[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2001051958A1 - Nuevo metodo geoelectrico resistivo para conocer las caracteristicas fisicas de un volumen de terreno dado y equipo requerido para su aplicacion - Google Patents

Nuevo metodo geoelectrico resistivo para conocer las caracteristicas fisicas de un volumen de terreno dado y equipo requerido para su aplicacion Download PDF

Info

Publication number
WO2001051958A1
WO2001051958A1 PCT/MX2000/000001 MX0000001W WO0151958A1 WO 2001051958 A1 WO2001051958 A1 WO 2001051958A1 MX 0000001 W MX0000001 W MX 0000001W WO 0151958 A1 WO0151958 A1 WO 0151958A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrodes
fixed
geoelectric
physical characteristics
Prior art date
Application number
PCT/MX2000/000001
Other languages
English (en)
French (fr)
Inventor
Roberto Flores Ortega
Original Assignee
Roberto Flores Ortega
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roberto Flores Ortega filed Critical Roberto Flores Ortega
Priority to PCT/MX2000/000001 priority Critical patent/WO2001051958A1/es
Priority to AU21297/00A priority patent/AU2129700A/en
Publication of WO2001051958A1 publication Critical patent/WO2001051958A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/02Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current
    • G01V3/04Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current using DC

Definitions

  • the present invention is related to a new indirect geophysical method to know the physical characteristics of a volume of land studied. More specifically this method consists of a resistive geoelectric method of high density measurement sweeps.
  • the knowledge of the subsoil has been very important for the determination of the resources found in it.
  • These concepts have been some of the applications of the different technologies aimed at studying the physical characteristics of your basement.
  • Direct subsurface recognition technologies have many drawbacks that have demonstrated the advantage of technologies of indirect recognition. Drilling to obtain samples of the different strata of a land already presents high costs, if this is added to the risk of explosions (by friction factor) when explosive substances such as miscellaneous gases or even biogases are found in the field (gases resulting from the action of methanogenic bacteria in organic compounds), it is easy to understand the problems of these methods. Amen of the serious inconvenience is that the perforation or exploration does not match the affected area.
  • the technique is located in the type of electrical technologies more specifically, the electrical resistivity technique, which bases its results on the determination of the parameters of conductivity of the ground or the resistance that it presents to the step of the current. These parameters will depend on four concepts: a) pore volume, b) location of these pores, c) pore volume filled with water and ch) conductivity of inhibition water.
  • the determination of the electrical-resistive parameters of the terrain is currently carried out by placing a pair of voltage electrodes where the potential difference of an artificial electric field, sent to the ground through another electrode intensity pair is measured.
  • Traditional methodologies for this type of measurement are They can mention, like the most usual ones, the Schlumberg, Wenner, Millet and Lee methodology, among others and their various electrode configurations. These technologies are called Vertical Electrical Probes (SEV).
  • Conductivity in a field occurs, either through a conductive medium where electron transport occurs and the conductive element does not show greater resistance to the circulation of electricity, or through a medium where the current Electrical propagates ionically or electrolytically where said medium has greater fluidity due to the higher content of ions and conductive elements, as is the case of rocks ionized by the effect of water absorption. It follows that the higher the conductivity, the higher the water content; having then that the conductivity depends on four factors:
  • Total VMN VMN + Vm + Vn + ⁇ natural.
  • Vm and Vn are equal and normally balance, and their small difference is canceled out with the natural tension between M and N.
  • This restricted and interpolated information generates an image or a tomography of the terrain that is not the real one, since due to its inaccuracy, it can stop detecting relatively small faults, fractures or fissures but with very important effects on pollution leaching. nantes or in the case of structural collapse constructions.
  • the referred inaccuracy could also magnify the problem of, for example, a spill of pollutants, being able to report the need to clean a large volume of land, when the problem could be solved with the cleaning of a smaller volume of land.
  • the main objective of the invention based on the problems presented by state-of-the-art technologies, is to make possible a resistive geoelectric method or technology that has a greater sensitivity than those currently existing.
