[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2001055477A1 - Procede de fabrication d'un film de materiau composite renfermant un element generateur de gaz - Google Patents

Procede de fabrication d'un film de materiau composite renfermant un element generateur de gaz Download PDF

Info

Publication number
WO2001055477A1
WO2001055477A1 PCT/JP2001/000562 JP0100562W WO0155477A1 WO 2001055477 A1 WO2001055477 A1 WO 2001055477A1 JP 0100562 W JP0100562 W JP 0100562W WO 0155477 A1 WO0155477 A1 WO 0155477A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
target
substrate
vacuum chamber
sputtering
Prior art date
Application number
PCT/JP2001/000562
Other languages
English (en)
French (fr)
Inventor
Masahiro Furuta
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU2001227109A priority Critical patent/AU2001227109A1/en
Priority to EP01901559A priority patent/EP1260604A4/en
Publication of WO2001055477A1 publication Critical patent/WO2001055477A1/ja
Priority to US10/201,790 priority patent/US20020175070A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3457Sputtering using other particles than noble gas ions

Definitions

  • the present invention relates to a method and a sputtering apparatus for depositing a compound film on the optical element, and more particularly, A r F (1 93 nm ), generated excimer one The one we like F 2 (1 57 nm) 200
  • the present invention relates to a method and a sputtering apparatus for forming a compound material containing a gas component element on an optical element used for light in a vacuum ultraviolet wavelength region of nm or less by sputtering. Further, the present invention relates to an exposure apparatus that includes an optical element and performs photolithography using light in a vacuum ultraviolet wavelength range as an exposure source. Background art
  • optical elements such as lenses and reflectors.
  • C In recent years, with the increasing integration of LSI, the wavelength of the light source of the lithography system has changed from g-line (436 nm) to i-line. (365 nm) and further to excimer laser wavelengths such as KrF (248 nm) and ArF (193 nm).
  • An optical element having transmittance and ultraviolet light resistance is required.
  • the optical element is usually provided with various optical thin films such as a reflection film and an anti-reflection film. For example, an anti-reflective coating is applied to the surface of the optical element to reduce unwanted reflections, while a reflective coating is applied to the surface of the optical element to efficiently reflect incident light at the reflective film surface.
  • Compound materials such as SiN are used for these optical thin films.
  • An optical thin film made of such a compound material can be formed on an optical element by, for example, sputtering or vacuum evaporation.
  • the compound material is composed of two kinds of elements having different melting points ⁇ two different elements, particularly when the compound material contains a gas component element such as oxygen, nitrogen, fluorine, etc. by itself, the compound material is sputtered. Sputtering for evening and evening get Of the sputtered particles sputtered from the sputter target, oxygen, nitrogen, and fluorine, which are the gas component elements, escape from the sputter deposit to form a film.
  • the composition of the formed film is based on the stoichiometric ratio.
  • the sputtering apparatus 100 It comprises a chamber 101, a sputter gas cylinder 108, a replenishment gas cylinder 110, and a vacuum pump 105 for an exhaust system.
  • a sputtering target 103 of a compound material SiN and a substrate 102 are arranged in the vacuum chamber 101.
  • Argon gas is stored in the gas cylinder 108 as sputtering gas 107.
  • the spout gas 107 flowing out from the gas cylinder 108 is adjusted by the mass flow controller 106, and the flow rate is adjusted.
  • the refill gas cylinder 110 flowing into 1 is filled with nitrogen gas 113 as a refill gas.
  • the replenishment gas 1 13 flowing out of the refill gas cylinder flows into the vacuum chamber 101 via the refill gas introduction valve 112 after the flow rate is adjusted by the mass flow controller 111. .
  • a main valve 104 is arranged between the vacuum chamber 101 and a vacuum pump 105 of an exhaust system provided therebelow. When the main valve 104 is opened, the inside of the vacuum chamber 101 is opened. This gas is exhausted out of the vacuum chamber 101 by the vacuum pump 105.
  • the film forming operation using the sputtering apparatus 100 is performed as follows. First, the gas introduction valve 109 and the replenishment gas introduction valve 112 are opened, respectively, and argon gas 107 and nitrogen gas 113 are flowed into the vacuum chamber 110 at a predetermined flow rate. You.
  • the main valve 104 is opened, and while the gas in the vacuum chamber 101 is evacuated, the gas pressure in the vacuum chamber 101 is kept constant. Thereafter, a power source discharge is performed on the sputter target 103 using an R power source (not shown) connected to the vacuum chamber 101. This discharge (the power source jumps out of the sputter target 103) Sputtered particles adhere to the substrate 102 functioning as an anode, and a thin film is formed on the substrate surface.However, in the apparatus 100 shown in the figure, it is necessary to form a film while replenishing gas.
  • a separate gas introduction system is required to introduce the replenishing gas, which means that the gas introduction system has two lines, which complicates the structure of the sputtering system and reduces the cost.
  • the replenishment gas is a highly active toxic gas such as fluorine, it must be handled with care, and work and equipment for management are required. material In the method of forming a compound material while replenishing the gas component elements contained in the thin film, it is difficult to control the composition in the thin film, and it is not easy to obtain a thin film having high light transmittance. A method of forming a compound material containing the above-mentioned gas component element using the above method is also considered.
  • a thin film obtained by a vapor deposition method has lower density and hardness than a film obtained by a sputtering method. For this reason, there is a problem that the optical element on which the reflection film or the like is formed by the vapor deposition method is easily damaged.
  • An object of the present invention is to solve the above-mentioned problems of the prior art, and provide a film forming method and a snow film forming method capable of forming a compound material containing a gas component element on a substrate such as an optical element with a desired composition. It is to provide a device. Another object of the present invention is to control light in the ultraviolet region of 300 nm or less, particularly 200 nm or less. Accordingly, it is an object of the present invention to provide an optical element having a thin film having an extremely high transmittance. Still another object of the present invention is to provide an exposure apparatus provided with the above optical element.
  • a film forming method by sputtering wherein a sputter target made of a compound material and a film-forming object are arranged in a vacuum chamber, and a sputtering gas is supplied to the vacuum chamber. And then performing sputtering in a state where the vacuum chamber is closed.
  • a target of a compound material was discharged while a vacuum pump or the like was used to reduce the pressure inside the vacuum chamber to form a thin film on the substrate.
  • the gas component elements that flew out were also discharged from the vacuum chamber by the vacuum pump.
  • the film forming method of the present invention is characterized in that a sputter target is discharged in a state in which the vacuum chamber is sealed to form a thin film on a substrate (film-formed body).
  • the film forming method of the present invention after supplying a sputtering gas to the vacuum chamber and adjusting the inside of the vacuum chamber to a predetermined pressure, all the valves are closed and the vacuum chamber is closed.
  • a target made of a compound material is discharged in such a vacuum chamber in a closed state, the gas component element contained in the compound material jumps out of the gate and fills the inside of the chamber. For this reason, the frequency of the gas component element adhering to the base increases, and the gas component element is effectively used for sputtering.
  • the gas pressure in the vacuum chamber is usually controlled to a suitable value in accordance with the material of the target.
  • the gas pressure in the closed vacuum chamber can be adjusted during sputtering by the following method.
  • the temperature inside the vacuum chamber 1 may be controlled by cooling or heating the outer wall of the chamber 1 or by providing a heater or a cooling device directly inside the vacuum chamber 1.
  • the temperature inside the vacuum chamber may be lowered.
  • the distance between the target and the substrate is preferably 15 cm to 25 cm (long throw).
  • the film forming method of the present invention it is preferable to use a helicopter for the sputtering method.
  • a thin film having high hardness, dense and strong adhesion can be formed on the substrate.
  • the compound material used for evening one rodents I, oxides, nitrides or a suitable compound containing a gas component elements such as fluoride, for example, S i N and Mg F 2, S i 0 2, a l 2 ⁇ 3, a 1 F 3, L aF 3, L i F are preferred.
  • a 1 2 0 3 is 1 90 nrr!
  • a material for an optical thin film covering an optical element Up to 1 000 nm, especially ultraviolet wavelength of 190 nm or more, Mg F 2 , A 1 F 3 , La F 3 , Li F of 150 nm to 1000 nm, especially ultraviolet wavelength of 150 nm or more High transparency to light Therefore, it is suitable as a material for an optical thin film covering an optical element.
  • compound materials such as MgF 2 , A 1 F 3 , La F 3 , and Li F have high transmittance for light in the vacuum ultraviolet wavelength range of 200 nm or less, so that short wavelength It is extremely suitable as a coating material for optical elements used in optical systems such as laser lithography using a laser.
  • the first target and the second target are simultaneously discharged by interposing a shielding plate between the first target and the substrate.
  • Elements other than the gas component elements in the compound material that constitutes the above tend to adhere to the shielding plate, and the gas component elements tend to float in the vacuum chamber due to their relatively small mass. This makes it possible to increase the frequency of the gas component element adhering to the substrate, thereby preventing the gas component element in the thin film from being lost.
  • the first target has a function of enriching the gas component elements in the vacuum chamber.
  • the substrate is disposed so as to face the first and second gates.
  • the inside of the vacuum chamber can be sealed during sputtering.
  • the amount of the gas component element in the vacuum chamber can be further increased, so that the gas component element in the thin film formed on the base can be more effectively prevented from being deficient.
  • the first target and the second target can be formed from a compound material containing at least one common element, for example, a gas component element.
  • the first and second targets The units may be formed from the same compound material.
  • the compound material of the first target has a composition containing a larger amount of the gas component element than the second target. Is preferable. This makes it possible to supply a large amount of gas component elements during sputtering, and it is possible to prevent loss of gas component elements in a thin film formed on the substrate.
  • the first power is applied to the first cathode electrode to sputter the first target, and the second target is supplied with the first power.
  • a different second power can be applied to sputter the second target.
  • the substrate can be sputtered while revolving so that the substrate passes alternately directly above the first target and the second target, respectively. This makes it easier for the gas component element to adhere when passing over the first target, thereby preventing the gas component element from being deficient in the thin film formed on the base.
  • the revolution speed is preferably determined so that the gas component elements are uniformly present in the thin film formed on the substrate.
  • a film forming method for forming a thin film on a substrate by sputtering an overnight get in a vacuum chamber there is provided a film forming method including independently controlling the temperature of the inside of the substrate, the target, and the inside of the vacuum chamber during sputtering.
  • the sputtering gas includes, for example, Ar gas, Xe gas, He gas, SF 6 gas, or a mixed gas of Ar and SF 6 .
  • the sputtering gas includes, for example, Ar gas, Xe gas, He gas, SF 6 gas, or a mixed gas of Ar and SF 6 .
  • M g F 2 is used as the compound material
  • SF 6 gas or an Ar—SF 6 mixed gas is suitable.
  • a gas introduction valve formed in the vacuum chamber for introducing a sputtering gas into the vacuum chamber
  • a gas exhaust valve formed in the vacuum chamber for exhausting a sputtering gas in the vacuum chamber to the outside;
  • a sputtering apparatus including a control device that controls a gas introduction valve and a gas exhaust valve to be closed and a vacuum chamber to be hermetically closed during sputtering.
  • the control device introduces the sputtering gas 7 into the vacuum chamber 11 as shown in FIG.
  • These valves are controlled so as to close the gas introduction valve 9 for closing and to close the main valve 4 for exhausting the gas in the vacuum chamber 11. That is, since the inside of the vacuum chamber 11 is sealed during the film formation, the sputter particles generated by the discharge are not exhausted outside the vacuum chamber. Therefore, the ratio of the sputtered particles in the vacuum chamber 11 increases, and many sputtered particles contribute to the film formation.
  • Such a sputtering apparatus can form a thin film having a desired composition with reduced deficiency of a gas component element on a substrate even when a compound material containing a gas component element is used as the evening gate material.
  • the sputtering apparatus of this embodiment is suitable for the film forming method according to the first embodiment of the present invention.
  • the fourth sputtering apparatus of the present invention may include a pressure control device for controlling the internal pressure of the vacuum chamber, and the pressure control device may include, for example, a temperature control for adjusting the temperature inside the vacuum chamber. It can be a device.
  • the temperature control device includes, for example, a tube spirally arranged on the outer wall of the vacuum chamber, a temperature control fluid supply device for flowing a temperature-controlled fluid (temperature control fluid) through the tube.
  • a temperature control fluid for flowing a temperature-controlled fluid (temperature control fluid) through the tube.
  • a temperature control fluid can be composed of For example, water or antifreeze can be used as the conditioning fluid.
  • a Peltier element can be used for the temperature control device.
  • the pressure in the sealed vacuum channel can be maintained at an optimum pressure during film formation.
  • a first cathode electrode provided in the vacuum chamber for mounting a first overnight get
  • a second cathode electrode for mounting a second target, the cathode electrode being juxtaposed to the first cathode electrode in the vacuum chamber;
  • the snowflake apparatus according to the fifth aspect of the present invention is suitable for performing the film forming method according to the second aspect of the present invention.
  • this sputtering apparatus discharges two targets using two force source electrodes, there is an advantage that the inside of the vacuum chamber can be quickly brought into a steady state.
  • the sputter device includes two force source electrodes, a first force electrode and a second cathode electrode, and a shield between the first electrode and the base. It is preferable that the shielding plate has a dimension such that the entire upper surface of the target disposed on the cathode electrode is covered. The distance between the shielding plate and the target is arbitrary, for example, 1 to 2 cm (can be rubbed.
  • the shielding plate prevents the sputtered particles from the target on the first force source electrode from adhering to the substrate.
  • a compound material containing a gas component element is used as the target material, sputter particles other than the gas component element in the compound material of the first target adhere to the shielding plate, The gas component elements float in the vacuum chamber 1.
