[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2001000773A1 - Compositions de blanchiment - Google Patents

Compositions de blanchiment Download PDF

Info

Publication number
WO2001000773A1
WO2001000773A1 PCT/US2000/017727 US0017727W WO0100773A1 WO 2001000773 A1 WO2001000773 A1 WO 2001000773A1 US 0017727 W US0017727 W US 0017727W WO 0100773 A1 WO0100773 A1 WO 0100773A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
alkyl
bleaching composition
bleaching
compositions
Prior art date
Application number
PCT/US2000/017727
Other languages
English (en)
Inventor
Gloria Di Capua
Vincentius Henricus Adrianus Maria Van Spaendonk
Stefano Scialla
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to JP2001506768A priority Critical patent/JP2003503585A/ja
Priority to CA002377351A priority patent/CA2377351A1/fr
Priority to AU57729/00A priority patent/AU5772900A/en
Priority to EP00943228A priority patent/EP1190033A1/fr
Priority to BR0012096-0A priority patent/BR0012096A/pt
Priority to MXPA02000106A priority patent/MXPA02000106A/es
Publication of WO2001000773A1 publication Critical patent/WO2001000773A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • C11D3/42Brightening agents ; Blueing agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3945Organic per-compounds

Definitions

  • the present invention relates to a bleaching composition
  • a bleaching composition comprising a preformed mono peroxy carboxylic acid and an optical b ghtener which is suitable to be used to bleach fabrics, clothes, carpets and the like.
  • halogen bleaches are extremely effective bleaching agents, however they also present a number of drawbacks which can sometimes dissuade a consumer from choosing the halogen-containing product.
  • halogen bleaches especially chlorine bleaches, emit a pungent odour during and after use (e.g., on consumer hands and/or surfaces treated therewith) which some consumers find disagreeable.
  • halogen bleach-containing compositions are relatively aggressive to fabrics and may cause damage when used in relatively high concentration and/or repeated usage. In particular the consumer may perceive damage to the fabric itself (e.g. loss of tensile strength) or damage to the colour intensity of the fabric. While colour and fabric damage may be minimised by employing milder oxygen bleaches such as hydrogen peroxide, the bleach performance characteristics of such peroxygen bleaches are much less desirable than those of the halogen bleaching agents. Therefore, liquid aqueous activated peroxygen bleach-containing compositions have been developed containing activators, i.e., compounds which enhance peroxygen bleaching performance. It is an object of the present invention to provide a bleaching composition which not only delivers effective bleaching performance, when used in laundry applications, but is also safe to the surfaces treated, e.g. to fabrics per se and/or colours of fabrics.
  • optical brigteners in the detergent composition in order to improve the whiteness appearance of the fabric.
  • optical brighteners have been difficult to incorporate into liquid bleaching compositions as the bleach and optical bhghtener can potentially react. The result of such a reaction is that the optical bhghtener is oxidised and therefore inactivated and the active bleaching capacity of the bleach is depleted.
  • compositions according to the present invention may be useful in any laundry application, e.g., as a laundry detergent or a laundry additive, and when used as a laundry pretreater.
  • a particular advantage of the compositions of the present invention is that they are suitable for the bleaching of different types of fabrics including natural fabrics, (e.g., fabrics made of cotton, and linen), synthetic fabrics such as those made of polymeric fibres of synthetic origin (e.g., polyamide-elasthane) as well as those made of both natural and synthetic fibres.
  • the bleaching compositions of the present invention herein may be used on synthetic fabrics despite a standing prejudice against using bleaches on synthetic fabrics, as evidenced by warnings on labels of clothes and commercially available bleaching compositions like hypochlorite-containing compositions.
  • the bleaching compositions according to the present invention can be used in a variety of conditions, i.e., in hard and soft water as well as when used neat or diluted. More particularly, it has been found that the liquid aqueous compositions of the present invention find a preferred application when used in their diluted form in any application and especially in any conventional laundry application. Indeed, upon dilution (typically at a dilution level of 20ml/L or more (composition:water) the compositions of the present invention become less acidic, e.g., from a pH of about 1.5 to about 6.5 or more.
  • the compositions according to the present invention although delivering effective bleaching performance in their neat form surprisingly exhibit further enhanced bleaching performance in their diluted form. Actually, this "pH jump" effect allows to formulate acidic liquid aqueous compositions (i.e. pH below 7, preferably below 5) which are physically and chemically stable upon prolonged periods of storage and which deliver outstanding bleaching performance under diluted usage conditions.
  • a bleaching composition comprising a substantially insoluble optical bhghtener and a preformed mono peroxy carboxylic acid having the general formula:
  • R is a linear or branched alkyl chain having at least 2 carbon atoms and X is hydrogen or a substituent group selected from the group consisting of alkyl, especially alkyl chains of from 1 to 24 carbon atoms, aryl, halogen, ester, ether, amine, amide, substituted phthalic amino, imide, hydroxide, sulphide, sulphate, sulphonate, carboxylic, heterocyclic, nitrate, aldehyde, phosphonate, phosphonic or mixtures thereof.
  • the present invention further encompasses a process of bleaching a surface and the use of said composition.
  • compositions according to the present invention are preferably liquid compositions as opposed to a solid or a gas.
  • liquid includes suspensions of solid particles in liquid compositions and "pasty" compositions.
  • the liquid compositions herein are preferably aqueous compositions, comprising water at a level of preferably 10% to- 99%, more preferably from 50% to 98% by weight of the bleaching composition.
  • the liquid compositions according to the present invention preferably have a pH below 7.
  • the pH of the compositions according to the present invention is from 0.1 to 6.5, more preferably from 0.5 to 5, even more preferably from 2 to 4.
  • Formulating the compositions according to the present invention in the acidic pH range is critical to the chemical stability of the compositions according to the present invention.
  • the pH of the composition is preferably below the pKa of the peracid used.
  • the pH of the compositions may be adjusted by any acid or alkaline species known to those skilled in the art.
  • acidic species suitable for use herein are organic acids, such as citric acid and inorganic acids, such as sulphuric acid, sulphonic acid and/or metanesulphonic acid.
  • alkaline species are sodium hydroxide, potassium hydroxide and/or sodium carbonate.
  • Other pH adjusting agents include the alkanolamines. It may be advantageous to use alkanolamines, in particular monoethanolamine, inasmuch as they have an additional effect of regulating the viscosity of the emulsion, without compromising on its physical stability.
  • the bleaching performance of the present composition may be evaluated by the following test methods on various type of bleachable stains.
  • a suitable test method for evaluating the bleaching performance on a soiled fabric under diluted conditions is the following: A composition according to the present invention is diluted with water typically at a dilution level of 1 to 100 ml/L, preferably 20 ml/L, more preferably 5ml/L (composition :water), then the soiled fabrics are soaked in it for 20 minutes to 6 hours and then rinsed.
  • the bleaching composition can be used in a washing machine at a dilution level of typically at a dilution level of 1 to 100 ml/L (composition :water). In the washing machine the soiled fabrics are washed at a temperature of from 5° to 90°C for 10 to 100 minutes and then rinsed.
  • the reference composition in this comparative test undergoes the same treatment. Soiled fabrics/swatches with for example tea, coffee and the like may be commercially available from E.M.C. Co. Inc..
