EP1129171B1 - Compositions de blanchiment - Google Patents
Compositions de blanchiment Download PDFInfo
- Publication number
- EP1129171B1 EP1129171B1 EP99958882A EP99958882A EP1129171B1 EP 1129171 B1 EP1129171 B1 EP 1129171B1 EP 99958882 A EP99958882 A EP 99958882A EP 99958882 A EP99958882 A EP 99958882A EP 1129171 B1 EP1129171 B1 EP 1129171B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alkyl
- compositions
- bleaching
- group
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 0 C=C(c1c2cccc1)N(*C(O)=O)C2=O Chemical compound C=C(c1c2cccc1)N(*C(O)=O)C2=O 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3746—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3757—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
- C11D3/3765—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in liquid compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/22—Carbohydrates or derivatives thereof
- C11D3/222—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3945—Organic per-compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3947—Liquid compositions
Definitions
- the present invention relates to a bleaching composition which can be used to bleach various surfaces including but not limited to, hard-surfaces as well as fabrics, clothes, carpets and the like.
- halogen bleaches are extremely effective bleaching agents, however they also present a number of drawbacks which can sometimes dissuade a consumer from choosing the halogen-containing product.
- halogen bleaches especially chlorine bleaches, emit a pungent odour during and after use (e.g., on consumer hands and/or surfaces treated therewith) which some consumer find disagreeable.
- halogen bleach-containing compositions are relatively aggressive to fabrics and may cause damage when used in relatively high concentration and/or repeated usage. In particular the consumer may perceive damage to the fabric itself (e.g. loss of tensile strength) or damage to the colour intensity of the fabric. While colour and fabric damage may be minimised by employing milder oxygen bleaches such as hydrogen peroxide, the bleach performance characteristics of such peroxygen bleaches are much less desirable than those of the halogen bleaching agents. Therefore, liquid aqueous activated peroxygen bleach-containing compositions have been developed containing activators, i.e., compounds which enhance peroxygen bleaching performance. However these bleaches do not perform as well as hypohalogen bleaches in stain removal.
- activators i.e., compounds which enhance peroxygen bleaching performance.
- GB-A-2,279,660 published on 11 th January 1995
- GB-A-2,281,744 published on 15 th March 1995
- both disclose aqueous liquid laundry detergent compositions comprising solid, substantially water-insoluble organic peroxyacid bleach, agar or xanthan polysaccharide, and a pH jump system.
- EP-A-0 347 988 published on 27 th December 1989, describes a bleaching composition comprising a peroxyacid, a natural gum and a polymer selected from polyvinyl alcohol, cellulose derivatives and mixtures thereof.
- EP-A-0 412 599 published on 13 th February 1991, discloses a bleaching composition
- a bleaching composition comprising a solid, substantially water-insoluble organic peroxy acid stably suspended in an aqueous medium characterized in that the aqueous medium also comprises an effective amount of triethylene glycol and/or polyethylene glycol
- a bleaching composition according to the present invention comprising a peroxycarboxylic acid and a polymeric system meets all of the objectives as described above.
- compositions according to the present invention are particularly suitable in any laundry application, e.g., as a laundry detergent or a laundry additive, and when used as a laundry pre-treater.
- compositions of the present invention are suitable for the bleaching of different types of fabrics including natural fabrics, (e.g., fabrics made of cotton, and linen), synthetic fabrics such as those made of polymeric fibres of synthetic origin (e.g., polyamide-elasthane) as well as those made of both natural and synthetic fibres.
- the bleaching compositions of the present invention herein may be used on synthetic fabrics despite a standing prejudice against using bleaches on synthetic fabrics, as evidenced by wamings on labels of clothes and commercially available bleaching compositions like hypochlorite-containing compositions.
- compositions according to the present invention can be used in a variety of conditions, i.e., in hard and soft water as well as when used neat or diluted. More particularly, it has been found that the liquid aqueous compositions of the present invention find a preferred application when used in their diluted form in any application and especially in any conventional laundry application. Indeed, upon dilution (typically at a dilution level of 20ml/L or more (composition:water)) the compositions of the present invention become less acidic, e.g., from a pH of about 1.5 to about 6.5 or more.
- compositions according to the present invention although delivering effective bleaching performance in their neat form surprisingly exhibit further enhanced bleaching performance in their diluted form.
- this "pH jump" effect allows to formulate acidic liquid aqueous compositions (i.e. pH below 7, preferably below 3 and more preferably below 2) which are physically and chemically stable upon prolonged periods of storage and which deliver outstanding bleaching performance under diluted usage conditions.
- acidic liquid aqueous compositions i.e. pH below 7, preferably below 3 and more preferably below 2
- compositions of the present invention exhibit also effective stain removal performance on various stains including enzymatic stains and/or greasy stains.
- the present invention relates to a bleaching composition having a pH below pH7, the composition comprising a solid, substantially water insoluble peroxycarboxylic acid having the general formula: where R is C1-20 alkyl group and where A, B, C and D are independently either hydrogen or substituent groups individually selected from the group consisting of alkyl, hydroxyl, nitro, halogen, amine, ammonium, cyanide, carboxylic, sulphate, sulphonate, aldehyde, or mixtures thereof; and a polymeric system which comprises a combination of:
- the bleaching composition is a mixture of:
- compositions according to the present invention are preferably liquid compositions as opposed to a solid or a gas.
- liquid includes “pasty” compositions.
- the liquid compositions herein are preferably aqueous compositions, comprising water at a level of preferably 10 to 99%, more preferably from 50% to 98% by weight of the bleaching composition..
- the liquid compositions according to the present invention have a pH below 7.
- the pH of the compositions according to the present invention is from 0.1 to 6.5, more preferably from 0.5 to 5, even more preferably from 2 to 4.
- Formulating the compositions according to the present invention in the acidic pH range is critical to the chemical stability of the compositions according to the present invention.
- the pH of the composition is preferably below the pKa of the peracid used. It is believed that the acidic pH controls/limits the formation of highly reactive species which are instable in acidic medium upon storage, and thus contributes to the stability of the compositions for prolonged periods of storage.
- the pH of the compositions may be adjusted by any acid or alkaline species known to those skilled in the art.
- acidic species suitable for use herein are organic acids, such as citric acid and inorganic acids, such as sulphuric acid, sulphonic acid and/or metanesulphonic acid.
- alkaline species are sodium hydroxide, potassium hydroxide and/or sodium carbonate.
- the bleaching performance of the present composition may be evaluated by the following test methods on various type of bleachable stains.
- a suitable test method for evaluating the bleaching performance on a soiled fabric under diluted conditions is the following:
- a composition according to the present invention is diluted with water typically at a dilution level of 1 to 100 ml/L, preferably 20 ml/L (composition :water), then the soiled fabrics are soaked in it for 20 minutes to 6 hours and then rinsed.
- the bleaching composition can be used in a washing machine at a dilution level of typically at a dilution level of 1 to 100 ml/L (composition :water). In the washing machine the soiled fabrics are washed at a temperature of from 30° to 70°C for 10 to 100 minutes and then rinsed.
- the reference composition in this comparative test undergoes the same treatment.
- Soiled fabrics/swatches with for example tea, coffee and the like may be commercially available from E.M.C. Co. Inc..
- the bleaching performance is then evaluated by comparing side by side the soiled fabrics treated with a composition of the present invention with those treated with the reference, e.g., the same composition but comprising no bleach or a different bleach.
- a visual grading may be used to assign difference in panel units (psu) in a range from 0 to 4.
- compositions of the present invention are physically and chemically stable upon prolonged periods of storage.
- compositions herein may be evaluated by measuring the concentration of available oxygen at given storage time after having manufactured the compositions.
- chemically stable it is meant herein that the compositions of the present invention comprising a peracid do not undergo more than 15% AvO loss, in one month at 25°C and preferably not more than 10%.
- the loss of available oxygen (AvO) of a peracid-containing composition over time can be measured by titration with potassium permanganate after reduction with a solution containing ammonium ferrous sulphate.
- This stability test method is well known in the art and is reported, for example, on the technical information sheet of Curox R commercially available from Interox.
- peracid concentration can also be measured using a chromatography method described in the literature for peracids (F. Di Furia et al., Gas-liquid Chromatography Method for Determination of Peracids, Analyst, Vol 113, May 1988, p 793-795).
- the bleaching composition of the present invention comprises a solid, substantially water insoluble pre-formed peroxy carboxylic acid (hereafter referred to as peracid).
- the peracid has the general formula where R is C1-20 alkyl group and where A, B, C and D are independently either hydrogen or substituent groups individually selected from the group consisting of alkyl, hydroxyl, nitro, halogen, amine, ammonium, cyanide, carboxylic, sulphate, sulphonate, aldehydes or mixtures thereof.