  • the amount of the gas component elements in the vacuum chamber 1 can be increased as compared with the case where only the second target is discharged, and the film is formed on the substrate.
  • the substrate is preferably disposed so as to face the second target, whereby sputtered particles from the second target can be prevented.
  • Deposited on The shield plate may be fixed or a shutter that can be opened and closed, but in the present invention, the first touch is performed while power is supplied to the first force source electrode.
  • the sputtering apparatus according to the fifth aspect of the present invention may further include a rotatable substrate holder 81 for holding the substrate 2, as shown in FIG.
  • the base holder 81 is driven to rotate by a motor 82.
  • the base 2 is provided so as to be eccentric with respect to the rotation axis of the base holder 81. Thereby, the two holders arranged in the vacuum chamber 11 are provided.
  • the base 2 alternately passes just above the target 2.
  • the base 2 passes directly above the second target 3b, sputtered particles in the second target material adhere to the base and the shielding plate 1
  • the substrate 2 passes right above the first target 3a covered with 0a, the gas component elements in the first target material tend to adhere, and the other elements are the shielding plate 1 O Attaches to a. Therefore, by forming the film while rotating the substrate with the substrate holder, the gas component element can be more effectively supplemented to the thin film formed on the substrate.
  • a plurality of substrates can be attached to the substrate holder.
  • the sputtering apparatus of the present invention includes a turntable 91 for revolving the first cathode electrode 30 a and the second cathode electrode 30 b with respect to the base 2.
  • the turntable 91 can be driven to rotate by a motor 92.
  • a support rod 10d supporting the shielding plate 10 provided above the first cathode electrode 30a is fixed to the turntable 91.
  • the two targets 3b can pass through the substrate 2 alternately.
  • the rotation of the turntable 91 causes the second target 3 b to face the substrate 2
  • the second target material is formed on the substrate 2
  • the first target 3 a faces the substrate 2.
  • the adhesion of gas component elements in the first target material is promoted. This prevents deficiency of gas component elements in the thin film formed on the substrate.
  • a plurality of bases can be mounted, for example, a base 2 ′ can be arranged as shown in FIG.
  • the power source of the sputtering device of the present invention is connected to the first cathode electrode and the second cathode electrode. Different power can be supplied to each other. Since the amount of particles released from the target material is proportional to the power supplied to the power source, for example, it is supplied to the first cathode electrode on which the first target covered with the shielding plate is placed. By supplying power from the power supply such that the power to be supplied is higher than the power supplied to the second cathode electrode, a large amount of gas component elements can be released from the target on the first cathode electrode. it can.
  • the sputter device of the present invention may include a coil for generating a helicone wave on at least one of the first cathode electrode and the second cathode electrode, and in particular, the coil may be provided on the first cathode electrode. It is preferable to provide In the sputtering apparatus according to the present invention, the distance between the first target placed on the first force source electrode and the base, and the second target placed on the second force source electrode. It is preferable that the distance from the above-mentioned substrate is in the range of 15 to 25 cm (long throw). By setting the distance between the substrate and the evening gate within such a range, the evening gate is discharged at a low pressure, and the quality of the thin film formed on the substrate is homogenized.
  • the first target and the second target are formed of a compound material containing at least one common element.
  • the first target is preferably formed from a compound material that releases a large amount of gas component elements during sputtering.
  • a 1 F 3 can be used for the first target material
  • S i N S i in the case of using the X N! _ x
  • the first and second targets may be formed from the same compound material.
  • a cathode electrode which is arranged in the vacuum chamber and on which an evening gate is placed; a vacuum chamber and a temperature controller for controlling the temperature in the vacuum chamber;
  • a sputtering apparatus comprising: a target temperature adjusting device for adjusting the temperature of the target; and a substrate temperature adjusting device for adjusting the temperature of the substrate.
  • the sputtering apparatus according to the sixth aspect of the present invention is suitable for performing the film forming method according to the third aspect of the present invention.
  • the sputtering device may further include a control device for controlling the chamber-one temperature control device, the target temperature control device, and the substrate temperature control device.
  • the controller can control at least one of the chamber temperature controller and the substrate temperature controller so that the temperature of the substrate becomes lower than the temperature in the vacuum chamber. Further, the control device can control at least one of the target temperature control device and the substrate temperature control device so that the temperature of the substrate is lower than the temperature of the evening target.
  • an optical element such as a lens, a prism, or a reflecting mirror can be used as the base. According to a seventh aspect of the present invention, there is provided an optical element including a thin film formed by the film forming method according to the first to third aspects of the present invention.
  • Such an optical element has high transparency to light having a wavelength of 150 nm to 100 nm particularly when a fluorine-based compound material is used, so that a short-wavelength laser, particularly an excimer laser, is used. It is optimal as an optical element used in the laser lithography optical system used. Further, since the thin film formed on the optical element is formed by a sputtering method, it has a higher adhesive strength, a higher hardness and a higher density than a thin film formed by a vacuum evaporation method. The optical element of the present invention coated with such a thin film is resistant to scratches, easy to handle, and easy to assemble and adjust the optical system. According to an eighth aspect of the present invention, there is provided an apparatus for exposing a pattern image of a mask onto a substrate,
  • An illumination optical system for illuminating the mask with vacuum ultraviolet light An exposure apparatus is provided that includes an optical element according to a seventh aspect of the present invention, and a projection optical system that projects a buttered image of the mask onto a substrate.
  • an apparatus for exposing a mask pattern image on a substrate comprising:
  • An illumination optical system that includes the optical element according to the seventh aspect of the present invention and illuminates the mask with vacuum ultraviolet light;
  • an exposure apparatus including: a projection optical system that projects the pattern image of the mask onto a substrate.
  • the exposure apparatus of the present invention includes the optical element having high light transmittance according to the seventh aspect of the present invention in at least one of the illumination optical system and the projection optical system. Can be reduced.
  • the optical characteristics of the projection optical system and the illumination system for example, characteristics such as focus, distortion, telecentricity, and illuminance can be favorably maintained.
  • FIG. 1 is a schematic configuration diagram of a sputtering apparatus according to the first embodiment.
  • FIG. 2 is a flowchart of the film forming method according to the first embodiment.
  • FIG. 3 is a schematic configuration diagram of a sputtering apparatus according to the third embodiment.
  • FIG. 4 is a block diagram of a control system of the sputtering apparatus shown in FIG.
  • FIG. 5 is a flowchart of a film forming method according to the third embodiment.
  • FIG. 6 is a schematic configuration diagram of a sputter device according to the fifth embodiment.
  • FIG. 7 is a flowchart of a film forming method according to the fifth embodiment.
  • FIG. 8 is a modification of the sputtering apparatus shown in FIG. 6, and shows a configuration example in which a substrate is mounted on a rotatable substrate holder.
  • FIG. 9 is a modified example of the sputter device shown in FIG. 6, which is different from FIG. 8, and shows a configuration example in which first and second casodes are arranged on a rotatable rotating base.
  • FIG. 10 is a schematic configuration diagram of a sputtering apparatus according to the seventh embodiment.
  • FIG. 11 is a block diagram of a control system of the sputtering apparatus shown in FIG.
  • FIG. 12 is a flowchart of a film forming method according to the seventh embodiment.
  • FIG. 13 is a modified example of the sputtering apparatus shown in FIG. 6, and is a configuration example of a sputtering apparatus provided with a helicon coil.
  • FIG. 14 is a diagram showing a basic configuration of the exposure apparatus of the present invention.
  • FIG. 15 is a schematic configuration diagram of a conventional sputter device.
  • FIG. 1 shows a schematic configuration of a sputtering apparatus according to the present invention.
  • the sputtering apparatus 100 includes a vacuum chamber 11 for performing a film forming process, a vacuum pump 5 for evacuating the vacuum chamber 11, a gas tank 8 for introducing a sputtering gas into the vacuum chamber 11, and a control system 13. 0 is mainly provided.
  • a main valve 4 is provided between the vacuum chamber 1 and the vacuum pump 5, and the main valve 4 is driven by a main valve driving device (not shown) to open and close.
  • a gas introduction knob 9 is provided between the vacuum chamber 11 and the gas tank 8, and the gas introduction valve 9 is driven by a gas introduction valve driving device (not shown) to open and close.
  • the gas introduction valve drive and the main valve drive are controlled by the CPU (see Figs. 4 and 11) in the control system 130.
  • the flow rate of the sputtering gas 7 to the vacuum chamber 1 is adjusted by the mass flow controller 6.
  • a magnetron cathode 30 is provided at the bottom, a base 2 is provided at the top, and a shutter 10 is provided therebetween.
  • the shutter 10 is rotatable about a rotation axis 11, and the rotation axis 11 is driven by a rotation axis driving device (not shown).
  • the rotating shaft driving device is controlled by CPU in the control system 130. Also, the vacuum chamber
  • FIG. 1 is provided with a vacuum gauge 13 for measuring the internal gas pressure. Further, a high frequency (RF) power supply 31 is connected to the magnetron cathode 30 as a power supply required for discharging the power source, and the power supply 31 is controlled by a CPU in the control system 130. .
  • RF radio frequency
  • FIG. 2 is a front view illustrating the film forming method of the present invention. First, to activate the vacuum pump 5 by opening the main valve 4, the vacuum chamber - a gas pressure in one of the following vacuum 1 X 1 0- 6 Torr (Step S 1 -001).
  • the gas introduction valve 9 is opened, and the argon gas 7 is introduced into the vacuum chamber 11 while controlling the gas flow rate by the mask opening controller 6 (step S 1 -002).
  • electric power 100 W
  • the main valve 4 is adjusted to control the gas pressure in the vacuum chamber 11 to 1 ⁇ 10 -3 Torr (step S1-004). Close the gas introduction valve 9 to stop the introduction of argon gas 7 into the vacuum chamber 1 (Step S 1 -005) o Close the main valve 4 (Step S1-006).
  • Step S1-007 Gas pressure in the vacuum chamber one 1 at this time was 1 X 1 0- 2 Torr.
  • the shutter 10 provided on the SiN sputter target 3 was opened (step S1-007), and film formation on the substrate 2 was started.
  • the transmittance of the formed SiN film was measured. The excess rate was about 90%.
  • an MgF 2 film was formed to a thickness of about 50 nm on a glass substrate in the same manner as in Comparative Example 1, except that Mg F 2 was used as a target material.
  • the transmittance of the obtained MgF 2 film to light having a wavelength of 193 nm was 50% or less.
  • FIG. 3 is a schematic configuration diagram of the sputtering apparatus of the present invention.
  • FIG. 4 is a block diagram of a control system of the snowboard / swing device according to the present invention.
  • a sputtering apparatus 200 includes a vacuum chamber 11 for performing a film forming process, a vacuum pump 5 for evacuating the vacuum chamber 11, and a gas tank 8 for introducing a sputtering gas into the vacuum chamber 11.
  • a vacuum gauge 13 for measuring the pressure inside the vacuum chamber 11 and a thermometer 14 for measuring the temperature inside the vacuum chamber 11 are mainly provided.
  • a main valve 4 is provided between the vacuum chamber 11 and the vacuum pump 5, and a gas introduction valve 9 is provided between the vacuum chamber 11 and the gas tank 8.
  • the main valve 4 is opened and closed by being driven by a main valve driving device shown in FIG. 4, and the gas introduction valve 9 is driven by a gas introduction valve driving device to be opened and closed.
  • the gas introduction valve driving device and the main valve driving device are controlled by the CPU as shown in FIG.
  • the flow rate of the sputtering gas 7 to the vacuum chamber 11 is adjusted by the mass flow controller 6.
  • the outer wall of the vacuum chamber 11 is provided with a pipe 12 through which cooling water for adjusting the temperature of the vacuum chamber passes.
  • the pipe 12 is connected to a water temperature control device (temperature control fluid supply device) 15.
  • the water temperature control device 15 has a water temperature measurement unit for measuring the temperature of the cooling water and a water temperature adjustment unit for adjusting the water temperature. Is provided.
  • the water temperature control device 15 is controlled by the CPU as shown in FIG. As shown in FIG. 4, the value measured by the pressure gauge 13 and the value measured by the thermometer 14 are input to the CPU, and the CPU calculates the temperature required for the inside of the vacuum chamber 11 to reach a predetermined pressure. Ask. Further, the CPU sends a command to the water temperature control device 15 so that the temperature becomes the temperature obtained by the arithmetic processing.
  • the water temperature control device 15 receives the command and adjusts the temperature of the cooling water to a predetermined temperature.
  • a magnetron force source 30, a base 2, and a shirt 10 are provided in the same arrangement as in FIG.
  • a SiN target which is a compound material
  • the shutter 10 can rotate around the rotation axis 11 and The rotating shaft 11 is driven by a rotating shaft driving device shown in FIG.
  • the rotating shaft driving device is controlled by the CPU.
  • a high frequency (RF) power supply 31 is connected to the magnetron cathode 30 as a power supply required for discharging the power source, and the power supply is controlled by the CPU as shown in FIG.
  • a glass substrate was used as the substrate 2.
  • FIG. 5 is a front view showing an example of the film forming method of the present invention.
  • the main valve 4 is opened, the vacuum pump 5 is started, and the gas pressure in the vacuum chamber 11 is reduced to 1 ⁇ 10 6 Torr or less (step S 2 001).
  • the gas introduction valve 9 is opened, and the argon gas 7 is introduced into the vacuum chamber 1 (step S2-002). Electric power (100 W) is supplied from the power supply 31 to the magnetron power source, and the SIN target is cathodically discharged (step S2-003).
  • step S2-008 The shutter 10 provided on the Spa 3 of the SiN @ evening and evening 3 was opened (step S2-008), and the film formation on the substrate 2 was started.
  • a 50 nm thick SiN film was formed on a glass substrate, and the light transmittance of the obtained SiN film to light having a wavelength of 633 nm was measured. %, which was higher than the transmittance of the SiN film formed in Example 1.
  • Example 4
  • FIG. 6 shows a schematic configuration of the sputtering apparatus of this embodiment.
