[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2001079688A1 - Kraftstoffeinspritzventil fur brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil fur brennkraftmaschinen Download PDF

Info

Publication number
WO2001079688A1
WO2001079688A1 PCT/DE2001/001408 DE0101408W WO0179688A1 WO 2001079688 A1 WO2001079688 A1 WO 2001079688A1 DE 0101408 W DE0101408 W DE 0101408W WO 0179688 A1 WO0179688 A1 WO 0179688A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve member
bore
piston
combustion chamber
Prior art date
Application number
PCT/DE2001/001408
Other languages
English (en)
French (fr)
Inventor
Ulrich Kunzi
Katsuoki Itoh
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP01940145A priority Critical patent/EP1276987A1/de
Priority to KR1020017016187A priority patent/KR20020023235A/ko
Priority to JP2001577057A priority patent/JP2003531338A/ja
Publication of WO2001079688A1 publication Critical patent/WO2001079688A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • F02M61/163Means being injection-valves with helically or spirally shaped grooves

Definitions

  • the invention is based on a fuel injection valve for internal combustion engines according to the preamble of claim 1.
  • a fuel injection valve for internal combustion engines according to the preamble of claim 1.
  • the fuel injection valve has a valve body with a bore formed therein, which is closed on one side, the closed end being designed as a valve seat and projecting into the combustion chamber of the internal combustion engine.
  • a piston-shaped valve member is arranged longitudinally displaceably in the bore and has a first radial extension at its end facing away from the combustion chamber, with which it is sealingly guided in the bore.
  • the valve member merges into a valve sealing surface which interacts with the valve seat for controlling at least one injection opening.
  • a second radial extension is formed on the valve member, with which it is guided in the bore.
  • a pressure chamber is formed in the valve body by a radial expansion of the bore, which can be filled with fuel under high pressure and which extends up to the combustion chamber as an annular channel surrounding the valve member continues the injection ports.
  • Recesses are formed through which the fuel can flow to the injection openings. Due to the guided second radial expansion of the valve member, the valve member is guided exactly in the center of the bore, and the fuel inflow from the pressure chamber to the injection openings is symmetrical, so that the fuel - if several injection openings are provided - evenly through all injection openings into the combustion chamber of the internal combustion engine is injected.
  • the high pressure in the pressure chamber results in a fuel leakage oil flow from the pressure chamber through the annular channel formed between the first radial extension and the bore, despite the slight play of the first radial expansion of the valve member guided in the bore.
  • This leak oil flow is fed to a leak oil chamber and from there to a leak oil system.
  • the play of the valve member can be increased on one of the two radial extensions, but this is disadvantageous in both cases: If the sealing radial extension facing away from the combustion chamber is increased in the play, the result is too great Leakage oil flow from the pressure chamber of the fuel injection valve into the leakage oil chamber; on the other hand, if the clearance of the second radial extension close to the valve seat is increased, inaccuracies in the position of the valve sealing surface with respect to the valve seat occur and thus problems that should be avoided with the second guide.
  • the fuel injector according to the invention with the characterizing features of claim 1 has the advantage that the combustion chamber facing away, the first radial extension of the valve member can be equipped with a larger game in the bore and thus avoiding seizure or increased friction of the valve member in the bore, without an increased leakage oil flow occurring.
  • the pressure chamber is sealed by an additional valve piston, which is directed away from the combustion chamber to the valve member in the bore and rests with its end face on the valve member. It is not necessary to connect the valve piston to the valve member.
  • the first guide of the valve member facing away from the combustion chamber has only a leading function and is no longer used for sealing. By separating the functions of sealing the pressure chamber and guiding the valve member, very good sealing of the valve piston in the bore can be achieved without the risk of the valve member seizing in the bore.
  • the injection valve according to the invention can be connected, for example, to a known valve holding body, as is used in so-called common rail injection systems. A structural adjustment of the valve holding body is not necessary.
  • the valve piston rests on the valve member through an essentially punctiform contact surface. As a result, it is advantageously possible that the position of the valve piston and valve member relative to one another can be easily shifted relative to one another due to the slight interlocking of the contact surface. The play of the guide of the valve member facing away from the combustion chamber is thus not impeded by the valve piston.
  • FIG. 1 shows a longitudinal section through a fuel injection valve according to the invention and FIG. 2 shows an enlarged section of FIG. 1 in the region of the valve member.
  • FIG. 1 shows a longitudinal section through a fuel injection valve which is provided for a fuel injection system based on the common rail principle.
  • the exact structure of the fuel injection valve in the area of the valve body is shown enlarged in FIG.
  • a valve body 1 is clamped with a clamping nut 6 in the direction of a longitudinal axis 2 of the fuel injection valve against a valve holding body 3, the end of the valve body 1 facing away from the valve holding body 3 projecting into the combustion chamber of an internal combustion engine (not shown in the drawing). It can also be provided that an intermediate disk between the valve body 1 and the valve holding body 3 is arranged.
  • a bore 5 is formed in the valve body 1, which is closed at the end on the combustion chamber side and forms a valve seat 32 there.
  • a piston-shaped valve member 10 is arranged to be longitudinally displaceable, which is arranged coaxially to the longitudinal axis 2 and at the end of which the combustion chamber is located, a valve sealing surface 30 is formed.
  • the valve sealing surface 30 interacts with the valve seat 32 for controlling the at least one injection opening 34.
  • a pressure chamber 23 which is formed by a radial widening of the bore 5 and continues towards the valve seat 32 as an annular channel surrounding the valve member 10 and connects the pressure chamber 23 to the injection openings 34.
  • the pressure chamber 23 is connected via an inlet channel 21 running in the valve body 1 and in the valve holding body 3 to a fuel connection 40, via which fuel can be introduced into the pressure chamber 23 under high pressure from a high-pressure fuel source not shown in the drawing.
  • the valve member 10 has two radial extensions 110 and 210, offset with respect to one another in the axial direction, with which the valve member 10 is guided in the bore 5.
  • the first radial extension 110 is arranged facing away from the combustion chamber from the pressure chamber 23.
  • the second radial extension 210 is arranged near the valve seat 32, so that the valve sealing surface 30 is held exactly symmetrically coaxially with the valve seat 32.
  • Recesses in the form of oblique grooves 25 are formed on the second radial extension 210, through which the fuel can flow from the pressure chamber 23 to the injection openings 34.
  • a pressure shoulder 13 is formed on the valve member 10 in the pressure chamber 23 at the transition to its first vertical extension 110.
  • a valve piston 12 is arranged in the bore 5 facing away from the combustion chamber 10 and is sealingly guided in the bore 5.
  • the valve piston 12 is longitudinally displaceable in the bore 5 and has less clearance in the bore 5 than the first radial extension 110 of the valve member 10.
  • a requirement 14 is formed, which is at least approximately has the shape of a spherical section, so that a punctiform contact of the valve piston 12 on the end face of the valve member 10 facing this comes about.
  • Due to the molding 14, an intermediate space 15 is formed between the valve piston 12 and the valve member 10, which is connected to the pressure chamber 23 via the annular gap 20 formed between the first radial extension 110 of the valve member 10 and the bore 5.
  • the valve piston 12 is connected away from the combustion chamber to a spring plate 29 arranged in a spring chamber 28. Between the spring plate 29 and the end of the spring chamber 28 facing away from the combustion chamber, a spring 27 is arranged under prestress, which acts on the spring plate 29 in the direction of the combustion chamber.
  • the spring chamber 28 continues away from the combustion chamber as a guide bore 11, in which a longitudinally displaceable piston rod 8 is arranged, which rests on the spring plate 29 at its end on the combustion chamber side. With its end facing away from the combustion chamber, the piston rod 8 delimits a control chamber 42 which is connected via an inlet throttle 44 to the inlet channel 21 and via an outlet throttle 46 which can be closed by a control element 48 and to a leakage oil chamber 50 formed in the valve holding body 3.