  • the sensitivity of the new procedure is to allow a broad recognition of the physical characteristics of the subsoil structure, as well as the detection of faults, fractures or fissures with high resolution that in other methods go unnoticed, or are detected as lateral anomalies.
  • Another additional objective is to make available an indirect method of characterizing the subsoil of a land that allows the precise quantification of the volume affected by some contamination or artificial alteration.
  • Still an additional objective is to have a team that, applying the procedure that is the reason for the present application, allows obtaining all the advantages listed.
  • Still another additional objective is to have an equipment and method that can be applied in any area, call it urban, virgin or in places with explosive, flammable or similar problems. These factors are limiting in traditional methodologies.
  • the invention object of the present description has two facets, the first comprises a new procedure and the second consists of the equipment that allows to apply that procedure.
  • the procedure consists of a resistive electrical method of geophysical prospecting characterized by having a high density of measurements and consists of implanting in the field, in a linear manner, a group of voltage electrodes whose number can be from 5 to 1 1 or more, depending on the capacity of a device called an electrode selector switch.
  • Said electronic configuration forms a device that can have variable longitudinal dimensions that can be adapted to the needs raised in any of the engineering needs or detection of bodies foreign to the nature of the subsoil, so that the separation between electrodes can vary from 1. 00 m to 30.00 m or more when the case requires.
  • FIG 1 schematically illustrates the application of two electrodes "M” and “N” in the space between "A” and “B” in the state of the art.
  • FIG 2 is the scheme showing the practical electric fields that are formed by injecting the electric current through the electrodes "A" and • B "
  • Figure 3 illustrates the result of a scan, the isorresistive spectrum, using a traditional method belonging to the state of the art.
  • Figure 4 illustrates the result of a sweep, of the isorresitive spectrum, of the same terrain using the method object of the present description.
  • electrodes "A” and “B” are those that inject electrical energy to form the artificial electric field, of which one of these (A ) is at a distance of at least three times the depth to be investigated.
  • Figure 3 shows the application result of a resistive electrical geophysical methodology of the state of the art.
  • Figure 4 shows the differences in the sensitivity of the present invention.
  • the different devices that integrate the equipment into one of the modalities of the invention applying the method of the present invention are schematized.
  • the letter (a) indicates the measuring device where the millimeter perimeter (MA) that measures the current injected between the electrode pair AB by the electric current source (c) and the voltmeter (MV) that measures the difference is located of potential between each of the electrode pairs formed by electrodes 1 to 1 1 that are integrated to the commutated (b) where each of the electrodes (d) are electrically connected.
  • the depth (e) of the ground at which the resistive determinations (f) are being made Depending on the distance between the electrode pair "A" and "B", it is the depth (e) of the ground at which the resistive determinations (f) are being made.
  • the electric current supply electrode A is placed at a distance of three times the depth to be investigated and the electrode "B" moves at different depths required, starting before the fixed electrode device (MN), in the device and after the device, thus obtaining the speci tro isorresistivo in continuous and three-dimensional form, with a high resolution.
  • the device may include another infinite electrode "A”, placed at the same distance three times the depth to be investigated but away from electrode A forming a transverse line. Remaining all other electrodes in the same place for any measurement.
  • the measure of the resistivity between M and N (being M the electrode 1 to 11, and N the electrode 1 to 11) is obtained by the following equation:
  • V Potential difference between electrodes M and N
  • the logarithmic curves corresponding to each point are classified and analyzed.
  • the graphs of resistivities and apparent isorresistivities are formed, also called isorresistive spectra, which result in a qualitative interpretation of their base. .
  • the resistive determinations obtained from the terrain are reflected in a graph, in which the apparent resistivities are arranged in ordinates and in the abcisses the distance between one of the current electrodes and the central point (P) of the probe marked on the Figure 1, the scales taken on both axes are logarithmic, so that the shape and size of the curves are independent of the units used in the measurements.
  • the module of the logarithmic paper is 62.50 mm.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