  • a sputtering apparatus 300 includes a vacuum chamber 11 for performing a film forming process, a vacuum pump 5 for evacuating the vacuum chamber 11, and a gas tank 8 for introducing a sputtering gas into the vacuum chamber 11.
  • a main valve 4 is provided between the vacuum chamber 11 and the vacuum pump 5, and the main valve 4 is opened and closed by being driven by a main valve 'driving device (not shown).
  • a gas introduction valve 9 is provided between the vacuum chamber 11 and the gas tank 8, and the gas introduction valve 9 is driven by a gas introduction valve driving device (not shown) to open and close.
  • the gas introduction valve drive and the main valve drive are controlled by a CPU (not shown).
  • the flow rate of the sputtering gas 7 to the vacuum chamber 11 is adjusted by the mass flow controller 6.
  • a magnetron force source 30a for gas component enrichment (pre) and a magnetron force source 30b for film formation (main).
  • a carbide Provided with a carbide.
  • a SiN target which is a compound material is mounted as a sputter target 3 a for gas component enrichment
  • the magnetron power source 30 Above b a SiN target, which is a compound material, is mounted as a film-forming sputter target 3b.
  • a fixed shutter (a shirt that does not open) 10a is provided above the gas component enrichment sputter target 3a.
  • a shutter 1 Ob that is rotatable about a rotating shaft 11 is provided above the film forming sputtering target 3b, and the rotating shaft 11 is rotated by a rotating shaft driving device (not shown). It is driven to rotate.
  • the rotation axis driving device is controlled by the CPU.
  • a vacuum gauge 13 for measuring a gas pressure in the vacuum chamber 11 is provided.
  • a high frequency (RF) power source 31 as a power source required for discharging is connected to a magnetron force source 30 a for enriching gas components and a magnetron cathode 30 b for film formation. 1 is controlled by the CPU.
  • FIG. 7 is a flowchart showing an example of the film forming method of the present invention.
  • Open the main valve 4 activates the vacuum pump 5, the gas pressure in the vacuum chamber one 1 in the following vacuum 1 X 1 0- 6 Torr (step S 3- 0 0 1).
  • the gas introduction valve 9 is opened, and the argon gas 7 is introduced into the vacuum chamber 11 (step S3-002).
  • a high frequency power is supplied from the power supply 31 to the magnetron cathode 30a for gas component enrichment, and the sputter target 3a for gas component enrichment consisting of SiN is force-discharged (Step S). 3— 0 0 3) o
  • the applied RF power is 25 was ow.
  • the main valve 4 By adjusting the main valve 4, the gas pressure in the vacuum chamber one 1 and 1 X 1 0- 3 Torr (step S 3- 004).
  • the gas introduction valve 9 is closed, and the introduction of the argon gas 7 into the vacuum chamber 11 is stopped (step S3-005). Meinbarubu 4 by adjusting the controls of the gas pressure in the vacuum chamber one 1 to 1 X 1 0 one 2 Torr (step S 3- 006).
  • the high frequency power (RF power) is supplied from the power supply 31 to the magnetron force source 30b for film formation, and the film-forming sputter target 3b made of SiN is force-sword-discharged (step S3-007).
  • the RF power applied at this time was 150 W.
  • Step S3—008) Open the shutter 10b provided on the sputtering target 3b for SiN film formation, and keep the shutter 10a provided on the gas component-enriched sputtering target 3a closed.
  • Step S3—008 the film formation on the substrate 2 was started. According to the film forming method described above, a 50 nm-thick SiN film was formed on the substrate. The transmittance of the obtained SiN film to light having a wavelength of 633 nm was measured and found to be 92%.
  • FIG. 10 is a schematic configuration diagram of a sputter device
  • FIG. 11 is a block diagram of a control system of the sputter device.
  • the sputtering apparatus 400 includes a vacuum chamber 11 for performing a film forming process, a vacuum pump 5 for evacuating the vacuum chamber 11, a gas tank 8 for introducing a sputtering gas into the vacuum chamber 11, and a vacuum chamber. It mainly comprises a pressure gauge 13 for measuring the pressure in the inside 1.
  • a main valve 4 is provided between the vacuum chamber 11 and the vacuum pump 5, and a gas introduction valve 9 is provided between the vacuum chamber 11 and the gas tank 8.
  • the main valve 4 is driven by a main valve driving device shown in FIG. 11 to open and close, and the gas introducing valve 9 is driven by a gas introducing valve 'driving device to open and close.
  • the gas introduction valve driving device and the main valve driving device are controlled by the CPU.
  • the flow rate of the sputtering gas 7 to the vacuum chamber 11 is adjusted by the mass flow controller 6.
  • a pipe 12 through which cooling water passes is provided on the outer peripheral portion of the vacuum chamber 11, and the cooling water flows in the pipe 12 in the direction of arrow A.
  • the pipe 12 is connected to a temperature control device 15 which is composed of a water temperature measurement unit for measuring the temperature of water and a water temperature adjustment unit for adjusting the water temperature.
  • the water temperature adjusting section may be constituted by a heater or the like as in the third embodiment.
  • the water temperature data measured by the water temperature measurement unit is input to the CPU, and the CPU sends a command to the water temperature adjustment unit so that the set water temperature is reached.
  • the temperature inside the champ can be controlled to the set temperature (25 ° C).
  • the measured value measured by the pressure gauge 13 is not input to the CPU.
  • the vacuum chamber 11 is provided with a magnetron force source 30, a shutter 10, and a substrate 2. Magnetron force sword mounted spatter target And a mounting cylinder 17 for supporting the mounting table.
  • the inside of the mounting cylinder 17 is hollow, and the cooling water c provided with the respective pipes 18 for inflow and outflow of the cooling water flows in the direction of arrow B.
  • the magnetron force source 30 is provided with a target temperature control device 16 for controlling the temperature of the sputter target 3.
  • the target temperature control device 16 includes a water temperature measurement unit for measuring the temperature of the cooling water, and a water temperature adjustment unit (the heater 1) for adjusting the temperature of the cooling water, and is controlled by the CPU.
  • the method of controlling the water temperature is the same as that of the chamber temperature control device, and will not be described.
  • the temperature of the target can be controlled to the set temperature (30 ° C) by adjusting the water temperature with the evening temperature controller.
  • a high frequency (RF) power source (not shown) is connected to the magnetron force source as a power source required for discharging, and the high frequency power source is controlled by a CPU as shown in FIG. I have.
  • the substrate 2 is held by a substrate holding member 51 provided with a substrate temperature controller 19.
  • a quartz optical lens was used for the substrate 2.
  • the inside of the holding cylinder 20 that supports the substrate holding member 51 is hollow, and pipes 21 through which cooling water flows in and out in the direction of arrow C are arranged.
  • the substrate temperature control device 19 includes a water temperature measurement unit for measuring water temperature and a water temperature adjustment unit for adjusting water temperature, and is controlled by the CPU as shown in FIG.
  • the method of controlling the water temperature is the same as that of the vacuum chamber-one control device, and the description thereof is omitted.
  • the temperature of the substrate can be controlled to the set temperature (15 ° C.) by adjusting the water temperature by the substrate temperature controller 19.
  • the cooling water is configured to circulate through the pipes 12, 18, and 21, respectively, and the cooling water is supplied from a common supply source (not shown).
  • the CPU sends a command to the temperature control device 15, the target temperature control device 16, and the substrate temperature control device 19 so as to reach the set temperature.
  • the chamber-to-temperature controller 15, the evening-gate temperature controller 16, and the substrate temperature controller each pump water so as to reach the aforementioned temperature. Can be adjusted.
  • FIG. FIG. 12 is a flowchart showing an example of the film forming method of the present invention.
  • Open the main valve 4 activates the vacuum pump, the gas pressure in the vacuum chamber one 1 in the following vacuum 1 X 1 0- 6 Torr (step S 4-001).
  • the gas introduction valve 9 is opened, and argon gas 7 is introduced into the vacuum chamber 11 (Step S4-002).
  • High-frequency power (RF power) is supplied from a high-frequency power source to the magnetron cathode to perform a cathodic discharge of the shin target (step S4-003).
  • the RF power applied at this time was 100 W.
  • the gas pressure in the vacuum chamber one 1 to 1 X 1 0- 3 Torr step S 4-004.
  • the gas introduction valve 9 is closed, and the introduction of the argon gas 7 into the vacuum chamber 11 is stopped (step S4-005).
  • the main valve 4 is closed (Step S4-006).
  • the temperature inside the vacuum chamber 11, the target temperature, and the substrate temperature are set to 25, respectively.
  • C, 30 ° C and 15 ° C are controlled (step S4-007). In this case, controlling the gas pressure in the vacuum chamber one 1 or more 5 X 1 0- 3 Torr.
  • the shutter 110 provided on the SiN sputter target 3 was opened (step S4-008), and film formation on the substrate 2 was started.
  • a SiN film was formed on the quartz optical lens to a thickness of about 50 nm.
  • the transmittance of the obtained SiN film to light having a wavelength of 633 nm was 91%.
  • the temperature control is performed after the main valve is closed. However, the temperature control can be performed at an arbitrary timing before starting the film formation.
  • FIG. 13 shows a modification of the sputter device shown in the fifth embodiment.
  • the sputtering device 400 shown in FIG. 13 is a sputtering device for helicon sputtering.
  • a helicon sputtering device for helicon sputtering is provided between the fixed shutter 10a and the gas component enrichment target 3a.
  • One forty has been inserted.
  • the other parts are the same as those of the sputter device of the fifth embodiment (see FIG. 6), and the description is omitted.
  • the helicon coil 140 is supplied with a high frequency power of a predetermined frequency during the film formation.
  • a SiN film was formed to a thickness of 50 nm on the glass substrate 2.
  • the transmittance of the obtained SiN film to light having a wavelength of 633 nm was 92.2%.
  • the surface of the SiN film was observed with an atomic force microscope to examine the surface condition. As a result, it was found that the SiN film was an extremely uniform film.
  • the distance L between the film formation target 3 b and the glass substrate 2 is 15 cm to 25 c.
  • the glass substrate 2 was arranged further away from the film formation target so that the film thickness became m ( and the SiN film was formed on the glass substrate by performing The transmittance of the obtained SiN film with respect to light having a wavelength of 6333 nm was 92.4%
  • the helicon coil 140 was provided with an evening gate for enriching gas components. 3 Although it was provided just above a, as shown by reference numeral 140 ′ in FIG. 14, a helicone coil was also provided directly above the film-forming target 3, and the gas component-enriching target was used. Helicon sputtering may be applied to both the film and the film forming gate.
  • FIG. 14 shows a scanning projection exposure apparatus 200 for exposing the wafer 1801 (whole W) collected by the photo resist 1701 with an image of a reticle R pattern. It is a conceptual diagram of No. 0, and the optical elements manufactured in Examples 1 to 8 are applied to this exposure apparatus.
  • the projection exposure apparatus of the present invention comprises at least a reticle stage 1 201 that can hold a reticle R (mask) and can move in a direction parallel to the surface of the reticle R, and a wafer (substrate).
  • Wafer stage 1301 that can move W in a direction parallel to the wafer surface while holding W on surface 1301a, and illumination optics to irradiate reticle R (mask) with vacuum ultraviolet light 1101, a light source 1101 for supplying vacuum ultraviolet light as exposure light to the illumination optical system 1101, and a projection for projecting an image of the pattern of the reticle R onto the wafer W.
  • the optical system 150 is included.
  • the projection optical system 1500 is disposed between the reticle R and the wafer W such that the surface P1 on which the reticle R is disposed becomes an object plane and the surface P2 of the wafer W becomes an image plane.
  • the illumination optical system 111 includes an alignment optical system 110 for performing relative positioning between the reticle R and the wafer W.
  • the reticle exchange system 1200 exchanges and transports the reticle R set on the reticle stage 1 201.
  • Reticle exchange system 1 2 0 0 is retic
  • a reticle stage driver (not shown) for moving the wafer stage 1 201 is included.
  • the stage control system 130 0 is provided with a wafer stage driver (not shown) for moving the wafer stage 130 1. Is provided.
  • the main control system 1400 controls the reticle stage driver and wafer stage driver via the stage control system 1300 so that the reticle stage and wafer stage are synchronously moved with respect to the exposure light. Drive.
  • the projection optical system 1500 further obtains an alignment optical system 1601.
  • the exposure apparatus 2 0 0 0, or an optical element M g F 2 membranes prepared in Examples were co one Bok.
  • the optical elements manufactured in Examples 1 to 8 are used for the optical lens 190 of the illumination optical system 111 and the projection lens 110 of the projection optical system 150.
  • a plurality of projection lenses 1100 are arranged in the projection optical system 1500.
  • the lens according to the present invention is used for the light exit side, that is, the lens closest to the wafer W. Is preferred.
  • the projection lens may be provided with a thin film only on the light incident surface, or the entire lens may be provided with a thin film.
  • optical elements such as a fly-eye lens, various relay lenses, a beam splitter, a condenser lens, a beam expander, and a reflecting mirror are used, but the present invention can be applied to any element. It is.
  • a scanning type projection exposure apparatus is illustrated, but the invention is not limited to this.
  • a step-and-repeat type projection exposure apparatus so-called stepper
  • a mirror projection aligner a proximity type exposure apparatus
  • the present invention can also be applied.
  • the projection exposure apparatus and the optical elements used therein are disclosed in U.S. Pat. No. 5,835,275, and these documents are incorporated by reference to the extent permitted by the national laws of the designated country. Part of the text.
  • the optical element of the present invention can be used for various devices other than the exposure device, for example, a spectroscope, a laser repair device, various inspection devices, sensors, and the like.
  • the thin film is formed on the glass substrate or the quartz optical lens.
  • the present invention is not limited to this. be able to.
  • a single layer film is formed on a glass substrate, but a multilayer film can be formed.
  • the film forming method of the present invention is capable of forming a compound film containing a gas component element, so that it is most suitable as a coating method of an optical thin film on an optical element requiring high light transmittance. is there.
  • the present invention is useful as a coating method for an optical element having a high light transmittance for short-wavelength light such as vacuum ultraviolet light.
  • the film is formed by sputtering, the adhesiveness and hardness of the formed compound film can be increased as compared with the evaporation method.
  • equipment for introducing the reactive gas is not required, and the equipment is inexpensive.
  • the optical element with a compound film produced by the film forming method of the present invention has excellent light transmittance, an exposure apparatus equipped with such an optical element can reduce the loss of illuminance of a light source as compared with a conventional exposure apparatus. Light use efficiency can be increased.
  • the present invention is extremely effective for an exposure apparatus for manufacturing a super LSI or a super resolution liquid crystal substrate using a light source having a wavelength of 200 nm or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Description