  • the outlet throttle 46 can be closed against the leak oil chamber 50 by an electrically controllable control element 48.
  • the leakage oil chamber 50 is connected via a leakage oil connection 52 to a leakage oil system, not shown in the drawing.
  • the spring chamber 28 is connected to the leakage oil chamber 50 via the annular gap formed between the piston rod 8 and the guide bore 11 and via a leak oil channel 54, which is formed in the valve holding body 3, so that the fuel flowing past the valve piston 12 into the spring chamber 28 into the Leakage oil chamber 50 can drain.
  • the radial play of the radial extensions 110 and 210 of the valve member 10 in the bore 5 or of the valve piston 12 in the bore 5 is of different sizes: the second radial expansion 210 has very little play in order to guide the valve member 10 in precisely to ensure the bore 5 near the valve seat 32. Accordingly, the play of the first radial enlargement 110 in the bore 5 is made significantly larger in order to prevent the valve member 10 from seizing or to increase friction. It should be ensured that the annular gap 20 formed between the bore 5 and the first radial enlargement 110 still throttles so much that there is no significant fuel flow from the pressure chamber 23 into the intermediate space 15 during the opening phase of the valve member 10. The actual high-pressure sealing and throttling of the fuel flow from the pressure chamber 23 into the spring chamber 28 takes place due to the very small annular gap between the valve piston 12 and the bore 5 due to the small play.
  • the operation of the fuel injector is as follows: Via the high-pressure fuel system, not shown in the drawing, fuel is introduced under high pressure into the high-pressure connection 40, so that a predetermined fuel pressure level is maintained in the inlet channel 21 and in the pressure chamber 23 during the entire operation of the fuel injector , When the fuel injection valve is closed, the control element 48 closes the Outlet throttle 46, so that the same fuel pressure prevails in the control chamber 42 as in the inlet channel 21. Since the annular gap 20 between the first radial extension 110 of the valve member 10 and the bore 5 is relatively large, at least approximately the same fuel prevails in the intermediate space 15 pressure as in the pressure chamber 23.
  • the diameter of the piston rod 8 is larger than the diameter of the valve piston 12, so that the hydraulic force on the end of the piston rod 8 facing away from the combustion chamber and the force of the spring 27 outweigh the hydraulic force on the pressure shoulder 13 of the valve member 10 ,
  • the valve piston 12 with the molded part 14 is pressed against the end face 17 of the valve member 10 facing away from the combustion chamber, and the valve member 10 with the valve sealing surface 30 is thus pressed against the valve seat 32.
  • the flow restrictor 46 is opened by the control element 48. Fuel flows from the control chamber 42 into the leakage oil chamber 50 via the outlet throttle 46, and the pressure in the control chamber 42 decreases because the flow resistance of the inlet throttle 44 is greater than the flow resistance of the outlet throttle 46.
  • the pressure drop in the control chamber 42 reduces the hydraulic pressure accordingly Force on the end of the piston rod 8 facing away from the combustion chamber, and the piston rod 8 is pressed away from the combustion chamber via the valve piston 12 due to the fuel pressure in the intermediate space 15. Due to the movements of the valve piston 12 away from the combustion chamber, the fuel pressure in the intermediate space 15 immediately drops sharply, as a result of which the valve member 10 also moves away from the combustion chamber due to the hydraulic force on the pressure shoulder 13 and at least on parts of the valve sealing surface 30. In this way, the valve member 10, the valve piston 12 and the piston rod 8 move away from the combustion chamber until the piston rod 8 comes to rest on the end of the guide bore 11 facing away from the combustion chamber.
  • the injection process is ended by the control element 48 closing the flow restrictor 46.
  • fuel flows again through the inlet throttle 44 into the control chamber 42, and the fuel pressure in the control chamber 42 increases until it corresponds to the fuel pressure in the inlet channel 21.
  • the hydraulic force on the end face of the piston rod 8 facing away from the combustion chamber increases, and the piston rod 8 is moved towards the combustion chamber on account of its larger diameter in comparison to the valve member 10, until the valve member 10 with the valve sealing surface 30 comes into contact with the valve seat 32 and which closes at least one injection opening 34.
  • the spring 27 plays only a subordinate role in the injection process of the fuel injection valve and mainly serves to keep the fuel injection valve closed when the internal combustion engine is switched off and thus in the depressurized state in the inlet channel 21.
  • the recesses 25 on the second radial extension 210 of the valve member 10 are not designed as oblique grooves, but as grooves running parallel to the longitudinal axis 36 of the valve member 10.
  • the bore 5 may also be advantageous to design the bore 5 to be stepped in diameter, so that the section of the bore 5 facing away from the combustion chamber viewed from the pressure chamber 23 has a larger diameter than the section facing the combustion chamber viewed from the pressure chamber 23.
  • the radial extensions 110, 210 of the valve member 10 have correspondingly different diameters, so that the different clearances of the radial extensions 110, 210 described above remain the same.
  • valve piston 12 It is also possible not to generate the closing force on the valve piston 12 by the hydraulic force in a control chamber, but by another, for example magnetically controlled device.
  • the closing force generated by this device on the valve piston 12 must be able to exert a greater force than the hydraulic force acting in the axial direction on the pressure shoulder 13 and the valve sealing surface 30 on the valve member 10.
  • the fuel injection valve described above is provided for a fuel injection system based on the so-called common rail principle, in which high pressure is constantly maintained by a high-pressure fuel pump in a fuel accumulator, the so-called rail, which is present in the inlet channel 21 and in the pressure chamber 23 during the entire operation ,
  • the present injection valve according to the invention can also be used with valve holding bodies in which the closing force on the valve member 10 is generated by one or more closing springs and the injection takes place by controlling the fuel pressure in the pressure chamber 23.
  • the pressure chamber 23 there is a low fuel pressure between the injections. Due to the relatively large Annular gap 20, the space 15 is also relieved and depressurized.
  • fuel is injected into the pressure chamber 23, so that the pressure rises there.
  • valve member 10 lifts off with its valve sealing surface from the valve seat 32 and releases the injection openings 34.
  • the annular gap 20 throttles the fuel flow from the pressure chamber 23 into the intermediate space 15 to such an extent that no significant fuel flow into the intermediate space 15 can take place during the opening phase of the valve member 10.
  • the end of the injection is initiated in that no more fuel is fed into the pressure chamber 23 and this is relieved.
  • the valve member 10 moves towards the combustion chamber by the force of the closing spring until it rests with the valve sealing surface 30 on the valve seat 32.
  • the entire opening phase of the valve member 10 is only a small part of the total duration of an injection cycle. During the closing phase of the fuel injection valve, there is therefore a sufficient period of time in which the small amount of fuel that has entered the intermediate space 15 during the opening phase can flow away either into the pressure chamber 23 or past the valve piston 12 into the leakage oil chamber 50.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Kraftstoffeinspritzventil mit einem Ventilkörper (1), der gegen einen Ventilhaltekörper (3) axial verspannt ist und in dem eine Bohrung (5) ausgebildet ist, die am brennraumseitigen Ende verschlossen ist und dort einen Ventilsitz (32) und wenigstens eine Einspritzöffnung (34) aufweist. In der Bohrung (5) ist ein kolbenförmiges Ventilglied (10) angeordnet, das mit einer ersten (110) und einer zweiten radialen Erweiterung (210) in der Bohrung (5) geführt ist. Das Ventilglied (10) umgibt ein mit Kraftstoff befüllbarer Druckraum (23), der sich dem Ventilsitz (32) zu als ein das Ventilglied (10) umgebender Ringkanal fortsetzh. Brennraumabgewandt zum Ventilglied (10) ist in der Bohrung (5) ein Ventilkolben (2) angeordnet, der den Druckraum (23) abdichtet und am Ventilglied (10) anliegt. Die erste radiale Erweiterung (110) weist in der Bohrung (5) ein größeres Spiel auf als die zweite radiale Erweiterung (210), so daß die Reibung des Ventilglieds (10) bei der Längsbewegung vermindert ist. Die erste radiale Erweiterung (110) dient nur noch der Führung, während die Abdichtung des Druckraums (23) durch den Ventilkolben (12) erfolgt und somit durch ein vom Ventilglied (10) getrenntes Bauteil.

