[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2000003135A1 - Pompe d'alimentation en carburant commandee electriquement, pour moteur a combustion interne - Google Patents

Pompe d'alimentation en carburant commandee electriquement, pour moteur a combustion interne Download PDF

Info

Publication number
WO2000003135A1
WO2000003135A1 PCT/FR1999/001689 FR9901689W WO0003135A1 WO 2000003135 A1 WO2000003135 A1 WO 2000003135A1 FR 9901689 W FR9901689 W FR 9901689W WO 0003135 A1 WO0003135 A1 WO 0003135A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
pressure
fuel
motor
control unit
Prior art date
Application number
PCT/FR1999/001689
Other languages
English (en)
Inventor
Henri Mazet
Original Assignee
Magneti Marelli France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magneti Marelli France filed Critical Magneti Marelli France
Priority to JP2000559343A priority Critical patent/JP2002520537A/ja
Priority to US09/743,601 priority patent/US6453878B1/en
Priority to DE69901190T priority patent/DE69901190T2/de
Priority to BR9912063-1A priority patent/BR9912063A/pt
Priority to EP99929467A priority patent/EP1105633B1/fr
Publication of WO2000003135A1 publication Critical patent/WO2000003135A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3082Control of electrical fuel pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • F02M37/10Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir
    • F02M37/106Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir the pump being installed in a sub-tank