La presente invención está relacionada con un nuevo método indirecto geoeléctrico resistivo para conocer las características físicas de un volumen de terreno dado. Las cualidades del invento son las de tener una sensibilidad mayor que los actualmente existente, detectando fallas, fracturas o fisuras que en otros métodos pasen desapercibidos, permitiendo asimismo la cuantificación precisa del volumen afectado por alguna contaminación y el de disponer de un equipo que aplicado el procedimiento objeto de la presente solicitud, permita la obtención de todas las ventajas enumeradas. El equipo está caracterizado porque el dispositivo de electrodos fijos está formado por una serie de electrodos colocados en forma equidistante en el terreno y son en un número mayor que tres, y los electrodos de inyección de corriente comprenden un electrodo A, denominado infinito, colocado a una distancia de por lo menos tres veces la profundidad que se desea investigar, y un electrodo B que se mueve para permitir la obtención de parámetros a las diferentes profundidades requeridas, iniciando con distancias antes del dispositivo de electrodos, continuando con distancias entre el dispositivo y terminando en diferentes distancias después del dispositivo.

Description

NUEVO MÉTODO G EOELECTRICO RESISTIVO PARA CONOCER LAS
CARACTERÍ STICAS FÍSICAS DE UN VOLU MEN DE TERRENO DADO Y
EQUIPO REQUERIDO PARA SU APLICACIÓN
CAMPO DE LA INVENC IÓN
La presente i nve nción esta relacionada co n un nuevo método geofísico indirecto para conocer las características físicas de u n volumen de terreno estudiado . Más específicamente este método consiste en un método geoeléctrico resistivo , de barrido de alta densidad de medidas .
ANTECEDENTES DE LA INVENCIÓN
El conocimiento del subsuelo ha sido muy importante para la determinación de los recursos que en este se encuentran . La determinación de minerales útiles , la ubicación de mantos petroleros y acu íferos, el conocimiento de la estructura del subsuelo (fallas, fracturas, fisuras , oquedades, cavernas, y geotécnia) , y actualmente en la aplicación a la ecología en alteraciones e impacto nocivo de contaminaciones diversas en terrenos determinados . Estos conceptos han sido algunas de las aplicaciones de las diferentes tecnologías encaminadas a estudiar las características físicas del su bsuelo .
Las tecnolog í as de reconocimiento directo del subsuelo presentan muchos inconvenientes que han demostrado la ventaja de las tecnologí as de reconocimiento indirecto. La perforación para la obtención de muestras de los diferentes estratos de un terreno presentan ya de por si costos elevados, si a esto se suma el riesgo de explosiones (por factor fricción) cuando en el terreno se encuentran sustancias explosivas como gases diversos o inclusive biogases (gases resultado de la acción de bacterias metanogénicas en los compuestos orgánicos), es fácil entender la problemática de estos métodos. Amen del grave inconveniente consistente en que la perforación o exploración no coincida con el área afectada.
Los métodos llamados indirectos son muy diversos y se conocen técnicas tales como la sísmica de reflexión y refracción, la gravimetría, la magnetometría, las radiactivas y finalmente los métodos eléctricos.
En el caso de la presente invención, la técnica esta ubicada en el tipo de tecnologías eléctricas más específicamente, la técnica eléctrica de resistividad, que basa sus resultados en la determinación de los parámetros de conductividad del terreno o la resistencia que presenta el mismo al paso de la corriente. Estos parámetros dependerán de cuatro conceptos: a)volumen de poros, b)ubicación de estos poros, c)volumen de poros llenos de agua y ch)conductividad del agua de inhibición.
La determinación de los parámetros electrico-resistivos del terreno se realiza, actualmente, colocando un par de electrodos de tensión por donde se mide la diferencia de potencial, de un campo eléctrico artificial, enviado al terreno a través de otro par electródico de intensidad. De las metodologías tradicionales para este tipo de mediciones se pueden mencionar, como las más usuales, la metodología Schlumberg, la Wenner, la Millet y la Lee, entre otras y sus diversas configuraciones electródicas. Estas tecnologías son denominadas Sondeos Eléctricos Verticales (SEV).