Description

Kraftstoffeinspritzventil für Brennkraftmaschinen
Stand der Technik
Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen nach der Gattung des Patentanspruchs 1 aus. Ein solches Kraftstoffeinspritzventil ist aus der Patentschrift DE 42 05 744 C2 bekannt. Das Kraftstoffeinspritzventil weist einen Ventilkörper mit einer darin ausgebildeten Bohrung auf, die einseitig geschlossen ist, wobei das geschlossene Ende als Ventilsitz ausgebildet ist und bis in den Brennraum der Brennkraftmaschine ragt . In der Bohrung ist ein kolbenförmiges Ventilglied längsverschiebbar angeordnet, das an seinem brennraumabgewandten Ende eine erste radiale Erweiterung aufweist, mit der es dichtend in der Bohrung geführt ist. Das Ventilglied geht an seinem brenn- raumseitigen Ende in eine Ventildichtfläche über, die mit dem Ventilsitz zur Steuerung wenigstens einer Einspritzöffnung zusammenwirkt . Nahe der Ventildichtfläche ist am Ventilglied eine zweite radiale Erweiterung ausgebildet, mit der es in der Bohrung geführt ist .
Zwischen dem die erste radiale Erweiterung des Ventilgliedes führenden Abschnitt der Bohrung und dem Ventilsitz ist im Ventilkδrper durch eine radiale Erweiterung der Bohrung ein Druckraum ausgebildet, der mit Kraftstoff unter hohem Druck befüllbar ist und der sich dem Brennraum zu als ein das Ventilglied umgebender Ringkanal bis zu den Einspritzöffnungen fortsetzt. Dabei sind an der zweiten radialen Erweiterung Ausnehmungen ausgebildet, durch die der Kraftstoff den Ein- spritzöffnungen zufließen kann. Durch die geführte zweite radiale Erweiterung des Ventilglieds wird das Ventilglied genau mittig in der Bohrung geführt, und der KraftstoffZufluß aus dem Druckraum zu den Einspritzöffnungen ist symmetrisch, so daß der Kraftstoff - falls mehrere Einspritzöffnungen vorgesehen sind - gleichmäßig durch alle Einspritzöffnungen in den Brennraum der Brennkraftmaschine eingespritzt wird.
Durch den hohen Druck im Druckraum ergibt sich trotz des geringen Spiels der in der Bohrung geführten, ersten radialen Erweiterung des Ventilglieds ein Kraftstoff-Leckölstrom aus dem Druckraum durch den zwischen der ersten radialen Erweiterung und der Bohrung gebildeten Ringkanal. Dieser Leckölstrom wird einem Leckölraum zugeführt und von dort weiter einem LeckölSystem.
Um eine gute Führung des Ventilglieds und gleichzeitig eine sichere Abdichtung des Hochdruckbereichs gegen den Leckölbe- reich des Kraftstoffeinspritzventils zu erreichen, ist das Spiel der radialen Erweiterungen des Ventilglieds in der Bohrung äußerst klein ausgebildet, meist nur wenige Mikrometer. Da es fertigungstechnisch äußerst schwer ist, beide radiale Erweiterungen des Ventilglieds exakt fluchtend zueinander auszubilden, tritt beim bekannten Kraftstoffeinspritzventil der Nachteil auf, daß es bedingt durch die Fertigungstoleranzen zu einem Fressen und erhöhter Reibung des Ventilglieds in der Bohrung kommen kann.
Zur Vermeidung dieses Problems kann das Spiel des Ventil- gliedes zwar an einer der beiden radialen Erweiterungen vergrößert werden, jedoch ist dies in beiden Fällen von Nachteil: Wird die dichtende brennraumabgewandte radiale Erweiterung im Spiel vergrößert, so ergibt sich ein zu großer Leckölstrom vom Druckraum des Kraftstoffeinspritzventils in den Leckölraum; wird andererseits das Spiel der ventilsitznahen, zweiten radialen Erweiterung vergrößert, so kommt es zu Ungenauigkeiten der Lage der Ventildichtfläche in Bezug auf den Ventilsitz und damit zu den Problemen, die mit der zweiten Führung vermieden werden sollten.
Vorteile der Erfindung
Das erfindungsgemäße Kraftstoffeinspritzventil mit den kennzeichnenden Merkmalen des Patentanspruchs 1 hat demgegenüber den Vorteil, daß die brennraumabgewandte, erste radiale Erweiterung des Ventilgliedes mit einem größeren Spiel in der Bohrung ausgestattet werden kann und so ein Fressen oder eine erhöhte Reibung des Ventilgliedes in der Bohrung vermieden wird, ohne daß ein erhöhter Leckölstrom auftritt . Die Abdichtung des Druckraums wird durch einen zusätzlichen Ventilkolben bewirkt, der brennraumabgewandt zum Ventilglied in der Bohrung geführt ist und mit seiner Stirnseite am Ventil- glied anliegt. Dabei ist es nicht notwendig, den Ventilkolben mit dem Ventilglied zu verbinden. Die brennraumabgewandte, erste Führung des Ventilgliedes hat nur noch eine führende Funktion und dient nicht mehr der Abdichtung. Durch die Trennung der Funktionen von Dichtung des Druckraums und Führung des Ventilgliedes kann eine sehr gute Dichtung des Ventilkolbens in der Bohrung erreicht werden, ohne daß die Gefahr des Fressens des Ventilgliedes in der Bohrung gegeben ist.
