinander für eine ganze Zahl von 2 bis 7 stehen.
4. N-Oxylradikalbildner, dadurch gekennzeichnet, dass durch ho- molytische Spaltung einer chemischen Bindung als ein Fragment ein N-Oxyl-Radikal gemäß einem der Ansprüche 1 bis 3 entsteht.
5. N-Oxylradikalbildner nach Anspruch 4 der allgemeinen Formel III,
Figure imgf000022_0002
worin die Symbole X, R1, R2, R3 und R4 die in Anspruch 2 angegebene Bedeutung haben und X zusätzlich für S02 stehen kann und T für einen organischen Rest mit einem Molekulargewicht von 15 oder mehr steht. 5
6. Verfahren der radikalisch initiierten Polymerisation von ethylenisch ungesättigten Monomeren, dadurch gekennzeichnet, dass die Polymerisation in Gegenwart von N-Oxyl-Radikalen gemäß einem der Ansprüche 1 bis 3, wobei X zusätzlich für S02
10 stehen kann, und/oder von N-Oxylradikalbildnern gemäß Anspruch 4 oder 5 erfolgt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass sukzessive unterschiedliche Monomere oder Monomerengemische po-
15 lymerisiert werden.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass wenigstens ein erstes Monomer in Gegenwart der N-Oxyl-Radikale und/oder N-Oxylradikalbildner unter Erhalt eines Intermediär-
20 polymerisats polymerisiert wird, das Intermediärpolymerisat gegebenenfalls isoliert wird und wenigstens ein zweites Monomer in Gegenwart des Intermediärpolymerisats polymerisiert wird.
25 9. Verwendung von N-Oxyl-Radikalen nach einem der Ansprüche 1 bis 3 und/oder von N-Oxylradikalbildnern nach Anspruch 4 oder 5 zur Stabilisierung von ethylenisch ungesättigten Monomeren gegen unerwünschte radikalisch initiierte Polymerisation.
30 10. Verfahren zur Stabilisierung von Zusammensetzungen, die ethylenisch ungesättigte Monomere enthalten, gegen unerwünschte radikalisch initiierte Polymerisation, indem man zu der Zusammensetzung eine wirksame Menge von N-Oxyl-Radikalen nach einem der Ansprüche 1 bis 3 und/oder von N-Oxyl-Radikalbild-
35 nern nach Anspruch 4 oder 5 gibt.
11. Verwendung von N-Oxyl-Radikalen nach einem der Ansprüche 1 bis 3 und/oder von N-Oxylradikalbildnern nach Anspruch 4 oder 5 zur Stabilisierung von unbelebtem organischen Material ge- 40 gen Licht und Wärme .
45
PCT/EP2000/008040 1999-08-18 2000-08-17 N-oxyl-radikale WO2001012614A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/048,988 US6639033B1 (en) 1999-08-18 2000-08-17 N-oxyl radicals
EP00960475A EP1204648A1 (de) 1999-08-18 2000-08-17 N-oxyl-radikale

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19939031.2 1999-08-18
DE19939031A DE19939031A1 (de) 1999-08-18 1999-08-18 N-Oxyl-Radikale

Publications (1)

Publication Number Publication Date
WO2001012614A1 true WO2001012614A1 (de) 2001-02-22

Family

ID=7918706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/008040 WO2001012614A1 (de) 1999-08-18 2000-08-17 N-oxyl-radikale

Country Status (4)

Country Link
US (1) US6639033B1 (de)
EP (1) EP1204648A1 (de)
DE (1) DE19939031A1 (de)
WO (1) WO2001012614A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155247A1 (en) * 2007-06-19 2008-12-24 Basf Se Nitroxide containing electrode materials for secondary batteries