El éxito de estas tecnologías se basa en una hipótesis que ha demostrado no ser cierta del todo: la homogeneidad del terreno. Efectivamente, los resultados de la aplicación de estas tecnologías consisten en mediciones puntuales, es decir, en la vertical del centro electródi- co, por lo que para estudiar amplios espacios se requiere de un grupo de puntos de medición, con los cuales se forma una interpolación que cubra la extensión a estudiar.
La conductividad en un terreno se da, ya sea a través de un medio conductor en donde se da la transportación de electrones y el elemento conductor no presenta mayor resistencia a la circulación de la electricidad, o bien a través de un medio en donde la corriente eléctrica se propaga iónicamente o electrolíticamente en donde dicho medio presenta mayor fluidez debido al mayor contenido de iones y elementos conductores, como es el caso de rocas ionizadas por el efecto de la absorción de agua. De esto se desprende que a mayor conductividad es también mayor el contenido de agua; teniéndose entonces que la conductividad depende de cuatro factores:
" a)volumen de poros
" b)ubicación de los poros
> c)volumen de poros llenos de agua • ch)conductividad del agua de inhibición
La conductividad σ r de l as rocas es obtenida por la fórmula :
σ r = Ve_
en don de:
Ve = el volumen de los poros lle nos de agua e = conductividad del agu a contenida en los poros
C = constante para l a disposición dada de los poros .
Para la medición de un campo eléctrico artificial en un medio se colocan dos electrodos A y B en la superficie de potencial estarí a expresáda por la relación :
VA - VB > 0
Si la corriente va de A hacia B.
La caída de potencial se manifiesta a lo largo de la distancia A-B . Sin embargo cabe señalar que un punto cuando más alejado este de A y B , tendrá menor potencial .
Cuando los puntos conservan un mismo valor potencial, definen una superficie equipotencial , la intersección de esta con la superficie del terreno forma una curva equipotencial . Considerando el caso, el potencial en un punto P viene dado por la expresión : V = o * ( 1 - 1 ) 2π a a'
donde a y a' son las distanci as del punto P a los electrodos A y B . En dicha expresión 2π corresponde a la semiesfera práctica del terreno ya que la otra ocupa el aire libre , en donde su resistencia es extremadamente elevada .
Entonces la medición de un campo eléctrico e nviado al subsuel o , se obtendría con la colocación de dos electrodos A y B implantados en el terreno , ligados ambos a una fuente de alimentación , en donde se definiría una caída de potencial que se manifestaría a lo largo de la diferencia de potencial en un campo eléctrico artificial enviado al subsuelo, se implantarían dos electrodos M y N entre el espacio de A y B de tal manera que dicha diferencia de potencial entre M y N es V MN. A esto hay que añadir la tensión natural que existe en el suelo antes del paso de la corriente, así como las tensiones que aparecen en los electrodos M y N con el terreno ; de tal manera que la diferencia de potencial entre M y N sería:
VMN Total = VMN + Vm + Vn + ψ natural .
Vm y Vn son iguales y normalmente se equilibran , y su diferenci a pequeña se anula con la tensión natural e ntre M y N .
Estas son las bases de los diferentes sondeos eléctricos verticales (SEV) en sus denominaciones Wen ner, Schl umberg , Millet y Lee . El pri ncipal inconveniente de estos tipos de sondeo es que la información que proporcionan es limitada e interpolada, lo que deja espacios con incertidumbre , y su aplicación es m uy restringida , sobre todo en áreas urban as o si milares .
Esta información restri ngida e i nterpolada ge nera una imagen o una tomografí a del terreno que no es la real , ya que por su inexactitud , puede dejar de detectar fallas , fracturas o fisuras , relativamente pequeñas pero con efectos muy importantes en lixiviación de contami- nantes o en el caso de construcciones colapsos estructurales.
La inexactitud referida podría también magnificar el problema de, por ejemplo , un derramamiento de contaminantes, pudiendo reportar la necesidad de limpiar un gran volumen de tierra, cuando el problema po- dría ser resuelto con la limpieza de u n volu men menor de tierra .