Das erfindungsgemäße Einspritzventil kann beispielsweise mit einem bekannten Ventilhaltekörper, wie er bei sogenannten Common-Rail-Einspritzsystemen verwandt wird, verbunden werden. Eine bauliche Anpassung des Ventilhaltekörpers ist nicht notwendig. In einer vorteilhaften Ausgestaltung des Gegenstandes der Erfindung erfolgt die Anlage des Ventilkolbens am Ventilglied durch eine im wesentlichen punktförmige Anlagefläche. Dadurch ist es in vorteilhafter Weise möglich, daß sich Ventilkolben und Ventilglied in ihrer Lage zueinander aufgrund der geringen Verhakung der Anlagefläche leicht gegeneinander verschieben können. Das Spiel der brennraumabgewandten Führung des Ventilglieds wird somit durch den Ventilkolben nicht behindert .
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Zeichnung, der Beschreibung und den Ansprüchen entnehmbar.
Zeichnung
In der Figur 1 ist ein Längsschnitt durch ein erfindungsgemäßes Kraftstoffeinspritzventil gezeigt und Figur 2 zeigt einen vergrößerten Ausschnitt von Figur 1 im Bereich des Ventilgliedes .
Beschreibung des Ausführungsbeispiels
In Figur 1 ist ein Längsschnitt durch ein Kraftstoffeinspritzventil dargestellt, das für ein Kraftstoffeinspritzsy- stem nach dem Common-Rail-Prinzip vorgesehen ist. Der genaue Aufbau des Kraftstoffeinspritzventils im Bereich des Ventil- körpers ist in Figur 2 vergrößert dargestellt. Ein Ventilkörper 1 ist mit einer Spannmutter 6 in Richtung einer Längsachse 2 des Kraftstoffeinspritzventils gegen einen Ventilhaltekörper 3 verspannt, wobei das dem Ventilhaltekörper 3 abgewandte Ende des Ventilkörpers 1 bis in den Brennraum einer in der Zeichnung nicht dargestellten Brennkraftmaschine ragt. Es kann auch vorgesehen sein, daß zwischen dem Ventilkörper 1 und dem Ventilhaltekörper 3 eine Zwischenscheibe angeordnet ist. Im Ventilkörper 1 ist eine Bohrung 5 ausgebildet, die am brennraumseitigen Ende geschlossen ist und dort einen Ventilsitz 32 bildet. Am brennraumseitigen Ende der Bohrung 5 ist darüber hinaus wenigstens eine Einspritzöffnung 34 ausgebildet, die die Bohrung 5 mit dem Brennraum der Brennkraftmaschine verbindet . In der Bohrung 5 ist ein kolbenförmiges Ventilglied 10 längs erschiebbar angeordnet, das koaxial zur Längsachse 2 angeordnet ist und an dessen brennraumseitigern Ende eine Ventildichtfläche 30 ausgebildet ist. Die Ventildichtfläche 30 wirkt mit dem Ventilsitz 32 zur Steuerung der wenigstens einen Einspritzöffnung 34 zusammen. Im Ventilkörper 1 ist ein durch eine radiale Erweiterung der Bohrung 5 ausgebildeter Druckraum 23 angeordnet, der sich dem Ventilsitz 32 zu als ein das Ventil- glied 10 umgebender Ringkanal fortsetzt und den Druckraum 23 mit den Einspritzöffnungen 34 verbindet. Der Druckraum 23 ist über einen im Ventilkδrper 1 und im Ventilhaltekörper 3 verlaufenden Zulaufkanal 21 mit einem Kraftstoffanschluß 40 verbunden, über den aus einer in der Zeichnung nicht dargestellten Kraftstoffhochdruckquelle Kraftstoff unter hohem Druck in den Druckraum 23 eingeführt werden kann.
Das Ventilglied 10 weist zwei, zueinander in axialer Richtung versetzte radiale Erweiterungen 110 und 210 auf, mit denen das Ventilglied 10 in der Bohrung 5 geführt ist. Die erste radiale Erweiterung 110 ist brennraumabgewandt zum Druckraum 23 angeordnet. Die zweite radiale Erweiterung 210 ist nahe dem Ventilsitz 32 angeordnet, so daß die Ventildichtfläche 30 genau symmetrisch koaxial zum Ventilsitz 32 gehalten wird. An der zweiten radialen Erweiterung 210 sind Ausnehmungen in Form von Schrägnuten 25 ausgebildet, durch die der Kraftstoff aus dem Druckraum 23 zu den Einspritzöffnungen 34 fließen kann. Am Ventilglied 10 ist im Druckraum 23 am Übergang zu dessen erster vertikaler Erweiterung 110 eine Druckschulter 13 gebildet . Brennraumabgewandt zum Ventilglied 10 ist in der Bohrung 5 ein Ventilkolben 12 angeordnet, der dichtend in der Bohrung 5 geführt ist. Der Ventilkolben 12 ist in der Bohrung 5 längsverschiebbar und weist in der Bohrung 5 ein geringeres Spiel auf als die erste radiale Erweiterung 110 des Ventilgliedes 10. An der dem Ventilglied 10 zugewandten Stirnseite 19 des Ventilkolbens 12 ist eine Anfor ung 14 ausgebildet, die zumindest annähernd die Form eines Kugelabschnitts hat, so daß eine punktförmige Anlage des Ventilkolbens 12 an der diesem zugewandten Stirnseite des Ventilglieds 10 zustande kommt. Durch die Anformung 14 ist zwischen dem Ventilkolben 12 und dem Ventilglied 10 ein Zwischenraum 15 ausgebildet, der über den zwischen der ersten radialen Erweiterung 110 des Ventilgliedes 10 und der Bohrung 5 ausgebildeten Ringspalt 20 mit dem Druckraum 23 verbunden ist.