明細書 ガス成分元素を含む化合物材料の成膜方法及びスパッタ装置 技術分野
本発明は、 化合物膜を光学素子に成膜する方法及びスパッタ装置に関し、 更に 詳細には、 A r F ( 1 93 nm) 、 F 2 ( 1 57 nm) などのエキシマレ一ザか ら発生する 200 nm以下の真空紫外波長域の光に対して使用される光学素子に、 ガス成分元素を含む化合物材料をスパッタリングにより成膜する方法及びスパッ タ装置に関する。 更に、 本発明は、 光学素子を備え、 真空紫外波長域の光を露光 源として用いてフ才卜リソグラフィ一を行なう露光装置に関する。 背景技術
半導体露光装置には、 レンズゃ反射鏡などの光学素子が数多〈使用されている c 近年、 L S Iの高集積化に伴って、 露光装置の光源の波長が g線 (436 nm) から i線 ( 365 nm) 、 更には K r F ( 248 nm) や A r F ( 1 93 nm) のようなエキシマレ一ザ波長へと短波長化が進められているため、 そのような短 波長領域において高透過率および耐紫外線性を備えた光学素子が要求される。 光学素子には、 通常、 反射膜、 反射防止膜などの種々の光学薄膜が施されてい る。例えば、 反射防止膜は望ましくない反射を低減するために光学素子の表面に 施され、 一方、 反射膜は入射光を反射膜表面で効率よく反射させるために光学素 子の表面に施される。 これらの光学薄膜には、 S i Nなどの化合物材料が用いら れている。 かかる化合物材料からなる光学薄膜は、 例えばスパッタリングや真空 蒸着法により光学素子に成膜することができる。 しかしながら、 化合物材料が、 融点の大き〈異なる 2種類の元素から構成され ている場合、特に、 単体で気体である酸素、 窒素、 フッ素などのガス成分元素を 含んでいる場合、 かかる化合物材料をスパッ夕夕一ゲッ 卜に用いてスパッタする と、 スパッタタ一ゲッ卜から飛び出したスパッタ粒子のうち、 ガス成分元素であ る酸素、 窒素、 フッ素がスパヅタ堆積物から抜けて成膜され、 成膜された膜の組 成は、 化学量論比からすると酸素、 窒素、 フッ素などのガス成分元素が欠乏して いた。 このように、 ガス成分元素の欠如した膜は、 所望の化学量論比の膜と比べ て物性的に異なり、 特に、 透過率特性を満たさない。 このため、 かかる膜が施さ れた光学素子の透過率の低下を招く。 そこで、 従来は、 成膜された膜のガス成分元素の欠損を防止するために、 欠損 するガスを補充しながらスパヅタを行なっていた。 化合物材料として S i Nを用 いた場合の従来のスパッタ装置及び成膜方法について図 1 5を参照して説明する c 図 1 5に示すように、 スパッタ装置 1 0 0 0は、 主に、 真空チャンバ一 1 0 1 、 スパッタガスボンベ 1 0 8、 補充ガスボンベ 1 1 0、 排気系の真空ポンプ 1 0 5 から構成されている。真空チャンバ一 1 0 1内には、 化合物材料 S i Nのスパッ タターゲット 1 0 3及び基板 1 0 2が配置される。 ガスボンベ 1 0 8には、 スパ ッタガス 1 0 7としてアルゴンガスが蓄えられている。 ガスボンベ 1 0 8から流 出するスパッ夕ガス 1 0 7は、 マスフ口一コントロ一ラ 1 0 6にて、 その流量が 調整された後、 ガス導入バルブ 1 0 9を介して真空チャンバ一 1 0 1へ流入する c 補充ガスボンベ 1 1 0には、 補充ガスとして窒素ガス 1 1 3が充填されている。 補充ガスボンベから流出する補充ガス 1 1 3は、 マスフローコント口一ラ 1 1 1 にて、 その流量が調整された後、 補充ガス導入バルブ 1 1 2を介して真空チャン バー 1 0 1へ流入する。真空チャンバ一 1 0 1 と、 その下方に設けられた排気系 の真空ポンプ 1 0 5との間には、 メインバルブ 1 0 4が配置され、 メインバルブ 1 0 4を開けると真空チャンバ一 1内のガスが真空ポンプ 1 0 5により真空チヤ ンバ一 1 0 1の外に排気される。 かかるスパッ夕装置 1 0 0 0を用いた成膜操作は次のようにして行なう。 最初 に、 ガス導入バルブ 1 0 9及び補充ガス導入バルブ 1 1 2を各々開き、 アルゴン ガス 1 0 7及び窒素ガス 1 1 3を真空チャンバ一 1 0 1内に所定流量で流入させ る。 次いで、 メインバルブ 1 0 4を開き、 真空チャンバ一内のガスを排気しなが ら真空チャンバ一 1 0 1内のスパッ夕ガス圧を一定にする。 その後、 真空チャン バ一 1 0 1に接続した R「電源 (不図示) を用いスパッタタ一ゲッ卜 1 0 3上で 力ソード放電を行なう。 この放電 (こよりスパッタタ一ゲッ 卜 1 0 3から飛び出し たスパッタ粒子が、 アノードとして機能する基板 1 0 2に付着し、 基板表面に薄 膜が形成される。 しかしながら、 図示したような装置 1 0 0 0では、 ガスを補充しながら成膜す る必要があり、 アルゴンガスの他に、 補充用のガスを導入するためのガス導入系 が別途必要となる。 すなわち、 ガスの導入系が 2系列になるため、 スパッタ装置 の構造が複雑で、 しかもコストが高くなる欠点がある。 また、 補充用ガスがフッ 素等の極めて活性の強い有毒ガスの場合、 その取り扱いに慎重を要し、 管理のた めの作業及び設備も必要であつた。 更に、 化合物材料中に含まれるガス成分元素を補充しながら化合物材料を成膜 する方法では、 薄膜中の組成の制御が困難であり、 光透過性の高い薄膜を得るこ とは容易ではなかった。 また、 蒸着法を用いて、 前述のガス成分元素を含む化合物材料を成膜する方法 も考えられる力 一般に蒸着法で得られた薄膜はスパッタ法で得られた膜に比べ て膜の緻密性及び硬度が低い。 このため蒸着法で反射膜等が成膜された光学素子 は損傷しゃすいという問題がある。 発明の開示
本発明の目的は、 前記従来技術の問題点を解決し、 光学素子等の基体にガス成 分元素を含む化合物材料を所望の組成で成膜することができる成膜方法及びスノ \° ッタ装置を提供することにある。 本発明の別の目的は、 3 0 0 n m以下、 特に 2 0 0 n m以下の紫外域の光に対 して透過率の極めて高い薄膜を備える光学素子を提供することにある。 本発明の更に別の目的は、 上記光学素子を備えた露光装置を提供することであ る。 本発明の第 1の態様に従えば、 スパッタリングによる成膜方法であつて、 真空チャンバ一内に、 化合物材料からなるスパッタタ一ゲッ 卜と被成膜体とを 配置し、 スパッタガスを真空チャンバ一内に導入した後、 真空チャンバ一を密閉 した状態でスパッタすることを含む成膜方法が提供される。 従来は、 図 1 5に示したように、 真空チャンバ一内を真空ポンプなどで減圧し ながら化合物材料のタ一ゲッ 卜を放電させて基体に薄膜を形成していたので、 化 合物材料から飛び出したガス成分元素も真空ポンプにより真空チヤンバー内から 排出されていた。 これは、 化合物材料中のガス成分元素が化合物材料中の他の成 分に比べて質量 (原子量) が小さいために、 真空チャンバ一から排気弁を通じて 排気される頻度が他の成分よりも高いからであると考えられる。 ガス成分元素を 補充しながらスパッタリングを行なった場合でも、 ガス成分元素は、 同様の理由 から、 真空チャンバ一から排出され易いと考えられる。 このため、 成膜された薄 膜の組成の制御が容易でなかった。 一方、 本発明の成膜方法では、 真空チャンバ一を密閉した状態でスパッタタ一 ゲッ 卜を放電させて基体 (被成膜体) に薄膜を形成することに特徴がある。 本発 明の成膜方法では、 真空チャンバ一へのスパッ夕ガスを供給して真空チャンバ一 内を所定の圧力に調整した後、 すべてのバルブを閉鎖して真空チャンバ一を密閉 状態にする。 かかる密閉状態の真空チャンバ一内で、 化合物材料からなるターゲ ッ卜を放電させると、 化合物材料に含まれるガス成分元素は夕一ゲッ 卜から飛び 出してチャンバ一内に充満する。 このため、 ガス成分元素が基体に付着する頻度 が上がり、 ガス成分元素はスパッ夕に有効に使われる。 それゆえ、 ターゲッ ト材 料にガス成分元素を含む化合物材料を用いたとしても、 基体に成膜された薄膜の ガス成分元素の欠損が解消され、 ターゲッ卜材料に極めて近い組成の薄膜を基体 に形成することができる。 スパッタリングによる成膜では、 通常、 真空チャンバ一内のガス圧は、 スパヅ 夕夕一ゲッ 卜の材料に応じて好適な値に制御される。 本発明の成膜方法では、 以 下のような方法により、 スパッタリング中に、 密閉された真空チャンバ一内のガ ス圧を調節することができる。 例えば、 真空チャンバ一内の温度を、 チャンバ一 の外壁部を冷却または加熱したり、 真空チャンバ一の内部に直接ヒーターまたは 冷却装置を設けることにより制御すればよい。 スパッタリング中に、 チャンバ一 内の圧力を高く したい場合には、 ボイルシャルルの法則、 あるいはクライ才ポン プの原理に従って、 真空チャンバ一内の温度を上げればよく、 真空チャンバ—内 の圧力を低くしたい場合には真空チャンバ一内の溫度を下げればよい。 これによ り、 真空チャンバ一内を密閉してスパッ夕することによりチャンバ一内のガス圧 が上昇しても、 真空チャンノ 内を所望のガス圧に制御できる。 本発明の成膜方法において、 タ—ゲッ卜と基体との距離は 1 5 cm~25 cm (long throw) であることが好ましい。 これにより低圧放電させることができる ので良質の薄膜を基体に形成することができる。 本発明の成膜方法において、 スパッタ法には、 へリコンスパッ夕を用いること が好ましい。 これにより、 硬度が高く、 緻密で付着力の強い薄膜を基体に形成す ることができる。 本発明において、 夕一ゲッ 卜として用いる化合物材料は、 酸化物、 窒化物また はフッ化物のようなガス成分元素を含む化合物が好適であり、 例えば、 S i Nや Mg F2、 S i 02、 A l 23、 A 1 F3、 L aF3、 L i Fが好適である。 これ らの材料のうち、 S i 02、 A 1203は 1 90 nrr!〜 1 000 nm、 特に 1 90 nm以上の紫外域の波長、 Mg F2、 A 1 F3、 La F3、 L i Fは 1 50 nm〜 1000 nm、 特に 1 50 n m以上の紫外域の波長の光に対して高い透過性を有 するので、 光学素子を被覆する光学薄膜の材料として好適である。特に、 M g F 2、 A 1 F 3、 L a F 3、 L i Fなどの化合物材料は、 2 0 0 n m以下の真空紫外 波長域の光に対して高い透過性を有するので、 短波長レーザを用いたレーザリソ グラフィなどの光学系に使用される光学素子のコ一ティング材料として極めて好 適でおる。 本発明の第 2の態様に従えば、 真空チャンバ一内でターゲッ 卜をスパッ夕する ことにより基体に薄膜を成膜する成膜方法であって、
第 1ターゲッ 卜及び第 2夕一ゲッ 卜の少なくとも 2つの夕一ゲットを用い、 第 1ターゲッ 卜と基体との間に遮蔽板を介在させて、 第 1ターゲッ 卜及び第 2 ターゲットをスパッタすることを含む成膜方法が提供される。 本発明の第 2の態様に従う成膜方法では、 第 1ターゲッ卜と基板との間に遮蔽 板を介在させて、 第 1タ一ゲッ卜と第 2ターゲッ 卜を同時に放電するので、 第 1 ターゲットを構成する化合物材料中のガス成分元素以外の元素は遮蔽板に付着し やすく、 ガス成分元素は、 質量が比較的小さいために真空チャンバ一内を浮遊す る傾向がある。 これによりガス成分元素が基体に付着する頻度を高めることがで き、 薄膜のガス成分元素の欠損を防止することができる。 すなわち、 第 1ターゲ ッ卜は、 真空チャンバ一内のガス成分元素を富化させる機能を有する。 かかる成 膜方法においては、 基体は、 第 2夕一ゲッ 卜に対向するように配置することが好 ましい。 本発明の第 2の態様の成膜方法においては、 スパッタ中に真空チヤンバー内を 密閉し得る。 これにより、 真空チャンバ一内のガス成分元素の量をより一層増や すことができるので、 基体に形成される薄膜のガス成分元素の欠損をより一層有 効に防止することができる。 第 1ターゲッ 卜及び第 2夕—ゲッ卜は、 少なくとも一種類の共通の元素、 例え ば、 ガス成分元素を含む化合物材料から形成し得る。 また、 第 1及び第 2ターゲ ットは同一の化合物材料から形成してもよい。 第 1及び第 2ターゲッ 卜が、 いず れもガス成分元素を含む場合には、 第 1タ—ゲッ卜の化合物材料は、 第 2タ―ゲ ッ卜よりもガス成分元素を多量に含む組成にすることが好ましい。 これにより、 スパッタリング中に、 多量のガス成分元素を供給することが可能となり、 基体に 成膜される薄膜のガス成分元素の欠損を防止することができる。 本発明の第 2の成膜方法では、 例えば、 第 1カソ—ド電極に第 1電力を印加し て第 1タ一ゲッ トをスパッ夕し、 第 2タ一ゲッ 卜に、 第 1電力と異なる第 2電力 を印加して第 2ターゲッ卜をスパッタすることもできる。 このように第 1ターゲ ッ卜と第 2タ一ゲッ卜に異なる電力を供給することによって、 第 1タ一ゲッ 卜と 第 2夕一ゲッ卜からそれぞれ放出されるスパッ夕粒子の量を制御することが可能 となり、 基体に成膜される薄膜の組成を制御することが可能となる。 遮蔽板で覆 われた第 1夕一ゲッ卜からガス成分元素が多量に放出されるように電力を制御す ることにより、 チャンバ一内のガス成分元素の量を制御することができるので、 基体に形成される薄膜のガス成分元素の欠損が防止される。 本発明の成膜方法では、 第 1タ一ゲッ 卜と第 2夕一ゲッ 卜のそれぞれの直上を 交互に通過するように基体を公転させさせながらスパッ夕することができる。 こ れにより、 第 1ターゲット上を通過するときにガス成分元素が付着しやすくなる ので、 基体に形成される薄膜のガス成分元素の欠損を防止できる。 公転速度は、 基体に成膜される薄膜中のガス成分元素が均一に存在するように決定するのが好 ましい。 また、 基体を第 1タ一ゲッ 卜と第 2ターゲッ卜のどちらか一方に対向するよう に配置するとともに、 第 1タ一ゲッ卜と第 2ターゲッ卜を基体に対して回転させ ながらスパッ夕を行なってもよい。 本発明の第 3の態様に従えば、 真空チャンバ一内で夕一ゲットをスパッタする ことにより基体に薄膜を成膜する成膜方法であって、 スパッタ中に、 上記基体、 ターゲヅ 卜及び真空チャンバ一内部の温度をそれぞ れ独立に制御することを含む成膜方法が提供される。 本発明の第 3の態様の成膜方法においては、 基体の温度がターゲッ 卜の温度よ りも低〈なるように、 基体温度及びターゲッ卜溫度の少なくとも一方の温度を制 御することが好ましい。 また、 基体の温度が真空チャンバ一内部の温度よりも低 〈なるように、 基体温度及び真空チャンバ一内部溫度の少なくとも一方の温度を 制御することが好ましい。 このように基板の温度をタ一ゲッ卜の溫度またはチヤ ンバ一内の温度よりも低くすると、 スパッタリングにより化合物材料から放出さ れたガス成分元素が基体に吸着しやすくなり、 基体に形成される薄膜のガス成分 元素の欠損を防止することができる。 本発明の第 1〜第 3の態様に従う成膜方法において、 スパッタガスには、 例え ば、 A rガス、 X eガス、 H eガス、 S F 6ガスまたは A rと S F 6との混合ガ スを用い得る。 例えば、 化合物材料として M g F 2を用いる場合には、 S F 6ガ スまたは A r— S F 6混合ガスが好適である。 本発明の第 4の態様に従えば、 基体に薄膜を成膜するためのスパッタ装置にお いて、