- R is an alkyl group having from 3 to 12 carbon atoms, more preferably from 5 to 9 carbon atoms.
- Preferred substituent groups A, B, C and D are linear or branched alkyl groups having from 1 to 5 carbon atoms, but more preferably hydrogen.
- Preferred peracids are selected from the group consisting of phthaloyl amido peroxy hexanoic acid (also known as phthaloyl amido peroxy caproic acid) phthaloyl amido peroxy heptanoic acid, phthaloyl amido peroxy octanoic acid, phthaloyl amido peroxy nonanoic acid, phthaloyl amido peroxy decanoic acid and mixtures thereof.
- phthaloyl amido peroxy hexanoic acid also known as phthaloyl amido peroxy caproic acid
- phthaloyl amido peroxy heptanoic acid also known as phthaloyl amido peroxy heptanoic acid
- phthaloyl amido peroxy octanoic acid phthaloyl amido peroxy nonanoic acid
- phthaloyl amido peroxy decanoic acid and mixtures thereof.
- Even more preferred peracids are any of having general formula: wherein R is selected from C1-4 alkyl and n is an integer of from 1 to 5.
- the peracid has the formula such that R is CH 2 and n is 5 i.e. phthaloyl amido-peroxy caproic acid or PAP.
- the peracid is preferably used as a substantially water-insoluble solid or wetcake and is available from Ausimont under the trade name Euroco.
- the peracid may be present at a level in the composition of from 0.1% to 10% more preferably 0.5% to 8% and most preferably 1% to 6%. Alternatively the peracid may be present at a much higher level of for example 10% to 40%, more preferably from 15% to 30%, most preferably from 20% to 25%.
- composition of the present invention comprises a polymeric system comprising at least two polymers.
- the first polymer is a gum-type polymer and the second is a cross-linked polycarboxylate polymer.
- the composition may additionally comprise further polymers.
- the gum-type polymer may be selected from the group consisting of polysaccharide hydrocolloids, xanthan gum, guar gum, succinoglucan gum, Cellulose, derivatives of any of the above and mixtures thereof.
- the gum-type polymer is a xanthan gum or derivative thereof.
- the gum-type polymer is preferably present at a level of from 0.01% to 10%, more preferably from 0.1% to 3%.
- the polycarboxylate polymer can be a homo or copolymer of monomer units selected from acrylic acid, methacrylic acid, maleic acid, malic acid, maleic anhydride.
- Preferred polycarboxylate polymers are Carbopol from BF Goodrich. Suitable polymers have molecular weight in the range of from 10 000 to 10 000 000, more preferably 100 000 to 10 000000.
- the cross-linked polycarboxylate polymer is preferably present at a level of from 0.01% to 2%, more preferably from 0.01% to 1%, most preferably from 0.1% to 0.8%.
- the ratio of gum-type polymer to cross-linked polycarboxylate polymer is from 100:1 to 1:100, more preferably from 10:1 to 1:10.
- compositions herein may further comprise a variety of other optional ingredients such as surfactants, chelating agents, radical scavengers, antioxidants, stabilisers, builders, soil suspending polymer, polymeric soil release agents, pH control agents, dye transfer inhibitor, solvents, suds controlling agents, suds booster, brighteners, perfumes, pigments, dyes and the like.
- surfactants such as surfactants, chelating agents, radical scavengers, antioxidants, stabilisers, builders, soil suspending polymer, polymeric soil release agents, pH control agents, dye transfer inhibitor, solvents, suds controlling agents, suds booster, brighteners, perfumes, pigments, dyes and the like.
- compositions of the present invention may comprise a surfactant or a mixture thereof including nonionic surfactants, anionic surfactants, cationic surfactants, zwitterionic surfactants and/or amphoteric surfactants.
- compositions according to the present invention may comprise from 0.01% to 50% by weight of the total composition of a surfactant or a mixture thereof, preferably from 0.1 % to 30 % and more preferably from 0.2% to 10%.
- Suitable anionic surfactants for use in the compositions herein include water-soluble salts or acids of the formula ROSO 3 M wherein R preferably is a C 10 -C 24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C 10 -C 20 alkyl component, more preferably a C 12 -C 18 alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium), or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl-ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like).
- Suitable anionic surfactants for use herein are water-soluble salts or acids of the formula RO(A) m SO 3 M wherein R is an unsubstituted C 10 -C 24 alkyl or hydroxyalkyl group having a C 10 -C 24 alkyl component, preferably a C 12 -C 20 alkyl or hydroxyalkyl, more preferably C 12 -C 18 alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation.
- R is an unsubstituted C 10 -C 24 alkyl or hydroxyalkyl group having a C 10 -C 24 alkyl component, preferably a C 12 -C
- Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein.
- Specific examples of substituted ammonium cations include methyl-, dimethyl-, trimethyl-ammonium and quaternary ammonium cations, such as tetramethyl-ammonium, dimethyl piperdinium and cations derived from alkanolamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like.
- Exemplary surfactants are C 12 -C 18 alkyl polyethoxylate (1.0) sulfate, C 12 -C 18 E(1.0)M), C 12 -C 18 alkyl polyethoxylate (2.25) sulfate, C 12 -C 18 E(2.25)M), C 12 -C 18 alkyl polyethoxylate (3.0) sulfate C 12 -C 18 E(3.0), and C 12 -C 18 alkyl polyethoxylate (4.0) sulfate C 12 -C 18 E(4.0)M), wherein M is conveniently selected from sodium and potassium.
- alkyl sulphonates including water-soluble salts or acids of the formula RSO 3 M wherein R is a C 6 -C 22 linear or branched, saturated or unsaturated alkyl group, preferably a C 12 -C 18 alkyl group and more preferably a C 14 -C 16 alkyl group, and M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium), or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl-ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like).
- R is a C 6 -C 22 linear or branched, saturated
- Suitable alkyl aryl sulphonates for use herein include water- soluble salts or acids of the formula RSO 3 M wherein R is an aryl, preferably a benzyl, substituted by a C 6 -C 22 linear or branched saturated or unsaturated alkyl group, preferably a C 12 -C 18 alkyl group and more preferably a C 14 -C 16 alkyl group, and M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium, calcium, magnesium etc) or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl-ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethy
- alkylsulfonates and alkyl aryl sutphonates for use herein include primary and secondary alkylsulfonates and primary and secondary alkyl aryl sulphonates.
- secondary C6-C22 alkyl or C6-C22 alkyl aryl sulphonates it is meant herein that in the formula as defined above, the SO3M or aryl-SO3M group is linked to a carbon atom of the alkyl chain being placed between two other carbons of the said alkyl chain (secondary carbon atom).
- C14-C16 alkyl sulphonate salt is commercially available under the name Hostapur ® SAS from Hoechst and C8-alkylsulphonate sodium salt is commercially available under the name Witconate NAS 8® from Witco SA.
- An example of commercially available alkyl aryl sulphonate is Lauryl aryl sulphonate from Su.Ma.
- Particularly preferred alkyl aryl sulphonates are alkyl benzene sulphonates commercially available under trade name Nansa® available from Albright&Wilson.
- anionic surfactants useful for detersive purposes can also be used herein. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, C 8 -C 24 olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No.
- alkylpolyglycolethersulfates (containing up to 10 moles of ethylene oxide); alkyl ester sulfonates such as C 14-16 methyl ester sulfonates; acyl glycerol sulfonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C 12 -C 18 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C 6 -C 14 diesters), sulfates of alkylpolysaccharides such as the sulfates of alkylpolysaccharides such as
- Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975, to Laughlin, et al. at Column 23, line 58 through Column 29, line 23,
- alkyl carboxylates and alkyl alkoxycarboxylates having from 4 to 24 carbon atoms in the alkyl chain, preferably from 8 to 18 and more preferably from 8 to 16, wherein the alkoxy is propoxy and/or ethoxy and preferably is ethoxy at an alkoxylation degree of from 0.5 to 20, preferably from 5 to 15.
- Suitable amphoteric surfactants for use herein include amine oxides having the following formula R 1 R 2 R 3 NO wherein each of R1, R2 and R3 is independently a saturated substituted or unsubstituted, linear or branched hydrocarbon chain of from 1 to 30 carbon atoms.
- Preferred amine oxide surfactants to be used according to the present invention are amine oxides having the following formula R 1 R 2 R 3 NO wherein R1 is an hydrocarbon chain comprising from 1 to 30 carbon atoms, preferably from 6 to 20, more preferably from 8 to 16, most preferably from 8 to 12, and wherein R2 and R3 are independently substituted or unsubstituted, linear or branched hydrocarbon chains comprising from 1 to 4 carbon atoms, preferably from 1 to 3 carbon atoms, and more preferably are methyl groups.