Der Ventilkolben 12 ist brennraumabgewandt mit einem in einem Federraum 28 angeordneten Federteller 29 verbunden. Zwischen dem Federteller 29 und der brennraumabgewandten Stirnseite des Federraums 28 ist eine Feder 27 unter Vorspannung angeordnet, die den Federteller 29 in Richtung auf den Brennraum beaufschlagt. Der Federraum 28 setzt sich brennraumabgewandt als Führungsbohrung 11 fort, in der eine längsverschiebbare Kolbenstange 8 angeordnet ist, die an ihrem brennraumseitigen Ende am Federteller 29 anliegt. Mit ihrer brennraumabgewandten Stirnseite begrenzt die Kolbenstange 8 einen Steuerraum 42, der über eine Zulaufdrossel 44 mit dem Zulaufkanal 21 und über eine von einem Steuerelement 48 verschließbare Ablaufdrossel 46 mit einem im Ventilhaltekörper 3 ausgebildeten Leckölraum 50 verbunden ist. Die Ablaufdrossel 46 ist dabei durch ein elektrisch steuerbares Steuerelement 48 gegen den Leckölraum 50 verschließbar. Der Leckölraum 50 ist über einen Leckölanschluß 52 mit einem in der Zeichnung nicht dargestellten Leckölsystem verbunden. Der Federraum 28 ist über den zwischen der Kolbenstange 8 und der Führungsbohrung 11 ausgebildeten Ringspalt und über einen Leckölkanal 54, der im Ventilhaltekörper 3 ausgebildet ist, mit dem Leckölraum 50 verbunden, so daß der am Ventilkolben 12 vorbei in den Federraum 28 fließende Kraftstoff in den Leckölraum 50 abfließen kann.
Das radiale Spiel der radialen Erweiterungen 110 und 210 des Ventilgliedes 10 in der Bohrung 5 bzw. des Ventilkolbens 12 in der Bohrung 5 ist unterschiedlich groß ausgebildet: Die zweite radiale Erweiterung 210 weist ein sehr geringes Spiel auf, um eine exakte Führung des Ventilgliedes 10 in der Bohrung 5 nahe dem Ventilsitz 32 zu gewährleisten. Entsprechend ist das Spiel der ersten radialen Erweiterung 110 in der Bohrung 5 deutlich größer ausgebildet, um ein Fressen des Ventilglieds 10 oder eine erhöhte Reibung zu verhindern. Hierbei ist darauf zu achten, daß der zwischen der Bohrung 5 und der ersten radialen Erweiterung 110 ausgebildete Ringspalt 20 immer noch so stark drosselt, daß kein nennenswerter Kraftstofffluß aus dem Druckraum 23 in den Zwischenraum 15 während der Öffnungsphase des Ventilgliedes 10 stattfindet . Die eigentliche Hochdruckabdichtung und Drosselung des Kraftstoffflusses aus dem Druckraum 23 in den Federraum 28 findet durch den wegen des kleinen Spiels nur sehr engen Ringspalt zwischen dem Ventilkolben 12 und der Bohrung 5 statt .
Die Funktionsweise des Kraftstoffeinspritzventils ist wie folgt: Über das in der Zeichnung nicht dargestellte Kraftstoffhochdrucksystem wird Kraftstoff unter hohem Druck in den Hochdruckanschluß 40 eingeführt, so daß im Zulaufkanal 21 und im Druckraum 23 während des gesamten Betriebs des Kraftstoffeinspritzventils ein vorgegebenes Kraftstoff- Druckniveau aufrecht erhalten wird. Bei geschlossenem Kraftstoffeinspritzventil verschließt das Steuerelement 48 die Ablaufdrossel 46, so daß im Steuerraum 42 der gleiche Kraftstoffdruck herrscht wie im Zulaufkanal 21. Da der Ringspalt 20 zwischen der ersten radialen Erweiterung 110 des Ventil- gliedes 10 und der Bohrung 5 relativ groß ist, herrscht auch im Zwischenraum 15 zumindest annähernd derselbe Kraftstoff- druck wie im Druckraum 23. Der Durchmesser der Kolbenstange 8 ist größer als der Durchmesser des Ventilkolbens 12, so daß die hydraulische Kraft auf die brennraumabgewandte Stirnseite der Kolbenstange 8 sowie der Kraft der Feder 27 gegenüber der hydraulischen Kraft auf die Druckschulter 13 des Ventilglieds 10 überwiegt. Der Ventilkolben 12 wird mit der Anformung 14 gegen die brennraumabgewandte Stirnseite 17 des Ventilgliedes 10 gepreßt und so das Ventilglied 10 mit der Ventildichtfläche 30 gegen den Ventilsitz 32 gedrückt. Zu Beginn des Einspritzvorgangs wird die Ablaufdrossel 46 durch das Steuerelement 48 geöffnet. Über die Ablaufdrossel 46 fließt Kraftstoff aus dem Steuerraum 42 in den Leckölraum 50, und der Druck im Steuerraum 42 nimmt ab, da der Strömungswiderstand der Zulaufdrossel 44 größer ist als der Strömungswiderstand der Ablaufdrossel 46. Durch den Druckabfall im Steuerraum 42 vermindert sich entsprechend die hydraulische Kraft auf die brennraumabgewandte Stirnseite der Kolbenstange 8, und die Kolbenstange 8 wird über den Ventil- kolben 12 bedingt durch den Kraftstoffdruck im Zwischenraum 15 vom Brennraum weg gedrückt . Durch die Bewegungen des Ventilkolbens 12 vom Brennraum weg sinkt der Kraftstoffdruck im Zwischenraum 15 sofort stark ab, wodurch sich das Ventilglied 10 aufgrund der hydraulischen Kraft auf die Druckschulter 13 und zumindest auf Teile der Ventildichtfläche 30 ebenfalls vom Brennraum weg bewegt. Auf diese Weise bewegen sich das Ventilglied 10, der Ventilkolben 12 und die Kolbenstange 8 vom Brennraum weg, bis die Kolbenstange 8 an der brennraumabgewandten Stirnseite der Führungsbohrung 11 zur Anlage kommt. Da der Ringspalt 20 zwischen der ersten radialen Erweiterung 110 des Ventilgliedes 10 und der Bohrung 5 den Kraftstoff luß ausreichend drosselt und der gesamte Ein- spritzvorgang - je nach Drehzahl der Brennkraftmaschine - nur wenige Millisekunden dauert, kann während der Öffnungs- phase des Ventilgliedes 10 nur eine unwesentliche Menge Kraftstoff über den Ringspalt 20 in den Zwischenraum 15 fließen.