Definitions

  • the invention relates to the field of fuel supply circuits for internal combustion engines for motor vehicles, and more particularly those fitted with fuel injection installations for internal combustion engines of the spark-ignition or compression-ignition type. (diesel), direct or indirect injection, and comprising a fuel pump with an electric motor.
  • a fuel supply circuit of an injection installation for an internal combustion engine comprises a pump, driven by an electric motor, and withdrawing fuel from a tank to deliver it to a fuel supply ramp. injectors through a supply line, on which a fuel filter is mounted.
  • a pressure regulator downstream of the manifold, maintains an injector supply pressure in the latter, which is a substantially constant differential pressure between the fuel pressure and the atmospheric pressure or pressure at the intake manifold.
  • air to the engine whatever the fuel demand of the engine, that is to say whatever the flow of fuel injected into the engine by the injectors, according to the engine operating conditions. Excess fuel is returned to the tank through the pressure regulator using a return line.
  • the pump in question does not directly supply the injector rail, but a second pump, at high pressure, and a second regulator, at high pressure, which supply the ramp.
  • This conventional circuit has the drawbacks of requiring a large permanent flow of fuel at the outlet of the pump, therefore a consumption of electrical current not negligible as well as a significant operating noise of the pump, and leads to a significant heating of the fuel passing through the ramp and the pressure regulator, and brought back to the tank, which causes significant releases of fuel vapor.
  • Such a fuel supply circuit is, for example, known from EP-A-577 477, in which in addition a differential pressure sensor is integrated in the regulator, and produced in the form of a pressure gauge sensor, with a membrane, for cutting the injectors supply when the fuel pressure is lower than a predetermined threshold.
  • the pressure regulator upstream of the injector supply manifold, between the inlet of this manifold and a filter downstream of the pump, and preferably near the tank or in the latter on a bypass pipe opening into the tank and which is connected to the supply pipe, between the filter and the inlet of the ramp.
  • the pressure regulator also ensures the return of excess fuel to the tank.
  • circuits have the advantages of reducing the quantity of fuel passing through the pump and passing through the filter, and therefore of reducing the heating of the fuel as well as the consumption and the noise of the pump.
  • these circuits are not entirely satisfactory, because they require high cost pressure sensors, due to the necessary measurement accuracy, and these circuits do not always lead to satisfactory pressure regulation.
  • the fuel pressure regulation device arranged on the injector supply line by the pump, is a device with membrane separating two chambers in a housing, one of the chambers, at atmospheric pressure, containing a spring with adjustable force by an adjusting screw and biasing the membrane, carrying one of two electrical contact terminals of a sensor gauge, to the other electrical terminal of this sensor which is housed in the other chamber, through which the fuel circulating from the pump to the engine.
  • the electrical contact between the two terminals of the pressure sensor integrated in the pressure regulating device is broken, and the electrical supply to the engine of the pump is interrupted.
  • the supply current of the motor is modulated in pulse width, as a function of the output pressure of the pump, of the demand of the motor in fuel and of the adjustable force exerted by the spring of the manometric sensor.
  • the pressure regulator is of the diaphragm type biased, on the one hand, by atmospheric pressure or air pressure at the intake manifold as well as by a calibrated spring, and, on the other side, by the pressure of the fuel feeding the rail and admitted into the regulator by an inlet valve, the shutter, possibly biased by a spring, is rigidly connected in displacement to the membrane.
  • a regulator makes it possible to obtain a constant differential pressure for supplying the injectors whatever the fuel demand of the engine, in a fuel supply circuit "without return".
  • the pressure sensor is also of the diaphragm stressed type, on one side, by the pressure of the fuel at the pump outlet, and on the other side by a spring, the diaphragm displacing a contact movable relative to a fixed contact of a control switch for an electronic module controlling the power supply to the pump drive motor.
  • the setting pressure of the pressure sensor is higher than the operating pressure required at the outlet of the regulator. As the pump is traversed only by the fuel actually used, the current consumption of the pump motor remains low compared to the known prior embodiments comprising a bypass on the supply line.
  • the pressure sensor at the pump outlet is also a pressure gauge sensor with a threshold, associated with a pressure relief valve, and which, when it detects a higher fuel pressure at the pump outlet at a threshold, itself greater than the nominal operating pressure of the device, controls, on the one hand, a width modulator of current pulses transmitted to the electric motor of the pump, and, on the other hand, the opening of the pressure relief valve for the return to the fuel tank in excess pressure in the supply line, between a non-return valve at the outlet of the pump and the inlet of the supply regulator of the constant differential pressure ramp .
  • a fuel distribution circuit is also known to an engine according to the demand of the engine, and in which the speed of the pump is regulated to transmit fuel under pressure from the tank to the engine, with a flow rate which varies as a function of the electrical energy applied to the pump by an electronic circuit itself controlled by a sensor detecting the quantity of intake air to the engine.
  • the pump works at a speed which is just sufficient to meet the demand of the motor, and the pumping noise is reduced at low pump and motor speeds, as well as the current transmitted to the pump at idle speeds. of the motor.
  • the electric pump is controlled either in a closed loop, from the measurement of a parameter of operation of the fuel system, which is most often the fuel pressure at the outlet of the pump, or according to the measurement of the air flow to the air intake manifold to the engine, which air flow is indirectly related to the flow of fuel consumed by the engine.
  • the installation must therefore include at least one sensor of this operating parameter, in order to emit a control signal from an electronic unit modulating the electrical energy transmitted to the drive motor of the pump.
  • the object of the invention is to provide a fuel supply circuit with an electric pump controlled by pressure, which retains all the advantages of the "no return" circuits presented above without having the disadvantage of at least one specific sensor. on the engine air and fuel circuits to control the pump.
  • Another object of the invention is to propose such a circuit which can advantageously and simultaneously have the advantages of known fuel supply circuits in which the pump is arranged in a fuel reserve bowl, itself arranged in a fuel tank and to which bowl part of the fuel discharged by the pump is derived, in the form of at least one jet of fuel injected into the bowl with a flow rate necessary to avoid defusing the pump.
  • the fuel supply circuit according to the invention for an internal combustion engine, comprising a fuel pump with an electric motor, pumping fuel into a fuel tank, and supplying, directly or indirectly, a ramp d supply of at least one fuel injector, with the assistance of at least one fuel pressure regulator, is characterized in that the pump motor is controlled by an electronic control unit so as to align the pressure pump output at an objective pressure determined by the electronic control unit as being higher than the operating pressure of the regulator which is of the pressure reducer type, and the pressure characteristic of which is known to the electronic control unit, the output pressure of the pump being determined by the electronic control unit according to a relationship between the outlet pressure and at least the average current of the pump motor.
  • the pressure control is no longer ensured by a feedback loop using a fuel pressure sensor at the inlet of the ramp or in the supply line, but this fuel pressure , in a supply circuit which is moreover substantially identical to a traditional "no return" circuit, is controlled towards the ramp by the pressure regulator-regulator, of known conventional structure, and upstream of the regulator-regulator, by the unit control electronics that control the pump to obtain the appropriate outlet pressure, higher than the operating pressure of the regulator-regulator.
  • This control is ensured by aligning the actual output pressure of the pump, apprehended by the electronic control unit through at least the average current of the pump motor, on an objective pressure calculated or developed by this unit. control to meet the pressure criterion higher than the operating pressure of the regulator-regulator.
  • the electronic control unit ensures a mean current control of the pump motor by calculating an error signal between an objective mean current, corresponding to the objective pressure, and the mean motor current measured by said unit.
  • the relation between the outlet pressure of the pump and at least the mean current of the motor also takes into account at least the rotation speed of the pump and / or the thermal state of the pump, and more precisely of its pumping stage, and / or the flow rate of the pump.
  • This technical measure makes it possible to control the pressure pump in the aforementioned manner while also taking into account the fuel flow rate required in particular by the engine.
  • the flow rate of the pump is determined by taking into account at least the flow rate of the engine, calculated by an electronic engine control unit, controlling at least the injection of fuel into the engine, and associated with said electronic unit of control, to which the electronic engine control unit transmits at least one flow rate information required by the engine.
  • the pump flow rate is advantageously determined by also taking into account the necessary jet flow rate.
  • the rotation speed of the pump can be determined by analyzing the instantaneous motor current and detecting the commutations from the manifold to the motor.
  • this detection of switching of the motor collector is obtained by filtering in at least one high-pass filter of the instantaneous current of the motor.
  • the regulator-regulator is advantageously disposed immediately upstream of the rail and defines the fuel pressure in the latter from the higher fuel pressure it receives from the pump.
  • FIG. 1 is a schematic view of the fuel supply circuit of an injection engine
  • FIG. 1 is a fuel pump 1, which is an electric pump comprising, in a well-known manner, a pumping stage driven in rotation by an electric motor, preferably of the type supplied with electric current by switching an engine manifold.
  • This electric pump 1 is placed in a fuel reserve bowl 2, which is itself arranged on the bottom of a fuel tank 3.
  • Pump 1 takes fuel from the reserve bowl 2, preferably through an upstream filter (not shown), and delivers the fuel through a downstream filter 5 in a supply line 6 to a fuel pressure regulator 7.
  • This regulator 7 supplies fuel to a rail 8, at the downstream end of the line supply 6, and which is a common supply rail for the injectors 9 of an internal combustion engine 10.
  • Upstream of the regulator 7, a fraction of the fuel discharged by the pump 1 into the supply line 6 is returned to the bowl 2 in the form of a jet 11 injected into the base of the bowl 2 with a minimum flow rate necessary to avoid the pump priming 1.
  • the regulator 7 directly supplies the rail 8 with fuel at a satisfactory operating pressure for supplying the injectors 9 with a substantially constant differential pressure between the fuel pressure and the pressure air to the engine intake manifold.
  • the regulator 7 indirectly feeds the ramp, by means of a high pressure pump associated with a high pressure regulator which determines the fuel injection pressure by the injectors 9.
  • the regulator 7 is a regulator-regulator of a well-known type, for example with a membrane with an inlet valve, as in US-A-5,398,655 and FR-A-2,725,244, and which defines the fuel pressure in the rail 8, or towards the inlet of the high pressure pump, from a higher fuel pressure which it receives from the pump 1, so that it can deliver, towards the rail 8 downstream, fuel under satisfactory pressure, whatever the fuel demand of the engine 10.
  • a regulator-regulator 7 has the advantage of being of a simple structure, economical and undemanding as regards the precision of the pressure it receives.
  • the filter 5 and the fuel diversion to the jet 11 can be made in the form of a sub-assembly near the tank 3, or in the latter, in which this sub-assembly can be directly associated with the pump 1.
  • the control unit 4 controls the pump 1 so that its actual outlet pressure is as much as possible aligned with an objective pressure greater than the operating pressure of the regulator-regulator 7, itself controlled by the pressure at the intake manifold of air to the motor 10, the pressure characteristic of the regulator-regulator 7 being known to the unit 4, and this objective pressure being chosen so that simultaneously the flow rate of the pump meets the need of the motor 10, for each operating point of the latter, as well as at the minimum rate of good supply of the jet 11 returning to the reserve bowl 2, to avoid defusing the pump 1. Alignment of the actual outlet pressure of the pump 1 with the pressure objective is carried out in the unit 4 by a regulation schematically represented in FIGS. 2 and 3.
  • the unit 4 receives at 12 engine flow information, which is supplied to it by an electronic engine control unit, of any known suitable type, which controls the injection, and therefore knows, for each point of operation of the engine, the times and times of fuel injection by the injectors 9 into the cylinders of the engine 10.
  • the engine control unit (not shown) advantageously also controls the ignition as well as possibly other functions, such as anti-skid, or even air intake in the case of a motorized throttle body.
  • the electronic control unit 4 of the circuit of the invention is thus associated with the engine control unit, and is advantageously at least partially integrated into the latter, except possibly for its power stage traversed by relatively large currents.
  • the control unit 4 as the engine control unit are electronic units comprising in particular microprocessor or microcontroller computers, and storage means, in particular in the form of maps of characteristic values and curves of engine operating parameters and of the fuel supply circuit, in particular of the mean current characteristic of the pump motor 1 as a function of the outlet pressure of the pump 1 in the control unit 4.
  • the control unit 4 has in memory at 13 the characteristic of the flow rate of the jet 11 as a function of the pressure prevailing in the pipe 6, and the unit 4 then calculates at 14 the sum of the motor flow rate 12 and the flow rate jet 13 which constitutes a pump flow rate to be observed, taken into account in a block 15 implementing a functional model of the pump 1.
  • This modeling block 15 also includes programs implementing algorithms, maps stored in 1 unit 4 for developing an objective average current signal 17 for the motor of pump 1, which corresponds to the objective pressure 16 of the pump, taking into account other operating parameters of pump 1, and in particular the temperature of pump 1, and more precisely its pumping stage, taken into account in 18, as well as the speed or rotation speed 19 of pump 1.
  • This rotation speed is measured by unit 4, for example by analyze e of the instantaneous current of the pump 1 motor and detection of the commutations of the collector of this motor. In a known manner in the laboratory, and applied by the invention in unit 4, this detection of the commutations of the collector of the electric motor of the pump 1 is ensured by filtering in at least one high-pass filter of the instantaneous current of this electric motor. .
  • the objective mean current signal 17 of the pump motor 1 is therefore available at the output of the pump modeling block 15, in which it is determined from the objective pressure 16, and taking into account the rotation speed 19 of pump 1 and the temperature 18 of the pumping stage of this pump 1 in the medium-pressure current relationship essentially given by a map in block 15.
  • This average current signal 17 is used by unit 4 for a slaving in mean current of the pump 1 motor providing the desired alignment of the actual pump outlet pressure with the objective pressure.
  • This slaving in mean current is shown diagrammatically in FIG. 3.
  • the unit 4 calculates the difference between the objective average current 17 and the real average current 20 of the motor of the pump 1, which is measured in unit 4 by measuring a voltage drop across the terminals d 'a shunt, in a known manner.
  • the error signal 21 resulting from this difference between the objective average 17 and instantaneous 20 currents is transmitted to a block 22, in which it undergoes, for example, in known manner, proportional, integral and derivative processing by appropriate algorithms.
  • the block 22 emits a differential control signal 23 transmitted at 24 to a nominal control current 25 of the electric motor of the pump 1, for example a pulse or voltage control current of variable width (or opening duty cycle) variable), so that this nominal control current 25 is transformed into effective control current 26 of the same type (with current pulses of variable width) which is delivered by the unit 4 to the electric motor of the pump 1, in order d align the average measured current 20 with the objective average current 17, and thus align the actual outlet pressure of the pump 1 with the objective pressure 16 determined by the control unit 4.
  • a nominal control current 25 of the electric motor of the pump for example a pulse or voltage control current of variable width (or opening duty cycle) variable
  • this nominal control current 25 is transformed into effective control current 26 of the same type (with current pulses of variable width) which is delivered by the unit 4 to the electric motor of the pump 1, in order d align the average measured current 20 with the objective average current 17, and thus align the actual outlet pressure of the pump 1 with the objective pressure 16 determined by the control unit 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Le circuit comprend une pompe (1) à moteur électrique pompant du carburant dans un réservoir (3) de carburant, et alimentant une rampe (8) d'injecteurs (9) avec l'assistance d'un régulateur (7) dde pression de carburant. Le moteur de la pompe (1) est piloté par une unité (4) de commande pour aligner la pression de sortie de la pompe (1), évaluée par une relation entre cette pression et au moins le courant moyen du moteur de la pompe (1), sur une pression objective déterminée par l'unité de commande (4) et choisie supérieure à la pression de fonctionnement du régulateur (7), du type détendeur, et dont la caractéristique de pression est connue de l'unité de commande (4). Application à l'alimentation en carburant des moteurs à injection, directe ou indirecte, de véhicule automobile.