真空チャンバ一と;
上記真空チャンバ一に形成され、 上記真空チャンバ一にスパッタガスを導入す るためのガス導入バルブと;
上記真空チヤンバーに形成され、 上記真空チヤンバー内のスパッタガスを外部 に排気するためのガス排気バルブと;
スパッタ時に、 ガス導入バルブとガス排気バルブとを閉鎖して上記真空チャン パーが密閉されるように制御する制御装置とを備えるスパッタ装置が提供される。 本発明の第 4の態様のスパッタ装置では、 制御装置は、 力ソード放電の全期間 又は一定期間、 図 1に示すように、 真空チャンバ一 1内ヘスパッタガス 7を導入 するためのガス導入バルブ 9を閉じるとともに、 真空チャンバ一 1内のガスを排 気するためのメインバルブ 4を閉じるようにそれらのバルブを制御する。 すなわ ち、 成膜時に、 真空チャンバ一 1内を密閉にするので、 放電により発生するスパ ッタ粒子が真空チャンバ一外に排気されな〈なる。 それゆえ、 真空チャンバ一 1 内のスパッタ粒子の割合は大きくなり、 多数のスパッタ粒子が成膜に寄与する。 かかるスパッ夕装置は、 夕一ゲッ卜材料にガス成分元素を含む化合物材料を用い ても、 基体上に、 ガス成分元素の欠損が低減された所望の組成の薄膜を形成する ことができる。 この態様のスパッ夕装置は、 本発明の第 1の態様に従う成膜方法 に好適である。 本発明の第 4のスパッタ装置は、 真空チャンバ一の内部圧力を制御するための 圧力制御装置を備え得、 かかる圧力制御装置は、 例えば、 真空チャンバ一の内部 の温度を調整するための温度調整装置にし得る。温度調整装置は、 例えば、 真空 チャンバ一の外壁部にらせん状に配設された管と、 かかる管内を、 温度が調整さ れた流体 (温調流体) を流すための温調流体供給装置とから構成することができ る。 溫調流体には、 例えば、 水や不凍液を用いることができる。 また、 温度調節 装置には、 ペルチェ素子を用いることもできる。 このように、 温度調整装置で真 空チャンバ一内の温度を制御することにより、 成膜時に、 密閉された真空チャン ノ 一内の圧力を最適な圧力に維持することができる。 本発明の第 5の態様に従えば、 基体に薄膜を成膜するためのスパッ夕装置であ つて、
真空チャンパ一と;
上記真空チャンバ一内に設けられ、 第 1夕一ゲットを載置するための第 1カソ -ド電極と;
上記真空チャンバ一内で、 第 1カソード電極に並設されたカソード電極であつ て、 第 2ターゲッ 卜を載置するための第 2カソード電極と ;
第 1カソード電極及び第 2カソ一ド電極に電力を供給するための電源と; 第 1カソード電極と上記基体との間に位置する遮蔽板とを備え、 上記遮蔽板で第 1カソ一ドを遮蔽しながら、 第 1カソード電極及び第 2カソ一 ド電極に電源から電力を供給してスパッタを行なうスパッタ装置が提供される。 本発明の第 5の態様のスノ \°ッタ装置は、 本発明の第 2の態様の成膜方法を実施 するために好適である。 また、 このスパッタ装置は、 2つの力ソ一ド電極を用い て 2つのターゲッ 卜を放電させるので、 真空チャンバ一内を速やかに定常状態に することができるという利点もある。 このスパッ夕装置は、 第 1力ソード電極と 第 2カソード電極の 2つの力ソ―ド電極を備え、 第 1カツ一ド電極と基体との間 に遮蔽板を備える。 遮蔽板は、 カソ一ド電極上に配置されるターゲッ 卜の上面全 体が覆われるような寸法を有することが好ましい。 遮蔽板とターゲッ 卜との間隔 は任意であり、 例えば 1〜2 c m (こし得る。 遮蔽板は、 第 1力ソード電極上の夕 —ゲッ卜から飛び出したスパッタ粒子が基体に付着することを防止する。 タ一ゲ ッ卜材料に、 ガス成分元素を含む化合物材料を用いた場合には、 第 1タ—ゲッ 卜 の化合物材料中のガス成分元素以外のスパッ夕粒子が遮蔽板に付着し、 ガス成分 元素は真空チャンバ一内を浮遊する。 それゆえ、 第 2ターゲッ卜のみを放電させ た場合よりも、 真空チャンバ一内のガス成分元素の量を増大させることができ、 基体に成膜される薄膜のガス成分元素の欠損を防止できる。 かかる構成の場合、 基体は、 第 2ターゲッ卜に対向するように配置されることが好ましく、 これによ り第 2ターゲッ 卜からのスパッタ粒子が基体に堆積することが促進される。遮蔽 板は、 固定してもよく、 或いは開閉可能なシャッターにしてもよいが、 本発明で は、 第 1力ソード電極に電力が供給されている間は、 第 1タ一ゲットを遮蔽して いる必要がある。 本発明の第 5の態様のスパッタ装置は、 更に、 図 8に示すように、 基体 2を保 持するための回転可能な基体ホルダ 8 1を備え得、 基体ホルダ 8 1はモータ 8 2 により回転駆動される。基体 2は、 基体ホルダ 8 1の回転軸に対して偏心するよ うに設けられる。 これにより、 真空チャンバ一 1内に配置された 2つのタ一ゲッ 卜の直上を基体 2が交互に通過する。 第 2ターゲッ 卜 3 bの直上を基体 2が通過 するときには、 第 2ターゲッ卜材料中のスパッタ粒子が基体に付着し、 遮蔽板 1 0 aで覆われた第 1タ一ゲッ卜 3 aの直上を基体 2が通過するときは、 第 1ター ゲッ 卜材料中のガス成分元素が付着しやすく、 それ以外の元素は遮蔽板 1 O aに 付着する。 それゆえ、 基体を基体ホルダで回転させながら成膜を行なうことによ り、 基体に形成される薄膜にガス成分元素を一層有効に補うことができる。 基板 ホルダには、 複数の基体を取り付けることも可能である。 また、 本発明のスパッタ装置は、 例えば図 9に示すように、 基体 2に対して、 第 1カソ一ド電極 3 0 a及び第 2カソード電極 3 0 bを公転させるための回転台 9 1 を備え得る。 回転台 9 1は、 モータ 9 2により回転駆動することができる。 第 1カソ—ド電極 3 0 aの上方に設けられた遮蔽板 1 0を支持する支持棒 1 0 d は、 回転台 9 1に固定されている。 この場合、 回転台 9 1の回転軸から偏心する 軸上で且つ第 1力ソードと第 2カソ一ドの回転軌道上に基体 2を配置させること が好ましい。 これにより、 回転台を回転させたときに、 第 1力ソ一ド電極 3 0 a 上及び第 2カソ一ド電極 3 0 b上にそれぞれ載置された第 1夕一ゲッ卜 3 a及び 第 2ターゲッ卜 3 bを、 基体 2に対して交互に通過させることができる。 回転台 9 1の回転により、 第 2ターゲッ卜 3 bが基体 2と対向したときには、 第 2タ一 ゲッ 卜材料が基体 2に成膜され、 第 1 ターゲッ 卜 3 aが基体 2と対向したときに は、 第 1タ—ゲッ卜材料中のガス成分元素の付着が促進される。 これにより、 基 体に形成される薄膜のガス成分元素の欠乏が防止される。 また、 基体は複数装着 させることもでき、 例えば図 9に示すように、 基体 2 ' を配置させることもでき る o 本発明のスパッ夕装置の電源は、 第 1カソード電極と第 2カソード電極に互い に異なる電力を供給することができる。 タ一ゲッ卜材料から放出される粒子の量 は、 力ソードに供給する電力に比例することから、 例えば、 遮蔽板で覆われた第 1ターゲッ卜を載置する第 1カソ一ド電極に供給する電力が、 第 2カソード電極 に供給する電力よりも高くなるように電源から電力を供給することにより、 第 1 カソ一ド電極上のタ一ゲッ 卜から多量のガス成分元素を放出させることができる。 本発明のスパッ夕装置は、 第 1カソード電極上及び第 2カソ一ド電極上の少な <とも一方にへリコン波を生成するためのコイルを備え得、 特に第 1カソ一ド電 極上にコイルを備えることが好ましい。 本発明のスパッ夕装置において、 第 1力ソード電極上に載置される第 1ターゲ ッ 卜と上記基体との距離、 及び第 2力ソード電極上に載置される第 2タ—ゲッ 卜 と上記基体との距離が、 いずれも 1 5〜2 5 c mの範囲内 (long throw) にある ことが好ましい。 基体と夕一ゲッ 卜の距離をかかる範囲内にすることにより、 夕 ーゲッ 卜は低圧放電され、 基体に成膜される薄膜の膜質は均質化する。 本発明の第 5の態様のスパッ夕装置において、 第 1ターゲッ 卜及び第 2ターゲ ッ卜は、 少なくとも 1種類の共通の元素を含む化合物材料から形成されているこ とが好ましい。 第 1ターゲッ卜は、 スパッタ時にガス成分元素を多く放出する化 合物材料から形成されていることが好ましい。 例えば、 第 2タ一ゲッ 卜に M g F 2を用いる場合には、 第 1夕一ゲッ ト材料に A 1 F 3を用いることができ、 第 2 タ一ゲッ卜に S i N ( S i X N ! _x ) を用いる場合には、 第 1ターゲッ 卜材料に、 より N成分の多い S i x N を用いることができる。 これにより多量のガス成 分元素を薄膜に補充することができる。第 1及び第 2ターゲッ 卜は、 同一の化合 物材料から形成されていてもよい。 本発明の第 6の態様に従えば、 スパッタリングにより基体に薄膜を成膜するた めのスパッタ装置であって、
真空チャンバ一と;
上記真空チャンバ一内に配置され、 夕一ゲッ卜が載置されるカソ一ド電極と; 上記真空チャンバ一内の温度を調節御するための真空チャンパ一温度調節装置 と;
上記ターゲッ卜の温度を調節するためのターゲッ卜温度調節装置と ; 上記基体の温度を調節するための基体温度調節装置とを備えるスパッタ装置が 提供される。 本発明の第 6の態様のスパッタ装置は、 本発明の第 3の態様に従う成膜方法を 実施するのに好適である。 このスパッ夕装置は、 更に、 チャンバ一温度調節装置、 ターゲッ卜温度調節装置及び基体温度調節装置を制御するための制御装置を備え 得る。制御装置は、 基体の温度が真空チャンバ一内の温度よりも低くなるように チヤンバー溫度調節装置及び基体温度調節装置の少なくとも一方を制御し得る。 また、 制御装置は、 基体の温度が夕—ゲッ卜の温度よりも低くなるようにタ―ゲ ッ卜温度調節装置及び基体温度調節装置の少なくとも一方も制御し得る。被成膜 物である基体の温度を、 ターゲッ 卜の温度または真空チャンバ—の温度よりも低 くすることにより、 基体にガス成分元素が付着しやす〈なる。 かかるスパッ夕装 置は、 基体に、 ガス成分元素の欠損が防止された、 所望の組成の化合物薄膜を形 成することができる。 本発明において、 基体には、 レンズ、 プリズムまたは反射鏡などの光学素子を 用いることができる。 本発明の第 7の態様に従えば、 本発明の第 1〜第 3の態様の成膜方法により成 膜された薄膜を備える光学素子が提供される。 かかる光学素子は、 特にフッ素系 化合物材料を用いた場合に、 波長 1 5 0 n m〜1 0 0 0 n mの光に対して高い透 過性を有するので、 短波長レーザ、 特に、 エキシマレ一ザを用いたレーザリソグ ラフィ用の光学系で用いられる光学素子として最適である。 また、 光学素子に形 成された薄膜は、 スパッタ法により成膜されているため、 真空蒸着法により成膜 された薄膜よりも、 付着力が強く、 高硬度で緻密な薄膜である。 かかる薄膜でコ —ティングされた本発明の光学素子は、 傷が付きにく く、 取り扱いやすく、 光学 系の組み立て及び調整が容易となる。 本発明の第 8の態様に従えば、 マスクのパターン像を基板上に露光する装置で あって、
真空紫外線で上記マスクを照明する照明光学系と; 本発明の第 7の態様に従う光学素子を含み、 上記マスクのバタ一ン像を基板上 に投影する投影光学系とを備える露光装置が提供される。 本発明の第 9の態様に従えば、 マスクのパ夕一ン像を基板上に露光する装置で あって、
本発明の第 7の態様に従う光学素子を含み、 真空紫外線で上記マスクを照明す る照明光学系と;
上記マスクのパターン像を基板上に投影する投影光学系とを備える露光装置が 提供される。 本発明の露光装置は、 本発明の第 7の態様に従う光透過性の高い光学素子を、 照明光学系及び投影光学系の少なくとも一方に備えるので、 従来の露光装置に比 ベて露光光の損失を低減することができる。 また、 投影光学系や照明系の光学特 性、 例えば、 フォーカス、 ディストーション、 テレセン卜リシティ一、 照度のよ うな特性を良好に維持することができる。
図面の簡単な説明
図 1は、 実施例 1におけるスパッタ装置の概略構成図である。
図 2は、 実施例 1における成膜方法のフローチヤ一卜である。
図 3は、 実施例 3におけるスパッタ装置の概略構成図である。
図 4は、 図 3に示したスパッタ装置の制御系のブロック図である。
図 5は、 実施例 3における成膜方法のフローチヤ一卜である。
図 6は、 実施例 5におけるスパッ夕装置の概略構成図である。
図 7は、 実施例 5における成膜方法のフローチヤ一卜である。
図 8は、 図 6に示したスパッタ装置の変形例であり、 回転可能な基板ホルダに 基板を装着した構成例を示す。
図 9は、 図 6に示したスパッ夕装置の図 8とは別の変形例であり、 回転可能な 回転台に第 1及び第 2カゾードを配置させた構成例を示す。 図 1 0は、 実施例 7におけるスパッタ装置の概略構成図である。
図 1 1は、 図 1 0に示したスパッタ装置の制御系のブロック図である。
図 1 2は、 実施例 7における成膜方法のフローチャートである。
図 1 3は、 図 6に示したスパッタ装置の変形例であり、 ヘリコンコイルを備え るスパッタ装置の構成例である。