Der Einspritzvorgang wird dadurch beendet, daß das Steuerelement 48 die Ablaufdrossel 46 verschließt. Hierdurch strömt wieder Kraftstoff durch die Zulaufdrossel 44 in den Steuerraum 42, und der Kraftstoffdruck im Steuerraum 42 erhöht sich soweit, bis er dem Kraftstoffdruck im Zulaufkanal 21 entspricht. Die hydraulische Kraft auf die brennraumabgewandte Stirnfläche der Kolbenstange 8 erhöht sich, und die Kolbenstange 8 wird aufgrund ihres im Vergleich zum Ventil- glied 10 größeren Durchmessers auf den Brennraum zu bewegt, bis das Ventilglied 10 mit der Ventildichtfläche 30 am Ventilsitz 32 zur Anlage kommt und die wenigstens eine Einspritzöffnung 34 verschließt.
Die Feder 27 spielt beim Einspritzvorgang des Kraftstoffein- spritzventils nur eine untergeordnete Rolle und dient hauptsächlich dazu, das Kraftstoffeinspritzventil bei abgeschalteter Brennkraftmaschine und damit drucklosem Zustand im Zulaufkanal 21 geschlossen zu halten.
Alternativ zu dem in der Zeichnung dargestellten Kraftstoffeinspritzventil kann es auch vorgesehen sein, die Ausnehmungen 25 an der zweiten radialen Erweiterung 210 des Ventilgliedes 10 nicht als Schrägnuten, sondern als parallel zur Längsachse 36 des Ventilgliedes 10 verlaufende Nuten auszubilden. Darüber hinaus ist es auch möglich, den Durchfluß des Kraftstoffs durch Bohrungen sicherzustellen, die von der brennraumabgewandten zur brennraumzugewandten Stirn- fläche der zweiten radialen Erweiterung 210 des Ventilgliedes 10 führen.
Es kann auch vorteilhaft sein, die Bohrung 5 im Durchmesser gestuft auszubilden, so daß der vom Druckraum 23 betrachtet brennraumabgewandte Abschnitt der Bohrung 5 einen größeren Durchmesser aufweist als der vom Druckraum 23 betrachtet brennraumzugewandte Abschnitt . Die radialen Erweiterungen 110, 210 des Ventilgliedes 10 weisen in diesem Fall entsprechend unterschiedliche Durchmesser auf, so daß die oben beschriebenen unterschiedlichen Spiele der radialen Erweiterungen 110, 210 gleich bleiben.
Es ist auch möglich, die Schließkraft auf den Ventilkolben 12 nicht durch die hydraulische Kraft in einem Steuerraum zu erzeugen, sondern durch eine andere, beispielsweise magnetisch gesteuerte Vorrichtung. Die durch diese Vorrichtung erzeugte Schließkraft auf den Ventilkolben 12 muß dabei in der Lage sein, eine größere Kraft aufzubringen als die in axialer Richtung wirkende hydraulische Kraft auf die Druckschulter 13 und die Ventildichtfläche 30 am Ventilglied 10.
Das oben beschriebene Kraftstoffeinspritzventil ist für ein Kraftstoffeinspritzsystem nach dem sogenannten Common-Rail- Prinzip vorgesehen, bei dem durch eine Kraftstoffhochdruckpumpe in einem KraftstoffSpeicher, dem sogenannten Rail, ständig Hochdruck aufrecht erhalten wird, der im Zulaufkanal 21 und im Druckraum 23 während des gesamten Betriebes anliegt. Das vorliegende erfindungsgemäße Einspritzventil läßt sich jedoch auch mit Ventilhaltekörpern verwenden, bei denen die Schließkraft auf das Ventilglied 10 durch eine oder mehrere Schließfedern erzeugt wird und die Einspritzung durch Steuerung des Kraftstoffdrucks im Druckraum 23 geschieht . Im Druckraum 23 herrscht hierbei zwischen den Einspritzungen ein geringer Kraftstoffdruck. Durch den relativ großen Ringspalt 20 ist der Zwischenraum 15 ebenfalls entlastet und drucklos . Zu Beginn der Einspritzung wird Kraftstoff in den Druckraum 23 eingepreßt, so daß der Druck dort ansteigt. Übersteigt die hydraulische Kraft auf die Druckschulter 13 des Ventilgliedes 10 die Kraft der wenigstens einen Schließfeder, so hebt das Ventilglied 10 mit seiner Ventildichtfläche vom Ventilsitz 32 ab und gibt die Einspritzöffnungen 34 frei. Wie bereits oben beschrieben drosselt der Ringspalt 20 den Kraftstofffluß aus dem Druckraum 23 in den Zwischenraum 15 so stark, daß während der Öffnungsphase des Ventilgliedes 10 kein nennenswerter Kraftstofffluß in den Zwischenraum 15 erfolgen kann. Das Ende der Einspritzung wird dadurch eingeleitet, daß kein Kraftstoff mehr in den Druckraum 23 gefördert wird und dieser entlastet wird. Das Ventilglied 10 bewegt sich durch die Kraft der Schließfeder auf den Brennraum zu, bis es mit der Ventildichtfläche 30 am Ventilsitz 32 anliegt .
Die gesamte Öffnungsphase des Ventilgliedes 10 beträgt nur einen kleinen Teil der Gesamtdauer eines Einspritzzyklus. Während der Schließphase des Kraftstoffeinspritzventil steht somit eine ausreichende Zeitdauer zur Verfügung, in der die während der Öffnungsphase in den Zwischenraum 15 gelangte geringe Kraftstoffmenge entweder in den Druckraum 23 oder am Ventilkolben 12 vorbei in den Leckölraum 50 abfließen kann.