  • the bleaching performance is then evaluated by comparing side by side the soiled fabrics treated with a composition of the present invention with those treated with the reference, e.g., the same composition but comprising no bleach or a different bleach.
  • a visual grading may be used to assign difference in panel units (psu) in a range from 0 to 4.
  • compositions of the present invention are physically and chemically stable upon prolonged periods of storage.
  • compositions herein may be evaluated by measuring the concentration of available oxygen at given storage time after having manufactured the compositions.
  • chemically stable it is meant herein that the compositions of the present invention comprising a peracid do not undergo more than 30% AvO loss, in 10 days at 35°C and preferably not more than 20% AvO loss.
  • the loss of available oxygen (AvO) of a peracid-containing composition over time can be measured with the iodometric titration method in which the peracid is reduced by excess potassium iodide and the iodine formed is determined by titration with sodium thiosulphate. This method is well known in the art and is reported for example in A Bleachers Handbook by and available from Interox. Alternatively peracid concentration can also be measured using a chromatography method described in the literature for peracids (F. Di Furia et al., Gas-liquid Chromatography Method for Determination of Peracids, Analyst, Vol 113, May 1988, p 793-795).
  • the present invention requires an optical bhghtener as an essential component thereof, preferably_at a level of from 0.005% to 5%, most preferably from 0.01 % to 1 %, most preferably from 0.01 % to 0.2%.
  • the optical brighteners suitable for use in the present invention are substantially insoluble in water. Wherein substantially insoluble means that less than 1 gram of the bhghtener will dissolve in 1 liter of distilled water at pH 7.
  • Nonionic brighteners meaning those brighteners that do not have any permanently charged group or a group selected from sulphonic, sulphate, carboxylic, phosphonate, phosphate and quaternary ammonium.
  • the optical bhghtener is a substantially insoluble compound selected from compounds comprising stilbene, pyrazoiine, coumarin, carboxylic acids, methinecyanines, dibenzothiophene-5,5-dioxide, azoles, 5- and 6-membered-ring heterocyclic, benzene or derivatives thereof and mixtures thereof. More preferably the bhghtener comprises a benzoxozol, pyrazole, triazole, triazine, imidazole, furan group or mixtures thereof.
  • optical brighteners examples include those selected from the group consisting of Benzoxazole, 2,2'-(2,5-thiophenediyl)bis- (7CI, 8CI, 9CI) sold under the tradename Tinopal SOP (from Ciba-Geigy, C.I.
  • Fluorescent Bhghtener 140 (9CI), 7-(dimethylamino)-4-methyl-2H-1-benzopyran- 2-one (9CI) sold under the tradename Tinopal SWN (from Ciba-Geigy), Benzoxazole, 2,2'-(1 ,2-ethenediyl)bis[5-methyl- (9CI) sold under the tradename Tinopal K (from Ciba-Geigy), C.I. Fluorescent Bhghtener 352 (9CI) 1 H- Benzimidazole, 2,2'-(2,5-furandiyl)bis[1-methyl- (9CI) sold under the tradename Uvitex AT (from Ciba-Geigy).
  • the bleaching composition of the present invention comprises a pre-formed mono peroxy carboxylic acid (hereafter referred to as peracid) having the general formula
  • peracid a pre-formed mono peroxy carboxylic acid having the general formula
  • the peracid has the general formula
  • R is a linear or branched alkyl chain having at least 2 carbon atoms and X is hydrogen or a substituent group selected from the group consisting of alkyl, especially alkyl chains of from 1 to 24 carbon atoms, aryl, halogen, ester, ether, amine, amide, substituted phthalic amino, imide, hydroxide, sulphide, sulphate, sulphonate, carboxylic, heterocyclic, nitrate, aldehyde, phosphonate, phosphonic or mixtures thereof.
  • the R group preferably comprises from 2 to 24 carbon atoms.
  • the R group may be a branched alkyl chain comprising one or more side chains which comprise substituent groups selected from the group consisting of aryl, halogen, ester, ether, amine, amide, substituted phthalic amino, imide, hydroxide, sulphide, sulphate, sulphonate, carboxylic, heterocyclic, nitrate, aldehyde, ketone or mixtures thereof.
  • X group is a phthalimido group.
  • particularly preferred peracids are those having general formula:
  • R is C1-20 and where A, B, C and D are independently either hydrogen or substituent groups individually selected from the group consisting of alkyl, hydroxyl, nitro, halogen, amine, ammonium, cyanide, carboxylic, sulphate, sulphonate, aldehydes or mixtures thereof.
  • R is an alkyl group having from 3 to 12 carbon atoms, more preferably from 5 to 9 carbon atoms.
  • Preferred substituent groups A, B, C and D are linear or branched alkyl groups having from 1 to 5 carbon atoms, but more preferably hydrogen.
  • Preferred peracids are selected from the group consisting of phthaloyl amido peroxy hexanoic acid, phthaloyl amido peroxy heptanoic acid, phthaloyl amido peroxy octanoic acid, phthaloyl amido peroxy nonanoic acid, phthaloyl amido peroxy decanoic acid and mixtures thereof.
  • the peracid has the formula such that R is C 5 H1 0 i.e. phthaloyl amido peroxy hexanoic acid or PAP.
  • This peracid is preferably used as a substantially water-insoluble solid or wetcake and is available from Ausimont under the trade name Euroco.
  • the peracid is preferably used at a level of from 0.1 % to 30%, more preferably from 0.5% to 18% and most preferably 1 % to 12% by weight of the composition.
  • compositions herein may further comprise a variety of other optional ingredients such as surfactants, chelating agents, radical scavengers, antioxidants, stabilisers, builders, soil suspending polymer, polymeric soil release agents, pH control agents, dye transfer inhibitor, solvents, suds controlling agents, suds booster, perfumes, pigments, dyes and the like.
  • compositions of the present invention may optionally, although preferably comprise a surfactant.
  • the surfactants are selected from the group consisting of nonionic surfactants, anionic surfactants, cationic surfactants, zwitterionic surfactants and/or amphoteric surfactants.
  • Suitable anionic surfactants for use in the compositions herein include water- soluble salts or acids of the formula ROSO3M wherein R preferably is a C10- 24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C10-C20 alkyl component, more preferably a C-12- 18 alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium), or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and tnmethyl ammonium cations and quaternary ammonium cations, such as tetramethyl- ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like).
  • R preferably is
  • alkyl chains of C12-I 6 are preferred for lower wash temperatures (e.g., below about 50°C) and C- ⁇ s-18 a ' k Y' chains are preferred for higher wash temperatures (e.g., above about 50 C C).
  • Suitable anionic surfactants for use herein are water-soluble salts or acids of the formula RO(A) m SO3M wherein R is an unsubstituted C-10- 24 alkyl or hydroxyalkyl group having a C10-C24 alkyl component, preferably a C12- 20 alkyl or hydroxyalkyl, more preferably C-12- 18 alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation.
  • R is an unsubstituted C-10- 24 alkyl or hydroxyalkyl group having a C10-C24 alkyl component, preferably a C12- 20 alkyl or hydroxyalkyl, more
  • Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein.
  • Specific examples of substituted ammonium cations include methyl-, dimethyl-, trimethyl-ammonium and quaternary ammonium cations, such as tetramethyl-ammonium, dimethyl piperdinium and cations derived from alkanolamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like.
  • Exemplary surfactants are C-12-C18 alkyl polyethoxylate (1.0) sulfate, C-
  • alkyl sulphonates including water-soluble salts or acids of the formula RSO3M wherein R is a C ⁇ -
  • M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium), or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl- ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like).
  • alkali metal cation e.g., sodium, potassium, lithium
  • ammonium or substituted ammonium e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl- ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from al
  • Suitable alkyl aryl sulphonates for use herein include water- soluble salts or acids of the formula RSO3M wherein R is an aryl, preferably a benzyl, substituted by a