OBJETIVOS D E INVENC IÓN
El principal objetivo de la invención , en base a la problemática que presentan las tecnologías del estado de la técnica, es hacer posible un método ó tecnología geoeiéctrica resistiva que tenga una sensibilidad mayor que las actualmente existentes.
Como otro objetivo de la presente i nvención , tomando e n cuanta l a sensibilidad del nuevo procedimiento , es el de permitir un amplio reconocimiento de las características físicas de la estructura del subsuelo, asi como la detección de fallas , fracturas o fisuras con alta resolución que en otros métodos pasan desaperci bidos, o se detectan como anomal ías laterales.
Otro objetivo adicional es el hacer posi ble l a disposición de u n método indirecto de caracterización del subsuelo de un terreno que permita la cuantificació n precisa del vol umen afectado por alguna contaminación ó alteración artificial .
Todavía u n objetivo adicional es el de disponer de u n equipo que aplicando el procedimiento motivo de la presente solicitud , permita la obtención de todas las ventajas en umeradas .
Aún otro objetivo adicional es el de disponer de un equipo y método que pueda aplicarse en cualquier zona, llámese urbana, virgen o en lugares con problemas de explosividad, flamables ó similares . Estos factores son limitantes e n las metodologías tradicionales .
Y cualquier otro objetivo , cualidades y ventajas que podrán ser detec- tadas una vez hecha la descripción, con apoyo en las figuras presentadas.
DESCRI PCIÓN D E LA I NVENCI ÓN
El invento objeto de la presente descripción tiene dos facetas , la primera comprende un n uevo procedimiento y la segunda consiste en el equipo que permite apl icar ese procedimiento .
El procedimiento consiste en u n método eléctrico resistivo de prospección geofísica caracterizado por tener u na alta densidad de medidas y consiste en implantar en el terreno, en forma li neal , u n grupo de electrodos de tensión cuyo n úmero p uede ser desde 5 hasta 1 1 o más , dependiendo de la capacidad de un equipo llamado conmutador selector de electrodo . Dicha configuración electrόdica forma un dispositivo que puede tener dimensiones longitudinales variables que se pueden adaptar a l as necesidades planteadas en cualesqu iera de las necesidades ingenieriles o detección de cuerpos ajenos a la naturaleza del subsuelo, por lo que la separación entre electrodos puede variar desde 1 .00 m hasta 30.00 m o más cuando el caso lo requiera.
Con fines ilustrativos, más no limitativos, y para una mejor comprensión del invento, sobre todo de la parte correspondiente al equipo, se procederá a describir el mismo a partir de las modalidades ilustradas en los dibujos que acompañan la presente descripción .
BREVE DESCRI PCI ÓN D E LAS FIGURAS
En la figura 1 se ilustra esquemáticamente la aplicación de dos electrodos "M" y "N" en el espacio comprendido entre "A" y "B" del estado de la técnica.
La figura 2 es el esquema que muestra los campos eléctricos prácticos que se forman al inyectar la corriente eléctrica por los electrodos "A" y B"
En la figura 3 se ilustra el resultado de un barrido, el espectro isorre- sistivo, usando un método tradicional perteneciente al estado de la técnica.
La figura 4 ilustra el resultado de un barrido, del espectro isorresitivo, del mismo terreno usando el método objeto de la presente descripción.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
En la figura 1, disposición tradicional de los electrodos en metodologías pertenecientes al estado de la técnica, los electrodos "A" y "B" son los que inyectan la energía eléctrica para formar el campo eléctrico artificial, de los cuales uno de estos (A) queda a una distancia de por lo menos tres veces la profundidad que se programa investigar.
Las modificaciones que se han hecho a esta metodología del estado de la técnica, ha consistido exclusivamente en el uso de diferentes distancias entre electrodos, teniendo en el dispositivo en general que la distancia A-M ≠ M-N ≠ N-B, en el dispositivo de Wenner A-M = M-N = N-B = K; en el de Millet A-M = M-N y la distancia N - B tendiendo a infinito, etc.