Claims

Ansprüche
1. Kraftstoffeinspritzventil mit einem Ventilkörper (1), der mit einem Ende in den Brennraum einer Brennkraftmaschine ragt, wobei im Ventilkörper (1) eine Bohrung (5) ausgebildet ist, die am brennraumseitigen Ende geschlossen ist, wo ein Ventilsitz (32) und wenigstens eine Einspritzöffnung (34) ausgebildet sind, und mit einem kolbenförmigen Ventilglied (10) , das längsverschiebbar in der Bohrung (5) angeordnet ist und das mit einer Dicht- fläche (30) zur Steuerung der wenigstens einen Einspritzöffnung (34) mit dem Ventilsitz (32) zusammenwirkt, wobei das Ventilglied (10) eine erste, brennraumabgewandte radiale Erweiterung (110) und eine zweite, brennraumzugewandte radiale Erweiterung (210) aufweist, über die es in der Bohrung (5) geführt ist, und mit einem durch eine radiale Erweiterung der Bohrung (5) ausgebildeten und mit Kraftstoff befüllbaren Druckraum (23) , der das Ventilglied (10) zwischen der ersten (110) und zweiten radialen Erweiterung (210) umgibt, wobei am Ventilglied (10) im Bereich des Druckraums (23) eine Druckschulter (13) ausgebildet ist, dadurch gekennzeichnet, daß in der
Bohrung (5) brennraumabgewandt zum Ventilglied (10) ein dichtend geführter Ventilkolben (12) angeordnet ist, der am Ventilglied (10) anliegt und in Richtung zum Ventilsitz (32) von einer Schließkraft beaufschlagbar ist.
2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß die erste radiale Erweiterung (110) des Ventilglieds (10) ein größeres Spiel in der Bohrung (5) aufweist als die zweite radiale Erweiterung (210) .
3. Kraftstoffeinspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Ventilkolben (12) ein geringeres Spiel in der Bohrung (5) aufweist als die erste radiale Erweiterung (110) des Ventilglieds (10) .
4. Kraftstoffeinspritzventil nach einem der Ansprüche 1 bis
3, dadurch gekennzeichnet, daß die Schließkraft auf den Ventilkolben (12) hydraulisch erzeugt wird.
5. Kraftstoffeinspritzventil nach einem der Ansprüche 1 bis
4, dadurch gekennzeichnet, daß die Anlage des Ventilkolbens (12) am Ventilglied (10) durch eine am Ventilglied
(10) oder am Ventilkolben (12) angeordnete Anformung (14) ausgebildet ist, durch welche Anformung (14) eine im wesentlichen punktförmige Anlage des Ventilglieds (10) am Ventilkolben (12) erreicht wird.
PCT/DE2001/001408 2000-04-18 2001-04-10 Kraftstoffeinspritzventil fur brennkraftmaschinen WO2001079688A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01940145A EP1276987A1 (de) 2000-04-18 2001-04-10 Kraftstoffeinspritzventil fur brennkraftmaschinen
KR1020017016187A KR20020023235A (ko) 2000-04-18 2001-04-10 내연 기관용 연료 분사 밸브
JP2001577057A JP2003531338A (ja) 2000-04-18 2001-04-10 内燃機関用の燃料噴射弁

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10019153A DE10019153A1 (de) 2000-04-18 2000-04-18 Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10019153.3 2000-04-18

Publications (1)

Publication Number Publication Date
WO2001079688A1 true WO2001079688A1 (de) 2001-10-25

Family

ID=7639153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/001408 WO2001079688A1 (de) 2000-04-18 2001-04-10 Kraftstoffeinspritzventil fur brennkraftmaschinen

Country Status (7)

Country Link
US (1) US20020104901A1 (de)
EP (1) EP1276987A1 (de)
JP (1) JP2003531338A (de)
KR (1) KR20020023235A (de)
CZ (1) CZ20014481A3 (de)
DE (1) DE10019153A1 (de)
WO (1) WO2001079688A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010081574A1 (de) * 2009-01-14 2010-07-22 Robert Bosch Gmbh Kraftstoffinjektor für brennkraftmaschinen
WO2012052293A1 (de) * 2010-10-20 2012-04-26 Robert Bosch Gmbh Kraftstoffinjektor
WO2013023825A1 (de) * 2011-08-18 2013-02-21 Robert Bosch Gmbh Ventil zum zumessen eines strömenden mediums
SE1951116A1 (en) * 2019-10-01 2021-04-02 Scania Cv Ab Fuel injector arrangement, high pressure injection system comprising the injector arrangement, fuel system comprising the high pressure injection system, vehicle comprising the fuel system, and a meth

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030201344A1 (en) * 2002-04-15 2003-10-30 Christopher Wark Nozzle assembly for injecting fuel at multiple angles
DE10217714A1 (de) * 2002-04-20 2003-11-06 Bosch Gmbh Robert Injektor-Dichtungsanordnung mit Dichthülse
JP4552890B2 (ja) * 2006-05-11 2010-09-29 株式会社デンソー インジェクタ
DE102008001330A1 (de) * 2008-04-23 2009-10-29 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB473174A (en) * 1936-02-22 1937-10-07 Saurer Ag Adolph Improvements in and relating to the fuel injection nozzle of internal combustion engines
US2974881A (en) * 1955-09-30 1961-03-14 Bendix Corp Fuel injection nozzle
US4168804A (en) * 1977-03-16 1979-09-25 Robert Bosch Gmbh Fuel injection nozzle for internal combustion engines
DE4205744A1 (de) * 1991-02-26 1992-08-27 Nissan Motor Brennkraftmaschinen-brennstoffeinspritzduese
WO1995021324A1 (en) * 1994-02-07 1995-08-10 Man B & W Diesel A/S A fuel injector for a large two-stroke internal combustion engine
US5823161A (en) * 1995-02-15 1998-10-20 Robert Bosch Gmbh Fuel injection device for internal combustion engines
EP1079094A2 (de) * 1999-08-26 2001-02-28 Delphi Technologies, Inc. Kraftstoffeinspritzventil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8628600D0 (en) * 1986-11-29 1987-01-07 Lucas Ind Plc Fuel injection nozzles
JPH01187363A (ja) * 1988-01-21 1989-07-26 Toyota Motor Corp 内燃機関用燃料噴射弁
DE19756986C1 (de) * 1997-12-20 1999-06-02 Daimler Chrysler Ag Speichereinspritzsystem
US6357677B1 (en) * 1999-10-13 2002-03-19 Siemens Automotive Corporation Fuel injection valve with multiple nozzle plates