Description

POMPE D 'ALIMENT ATION EN CARBURANT COMMANDEE ELECTRIQUEMENT, POUR MOTEUR A COMBUSΗON INTERNE
L'invention concerne le domaine des circuits d'alimentation en carburant de moteurs à combustion interne pour véhicules automobiles, et plus particulièrement ceux équipés d'installations d'injection de carburant pour moteurs à combustion interne du type à allumage commandé ou à allumage par compression (diesel), à injection directe ou indirecte, et comprenant une pompe à carburant à moteur électrique.
Classiquement, un circuit d'alimentation en carburant d'une installation d'injection pour moteur à combustion interne comprend une pompe, entraînée par un moteur électri- que, et prélevant du carburant dans un réservoir pour le refouler vers une rampe d'alimentation des injecteurs par une canalisation d'alimentation, sur laquelle est monté un filtre à carburant. Un régulateur de pression, en aval de la rampe, maintient dans cette dernière une pression d'alimen- tation des injecteurs, qui est une pression différentielle sensiblement constante entre la pression du carburant et la pression atmosphérique ou pression au collecteur d'admission d'air au moteur, quelle que soit la demande du moteur en carburant, c'est-à-dire quel que soit le débit de carburant injecté dans le moteur par les injecteurs, selon les conditions de fonctionnement du moteur. Le carburant en excès est retourné vers le réservoir par le régulateur de pression à l'aide d'une canalisation de retour.
Sur les systèmes d'injection à haute pression à allumage commandé ou Diesel, la pompe en question n'alimente pas directement la rampe d'injecteurs, mais une seconde pompe, à haute pression, et un second régulateur, à haute pression, qui alimentent la rampe.
Ce circuit classique présente les inconvénients d'exiger un débit permanent important de carburant en sortie de la pompe, donc une consommation de courant électrique non négligeable ainsi qu'un bruit de fonctionnement important de la pompe, et conduit à un réchauffement important du carburant traversant la rampe et le régulateur de pression, et ramené au réservoir, ce qui entraine d'importants dégagements de vapeur de carburant.
Un tel circuit d'alimentation en carburant est, par exemple, connu par EP-A-577 477, dans lequel de plus un capteur de pression différentielle est intégré dans le régulateur, et réalisé sous forme de capteur manométrique, à membrane, pour couper l'alimentation des injecteurs lorsque la pression de carburant est inférieure à un seuil prédéterminé .
Pour diminuer le réchauffement du carburant, et donc les émissions de vapeur de carburant accumulée dans le réservoir, il a été proposé de monter le régulateur de pression en amont de la rampe d'alimentation des injecteurs, entre l'entrée de cette rampe et un filtre en aval de la pompe, et de préférence à proximité du réservoir ou dans ce dernier sur une conduite de dérivation débouchant dans le réservoir et qui se raccorde à la conduite d'alimentation, entre le filtre et l'entrée de la rampe. Dans ce cas, le régulateur de pression assure également le retour du carburant en excès vers le réservoir.
Un tel circuit ne donne pas totalement satisfaction, car il exige également un débit permanent important de carburant en sortie de pompe, d'où une consommation importante de courant électrique et un bruit de fonctionnement important, car la pompe fonctionne en permanence avec un régime de rotation élevé, d'où la nécessité d'utiliser des pompes ayant une durée de vie importante et donc coûteuses. Pour remédier à ces inconvénients, il a été proposé des circuits d'alimentation du type dit "sans retour", c'est-à-dire sans canalisation de retour du carburant ni régulateur de pression en dérivation, mais dans lesquels l'alimentation électrique de la pompe est contrôlée par un capteur sensible à la pression régnant dans la canalisation d'alimentation reliant la pompe à la rampe d'alimentation des injecteurs. La pompe est alimentée électriquement par un module piloté par le capteur de pression et réalisé sous la forme d ' une unité électronique de commande imposant une pression en sortie de pompe qui est égale à la pression d'utilisation requise au niveau des injecteurs.
De tels circuits présentent les avantages de réduire la quantité de carburant transitant par la pompe et traversant le filtre, et donc de diminuer 1 ' échauffement du carburant ainsi que la consommation et le bruit de la pompe. Cependant, ces circuits ne donnent pas totalement satisfaction, car ils exigent des capteurs de pression de coût élevé, en raison de la précision de mesure nécessaire, et ces circuits ne conduisent pas toujours à une régulation en pression satisfaisante.
Pour ces raisons, des réalisations plus économiques ont été proposées, notamment par EP-A-264 556. Dans ce document, le dispositif de régulation de pression de carburant, disposé sur la conduite d'alimentation des injecteurs par la pompe, est un dispositif à membrane séparant deux chambres dans un boîtier, l'une des chambres, à la pression atmosphérique, contenant un ressort à effort réglable par une vis de réglage et sollicitant la membrane, portant l'une de deux bornes de contact électrique d'un capteur manométrique, vers l'autre borne électrique de ce capteur qui est logée dans l'autre chambre, traversée par le carburant circulant de la pompe vers le moteur. Lorsque la pression du carburant provenant de la pompe exerce sur la membrane une force suffisante pour repousser le ressort, le contact électrique entre les deux bornes du capteur manométrique intégré au dispositif de régulation de pression est rompu, et l'alimentation électrique du moteur de la pompe est interrompue. Il en résulte une réduction de la pression de carburant en sortie de pompe, et donc dans la chambre de carburant du dispositif, de sorte que le ressort déplace la membrane jusqu'à fermer le contact entre les deux bornes du capteur manométrique, ce qui rétablit l'alimentation électrique du moteur de la pompe. Ainsi, le courant d'alimentation du moteur est modulé en largeur d'impulsions, en fonction de la pression de sortie de la pompe, de la demande du moteur en carburant et de la force réglable exercée par le ressort du capteur manométrique.
Des variantes perfectionnées de circuits d'alimentation en carburant de ce type ont été proposées, notamment par US-A-5 398 655 et FR-A-2 725 244, dans lesquels le capteur manométrique (disposé dans le réservoir ou à proximité de ce dernier et relié par une prise de pression à la conduite d'alimentation) a été extrait du régulateur de pression de carburant, alimentant la rampe des injecteurs, immédiatement en amont de cette rampe pour lui délivrer une pression non perturbée par les pulsations de pression éventuelles dans la conduite d'alimentation, entre la pompe et la rampe, et pour bénéficier de la référence de la pression d'air au collecteur d'admission.
Dans les deux brevets précités, le régulateur de pression est du type à membrane sollicitée, d'un côté, par la pression atmosphérique ou la pression d ' air au collecteur d'admission ainsi que par un ressort taré, et, de l'autre côté, par la pression du carburant alimentant la rampe et admis dans le régulateur par un clapet d'entrée, dont l'obturateur, éventuellement sollicité par un ressort, est rigidement lié en déplacement à la membrane. Un tel régulateur permet d'obtenir une pression différentielle constante d'alimentation des injecteurs quelle que soit la demande en carburant du moteur, dans un circuit d'alimentation en carburant "sans retour".
Dans FR-A-2 725 244, le capteur manométrique est également du type à membrane sollicitée, d'un côté, par la pression du carburant en sortie de pompe, et de l'autre côté par un ressort, la membrane déplaçant un contact mobile par rapport à un contact fixe d'un commutateur de commande d'un module électronique pilotant l'alimentation électrique du moteur d'entraînement de la pompe. La pression de tarage du capteur manométrique est supérieure à la pression d'utilisation requise en sortie du régulateur. Comme la pompe n'est parcourue que par le carburant réellement utilisé, la consommation de courant du moteur de la pompe reste faible par rapport aux réalisations antérieures connues comportant une dérivation sur la conduite d'alimentation.