- R1 may be a saturated, substituted or unsubstituted linear or branched hydrocarbon chain.
- Suitable amine oxides for use herein are for instance natural blend C8-C10 amine oxides as well as C12-C16 amine oxides commercially available from Hoechst.
- Suitable zwitterionic surfactants for use herein contain both a cationic hydrophilic group, i.e., a quaternary ammonium group, and anionic hydrophilic group on the same molecule at a relatively wide range of pH's.
- the typical anionic hydrophilic groups are carboxylates and sulfonates, although other groups like sulfates, phosphonates, and the like can be used.
- R 1 is a hydrophobic group
- R 2 is hydrogen, C 1 -C 6 alkyl, hydroxy alkyl or other substituted C 1 -C 6 alkyl group
- R 3 is C 1 -C 6 alkyl, hydroxy alkyl or other substituted C 1 -C 6 alkyl group which can also be joined to R 2 to form ring structures with the N, or a C 1 -C 6 carboxylic acid group or a C 1 -C 6 sulfonate group
- R 4 is a moiety joining the cationic nitrogen atom to the hydrophilic group and is typically an alkylene, hydroxy alkylene, or polyalkoxy group containing from 1 to 10 carbon atoms
- X is the hydrophilic group which is a carboxylate or sulfonate group.
- R 1 are aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chains that can contain linking groups such as amido groups, ester groups. More preferred R 1 is an alkyl group containing from 1 to 24 carbon atoms, preferably from 8 to 18, and more preferably from 10 to 16. These simple alkyl groups are preferred for cost and stability reasons.
- the hydrophobic group R 1 can also be an amido radical of the formula R a -C(O)-NH-(C(R b ) 2 ) m , wherein R a is an aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chain, preferably an alkyl group containing from 8 up to 20 carbon atoms, preferably up to 18, more preferably up to 16, R b is selected from the group consisting of hydrogen and hydroxy groups, and m is from 1 to 4, preferably from 2 to 3, more preferably 3, with no more than one hydroxy group in any (C(R b ) 2 ) moiety.
- Preferred R 2 is hydrogen, or a C 1 -C 3 alkyl and more preferably methyl.
- Preferred R 3 is a C 1 -C 4 carboxylic acid group or C1-C4 sulfonate group, or a C 1 -C 3 alkyl and more preferably methyl.
- Preferred R 4 is (CH2) n wherein n is an integer from 1 to 10, preferably from 1 to 6, more preferably is from 1 to 3.
- betaine/sulphobetaine Some common examples of betaine/sulphobetaine are described in U.S. Pat. Nos. 2,082,275, 2,702,279 and 2,255,082.
- alkyldimethyl betaines examples include coconut-dimethyl betaine, lauryl dimethyl betaine, decyl dimethyl betaine, 2-(N-decyl-N, N-dimethyl-ammonia)acetate, 2-(N-coco N, N-dimethylammonio) acetate, myristyl dimethyl betaine, palmityl dimethyl betaine, cetyl dimethyl betaine, stearyl dimethyl betaine.
- coconut dimethyl betaine is commercially available from Seppic under the trade name of Amonyl 265®.
- Lauryl betaine is commercially available from Albright & Wilson under the trade name Empigen BB/L®.
- amidobetaines include cocoamidoethylbetaine, cocoamidopropyl betaine or C10-C14 fatty acylamidopropylene(hydropropylene)sulfobetaine.
- C10-C14 fatty acylamidopropylene(hydropropylene)sulfobetaine is commercially available from Sherex Company under the trade name "Varion CAS® sulfobetaine".
- betaine is Lauryl-immino-dipropionate commercially available from Rhone-Poulenc under the trade name Mirataine H2C-HA ®.
- Suitable cationic surfactants for use herein include derivatives of quaternary ammonium, phosphonium, imidazolium and sulfonium compounds.
- Preferred cationic surfactants for use herein are quaternary ammonium compounds wherein one or two of the hydrocarbon groups linked to nitrogen are a saturated, linear or branched alkyl group of 6 to 30 carbon atoms, preferably of 10 to 25 carbon atoms, and more preferably of 12 to 20 carbon atoms, and wherein the other hydrocarbon groups (i.e.
- quaternary ammonium compounds suitable for use herein are non-chloride/non halogen quaternary ammonium compounds.
- the counterion used in said quaternary ammonium compounds are compatible with any persulfate salt and are selected from the group of methyl sulfate, or methylsulfonate, and the like.
- compositions of the present invention are trimethyl quaternary ammonium compounds like myristyl trimethylsulfate, cetyl trimethylsulfate and/or tallow trimethylsulfate.
- trimethyl quaternary ammonium compounds are commercially available from Hoechst, or from Albright & Wilson under the trade name EMPIGEN CM®.
- nonionic surfactants alkoxylated nonionic surfactants and especially ethoxylated nonionic surfactants are suitable for use herein.
- Particularly preferred nonionic surfactants for use herein are the capped alkoxylated nonionic surfactants.
- Suitable capped alkoxylated nonionic surfactants for use herein are according to the formula: R 1 (O-CH 2 -CH 2 ) n -(OR 2 ) m -O-R 3 wherein R 1 is a C 8 -C 24 linear or branched alkyl or alkenyl group, aryl group, alkaryl group, preferably R 1 is a C 8 -C 18 alkyl or alkenyl group, more preferably a C 10 -C 15 alkyl or alkenyl group, even more preferably a C 10 -C 15 alkyl group; wherein R 2 is a C 1 -C 10 linear or branched alkyl group, preferably a C 2 -C 10 linear or branched alkyl group ; wherein R 3 is a C 1 -C 10 alkyl or alkenyl group, preferably a C 1 -C 5 alkyl group, more preferably methyl; and wherein n and m are integers independently
- surfactants are commercially available from BASF under the trade name Plurafac®, from HOECHST under the trade name Genapol® or from ICI under the trade name Symperonic®.
- Preferred capped nonionic alkoxylated surfactants of the above formula are those commercially available under the tradename Genapol® L 2.5 NR from Hoechst, and Plurafac® from BASF.
- compositions of the present invention may comprise a chelating agent as a preferred optional ingredient.
- Suitable chelating agents may be any of those known to those skilled in the art such as the ones selected from the group comprising phosphonate chelating agents, amino carboxylate chelating agents, other carboxylate chelating agents, polyfunctionally-substituted aromatic chelating agents, ethylenediamine N,N'- disuccinic acids, or mixtures thereof.
- chelating agents contribute to further enhance the chemical stability of the compositions.
- a chelating agent may be also desired in the compositions of the present invention as it allows to increase the ionic strength of the compositions herein and thus their stain removal and bleaching performance on various surfaces.
- Suitable phosphonate chelating agents for use herein may include alkali metal ethane 1-hydroxy diphosphonates (HEDP), alkylene poly (alkylene phosphonate), as well as amino phosphonate compounds, including amino aminotri(methylene phosphonic acid) (ATMP), nitrilo trimethylene phosphonates (NTP), ethylene diamine tetra methylene phosphonates, and diethylene triamine penta methylene phosphonates (DTPMP).
- the phosphonate compounds may be present either in their acid form or as salts of different cations on some or all of their acid functionalities.
- Preferred phosphonate chelating agents to be used herein are diethylene triamine penta methylene phosphonate (DTPMP) and ethane 1-hydroxy diphosphonate (HEDP). Such phosphonate chelating agents are commercially available from Monsanto under the trade name DEQUEST®.
- Polyfunctionally-substituted aromatic chelating agents may also be useful in the compositions herein. See U.S. patent 3,812,044, issued May 21, 1974, to Connor et al.
- Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2-dihydroxy -3,5-disulfobenzene.
- a preferred biodegradable chelating agent for use herein is ethylene diamine N,N'- disuccinic acid, or alkali metal, or alkaline earth, ammonium or substitutes ammonium salts thereof or mixtures thereof.
- Ethylenediamine N,N'- disuccinic acids, especially the (S,S) isomer have been extensively described in US patent 4, 704, 233, November 3, 1987, to Hartman and Perkins.
- Ethylenediamine N,N'-disuccinic acids is, for instance, commercially available under the tradename ssEDDS® from Palmer Research Laboratories.
- Suitable amino carboxylates to be used herein include ethylene diamine tetra acetates, diethylene triamine pentaacetates, diethylene triamine pentaacetate (DTPA),N- hydroxyethylethylenediamine triacetates, nitrilotri-acetates, ethylenediamine tetrapropionates, triethylenetetraaminehexa-acetates, ethanol-diglycines, propylene diamine tetracetic acid (PDTA) and methyl glycine di-acetic acid (MGDA), both in their acid form, or in their alkali metal, ammonium, and substituted ammonium salt forms.