En la figura 2 se esquematiza el campo eléctrico generado por la aplicación de los electrodos "A" y "B" en el terreno, pudiendo decirse que la líneas equipotenciales son ortogonales a las líneas de corriente formando semiesferas .
En la figura 3 se muestra el res u ltado de apl icación de una metodolo- gia geofísica eléctrica resistiva del estado de la técn ica . Al compararse con la que se obtiene por el procedimiento del presente invento (figura 4) , se notan las diferencias en cuanto a la sensi bilidad del presente invento.
En la figura 5 se esquematizan los diferentes dispositivos que integran el equipo en un a de las modalidades del invento que aplica el procedimiento del presente invento . La letra (a) señala el aparato de medidas en donde se encuentra el miliamperimetro (MA) que mide la corriente inyectada entre el par electródico A-B por la fuente de corriente eléc- trica (c) y el voltímetro (MV) que mide la diferencia de potencial entre cada uno de los pares elctródicos formados por los electrodos 1 a 1 1 que se integran al conmutados (b) donde se conectan eléctricamente cada uno de los electrodos (d) . Dependiendo de la distancia entre el par electródico "A" y "B" , es la profundidad (e) del terreno al que se están haciendo las determinaciones resistivas (f).
Como se puede apreciar en dicha figura 5, en esta modalidad de la invención, el electrodo de alimentación de corriente eléctrica A, denominado infinito , se coloca a una distancia de tres veces la profundidad a investigar y el electrodo "B" se mueve a las diferentes profu ndidades requeridas , iniciando antes del dispositivo de electrodos fijos (M-N) , en el dispositivo y después del dispositivo , obteniéndose así el espec- tro isorresistivo en forma continua y tridimensional, con una resolución alta.
En otra de las modalidades, no ilustradas, el dispositivo puede incluir otro electrodo infinito "A", colocado a la misma distancia de tres veces la profundidad a investigar pero alejado del electrodo A formando una linea transversal. Permaneciendo todos los demás electrodos en el mismo lugar para cualquier medición.
En este caso, la medida de la resistividad entre M y N (pudiendo ser M el electrodo 1 a 11, y N el electrodo 1 a 11) se obtiene por la siguiente ecuación:
Figure imgf000012_0001
pa = 2π
Figure imgf000012_0002
donde: a 1 = Distancia entre M y N
a 2 = Distancia entre M y B
V = Diferencia de potencial entre los electrodos M y N
I = Intensidad de corriente entre los electrodos A y B
Con el cálculo de estas determinaciones o valores resistivos se clasifica y se analizan graficando las curvas logarítmicas correspondientes a cada punto. Con las determinaciones resistivas obtenidas a las diferentes profundidades obtenidas con el método y equipo de la presente inve nción , se forman las gráficas de resistividades e isorresistividades aparentes, también llamados espectros isorresistivos, mismos que dan como re- sultado u na interpretación cualitativa del su bsuelo . Una vez realizado el proceso citado, se llevará a cabo una interpretació n cuantitativa que consiste en delimitar los horizontes litoeléctricos del subsuelo y conocer las resistivi dades reales de cada uno de ellos , para este fin se interpretan las curvas logarítmicas provenientes de cada par electródico, en base a las curvas patrón , siendo las mas usuales por sencillas y practicas las de Orellana y Mooney.
Las determinaciones resistivas obtenidas del terreno se reflejan en una gráfica, en la que se l levan en ordenadas las resistividades aparentes y en las abcisas la distancia que hay entre uno de los electrodos de corriente y el punto central (P) del sondeo marcado en la figura 1 , las escalas tomadas en ambos ejes son logarítmicas , para que la forma y el tamaño de las curvas sean independientes de las unidades utilizadas en las mediciones . El módulo del papel logarítmico es de 62.50 mm .
Otras modalidades de la invención serán aparentes a aquellos hábiles en el área, a partir de una consideración de la descripción o práctica de la invención divulgada aqu í . Se sobre entiende que la descripción y ejemplos son considerados únicamente como ilustrativos, con el verda- dero alcance y espíritu de la invención estando i ndicado por la siguientes reivindicaciones.