Dans US-A-5 398 655, le capteur de pression en sortie de pompe est également un capteur manométrique à un seuil, associé à un clapet de surpression, et qui, lorsqu'il détecte en sortie de pompe, une pression de carburant supérieure à un seuil, lui-même supérieur à la pression nominale de fonctionnement du dispositif, commande, d'une part, un modulateur de largeur d'impulsions de courant transmises au moteur électrique de la pompe, et, d'autre part, l'ouverture du clapet de surpression pour le retour vers le réservoir du carburant en surpression dans la conduite d'alimentation, entre un clapet anti-retour à la sortie de la pompe et l'entrée du régulateur d'alimentation de la rampe à pression différentielle constante.
Par FR-A-2 686 947, on connaît également un circuit de distribution de carburant à un moteur en fonction de la demande du moteur, et dans lequel la vitesse de la pompe est régulée pour transmettre du carburant sous pression du réservoir au moteur, avec un débit qui varie en fonction de l'énergie électrique appliquée à la pompe par un circuit électronique lui-même commandé par un capteur détectant la quantité d'air d'admission au moteur. De la sorte, la pompe travaille à une vitesse qui suffit juste à satisfaire la demande du moteur, et le bruit de pompage est réduit aux faibles vitesses de la pompe et du moteur, ainsi que le courant transmis à la pompe aux vitesses, de ralenti du moteur.
Dans tous les circuits "sans retour" des brevets précédemment cités, la pompe électrique est pilotée soit en boucle fermée, à partir de la mesure d'un paramètre de fonctionnement du circuit d'alimentation, qui est le plus souvent la pression de carburant à la sortie de la pompe, soit d'après la mesure du débit d'air au collecteur d'admission d'air au moteur, lequel débit d'air est indirectement lié au débit du carburant consommé par le moteur. Dans tous les cas, l'installation doit donc comporter au moins un capteur de ce paramètre de fonctionnement, pour émettre un signal de commande d'une unité électronique réalisant la modulation de 1 ' énergie électrique transmise au moteur d'entraînement de la pompe.
Le but de 1 ' invention est de proposer un circuit d'alimentation en carburant à pompe électrique pilotée en pression, qui conserve tous les avantages des circuits "sans retour" présentés ci-dessus sans avoir l'inconvénient d'au moins un capteur spécifique sur les circuits d'air et de carburant du moteur pour commander la pompe.
Un autre but de 1 ' invention est de proposer un tel circuit qui peut avantageusement et simultanément présenter de plus les avantages des circuits connus d'alimentation en carburant dans lesquels la pompe est disposée dans un bol de réserve de carburant, lui-même disposé dans un réservoir de carburant et vers lequel bol une partie du carburant refoulé par la pompe est dérivée, sous la forme d'au moins un jet de carburant injecté dans le bol avec un débit nécessaire pour éviter le désamorçage de la pompe.
A cet effet, le circuit d'alimentation en carburant selon l'invention, pour moteur à combustion interne, comprenant une pompe à carburant à moteur électrique, pompant du carburant dans un réservoir de carburant, et alimentant, directement ou indirectement, une rampe d'alimentation d'au moins un injecteur de carburant, avec l'assistance d'au moins un régulateur de pression de carburant, se caractérise en ce que le moteur de la pompe est piloté par une unité électronique de commande de façon à aligner la pression de sortie de la pompe sur une pression objective déterminée par l'unité électronique de commande comme étant supérieure à la pression de fonctionnement du régulateur qui est du type détendeur, et dont la caractéristique de pression est connue de l'unité électronique de commande, la presion de sortie de la pompe étant déterminée par l'unité électronique de commande selon une relation entre la pression de sortie et au moins le courant moyen du moteur de la pompe.
Ainsi, le contrôle de la pression n'est plus assuré par une boucle de contreréaction à 1 ' aide d ' un capteur de pression de carburant à l'entrée de la rampe' ou dans la conduite d'alimentation, mais cette pression de carburant, dans un circuit d'alimentation par ailleurs sensiblement identique à un circuit "sans retour" traditionnel, est contrôlée vers la rampe par le régulateur-détendeur de pression, de structure classique connue, et en amont du régulateur-détendeur, par l'unité électronique de commande qui pilote la pompe pour obtenir la pression de sortie appropriée, supérieure à la pression de fonctionnement du régulateur-détendeur. Ce pilotage est assuré par alignement de la pression réelle de sortie de la pompe, appréhendée par l'unité électronique de commande au travers d'au moins le courant moyen du moteur de la pompe, sur une pression objective calculée ou élaborée par cette unité de commande pour satisfaire au critère de pression supérieure à la pression de fonctionnement du régulateur-détendeur.
Avantageusement, l'unité électronique de commande assure un asservissement en courant moyen du moteur de la pompe par le calcul d'un signal d'erreur entre un courant moyen objectif, correspondant à la pression objective, et le courant moyen du moteur mesuré par ladite unité.
Avantageusement de plus, la relation entre la pression de sortie de la pompe et au moins le courant moyen du moteur prend également en compte au moins le régime de rotation de la pompe et/ou l'état thermique de la pompe, et plus précisément de son étage de pompage, et/ou le débit de la pompe. Cette mesure technique permet de piloter la pompe en pression de la manière précitée tout en tenant compte, de plus, du débit de carburant requis notamment par le moteur.
A cet effet, le débit de la pompe est déterminé en prenant en compte au moins le débit du moteur, calculé par une unité électronique de contrôle moteur, pilotant au moins l'injection de carburant dans le moteur, et associée à ladite unité électronique de commande, à laquelle l'unité électronique de contrôle moteur transmet au moins une information de débit requis par le moteur.
Lorsque le circuit est du type dans lequel la pompe est disposée dans un bol de réserve de carburant, lui-même disposé dans le réservoir de carburant, et qu'une fraction du carburant refoulé par la pompe est dérivée vers le bol, dans lequel cette fraction de carburant est injectée avec un débit de jet nécessaire pour éviter le désamorçage de la pompe, le débit de la pompe est avantageusement déterminé en prenant également en compte le débit de jet nécessaire.
Le régime de rotation de la pompe peut être déter- miné par analyse du courant instantané du moteur et détection des commutations du collecteur au moteur.
D'une manière simple, cette détection de commutation du collecteur du moteur est obtenue par un filtrage dans au moins un filtre passe-haut du courant instantané du moteur. Sur un circuit selon l'invention, le régulateur- détendeur est avantageusement disposé immédiatement en amont de la rampe et définit la pression de carburant dans cette dernière à partir de la pression supérieure de carburant qu'il reçoit de la pompe. D'autres avantages et caractéristiques de l'invention ressortiront de la description donnée ci-dessous, à titre non limitatif, d'un exemple de réalisation décrit en référence aux dessins annexés sur lesquels :
- la figure 1 est une vue schématique du circuit d'alimentation en carburant d'un moteur à injection, et
- les figures 2 et 3 sont des schémas de la régula- tion assurée par l'unité électronique de commande du circuit de la figure 1 pour piloter la pression de sortie de la pompe électrique de ce circuit sur une pression objective. Le circuit d'alimentation en carburant de la figure 1 comprend une pompe à carburant 1 , qui est une pompe électrique comportant, de façon bien connue, un étage de pompage entraîné en rotation par un moteur électrique, de préférence du type alimenté en courant électrique par commutation d'un collecteur du moteur. Cette pompe électrique 1 est disposée dans un bol de réserve de carburant 2, qui est lui-même disposé sur le fond d'un réservoir de carburant 3.
Le moteur électrique de la pompe 1 est alimenté en courant électrique par une unité électronique de commande 4. La pompe 1 prélève du carburant dans le bol de réserve 2, de préférence au travers d'un filtre amont (non représenté), et refoule le carburant au travers d'un filtre aval 5 dans une canalisation d'alimentation 6 vers un régulateur de pression de carburant 7. Ce régulateur 7 assure l'alimentation en carburant d'une rampe 8, à l'extrémité aval de la canalisation d'alimentation 6, et qui est une rampe commune d'alimentation des injecteurs 9 d'un moteur 10 à combustion interne. En amont du régulateur 7, une fraction du carburant refoulé par la pompe 1 dans la canalisation d'alimentation 6 est retournée au bol 2 sous la forme d'un jet 11 injecté dans la base du bol 2 avec un débit minimum nécessaire pour éviter le désamorçage de la pompe 1.
Si le moteur 10 est un moteur à allumage commandé à injection indirecte, le régulateur 7 alimente directement la rampe 8 en carburant à une pression de service satisfaisante pour une alimentation des injecteurs 9 avec une pression différentielle sensiblement constante entre la pression de carburant et la pression d'air au collecteur d'admission du moteur.
Si le moteur 10 est un moteur à allumage commandé à injection directe, ou à allumage par compression, le régulateur 7 alimente indirectement la rampe, par l'intermédiaire d'une pompe à haute pression associée à un régulateur à haute pression qui détermine la pression d'injection du carburant par les injecteurs 9.
Dans les deux cas, le régulateur 7 est un régulateur-détendeur d'un type bien connu, par exemple à membrane avec clapet d'entrée, comme dans US-A-5 398 655 et FR-A-2 725 244, et qui définit la pression de carburant dans la rampe 8, ou vers l'entrée de la pompe à haute pression, à partir d'une pression de carburant supérieure qu'il reçoit de la pompe 1, pour qu'il puisse délivrer, vers la rampe 8 en aval, du carburant sous une pression satisfaisante, quelle que soit la demande en carburant du moteur 10. Un tel régulateur-détendeur 7 a l'avantage d'être d'une structure simple, économique et peu exigeante en ce qui concerne la précision de la pression qu'il reçoit.
Le filtre 5 et la dérivation de carburant vers le jet 11 peuvent être réalisés sous la forme d'un sous- ensemble à proximité du réservoir 3, ou dans ce dernier, dans lequel ce sous-ensemble peut être directement associé à la pompe 1.
L'unité de commande 4 pilote la pompe 1 pour que sa pression réelle de sortie soit autant que possible alignée sur une pression objective supérieure à la pression de fonctionnement du régulateur-détendeur 7, elle-même asservie à la pression au collecteur d'admission d'air au moteur 10, la caractéristique de pression du régulateur-détendeur 7 étant connue de l'unité 4, et cette pression objective étant choisie pour que simultanément le débit de la pompe satisfasse au besoin du moteur 10, pour chaque point de fonctionnement de ce dernier, ainsi qu'au débit minimum de bonne alimentation du jet 11 de retour dans le bol de réserve 2, pour éviter le désamorçage de la pompe 1. L'alignement de la pression réelle de sortie de la pompe 1 sur la pression objective est effectué dans l'unité de commande 4 par une régulation schématiquement représentée sur les figures 2 et 3.
Sur la figure 2, l'unité 4 reçoit en 12 une information de débit moteur, qui lui est fournie par une unité électronique de contrôle moteur, de tout type convenable connu, qui pilote l'injection, et connaît donc, pour chaque point de fonctionnement du moteur, les instants et durées d'injection du carburant par les injecteurs 9 dans les cylindres du moteur 10. Lorsque ce moteur 10 est un moteur à allumage commandé, l'unité de contrôle moteur (non représentée) pilote avantageusement également l'allumage ainsi éventuellement que d'autres fonctions, tels que 1 ' anti-patinage, ou encore l'admission d'air dans le cas d'un corps papillon motorisé. L'unité électronique de commande 4 du circuit de l'invention est ainsi associée à l'unité de contrôle moteur, et est avantageusement au moins partiellement intégrée dans cette dernière, sauf éventuellement pour son étage de puissance parcouru par des courants relativement importants. L'unité de commande 4 comme l'unité de contrôle moteur sont des unités électroniques comprenant notamment des calculateurs à microprocesseurs ou microcontrôleurs, et des moyens de mémorisation, en particulier sous forme de cartographies de valeurs et courbes caractéristiques de paramètres de fonctionnement du moteur et du circuit d'alimentation en carburant, notamment de la caractéristique courant moyen du moteur de pompe 1 en fonction de la pression de sortie de la pompe 1 dans l'unité de commande 4.
L'unité de commande 4 a en mémoire en 13 la caracté- ristique du débit du jet 11 en fonction de la pression qui règne dans la canalisation 6, et l'unité 4 calcule ensuite en 14 la somme du débit moteur 12 et du débit de jet 13 qui constitue un débit de pompe à respecter, pris en compte dans un bloc 15 mettant en oeuvre un modèle fonctionnel de la pompe 1.
Parallèlement, à partir des conditions de fonction- ne ent du moteur 10, et par exemple de l'état de démarrage du moteur 10, qui sont transmises à l'unité 4 par l'unité de contrôle moteur, et à partir de la caractéristique de pression du régulateur-détendeur 7, connue par construction et mémorisée dans l'unité 4, cette dernière élabore en 16 un signal de pression objective, qui est transmis au bloc de modélisation 15. Ce bloc de modélisation 15 comporte également des programmes mettant en oeuvre des algorithmes, des cartographies mémorisées dans 1 ' unité 4 pour élaborer un signal 17 de courant moyen objectif pour le moteur de la pompe 1, qui correspond à la pression objective 16 de la pompe, en tenant compte d'autres paramètres de fonctionnement de la pompe 1, et notamment la température de la pompe 1, et plus précisément de son étage de pompage, prise en compte en 18, ainsi que de la vitesse ou du régime de rotation 19 de la pompe 1. Ce régime de rotation est mesuré par l'unité 4, par exemple par analyse du courant instantané du moteur de la pompe 1 et détection des commutations du collecteur de ce moteur. De manière connue en laboratoire, et appliquée par l'invention dans l'unité 4, cette détection des commutations du collecteur du moteur électrique de la pompe 1 est assurée par filtrage dans au moins un filtre passe-haut du courant instantané de ce moteur électrique. Le signal de courant moyen objectif 17 du moteur de la pompe 1 est donc disponible en sortie du bloc 15 de modélisation de la pompe, dans lequel il est déterminé à partir de la pression objective 16, et en tenant compte du régime de rotation 19 de la pompe 1 et de la température 18 de l'étage de pompage de cette pompe 1 dans la relation courant moyen-pression essentiellement donnée par une cartographie dans le bloc 15. Ce signal de courant moyen 17 est utilisé par l'unité 4 pour un asservissement en courant moyen du moteur de la pompe 1 procurant 1 ' alignement recherché de la pression réelle de sortie de la pompe sur la pression objective. Cet asservissement en courant moyen est schématisé sur la figure 3.
Sur la figure 3, l'unité 4 calcule la différence entre le courant moyen objectif 17 et le courant moyen réel 20 du moteur de la pompe 1, qui est mesuré dans l'unité 4 par mesure d'une chute de tension aux bornes d'un shunt, de manière connue. Le signal d'erreur 21 résultant de cette différence entre les courants moyen objectif 17 et instantané 20 est transmis à un bloc 22, dans lequel il subit, par exemple, de manière connue, un traitement proportionnel, intégral et dérivé par des algorithmes appropriés. Le bloc 22 émet un signal différentiel de commande 23 transmis en 24 à un courant de commande nominal 25 du moteur électrique de la pompe 1, par exemple un courant de commande à impulsions ou créneaux de tension de largeur variable (ou rapport cyclique d'ouverture variable), de sorte que ce courant de commande nominal 25 est transformé en courant de commande effectif 26 de même type (à impulsions de courant de largeur variable) qui est délivré par l'unité 4 au moteur électrique de la pompe 1, afin d'aligner le courant moyen mesuré 20 sur le courant moyen objectif 17, et ainsi aligner la pression réelle de sortie de la pompe 1 sur la pression objective 16 déterminée par 1 ' unité de commande 4.

Claims

REVENDICATIONS
1. Circuit d'alimentation en carburant pour moteur (10) à combustion interne, comprenant une pompe (l)à carburant à moteur électrique, pompant du carburant dans un réservoir (3) de carburant et alimentant, directement ou indirectement, une rampe (8) d'alimentation d'au moins un injecteur (9) de carburant, avec l'assistance d'au moins un régulateur (7) de pression de carburant, caractérisé en ce que le moteur de la pompe (1) est piloté par une unité (4) électronique de commande de façon à aligner la pression de sortie de la pompe ( 1 ) sur une pression objective (16), déterminée par l'unité (4) électronique de commande comme étant supérieure à la pression de fonctionnement du régulateur (7), qui est du type détendeur, et dont la caractéristique de pression est connue de l'unité (4) électronique de commande, la pression de sortie de la pompe ( 1 ) étant déterminée par ladite unité ( 4 ) selon une relation entre la pression de sortie et au moins le courant moyen (20) du moteur de la pompe (1).
2. Circuit d'alimentation selon la revendication 1, caractérisé en ce que l'unité (4) électronique de commande assure un asservissement en courant moyen du moteur par le calcul d'un signal d'erreur (21) entre un courant moyen objectif (17), correspondant à la pression objective (16), et le courant moyen (20) du moteur, mesuré par ladite unité (4).
3. Circuit d'alimentation selon l'une des revendications 1 et 2, caractérisé en ce que ladite relation entre la pression de sortie de la pompe ( 1 ) et au moins le courant moyen ( 20 ) du moteur prend également en compte au moins le régime de rotation (19) de la pompe (1) et/ou l'état thermique (18) de l'étage de pompage de la pompe (1) et/ou le débit (14) de la pompe (1).
4. Circuit d'alimentation selon la revendication 3, caractérisé en ce que le régime de rotation (19) de la pompe
( 1 ) est déterminé par analyse du courant instantané du moteur de la pompe ( 1 ) et détection des commutations du collecteur dudit moteur.
5. Circuit d'alimentation de la revendication 4, caractérisé en ce que la détection des commutations du collecteur du moteur de pompe ( 1 ) est obtenue par filtrage dans au moins un filtre passe-haut du courant instantané dudit moteur.
6. Circuit d'alimentation selon l'une quelconque des revendications 3 à 5, caractérisé en ce que le débit (14) de la pompe ( 1 ) est déterminé en prenant en compte au moins le débit (12) du moteur (10) à combustion interne, calculé par une unité électronique de contrôle moteur, pilotant au moins l'injection de carburant dans le moteur (10), et associée à ladite unité (4) électronique de commande, à laquelle l'unité électronique de contrôle moteur transmet une information de débit requis (12) par le moteur (10).
7. Circuit d'alimentation selon la revendication 6, caractérisé en ce que la pompe ( 1 ) est disposée dans un bol (2) de réserve de carburant, lui-même disposé dans le réservoir (3) de carburant, et une fraction du carburant refoulé par la pompe (1) étant dérivée vers ledit bol (2), dans lequel cette fraction de carburant est injectée avec un débit de jet (11) nécessaire pour éviter le désamorçage de la pompe (1), le débit (14) de la pompe (l)étant déterminé en prenant également en compte ledit débit nécessaire ( 13 ) du jet (11).
8. Circuit d'alimentation selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ledit régulateur-détendeur (7) de pression de carburant est disposé immédiatement en amont de la rampe ( 8 ) et définit la pression de carburant dans cette dernière.
PCT/FR1999/001689 1998-07-13 1999-07-09 Pompe d'alimentation en carburant commandee electriquement, pour moteur a combustion interne WO2000003135A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000559343A JP2002520537A (ja) 1998-07-13 1999-07-09 内燃エンジンのための電気燃料ポンプ
US09/743,601 US6453878B1 (en) 1998-07-13 1999-07-09 Electrically controlled fuel supply pump for internal combustion engine
DE69901190T DE69901190T2 (de) 1998-07-13 1999-07-09 Elektrisch gesteuerte kraftstoffeinspritzpumpe für brennkraftmaschinen
BR9912063-1A BR9912063A (pt) 1998-07-13 1999-07-09 Bomba de alimentação em carburante comandada eletricamente, para motor de combustão interna
EP99929467A EP1105633B1 (fr) 1998-07-13 1999-07-09 Pompe d'alimentation en carburant commandee electriquement, pour moteur a combustion interne

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9808992A FR2781012B1 (fr) 1998-07-13 1998-07-13 Circuit d'alimentation en carburant a pompe electrique pilotee en pression objective, pour moteur a combustion interne
FR98/08992 1998-07-13

Publications (1)

Publication Number Publication Date
WO2000003135A1 true WO2000003135A1 (fr) 2000-01-20

Family

ID=9528603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/001689 WO2000003135A1 (fr) 1998-07-13 1999-07-09 Pompe d'alimentation en carburant commandee electriquement, pour moteur a combustion interne

Country Status (10)

Country Link
US (1) US6453878B1 (fr)
EP (1) EP1105633B1 (fr)
JP (1) JP2002520537A (fr)
CN (1) CN1096555C (fr)
BR (1) BR9912063A (fr)
DE (1) DE69901190T2 (fr)
ES (1) ES2174619T3 (fr)
FR (1) FR2781012B1 (fr)
PL (1) PL344830A1 (fr)
WO (1) WO2000003135A1 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6488012B1 (en) * 2000-08-29 2002-12-03 Ford Global Technologies, Inc. Method and apparatus for determining fuel pressure
US6609501B2 (en) * 2001-04-12 2003-08-26 Walbro Corporation Fuel pressure regulation system
ITBO20010338A1 (it) 2001-05-29 2002-11-29 Baumer Srl Apparecchiatura per prelevare, traslare e rilasciare fustellati piani
DE10224094B4 (de) * 2002-05-31 2010-06-02 Bayerische Motoren Werke Aktiengesellschaft Kraftstoffanlage für Fahrzeuge, insbesondere für Motorräder
JP2004218571A (ja) * 2003-01-16 2004-08-05 Aisan Ind Co Ltd エンジンの燃料供給装置
US7093576B2 (en) * 2004-06-15 2006-08-22 Ford Global Technologies, Llc System and method to prime an electronic returnless fuel system during an engine start
FR2875544B1 (fr) * 2004-09-21 2009-05-15 Renault Sas Systeme d'alimentation en carburant d'un moteur a combustion interne de vehicule automobile et procede de regulation de la pression d'alimentation en carburant d'un tel moteur
DE102005023189A1 (de) * 2005-05-19 2006-11-23 Siemens Ag Fördereinrichtung mit einer Kraftstoffpumpe
JP2007231907A (ja) * 2006-03-03 2007-09-13 Denso Corp 燃料供給装置
US7509945B2 (en) * 2006-03-15 2009-03-31 Chrysler Llc Fuel pump speed control system
JP4657140B2 (ja) * 2006-04-24 2011-03-23 日立オートモティブシステムズ株式会社 エンジンの燃料供給装置
JP4270305B2 (ja) * 2007-05-30 2009-05-27 トヨタ自動車株式会社 ハイブリッド車両
DE102007057452A1 (de) * 2007-11-29 2009-06-04 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftstoffsystems einer Brennkraftmaschine
US7980120B2 (en) * 2008-12-12 2011-07-19 GM Global Technology Operations LLC Fuel injector diagnostic system and method for direct injection engine
US7950371B2 (en) * 2009-04-15 2011-05-31 GM Global Technology Operations LLC Fuel pump control system and method
US8425200B2 (en) * 2009-04-21 2013-04-23 Xylem IP Holdings LLC. Pump controller
US8042520B2 (en) * 2009-05-12 2011-10-25 GM Global Technology Operations LLC Engine startup fuel pressure control systems and methods
JP6062246B2 (ja) * 2009-07-15 2017-01-18 インテグレイテッド・デザインズ・リミテッド・パートナーシップIntegrated Designs,L.P. モーター電流に基づいてポンプ圧を決定する調整回路および方法
US8166943B2 (en) * 2009-07-31 2012-05-01 Ford Global Technologies, Llc Fuel system control
GB2473278B (en) * 2009-09-08 2014-06-18 Gm Global Tech Operations Inc Method and system for controlling fuel pressure
JP5054795B2 (ja) * 2010-03-23 2012-10-24 日立オートモティブシステムズ株式会社 内燃機関の燃料供給制御装置
US8707932B1 (en) 2010-08-27 2014-04-29 Paragon Products, Llc Fuel transfer pump system
CN102338003A (zh) * 2011-08-26 2012-02-01 龚文资 一种电控汽油发动机油泵防吸空装置
JP6206343B2 (ja) * 2014-06-26 2017-10-04 トヨタ自動車株式会社 内燃機関の燃料供給装置
US10094319B2 (en) * 2014-12-02 2018-10-09 Ford Global Technologies, Llc Optimizing intermittent fuel pump control
US10738727B2 (en) 2015-02-03 2020-08-11 Paragon Products, Llc Electric pump pressure sensorless electronic pressure limiting and flow leveling system
DE102015202777A1 (de) * 2015-02-16 2016-08-18 Continental Automotive Gmbh Verfahren zur Regelung einer Kraftstoffförderpumpe
US10184436B2 (en) * 2015-07-17 2019-01-22 Caterpillar Inc. Fluid injector supply system and method for operating same
US10832503B2 (en) * 2018-08-21 2020-11-10 GM Global Technology Operations LLC Method and apparatus to monitor an on-vehicle fluidic subsystem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4019083A1 (de) * 1990-06-15 1991-12-19 Bosch Gmbh Robert Verfahren zur einstellung der kraftstoffoerdermenge einer brennkraftmaschine
GB2313930A (en) * 1996-06-07 1997-12-10 Fuji Heavy Ind Ltd Fuel pump control system for vehicle
US5715797A (en) * 1995-06-28 1998-02-10 Nippondenso Co., Ltd. Fuel supply system for internal combustion engine and method of adjusting it
US5762046A (en) * 1997-02-06 1998-06-09 Ford Global Technologies, Inc. Dual speed fuel delivery system
WO1998027333A1 (fr) * 1996-12-17 1998-06-25 Siemens Automotive Corporation Systeme d'alimentation en carburant pour vehicule

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224584A (ja) * 1982-06-24 1983-12-26 Mitsubishi Electric Corp 電動機の速度制御装置
JPS62165571A (ja) * 1986-01-17 1987-07-22 Honda Motor Co Ltd 燃料噴射装置用圧力制御構造
US4728264A (en) 1986-10-10 1988-03-01 Walbro Corporation Fuel delivery system with pressure-controlled electric pump
US4756291A (en) * 1987-04-27 1988-07-12 Ford Motor Company Pressure control for the fuel system of an internal combustion engine
JPH0511338Y2 (fr) * 1988-12-15 1993-03-19
FR2686947A1 (fr) 1992-02-03 1993-08-06 Walbo Corp Circuit de distribution de carburant pour moteur a combustion interne.
US5265644A (en) * 1992-06-02 1993-11-30 Walbro Corporation Fuel pressure regulator
FR2692937B1 (fr) 1992-06-30 1995-07-07 Renault Systeme d'injection de carburant pour un moteur a combustion interne.
US5237975A (en) * 1992-10-27 1993-08-24 Ford Motor Company Returnless fuel delivery system
JP3060266B2 (ja) * 1992-11-09 2000-07-10 株式会社ユニシアジェックス エンジンの燃料供給装置
US5379741A (en) * 1993-12-27 1995-01-10 Ford Motor Company Internal combustion engine fuel system with inverse model control of fuel supply pump
US5398655A (en) 1994-01-14 1995-03-21 Walbro Corporation Manifold referenced returnless fuel system
JPH07293397A (ja) * 1994-04-28 1995-11-07 Hitachi Ltd 燃料供給装置および燃料供給制御方法
FR2725244B1 (fr) 1994-10-03 1996-12-20 Marwal Systems Dispositif d'alimentation en carburant pour vehicule automobile avec regulation de pression
JPH08144879A (ja) * 1994-11-22 1996-06-04 Nissan Motor Co Ltd 燃料タンクの旋回槽構造
JPH08210209A (ja) * 1995-02-06 1996-08-20 Zexel Corp 高圧燃料噴射装置
JPH0914073A (ja) * 1995-06-28 1997-01-14 Nippondenso Co Ltd 内燃機関用燃料供給装置
JP3843484B2 (ja) * 1995-07-31 2006-11-08 株式会社デンソー リターンレス式内燃機関用燃料供給装置及びその調整方法
JP3641027B2 (ja) * 1995-08-04 2005-04-20 カヤバ工業株式会社 電動式パワーステアリング装置
JP3216539B2 (ja) * 1996-09-10 2001-10-09 トヨタ自動車株式会社 内燃機関の燃料供給装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4019083A1 (de) * 1990-06-15 1991-12-19 Bosch Gmbh Robert Verfahren zur einstellung der kraftstoffoerdermenge einer brennkraftmaschine
US5715797A (en) * 1995-06-28 1998-02-10 Nippondenso Co., Ltd. Fuel supply system for internal combustion engine and method of adjusting it
GB2313930A (en) * 1996-06-07 1997-12-10 Fuji Heavy Ind Ltd Fuel pump control system for vehicle
WO1998027333A1 (fr) * 1996-12-17 1998-06-25 Siemens Automotive Corporation Systeme d'alimentation en carburant pour vehicule
US5762046A (en) * 1997-02-06 1998-06-09 Ford Global Technologies, Inc. Dual speed fuel delivery system

Also Published As

Publication number Publication date
FR2781012B1 (fr) 2001-02-16
JP2002520537A (ja) 2002-07-09
US6453878B1 (en) 2002-09-24
FR2781012A1 (fr) 2000-01-14
EP1105633A1 (fr) 2001-06-13
EP1105633B1 (fr) 2002-04-03
CN1308710A (zh) 2001-08-15
DE69901190D1 (de) 2002-05-08
CN1096555C (zh) 2002-12-18
PL344830A1 (en) 2001-11-19
DE69901190T2 (de) 2002-11-28
BR9912063A (pt) 2001-04-03
ES2174619T3 (es) 2002-11-01

Similar Documents

Publication Publication Date Title
EP1105633B1 (fr) Pompe d'alimentation en carburant commandee electriquement, pour moteur a combustion interne
EP1141537A1 (fr) Detection de l'encrassement d'un filtre a carburant d'un circuit d'alimentation d'un moteur a combustion interne
FR2728625A1 (fr) Systeme d'alimentation en carburant d'un moteur a combustion interne
FR2742809A1 (fr) Procede et dispositif pour commander un moteur a combustion interne
FR2488336A1 (fr) Systeme d'alimentation en carburant pour un moteur a combustion interne du type a injection
FR2712634A1 (fr) Circuit de distribution de carburant pour moteur à combustion interne.
FR2541726A1 (fr) Methode de commande du regime de ralenti d'un moteur a combustion interne prevue pour ameliorer la caracteristique de consommation de carburant du moteur
FR2922598A1 (fr) Procede pour determiner l'inflammabilite du carburant de qualite inconnue.
FR2766521A1 (fr) Procede et dispositif pour commander un moteur a combustion interne
EP1155229B1 (fr) Procede et systeme de controle de la pression d'une pompe a carburant a haute pression pour l'alimentation d'un moteur a combustion interne
WO1999043940A1 (fr) Module d'injection multi-points pour moteur a combustion interne
FR2781013A1 (fr) Circuit d'alimentation en carburant a pompe electrique pilotee en debit objectif, pour moteur a combustion interne
FR2805858A1 (fr) Procede et dispositif de diagnostic de la defaillance d'une installation de transfert de carburant dans un systeme d'alimentation en carburant d'un vehicule automobile
EP0483725B1 (fr) Détecteur de teneur d'alcool
FR2874237A1 (fr) Procede et dispositif de gestion d'un moteur a combustion interne
EP0784749B1 (fr) Dispositif d'alimentation en carburant pour vehicule automobile avec regulation de pression
FR2465892A1 (fr) Pompe a injection pour moteur a combustion interne
FR2495691A1 (fr) Groupe generateur de puissance pour turbomachine a gaz
EP0856099B1 (fr) Systeme et procedure de double boucle de commande pour moteur a combustion interne
EP1637723B1 (fr) Système d'alimentation en carburant d'un moteur thermique automobile et procédé de régulation de la pression du carburant d'un tel moteur
EP2042222A1 (fr) Dispositif et procédé de détection de l'encrassement d'un filtre à carburant d'un système d'alimentation en carburant d'un moteur à combustion interne
FR2617908A1 (fr) Systeme d'injection de carburant pour moteurs a combustion interne
FR2699225A1 (fr) Installation pour adapter la quantité de carburant injectée dans un moteur thermique.
FR2775319A1 (fr) Dispositif d'injection directe de combustible pour moteur a combustion interne
FR2858359A1 (fr) Procede et dispositif de gestion d'une unite d'entrainement comprenant un moteur a combustion interne

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99808477.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN JP PL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999929467

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2000 559343

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09743601

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999929467

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999929467

Country of ref document: EP