図 1 4は、 本発明の露光装置の基本構成を示す図である。
図 1 5は、 従来のスパヅタ装置の概略構成図である。
発明を実施するための最良の実施形態 以下、 本発明に従う成膜方法及びスパッタ装置について実施例により詳細に説 明する。 実施例 1
本発明に従うスパッタ装置の概略構成を図 1に示す。 スパッタ装置 1 0 0は、 成膜プロセスを行なう真空チャンバ一 1 と、 真空チャンバ一 1内の排気を行なう 真空ポンプ 5と、 真空チャンバ一 1にスパッタガスを導入するガスタンク 8と、 制御系 1 3 0とを主に備える。真空チャンパ一 1 と真空ポンプ 5との間にはメイ ンバルブ 4が設けられており、 メインバルブ 4はメインバルブ駆動装置 (不図 示) により駆動されて開閉する。真空チャンバ一 1 とガスタンク 8との間にはガ ス導入ノ レブ 9が設けられており、 ガス導入バルブ 9はガス導入ノ \ 'ルブ駆動装置 (不図示) により駆動されて開閉する。 ガス導入バルブ駆動装置及びメインバル ブ駆動装置は、 制御系 1 3 0中の C P U (図 4及び図 1 1参照) により制御され る。 真空チャンパ一 1へのスパッタガス 7の流量は、 マスフローコントローラ 6 によって調整される。 真空チャンバ一 1内には、 底部にマグネ卜ロンカソード 3 0が設けられ、 上部 に基体 2が設けられ、 それらの間にシャッター 1 0とが設けられている。 マグネ トロンカソ一ド 30上には、 スパッタターゲッ 卜 3として化合物材料である S i
Nターゲッ卜が載置されている。 シャッター 1 0は、 回転軸 1 1を中心に回転可 能であり、 回転軸 1 1は、 回転軸駆動装置 (不図示) により駆動される。 回転軸 駆動装置は、 制御系 1 30中の C P Uにより制御される。 また、 真空チャンバ一
1には、 内部のガス圧を測定するための真空計 1 3が設けられている。 更に、 力 ソ一ドの放電に必要な電源として高周波 ( R F ) 電源 31がマグネトロンカソー ド 30に接続されており、 電源 31は、 制御系 1 30中の C PUによつて制御さ れている。基板 2にはガラス基板を用いた。 かかるスパッタ装置 1 ◦ 0を用いて基板 2に S i N薄膜を成膜する方法につい て図 1及び図 2を参照しながら説明する。 図 2は本発明の成膜方法を示すフ口一 チヤ一卜である。 最初に、 メインバルブ 4を開いて真空ポンプ 5を起動させ、 真空チャンバ— 1 内のガス圧を 1 X 1 0— 6Torr以下の真空状態にする (ステップ S 1 -001 ) 。 次いで、 ガス導入バルブ 9を開き、 マスフ口一コントローラ 6でガス流量を制 御しながらアルゴンガス 7を真空チャンバ一 1内に導入する (ステップ S 1 -0 02) 。 次いで、 R F電源 31からマグネ卜ロンカソ一ド 30に電力 ( 1 00W) を供 給して、 マグネ卜ロンカソ一ド 30上に載置された S i Nタ一ゲッ ト 2をカソ一 ド放電する (ステップ S 1 -003) 。 つぎに、 メインバルブ 4を調整して、 真空チャンバ一 1内のガス圧を 1 x 1 0 _3Torrに制御する (ステップ S 1—004) 。 ガス導入バルブ 9を閉めてアルゴンガス 7の真空チヤンバ一 1内への導入を停 止する (ステップ S 1 -005) o メインバルブ 4を閉める (ステップ S 1— 006 ) 。 この時の真空チャンバ一 1内のガス圧は、 1 X 1 0— 2Torr であった。 次いで、 S i Nのスパッタタ一ゲ ッ 卜 3上に設けられているシャッター 1 0を開き (ステップ S 1—007) 、 基 板 2への成膜を開始した。 以上の成膜方法に従って、 基板 2上に S i N膜を約 50 nmの膜厚で成膜した c 成膜された S i N膜の透過率を測定したところ、 波長 633 nmの光に対する透 過率は約 90%であった。 実施例 2
本実施例では、 スパッタターゲッ 卜材料を Mg F2に変更した以外は、 実施例 1と同様の成膜方法を用いてガラス基板上に Mg F 2薄膜を形成した。 得られた Mg F2薄膜の、 波長 1 93 の光に対する透過率は約 90%であった。 比較例 1
比較例として、 成膜時に、 真空チャンバ一を密閉せずに、 真空ポンプにより減 圧しながら、 S i Nターゲッ トをカソ一ド放電させ、 ガラス基板上に S i N膜を 膜厚約 50 nmで成膜した。得られた薄膜の、 波長 633 nmの光に対する透過 率を測定したところ、 透過率は 50%以下であった。 比較例 2
比較例として、 ターゲッ 卜材料に Mg F2を用いた以外は、 比較例 1 と同様に してガラス基板上に Mg F2膜を膜厚約 50 nmで成膜した。 得られた Mg F 2 膜の、 波長 1 93 nmの光に対する透過率は 50%以下であった。 実施例 3
本発明に従うスパッ夕装置の別の構成例及びそれを用いた成膜方法について図 3及び図 4に基づいて説明する。 図 3は、 本発明のスパッタ装置の概略構成図で あり、 図 4は本発明のスノ、°ッ夕装置の制御系のブロック図である。 図 3において、 スパッ夕装置 2 0 0は、 成膜プロセスを行なう真空チャンバ一 1と、 真空チャンバ一 1内の排気を行なう真空ポンプ 5と、 真空チャンバ一 1に スパッタガスを導入するガスタンク 8と、 真空チャンバ一 1内の圧力を測定する ための真空計 1 3と、 真空チャンバ一 1内の温度を測定するための温度計 1 4と を主に備える。 真空チャンバ一 1と真空ポンプ 5との間にはメインバルブ 4が設 けられており、 真空チャンバ一 1 とガスタンク 8との間にはガス導入バルブ 9が 設けられている。 メインバルブ 4は、 図 4に示すメインバルフ'駆動装置により駆 動されて開閉し、 ガス導入バルブ 9はガス導入バルブ駆動装置により駆動されて 開閉する。 ガス導入バルブ駆動装置及びメインバルブ駆動装置は、 図 4に示すよ うに C P Uにより制御される。真空チャンバ一 1へのスパッ夕ガス 7の流量は、 マスフローコントローラ 6によって調整される。 真空チャンバ一 1の外壁部には、 真空チヤンバーの温度調節用の冷却水が通る 管 1 2が設けられている。 管 1 2は、 水温制御装置 (温調流体供給装置) 1 5に 接続されており、 水温制御装置 1 5には、 冷却水の温度を測定する水温測定部と 水温を調節する水温調節部とが設けられている。 また、 水温制御装置 1 5は、 図 4に示すように C P Uにより制御される。 図 4に示すように、 圧力計 1 3による 測定値及び温度計 1 4による測定値は C P Uに入力され、 C P Uは、 真空チャン バ一 1内が所定圧力になるための温度を演算処理して求める。 また、 C P Uは、 演算処理により求められた温度になるように、 水温制御装置 1 5に指令を送る。 水温制御装置 1 5は、 かかる指令を受けて、 所定温度になるように冷却水の水温 を調節する。 真空チャンバ一 1内には、 マグネ卜ロン力ソ一ド 3 0と、 基体 2と、 シャツ夕 - 1 0とが、 それぞれ図 1 と同様の配置で設けられている。 マグネトロンカソ一 ド 3 0上には、 スパッタターゲット 3として化合物材料である S i Nターゲッ ト が載置されている。 シャッター 1 0は、 回転軸 1 1を中心に回転可能であり、 回 転軸 1 1は、 図 4に示す回転軸駆動装置により駆動される。 かかる回転軸駆動装 置は、 C P Uにより制御される。 更に、 力ソードの放電に必要な電源として高周 波 (R F) 電源 31がマグネトロンカソ一ド 30に接続されており、 図 4に示す ように電源は C P Uによって制御されている。 本実施例では基板 2にガラス基板 を用いた。 つぎに、 ターゲット材料として S i Nを用いて成膜する成膜方法について図 4 及び図 5を参照しながら説明する。 図 5は本発明の成膜方法の一例を示すフ口一 チヤ一卜である。 まず、 メインバルブ 4を開いて真空ポンプ 5を起動させ、 真空チャンバ一 1内 のガス圧を 1 X 1 0— 6Torr以下の真空状態にする (ステップ S 2— 001 ) 。 ガス導入バルブ 9を開き、 真空チヤンバ一 1内にアルゴンガス 7を導入する (ステップ S 2— 002) 。 電源 31からマグネトロン力ソードに電力 (1 00W) を供給し、 S i Nタ一 ゲッ 卜をカソ一ド放電する (ステップ S 2-003) 。 メィンバルブ 4を調整して、 真空チャンバ一 1内のガス圧を 1 X 1 0— 3Torr とする (ステップ S 2-004) 。 ガス導入バルブ 9を閉めて、 真空チャンバ一 1へのアルゴンガス 7の導入を停 止する (ステップ S 2— 005) 。 次いで、 メインバルブ 4を閉める (ステップ S 2-006) 。 真空チャンバ一 1内のガス圧を一定にするために、 真空チャンバ一 1内の温度 制御を行なう (ステップ S 2— 0007) 。 真空チャンバ一 1内の温度制御では、 真空計 1 3及び温度計 1 4により、 真空チャンバ一内のガス圧及び温度を監視し ながら、 真空チャンバ一 1内のガス圧が 5 x 1 0— 3Torr 以上になるように、 C P U及び水温制御装置 1 5により管 1 2に流す水の水温を調整する。
S i Nのスパヅ夕夕一ゲッ卜 3上に設けられているシャッター 1 0を開き (ス テツプ S 2— 008) 、 基板 2への成膜を開始した。 以上の成膜方法に従って、 ガラス基板上に S i N膜を膜厚 50 nmで形成し、 得られた S i N膜の、 波長 633 nmの光に対する光透過率を測定したところ約 90. 5%であり、 実施例 1において成膜した S i N膜よりも高い透過率を有し ていた。 実施例 4
本実施例では、 スパッ夕ターゲッ 卜材料を Mg F2に変更した以外は、 実施例 3と同様の成膜方法を用いてガラス基板上に Mg F2薄膜を形成した。 得られた Mg F 2薄膜の、 波長 1 93 n mの光に対する透過率は 90. 5 %であり、 実施 例 2において成膜した Mg F2膜よりも高い透過率を有していた。 実施例 5
本実施例のスパッタ装置の概略構成を図 6に示す。 図 6において、 スパッタ装 置 300は、 成膜プロセスを行なう真空チャンバ一 1と、 真空チャンバ一 1内の 排気を行なう真空ポンプ 5と、 真空チャンバ一 1にスパッタガスを導入するガス タンク 8とを主に備える。 真空チャンバ一 1と真空ポンプ 5との間にはメインバ ルブ 4が設けられており、 メインバルブ 4はメインバルブ'駆動装置 (不図示) に より駆動されて開閉する。 真空チャンバ一 1 とガスタンク 8との間にはガス導入 バルブ 9が設けられており、 ガス導入バルブ 9はガス導入バルフ'駆動装置 (不図 示) により駆動されて開閉する。 ガス導入バルブ駆動装置及びメインバルブ駆動 装置は CPU (不図示) により制御される。 真空チャンバ一 1へのスパッ夕ガス 7の流量は、 マスフローコン卜ローラ 6によって調整される。 真空チャンバ一 1内には、 ガス成分富化 (プリ) 用のマグネ卜ロン力ソード 3 0 a及び成膜用 (メイン) のマグネ卜ロン力ソ一ド 3 0 bの 2基のマグネ卜ロン カリ一ドを備える。 ガス成分富化用マグネトロン力ソード 3 0 a上には、 ガス成 分富化用スパッタターゲヅ卜 3 aとして化合物材料である S i Nターゲッ卜が載 置され、 成莫用マグネ卜ロン力ソード 3 0 b上には、 成膜用スパッタタ一ゲッ 卜 3 bとして化合物材料である S i Nターゲッ 卜が載置されている。 ガス成分富化 用スパッタタ一ゲッ 卜 3 aの上方には、 固定シャッター (開放しないシャツ夕 - ) 1 0 aが設けられている。 一方、 成膜用スパッタタ一ゲッ 卜 3 bの上方には 回転軸 1 1を中心に回転可能なシャッター 1 O bが設けられており、 回転軸 1 1 は、 回転軸駆動装置 (不図示) により回転駆動される。 回転軸駆動装置は、 C P Uにより制御される。 また、 真空チャンバ一 1内のガス圧を測定するための真空 計 1 3が設けられている。 更に、 放電に必要な電源として高周波 (R F ) 電源 3 1が、 ガス成分富化用マグネ卜ロン力ソード 3 0 a及び成膜用マグネ卜ロンカソ 一ド 3 0 bに接続されており、 電源 3 1は C P Uによって制御されている。 基板 2には、 ガラス基板を用いた。 つぎに、 S i Nターゲッ 卜を用いて成膜する成膜方法について図 6及び図 7を 参照しながら説明する。 図 7は本発明の成膜方法の一例を示すフローチヤ一卜で あ o。 メインバルブ 4を開き、 真空ポンプ 5を起動させ、 真空チャンバ一 1内のガス 圧を 1 X 1 0— 6Torr以下の真空状態にする (ステップ S 3— 0 0 1 ) 。 ガス導入バルブ 9を開き、 真空チャンバ一 1内にアルゴンガス 7を導入する (ステップ S 3— 0 0 2 ) 。 電源 3 1からガス成分富化用マグネ卜ロンカソード 3 0 aに高周波電力 (R F パワー) を供給し、 S i Nからなるガス成分富化用スパッタターゲッ 卜 3 aを力 ソード放電する (ステップ S 3— 0 0 3 ) o このとき印加した R Fパワーは 2 5 owであった。 メインバルブ 4を調整して、 真空チャンバ一 1内のガス圧を 1 X 1 0— 3Torr とする (ステップ S 3— 004) 。 ガス導入バルブ 9を閉め、 真空チャンバ一 1内へのアルゴンガス 7の導入を停 止する (ステップ S 3— 005) 。 メィンバルブ 4を調整して、 真空チャンバ一 1内のガス圧を 1 X 1 0一2 Torr に制御する (ステップ S 3— 006) 。 電源 31から成膜用マグネトロン力ソード 30 bに高周波電力 ( R Fパワー) を供給し、 S i Nからなる成膜用スパッタターゲッ ト 3 bを力ソード放電する (ステップ S 3— 007) 。 このとき印加した R Fパワーは 1 50Wであった。
S i N成膜用スパッタターゲッ卜 3 b上に設けられているシャッター 1 0 bを 開き、 ガス成分富化スパッタタ一ゲッ 卜 3 a上に設けられているシャッター 1 0 aは閉じたままにする (ステップ S 3— 008) 。 次いで、 基板 2への成膜を開 台した。 以上の成膜方法に従って、 基板に S i N膜を膜厚 50 nmで形成した。得られ た S i N膜の、 波長 633 nmの光に対する透過率を測定したところ 92%であ つ/こ。 実施例 6