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080262160A1 (en) 2004-07-01 2008-10-23 Universiteit Gent Monodisperse Polymers Containing (Alkyl)Acrylic Acid Moieties, Precursors and Methods for Making them and their Applications
AT505735A1 (de) 2007-09-14 2009-03-15 Sunpor Kunststoff Gmbh Verfahren zur herstellung von expandierbaren styroloplymerisaten
US9725468B2 (en) 2013-09-13 2017-08-08 Merck Sharp & Dohme Corp. C5-spiro iminothiazine dioxides as BACE inhibitors, compositions, and their use

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2351865A1 (de) * 1972-10-19 1974-04-25 Ciba Geigy Ag 1-aza-4-thiacyclohexan-4,4-dioxidderivate und ihre verwendung als lichtschutzmittel
EP0135280A2 (de) * 1983-07-11 1985-03-27 Commonwealth Scientific And Industrial Research Organisation Verfahren zur Polymerisation und nach diesem Verfahren hergestellte Polymere
US4528370A (en) * 1982-04-12 1985-07-09 Lai John T Polysubstituted 2-morpholones
US5021481A (en) * 1989-03-21 1991-06-04 Ciba-Geigy Corporation N-hydrocarbyloxy hindered amine light stabilizers with phosphorus moieties
US5322912A (en) * 1992-11-16 1994-06-21 Xerox Corporation Polymerization processes and toner compositions therefrom
US5322960A (en) * 1993-04-15 1994-06-21 Nippon Shokubai Co., Ltd. Method for inhibiting polymerization of (meth) acrylic acid and esters thereof
US5412047A (en) * 1994-05-13 1995-05-02 Xerox Corporation Homoacrylate polymerization processes with oxonitroxides
EP0742437A1 (de) * 1995-05-10 1996-11-13 Dojindo Laboratories Eine Methode zum Inhibieren der Aktivität reduzierender Substanzen bei der Analyse mit oxidativer Farbbildung
EP0869137A1 (de) * 1997-03-31 1998-10-07 The B.F. Goodrich Company Kontrollierte freie radikal Polymerisationsverfahren
DE19735225A1 (de) * 1997-08-15 1999-02-18 Basf Ag Verfahren der radikalisch initiierten wäßrigen Emulsionspolymerisation zur Herstellung einer wäßrigen Polymerisatdispersion

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061631A (en) 1972-10-19 1977-12-06 Ciba-Geigy Corporation 1-Aza-4-thiacyclohexane-4,4-dioxide derivatives
US4581429A (en) 1983-07-11 1986-04-08 Commonwealth Scientific And Industrial Research Organization Polymerization process and polymers produced thereby

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2351865A1 (de) * 1972-10-19 1974-04-25 Ciba Geigy Ag 1-aza-4-thiacyclohexan-4,4-dioxidderivate und ihre verwendung als lichtschutzmittel
US4528370A (en) * 1982-04-12 1985-07-09 Lai John T Polysubstituted 2-morpholones
EP0135280A2 (de) * 1983-07-11 1985-03-27 Commonwealth Scientific And Industrial Research Organisation Verfahren zur Polymerisation und nach diesem Verfahren hergestellte Polymere
US5021481A (en) * 1989-03-21 1991-06-04 Ciba-Geigy Corporation N-hydrocarbyloxy hindered amine light stabilizers with phosphorus moieties
US5322912A (en) * 1992-11-16 1994-06-21 Xerox Corporation Polymerization processes and toner compositions therefrom
US5322960A (en) * 1993-04-15 1994-06-21 Nippon Shokubai Co., Ltd. Method for inhibiting polymerization of (meth) acrylic acid and esters thereof
US5412047A (en) * 1994-05-13 1995-05-02 Xerox Corporation Homoacrylate polymerization processes with oxonitroxides
EP0742437A1 (de) * 1995-05-10 1996-11-13 Dojindo Laboratories Eine Methode zum Inhibieren der Aktivität reduzierender Substanzen bei der Analyse mit oxidativer Farbbildung
EP0869137A1 (de) * 1997-03-31 1998-10-07 The B.F. Goodrich Company Kontrollierte freie radikal Polymerisationsverfahren
DE19735225A1 (de) * 1997-08-15 1999-02-18 Basf Ag Verfahren der radikalisch initiierten wäßrigen Emulsionspolymerisation zur Herstellung einer wäßrigen Polymerisatdispersion