- PDTA propylene diamine tetracetic acid
- MGDA methyl glycine di-acetic acid
- Particularly suitable amino carboxylates to be used herein are diethylene triamine penta acetic acid, propylene diamine tetracetic acid (PDTA) which is, for instance, commercially available from BASF under the trade name Trilon FS® and methyl glycine di-acetic acid (MGDA).
- PDTA propylene diamine tetracetic acid
- MGDA methyl glycine di-acetic acid
- carboxylate chelating agents to be used herein include salicylic acid, aspartic acid, glutamic acid, glycine, malonic acid or mixtures thereof.
- R 1 , R 2 , R 3 , and R 4 are independently selected from the group consisting of -H, alkyl, alkoxy, aryl, aryloxy, -Cl, -Br, -NO 2 , -C(O)R', and -SO 2 R"; wherein R' is selected from the group consisting of -H, -OH, alkyl, alkoxy, aryl, and aryloxy; R" is selected from the group consisting of alkyl, alkoxy, aryl, and aryloxy; and R 5 , R 6 , R 7 , and R 8 are independently selected from the group consisting of -H and alkyl.
- Particularly preferred chelating agents to be used herein are amino aminotri(methylene phosphonic acid), di-ethylene-triamino-pentaacetic acid, diethylene triamine penta methylene phosphonate, 1-hydroxy ethane diphosphonate, ethylenediamine N, N'-disuccinic acid, and mixtures thereof.
- compositions according to the present invention comprise up to 5% by weight of the total composition of a chelating agent, or mixtures thereof, preferably from 0.01% to 1.5% by weight and more preferably from 0.01% to 0.5%.
- compositions of the present invention may comprise a radical scavenger or a mixture thereof.
- Suitable radical scavengers for use herein include the well-known substituted mono and dihydroxy benzenes and their analogs, alkyl and aryl carboxylates and mixtures thereof.
- Preferred such radical scavengers for use herein include di-tert-butyl hydroxy toluene (BHT), hydroquinone, di-tert-butyl hydroquinone, mono-tert-butyl hydroquinone, tert-butyl-hydroxy anysole, benzoic acid, toluic acid, catechoi, t-butyl catechol, benzylamine, 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl) butane, n-propyl-gallate or mixtures thereof and highly preferred is di-tert-butyl hydroxy toluene.
- Such radical scavengers like N-propyl-gallate may be commercially available from Nipa Laboratories under the trade name Ni
- Radical scavengers when used are typically present herein in amounts up to 10% by weight of the total composition and preferably from 0.001 % to 0.5% by weight.
- radical scavengers may contribute to the chemical stability of the bleaching compositions of the present invention as well as to the safety profile of the compositions of the present invention.
- compositions according to the present invention may further comprise a suds controlling agent such as 2-alkyl alkanol, or mixtures thereof, as a preferred optional ingredient.
- a suds controlling agent such as 2-alkyl alkanol, or mixtures thereof, as a preferred optional ingredient.
- Particularly suitable to be used in the present invention are the 2-alkyl alkanols having an alkyl chain comprising from 6 to 16 carbon atoms, preferably from 8 to 12 and a terminal hydroxy group, said alkyl chain being substituted in the ⁇ position by an alkyl chain comprising from 1 to 10 carbon atoms, preferably from 2 to 8 and more preferably 3 to 6.
- Such suitable compounds are commercially available, for instance, in the Isofol® series such as Isofol® 12 (2-butyl octanol) or Isofol® 16 (2-hexyl decanol).
- suds controlling agents may include alkali metal (e.g., sodium or potassium) fatty acids, or soaps thereof, containing from about 8 to about 24, preferably from about 10 to about 20 carbon atoms.
- alkali metal e.g., sodium or potassium
- soaps thereof containing from about 8 to about 24, preferably from about 10 to about 20 carbon atoms.
- the fatty acids including those used in making the soaps can be obtained from natural sources such as, for instance, plant or animal-derived glycerides (e.g., palm oil, coconut oil, babassu oil, soybean oil, castor oil, tallow, whale oil, fish oil, tallow, grease, lard and mixtures thereof).
- plant or animal-derived glycerides e.g., palm oil, coconut oil, babassu oil, soybean oil, castor oil, tallow, whale oil, fish oil, tallow, grease, lard and mixtures thereof.
- the fatty acids can also be synthetically prepared (e.g., by oxidation of petroleum stocks or by the Fischer-Tropsch process).
- Alkali metal soaps can be made by direct saponification of fats and oils or by the neutralization of the free fatty acids which are prepared in a separate manufacturing process. Particularly useful are the sodium and potassium salts of the mixtures of fatty acids derived from coconut oil and tallow, i.e., sodium and potassium tallow and coconut soaps.
- tallow is used herein in connection with fatty acid mixtures which typically have an approximate carbon chain length distribution of 2.5% C14, 29% C16, 23% C18, 2% palmitoleic, 41.5% oleic and 3% linoleic (the first three fatty acids listed are saturated). Other mixtures with similar distribution, such as the fatty acids derived from various animal tallows and lard, are also included within the term tallow.
- the tallow can also be hardened (i.e., hydrogenated) to convert part or all of the unsaturated fatty acid moieties to saturated fatty acid moieties.
- coconut refers to fatty acid mixtures which typically have an approximate carbon chain length distribution of about 8% C8, 7% C10, 48% C12, 17% C14, 9% C16, 2% C18, 7% oleic, and 2% linoleic (the first six fatty acids listed being saturated).
- Other sources having similar carbon chain length distribution such as palm kernel oil and babassu oil are included with the term coconut oil.
- Suitable suds controlling agents are exemplified by silicones, and silica-silicone mixtures.
- Silicones can be generally represented by alkylated polysiloxane materials while silica is normally used in finely divided forms exemplified by silica aerogels and xerogels and hydrophobic silicas of various types. These materials can be incorporated as particulates in which the suds controlling agent is advantageously releasably incorporated in a water-soluble or water-dispersible, substantially non-surface-active detergent impermeable carrier.
- the suds controlling agent can be dissolved or dispersed in a liquid carrier and applied by spraying on to one or more of the other components.
- a preferred silicone suds controlling agent is disclosed in Bartollota et al. U.S. Patent 3 933 672.
- Other particularly useful suds controlling agents are the self-emulsifying silicone suds controlling agents, described in German Patent Application DTOS 2 646 126 published April 28, 1977.
- An example of such a compound is DC-544, commercially available from Dow Corning, which is a siloxane-glycol copolymer.
- compositions can comprise a silicone/silica mixture in combination with fumed nonporous silica such as AerosilR.
- Especially preferred suds controlling agent are the suds controlling agent system comprising a mixture of silicone oils and the 2-alkyl-alcanols.
- compositions herein may comprise up to 4% by weight of the total composition of a suds controlling agent, or mixtures thereof, preferably from 0.1% to 1.5% and most preferably from 0.1% to 0.8%.
- compositions of the present invention may further comprise up to 10%, preferably from 2% to 4% by weight of the total composition of an alcohol according to the formula HO - CR'R" - OH, wherein R' and R" are independently H or a C2-C10 hydrocarbon chain and/or cycle.
- Preferred alcohol according to that formula is propanediol. Indeed, we have observed that these alcohols in general and propanediol in particular also improve the chemical stability of the compositions.
- inorganic stabilizers include sodium stannate and various alkali metal phosphates such as the well-known sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate.
- compositions according to the present invention may further comprise a soil suspending polyamine polymer or mixtures thereof, as optional ingredient.
- a soil suspending polyamine polymer known to those skilled in the art may be used herein.
- Particularly suitable polyamine polymers for use herein are polyalkoxylated polyamines.
- Such materials can conveniently be represented as molecules of the empirical structures with repeating units : and wherein R is a hydrocarbyl group, usually of 2-6 carbon atoms; R 1 may be a C 1- C 20 hydrocarbon; the alkoxy groups are ethoxy, propoxy, and the like, and y is 2-30, most preferably from 10-20; n is an integer of at least 2, preferably from 2-20, most preferably 3-5; and X- is an anion such as halide or methylsulfate, resulting from the quatemization reaction.
- ethoxylated polyethylene amine in particular ethoxylated tetraethylenepentamine, and quaternized ethoxylated hexamethylene diamine.
- Soil suspending polyamine polymers contribute to the benefits of the present invention, i.e., that when added on top of said diacyl peroxide, further improve the stain removal performance of a composition comprising them, especially under laundry pretreatment conditions, as described herein. Indeed, they allow to improve the stain removal performance on a variety of stains including greasy stains, enzymatic stains, clay/mud stains as well as on bleachable stains.