本実施例では、 スパッタタ一ゲッ卜材料を Mg F2に変更した以外は、 実施例 5と同様の成膜方法を用いてガラス基板上に Mg F2薄膜を形成した。 得られた Mg F2薄膜の、 波長 1 93 nmの光に対する透過率は 92%であった。 実施例 7
本実施例のスパッタ装置について図 1 0及び図 1 1を参照しながら説明する。 図 1 0は、 スパッ夕装置の概略構成図であり、 図 1 1は、 かかるスパッ夕装置の 制御系のブロック図ある。 スパッ夕装置 4 0 0は、 成膜プロセスを行なう真空チャンバ一 1 と、 真空チヤ ンバ一 1内の排気を行なう真空ポンプ 5と、 真空チャンバ一 1にスパッタガスを 導入するガスタンク 8と、 真空チャンバ一 1内の圧力を測定するための圧力計 1 3とを主に備える。真空チャンバ一 1 と真空ポンプ 5との間にはメインバルブ 4 が設けられ、 真空チャンバ一 1 とガスタンク 8との間にはガス導入バルブ 9が設 けられている。 メインバルブ 4は、 図 1 1に示すメインバルブ駆動装置により駆 動されて開閉し、 ガス導入バルブ 9はガス導入バルフ'駆動装置より駆動されて開 閉する。 図 1 1に示すように、 ガス導入バルブ駆動装置及びメインバルブ駆動装 置は C P Uにより制御される。真空チャンバ一 1へのスパッ夕ガス 7の流量は、 マスフローコン卜ローラ 6によって調整される。 図 1 0に示すように、 真空チャンパ一 1の外周部には、 冷却水が通る管 1 2が 設けられており、 管 1 2の内部を冷却水が矢印 Aの方向に流れている。管 1 2は、 水の温度を測定する水温測定部と水温を調節する水温調節部とからなるチャンパ —温度制御装置 1 5に接続されており、 チャンバ一温度制御装置 1 5は図 1 1に 示すように C P Uにより制御されている。 水温調節部は、 前述の実施例 3と同様 にヒータ一等から構成し得る。水温測定部で測定された水温のデータは C P Uに 入力され、 C P Uは、 設定された水温になるように水温調節部に指令を送る。 水 温を調節することによって、 チャンパ一内の温度を設定温度 (2 5 °C ) に制御す ることができる。 また、 圧力計 1 3により測定された測定値は C P Uに入力され な 真空チャンバ一 1内には、 マグネトロン力ソ一ド 3 0と、 シャッター 1 0と、 基板 2が設けられている。 マグネトロン力ソードは、 スパッ夕ターゲットを載置 するための載置台と、 載置台を支える載置筒 1 7を有する。 載置筒 1 7の内部は 中空になっており、 冷却水を流入出するための管 1 8がそれそれ設けられている c 冷却水は、 矢印 Bの方向に流れる。 また、 マグネトロン力ソード 3 0には、 スパ ッタタ一ゲット 3の温度を制御するためのターゲッ卜温度制御装置 1 6が設けら れている。 ターゲッ卜温度制御装置 1 6は、 冷却水の温度を測定する水温測定部 と、 冷却水の水温を調節する水温調節部 (ヒータ一) とを備え、 C P Uによって 制御される。 水温の制御方法は、 チャンバー溫度制御装置と同様であるので省略 する。 夕一ゲッ ト温度制御装置により水温を調節することによって、 タ一ゲッ 卜 の温度を設定温度 (3 0 °C ) に制御することができる。 また、 マグネ卜ロン力ソードには、 放電に必要な電源として高周波 (R F ) 電 源 (不図示) が接続されており、 高周波電源は、 図 1 1に示すように C P Uによ つて制御されている。 図 1 0に示すように、 基板 2は、 基板温度制御装置 1 9を備えた基板保持部材 5 1によって保持される。 基板 2には、 石英光学レンズを用いた。 基板保持部材 5 1を支える保持筒 2 0の内部は中空になっており、 矢印 Cの方向に冷却水が流 入出する管 2 1がそれぞれ配置されている。 基板温度制御装置 1 9は、 水の温度 を測定する水温測定部と水温を調節する水温調節部とを備え、 図 1 1に示すよう に C P Uによって制御される。 水温の制御方法は、 真空チャンバ一制御装置と同 様であるので、 その説明は省略する。 基板温度制御装置 1 9により、 水温を調節 することによって、 基板の溫度を設定温度 ( 1 5 °C) に制御することができる。 また、 スパッタ装置 4 0 0において、 冷却水が管 1 2、 管 1 8及び管 2 1 を 各々循環するように構成されており、 冷却水は図示しない共通の供給源から供給 される。 図 1 1を参照し、 C P Uは、 設定された温度になるように、 チャンパ一 温度制御装置 1 5、 ターゲッ 卜温度制御装置 1 6及び基板温度制御装置 1 9に指 令を送る。 かかる指令を受けて、 チャンバ一温度制御装置 1 5、 夕一ゲッ卜温度 制御装置 1 6及び基板溫度制御装置は、 それぞれ前述の温度になるように水溫を 調節することができる。 つぎに、 かかるスパッ夕装置を用いて、 ガラス基板に S i Nを成膜する方法に ついて図 1 0及び図 1 2を参照しながら説明する。 図 1 2は本発明の成膜方法の —例を示すフローチヤ一卜である。 メインバルブ 4を開き、 真空ポンプを起動させ、 真空チャンバ一 1内のガス圧 を 1 X 1 0— 6Torr以下の真空状態にする (ステップ S 4-001 ) 。 ガス導入バルブ 9を開き、 真空チャンバ一 1内にアルゴンガス 7を導入する (ステップ S 4— 002) 。 高周波電源からマグネ卜ロンカソードに高周波電力 ( R Fパワー) を供給して S i Nターゲッ 卜をカソ一ド放電する (ステップ S 4— 003 ) 。 このとき印加 した R Fパワーは 1 00Wであった。 メインバルブ 4を調整して、 真空チャンバ一 1内のガス圧を 1 X 1 0-3Torr にする (ステップ S 4— 004) 。 ガス導入バルブ 9を閉め、 真空チャンバ一 1内へのアルゴンガス 7の導入を停 止する (ステップ S 4— 005) 。 次いで、 メインバルブ 4を閉める (ステップ S4-006) ο 真空チャンバ一 1内温度、 ターゲッ 卜温度及び基板の温度を、 それぞれ、 2 5。C、 30°C及び 1 5°Cになるように制御する (ステップ S 4— 007) 。 この 時、 真空チャンバ一 1内のガス圧を 5 X 1 0— 3Torr以上に制御する。
S i Nのスパッタターゲッ 卜 3上に設けられているシャッタ一 1 0を開き (ス テツプ S4— 008) 、 基板 2への成膜を開始した。 以上の成膜方法に従って、 石英光学レンズ上に S i N膜を約 50 nmの膜厚で 成膜した。 得られた S i N膜の、 波長 633 nmの光に対する透過率は 91 %で あった。 本実施例では、 メインバルブを閉じた後に温度制御を行なっているが、 成膜を 開始する前であれば、 任意のタイミングで温度制御を行なうことができる。 実施例 8
本実施例では、 スパッ夕ターゲッ 卜材料を Mg F2に変更した以外は、 実施例 7と同様の成膜方法を用いて石英光学レンズ上に Mg F2薄膜を形成した。 得ら れた Mg F2薄膜の、 波長 1 93 nmの光に対する透過率は 91 %であった。 変形例
図 1 3に、 実施例 5に示したスパッ夕装置の変形例を示す。 図 1 3のスパッタ 装置 400は、 ヘリコンスパッ夕用のスパッ夕装置であり、 固定シャッター 1 0 aとガス成分富化用タ一ゲッ卜 3 aとの間に、 ヘリコンスパッタ用のへリコンコ ィル 1 40が挿入されている。 それ以外の各部分は、 実施例 5のスパッ夕装置 (図 6参照) と同様であるので、 その説明は省略する。 ヘリコンコイル 1 40に は、 成膜中、 所定周波数の高周波電力が供給される。 かかるスパッタ装置 400を用いて、 ヘリコンコイル 1 40に周波数 1 3 H z の R F電力を供給しながらへリコンスパッタを行なって、 ガラス基板 2に S i N 膜を膜厚 50 nmにて成膜した。得られた S i N膜の、 波長 633 nmの光に対 する透過率は 92. 2%であった。 また、 S i N膜の表面を原子間力顕微鏡で観 察して表面状態を調べたところ、 S i N膜は極めて均質な膜であることがわかつ た。 つぎに、 成膜用ターゲッ 卜 3 bとガラス基板 2との距離 Lが 1 5 cm〜25 c mになるように、 ガラス基板 2を、 成膜用タ一ゲッ 卜から更に遠ざけて配置した ( そして、 上記と同様にへリコンスパッタを行なって、 ガラス基板上に S i N膜を 成膜した。 得られた S i N膜の、 波長 6 3 3 n mの光に対する透過率は 9 2 . 4 %であった。 この変形例では、 ヘリコンコイル 1 4 0をガス成分富化用夕一ゲッ 卜 3 aの直 上にのみ設けたが、 図 1 4において符号 1 4 0 ' で示したように、 成膜用ターゲ ッ卜 3の直上にもへリコンコイルを設けて、 ガス成分富化用ターゲッ 卜と成膜用 夕一ゲッ 卜の両方をヘリコンスパッタしてもよい。 露光装置への応用例
つぎに、 本発明の成膜方法により成膜された薄膜を備える光学素子を露光装置 に用いた例を、 図 1 4を参照しながら説明する。 図 1 4は、 フォ卜レジス卜 1 7 0 1でコ一卜されたウェハ 1 8 0 1 (全体として W) を、 レチクル Rのパターン のイメージで露光するための走査型投影露光装置 2 0 0 0の概念図であり、 実施 例 1〜 8で製造した光学素子がこの露光装置に適用されている。 図 1 4に示すように、 本発明の投影露光装置は少なくとも、 レチクル R (マス ク) を保持してレチクル Rの表面に平行な方向に移動可能なレチクルステージ 1 2 0 1 と、 ウェハ (基板) Wを表面 1 3 0 1 a上で保持してウェハ面と平行な方 向に移動可能なウェハステージ 1 3 0 1と、 真空紫外光をレチクル R (マスク) に照射するだめの照明光学系 1 1 0 1 と、 照明光学系 1 1 0 1に露光光としての 真空紫外光を供給するための光源 1 1 0 0と、 ウェハ W上にレチクル Rのパター ンのイメージを投影するための投影光学系 1 5 0 0とを含む。投影光学系 1 5 0 0は、 レチクル Rが配置された表面 P 1が物体面となり、 ウェハ Wの表面 P 2が 像面となるようにレチクル Rとウェハ Wとの間に配置される。 照明光学系 1 1 0 1は、 レチクル Rとウェハ Wの相対位置合わせを行なうためのァライメン卜光学 系 1 1 1 0を含んでいる。 レチクル交換系 1 2 0 0は、 レチクルステージ 1 2 0 1にセットされたレチクル Rを交換し運搬する。 レチクル交換系 1 2 0 0はレチ クルステージ 1 2 0 1を移動するためのレチクルステージドライバ (不図示) を 含んでおり、 ステージ制御系 1 3 0 0は、 ウェハステージ 1 3 0 1を移動させる ためのウェハステージドライバ (不図示) を備える。 主制御系 1 4 0 0は、 ステ —ジ制御系 1 3 0 0を介してレチクルステージドライバ及びウェハステージドラ ィバを制御してレチクルステージ及びウェハステージを露光光に対して同期移動 するように駆動させる。投影光学系 1 5 0 0は、 更にァライメン卜光学系 1 6 0 1を ifeえる。 露光装置 2 0 0 0において、 前記実施例で製造した M g F 2膜がコ一卜された 光学素子を使用することができる。 具体的には、 照明光学系 1 1 0 1の光学レン ズ 1 9 0及び投影光学系 1 5 0 0の投影レンズ 1 1 0 0に、 実施例 1〜8で製造 した光学素子を使用することができる。投影光学系 1 5 0 0内には通常複数の投 影レンズ 1 1 0 0が配置されているが、 特に、 光出射側、 すなわち、 ウェハ Wに 最も近い位置のレンズに本発明に従うレンズを用いるのが好ましい。 この場合、 投影レンズには光の入射面だけに薄膜を施してもよく、 また、 レンズ全体に薄膜 を施しても良い。 更に、 露光装置中には、 フライアイレンズ、 種々のリレーレン ズ、 ビームスプリッ夕、 コンデンサレンズ、 ビームエキスパンダ、 反射鏡などの 光学素子が用いられているが、 いかなる素子にも本発明は適用可能である。 図 1 4では、 走査型投影露光装置を例示したが、 これに限らず、 ステップ 'ァ ンド . リピート方式の投影露光装置 (いわゆる、 ステッパー) 、 ミラープロジェ クシヨン ·ァライナ一、 プロキシミティ型露光装置にも本発明を適用できる。 投 影露光装置及びそれに使用されている光学素子は、 米国特許第 5 , 8 3 5 , 2 7 5号に開示されており、 指定国の国内法令が許す範囲において、 これらの文献を 援用して本文の記載の一部とする。 更に、 本発明の光学素子は、 露光装置以外の各種装置、 例えば、 分光器、 レー ザリペア装置、 種々の検査装置、 センサなどに使用可能である。 上記実施例 1〜8では、 ガラス基板または石英光学レンズに薄膜を形成したが、 これに限らず、 石英、 プラスチックまたは蛍石製の光学レンズ、 プリズム、 反射 鏡などの光学素子に薄膜を形成することができる。 また、 上記実施例では、 ガラス基板上に単層膜を形成したが、 多層膜を形成す ることも可能である。 産業上の利用可能性 本発明の成膜方法は、 ガス成分元素を含む化合物膜の成膜が可能であるので、 高い光透過性が要求される光学素子への光学薄膜のコーティング法として最適で ある。特に、 真空紫外光のような短波長の光に対する光透過性が高い光学素子の コーティング法として有益である。 また、 スパッタリングによる成膜であるので、 蒸着法よりも、 成膜された化合物膜の密着性及び硬度を高めることができる。 ま た、 成膜時に、 反応性ガスを補充する必要がないので、 反応性ガス導入のための 設備が不要となり、 装置も安価となる。本発明の成膜方法により作製される、 化 合物膜付きの光学素子は、 光透過率に優れるので、 かかる光学素子を備える露光 装置は、 従来の露光装置に比べて光源の照度の損失を低減でき、 光の利用効率を 高めることができる。特に、 波長 2 0 0 n m以下の光源が用いられる、 超 L S I や超解像度の液晶基板を製造するための露光装置に本発明は極めて有効である。