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB473174A (en) * 1936-02-22 1937-10-07 Saurer Ag Adolph Improvements in and relating to the fuel injection nozzle of internal combustion engines
US2974881A (en) * 1955-09-30 1961-03-14 Bendix Corp Fuel injection nozzle
US4168804A (en) * 1977-03-16 1979-09-25 Robert Bosch Gmbh Fuel injection nozzle for internal combustion engines
DE4205744A1 (de) * 1991-02-26 1992-08-27 Nissan Motor Brennkraftmaschinen-brennstoffeinspritzduese
DE4205744C2 (de) 1991-02-26 1996-09-19 Nissan Motor Brennkraftmaschinen-Brennstoffeinspritzdüse
WO1995021324A1 (en) * 1994-02-07 1995-08-10 Man B & W Diesel A/S A fuel injector for a large two-stroke internal combustion engine
US5823161A (en) * 1995-02-15 1998-10-20 Robert Bosch Gmbh Fuel injection device for internal combustion engines
EP1079094A2 (de) * 1999-08-26 2001-02-28 Delphi Technologies, Inc. Kraftstoffeinspritzventil

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KRIEGER K ET AL: "BOSCH - COMMON RAIL: NEUE ERKENNTISSE UND WEITERE HERAUSFORDERUNGEN BOSCH - COMMON RAIL: NEW EXPERIENCES AND FURTHER CHALLENGES", FORTSCHRITT-BERICHTE VDI. REIHE 12, VERKEHRSTECHNIK / FAHRZEUGTECHNIK, VDI VERLAG, DUESSELDORF, DE, 1998, pages 308 - 336, XP000669988, ISSN: 0178-9449 *
NABER D ET AL: "DIE NEUEN COMMON-RAIL-DIESEL-MOTOREN MIT DIREKTEINSPRITZUNG IN DER MODELLGEPFLEGTEN E-KLASSE TEIL 2: VERBRENNUNG UND MOTORMANAGEMENT", MTZ MOTORTECHNISCHE ZEITSCHRIFT, FRANCKH'SCHE VERLAGSHANDLUNG,ABTEILUNG TECHNIK. STUTTGART, DE, vol. 60, no. 9, September 1999 (1999-09-01), pages 578 - 580,582-584,586-588, XP000870856, ISSN: 0024-8525 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010081574A1 (de) * 2009-01-14 2010-07-22 Robert Bosch Gmbh Kraftstoffinjektor für brennkraftmaschinen
WO2012052293A1 (de) * 2010-10-20 2012-04-26 Robert Bosch Gmbh Kraftstoffinjektor
CN103201500A (zh) * 2010-10-20 2013-07-10 罗伯特·博世有限公司 燃料喷射器
WO2013023825A1 (de) * 2011-08-18 2013-02-21 Robert Bosch Gmbh Ventil zum zumessen eines strömenden mediums
CN103748350A (zh) * 2011-08-18 2014-04-23 罗伯特·博世有限公司 用于计量流动介质的阀
US9976531B2 (en) 2011-08-18 2018-05-22 Robert Bosch Gmbh Valve for dosing a flowing medium
SE1951116A1 (en) * 2019-10-01 2021-04-02 Scania Cv Ab Fuel injector arrangement, high pressure injection system comprising the injector arrangement, fuel system comprising the high pressure injection system, vehicle comprising the fuel system, and a meth
SE545024C2 (en) * 2019-10-01 2023-02-28 Scania Cv Ab Fuel injector arrangement for an internal combustion engine and method for operating said arrangement

Also Published As

Publication number Publication date
CZ20014481A3 (cs) 2003-03-12
EP1276987A1 (de) 2003-01-22
US20020104901A1 (en) 2002-08-08
KR20020023235A (ko) 2002-03-28
JP2003531338A (ja) 2003-10-21
DE10019153A1 (de) 2001-10-25

Similar Documents

Publication Publication Date Title
EP1478840B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1636484B1 (de) Einspritzdüse für brennkraftmaschinen
EP1387939B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1332282B1 (de) Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine
EP0657643A2 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
EP1913251A1 (de) Einspritzdüse
WO2001079688A1 (de) Kraftstoffeinspritzventil fur brennkraftmaschinen
DE10205218A1 (de) Ventil zur Steuerung einer Verbindung in einem Hochdruckflüssigkeitssystem, insbesondere einer Kraftstoffeinspitzeinrichtung für eine Brennkraftmaschine
WO2001038712A2 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE19936667A1 (de) Common-Rail-Injektor
DE10224689A1 (de) Hubgesteuertes Ventil als Kraftstoffzumesseinrichtung eines Einspritzsystems für Brennkraftmaschinen
EP1286043A2 (de) Druck-Hub-gesteuerter Injektor für Kraftstoffeinspritzsysteme
EP1541859A1 (de) Einspritzventil
EP1328726B1 (de) Kraftstoffeinspritzsystem für brennkraftmaschinen
EP1650427B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10111783A1 (de) Einspritzdüse
WO2005040594A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1210512B1 (de) Injektor
EP1404964B1 (de) Kraftstoffinjektor mit zuschaltbarem steuerraumzulauf
DE10032924A1 (de) Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
EP1176306A2 (de) Kraftstoffeinspriztsystem für Brennkraftmaschinen
EP3184803B1 (de) Kraftstoffinjektor
DE10003252A1 (de) Einspritzdüse
WO2002075149A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1927747B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CZ JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001940145

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PV2001-4481

Country of ref document: CZ

ENP Entry into the national phase

Ref document number: 2001 577057

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017016187

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10018315

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001940145

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2001-4481

Country of ref document: CZ

WWR Wipo information: refused in national office

Ref document number: PV2001-4481

Country of ref document: CZ

WWW Wipo information: withdrawn in national office

Ref document number: 2001940145

Country of ref document: EP