Claims

R E I V I N D I C A C I O N E S
Habiendo descrito suficientemente el invento, se considera como una novedad y se reclama por tanto como novedad, lo contenido en las si- guientes reivindicaciones.
1) Nuevo método geoeléctrico resistivo para conocer las características físicas de un volumen de terreno dado del tipo que comprende el uso de un aparato de medición de corriente inyectada en el terreno, una fuente de corriente continua para inyectarla al terreno, un voltímetro para medir las diferencias de potencial presentadas en diferentes puntos del terreno, unos electrodos A y B para inyectar la corriente y formar los campos eléctricos en el mismo y unos electrodos, denominados dispositivo de electrodos fijos, para sensar las diferencias de potenciales presentes en el terreno, caracterizado por consistir en los pasos de a) colocar el electrodo A a una distancia mínima de tres veces a la profundidad que se desea investigar, b) colocar el dispositivo de electrodos fijos, formados por mas de tres electrodos, en forma equidistante en línea en el terreno, c) colocar el electrodo B entre el electrodo A y el primer electrodo del dispositivo de electrodos fijos (M-N), ch) hacer las mediciones de diferencia de potencial entre los diferentes electrodos del dispositivo de electrodos fijos; d) colocar el electrodo B entre los diferentes electrodos fijos y repetir el paso ch), e) colocar el electrodo B después de los electrodos fijos y repetir el paso ch).
2) Nuevo método geoeléctrico resistivo para conocer las características físicas de un volumen de terreno, tal y como se ha reclamado en la reivindicación 1, caracterizado porque en el paso A se incluye la colocación de un electrodo A' alejado del electrodo A.
3) Nuevo método geoeléctrico resistivo para conocer las características físicas de un volumen de terreno, tal y como se ha reclamado en la reivindicación 1 ó 2, caracterizado porque en el paso ch) se seleccionan el par electródico a sensar por medio de un conmutador al que van conectado eléctricamente, por un lado los electrodos fijos y por el otro las terminales del voltímetro.
4) Equipo para aplicación del procedimiento reclamado en las reivindicaciones 1, 2 6 3 caracterizado porque el dispositivo de electrodos fijos esta formado por una serie de electrodos colocados en forma equidistante en el terreno y son en un número mayor que tres, y los electrodos de inyección de corriente comprenden un electrodo A, denominado infinito, colocado a una distancia de por lo menos tres veces la profundidad que se desea investigar, y un electrodo B que se mueve para permitir la obtención de parámetros a las diferentes profundidades requeridas, iniciando antes del dispositivo de elec- trodos, entre el dispositivo y después del dispositivo.
5) Equipo par la aplicación del procedimiento reclamado en las reivindicaciones 1, 2, 3 ó 4 caracterizado porque los electrodos fijos van conectados al voltímetro por medio de un conmutador que se selecciona el par electródico a sensar.
6) Equipo para la aplicación del procedimiento reclamado en las reivin- 15 dicaciones 1 , 2, 3 , 4 ó 5 caracterizado porque se incluye un electrodo A' conectado eléctricamente con el electrodo A.
PCT/MX2000/000001 2000-01-14 2000-01-14 Nuevo metodo geoelectrico resistivo para conocer las caracteristicas fisicas de un volumen de terreno dado y equipo requerido para su aplicacion WO2001051958A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/MX2000/000001 WO2001051958A1 (es) 2000-01-14 2000-01-14 Nuevo metodo geoelectrico resistivo para conocer las caracteristicas fisicas de un volumen de terreno dado y equipo requerido para su aplicacion
AU21297/00A AU2129700A (en) 2000-01-14 2000-01-14 Novel resistive geoelectric system to detect the physical characteristics of a given terrain volume and device for implementing said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2000/000001 WO2001051958A1 (es) 2000-01-14 2000-01-14 Nuevo metodo geoelectrico resistivo para conocer las caracteristicas fisicas de un volumen de terreno dado y equipo requerido para su aplicacion

Publications (1)

Publication Number Publication Date
WO2001051958A1 true WO2001051958A1 (es) 2001-07-19

Family

ID=19741667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2000/000001 WO2001051958A1 (es) 2000-01-14 2000-01-14 Nuevo metodo geoelectrico resistivo para conocer las caracteristicas fisicas de un volumen de terreno dado y equipo requerido para su aplicacion

Country Status (2)