Claims

請求の範囲
1 . スパッタリングによる成膜方法であって、
真空チャンバ一内に、 化合物材料からなるスパッタタ一ゲッ卜と被成膜体とを 配置し、 真空チャンバ一にスパッタガスを供袷した後、 真空チャンバ一を密閉し た状態でスノ ッタすることを含む成膜方法。
2 . 上記化合物材料が、 酸化物、 窒化物及びフッ化物からなる群から選ばれた 一種の材料である請求項 1に記載の成膜方法。
3 . 上記スパッ夕ガスに、 A rガス、 X eガス、 H eガス、 S F 6ガス及び A rと S F 6との混合ガスからなる群から選ばれた一種のガスを用いる請求項 1に 記載の成膜方法。
4 . 上記ターゲッ卜と基体との距離が 1 5 c m~ 2 5 c mである請求項 1に記 載の成膜方法。
5 . 上記スパッ夕に、 へリコンスパッタを用いる請求項 1に記載の成膜方法。
6 . 更に、 上記真空チャンバ一の内部圧力を制御する工程を含む請求項 1に記 載の成膜方法。
7 . 更に、 スパッタ中に、 上記基体の温度を制御する工程を含む請求項 1に記 載の成膜方法。
8 . 上記真空チヤンバーにスパッタガスを供給した後、 スパヅタガスの供給を 停止して真空チャンバ一内に供給されたスパッタガスを排気して真空チャンパ一 内の圧力を所定圧力に調整した後に上記真空チャンパ一を密閉することを含む請 求項 1に記載の成膜方法。
9. 真空チャンバ一内で夕一ゲッ卜をスパッ夕することにより基体に薄膜を成 膜する成膜方法であって、
第 1ターゲッ卜及び第 2夕一ゲッ卜の少なくとも 2つの夕一ゲッ 卜を用い、 第 1タ—ゲッ卜と基体との間に遮蔽板を介在させて、 第 1ターゲッ 卜及び第 2 ターゲットをスパッタすることを含む成膜方法。
1 0. 第 1夕—ゲッ卜及び第 2ターゲッ卜はいずれもガス成分元素を含む化合 物材料から形成されている請求項 9に記載の成膜方法。
1 1 . 第 1タ一ゲッ 卜に第 1電力を印加して第 1夕一ゲッ 卜をスパッ夕し、 第 2ターゲッ卜に、 第 1電力と異なる第 2電力を印加して第 2夕一ゲッ 卜をスパッ 夕することを含む請求項 9に記載の成膜方法。
1 2. 上記基体を、 第 1ターゲッ卜と第 2ターゲッ卜のそれぞれの直上を交互 に通過するように公転させながらスパッタする請求項 9に記載の成膜方法。
1 3. 上記化合物材料は、 酸化物、 窒化物及びフッ化物からなる群から選ばれ た一種である請求項 1 0に記載の成膜方法。
1 4. 第 1ターゲッ卜及び第 2夕一ゲッ卜は、 少な〈とも一種類の共通のガス 成分元素を含む化合物材料から形成されている請求項 1 3に記載の成膜方法。
1 5. 最初に第 1夕一ゲッ卜から遮蔽板にスパッ夕され、 次いで第 2ターゲッ 卜から上記基体にスノ \°ッタされる請求項 1 4に記載の成膜方法。
1 6. 上記スパヅ夕ガスに、 A rガス、 X eガス、 H eガス、 S F6ガス及び A rと S F6との混合ガスからなる群から選ばれた一種のガスを用いる請求項 9 に記載の成膜方法。
1 7. 上記ターゲッ トと基体との距離が 1 5 cm〜25 cmである請求項 9に 記載の成膜方法。
1 8. 上記スパッ夕に、 へリコンスパッタを用いる請求項 9に記載の成膜方法 c
1 9. 真空チャンバ一内でタ一ゲッ 卜をスパッ夕することにより基体に薄膜を 成膜する成膜方法であって、
上記基体、 ターゲッ 卜及び真空チャンバ一内部の温度をそれぞれ独立に制御す ることを含む成膜方法。
20. 上記基体の温度がターゲットの温度よりも低〈なるように、 上記基体の 温度及びターゲッ卜の温度の少な〈とも一方の温度を制御することを含む請求項 1 9に記載の成膜方法。
21 . 上記基体の温度が上記真空チャンバ一内部の温度よりも低くなるように、 基体温度及び真空チャンバ一内部温度の少なくとも一方の温度を制御することを 含む請求項 1 9に記載の成膜方法。
22. 上記スパッ夕ガスに、 A rガス、 X eガス、 H eガス、 S F6ガス及び A rと S F6との混合ガスからなる群から選ばれた一種のガスを用いる請求項 1 9に記載の成膜方法。
23. 上記ターゲッ トと基体との距離が 1 5 cm〜25 cmである請求項 1 9 に記載の成膜方法。
24. 上記スパッ夕に、 へリコンスパッタを用いる請求項 1 9に記載の成膜方 法。
2 5 . 上記夕—ゲッ 卜が、 酸化物、 窒化物及びフッ化物からなる群から選ばれ た一種の材料から形成されている請求項 1 9に記載の成膜方法。
2 6 . 基体に薄膜を成膜するためのスパッ夕装置において、
真空チャンバ一と ;
上記真空チヤンバーに形成され、 上記真空チヤンバーにスパッタガスを導入す るためのガス導入バルブと ;
上記真空チャンバ一に形成され、 上記真空チヤンバ一内のスパッタガスを外部 に排気するためのガス排気バルブと;
スパッタ時に、 ガス導入バルブとガス排気バルブとを閉鎖して上記真空チヤン ノ 一が密閉されるように制御する制御装置とを備えるスパッタ装置。
2 7 . 上記スパッタガスに、 A rガス、 X eガス、 H eガス、 S F 6ガス及び A rと S F 6との混合ガスからなる群から選ばれた一種のガスを用いる請求項 2 6に記載のスパッ夕装置。
2 8 . 更に、 上記真空チャンバ—内にターゲッ 卜を、 基体に対向して備え、 該 ターゲッ卜と基体との距離が 1 5 c m〜2 5 c mである請求項 2 6に記載のスパ ッタ装置。
2 9 . 更に、 上記ターゲットの直上に、 へリコン波を発生させるためのコイル を備える請求項 2 8に記載のスパッタ装置。
3 0 . 更に、 上記真空チャンバ—の内部圧力を制御するための圧力制御装置を 備える請求項 2 6に記載のスパヅタ装置。
3 1 . 上記圧力制御装置は、 真空チャンバ一の内部の温度を調整するための温 度調整装置である請求項 2 6に記載のスパッタ装置。
3 2 . 基体に薄膜を成膜するためのスパッタ装置であって、 真空チャンバ一と;
上記真空チャンバ一内に設けられ、 第 1タ一ゲッ 卜を載置するための第 1カソ -ド電極と ;
上記真空チャンバ一内で、 第 1カソ一ド電極に並設されたカソード電極であつ て、 第 2タ一ゲッ卜を載置するための第 2カソード電極と ;
第 1カソ一ド電極及び第 2カソ一ド電極に電力を供給するための電源と; 第 1カソ一ド電極と上記基体との間に位置する遮蔽板とを備え、
上記遮蔽板で第 1カソードを遮蔽しながら、 第 1カソード電極及び第 2カソ一 ド電極に電源から電力を供給してスパッ夕を行なうスパッ夕装置。
3 3 . 更に、 上記基体を保持するための回転可能な基体ホルダを備え、 上記基 体が、 上記基体ホルダの回転軸に対して偏心するように基体ホルダに装着される 請求項 3 2に記載のスノ \°ッタ装置。
3 4 . 上記基体が、 第 2カソード電極に対向するように装着される請求項 3 2 に記載のスパッタ装置。
3 5 . 更に、 第 1カソ—ド電極及び第 2カソ一ド電極を上記基体に対して回転 させるための回転台を備える請求項 3 2に記載のスパッタ装置。
3 6 . 上記電極は、 第 1カソ一ド電極と第 2カソ—ド電極に互いに異なる電力 を供給する請求項 3 2に記載のスパッタ装置。
3 7 . 第 1カソ一ド電極上にへリコン波を発生させるためのコィルを備える請 求項 3 2に記載のスパッタ装置。
3 8 . 第 1カソ一ド電極上に載置される第 1ターゲッ卜と上記基体との距離及 び第 2力ソード電極上に載置される第 2ターゲッ卜と上記基体との距離が、 いず れも 1 5 c m〜2 5 c mの範囲内にある請求項 3 2に記載のスパッタ装置。
3 9 . 基体に薄膜を成膜するためのスパッ夕装置において、
真空チャンバ一と;
上記真空チャンバ一内に配置され、 ターゲッ卜が載置されるカソード電極と ; 上記真空チャンバ一内の温度を調節御するためのチャンバ一温度調節装置と ; 上記夕一ゲヅ 卜の温度を調節するためのタ一ゲッ卜温度調節装置と ; 上記基体の溫度を調節するための基体温度調節装置とを備えるスパッタ装置。
4 0 . 更に、 上記チャンバ一温度調節装置、 ターゲッ卜温度調節装置及び基体 温度調節装置を制御するための制御装置を備え、 該制御装置は、 基体の温度が真 空チャンバ—内の温度よりも低くなるように真空チヤンバー温度調節装置及び基 体温度調節装置の少なくとも一方を制御する請求項 3 9に記載のスパッタ装置。
4 1 . 上記制御装置は、 基体の温度がタ一ゲッ卜の温度よりも低くなるように ターゲッ卜温度調節装置及び基体温度調節装置の少なくとも一方を制御する請求 項 4 0に記載のスノ \°ッタ装置。
4 2 . 更に、 上記ターゲッ トと基体との距離が 1 5 c m〜2 5 c mである請求 項 3 9に記載のスパッ夕装置。
4 3 . 更に、 上記夕一ゲッ卜の直上に、 へリコン波を発生させるためのコイル を備える請求項 3 9に記載のスパッタ装置。
4 4 . 上記基体が、 レンズ、 プリズム及び反射鏡からなる群から選ばれた光学 素子である請求項 1、 9及び 1 9のいずれか一項に記載の成膜方法。
4 5 . 請求項 1、 9及び 1 9のいずれか一項に記載の成膜方法により成膜され た薄膜を有する光学素子。
4 6 . マスクのパターン像を基板上に露光する装置であって、
真空紫外線で上記マスクを照明する照明光学系と;
請求項 4 5に記載の光学素子を含み、 上記マスクのパターン像を基板上に投影 する投影光学系とを備える露光装置。
4 7 . マスクのパターン像を基板上に露光する装置であって、
請求項 4 5に記載の光学素子を含み、 真空紫外線で上記マスクを照明する照明 光学系と;
上記マスクのパターン像を基板上に投影する投影光学系とを備える露光装置。
4 8 . 更に、 波長 2 0 0 n m以下の光を出射する光源を含む請求項 4 7に記載 の露光装置。
4 9 . 更に、 波長 2 0 0 n m以下の光を出射する光源を含む請求項 4 8に記載 の路先 ii。
PCT/JP2001/000562 2000-01-27 2001-01-29 Procede de fabrication d'un film de materiau composite renfermant un element generateur de gaz WO2001055477A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2001227109A AU2001227109A1 (en) 2000-01-27 2001-01-29 Method for preparing film of compound material containing gas forming element
EP01901559A EP1260604A4 (en) 2000-01-27 2001-01-29 METHOD FOR PRODUCING A FILM OF COMPOSITE MATERIAL WITH A GAS-PRODUCING ELEMENT
US10/201,790 US20020175070A1 (en) 2000-01-27 2002-07-25 Film formation method for compound material containing gaseous component element and sputtering apparatus

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2000-18145 2000-01-27
JP2000018145 2000-01-27
JP2000019480 2000-01-28
JP2000-19480 2000-01-28
JP2000-83285 2000-03-21
JP2000083285 2000-03-21
JP2000-362262 2000-11-29
JP2000362262 2000-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/201,790 Continuation US20020175070A1 (en) 2000-01-27 2002-07-25 Film formation method for compound material containing gaseous component element and sputtering apparatus

Publications (1)

Publication Number Publication Date
WO2001055477A1 true WO2001055477A1 (fr) 2001-08-02

Family

ID=27480959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000562 WO2001055477A1 (fr) 2000-01-27 2001-01-29 Procede de fabrication d'un film de materiau composite renfermant un element generateur de gaz

Country Status (4)

Country Link
US (1) US20020175070A1 (ja)
EP (1) EP1260604A4 (ja)
AU (1) AU2001227109A1 (ja)
WO (1) WO2001055477A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161861A (ja) * 2001-11-13 2009-07-23 Gradebay Ltd 真空スパッタリング装置とその蒸着方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6811662B1 (en) * 2003-08-22 2004-11-02 Powership Semiconductor Corp. Sputtering apparatus and manufacturing method of metal layer/metal compound layer by using thereof
US20060181266A1 (en) * 2005-02-14 2006-08-17 Panelvision Technology, A California Corporation Flat panel display inspection system
CN102822378A (zh) * 2010-03-26 2012-12-12 佳能安内华股份有限公司 溅射设备和制造电子装置的方法
KR101637938B1 (ko) * 2014-11-06 2016-07-08 한국과학기술연구원 레이저를 이용한 박막 전지용 양극 제조 방법, 그 방법으로 제조된 박막 전지용 양극 및 이를 포함하는 박막 전지
CN114277342A (zh) * 2020-09-28 2022-04-05 天津工业大学 一种宽带高透过单层MgF2减反射膜的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082663A (ja) * 1983-10-08 1985-05-10 Fujitsu Ltd 混合物薄膜製造の方法および装置
JPS63192865A (ja) * 1987-02-05 1988-08-10 Tokio Nakada 多層/多元薄膜形成スパッタリング装置およびその運転方法
JPH01240649A (ja) * 1988-03-17 1989-09-26 Matsushita Electric Ind Co Ltd 超伝導体薄膜の製造方法
US5126318A (en) * 1991-03-13 1992-06-30 Westinghouse Electric Corp. Sputtering method for forming superconductive films using water vapor addition
US5240581A (en) * 1991-03-05 1993-08-31 Skc Limited Method of producing a magneto-optical disk
EP0945523A1 (en) * 1998-03-27 1999-09-29 Shincron Co., Ltd. Method for forming a thin film and apparatus for carrying out the method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3630881A (en) * 1970-01-22 1971-12-28 Ibm Cathode-target assembly for rf sputtering apparatus
US3640812A (en) * 1970-09-02 1972-02-08 Rca Corp Method of making electrical contacts on the surface of a semiconductor device
CH558428A (de) * 1972-11-23 1975-01-31 Balzers Patent Beteilig Ag Target-wechselvorrichtung fuer die zerstaeubung mittels ionen.
US5175140A (en) * 1987-03-19 1992-12-29 Sumitomo Electric Industries, Ltd. High Tc superconducting material
US4842705A (en) * 1987-06-04 1989-06-27 Siemens Aktiengesellschaft Method for manufacturing transparent conductive indium-tin oxide layers
US4990229A (en) * 1989-06-13 1991-02-05 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
JP2588985B2 (ja) * 1990-03-09 1997-03-12 財団法人国際超電導産業技術研究センター 酸化物薄膜の成膜方法
US5225393A (en) * 1990-03-09 1993-07-06 International Superconductivity Technology Center Process for forming thin oxide film
US5328583A (en) * 1991-11-05 1994-07-12 Canon Kabushiki Kaisha Sputtering apparatus and process for forming lamination film employing the apparatus
US5679125A (en) * 1994-07-07 1997-10-21 Nikon Corporation Method for producing silica glass for use with light in a vacuum ultraviolet wavelength range
JPH08220304A (ja) * 1995-02-13 1996-08-30 Tadahiro Omi 光学物品及びそれを用いた露光装置又は光学系並びにその製造方法
DE69729990T2 (de) * 1996-03-11 2004-12-09 Matsushita Electric Industrial Co., Ltd., Kadoma Optischer datenaufzeichnungsmedium, verfahren zur herstellung dasselbe und verfahren zur wiedergabe/löschen einer aufzeichnung
US6389929B1 (en) * 1999-05-20 2002-05-21 Sram Corporation Elongated rotatable handgrip
US6251242B1 (en) * 2000-01-21 2001-06-26 Applied Materials, Inc. Magnetron and target producing an extended plasma region in a sputter reactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082663A (ja) * 1983-10-08 1985-05-10 Fujitsu Ltd 混合物薄膜製造の方法および装置
JPS63192865A (ja) * 1987-02-05 1988-08-10 Tokio Nakada 多層/多元薄膜形成スパッタリング装置およびその運転方法
JPH01240649A (ja) * 1988-03-17 1989-09-26 Matsushita Electric Ind Co Ltd 超伝導体薄膜の製造方法
US5240581A (en) * 1991-03-05 1993-08-31 Skc Limited Method of producing a magneto-optical disk
US5126318A (en) * 1991-03-13 1992-06-30 Westinghouse Electric Corp. Sputtering method for forming superconductive films using water vapor addition
EP0945523A1 (en) * 1998-03-27 1999-09-29 Shincron Co., Ltd. Method for forming a thin film and apparatus for carrying out the method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1260604A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161861A (ja) * 2001-11-13 2009-07-23 Gradebay Ltd 真空スパッタリング装置とその蒸着方法

Also Published As

Publication number Publication date
AU2001227109A1 (en) 2001-08-07
US20020175070A1 (en) 2002-11-28
EP1260604A1 (en) 2002-11-27
EP1260604A4 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
US5981075A (en) Optical articles and devices with a thin film containing krypton, xenon, or radon atoms
US6295164B1 (en) Multi-layered mirror
JP3689524B2 (ja) 酸化アルミニウム膜及びその形成方法
US8526104B2 (en) Plasma ion assisted deposition of Mo/Si multilayer EUV coatings
KR100794278B1 (ko) 리소그래피 장치에 사용하기 위한 거울상에서의 금속 퇴적물의 형성 저감 방법, 리소그래피 장치에 사용하기 위한 거울, 상기 거울을 포함하는 리소그래피 장치 및 디바이스 제조방법
EP1083777A1 (en) Laser-excited plasma light source, exposure apparatus and its manufacturing method, and device manufacturing method
JP4474109B2 (ja) スパッタ装置
WO2005020298A1 (ja) 光学素子及び露光装置
KR20110014671A (ko) 금속 불화물 광학용 점착성, 밀폐 산화물 필름
TW202034062A (zh) 極紫外線遮罩吸收劑材料
WO2001055477A1 (fr) Procede de fabrication d&#39;un film de materiau composite renfermant un element generateur de gaz
TWI835896B (zh) 具有後側塗層的極紫外線掩模
JPH11172421A (ja) フッ化物薄膜の製造方法および製造装置
JPH05126999A (ja) X線多層膜反射鏡の製造方法
WO2020010303A1 (en) Extreme ultraviolet mask blank defect reduction
JP2005099571A (ja) 多層膜反射鏡、反射多層膜の成膜方法、成膜装置及び露光装置
KR20220087517A (ko) 극자외선 마스크 블랭크 결함 감소 방법들
JP2000147198A (ja) 多層膜反射鏡及びその製造方法
JPH09314716A (ja) 光学部品及びその製造方法並びに製造装置
JP2001279437A (ja) 成膜方法、成膜装置、光学部材及び露光装置
TWI836073B (zh) 極紫外光遮罩坯體及其製造方法
JP3880006B2 (ja) 光学物品の製造方法
JP2005345826A (ja) 光学素子、光学装置、成膜方法、成膜装置及びデバイス製造方法
JP2001141902A (ja) 光学素子及びその製造方法及び露光装置
JP2008095147A (ja) スパッタ成膜方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 554502

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10201790

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001901559

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001901559

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642