- compositions comprise up to 10% by weight of the total composition of such a soil suspending polyamine polymer or mixtures thereof, preferably from 0.1 % to 5% and more preferably from 0.3% to 2%.
- compositions herein may also comprise other polymeric soil release agents known to those skilled in the art.
- polymeric soil release agents are characterised by having both hydrophilic segments, to hydrophilize the surface of hydrophobic fibres, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibres and remain adhered thereto through completion of washing and rinsing cycles and, thus, serve as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.
- the polymeric soil release agents useful herein especially include those soil release agents having: (a) one or more nonionic hydrophile components consisting essentially of (i) polyoxyethylene segments with a degree of polymerization of at least 2, or (ii) oxypropylene or polyoxypropylene segments with a degree of polymerization of from 2 to 10, wherein said hydrophile segment does not encompass any oxypropylene unit unless it is bonded to adjacent moieties at each end by ether linkages, or (iii) a mixture of oxyalkylene units comprising oxyethylene and from 1 to about 30 oxypropylene units wherein said mixture contains a sufficient amount of oxyethylene units such that the hydrophile component has hydrophilicity great enough to increase the hydrophilicity of conventional polyester synthetic fiber surfaces upon deposit of the soil release agent on such surface, said hydrophile segments preferably comprising at least about 25% oxyethylene units and more preferably, especially for such components having about 20 to 30 oxypropylene units, at least about 50% oxyethylene units; or
- the polyoxyethylene segments of (a)(i) will have a degree of polymerization of from about 1 to about 200, although higher levels can be used, preferably from 3 to about 150, more preferably from 6 to about 100.
- Suitable oxy C 4 -C 6 alkylene hydrophobe segments include, but are not limited to, end-caps of polymeric soil release agents such as MO 3 S(CH 2 ) n OCH 2 CH 2 O-, where M is sodium and n is an integer from 4-6, as disclosed in U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink.
- Polymeric soil release agents useful in the present invention also include cellulosic derivatives such as hydroxyether cellulosic polymers, co-polymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, and the like. Such agents are commercially available and include hydroxyethers of cellulose such as METHOCEL (Dow). Cellulosic soil release agents for use herein also include those selected from the group consisting of C 1 -C 4 alkyl and C 4 hydroxyalkyl cellulose; see U.S. Patent 4,000,093, issued December 28, 1976 to Nicol, et al.
- Soil release agents characterised by poly(vinyl ester) hydrophobe segments include graft co-polymers of poly(vinyl ester), e.g., C 1 -C 6 vinyl esters, preferably poly(vinyl acetate) grafted onto polyalkylene oxide backbones, such as polyethylene oxide backbones.
- poly(vinyl ester) e.g., C 1 -C 6 vinyl esters
- poly(vinyl acetate) grafted onto polyalkylene oxide backbones such as polyethylene oxide backbones.
- Commercially available soil release agents of this kind include the SOKALAN type of material, e.g., SOKALAN HP-22, available from BASF (West Germany).
- One type of preferred soil release agent is a co-polymer having random blocks of ethylene terephthalate and polyethylene oxide (PEO) terephthalate.
- the molecular weight of this polymeric soil release agent is in the range of from about 25,000 to about 55,000. See U.S. Patent 3,959,230 to Hays, issued May 25, 1976 and U.S. Patent 3,893,929 to Basadur issued July 8, 1975.
- Another preferred polymeric soil release agent is a polyester with repeat units of ethylene terephthalate units which contains 10-15% by weight of ethylene terephthalate units together with 90-80% by weight of polyoxyethylene terephthalate units, derived from a polyoxyethylene glycol of average molecular weight 300-5,000.
- this polymer include the commercially available material ZELCON 5126 (from Dupont) and MILEASE T (from ICI). See also U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink.
- Another preferred polymeric soil release agent is a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and terminal moieties covalently attached to the backbone.
- These soil release agents are fully described in U.S. Patent 4,968,451, issued November 6, 1990 to J.J. Scheibel and E.P. Gosselink.
- Other suitable polymeric soil release agents include the terephthalate polyesters of U.S. Patent 4,711,730, issued December 8, 1987 to Gosselink et al, the anionic end-capped oligomeric esters of U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink, and the block polyester oligomeric compounds of U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink.
- Preferred polymeric soil release agents also include the soil release agents of U.S. Patent 4,877,896, issued October 31, 1989 to Maldonado et al, which discloses anionic, especially sulfoaroyl, end-capped terephthalate esters.
- Still another preferred soil release agent is an oligomer with repeat units of terephthaloyl units, sulfoisoterephthaloyl units, oxyethyleneoxy and oxy-1,2-propylene units.
- the repeat units form the backbone of the oligomer and are preferably terminated with modified isethionate end-caps.
- a particularly preferred soil release agent of this type comprises about one sulfoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy and oxy-1,2-propyleneoxy units in a ratio of from about 1.7 to about 1.8, and two end-cap units of sodium 2-(2-hydroxyethoxy)-ethanesulfonate.
- Said soil release agent also comprises from about 0.5% to about 20%, by weight of the oligomer, of a crystalline-reducing stabilizer, preferably selected from the group consisting of xylene sulfonate, cumene sulfonate, toluene sulfonate, and mixtures thereof.
- a crystalline-reducing stabilizer preferably selected from the group consisting of xylene sulfonate, cumene sulfonate, toluene sulfonate, and mixtures thereof.
- soil release agents will generally comprise from 0.01% to 10.0%, by weight, of the detergent compositions herein, typically from 0.1% to 5%, preferably from 0.2% to 3.0%.
- compositions of the present invention may also include one or more materials effective for inhibiting the transfer of dyes from one dyed surface to another during the cleaning process.
- dye transfer inhibiting agents include polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, co-polymers of N-vinylpyrrolidone and N-vinylimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof. If used, these agents typically comprise from 0.01% to 10% by weight of the composition, preferably from 0.01 % to 5%, and more preferably from 0.05% to 2%.
- the polyamine N-oxide polymers preferred for use herein contain units having the following structural formula: R-A x -P; wherein P is a polymerizable unit to which an N-O group can be attached or the N-O group can form part of the polymerizable unit or the N-O group can be attached to both units;
- x is 0 or 1; and
- R is aliphatic, ethoxylated aliphatics, aromatics, heterocyclic or alicyclic groups or any combination thereof to which the nitrogen of the N-O group can be attached or the N-O group is part of these groups.
- Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof.
- the N-O group can be represented by the following general structures: wherein R 1 , R 2 , R 3 are aliphatic, aromatic, heterocyclic or alicyclic groups or combinations thereof; x, y and z are 0 or 1; and the nitrogen of the N-O group can be attached or form part of any of the aforementioned groups.
- the amine oxide unit of the polyamine N-oxides has a pKa ⁇ 10, preferably pKa ⁇ 7, more preferred pKa ⁇ 6.
- Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties.
- suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof. These polymers include random or block co-polymers where one monomer type is an amine N-oxide and the other monomer type is an N-oxide.
- the amine N-oxide polymers typically have a ratio of amine to the amine N-oxide of 10:1 to 1:1,000,000. However, the number of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate co-polymerization or by an appropriate degree of N-oxidation.
- the polyamine oxides can be obtained in almost any degree of polymerization. Typically, the average molecular weight is within the range of 500 to 1,000,000; more preferred 1,000 to 500,000; most preferred 5,000 to 100,000. This preferred class of materials can be referred to as "PVNO".
- the most preferred polyamine N-oxide useful in the detergent compositions herein is poly(4-vinylpyridine-N-oxide) which as an average molecular weight of about 50,000 and an amine to amine N-oxide ratio of about 1:4.
- Co-polymers of N-vinylpyrrolidone and N-vinylimidazole polymers are also preferred for use herein.
- the PVPVI has an average molecular weight range from 5,000 to 1,000,000, more preferably from 5,000 to 200,000, and most preferably from 10,000 to 20,000. (The average molecular weight range is determined by light scattering as described in Barth, et al., Chemical Analysis , Vol 113.
- the PVPVI co-polymers typically have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1:1 to 0.2:1, more preferably from 0.8:1 to 0.3:1, most preferably from 0.6:1 to 0.4:1. These co-polymers can be either linear or branched.
- compositions may also employ a polyvinylpyrrolidone ("PVP") having an average molecular weight of from 5,000 to 400,000, preferably from 5,000 to 200,000, and more preferably from 5,000 to 50,000.
- PVP polyvinylpyrrolidone
- compositions containing PVP can also contain polyethylene glycol ("PEG") having an average molecular weight from 500 to 100,000, preferably from 1,000 to 10,000.