  • C6-C22 linear or branched saturated or unsaturated alkyl group preferably a C-12- 18 alkyl group and more preferably a C14-C15 alkyl group
  • M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium, calcium, magnesium etc) or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl-ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like).
  • alkali metal cation e.g., sodium, potassium, lithium, calcium, magnesium etc
  • ammonium or substituted ammonium e.g., methyl-, dimethyl-
  • alkylsuifonates and alkyl aryl sulphonates for use herein include primary and secondary alkylsuifonates and primary and secondary alkyl aryl sulphonates.
  • secondary C6-C22 alkyl or C6-C22 alkyl aryl sulphonates it is meant herein that in the formula as defined above, the SO3M or aryl-SO3M group is linked to a carbon atom of the alkyl chain being placed between two other carbons of the said alkyl chain (secondary carbon atom).
  • C14-C16 alkyl sulphonate salt is commercially available under the name Hostapur ® SAS from Hoechst and C8-alkylsulphonate sodium salt is commercially available under the name Witconate NAS 8® from Witco SA.
  • An example of commercially available alkyl aryl sulphonate is Lauryl aryl sulphonate from Su.Ma.
  • Particularly preferred alkyl aryl sulphonates are alkyl benzene sulphonates commercially available under trade name Nansa® available from Albright & Wilson.
  • anionic surfactants useful for detersive purposes can also be used herein. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, C8-C24 olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No.
  • alkyl ester sulfonates such as C14.-16 methyl ester sulfonates
  • acyl glycerol sulfonates fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C12- 8 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C5-C-14 diesters), sulfates of alkylpolysaccharides such as the sulfates of
  • Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975, to Laughlin, et al. at Column 23, line 58 through Column 29, line 23 (herein incorporated by reference).
  • alkyl carboxylates and alkyl alkoxycarboxylates having from 4 to 24 carbon atoms in the alkyl chain, preferably from 8 to 18 and more preferably from 8 to 16, wherein the alkoxy is propoxy and/or ethoxy and preferably is ethoxy at an alkoxylation degree of from 0.5 to 20, preferably from 5 to 15.
  • Suitable amphoteric surfactants for use herein include amine oxides having the following formula R1 R2R3NO wherein each of R1 , R2 and R3 is independently a saturated substituted or unsubstituted, linear or branched hydrocarbon chain of from 1 to 30 carbon atoms.
  • Preferred amine oxide surfactants to be used according to the present invention are amine oxides having the following formula R1 R2R3NO wherein R1 is an hydrocarbon chain comprising from 1 to 30 carbon atoms, preferably from 6 to 20, more preferably from 8 to 16, most preferably from 8 to 12, and wherein R2 and R3 are independently substituted or unsubstituted, linear or branched hydrocarbon chains comprising from 1 to 4 carbon atoms, preferably from 1 to 3 carbon atoms, and more preferably are methyl groups.
  • R1 may be a saturated, substituted or unsubstituted linear or branched hydrocarbon chain.
  • Suitable amine oxides for use herein are for instance natural blend C8-C10 amine oxides as well as C12-C16 amine oxides commercially available from Hoechst.
  • Suitable zwitterionic surfactants for use herein contain both a cationic hydrophilic group, i.e., a quaternary ammonium group, and anionic hydrophilic group on the same molecule at a relatively wide range of pH's.
  • the typical anionic hydrophilic groups are carboxylates and sulfonates, although other groups like sulfates, phosphonates, and the like can be used.
  • a generic formula for the zwitterionic surfactants to be used herein is :
  • is a hydrophobic group
  • R2 is hydrogen, C-
  • R3 is C-i-C ⁇ alkyl, hydroxy alkyl or other substituted C-
  • R4 is a moiety joining the cationic nitrogen atom to the hydrophilic group and is typically an alkylene, hydroxy alkylene, or polyalkoxy group containing from 1 to 10 carbon atoms
  • X is the hydrophilic group which is a carboxylate or suifonate group.
  • are aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chains that can contain linking groups such as amido groups, ester groups. More preferred R ⁇ is an alkyl group containing from 1 to 24 carbon atoms, preferably from 8 to 18, and more preferably from 10 to 16. These simple alkyl groups are preferred for cost and stability reasons.
  • can also be an amido radical of the formula R a -C(O)-NH-(C(Rb)2)m, wherein R a is an aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chain, preferably an alkyl group containing from 8 up to 20 carbon atoms, preferably up to 18, more preferably up to 16, Rb is selected from the group consisting of hydrogen and hydroxy groups, and m is from 1 to 4, preferably from 2 to 3, more preferably 3, with no more than one hydroxy group in any (C(R D )2) moiety.
  • R a is an aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chain, preferably an alkyl group containing from 8 up to 20 carbon atoms, preferably up to 18, more preferably up to 16, Rb is selected from the group consisting of hydrogen and hydroxy groups, and m is from 1 to 4, preferably from 2 to 3, more preferably 3,
  • Preferred R2 is hydrogen, or a C1-C3 alkyl and more preferably methyl.
  • Preferred R3 is a C-1-C4 carboxylic acid group or C1-C4 suifonate group, or a C1-C3 alkyl and more preferably methyl.
  • Preferred R4 is (CH2) n wherein n is an integer from 1 to 10, preferably from 1 to 6, more preferably is from 1 to 3.
  • betaine/sulphobetaine Some common examples of betaine/sulphobetaine are described in U.S. Pat. Nos. 2,082,275, 2,702,279 and 2,255,082, incorporated herein by reference.
  • alkyldimethyl betaines examples include coconut-dimethyl betaine, lauryl dimethyl betaine, decyl dimethyl betaine, 2-(N-decyl-N, N- dimethyl-ammonia)acetate, 2-(N-coco N, N-dimethylammonio) acetate, myristyl dimethyl betaine, palmityl dimethyl betaine, cetyl dimethyl betaine, stearyl dimethyl betaine.
  • coconut dimethyl betaine is commercially available from Seppic under the trade name of Amonyl 265®.
  • Lauryl betaine is commercially available from Albright & Wilson under the trade name Empigen BB/L®.
  • amidobetaines include cocoamidoethylbetaine, cocoamidopropyl betaine or C10-C14 fatty acylamidopropylene(hydropropylene)sulfobetaine.
  • C10-C14 fatty acylamidopropylene(hydropropylene)sulfobetaine is commercially available from Sherex Company under the trade name "Varion CAS® sulfobetaine".
  • betaine is Lauryl-immino-dipropionate commercially available from Rhone-Poulenc under the trade name Mirataine H2C-HA ®.
  • Suitable cationic surfactants for use herein include derivatives of quaternary ammonium, phosphonium, imidazolium and sulfonium compounds.
  • Preferred cationic surfactants for use herein are quaternary ammonium compounds wherein one or two of the hydrocarbon groups linked to nitrogen are a saturated, linear or branched alkyl group of 6 to 30 carbon atoms, preferably of 10 to 25 carbon atoms, and more preferably of 12 to 20 carbon atoms, and wherein the other hydrocarbon groups (i.e.
  • quaternary ammonium compounds suitable for use herein are non-chlo ⁇ de/non halogen quaternary ammonium compounds.
  • the counterion used in said quaternary ammonium compounds are compatible with any peracid and are selected from the group of methyl sulfate, or methylsulfonate, and the like.
  • compositions of the present invention are trimethyl quaternary ammonium compounds like myristyl trimethylsulfate, cetyl trimethylsulfate and/or tallow trimethylsulfate.
  • trimethyl quaternary ammonium compounds are commercially available from Hoechst, or from Albright & Wilson under the trade name EMPIGEN CM®.
  • nonionic surfactants alkoxylated nonionic surfactants and especially ethoxylated nonionic surfactants are suitable for use herein.
  • Suitable capped alkoxylated nonionic surfactants for use herein are according to the formula:
  • is a C8-C24 linear or branched alkyl or alkenyl group, aryl group, alkaryl group, preferably R-
  • surfactants are commercially available from BASF under the trade name Plurafac®, from HOECHST under the trade name Genapol® or from ICI under the trade name Symperonic®.
  • Preferred capped nonionic alkoxylated surfactants of the above formula are those commercially available under the tradename Genapol® L 2.5 NR from Hoechst, and Plurafac® from BASF.
  • Particulariy preferred surfactants are those selected from the group consisting of alkyl sulphate, alkyl sulphonate, alkyl ethoxy sulphate, alkyl benzene sulphonate, alkyl carboxylate, alkyl ethoxy carboxylate, amine oxides and mixtures thereof. More preferably the surfactant system comprises an alkyl sulphonate and an amine oxide.
  • compositions according to the present invention preferably comprise the surfactant system at a level of from 0.01 % to 30%, preferably from 0.1 % to 15 % and more preferably less than 10% and most preferably from 0.2% to 5% by weight of the composition.
  • composition of the present invention may preferably comprise a suspending agent.
  • a suspending agent is an ingredient which is specifically added to the composition of the present invention to suspend a solid particulate ingredient of the composition.
  • a suspending agent is particularly useful for suspending the peracid, where the peracid is present as a solid, and the substantially insoluble optical bhghtener.
  • suspending agents are those known in the art.
  • suspending agents include gum-type polymers (e.g. xanthan gum), polyvinyl alcohol and derivatives thereof, cellulose and derivatives thereof and polycarboxylate polymers.
  • the suspending agent comprises a gum-type polymer or a polycarboxylate polymer.
  • Particulariy preferred examples of these suspending agents are xanthan gum and cross- linked polycarboxylate polymer respectively.
  • the gum-type polymer may be selected from the group consisting of polysaccharide hydrocolloids, xanthan gum, guar gum, succinoglucan gum,
  • the gum-type polymer is a xanthan gum or derivative thereof.
  • the gum-type polymer is preferably present at a level of from 0.01 % to 10%, most preferably from 0.1 % to 3%.
  • the polycarobxylate polymer can be a homo or copolymer of monomer units selected from acrylic acid, methacrylic acid, maleic acid, malic acid, maleic anhydride.
  • Preferred polycarboxylate polymers are Carbopol from BF Goodrich. Suitable polymers have molecular weight in the range of from 10000 to 100 000 000 most preferably 1 000 000 to 10 000 000.
  • the cross-linked polycarboxylate polymer is preferably present at a level of from 0.01 % to 2% more preferably from 0.01 % to 1 %, most preferably from 0.1 %to 0.8%.
  • the suspending agent comprises a combination of at least two polymers.
  • the first polymer is a gum-type polymer and the second is a cross-linked polycarboxylate polymer.
  • the composition may additionally comprise further polymers.
  • the ratio of gum-type polymer to cross-linked polycarboxylate polymer is from 100:1 to 1 :100, most preferably from 1 :10 to 10:1.
  • compositions of the present invention may comprise a chelating agent as a preferred optional ingredient.
  • Suitable chelating agents may be any of those known to those skilled in the art such as the ones selected from the group comprising phosphonate chelating agents, amino carboxylate chelating agents, other carboxylate chelating agents, polyfunctionally-substituted aromatic chelating agents, ethylenediamine N,N'- disuccinic acids, or mixtures thereof.
  • chelating agents contribute to further enhance the chemical stability of the compositions.
  • a chelating agent may be also desired in the compositions of the present invention as it allows to increase the ionic strength of the compositions herein and thus their stain removal and bleaching performance on various surfaces.
  • Suitable phosphonate chelating agents for use herein may include alkali metal ethane 1 -hydroxy diphosphonates (HEDP), alkylene poly (alkylene phosphonate), as well as amino phosphonate compounds, including amino aminotri(methylene phosphonic acid) (ATMP), nitrilo trimethylene phosphonates (NTP), ethylene diamine tetra methylene phosphonates, and diethylene triamine penta methylene phosphonates (DTPMP).
  • the phosphonate compounds may be present either in their acid form or as salts of different cations on some or all of their acid functionalities.
  • Preferred phosphonate chelating agents to be used herein are diethylene triamine penta methylene phosphonate (DTPMP) and ethane 1 -hydroxy diphosphonate (HEDP).
  • DTPMP diethylene triamine penta methylene phosphonate
  • HEDP ethane 1 -hydroxy diphosphonate
  • Such phosphonate chelating agents are commercially available from Monsanto under the trade name DEQUEST®-
  • Polyfunctionally-substituted aromatic chelating agents may also be useful in the compositions herein. See U.S. patent 3,812,044, issued May 21 , 1974, to Connor et al.
  • Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1 ,2-dihydroxy -3,5-disulfobenzene.
  • a preferred biodegradable chelating agent for use herein is ethylene diamine N,N'- disuccinic acid, or alkali metal, or alkaline earth, ammonium or substitutes ammonium salts thereof or mixtures thereof.
  • Ethylenediamine N,N'- disuccinic acids, especially the (S,S) isomer have been extensively described in US patent 4, 704, 233, November 3, 1987, to Hartman and Perkins.
  • Ethylenediamine N,N'- disuccinic acids is, for instance, commercially available under the tradename ssEDDS® from Palmer Research Laboratories.
  • Suitable amino carboxylates to be used herein include ethylene diamine tetra acetates, diethylene triamine pentaacetates, diethylene triamine pentaacetate (DTPA).N- hydroxyethylethylenediamine triacetates, nitrilotri-acetates, ethylenediamine tetrapropionates, triethylenetetraaminehexa-acetates, ethanol- diglycines, propylene diamine tetracetic acid (PDTA) and methyl glycine di-acetic acid (MGDA), both in their acid form, or in their alkali metal, ammonium, and substituted ammonium salt forms.
  • PDTA propylene diamine tetracetic acid
  • MGDA methyl glycine di-acetic acid
  • Particulariy suitable amino carboxylates to be used herein are diethylene triamine penta acetic acid, propylene diamine tetracetic acid (PDTA) which is, for instance, commercially available from BASF under the trade name Trilon FS® and methyl glycine di-acetic acid (MGDA).
  • PDTA propylene diamine tetracetic acid
  • MGDA methyl glycine di-acetic acid
  • carboxylate chelating agents to be used herein include salicylic acid, aspartic acid, glutamic acid, glycine, malonic acid or mixtures thereof.
  • Another chelating agent for use herein is of the formula:
  • R ⁇ , R2, R3, and R4 are independently selected from the group consisting of -H, alkyl, alkoxy, aryl, aryloxy, -Cl, -Br, -NO2, -C(O)R', and -SO2R"; wherein R' is selected from the group consisting of -H, -OH, alkyl, alkoxy, aryl, and aryloxy; R" is selected from the group consisting of alkyl, alkoxy, aryl, and aryloxy; and R5, Rg, R7, and Rs are independently selected from the group consisting of -H and alkyl.
  • Particularly preferred chelating agents to be used herein are amino aminotri(methylene phosphonic acid), di-ethylene-triamino-pentaacetic acid, diethylene triamine penta methylene phosphonate, 1 -hydroxy ethane diphosphonate, ethylenediamine N, N'-disuccinic acid, and mixtures thereof.
  • compositions according to the present invention comprise up to 5% by weight of the total composition of a chelating agent, or mixtures thereof, preferably from 0.01 % to 1.5% by weight and more preferably from 0.01 % to 0.5%.
  • compositions of the present invention may comprise a radical scavenger or a mixture thereof.
  • Suitable radical scavengers for use herein include the well-known substituted mono and dihydroxy benzenes and their analogs, alkyl and aryl carboxylates and mixtures thereof.
  • radical scavengers for use herein include di-tert- butyl hydroxy toluene (BHT), hydroquinone, di-tert-butyl hydroquinone, mono-tert- butyl hydroquinone, tert-butyl-hydroxy anysole, benzoic acid, toluic acid, catechol, t-butyl catechol, benzylamine, 1 ,1 ,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl) butane, n-propyl-gallate or mixtures thereof and highly preferred is di-tert-butyl hydroxy toluene.
  • Such radical scavengers like N-propyl-gallate may be commercially available from Nipa Laboratories under the trade name Nipanox S1 ®.
  • Radical scavengers when used are typically present herein in amounts up to 10% by weight of the total composition and preferably from 0.001 % to 0.5% by weight.
  • radical scavengers may contribute to the chemical stability of the bleaching compositions of the present invention as well as to the safety profile of the compositions of the present invention.
  • compositions according to the present invention may further comprise a suds controlling agent such as 2-alkyl alkanol, or mixtures thereof, as a preferred optional ingredient.
  • a suds controlling agent such as 2-alkyl alkanol, or mixtures thereof, as a preferred optional ingredient.
  • Particularly suitable to be used in the present invention are the 2-alkyl alkanols having an alkyl chain comprising from 6 to 16 carbon atoms, preferably from 8 to 12 and a terminal hydroxy group, said alkyl chain being substituted in the position by an alkyl chain comprising from 1 to 10 carbon atoms, preferably from 2 to 8 and more preferably 3 to 6.
  • Such suitable compounds are commercially available, for instance, in the Isofol® series such as Isofol® 12 (2-butyl octanol) or Isofol® 16 (2-hexyl decanol).
  • suds controlling agents may include alkali metal (e.g., sodium or potassium) fatty acids, or soaps thereof, containing from about 8 to about 24, preferably from about 10 to about 20 carbon atoms.
  • alkali metal e.g., sodium or potassium
  • soaps thereof containing from about 8 to about 24, preferably from about 10 to about 20 carbon atoms.
  • the fatty acids including those used in making the soaps can be obtained from natural sources such as, for instance, plant or animal-derived glycerides (e.g., palm oil, coconut oil, babassu oil, soybean oil, castor oil, tallow, whale oil, fish oil, tallow, grease, lard and mixtures thereof).
  • plant or animal-derived glycerides e.g., palm oil, coconut oil, babassu oil, soybean oil, castor oil, tallow, whale oil, fish oil, tallow, grease, lard and mixtures thereof.
  • the fatty acids can also be synthetically prepared (e.g., by oxidation of petroleum stocks or by the Fischer- Tropsch process).
  • Alkali metal soaps can be made by direct saponification of fats and oils or by the neutralization of the free fatty acids which are prepared in a separate manufacturing process. Particularly useful are the sodium and potassium salts of the mixtures of fatty acids derived from coconut oil and tallow, i.e., sodium and potassium tallow and coconut soaps.
  • tallow is used herein in connection with fatty acid mixtures which typically have an approximate carbon chain length distribution of 2.5% C14, 29% C16, 23% C18, 2% palmitoleic, 41.5% oleic and 3% linoleic (the first three fatty acids listed are saturated). Other mixtures with similar distribution, such as the fatty acids derived from various animal tallows and lard, are also included within the term tallow.
  • the tallow can also be hardened (i.e., hydrogenated) to convert part or all of the unsaturated fatty acid moieties to saturated fatty acid moieties.
  • coconut refers to fatty acid mixtures which typically have an approximate carbon chain length distribution of about 8% C8, 7% C10, 48% C12, 17% C14, 9% C16, 2% C18, 7% oleic, and 2% linoleic (the first six fatty acids listed being saturated).
  • Other sources having similar carbon chain length distribution such as palm kernel oil and babassu oil are included with the term coconut oil.
  • Suitable suds controlling agents are exemplified by silicones, and silica- silicone mixtures.
  • Silicones can be generally represented by alkylated polysiloxane materials while silica is normally used in finely divided forms exemplified by silica aerogels and xerogels and hydrophobic silicas of various types. These materials can be incorporated as particuiates in which the suds controlling agent is advantageously releasable incorporated in a water-soluble or water-dispersible, substantially non-surface-active detergent impermeable carrier.
  • the suds controlling agent can be dissolved or dispersed in a liquid carrier and applied by spraying on to one or more of the other components.
  • a preferred silicone suds controlling agent is disclosed in Bartollota et al. U.S. Patent 3 933 672.
  • Other particularly useful suds controlling agents are the self- emulsifying silicone suds controlling agents, described in German Patent Application DTOS 2 646 126 published April 28, 1977.
  • An example of such a compound is DC-544, commercially available from Dow Corning, which is a siloxane-giycol copolymer.
  • compositions can comprise a silicone/silica mixture in combination with fumed nonporous silica such as AerosilR.
  • a preferred type of suds controlling agent is an alkyl capped alcohol alkoxylate.
  • the alkyl chain of the alcohol can be fromC3-C30, the alkoxylate is preferably ethoxylate comprising preferably from 1 to 30 moles thereof and the cap is preferably a C1-C6 linear or branched alkyl group.
  • Especially preferred suds controlling agent are the suds controlling agent system comprising a mixture of silicone oils and the 2-alkyl-alcanols.
  • compositions herein may comprise up to 4% by weight of the total composition of a suds controlling agent, or mixtures thereof, preferably from 0.1 % to 1.5% and most preferably from 0.1 % to 0.8%.
  • compositions of the present invention may further comprise up to 10%, preferably from 2% to 4% by weight of the total composition of an alcohol according to the formula HO - CR'R" - OH, wherein R' and R" are independently H or a C2-C10 hydrocarbon chain and/or cycle.
  • Preferred alcohol according to that formula is propanediol. Indeed, we have observed that these alcohols in general and propanediol in particular also improve the chemical stability of the compositions.
  • inorganic stabilizers include sodium stannate and various alkali metal phosphates such as the well-known sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate.
  • compositions according to the present invention may further comprise a soil suspending polymer, for example a polyamine soil suspending polymer or mixtures thereof, as optional ingredient.
  • a soil suspending polymer for example a polyamine soil suspending polymer or mixtures thereof, as optional ingredient.
  • Any soil suspending polyamine polymer known to those skilled in the art may be used herein.
  • Particularly suitable polyamine polymers for use herein are polyalkoxylated polyamines. Such materials can conveniently be represented as molecules of the empirical structures with repeating units :
  • R is a hydrocarbyl group, usually of 2-6 carbon atoms;
  • R 1 may be a C- ⁇ - C20 hydrocarbon;
  • the alkoxy groups are ethoxy, propoxy, and the like, and y is 2- 30, most preferably from 10-20;
  • n is an integer of at least 2, preferably from 2-20, most preferably 3-5;
  • X" is an anion such as halide or methylsulfate, resulting from the quaternization reaction.
  • polyethylene amines i.e., the polymerized reaction product of ethylene oxide with ethyleneimine, having the general formula :
  • ethoxyiated polyethylene amine in particular ethoxyiated tetraethylenepentamine, and quatemized ethoxyiated hexamethylene diamine.
  • Soil suspending polyamine polymers contribute to the benefits of the present invention, i.e., that when added on top of said diacyl peroxide, further improve the stain removal performance of a composition comprising them, especially under laundry pretreatment conditions, as described herein. Indeed, they allow to improve the stain removal performance on a variety of stains including greasy stains, enzymatic stains, clay/mud stains as well as on bleachable stains.
  • compositions comprise up to 10% by weight of the total composition of such a soil suspending polyamine polymer or mixtures thereof, preferably from 0.1 % to 5% and more preferably from 0.3% to 2%.
  • compositions herein may also comprise other polymeric soil release agents known to those skilled in the art.
  • polymeric soil release agents are characterised by having both hydrophilic segments, to hydrophilize the surface of hydrophobic fibres, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibres and remain adhered thereto through completion of washing and rinsing cycles and, thus, serve as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.
  • the polymeric soil release agents useful herein especially include those soil release agents having: (a) one or more nonionic hydrophiie components consisting essentially of (i) polyoxyethylene segments with a degree of polymerization of at least 2, or (ii) oxypropylene or polyoxypropylene segments with a degree of polymerization of from 2 to 10, wherein said hydrophiie segment does not encompass any oxypropylene unit unless it is bonded to adjacent moieties at each end by ether linkages, or (iii) a mixture of oxyalkylene units comprising oxyethylene and from 1 to about 30 oxypropylene units wherein said mixture contains a sufficient amount of oxyethylene units such that the hydrophiie component has hydrophilicity great enough to increase the hydrophilicity of conventional polyester synthetic fiber surfaces upon deposit of the soil release agent on such surface, said hydrophiie segments preferably comprising at least about 25% oxyethylene units and more preferably, especially for such components having about 20 to 30 oxypropylene units, at least about 50% oxy
  • C4 alkyl ether and/or C4 hydroxyalkyl ether units to deposit upon conventional polyester synthetic fiber surfaces and retain a sufficient level of hydroxyls, once adhered to such conventional synthetic fiber surface, to increase fiber surface hydrophilicity, or a combination of (a) and (b).
  • the polyoxyethylene segments of (a)(i) will have a degree of polymerization of from about 1 to about 200, although higher levels can be used, preferably from 3 to about 150, more preferably from 6 to about 100.
  • Suitable oxy C4-C6 alkylene hydrophobe segments include, but are not limited to, end- caps of polymeric soil release agents such as MO3S(CH2)nOCH2CH2O-, where
  • M is sodium and n is an integer from 4-6, as disclosed in U.S. Patent 4,721 ,580, issued January 26, 1988 to Gosselink.
  • Polymeric soil release agents useful in the present invention also include cellulosic derivatives such as hydroxyether cellulosic polymers, co-polymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, and the like. Such agents are commercially available and include hydroxyethers of cellulose such as METHOCEL (Dow). Cellulosic soil release agents for use herein also include those selected from the group consisting of C-1 -C4 alkyl and C4 hydroxyalkyl cellulose; see U.S. Patent 4,000,093, issued December 28, 1976 to Nicol, et al.
  • Soil release agents characterised by poly(vinyl ester) hydrophobe segments include graft co-poiymers of poly(vinyl ester), e.g., C-
  • poly(vinyl ester) e.g., C-
  • poly(vinyl acetate) grafted onto polyalkylene oxide backbones such as polyethylene oxide backbones.
  • Commercially available soil release agents of this kind include the SOKALAN type of material, e.g., SOKALAN HP- 22, available from BASF (West Germany).
  • One type of preferred soil release agent is a co-polymer having random blocks of ethylene terephthalate and polyethylene oxide (PEO) terephthalate.
  • the molecular weight of this polymeric soil release agent is in the range of from about 25,000 to about 55,000. See U.S. Patent 3,959,230 to Hays, issued May 25, 1976 and U.S. Patent 3,893,929 to Basadur issued July 8, 1975.
  • Another preferred polymeric soil release agent is a polyester with repeat units of ethylene terephthalate units which contains 10-15% by weight of ethylene terephthalate units together with 90-80% by weight of polyoxyethylene terephthalate units, derived from a polyoxyethylene glycol of average molecular weight 300-5,000.
  • this polymer include the commercially available material ZELCON 5126 (from Dupont) and MILEASE T (from ICI). See also U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink.
  • Another preferred polymeric soil release agent is a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and terminal moieties covalently attached to the backbone.
  • These soil release agents are fully described in U.S. Patent 4,968,451 , issued November 6, 1990 to J. J. Scheibel and E.P. Gosselink.
  • Other suitable polymeric soil release agents include the terephthalate polyesters of U.S. Patent 4,711 ,730, issued December 8, 1987 to Gosselink et al, the anionic end-capped oligomeric esters of U.S.
  • Patent 4,721 ,580 issued January 26, 1988 to Gosselink
  • block polyester oligomeric compounds of U.S. Patent 4,702,857 issued October 27, 1987 to Gosselink.
  • Preferred polymeric soil release agents also include the soil release agents of U.S. Patent 4,877,896, issued October 31 , 1989 to Maldonado et al, which discloses anionic, especially sulfoaroyl, end-capped terephthalate esters.
  • Still another preferred soil release agent is an oligomer with repeat units of terephthaloyl units, sulfoisoterephthaloyl units, oxyethyleneoxy and oxy-1 ,2- propylene units.
  • the repeat units form the backbone of the oligomer and are preferably terminated with modified isethionate end-caps.
  • a particularly preferred soil release agent of this type comprises about one suifoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy and oxy-1 ,2-propyleneoxy units in a ratio of from about 1.7 to about 1.8, and two end-cap units of sodium 2-(2- hydroxyethoxy)-ethanesulfonate.
  • Said soil release agent also comprises from about 0.5% to about 20%, by weight of the oligomer, of a crystalline-reducing stabilizer, preferably selected from the group consisting of xylene suifonate, cumene suifonate, toluene suifonate, and mixtures thereof.
  • a crystalline-reducing stabilizer preferably selected from the group consisting of xylene suifonate, cumene suifonate, toluene suifonate, and mixtures thereof.
  • soil release agents will generally comprise from 0.01 % to 10.0%, by weight, of the detergent compositions herein, typically from 0.1 % to 5%, preferably from 0.2% to 3.0%.
  • compositions of the present invention may also include one or more materials effective for inhibiting the transfer of dyes from one dyed surface to another during the cleaning process.
  • dye transfer inhibiting agents include polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, co- polymers of N-vinylpyrrolidone and N-vinyiimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof. If used, these agents typically comprise from 0.01% to 10% by weight of the composition, preferably from 0.01 % to 5%, and more preferably from 0.05% to 2%.
  • the polyamine N-oxide polymers preferred for use herein contain units having the following structural formula: R-A x -P; wherein P is a polymerizable unit to which an N-O group can be attached or the N-O group can form part of the polymerizable unit or the N-O group can be attached to both units;
  • x is 0 or 1 ;
  • R is aliphatic, ethoxyiated aliphatics, aromatics, heterocyclic or alicyclic groups or any combination thereof to which the nitrogen of the N-O group can be attached or the N-O group is part of these groups.
  • Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrroiidine, piperidine and derivatives thereof.
  • the N-O group can be represented by the following general structures:
  • , R2, R3 are aliphatic, aromatic, heterocyclic or alicyclic groups or combinations thereof; x, y and z are 0 or 1 ; and the nitrogen of the N-O group can be attached or form part of any of the aforementioned groups.
  • the amine oxide unit of the polyamine N-oxides has a pKa ⁇ 10, preferably pKa ⁇ 7, more preferred pKa ⁇ 6.
  • Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties.
  • suitable polymeric backbones are poiyvinyls, polyalkylenes, polyesters, polyethers, polyamide, poiyimides, polyacrylates and mixtures thereof.
  • These polymers include random or block co-polymers where one monomer type is an amine N- oxide and the other monomer type is an N-oxide.
  • the amine N-oxide polymers typically have a ratio of amine to the amine N-oxide of 10:1 to 1 :1 ,000,000. However, the number of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate co-polymerization or by an appropriate degree of N-oxidation.
  • the polyamine oxides can be obtained in almost any degree of polymerization. Typically, the average molecular weight is within the range of 500 to 1 ,000,000; more preferred 1 ,000 to 500,000; most preferred 5,000 to 100,000. This preferred class of materials can be referred to as "PVNO".
  • the most preferred polyamine N-oxide useful in the detergent compositions herein is poly(4-vinylpyridine-N-oxide) which as an average molecular weight of about 50,000 and an amine to amine N-oxide ratio of about 1 :4.
  • Co-polymers of N-vinylpyrrolidone and N-vinylimidazole polymers are also preferred for use herein.
  • the PVPVI has an average molecular weight range from 5,000 to 1 ,000,000, more preferably from 5,000 to 200,000, and most preferably from 10,000 to 20,000. (The average molecular weight range is determined by light scattering as described in Barth, et al., Chemical Analysis, Vol 113.
  • the PVPVI co- polymers typically have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 :1 to 0.2:1 , more preferably from 0.8:1 to 0.3:1 , most preferably from 0.6:1 to 0.4:1.
  • These co-poiymers can be either linear or branched.
  • compositions may also employ a polyvinylpyrrolidone ("PVP") having an average molecular weight of from 5,000 to 400,000, preferably from 5,000 to 200,000, and more preferably from 5,000 to 50,000.
  • PVP's are known to persons skilled in the detergent field; see, for example, EP-A-262,897 and EP-A-256,696, incorporated herein by reference.
  • Compositions containing PVP can also contain polyethylene glycol (“PEG”) having an average molecular weight from 500 to 100,000, preferably from 1 ,000 to 10,000.
  • PEG polyethylene glycol
  • the ratio of PEG to PVP on a ppm basis delivered in wash solutions is from 2:1 to 50:1 , and more preferably from 3:1 to 10:1.
  • suds boosters such as C ⁇ o-C-
  • the C10- 14 monoethanol and diethanol amides illustrate a typical class of such suds boosters.
  • Use of such suds boosters with high sudsing adjunct surfactants such as the amine oxides, betaines and sultaines noted above is also advantageous.
  • soluble magnesium salts such as MgCl2, MgSO4, and the like, can be added at levels of, for example, 0.1 %-2%, to provide additional suds and to enhance grease removal performance.
  • composition described herein may also comprise minor ingredients such as pigment or dyes and perfumes.
  • the surface to be cleaned is treated with a liquid composition of the present invention.
  • surfaces any inanimate surface.
  • inanimate surfaces include, but are not limited to, hard-surfaces typically found in houses like kitchens, bathrooms, or in car interiors, e.g., tiles, walls, floors, chrome, glass, smooth vinyl, any plastic, plastified wood, table top, sinks, cooker tops, dishes, sanitary fittings such as sinks, showers, shower curtains, wash basins, WCs and the like, as well as fabrics including clothes, curtains, drapes, bed linens, bath linens, table cloths, sleeping bags, tents, upholstered furniture and the like, and carpets.
  • Inanimate surfaces also include household appliances including, but not limited to, refrigerators, freezers, washing machines, automatic dryers, ovens, microwave ovens, dishwashers and so on.
  • treating a surface it is meant herein bleaching said surfaces as the compositions of the present invention comprise a bleaching system based on a peracid compound or a mixture thereof and optionally cleaning as said compositions may comprise a surfactant or any other conventional cleaning agents.
  • the present invention also encompasses a process of treating, especially bleaching a fabric, as the inanimate surface.
  • a composition according to the present invention is contacted with the fabrics to be treated.
  • pretreatment mode where a liquid bleaching composition, as defined herein, is applied neat onto said fabrics before the fabrics are rinsed, or washed then rinsed, or in a "soaking mode” where a liquid bleaching composition, as defined herein, is first diluted in an aqueous bath and the fabrics are immersed and soaked in the bath, before they are rinsed, or in a "through the wash mode", where a liquid bleaching composition, as defined herein, is added on top of a wash liquor formed by dissolution or dispersion of a typical laundry detergent. It is also essential in both cases, that the fabrics be rinsed after they have been contacted with said composition, before said composition has completely dried off.
  • the processes of bleaching surfaces according to the present invention delivers effective whiteness performance as well as effective stain removal performance.
  • compositions according to the present invention may be used in neat or diluted form. However the compositions herein are typically used in diluted form in a laundry operation. By “in diluted form”, it is meant herein that the compositions for the bleaching of fabrics according to the present invention may be diluted by the user, preferably with water. Such dilution may occur for instance in hand laundry applications as well as by other means such as in a washing machine. Said compositions can be diluted up to 500 times, preferably from 5 to 200 times and more preferably from 10 to 80 times.
  • the process of bleaching fabrics according to the present invention comprises the steps of first contacting said fabrics with a bleaching composition according to the present invention, in its diluted form, then allowing said fabrics to remain in contact with said composition, for a period of time sufficient to bleach said fabrics, typically 1 to 60 minutes, preferably 5 to 30 minutes, then rinsing said fabrics with water. If said fabrics are to be washed, i.e., with a conventional detergent composition preferably comprising at least one surface active agent, said washing may be conducted together with the bleaching of said fabrics by contacting said fabrics at the same time with a bleaching composition according to the present invention and said detergent composition, or said washing may be conducted before or after said fabrics have been bleached.
  • said process according to the present invention allows bleaching of fabrics and optionally washing of fabrics with a detergent composition preferably comprising at least one surface active agent before the step of contacting said fabrics with said bleaching composition and/or in the step where said fabrics are contacted with said bleaching composition and/or after the step where said fabrics are contacted with said bleaching composition and before the rinsing step and/or after the rinsing step.
  • the process of bleaching fabrics comprises the step of contacting fabrics with a liquid bleaching composition according to the present invention, in its neat form and allowing said fabrics to remain in contact with said bleaching composition for a period of time sufficient to bleach said fabrics, typically 5 seconds to 30 minutes, preferably 1 minute to 10 minutes and then rinsing said fabrics with water. If said fabrics are to be washed, i.e., with a conventional composition comprising at least one surface active agent, said washing may be conducted before or after that said fabrics have been bleached.
  • the present invention provides liquid bleaching compositions that may be applied neat onto a fabric to bleach, despite a standing prejudice against using bleach-containing compositions neat on fabrics since the present compositions are safe to colors and fabrics perse.
  • the bleaching pretreatment operation may also be followed by the diluted bleaching process as described herein before either in bucket (hand operation) or in a washing machine.
  • bleaching processes herein after said fabrics have been washed with a conventional laundry detergent composition. Indeed, it has been observed that bleaching said fabrics with the compositions according to the present invention (typically diluted bleaching methods) after to washing them with a detergent composition provides superior whiteness and stain removal with less energy and detergent than if said fabrics are bleached first then washed.
  • the present invention also encompasses a process of treating a hard-surface, as the inanimate surface.
  • a composition as defined herein, is contacted with the hard-surfaces to be treated.
  • the present invention also encompasses a process of treating a hard- surface with a composition, as defined herein, wherein said process comprises the step of applying said composition to said hard-surface, preferably only soiled portions thereof, and optionally rinsing said hard-surface.
  • composition as defined herein, may be applied to the surface to be treated in its neat form or in its diluted form typically up to 200 times their weight of water, preferably into 80 to 2 times their weight of water, and more preferably 60 to 2 times.
  • compositions of the present invention are easy to rinse and provide good shine characteristics on the treated surfaces.
  • hard-surfaces any hard-surfaces as mentioned herein before as well as dishes.
  • compositions herein can be packaged in a variety of containers including conventional bottles, bottles equipped with roll-on, sponge, brusher or sprayers.
  • the composition is packaged in a two compartment container, wherein the bleaching composition as described herein is packaged in one compartment and a second composition is packaged in the second compartment.
  • the second composition is a conventional heady duty liquid detergent composition, preferably comprising ingredients, particularly bleach-sensitive ingredients such as surfactants, enzymes and perfumes.
  • PAP is pthaloyl amindo peroxy hexanoic aicd
  • Carbopol ETD 2691 is a polyacrylate available from BF Goodrich
  • Tinopal SOP is an optical brightener

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

L'invention concerne une composition de blanchiment comprenant un acide mono peroxy carboxylique préformé et un azureur optique, l'acide mono peroxy carboxylique préformé et l'azureur optique insoluble étant tous deux stables.
PCT/US2000/017727 1999-06-29 2000-06-27 Compositions de blanchiment WO2001000773A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001506768A JP2003503585A (ja) 1999-06-29 2000-06-27 漂白組成物
CA002377351A CA2377351A1 (fr) 1999-06-29 2000-06-27 Compositions de blanchiment
AU57729/00A AU5772900A (en) 1999-06-29 2000-06-27 Bleaching compositions
EP00943228A EP1190033A1 (fr) 1999-06-29 2000-06-27 Compositions de blanchiment
BR0012096-0A BR0012096A (pt) 1999-06-29 2000-06-27 Composições de alvejante
MXPA02000106A MXPA02000106A (es) 1999-06-29 2000-06-27 Composiciones blanqueadoras.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP99870134.6 1999-06-29
EP99870134A EP1065264A1 (fr) 1999-06-29 1999-06-29 Compositions de blanchiment

Publications (1)

Publication Number Publication Date
WO2001000773A1 true WO2001000773A1 (fr) 2001-01-04

Family

ID=8243860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/017727 WO2001000773A1 (fr) 1999-06-29 2000-06-27 Compositions de blanchiment

Country Status (9)

Country Link
EP (2) EP1065264A1 (fr)
JP (1) JP2003503585A (fr)
AR (1) AR021447A1 (fr)
AU (1) AU5772900A (fr)
BR (1) BR0012096A (fr)
CA (1) CA2377351A1 (fr)
MX (1) MXPA02000106A (fr)
TR (1) TR200103807T2 (fr)
WO (1) WO2001000773A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2305786A1 (fr) * 2009-09-21 2011-04-06 Basf Se Procédé pour le nettoyage ou le blanchiment de tissus en polyamide

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280478A (en) * 1989-08-29 1994-01-18 Digital Equipment Corporation No-owner frame and multiple token removal mechanism for token ring networks
ES2287711T3 (es) * 2003-03-11 2007-12-16 Reckitt Benckiser N.V. Envase que comprende una composicion detergente.
GB2401371A (en) 2003-03-11 2004-11-10 Reckitt Benckiser Nv Water-soluble package containing phthalimidoperhexanoic acid detergent
EP1780260A1 (fr) * 2005-10-26 2007-05-02 The Procter & Gamble Company Procédé de traitement de textiles
EP2524961A1 (fr) * 2011-05-18 2012-11-21 The Procter & Gamble Company Composition de nettoyage de textiles comprenant un agent azurant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007501A1 (fr) * 1988-12-24 1990-07-12 Interox Chemicals Limited Acides peroxycarboxyliques
WO1994011485A1 (fr) * 1992-11-17 1994-05-26 Unilever N.V. Compositions detergentes liquides
US5434069A (en) * 1993-11-12 1995-07-18 Lever Brothers Company, Division Of Conopco, Inc. Capsule comprising oil surrounding hydrophobic or hydrophilic active and polymeric shell surrounding oil
EP0724012A1 (fr) * 1995-01-27 1996-07-31 The Procter & Gamble Company Composition détergente contenant un agent de blanchiment et un agent d'azurage
WO2000027960A2 (fr) * 1998-11-10 2000-05-18 The Procter & Gamble Company Compositions de blanchiment
WO2000027967A1 (fr) * 1998-11-10 2000-05-18 The Procter & Gamble Company Compositions de blanchiment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007501A1 (fr) * 1988-12-24 1990-07-12 Interox Chemicals Limited Acides peroxycarboxyliques
WO1994011485A1 (fr) * 1992-11-17 1994-05-26 Unilever N.V. Compositions detergentes liquides
US5434069A (en) * 1993-11-12 1995-07-18 Lever Brothers Company, Division Of Conopco, Inc. Capsule comprising oil surrounding hydrophobic or hydrophilic active and polymeric shell surrounding oil
EP0724012A1 (fr) * 1995-01-27 1996-07-31 The Procter & Gamble Company Composition détergente contenant un agent de blanchiment et un agent d'azurage
WO2000027960A2 (fr) * 1998-11-10 2000-05-18 The Procter & Gamble Company Compositions de blanchiment
WO2000027967A1 (fr) * 1998-11-10 2000-05-18 The Procter & Gamble Company Compositions de blanchiment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2305786A1 (fr) * 2009-09-21 2011-04-06 Basf Se Procédé pour le nettoyage ou le blanchiment de tissus en polyamide

Also Published As

Publication number Publication date
MXPA02000106A (es) 2002-07-02
EP1190033A1 (fr) 2002-03-27
AR021447A1 (es) 2002-07-17
CA2377351A1 (fr) 2001-01-04
TR200103807T2 (tr) 2002-04-22
BR0012096A (pt) 2002-04-02
JP2003503585A (ja) 2003-01-28
EP1065264A1 (fr) 2001-01-03
AU5772900A (en) 2001-01-31

Similar Documents

Publication Publication Date Title
US6548470B1 (en) Bleaching compositions
EP1129171B1 (fr) Compositions de blanchiment
EP1010751B1 (fr) Compositions de blanchiment
US6537958B1 (en) Bleaching compositions
CA2349528C (fr) Composition de blanchiment phtalimidique comportant des niveaux prescrits d'etoxysulfate d'alkyle comme agent tensioactif
US6630435B1 (en) Bleaching compositions
EP1190033A1 (fr) Compositions de blanchiment
US6509308B1 (en) Bleaching compositions
WO2000027969A1 (fr) Compositions de blanchiment
EP1010750A1 (fr) Compositions de blanchiment
US6489282B1 (en) Bleaching compositions
EP1129168A2 (fr) Compositions de blanchiment
EP1190032A1 (fr) Compositions de blanchiment
US6440921B1 (en) Bleaching compositions
EP1129169A2 (fr) Compositions de blanchiment
MXPA01005999A (en) Bleaching compositions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ CZ DE DE DK DK DM EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2377351

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/000106

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2001 506768

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 10019173

Country of ref document: US

Ref document number: 2000943228

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2001/03807

Country of ref document: TR

WWP Wipo information: published in national office

Ref document number: 2000943228

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2000943228

Country of ref document: EP