Country Link
AU (1) AU2129700A (es)
WO (1) WO2001051958A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2303738A1 (es) * 2004-06-02 2008-08-16 Pedro Ollero Lopez Geo-analizador fisico vcc.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0697604A1 (fr) * 1994-08-03 1996-02-21 F C B Procédé et système de reconnaissance des terrains à l'avant d'une machine d'excavation
US5510712A (en) * 1994-05-02 1996-04-23 Schlumberger Technology Corporation Method and apparatus for measuring formation resistivity in cased holes
EP0758095A2 (de) * 1995-08-07 1997-02-12 Gesellschaft für geophysikalische und ingenieurgeologische Dienste mbH Geoelektrisches Messverfahren und Elektrodenmessstrang hierfür
EP0786673A2 (fr) * 1992-07-31 1997-07-30 Eugesol Procédé et dispositif de sondage et de contrÔle d'un volume de sous-sol

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786673A2 (fr) * 1992-07-31 1997-07-30 Eugesol Procédé et dispositif de sondage et de contrÔle d'un volume de sous-sol
US5510712A (en) * 1994-05-02 1996-04-23 Schlumberger Technology Corporation Method and apparatus for measuring formation resistivity in cased holes
EP0697604A1 (fr) * 1994-08-03 1996-02-21 F C B Procédé et système de reconnaissance des terrains à l'avant d'une machine d'excavation
EP0758095A2 (de) * 1995-08-07 1997-02-12 Gesellschaft für geophysikalische und ingenieurgeologische Dienste mbH Geoelektrisches Messverfahren und Elektrodenmessstrang hierfür

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2303738A1 (es) * 2004-06-02 2008-08-16 Pedro Ollero Lopez Geo-analizador fisico vcc.

Also Published As

Publication number Publication date
AU2129700A (en) 2001-07-24

Similar Documents

Publication Publication Date Title
Loke Tutorial: 2-D and 3-D electrical imaging surveys
Drahor et al. Integrated geophysical investigations in a fault zone located on southwestern part of İzmir city, Western Anatolia, Turkey
CN111398360B (zh) 基于ERT和IP圈定包气带中LNAPLs的污染源区探测方法及系统
Berge Electrical resistivity tomography investigations on a paleoseismological trenching study
Yılmaz et al. 2-D electrical resistivity imaging for investigating an active landslide along a ridgeway in Burdur region, southern Turkey
Bording et al. Cross-borehole tomography with full-decay spectral time-domain induced polarization for mapping of potential contaminant flow-paths
Singh et al. Study on geometric factor and sensitivity of subsurface for different electrical resistivity Tomography Arrays
Garré et al. Geophysical methods for soil applications
Varnavina et al. Geophysical site assessment in karst terrain: A case study from southwestern Missouri
Acosta et al. A borehole magnetometric resistivity experiment
Matias et al. Detection of graves using the micro-resistivity method
WO2001051958A1 (es) Nuevo metodo geoelectrico resistivo para conocer las caracteristicas fisicas de un volumen de terreno dado y equipo requerido para su aplicacion
Zhou A sensitivity analysis of DC resistivity prospecting on finite, homogeneous blocks and columns
Cassiani et al. Ground-based remote sensing of the shallow subsurface: Geophysical methods for environmental applications
Kušnirák et al. Complex geophysical investigation of the Kapušany landslide (Eastern Slovakia)
WO2015132429A1 (es) Procedimiento para determinar cuantitativamente propiedades físico-químicas de suelos o residuos sólidos
Gomaa et al. Modelling and simulating the geoelectrical attributes of near-surface buried objects to optimizing its discovery
Patrizi et al. Analysis of non-ideal remote pole in Electrical Resistivity Tomography for subsurface surveys
Funk et al. Possibilities and limitations of cave detection with ERT
Rekapalli et al. Electrical resistivity imaging over natural (in situ) geological samples using physical model studies
KR102403250B1 (ko) 전기 비저항 탐사용 데이터 수집 장치 및 방법
Clark Archaeological detection by resistivity
Wahyuni et al. Resistivity method for characterising subsurface layers of coastal areas in South Sulawesi, Indonesia
Rekapalli et al. Direct resistivity measurements of core sample using a portable in-situ DC resistivity meter in comparison with HERT data
Karim Implementation of electrical resistivity imaging (ERI) technique for near surface investigation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642