- PEG polyethylene glycol
- the ratio of PEG to PVP on a ppm basis delivered in wash solutions is from 2:1 to 50:1, and more preferably from 3:1 to 10:1.
- suds boosters such as C 10 -C 16 alkanolamides can be incorporated into the compositions, typically at 1%-10% levels.
- the C 10 -C 14 monoethanol and diethanol amides illustrate a typical class of such suds boosters.
- Use of such suds boosters with high sudsing adjunct surfactants such as the amine oxides, betaines and sultaines noted above is also advantageous.
- soluble magnesium salts such as MgCl 2 , MgSO 4 , and the like, can be added at levels of, for example, 0.1%-2%, to provide additional suds and to enhance grease removal performance.
- optical brighteners fluorescent whitening agents or other brightening or whitening agents known in the art can be incorporated in the instant compositions when they are designed for fabric treatment or laundering, at levels typically from about 0.05% to about 1.2%, by weight, of the detergent compositions herein.
- Commercial optical brighteners which may be useful in the present invention can be classified into subgroups, which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acids, methinecyanines, dibenzothiophene-5,5-dioxide, azoles, 5- and 6- membered-ring heterocyclic brighteners, this list being illustrative and nonlimiting. Examples of such brighteners are disclosed in "The Production and Application of Fluorescent Brightening Agents", M. Zahradnik, Published by John Wiley & Sons, New York (1982).
- optical brighteners which are useful in the present compositions are those identified in U.S. Patent 4,790,856, issued to Wixon on December 13, 1988. These brighteners include the PHORWHITE series of brighteners from Verona. Other brighteners disclosed in this reference include: Tinopal UNPA, Tinopal CBS and Tinopal 5BM; available from Ciba-Geigy; Artic White CC and Artic White CWD, available from Hilton-Davis, located in Italy; the 2-(4-styryl-phenyl)-2H-naphthol[1,2-d]triazoles; 4,4'-bis- (1,2,3-triazol-2-yl)-stilbenes; 4,4'-bis(styryl)bisphenyls; and the aminocoumarins.
- these brighteners include 4-methyl-7-diethyl- amino coumarin; 1,2-bis(-benzimidazol-2-yl)ethylene; 2,5-bis(benzoxazol-2-yl)thiophene; 2-styryl-napth-[1,2-d]oxazole; and 2-(stilbene-4-yl)-2H-naphtho- [1,2-d]triazole. See also U.S. Patent 3,646,015, issued February 29, 1972, to Hamilton. Anionic brighteners are typically preferred herein.
- a variety of suitable means can be used for adjusting the pH of the compositions, including organic or inorganic acids, alkanolamines and the like. It may be advantageous to use alkanolamines, in particular monoethanolamine, inasmuch as they have an additional effect of regulating the viscosity of the emulsion, without compromising on its physical stability.
- composition described herein may also comprise minor ingredients such as pigment or dyes and perfumes.
- liquid aqueous composition of the present invention needs to be contacted with the surface to treat.
- surfaces any inanimate surface.
- inanimate surfaces include, but are not limited to, hard-surfaces typically found in houses like kitchens, bathrooms, or in car interiors, e.g., tiles, walls, floors, chrome, glass, smooth vinyl, any plastic, plastified wood, table top, sinks, cooker tops, dishes, sanitary fittings such as sinks, showers, shower curtains, wash basins, WCs and the like, as well as fabrics including clothes, curtains, drapes, bed linens, bath linens, table cloths, sleeping bags, tents, upholstered fumiture and the like, and carpets.
- Inanimate surfaces also include household appliances including, but not limited to, refrigerators, freezers, washing machines, automatic dryers, ovens, microwave ovens, dishwashers and so on.
- bleaching and/or disinfecting said surfaces as the compositions of the present invention comprise a bleaching system based of peracid compound or a mixture thereof and optionally cleaning as said compositions may comprise a surfactant or any other conventional cleaning agents.
- the present invention also encompasses a process of treating, especially bleaching a fabric, as the inanimate surface.
- a composition according to the present invention is contacted with the fabrics to be treated.
- pretreatment mode where a liquid bleaching composition, as defined herein, is applied neat onto said fabrics before the fabrics are rinsed, or washed then rinsed, or in a "soaking mode” where a liquid bleaching composition, as defined herein, is first diluted in an aqueous bath and the fabrics are immersed and soaked in the bath, before they are rinsed, or in a "through the wash mode", where a liquid bleaching composition, as defined herein, is added on top of a wash liquor formed by dissolution or dispersion of a typical laundry detergent. It is also essential in both cases, that the fabrics be rinsed after they have been contacted with said composition, before said composition has completely dried off.
- the processes of bleaching surfaces according to the present invention delivers effective whiteness performance as well as effective stain removal performance.
- compositions according to the present invention are preferably contacted to fabrics in a liquid form. Indeed, by "in a liquid form”, it is meant herein the liquid compositions according to the present invention per se in neat or in their diluted form.
- compositions according to the present invention are typically used in diluted form in a laundry operation.
- in diluted form it is meant herein that the compositions for the bleaching of fabrics according to the present invention may be diluted by the user, preferably with water. Such dilution may occur for instance in hand laundry applications as well as by other means such as in a washing machine.
- Said compositions can be diluted up to 500 times, preferably from 5 to 200 times and more preferably from 10 to 80 times.
- the process of bleaching fabrics according to the present invention comprises the steps of first contacting said fabrics with a bleaching composition according to the present invention, in its diluted form, then allowing said fabrics to remain in contact with said composition, for a period of time sufficient to bleach said fabrics, typically 1 to 60 minutes, preferably 5 to 30 minutes, then rinsing said fabrics with water. If said fabrics are to be washed, i.e., with a conventional composition comprising at least one surface active agent, said washing may be conducted together with the bleaching of said fabrics by contacting said fabrics at the same time with a bleaching composition according to the present invention and said detergent composition, or said washing may be conducted before or after that said fabrics have been bleached.
- said process according to the present invention allows to bleach fabrics and optionally to wash fabrics with a detergent composition comprising at least one surface active agent before the step of contacting said fabrics with said bleaching composition and/or in the step where said fabrics are contacted with said bleaching composition and/or after the step where said fabrics are contacted with said bleaching composition and before the rinsing step and/or after the rinsing step.
- the process of bleaching fabrics comprises the step of contacting fabrics with a liquid bleaching composition according to the present invention, in its neat form, of allowing said fabrics to remain in contact with said bleaching composition for a period of time sufficient to bleach said fabrics, typically 5 seconds to 30 minutes, preferably 1 minute to 10 minutes and then rinsing said fabrics with water. If said fabrics are to be washed, i.e., with a conventional composition comprising at least one surface active agent, said washing may be conducted before or after that said fabrics have been bleached.
- the present invention provides liquid bleaching compositions that may be applied neat onto a fabric to bleach, despite a standing prejudice against using bleach-containing compositions neat on fabrics while being safe to colors and fabrics perse.
- the bleaching pretreatment operation may also be followed by the diluted bleaching process as described herein before either in bucket (hand operation) or in a washing machine.
- bleaching processes herein after said fabrics have been washed with a conventional laundry detergent composition. Indeed, it has been observed that bleaching said fabrics with the compositions according to the present invention (typically diluted bleaching methods) after to washing them with a detergent composition provides superior whiteness and stain removal with less energy and detergent than if said fabrics are bleached first then washed.
- the present invention also encompasses a process of treating a hard-surface, as the inanimate surface.
- a composition as defined herein, is contacted with the hard-surfaces to be treated.
- the present invention also encompasses a process of treating a hard-surface with a composition, as defined herein, wherein said process comprises the step of applying said composition to said hard-surface, preferably only soiled portions thereof, and optionally rinsing said hard-surface.
- composition as defined herein, may be applied to the surface to be treated in its neat form or in its diluted form typically up to 200 times their weight of water, preferably into 80 to 2 times their weight of water, and more preferably 60 to 2 times.
- compositions of the present invention are easy to rinse and provide good shine characteristics on the treated surfaces.
- hard-surfaces any hard-surfaces as mentioned herein before as well as dishes.
- compositions herein can be packaged in a variety of containers including conventional bottles, bottles equipped with roll-on, sponge, brusher or sprayers.
- the composition is packaged in a two compartment container, wherein the bleaching composition as described herein is packaged in one compartment and a second composition is packaged in the second compartment.
- the second composition is a conventional heady duty liquid detergent composition, preferably comprising ingredients, particularly bleach-sensitive ingredients such as surfactants, enzymes and perfumes.
- compositions were made by mixing the listed ingredients in the listed proportions (weight % unless otherwise specified).
- Compositions I II III IV V (% weight) Alkylsulfonate 1 1.5 0.5 2 - Sodium alkyl-3-ethoxy sulfate 1 0.5 1.5 - 2 PAP 3 2 4 1 5 Hydroxyethanediphosphonate 0.1 0.05 0.16 0.1 - di-tert butyl hydroxy toluene 0.05 - - - 0.1 Propyl gallate - 0.1 - 0.05 - Perfume - 0.2 0.2 0.3 0.1 brightener - 0.01 0.05 0.03 - NaOH - - 0.1 0.05 - xanthan gum 0.2 - 0.3 0.5 - carbopol ETD 2691 0.1 - - 0.2 carbopol ETD 2623 0.3 - 0.8 1 - carboxylmethoxycellulose - 1 - - 0.8 Alkanizing / acidizing agent up to pH 3.9
- Witkonate NAS 8® is an alkylsulphonate available from Witco AS Sodium alkyl-3-ethoxy sulfate is commercially available from Albright & Wilson BHT is di-tert butyl hydroxy toluene.
- HEDP is ethane 1-hydroxy diphosphonate commercially available from Monsanto under the multitude Dequest®.
- PAP is phthalimidoperoxyhexanoic acid available from Ausimont under the tradename Euroco® Carbopol®ETD 2623 and 2991 are polymers available from BFGoodrich
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Molecular Biology (AREA)
- Emergency Medicine (AREA)
- Detergent Compositions (AREA)
Claims (7)
- Composition de blanchiment ayant un pH inférieur à pH7, la composition comprenant un acide peroxycarboxylique solide essentiellement insoluble dans l'eau. de formule générale: dans laquelle R est un alkyle en C1 à C20 et dans laquelle A, B, C et D sont indépendamment ou un hydrogène ou des groupes substituants individuellement choisis dans le groupe constitué par un alkyle, un hydroxyle, un nitro, un halogène, une amine, un ammonium, un cyanure, un carboxylique, un sulfate, un sulfonate, des aldéhydes et leurs mélange(s);
et un système polymère comprenant une combinaison de:au moins un polymère de type gomme choisi dans le groupe constitué par des hydrocolloïdes de polysaccharide, de la gomme de xanthane, de la gomme guar, de la gomme de succinoglucane, de la cellulose, et leurs mélanges; et d'au moins un polymère polycarboxylique, - Composition de blanchiment selon la revendication 2, dans laquelle l'acide peroxycarboxylique a une formule dans laquelle R est CH2 et n est 5.
- Composition de blanchiment selon l'une quelconque des revendications précédentes, dans laquelle le rapport du polymère de type gomme sur le polymère de polycarboxylate va de 10/1 à 1/10.
- Composition de blanchiment selon l'une quelconque des revendications précédentes, comprenant en outre un agent tensioactif de préférence à une teneur inférieure à 5 % en poids de la composition.
- Composition de blanchiment selon l'une quelconque des revendications précédentes, conditionnée dans un récipient comprenant au moins deux compartiments de telle sorte que la composition de blanchiment est conditionnée dans l'un des compartiments et qu'une seconde composition est conditionnée dans le second compartiment.
- Composition de blanchiment selon la revendication 6, dans laquelle la seconde composition est exempte d'agent de blanchiment, en particulier d'acide peroxycarboxylique.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
WOPCT/US98/23990 | 1998-11-10 | ||
PCT/US1998/023990 WO2000027977A1 (fr) | 1998-11-10 | 1998-11-10 | Compositions de blanchiment |
PCT/US1999/026607 WO2000027979A1 (fr) | 1998-11-10 | 1999-11-10 | Compositions de blanchiment |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1129171A1 EP1129171A1 (fr) | 2001-09-05 |
EP1129171B1 true EP1129171B1 (fr) | 2005-08-24 |
Family
ID=22268276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99958882A Expired - Lifetime EP1129171B1 (fr) | 1998-11-10 | 1999-11-10 | Compositions de blanchiment |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP1129171B1 (fr) |
JP (1) | JP2003525962A (fr) |
AR (1) | AR018969A1 (fr) |
AT (1) | ATE302839T1 (fr) |
AU (2) | AU1583699A (fr) |
CO (1) | CO5211012A1 (fr) |
DE (1) | DE69926907T2 (fr) |
ES (1) | ES2249044T3 (fr) |
MA (1) | MA25306A1 (fr) |
TR (1) | TR200101312T2 (fr) |
WO (2) | WO2000027977A1 (fr) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10031081B2 (en) | 2013-03-05 | 2018-07-24 | Ecolab Usa Inc. | Peroxycarboxylic acid compositions suitable for inline optical or conductivity monitoring |
US10077415B2 (en) | 2008-03-28 | 2018-09-18 | Ecolab Usa Inc. | Detergents capable of cleaning, bleaching, sanitizing and/or disinfecting textiles including sulfoperoxycarboxylic acids |
US10165774B2 (en) | 2013-03-05 | 2019-01-01 | Ecolab Usa Inc. | Defoamer useful in a peracid composition with anionic surfactants |
US10172351B2 (en) | 2015-09-04 | 2019-01-08 | Ecolab Usa Inc. | Performic acid on-site generator and formulator |
US10233149B2 (en) | 2014-12-18 | 2019-03-19 | Ecolab Usa Inc. | Methods for forming peroxyformic acid and uses thereof |
US10285401B2 (en) | 2015-09-10 | 2019-05-14 | Ecolab Usa Inc. | Self indicating antimicrobial chemistry |
US10542751B2 (en) | 2014-12-18 | 2020-01-28 | Ecolab Usa Inc. | Generation of peroxyformic acid through polyhydric alcohol formate |
US10669512B2 (en) | 2008-03-28 | 2020-06-02 | Ecolab Usa Inc. | Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents |
US10893674B2 (en) | 2013-03-05 | 2021-01-19 | Ecolab Usa Inc. | Efficient stabilizer in controlling self accelerated decomposition temperature of peroxycarboxylic acid compositions with mineral acids |
US11260040B2 (en) | 2018-06-15 | 2022-03-01 | Ecolab Usa Inc. | On site generated performic acid compositions for teat treatment |
US12096768B2 (en) | 2019-08-07 | 2024-09-24 | Ecolab Usa Inc. | Polymeric and solid-supported chelators for stabilization of peracid-containing compositions |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MXPA05000783A (es) * | 2002-07-20 | 2005-04-28 | Reckitt Benckiser Nv | Composicion para tratar manchas. |
DE10361081A1 (de) * | 2003-06-13 | 2005-01-05 | Henkel Kgaa | Verfahren zur Stabilisierung von Peroxycarbonsäuren in tensidhaltigen Dispersionen |
DE10361100A1 (de) † | 2003-06-13 | 2005-01-05 | Henkel Kgaa | Lagerstabile Kapseln auf Basis von Peroxycarbonsäuren |
CN1878904A (zh) * | 2003-11-13 | 2006-12-13 | 皇家飞利浦电子股份有限公司 | 改善织物抗皱性的复合物和方法,容纳这种复合物的装置 |
US8048145B2 (en) | 2004-07-22 | 2011-11-01 | Endologix, Inc. | Graft systems having filling structures supported by scaffolds and methods for their use |
US9321664B2 (en) | 2011-12-20 | 2016-04-26 | Ecolab Usa Inc. | Stable percarboxylic acid compositions and uses thereof |
US9752105B2 (en) | 2012-09-13 | 2017-09-05 | Ecolab Usa Inc. | Two step method of cleaning, sanitizing, and rinsing a surface |
EP4186969A1 (fr) * | 2021-11-26 | 2023-05-31 | Henkel AG & Co. KGaA | Poudre diluable super-concentrée pour laver la vaisselle |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE68905089T2 (de) * | 1988-06-22 | 1993-07-22 | Akzo Nv | Stabile, giessbare wasserhaltige bleichmittelzusammensetzungen, die feste organische peroxysaeure und mindestens zwei polymere enthalten. |
US4992194A (en) * | 1989-06-12 | 1991-02-12 | Lever Brothers Company, Division Of Conopco Inc. | Stably suspended organic peroxy bleach in a structured aqueous liquid |
ATE131523T1 (de) * | 1989-08-08 | 1995-12-15 | Akzo Nobel Nv | Wässerige peroxidzusammensetzungen mit verbessertem sicherheitsprofil |
EP0435379A3 (en) * | 1989-12-22 | 1991-07-31 | Akzo N.V. | Suspension, coating, agglomeration and uses of imidoperoxycarboxylic acids |
JP2925794B2 (ja) * | 1991-08-20 | 1999-07-28 | 花王株式会社 | 漂白洗浄剤組成物 |
CA2125719C (fr) * | 1993-06-30 | 1998-12-15 | Josephine L. Kong-Chan | Compositions detergentes aqueuses stables et versables contenant un agent de blanchiment a base de peroxyde et un agent tensio-actif largement non ionique |
CA2126382C (fr) * | 1993-06-30 | 1998-12-15 | Josephine L. Kong-Chan | Compositions de detersifs a lessive aqueuses liquides et stables contenant du peroxyacide comme agent de blanchiment |
DE69327311T2 (de) * | 1993-07-14 | 2000-08-10 | The Procter & Gamble Company, Cincinnati | Stabile Reinigungsmittelzusammensetzungen welche Bleichmittel enthalten |
US5372740A (en) * | 1993-09-03 | 1994-12-13 | Lever Brothers Company, Division Of Conopco, Inc. | Homogeneous liquid automatic dishwashing detergent composition based on sodium potassium tripolyphosphate |
US5741767A (en) * | 1995-11-16 | 1998-04-21 | Lever Brothers Company, Division Of Conopco, Inc. | Peracid based dishwashing detergent composition |
-
1998
- 1998-11-10 WO PCT/US1998/023990 patent/WO2000027977A1/fr active Application Filing
- 1998-11-10 AU AU15836/99A patent/AU1583699A/en not_active Abandoned
-
1999
- 1999-11-10 AU AU16159/00A patent/AU1615900A/en not_active Abandoned
- 1999-11-10 ES ES99958882T patent/ES2249044T3/es not_active Expired - Lifetime
- 1999-11-10 CO CO99070886A patent/CO5211012A1/es not_active Application Discontinuation
- 1999-11-10 AT AT99958882T patent/ATE302839T1/de not_active IP Right Cessation
- 1999-11-10 WO PCT/US1999/026607 patent/WO2000027979A1/fr active IP Right Grant
- 1999-11-10 JP JP2000581146A patent/JP2003525962A/ja not_active Withdrawn
- 1999-11-10 AR ARP990105708A patent/AR018969A1/es unknown
- 1999-11-10 TR TR2001/01312T patent/TR200101312T2/xx unknown
- 1999-11-10 DE DE69926907T patent/DE69926907T2/de not_active Expired - Lifetime
- 1999-11-10 EP EP99958882A patent/EP1129171B1/fr not_active Expired - Lifetime
-
2001
- 2001-05-09 MA MA26183A patent/MA25306A1/fr unknown
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10077415B2 (en) | 2008-03-28 | 2018-09-18 | Ecolab Usa Inc. | Detergents capable of cleaning, bleaching, sanitizing and/or disinfecting textiles including sulfoperoxycarboxylic acids |
US11827867B2 (en) | 2008-03-28 | 2023-11-28 | Ecolab Usa Inc. | Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents |
US11015151B2 (en) | 2008-03-28 | 2021-05-25 | Ecolab Usa Inc. | Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents |
US10669512B2 (en) | 2008-03-28 | 2020-06-02 | Ecolab Usa Inc. | Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents |
US10893674B2 (en) | 2013-03-05 | 2021-01-19 | Ecolab Usa Inc. | Efficient stabilizer in controlling self accelerated decomposition temperature of peroxycarboxylic acid compositions with mineral acids |
US10165774B2 (en) | 2013-03-05 | 2019-01-01 | Ecolab Usa Inc. | Defoamer useful in a peracid composition with anionic surfactants |
US11206826B2 (en) | 2013-03-05 | 2021-12-28 | Ecolab Usa Inc. | Defoamer useful in a peracid composition with anionic surfactants |
US11026421B2 (en) | 2013-03-05 | 2021-06-08 | Ecolab Usa Inc. | Efficient stabilizer in controlling self accelerated decomposition temperature of peroxycarboxylic acid compositions with mineral acids |
US10031081B2 (en) | 2013-03-05 | 2018-07-24 | Ecolab Usa Inc. | Peroxycarboxylic acid compositions suitable for inline optical or conductivity monitoring |
US10542751B2 (en) | 2014-12-18 | 2020-01-28 | Ecolab Usa Inc. | Generation of peroxyformic acid through polyhydric alcohol formate |
US10233149B2 (en) | 2014-12-18 | 2019-03-19 | Ecolab Usa Inc. | Methods for forming peroxyformic acid and uses thereof |
US10834924B2 (en) | 2014-12-18 | 2020-11-17 | Ecolab Usa Inc. | Generation of peroxyformic acid through polyhydric alcohol formate |
US10709131B2 (en) | 2014-12-18 | 2020-07-14 | Ecolab Usa Inc. | Generation of peroxyformic acid through polyhydric alcohol formate |
US10899707B2 (en) | 2014-12-18 | 2021-01-26 | Ecolab Usa Inc. | Methods for forming peroxyformic acid and uses thereof |
US11684067B2 (en) | 2014-12-18 | 2023-06-27 | Ecolab Usa Inc. | Generation of peroxyformic acid through polyhydric alcohol formate |
US11325887B2 (en) | 2014-12-18 | 2022-05-10 | Ecolab Usa Inc. | Methods for forming peroxyformic acid and uses thereof |
US10729131B2 (en) | 2015-09-04 | 2020-08-04 | Ecolab Usa Inc. | Performic acid on-site generator and formulator |
US11737460B2 (en) | 2015-09-04 | 2023-08-29 | Ecolab Usa Inc. | Performic acid on-site generator and formulator |
US10172351B2 (en) | 2015-09-04 | 2019-01-08 | Ecolab Usa Inc. | Performic acid on-site generator and formulator |
US10285401B2 (en) | 2015-09-10 | 2019-05-14 | Ecolab Usa Inc. | Self indicating antimicrobial chemistry |
US11576378B2 (en) | 2015-09-10 | 2023-02-14 | Ecolab Usa Inc. | Self indicating antimicrobial chemistry |
US10555523B2 (en) | 2015-09-10 | 2020-02-11 | Ecolab Usa Inc. | Self indicating antimicrobial chemistry |
US11260040B2 (en) | 2018-06-15 | 2022-03-01 | Ecolab Usa Inc. | On site generated performic acid compositions for teat treatment |
US11771673B2 (en) | 2018-06-15 | 2023-10-03 | Ecolab Usa Inc. | On site generated performic acid compositions for teat treatment |
US12096768B2 (en) | 2019-08-07 | 2024-09-24 | Ecolab Usa Inc. | Polymeric and solid-supported chelators for stabilization of peracid-containing compositions |
Also Published As
Publication number | Publication date |
---|---|
TR200101312T2 (tr) | 2002-06-21 |
WO2000027977A1 (fr) | 2000-05-18 |
MA25306A1 (fr) | 2001-12-31 |
ES2249044T3 (es) | 2006-03-16 |
JP2003525962A (ja) | 2003-09-02 |
AU1615900A (en) | 2000-05-29 |
AU1583699A (en) | 2000-05-29 |
AR018969A1 (es) | 2001-12-12 |
DE69926907T2 (de) | 2006-06-14 |
ATE302839T1 (de) | 2005-09-15 |
CO5211012A1 (es) | 2002-10-30 |
WO2000027979A1 (fr) | 2000-05-18 |
EP1129171A1 (fr) | 2001-09-05 |
DE69926907D1 (de) | 2005-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6548470B1 (en) | Bleaching compositions | |
EP1129171B1 (fr) | Compositions de blanchiment | |
EP1010751B1 (fr) | Compositions de blanchiment | |
US6537958B1 (en) | Bleaching compositions | |
EP1147169B1 (fr) | Compositions de blanchiment | |
US6630435B1 (en) | Bleaching compositions | |
US6509308B1 (en) | Bleaching compositions | |
EP1129167A1 (fr) | Compositions de blanchiment | |
EP1065264A1 (fr) | Compositions de blanchiment | |
EP1010750A1 (fr) | Compositions de blanchiment | |
US6489282B1 (en) | Bleaching compositions | |
US6440921B1 (en) | Bleaching compositions | |
WO2000027967A1 (fr) | Compositions de blanchiment | |
EP1065263A1 (fr) | Compositions de blanchiment | |
WO2000027982A2 (fr) | Compositions de blanchiment | |
MXPA01005999A (en) | Bleaching compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010523 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17Q | First examination report despatched |
Effective date: 20040402 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050824 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050824 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050824 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050824 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050824 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050824 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69926907 Country of ref document: DE Date of ref document: 20050929 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051110 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051124 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051130 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051130 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20050403010 Country of ref document: GR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060124 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2249044 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060526 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20101026 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20111103 Year of fee payment: 13 Ref country code: ES Payment date: 20111123 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130604 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: ML Ref document number: 20050403010 Country of ref document: GR Effective date: 20130604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20140305 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121111 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20181030 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20181107 Year of fee payment: 20 Ref country code: IT Payment date: 20181122 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69926907 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20191109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20191109 |