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J. T. LAI, SYNTHESIS, no. 2, 1984, pages 122 - 3, XP000960841 *
S. D. RYCHNOVSKY ET AL., JOURNAL OF ORGANIC CHEMISTRY, vol. 63, no. 18, 1998, pages 6363 - 74, XP002154851 *
T. YOSHIOKA ET AL., BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 45, no. 6, 1972, pages 1855 - 60, XP000960842 *
V. A. LIVSHITS ET AL., COLLOIDS AND SURFACES A: PHYSICOCHEMICAL AND ENGINEERING ASPECTS, vol. 72, 1993, pages 313 - 20, XP000926083 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155247A1 (en) * 2007-06-19 2008-12-24 Basf Se Nitroxide containing electrode materials for secondary batteries

Also Published As

Publication number Publication date
DE19939031A1 (de) 2001-02-22
EP1204648A1 (de) 2002-05-15
US6639033B1 (en) 2003-10-28

Similar Documents

Publication Publication Date Title
DE69616606T2 (de) Polymerstabilisation durch einen stabilen freien Radikal
DE69806084T2 (de) Kontrolliertes Radikalpolymerisatonsverfahren
DE1495694C3 (de) Verfahren zur Herstellung von Polymerisaten des Vinylchlorids
DE3852956T2 (de) Verfahren zur herstellung von polymergebundenen stabilisatoren aus nicht polymerisierbaren stabilisatoren.
EP0054144B1 (de) Verfahren zur kontinuierlichen Herstellung von mit Kautschuk modifizierten Polymerisaten von Vinylaromaten
EP0010518A1 (de) Seitenständige N-heterocyclische Ringe tragende Copolymere, deren Verwendung und Verfahren zu deren Herstellung
CH693416A5 (de) 1-Alkoxypolyalkylpiperidinderivate und ihre Verwendung als Polymerisationsregler.
DE1186215B (de) Verfahren zur Herstellung von Chloroprenpolymerisaten
DE2216845C2 (de) Verfahren zu der Herstellung eines Pfropfpolymerisats
DE1228418B (de) Verfahren zur Herstellung von modifiziertem Polypropylen
DE3036921A1 (de) Verfahren zur kontinuierlichen herstellung kautschukmodifizierter thermoplastischer kunstharze
EP1204648A1 (de) N-oxyl-radikale
EP1175452B1 (de) Blockcopolymere und verfahren zu ihrer herstellung
DE2238111A1 (de) Verfahren zur herstellung von abspolymeren durch pfropfpolymerisation
DE1645196A1 (de) Block-Loesungsmittel-Polymerisationsverfahren fuer ABS-Polymere
DE4022570A1 (de) Gepfropfte, vernetzte und vernetzbare propylencopolymerisate
DE2749579A1 (de) Verfahren zur herstellung von pfropfmischpolymerisaten
EP1218419B1 (de) Polymerisationsverfahren
DE60117841T3 (de) Zusammensetzung und verfahren für verbesserte kontrollierte freie radikalpolymerisation
DE1770059A1 (de) Katalysatoren
DE1234027B (de) Verfahren zur Herstellung von Homo- oder Mischpolymerisaten
DE1075836B (de) Verfahren zur Herstellung eines plastischen Terpolymensats
DE10160181A1 (de) Verfahren zur Herstellung schlagzäh modifizierter thermoplastischer Massen
DE1720793C3 (de) Verbessertes Verfahren zur Herstellung von schlagzähen Polymeren
DE1720685C3 (de) Verfahren zur Herstellung von Phenyl-dimethyl-carbinolgruppen enthaltenden Mischpolymerisaten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000960475

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10048988

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000960475

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000960475

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP