[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2000073528A1 - Nickelarmer austenitischer stahl - Google Patents

Nickelarmer austenitischer stahl Download PDF

Info

Publication number
WO2000073528A1
WO2000073528A1 PCT/EP2000/004824 EP0004824W WO0073528A1 WO 2000073528 A1 WO2000073528 A1 WO 2000073528A1 EP 0004824 W EP0004824 W EP 0004824W WO 0073528 A1 WO0073528 A1 WO 0073528A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
steel
less
nitrogen
copper
Prior art date
Application number
PCT/EP2000/004824
Other languages
English (en)
French (fr)
Inventor
Markus Speidel
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to CA002372563A priority Critical patent/CA2372563C/en
Priority to AU56763/00A priority patent/AU5676300A/en
Priority to JP2001500012A priority patent/JP4610822B2/ja
Priority to US09/979,670 priority patent/US6682581B1/en
Priority to DE50014694T priority patent/DE50014694D1/de
Priority to EP00941991A priority patent/EP1198604B1/de
Publication of WO2000073528A1 publication Critical patent/WO2000073528A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • B22F3/1025Removal of binder or filler not by heating only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a low-nickel austenitic steel, in particular a low-nickel, molybdenum, manganese and copper-low austenitic steel and its use.
  • the invention further relates to methods for the production of articles made of such steels.
  • austenite is a high-temperature modification of iron with a face-centered cubic crystal structure (" ⁇ -iron"), which is thermodynamically stable between 740 ° C and 1538 ° C 0 to a maximum of 2.1 wt .-% (at 1153 ° C) contains carbon in the form of a solid solution.
  • ⁇ -iron face-centered cubic crystal structure
  • austenitic steels or austenites all steels that have a face-centered cubic crystal lattice.
  • the cubic, face-centered austenite structure is necessary for many areas of application of steels or at least advantageous over other modifications (for example ferritic or martensitic steels); Austenite, for example, is not ferromagnetic, which makes austenitic steels usable for electrical or electronic components or other applications in which the occurrence of magnetic repulsive or attractive forces, for example clocks, is undesirable.
  • austenite is a high-temperature modification and thermodynamically unstable at lower temperatures
  • an austenitic steel must be stabilized against conversion into other modifications so that it retains its desired austenitic properties even at normal temperature. This can be done, for example, by adding alloying elements known as stabilizers of the austenite structure.
  • the most common alloying element used for this purpose is nickel, typically in an amount of 8 to 10% by weight.
  • alloy components are used to influence other properties of the steel (e.g. corrosion and wear resistance, hardness, strength or toughness) in the desired way.
  • certain alloy components often also leads to certain disadvantages - mostly dependent on the quantity - which can be counteracted to a certain extent by adjusting the alloy composition.
  • carbon and manganese generally help stabilize the austenite structure, but reduce it too much Amounts the corrosion resistance.
  • Silicon is a frequently unavoidable impurity, is also deliberately added as an oxygen scavenger, but promotes the formation of ⁇ -ferrite. Chromium, molybdenum and tungsten make a decisive contribution to corrosion resistance, but also favor the formation of ⁇ -ferrite.
  • Nitrogen in turn stabilizes the austenite structure and increases the corrosion stability, but excessive nitrogen contents reduce the toughness of the steel.
  • a difficulty in optimizing steel compositions is that the properties of the steel do not change linearly with the content of certain alloy components, but that even small changes in the composition can cause very large jumps in the material properties.
  • Another disadvantage of using non-ferrous metals as alloy components is usually their comparatively high price.
  • Austenitic steels low in nickel are sought-after materials for a number of application areas.
  • An increasingly important area of application for such steels are objects which, when used, are in contact with the human or animal body, since these steels naturally do not trigger any nickel allergy.
  • Nickel allergies are common causes - contact eczema or other allergic symptoms. When in contact with steel containing nickel, for example when wearing
  • a number of low-nickel austenitic steels are known, including nickel-free ones.
  • the austenitic structure in such steels is stabilized by the element nitrogen.
  • AT-B-266 900 discloses the use of austenitic, unmagnetic steels for the production of moving, in particular vibratingly stressed machine parts, the steels to be used being used only in extremely wide ranges of possible combinations.
  • the following definitions are defined: 0 to 20% by weight of Mn, 0 to 30% by weight of Cr, 0 to 5% by weight of Mo and / or V, at least 0.5% by weight, preferably at least 1.4% by weight % N, 0.02 to 0.55% by weight C, 0 to 2% by weight Si, 0 to 25% by weight Ni, balance iron.
  • the broad areas mentioned cover different steels with completely different properties, criteria for the selection of certain steels are not given, nor are measures for the production of such steels taught.
  • EP-A-875 591 teaches the use of a corrosion-resistant largely nickel-free austenitic steel with the essential components 5-26% by weight Mn, 11-24% by weight Cr, 2.5
  • Ni 0.5% by weight of Ni, the rest of Fe, as a material for the production of objects which are in contact with living beings.
  • DE-A-195 13 407 also teaches the use of a corrosion-resistant, largely nickel-free austenitic steel as a material for the production of objects which are in contact with living beings.
  • This steel has the essential components 2 - 26% by weight Mn, 11 - 24% by weight Cr, 2.5 - 10% by weight Mo, 0.55 - 1.2% by weight N, below 0.3% by weight C, up to 0.5% by weight Ni, remainder Fe.
  • JP-A-07/150297 (Chemical Abstracts: Abstract No.
  • 123: 175994 discloses a steel of the composition 10-25% by weight Mn, 10-25% by weight Cr, 5-10% by weight Mo, 0.2-1% by weight N, 0.05-0.5% by weight C, up to 0.5% by weight Si, balance Fe, and its use in shipbuilding.
  • DE-A-196 07 828 teaches a steel of the composition 8-15% by weight Mn, 13-18% by weight Cr, 2.5-6% by weight Mo, 0.55-1.1% by weight. % N, up to 0.1% by weight C, up to 0.5% by weight Ni, balance Fe, and its use for various components, in particular generator cap rings.
  • the required high corrosion resistance is bought with a comparatively high amount of molybdenum, which is by far the most expensive among the common alloying elements.
  • DE-A-42 42 757 suggests the use of a steel with the essential components 21-35% by weight of Mn, 9-20% by weight of Cr, 0-
  • EP-A-422 360 discloses the use of a steel having the composition 17-20% by weight of Mn, 16-24% by weight of Cr, 0-3% by weight of Mo, 0.5-1.3% by weight. % N, up to 0.20% by weight C, balance Fe, for the production of components on rail vehicles.
  • EP-A-432 434 teaches a method for producing connecting elements from a steel having the composition 17.5-20% by weight Mn, 17.5-20% by weight Cr, 0-5% by weight Mo, 0 , 8-1.2% by weight N, to 0.12% by weight C, 0.2-1% by weight Si, up to 0.05% by weight P, up to 0.015% by weight S, up to 3% by weight Ni, balance Fe.
  • DE-A-25 18 452 teaches a process for producing an austenitic steel with 21st
  • the steels taught in these documents contain a lower proportion of molybdenum, but a relatively high proportion of manganese, which has a negative effect on the corrosion properties.
  • DE-A-24 47 318 teaches an austenitic steel with 15 to 45 wt.% Mn, 10 to 30 wt.% Cr, 0.85 to 3 wt.% N, up to 1 wt.% C, 0 to 2% by weight of Si and at least one of the following three alloy components: 1 to 3% by weight of Cu, 1 to 4% by weight of Ni and 1 to 5% by weight of Mo, the content of these latter increasing 5% by weight added, remainder iron; the alloy composition must meet certain other conditions.
  • the alloy can be free of Cu and Ni if a comparatively high manganese content of at least 21% by weight is used. In this steel, too, nickel can only be dispensed with if a comparatively high molybdenum or manganese content is accepted and / or at least 1% by weight of copper is present.
  • EP-A-640 695 discloses a steel of the composition 11-25% by weight Mn, 10-20% by weight Cr, up to 1% by weight Mo, 0.05-0.55% by weight N, up to 0.01% by weight of C, up to 0.5% by weight of Ni, up to 1% by weight of Si, balance Fe, and its use for the production of articles of daily use which are in contact with the skin of living beings.
  • JP-A-07/157847 teaches a steel of the composition 9-20% by weight Mn, 12-20% by weight Cr, 1-5% by weight Mo, 0.1-0.5% by weight N, 0.01-0.6% by weight C, 0.05-2.0% by weight Si, 0.05-4% by weight Cu, remainder Fe, and its use for the manufacture of watch cases.
  • JP-A-06/116 683 (Chemical Abstracts: Abstract No. 121: 138554) discloses a steel with 5-23% by weight.
  • the steels disclosed in these documents contain comparatively little molybdenum and manganese, at least in some areas of their possible compositions, but their corrosion stability is unsatisfactory.
  • the task was to find a low-nickel, preferably nickel-free austenitic steel.
  • the steel should contain comparatively few other alloying elements - also for reasons of cost, in particular it should be low in molybdenum and manganese and copper, and yet have excellent material properties, especially high corrosion resistance.
  • Chromium more than 21.0 and at most 26.0% by weight
  • Molybdenum less than 1.50% by weight; Nitrogen: more than 0.70 and at most 1.70% by weight, and
  • Carbon more than 0.11 and at most 0.70% by weight.
  • Figures in% by weight relate to the composition of the finished steel.
  • the steel according to the invention is low in nickel and preferably nickel-free, austenitic, a material which can be easily manufactured and processed and is highly corrosion-resistant, and is also inexpensive, above all because of the low molybdenum content.
  • the steel according to the invention is low in nickel, i.e. nickel is added to it, if at all, only in comparatively small amounts, generally at most 2% by weight, for example at most 1% by weight.
  • the steel of the invention is nickel free, i.e. free of deliberately added nickel. (Consequently, freedom from nickel is a special case of poor nickel.)
  • Nickel is mostly contained in small amounts or traces as an inevitable impurity, often due to the general use of steel scrap as a raw material for the production of iron or crude steel.
  • the steel according to the invention in its nickel-free embodiment therefore contains less than 1.0% by weight of nickel and preferably less than 0.5% by weight of nickel. In a particularly preferred manner, it contains less than 0.3% by weight of nickel.
  • a steel with such low nickel contents releases so little nickel even in constant contact with the human or animal body that there is no risk of sensitization or allergy.
  • the steel according to the invention contains less than 17.0% by weight of manganese, and preferably at most 16% by weight of manganese. It also contains more than 21.0 and at most 26.0, preferably at most 23% by weight of chromium, and less than 1.50% by weight, preferably at most 1.4% by weight, molybdenum. Its nitrogen content is more than 0.70, preferably at least 0.82 and at most 1.70% by weight, and its carbon content is more than 0.11, preferably at least 0.15, for example at least 0.17 and at most 0.70% by weight.
  • These alloying elements are essentially in solid solution, ie atomically finely distributed in the austenitic lattice, and not as carbides, nitrides or intermetallic phases.
  • a small addition of other alloying elements which are often used to improve certain properties for certain applications or as a common addition in steel production, does not generally impair the material properties of the steel according to the invention.
  • it can contain copper in an amount of less than 4, for example less than 2.5, preferably less than 2 and in a particularly preferred manner at most 1, for example 0.5% by weight.
  • it can also contain tungsten in an amount of less than 2, preferably at most 1% by weight and silicon in an amount of less than 2, preferably at most 1% by weight.
  • the steel according to the invention consists of iron, inevitable impurities and the following constituents:
  • Chromium more than 21.0 and at most 26.0% by weight; Molybdenum: less than 1.50% by weight;
  • Nitrogen more than 0.70 and at most 1.70% by weight
  • Carbon more than 0.11 and at most 0.70% by weight
  • Tungsten less than 2% by weight
  • silicon less than 2% by weight
  • the steel according to the invention is extremely corrosion-resistant.
  • the corrosion resistance expressed as the critical crevice corrosion temperature, increases with the following effective amount of alloying elements in the steel:
  • the element symbol stands for the steel content of this element in% by weight.
  • the composition of the steel is therefore optimized to the highest possible effective amount within the limits that are specified by its other required material properties (strength, toughness, etc.).
  • a low manganese is preferred in these cases and high carbon and nitrogen content with a modest chromium and molybdenum content.
  • a typical area of use for the steel according to the invention is the production of objects which are at least occasionally in contact with the human or animal body, for example glasses, watches, jewelry, implants, dental implants, metallic parts in clothing such as belt clasps, hooks and eyes, needles , Safety pins, bed frames, railings, handles, scissors, cutlery, medical instruments such as injection needles, scalpels or other surgical instruments.
  • the surprisingly high corrosion resistance and strength of the steel according to the invention also opens up areas of application in which freedom from nickel plays no or only a minor role. It is used, for example, in building construction and civil engineering, for example for the production of reinforcing bars, fastening elements, anchoring elements, hinges, rock anchors, load-bearing structures, facade elements or as prestressing steel. It is also used as a material for the manufacture of technical apparatus, for example apparatus or pipelines in oil and gas exploration and production, in the associated marine engineering (ocean engineering) as well as in shipbuilding, or in petrochemicals. It is also used as a material in traffic engineering, for example for components of systems and means of transport for traffic on water, on land and in the air. It is also used in mechanical and plant engineering, for example for energy and power plant technology or for electrical and electronic devices. The steel according to the invention is also used as a metallic binder phase of hard materials in hard material sintered parts.
  • the steel according to the invention is produced and / or shaped to the desired workpiece using known methods of steel production, for example by pressure-free melting, electro-slag remelting, pressure-electro-slag remelting, casting of the melt, forging, hot and / or cold forming, pulping.
  • metallurgy for example pressing and sintering or powder - injection molding, both of which are possible with a powder of a uniform composition according to the invention or according to the known master-alloy technique, or, if appropriate, with subsequent embroidering of a nitrogen-free or low-nitrogen master alloy, provided that the melt and powder metallurgical processes mentioned were not carried out under sufficient nitrogen partial pressure.
  • a preferred method for producing objects made from the steel according to the invention is powder metallurgy.
  • a powder made of the steel according to the invention or a nitrogen-free or low-nitrogen master alloy is brought into a mold, for example by pressing, removed from the mold and sintered.
  • the required nitrogen content is adjusted by embroidery.
  • the constituents of the steel or its precursor can be in the form of a powdery mixture of the alloy elements or as a mixture of different alloys and / or pure elements, from which an alloy of the desired gross composition is formed by diffusion according to the “master alloy” technique during the sintering process
  • a mixture of pure iron powder and an alloy powder which contains the remaining alloy elements and optionally also iron can be used.
  • a major disadvantage of simple powder metallurgy shaping processes, such as pressing into a mold, is that only shaped bodies with a comparatively simple outer shape can be produced with them.
  • thermoplastic injection molding compound a thermoplastic injection molding compound which is usually called "binder” in powder injection molding technology, and, if appropriate, other auxiliaries, so that a thermoplastic injection molding compound (“feedstock”) is formed overall.
  • thermoplastic injection molding compound is injection molded into a mold using the injection molding technology known from the processing of thermoplastic plastics, the thermoplastic powder injection molding binder is then removed (“debinding”) from the injection molded body (“green body”) and this binder freed body (“Braunling") sintered to the finished sintered molded body, and if necessary the desired nitrogen content is set by nitriding ("nitriding") by means of heat treatment in a nitrogen-containing furnace atmosphere.
  • the nitrogen content is preferably adjusted by nitriding during the sintering or immediately before or after this, without interim removal of the sintered molded part from the sintering furnace or cooling below the sintering or nitriding temperature.
  • the main problem with these processes is the debinding, which is usually carried out thermally by pyrolysis of the thermoplastic, which often causes cracks in the workpiece. A thermoplastic which can be removed catalytically at low temperatures is therefore advantageously used.
  • EP-A 413 231 teaches a catalytic debinding process
  • EP-A 465 940 and EP-A 446 708 disclose feedstocks for the production of metallic moldings.
  • the powder injection molding process differs in the implementation of conventional powder metallurgical processes such as pressing and sintering by the type of shaping and the resulting additional step for removing the thermoplastic powder injection molding binder used for shaping.
  • sintering and nitriding are carried out in the same way in all powder metallurgical processes.
  • the steel according to the invention, its precursor or its constituents are used in the form of fine powders.
  • the average particle sizes used are usually in the range below 100 micrometers, preferably below 50 micrometers, and in a particularly preferred form below 20 micrometers, and generally above 0.1 micrometer.
  • Such metal powders are commercially available or can be produced in any known manner, for example by carbonyl decomposition, water or gas atomization.
  • thermoplastic for the production of injection molding compositions are known.
  • Thermoplastic materials are usually used, for example polyolefins such as polyethylene or polypropylene or polyethers such as polyethylene oxide (“polyethylene glycol”).
  • polyethylene glycol polyethylene glycol
  • thermoplastic is preferably used as the base a polyacetal plastic is used, and in a particularly preferred form polyoxymethylene (“POM”, paraformaldehyde, paraldehyde) is used.
  • POM polyoxymethylene
  • the injection molding compound is optionally admixed with auxiliaries to improve its processing properties, for example dispersing aids.
  • Comparable thermoplastic compositions and processes for their production and processing by injection molding and catalytic debinding are known and are described, for example, in EP-A 413 231, EP-A 446 708, EP-A 444 475, EP-A 800 882 and in particular EP-A 465 940 and their US equivalent US 5,362,791, to which reference is hereby expressly made.
  • a preferred injection molding composition according to the invention consists of:
  • b2) 0 to 50% by weight of a polymer which is immiscible with b1) and which can be removed thermally without residue, or a mixture of such polymers
  • thermoplastic binder of powder a as thermoplastic binder of powder a
  • the polyoxymethylene mono- and copolymers and their preparation are known to the person skilled in the art and are described in the literature.
  • the homopolymers are usually provides by polymerization (usually catalyzed polymerization) of formaldehyde or trioxane Herge ⁇ .
  • a cyclic ether or a plurality of cyclic ethers is or are conveniently used as comonomer together with formaldehyde and / or trioxane in the polymerization, so that the polyoxymethylene chain with its sequence of (-0CH 2 ) units is interrupted by units in where more than one carbon atom is located between two oxygen atoms.
  • cyclic ethers suitable as comonomers are ethylene oxide, 1,2-propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,3-dioxolane, dioxepane, linear oligo- and polyformals such as polydioxolane or polydioxepane and oximeethylene - terpolymers.
  • Suitable components b2) are in principle polymers which are not miscible with the polyoxymethylene homo- or polymer bl). Such polymers and their preparation are known to the person skilled in the art and are described in the literature. Preferred polymers of this type are polyolefins, vinylaroma- diagram polymers, polymers of Vinylestern aliphatic Ci - C a carboxylic acids, polymers of vinyl alkyl ethers having 1 to 8 C -atoms in the alkyl group or polymers of methacrylic rees tern with at least 70 wt -.% Of units which are derived from methacrylic acid esters or their mixtures.
  • Suitable polyolefins are, for example, polymers of olefins having 2 to 8 carbon atoms, in particular 2, 3 or 4 carbon atoms, and copolymers thereof. Polyethylene and polypropylene and their copolymers are particularly preferred. Polymers of this type are mass-produced products, widespread commercial goods and are therefore known to the skilled worker.
  • Suitable vinyl aromatic polymers are, for example, polystyrene and poly- ⁇ -methylstyrene and their copolymers with up to 30% by weight of comonomers from the group of acrylic acid esters and acrylonitrile or methacrylonitrile. Such polymers are also common commercial goods.
  • Suitable polymers of vinyl esters of aliphatic C ⁇ -C 8 carboxylic acids are, for example, polyvinyl acetate or polyvinyl propionate
  • suitable polymers of Ci-C ⁇ vinyl alkyl ethers are, for example, polyvinyl methyl ether or polyvinyl ethyl ether.
  • polymers of methacrylic acid esters with at least 70% by weight of units derived from methacrylic acid esters for example copolymers with at least 70% by weight of methacrylic acid esters of -C 1 -C alcohols, in particular methyl methacrylate and / or ethyl methacrylate, used as monomer units.
  • Other comonomers which can be used are, for example, 0-30% by weight, preferably 0-20% by weight, of acrylic acid esters, preferably methyl acrylate and / or ethyl acrylate.
  • Component c) is a dispersing aid.
  • Dispersing aids are widespread and known to the person skilled in the art. In general, any dispersing aid can be used which leads to the improvement of the homogeneity of the injection molding compound.
  • Preferred dispersing agents are oligomeric polyethylene oxide with an average molecular weight of 200 to 400, stearic acid, hydroxystearic acid, fatty alcohols, fatty alcohol sulfonates and block copolymers of ethylene and propylene oxide.
  • a mixture of different substances with dispersing properties can also be used as a dispersing aid.
  • the metal powder - in the powder injection molding process after prior mixing with the thermoplastic binder and possibly with the auxiliaries - is brought into a shape using a shaping tool, for example a press, which, if possible, avoids any time-consuming finishing of the finished sintered molded part of its desired geometric final shape comes close.
  • a shaping tool for example a press
  • the powder injection molding feedstocks are shaped in a conventional manner using conventional injection molding machines.
  • the moldings are freed from the thermoplastic powder injection molding binder (“debinding”) in the usual way, for example by pyrolysis.
  • the binder is preferably removed catalytically from the preferred injection molding composition according to the invention by the
  • Green compacts are heat-treated in a known manner with an atmosphere containing a gaseous acid.
  • This atmosphere is created by evaporating an acid with sufficient vapor pressure, conveniently by passing a carrier gas, in particular nitrogen, through a storage vessel with an acid, advantageously nitric acid, and then introducing the acidic gas into the debinding furnace.
  • the optimal acid concentration in the debinding furnace depends on the desired steel composition and the dimensions of the workpiece and is determined in individual cases through routine tests. In general, treatment in such an atmosphere at temperatures in the temperature range from 20 ° C. to 180 ° C. over a period of from 10 minutes to 24 hours will suffice for the debinding.
  • any remaining thermoplastic binder and / or auxiliary materials are pyrolyzed during heating to the sintering temperature and thereby completely removed.
  • the molding is sintered in a sintering furnace to the sintering mold part and, if a nitrogen-free or nitrogen poorer precursor of the steel according to the invention USAGE ⁇ was det, is adjusted by nitriding of the desired Stickstoffge ⁇ halt.
  • the optimal composition of the furnace atmosphere for sintering and possibly nitriding and the optimal temperature control depend on the exact chemical composition of the steel used or to be manufactured or its precursor, in particular its nitrogen solubility, and on the grain size of the powder used. In general, both the increase in nitrogen partial pressure in the furnace atmosphere and the drop in temperature are directly correlated with higher nitrogen levels in the steel. However, since the lowering of the temperature not only slows down the sintering process itself, but also reduces the rate of diffusion of nitrogen in the steel, the sintering and / or nitriding process continues lower temperature correspondingly longer.
  • the furnace atmosphere can consist of pure nitrogen or contain inert gases such as argon and / or reactive gases such as hydrogen. It is usually advantageous to use a mixture of nitrogen and hydrogen as the furnace atmosphere in order to remove any interfering oxidic impurities in the metals.
  • the proportion of hydrogen, if present, is generally at least 5% by volume, preferably at least 15% by volume, and generally at most 50% by volume, preferably at most 30% by volume. If desired, this furnace atmosphere can also contain inert gases, for example argon.
  • the oven atmosphere should preferably be largely dry, generally a dew point of - 40 ° C is sufficient.
  • the (absolute) pressure in the sintering and / or Nitridi * '.-Ungsofen is usually at least 100 mbar, preferably at least 250 mbar. It is also generally at most 2.5 bar, preferably at most 2 bar. In a particularly preferred manner, work is carried out at normal pressure.
  • the sintering and / or nitriding temperature is generally at least 1000 ° C., preferably at least 1050 ° C. and in a particularly preferred manner at least 1100 ° C. Furthermore, it is generally at most 1450 ° C., preferably at most 1400 ° C. and in a particularly preferred manner at most 1350 ° C.
  • the temperature can be varied during the sintering and / or nitridation process, for example in order to completely or largely densely sinter the workpiece only at a higher temperature and then to set the desired nitrogen content at a lower temperature.
  • the optimal heating rates are easily determined by a few routine tests, usually they are at least 1 ° C. per minute, preferably at least 2 ° C. per minute, and in particular preferably at least 3 ° C per minute.
  • the highest possible heating rate is generally sought in order to avoid a negative influence on the quality of the sintering and / or nitridation, but a heating rate below 20 ° C. per minute will usually have to be set.
  • a waiting time at a temperature which is below the sintering and / or nitriding temperature, for example over a period of 30 minutes to two hours, for example during the heating up to the sintering and / or nitriding temperature Hour to maintain a temperature in the range of 500 ° C to 700 ° C, for example 600 ° C.
  • the sintering and / or nitriding time that is to say the holding time at the sintering and / or nitriding temperature, is generally set so that the sintered molded parts are both sufficiently densely sintered and sufficiently homogeneously nitrided.
  • the sintering and / or nitridation time is generally at least 30 minutes and preferably at least 60 minutes.
  • This duration of the sintering and / or nitridation process also determines the production rate, which is why the sintering and / or nitridation is preferably carried out in such a way that the sintering and / or nitridation process does not take an unsatisfactorily long time from an economic point of view.
  • the sintering and nitriding process (without the heating and cooling phases) can be completed after a maximum of 10 hours.
  • the sintering and / or nitridation process is ended by cooling the sintered molded parts.
  • a specific cooling process may be required, for example, cooling as quickly as possible in order to maintain high-temperature phases or to prevent the components of the steel from segregating.
  • the upper limit of the cooling rate is reached when sintered molded parts occur in economically unsatisfactorily large quantities with defects such as cracking, tearing or deformation due to rapid cooling.
  • the optimal cooling rate is therefore easily determined in a few routine tests.
  • the sintered molded parts can be quenched, for example, in cold water or oil. Subsequent to sintering and / or nitriding, any desired aftertreatment, for example solution annealing and quenching in water or oil or hot isostatic pressing of the sintered molded parts can be carried out.
  • the sintered moldings are preferably solution-annealed by being at a temperature of at least 1000 ° C., preferably at least 1100 ° C.
  • Manganese less than 17.0% by weight; Chromium: more than 21.0 and at most 26.0% by weight; Molybdenum: less than 1.50% by weight;
  • Nitrogen more than 0.70 and at most 1.70% by weight; and carbon: more than 0.11 and at most 0.70% by weight; Balance iron and inevitable impurities;
  • Example 2 was repeated, but after the quenching, a cold deformation of 92% in cross-section was carried out and then tempered. This led to an extremely high yield strength of 3100 MPa.
  • the examples show that the steel according to the invention is not only corrosion-resistant, but also has a surprisingly high strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Materials For Medical Uses (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Dry Shavers And Clippers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Nickelarmer austenitischer Stahl, der Eisen und folgende Bestandteile enthält: Mangan: weniger als 17,0 Gew.-%; Chrom: mehr als 21,0 und höchstens 26,0 Gew.-%; Molybdän: weniger als 1,50 Gew.-%; Stickstoff: mehr als 0.70 und höchstens 1,70 Gew.-%; und Kohlenstoff: mehr als 0,11 und höchstens 0,70 Gew.-%; seine Herstellung und Verwendung.

Description

Nickelarmer austenitischer Stahl
Beschreibung
Die vorliegende Erfindung betrifft einen nickelarmen austeniti- schen Stahl, insbesondere einen nickel-, molybdän-, mangan- und kupferarmen austenitischen Stahl und seine Verwendung. Die Erfindung betrifft weiterhin Verfahren zur Herstellung aus derartigen Stählen bestehender Gegenstände.
Der Begriff „Stahl" bezeichnet hier wie üblich Eisen enthaltende Legierungen und schließt kohlenstoffhaltiges Eisen ein. Austenit ist strenggenommen eine Hochtemperaturmodifikation des Eisens mit flächenzentrierter kubischer Kristallstruktur („γ-Eisen"), die zwischen 740°C und 1538°C thermodynamisch stabil ist und 0 bis maximal 2,1 Gew.-% (bei 1153°C) Kohlenstoff in Form einer festen Lösung enthält. Üblicherweise werden jedoch alle Stähle, die ein kubisch- flächenzentriertes Kristallgitter aufweisen, als austeni- tische Stähle oder Austenite bezeichnet. Die kubisch-flächenzen- trierte Austenitstruktur ist für viele Anwendungsgebiete von Stählen erforderlich oder zumindest gegenüber anderen Modifikationen (beispielsweise ferritischen oder martensitischen Stählen) vorteilhaft; Austenit ist beispielsweise nicht ferromagnetisch, was austenitische Stähle für elektrische oder elektronische Bauteile oder andere Anwendungen, bei denen das Auftreten magnetischer Abstoßungs- oder Anziehungskräfte unerwünscht ist - beispielsweise Uhren - anwendbar macht. Da Austenit jedoch eine Hochtemperaturmodifikation und bei niedrigeren Temperaturen ther- modynamisch instabil ist, muss ein austenitischer Stahl gegen die Umwandlung in andere Modifikationen stabilisiert werden, damit er seine gewünschten austenitischen Eigenschaften auch bei Normal - temperatur behält. Dies kann beispielsweise durch Zusatz von Legierungselementen geschehen, die als Stabilisatoren der Austenit - Struktur bekannt sind. Das am häufigsten für diesen Zweck benutzte Legierungselement ist Nickel, typischerweise in einer Menge von 8 bis 10 Gew.-%.
Andere Legierungsbestandteile werden verwendet, um andere Eigen- Schäften des Stahls (z. B. Korrosions- und Verschleißstabilität, Härte, Festigkeit oder Zähigkeit) in gewünschter Weise zu beeinflussen. Die Verwendung von bestimmten Legierungsbestandteilen führt jedoch häufig auch - meist mengenabhängig - zu bestimmten Nachteilen, denen in gewissem Rahmen durch Anpassung der Legie- rungszusammensetzung wieder entgegengewirkt werden kann. Beispielsweise tragen Kohlenstoff und Mangan in der Regel zur Stabilisierung der Austenitstruktur bei, verringern jedoch in zu hohen Mengen die Korrosionsbeständigkeit. Silicium ist eine häufig unvermeidbare Verunreinigung, wird teilweise als Sauerstofffänger auch bewusst zugesetzt, aber fördert die Bildung von δ-Ferrit. Chrom, Molybdän und Wolfram tragen entscheidend zur Korrosionsbe- ständigkeit bei, begünstigen jedoch ebenfalls die Bildung von δ-Ferrit. Stickstoff wiederum stabilisiert die Austenitstruktur und erhöht die Korrosionsstabilität, allzu hohe Stickstoffgehalte verringern jedoch die Zähigkeit des Stahls. Eine Schwierigkeit bei der Optimierung von Stahlzusammensetzungen ist, dass die Ei- genschaften des Stahls sich nicht linear mit dem Gehalt an bestimmten Legierungsbestandteilen ändern, sondern schon bei kleinen Änderungen der Zusammensetzung sehr große Sprünge in den Werkstoffeigenschaften auftreten können. Ein weiterer Nachteil der Verwendung von Nichteisenmetallen als Legierungsbestandteile ist meist auch deren vergleichsweise hoher Preis.
Stähle und ihre Herstellung sind seit langem bekannt. Ein umfassender Überblick über die Technologie von Stählen ist beispielsweise unter dem Stichwort „Steel" in Ullmann's Encyclopedia of Industrial Chemistry, 6th ed., 1999 Electronic Release, Wiley- VCH, D- 69451 Weinheim, zu finden.
Nickelarme austenitische Stähle sind begehrte Werkstoffe für eine Reihe von Anwendungsgebieten. Ein zunehmend wichtiger werdendes Einsatzgebiet für derartige Stähle sind Gegenstände, die bei ihrer Verwendung in Berührung mit dem menschlichem oder tierischen Körper stehen, da diese Stähle naturgemäß keine Nickelallergie auslösen. Nickelallergien sind häufige Ursachen -ΌΠ Kontaktekzemen oder anderen allergischen Erscheinungen, di'. υeim Kontakt mit Nickel enthaltenden Stählen, beispielsweise beim Tragen von
Schmuck, Uhren oder Implantaten oder beim Gebrauch von medizinischen Instrumenten aus solchen Stählen auftreten. In zahlreichen Ländern werden deshalb Grenzwerte für den Nickelgehalt von Werkstoffen oder für deren Nickelabgabe beim Kontakt mit dem mensch- liehen oder tierischen Körper festgelegt werden oder sind bereits in Kraft. Es wird auch deshalb zunehmend wichtiger, möglichst viele nickelarme austenitische Stähle für möglichst viele Anwendungsgebiete zur Verfügung zu haben.
Es sind eine Reihe nickelarmer austenitischer Stähle bekannt, bis hin zu nickelfreien. In der Regel wird die austenitische Struktur in solchen Stählen durch das Element Stickstoff stabilisiert.
So offenbart AT-B-266 900 die Verwendung austenitischer, unmagne- tischer Stähle zur Herstellung bewegter, insbesondere schwingend beanspruchter Maschinenteile, wobei die zu verwendenden Stähle lediglich in außerordentlich breiten Bereichen möglicher Zusam- mensetzungen definiert werden: 0 bis 20 Gew.-% Mn, 0 bis 30 Gew. -% Cr, 0 bis 5 Gew. -% Mo und/oder V, mindestens 0,5 Gew. -%, vorzugsweise mindestens 1,4 Gew. -% N, 0,02 bis 0,55 Gew. -% C, 0 bis 2 Gew. -% Si, 0 bis 25 Gew. -% Ni, Rest Eisen. Die genannten breiten Bereiche decken unterschiedliche Stähle mit völlig unterschiedlichen Eigenschaften ab, Kriterien zur Auswahl bestimmter Stähle werden nicht gegeben, ebensowenig werden Maßnahmen zur Herstellung solcher Stähle gelehrt.
EP-A-875 591 lehrt die Verwendung eines korrosionsbeständigen weitgehend nickelfreien austenitischen Stahls mit den wesentlichen Bestandteilen 5 - 26 Gew. -% Mn, 11 - 24 Gew. -% Cr, 2,5 -
6 Gew.-% Mo, 0,2 - 2,0 Gew. -% N, 0,1 - 0,9 Gew. -% C, bis
0,5 Gew.-% Ni, Rest Fe, als Werkstoff zur Herstellung von Gegen- ständen, die in Berührungskontakt mit Lebewesen stehen.
DE-A-195 13 407 lehrt ebenso die Verwendung eines korrosionsbeständigen weitgehend nickelfreien austenitischen Stahls als Werkstoff zur Herstellung von Gegenständen, die in Berührungskontakt mit Lebewesen stehen. Dieser Stahl hat die wesentlichen Bestand- teile 2 - 26 Gew. -% Mn, 11 - 24 Gew. -% Cr, 2,5 - 10 Gew.-% Mo, 0,55 - 1,2 Gew. -% N, unter 0,3 Gew. -% C, bis 0,5 Gew. -% Ni , Rest Fe. JP-A-07/150297 (Chemical Abstracts: Abstract No. 123:175994) offenbart einen Stahl der Zusammensetzung 10 - 25 Gew.-% Mn, 10 - 25 Gew.-% Cr, 5 - 10 Gew. -% Mo, 0,2 - 1 Gew. -% N, 0,05 - 0,5 Gew.-% C, bis 0,5 Gew.-% Si, Rest Fe, und seine Verwendung im Schiffbau. DE-A-196 07 828 lehrt einen Stahl der Zusammensetzung 8 - 15 Gew.-% Mn, 13 - 18 Gew. -% Cr, 2,5 - 6 Gew.-% Mo, 0,55 - 1,1 Gew.-% N, bis 0,1 Gew.-% C, bis 0,5 Gew. -% Ni , Rest Fe, und seine Verwendung für verschiedene Bauteile, insbesondere Genera- tor-Kappenringe. Bei den in den genannten Schriften offenbarten Stählen wird die geforderte hohe Korrosionsfestigkeit mit einer vergleichsweise hohen Menge Molybdän, des mit Abstand teuersten unter den gängigen Legierungselementen, erkauft.
DE-A-42 42 757 schlägt die Verwendung eines Stahls mit den wesentlichen Bestandteilen 21 - 35 Gew. -% Mn, 9 - 20 Gew. -% Cr, 0 -
7 Gew.-% Mo, 0,3 - 0,7 Gew. -% N, bis 0,015 Gew. -% C, bis 0,1 Gew.-% Ni, bis 0,5 Gew.% Si, bis 0,02 Gew.-% P, bis 0,02 Gew. -% S und bis 4 Gew.% Cu, Rest Fe, als Werkstoff zur Herstel- lung von Gegenständen, die in Berührungskontakt mit Lebewesen stehen, vor. EP-A-422 360 offenbart die Verwendung eines Stahls der Zusammensetzung 17 - 20 Gew. -% Mn, 16 - 24 Gew. -% Cr, 0 - 3 Gew.-% Mo, 0,5 - 1,3 Gew. -% N, bis 0,20 Gew. -% C, Rest Fe, zur Herstellung von Bauteilen an Schienenfahrzeugen. EP-A- 432 434 lehrt ein Verfahren zur Herstellung von Verbindungselementen aus einem Stahl der Zusammensetzung 17,5 - 20 Gew. -% Mn, 17,5 - 20 Gew. -% Cr, 0 - 5 Gew.-% Mo, 0,8 - 1,2 Gew. -% N, bis 0,12 Gew.-% C, 0,2 - 1 Gew. -% Si, bis 0,05 Gew. -% P, bis 0,015 Gew.-% S, bis 3 Gew.-% Ni, Rest Fe. DE-A-25 18 452 lehrt ein Verfahren zur Herstellung eines austenitischen Stahls mit 21
- 45 Gew.-% Mn, 10 - 30 Gew. -% Cr, 0,85 - 3 Gew. -% N, Rest Fe, durch Aufstickung einer stickstofffreien oder -ärmeren Vorlegierung bei mindestens 925°C. Die in diesen Schriften gelehrten Stähle enthalten zwar einen geringeren Molybdänanteil, aber einen relativ hohen Mangananteil, der die Korrosionseigenschaften negativ beeinflusst.
DE-A-24 47 318 lehrt einen austenitischen Stahl mit 15 bis 45 Gew.-% Mn, 10 bis 30 Gew.-% Cr, 0,85 bis 3 Gew. -% N, bis 1 Gew. -% C, 0 bis 2 Gew. -% Si und wenigstens einem aus den folgenden drei Legierungsbestandteilen: 1 - 3 Gew. -% Cu, 1 - 4 Gew.-% Ni und 1 - 5 Gew. -% Mo, wobei der Gehalt dieser letztgenannten sich zu 5 Gew. -% addiert, Rest Eisen; wobei die Legierungszusammensetzung bestimmte weitere Bedingungen erfüllen muss. Alternativ kann die Legierung frei von Cu und Ni sein, wenn ein vergleichsweise hoher Mangangehalt von mindestens 21 Gew. -% ver- wendet wird. Auch in diesem Stahl kann also nur auf Nickel verzichtet werden, wenn ein vergleichsweise hoher Molybdän- oder Mangangehalt in Kauf genommen wird, und/oder mindestens 1 Gew. -% Kupfer enthalten ist.
EP-A-640 695 offenbart einen Stahl der Zusammensetzung 11 - 25 Gew.-% Mn, 10 - 20 Gew.-% Cr, bis 1 Gew. -% Mo, 0,05 - 0,55 Gew. -% N, bis 0,01 Gew. -% C, bis 0,5 Gew.-% Ni, bis 1 Gew.% Si, Rest Fe, und seine Verwendung zur Herstellung von Gebrauchsgegenständen, die in Berührungskontakt mit der Haut von Lebewesen stehen. JP-A-07/157847 lehrt einen Stahl der Zusammensetzung 9 - 20 Gew. -% Mn, 12 - 20 Gew.-% Cr, 1 - 5 Gew. -% Mo, 0,1 - 0,5 Gew.-% N, 0,01 - 0,6 Gew. -% C, 0,05 - 2,0 Gew. -% Si, 0,05 - 4 Gew.-% Cu, Rest Fe, und seine Verwendung zur Herstellung von Uhrschalen. JP-A-06/116 683 (Chemical Abstracts: Abstract No. 121:138554) offenbart einen Stahl mit 5 - 23 Gew. -%
Mn, 13 - 22 Gew.-% Cr, bis 5 Gew. -% Mo, 0,2 - 0,6 Gew. -% N, 0,05
- 0,2 Gew. -% C, bis 0,1 Gew. -% In, bis 15 Gew. -% Ni, Rest Fe. Die in diesen Schriften offenbarten Stähle enthalten - zumindest in Teilbereichen ihrer möglichen Zusammensetzungen - vergleichsweise wenig Molybdän und Mangan, ihre Korrosionsstabilität ist jedoch unbefriedigend.
Es bestand die Aufgabe, einen nickelarmen, vorzugsweise nickel- freien austenitischen Stahl zu finden. Der Stahl sollte - auch aus Kostengründen - vergleichsweise wenig andere Legierungselemente enthalten, insbesondere sollte er arm an Molybdän, Mangan und Kupfer sein, und dennoch ausgezeichnete Werkstoffeigenschaf - ten aufweisen, insbesondere hoch korrosionsbeständig sein.
Demgemäß wurde ein nickelarmer austenitischer Stahl gefunden, der Eisen und folgende Bestandteile enthält:
Mangan: weniger als 17,0 Gew. -%;
Chrom: mehr als 21,0 und höchstens 26,0 Gew.-%;
Molybdän: weniger als 1,50 Gew. -%; Stickstoff: mehr als 0,70 und höchstens 1,70 Gew. -%,- und
Kohlenstoff: mehr als 0,11 und höchstens 0,70 Gew.-%.
Weiterhin wurden Verfahren zur Herstellung von Formkörpern aus diesem Stahl gefunden.
Angaben in Gew. -% beziehen sich auf die Zusammensetzung des fertigen Stahls.
Der erfindungsgemäße Stahl ist nickelarm und vorzugsweise nickel- frei, austenitisch, ein gut herstell- und verarbeitbarer und hoch korrosionsfester Werkstoff, und vor allem aufgrund des geringen Molybdängehalts auch preiswert.
Der erfindungsgemäße Stahl ist nickelarm, d.h. ihm wird Nickel, wenn überhaupt, nur in vergleichsweise geringen Mengen, im allgemeinen höchstens 2 Gew. -%, beispielsweise höchstens 1 Gew. -%, zugesetzt. Vorzugsweise ist der erfindungsgemäße Stahl nickelfrei, d.h. frei von absichtlich zugesetztem Nickel. (Nickelfreiheit ist folglich ein Spezialfall der Nickelarmut.) Nickel ist meist als unvermeidliche Verunreinigung in geringen Mengen oder Spuren enthalten, häufig aufgrund der allgemeinen Verwendung von Stahlschrott als Rohstoff zur Gewinnung von Eisen oder Rohstahl. Im allgemeinen enthält der erfindungsgemäße Stahl in seiner nickel- freien Ausführungsform deshalb weniger als 1,0 Gew. -% Nickel und vorzugsweise weniger als 0,5 Gew. -% Nickel. In besonders bevorzugter Weise enthält er weniger als 0,3 Gew.-% Nickel. Ein Stahl mit derartig niedrigen Nickelgehalten gibt auch in dauerndem Kontakt mit dem menschlichen oder tierischen Körper so wenig Nickel ab, dass keine Sensibilisierung oder Allergie zu befürchten ist.
Der erfindungsgemäße Stahl enthält weniger als 17,0 Gew.-% Mangan, und in bevorzugter Weise höchstens 16 Gew. -% Mangan. Er enthält ferner mehr als 21,0 und höchstens 26,0, in bevorzugter Weise höchstens 23 Gew.-% Chrom, sowie weniger als 1,50 Gew. -%, vorzugsweise höchstens 1,4 Gew. -% Molybdän. Sein Gehalt an Stickstoff beträgt mehr als 0,70, vorzugsweise mindestens 0,82, und höchstens 1,70 Gew. -%,- und sein Gehalt an Kohlenstoff beträgt mehr als 0,11, vorzugsweise mindestens 0,15, beispielsweise mindestens 0,17, und höchstens 0,70 Gew.-%. Diese Legierungselemente liegen im wesentlichen in fester Lösung, also atomar fein verteilt im austenitischen Gitter, und nicht als Carbide, Nitride oder intermetallische Phasen vor.
Ein geringer Zuschlag von weiteren Legierungselementen, die häufig zur Verbesserung bestimmter Eigenschaf en für bestimmte Anwendungen oder als gängiger Zuschlag bei der Stahlherstellung verwendet werden, beeinträchtigt die Werkstoffeigenschaften des erfindungsgemäßen Stahls in der Regel nicht. Insbesondere kann er Kupfer in einer Menge von weniger als 4, beispielsweise weniger als 2,5, bevorzugterweise weniger als 2 und in besonders bevorzugter Weise höchstens 1, beispielsweise 0,5 Gew. -%. enthalten. Er kann beispielsweise auch Wolfram in einer Menge von weniger als 2, vorzugsweise höchstens 1 Gew.-% und Silicium in einer Menge von weniger als 2, vorzugsweise höchstens 1 Gew. -% enthalten.
In einer besonders bevorzugten Ausführungsform besteht der erfin- dungsgemäße Stahl aus Eisen, unvermeidlichen Verunreinigungen und folgenden Bestandteilen:
Mangan: weniger als 17,0 Gew. -%;
Chrom: mehr als 21,0 und höchstens 26,0 Gew.-%; Molybdän: weniger als 1,50 Gew.-%;
Stickstoff: mehr als 0,70 und höchstens 1,70 Gew.-%;
Kohlenstoff: mehr als 0,11 und höchstens 0,70 Gew.-%;
Kupfer: weniger als 2,5 Gew. -%,-
Wolfram: weniger als 2 Gew. -%; und Silicium: weniger als 2 Gew.-%.
Der erfindungsgemäße Stahl ist außerordentlich korrosionsbeständig. Die Korrosionsbeständigkeit, ausgedrückt als kritische Spaltkorrosionstemperatur, nimmt mit folgender Wirksumme an Le- gierungselementen im Stahl zu:
Wirksumme = Cr + 3,3 Mo + 20 C + 20 N - 0,5 Mn,
wobei das Elementsymbol für den Gehalt des Stahls an diesem Ele- ment in Gew. -% steht. In Anwendungen, in denen die Korrosionsbeständigkeit des Stahls im Vordergrund steht, wird daher die Zusammensetzung des Stahls in den Grenzen, die durch seine sonstigen geforderten Werkstoffeigenschaften vorgegeben sind (Festigkeit , Zähigkeit usw.), auf eine möglichst hohe Wirksumme hin op- timiert. Bevorzugt sind in diesen Fällen ein niedriger Mangan- und hoher Kohlenstoff- und Stickstoffgehalt bei bescheidenem Chrom- und Molybdängehalt.
Werkstücke aus dem erfindungsgemäßen Stahl sind vielseitig ein- setzbar. (Da der erfindungsgemäße Stahl gegenständlich ist und daher stets eine geometrische Form aufweist, sind die Begriffe „der Stahl" und „ein Werkstück oder Gegenstand aus diesem Stahl" in aller Regel bedeutungsgleich.)
Werkstücke aus dem erfindungsgemäßen Stahl werden insbesondere dort verwendet, wo hohe Korrosionsbeständigkeit und/oder Festigkeit gefordert sind und/oder eine Abgabe von Nickel nicht toleriert werden kann. Ein typisches Verwendungsgebiet für den erfindungsgemäßen Stahl ist die Herstellung von Gegenständen, die in zumindest gelegentlichem Kontakt mit dem menschlichen oder tierischen Körper stehen, beispielsweise Brillen, Uhren, Schmuck, Implantate, Dentalimplantate, metallische Teile in Kleidung wie etwa Gürtelschließen, Haken und Ösen, Nadeln, Sicherheitsnadeln, Bettgestelle, Geländer, Griffe, Scheren, Besteck, medizinische Instrumente wie etwa Injektionsnadeln, Skalpelle oder sonstiges Operationsbesteck.
Die überraschend hohe Korrosionsbeständigkeit und Festigkeit des erfindungsgemäßen Stahls eröffnet aber auch Anwendungsgebiete, in denen Nickelfreiheit keine oder eine nur geringe Rolle spielt. Er wird beispielsweise im Hoch- und Tiefbau eingesetzt, etwa zur Herstellung von Armierungseisen, Befestigungselementen, Verankerungselementen, Scharnieren, Felsankern, tragenden Strukturen, Fassadenelementen oder als Vorspannstahl. Er wird ebenso als Werkstoff zur Herstellung von technischen Apparaten verwendet, beispielsweise von Apparaten oder Rohrleitungen in der Erdöl- und Erdgasexploration und -förderung, bei der zugehörigen Meeres - technik (ocean engineering) wie auch im Schiffbau, oder in der Petrochemie. Weiterhin wird er als Werkstoff in der Verkehrs - technik verwendet, beispielsweise für Bauteile von Anlagen und Verkehrsmitteln für den Verkehr zu Wasser, zu Lande und in der Luft. Ferner wird er im Maschinen- und Anlagenbau verwendet, beispielsweise für Energie- und Kraftwerkstechnik oder für elektrische und elektronische Geräte. Der erfindungsgemäße Stahl wird darüber hinaus als metallische Binderphase von Hartstoffen in Hartstoff - Sinterformteilen verwendet .
Für manche der genannten Anwendungen, insbesondere dort, wo Fer- romagnetismus nicht stört, kann es ausreichend sein, den erfin- dungsgemäßen Stahl nur als Oberflächenschicht aufzubringen oder zu erzeugen. Verfahren dazu sind bekannt, beispielsweise das Plattieren eines Werkstücks mit einem dünnen Überzug des erfin- dungsgemäßen Stahls, oder das nur teilweise Aufsticken eines Werkstücks aus einer stickstofffreien oder Stickstoffärmeren Vor- legierung.
Hergestellt und/oder zum gewünschten Werkstück geformt wird der erfindungsgemäße Stahl mit bekannten Methoden der Stahlherstellung, beispielsweise durch druckfreies Erschmelzen, Elektro- schlacke-Umschmelzen, Druck-Elektroschlacke-Umschmelzen, Vergießen der Schmelze, Schmieden, Heiß- und/oder Kaltverformung, Pul- vermetallurgie, beispielsweise Pressen und Sintern oder Pulver - spritzguss, was beides mit einem Pulver einheitlicher erfindungsgemäßer Zusammensetzung oder nach der bekannten master-alloy- Technik möglich ist, oder gegebenenfalls mit nachträglichem Aufsticken einer stickstofffreien oder Stickstoffarmen Vorlegierung, sofern die genannten schmelz- und pulvermetallurgischen Verfahren nicht unter ausreichendem Stickstoffpartialdruck durchgeführt wurden. Die Bildung von Carbiden, Nitriden und intermetallischen Phasen wird in ebenso bekannter Weise durch Wärmebehandlung vermieden oder rückgängig gemacht. Eine besonders hohe Festigkeit von Werkstücken aus dem erfindungsgemäßen Stahl wird durch Lösungsglühen und Kaltverformung erreicht. Wahlweise wird das Werkstück anschließend angelassen. Überraschenderweise beeinträchtigt Kaltverformung die Beständigkeit gegen Spaltkorrosion nicht.
Ein bevorzugtes Verfahren zur Herstellung von aus dem erfindungs- gemäßen Stahl bestehenden Gegenständen ist die Pulvermetallurgie. Dazu wird ein Pulver aus dem erfindungsgemäßen Stahl oder einer stickstofffreien oder stickstoffärmeren Vorlegierung in eine Form gebracht, beispielsweise durch Pressen, aus der Form entfernt und gesintert. Während der Sinterung oder in einem anschließenden zusätzlichen Verfahrensschritt wird, falls eine stickstofffreie oder stickstoffärmere Vorlegierung verwendet wurde, durch Aufsticken der erforderliche Stickstoffgehalt eingestellt.
Es ist dabei nicht zwingend notwendig, den Stahl oder seinen stickstofffreien oder stickstoffärmeren Vorläufer als einheitliche Legierung einzusetzen. Ebenso können die Bestandteile des Stahls oder seines Vorläufers in Form einer pulverförmigen Mischung der Legierungselemente oder als Gemisch verschiedener Le- gierungen und/oder Reinelementen vorliegen, aus dem sich nach der „master alloy" -Technik beim Sintervorgang durch Diffusion eine Legierung der gewünschten Bruttozusammensetzung bildet. Beispielsweise kann ein Gemisch aus reinem Eisenpulver und einem Legierungspulver, das die übrigen Legierungselemente und wahlweise auch noch Eisen enthält, eingesetzt werden. Ein wesentlicher Nachteil einfacher pulvermetallurgischer Formgebungsverfahren wie etwa Pressen in eine Form ist, daß damit nur Formkörper mit einer vergleichsweise einfachen äußeren Form hergestellt werden können. Ein anderes bekanntes pulvermetallurgi- sches Verfahren, das insbesondere zur Herstellung von Formkörpern mit komplexer Geometrie geeignet ist, ist der Pulverspritzguss . Dazu wird das Stahlpulver, ein stickstofffreier oder Stickstoff - ärmerer Vorläufer mit einem Thermoplasten, der in der Pulverspritzguss -Technologie üblicherweise „Binder" genannt wird, und gegebenenfalls weiteren Hilfsstoffen vermischt, so daß insgesamt eine thermoplastische Spritzgussmasse („Feedstock") entsteht.
Die thermoplastische Spritzgussmasse wird mit der aus der Verarbeitung thermoplastischer Kunststoffe bekannten Spritzgusstechno - logie in eine Form spritzgegossen, aus dem spritzgegossenen Körper („Grünling") wird anschließend der thermoplastische Pulver- spritzguss-Binder entfernt („Entbinderung") , und der von diesem Binder befreite Körper („Braunling") zum fertigen Sinterformkörper gesintert, und gegebenenfalls der gewünschte Stickstoffgehalt durch Nitridierung („Aufstickung") mittels Wärmebehandlung in einer Stickstoff enthaltenden Ofenatmosphäre eingestellt. Vorzugsweise wird der Stickstoffgehalt durch Nitridierung während der Sinterung oder unmittelbar vor oder nach dieser, ohne zwischenzeitliche Entnahme des Sinterformteils aus dem Sinterofen oder Abkühlung unter die Sinter- oder die Nitridierungstemperatur eingestellt. Das Hauptproblem bei diesen Verfahren ist die Entbinderung, die üblicherweise thermisch durch Pyrolyse des Thermoplasten durchgeführt wird, wobei häufig Risse im Werkstück entstehen. Vorteilhafterweise wird daher ein bei niedrigen Temperaturen katalytisch entfernbarer Thermoplast verwendet.
Zur Herstellung und Verarbeitung des erfindungsgemäßen Stahls ge¬ eignete Metallpulverspritzgussverfahren und Feedstocks dafür sind dem Fachmann bekannt. Beispielsweise lehrt EP-A 413 231 ein kata- lytisches Entbinderungsverfahren, EP-A 465 940 und EP-A 446 708 offenbaren Feedstocks für die Herstellung metallischer Formkörper. W.-F. Bahre, P. J. Uggowitzer und M. 0. Speidel: „Competi- tive Advantages by Near-Net-Shape-Manufacturing" (Hrsg. H. -D. Kunze), Deutsche Gesellschaft für Metallurgie, Frankfurt, 1997 (ISBN 3-88355-246-1) sowie H. Wohlfromm, M. Blömacher, D. Wei- nand, E.-M. Langer und M. Schwarz: „Novel Materials in Metal In- jection Molding", Proceedings of PIM-97 - Ist European Symposium on Powder Injection Moulding, Munich Trade Fair Centre, Munich, Germany, October 15-16, 1997, European Powder Metallurgy Associa- tion 1997, (ISBN 1-899072-05-5) beschreiben Pulverspritzgussverfahren zur Herstellung von nickelfreien stickstoffhaltigen Stählen unter Aufstickung während des Sintervorgangs. Die internatio- nale Patentanmeldung PCT/EP/99/09136 (internationales Anmeldedatum 25.11.99, Prioritätsanmeldung DE 19855422.2 vom 01.12.98) lehrt ein Verfahren zur Herstellung von Hartstoff -Sinterformteilen mit einem nickelfreien austenitischen Stahl als metallische Binderphase der Hartstoffe.
Das Pulverspritzgussverfahren unterscheidet sich in der Durchführung von üblichen pulvermetallurgischen Verfahren wie Pressen und Sintern durch die Art der Formgebung und den dadurch bedingten zusätzlichen Schritt zur Entfernung des zur Formgebung verwendeten thermoplastischen Pulverspritzguss-Binders. Sinterung und Nitridierung werden jedoch bei allen pulvermetallurgischen Verfahren auf gleiche Weise durchgeführt.
Der erfindungsgemäße Stahl, sein Vorläufer oder deren Bestandteile werden in Form feiner Pulver eingesetzt. Die eingesetzten mittleren Partikelgrößen liegen üblicherweise im Bereich unter 100 Mikrometer, vorzugsweise unter 50 Mikrometer, und in besonders bevorzugter Form unter 20 Mikrometer, und im allgemeinen oberhalb von 0,1 Mikrometer. Derartige Metallpulver sind kommerziell erhältlich oder können auf jede bekannte Weise hergestellt werden, beispielsweise durch Carbonylzersetzung, Wasser- oder Gasverdüsung .
Zur Durchführung des Pulverspritzgussverfahrens wird der erfindungsgemäße Stahl, sein Vorläufer oder deren Bestandteile mit einem thermoplastischen, nichtmetallischen Material als Pulverspritzguss -Binder vermischt und so die Pulverspr lι-.:j;gussmasse hergestellt. Geeignete Thermoplasten zur Herstellung von Spritzguss- massen sind bekannt. Meist werden thermoplastische Kunststoffe verwendet, beispielsweise Polyolefine wie Polyethylen oder Polypropylen oder Polyether wie Polyethylenoxid („Polyethylengly- kol") . Bevorzugt ist die Verwendung solcher Thermoplaste, die sich katalytisch bei vergleichsweise niedriger Temperatur aus dem Grünling entfernen lassen. Bevorzugterweise wird als Basis des Thermoplasten ein Polyacetalkunststoff verwendet, und in besonders bevorzugter Form Polyoximethylen („POM", Paraformaldehyd, Paraldehyd) verwendet. Der Spritzgussmasse werden wahlweise noch Hilfsstoffe zur Verbesserung ihrer Verarbeitungseigenschaften beigemischt, beispielsweise Dispergierhilfsmittel. Vergleichbare thermoplastische Massen und Verfahren zu ihrer Herstellung und Verarbeitung durch Spritzguss und katalytische Entbinderung sind bekannt und beispielsweise in EP-A 413 231, EP-A 446 708, EP-A 444 475, EP-A 800 882 und insbesondere EP-A 465 940 und de- ren US-Äquivalent US 5,362,791 beschrieben, auf die hiermit ausdrücklich Bezug genommen wird. Eine bevorzugte erfindungsgemäße Spritzgussmasse besteht aus:
a) 40 bis 70 Vol.-% des in den Ansprüchen 1, 2 oder 3 definierten Stahls, eines stickstofffreien oder stickstoffärmeren Vorläufers dieses Stahls oder einer Mischung der Bestandteile des Stahls oder seines Vorläufers, in Pulverform mit einer mittleren Partikelgröße von mindestens 0,1 Mikrometer, und höchstens 100, bevorzugterweise höchstens 50 und in besonders bevorzugter Weise höchstens 20 Mikrometer;
b) 30 bis 60 Vol.-% einer Mischung aus
bl) 50 bis 100 Gew. -% eines Polyoximethylenhomo - oder -copo- lymerisats und
b2) 0 bis 50 Gew. -% eines mit bl) nicht mischbaren Polymerisats, das sich thermisch ohne Rückstand entfernen läßt oder eine Mischung solcher Polymeren
als thermoplastischer Binder des Pulvers a) , und
c) 0 bis 5 Vol.-% eines Dispergierhilfsmittels .
Selbstverständlich ergänzen sich die Komponenten dabei zu 100 Vol. -%.
Die Polyoximethylenmono- und -copolymere sowie ihre Herstellung sind dem Fachmann bekannt und in der Literatur beschrieben. Die Homopolymerisate werden üblicherweise durch Polymerisation (meist katalysierte Polymerisation) von Formaldehyd oder Trioxan herge¬ stellt. Zur Herstellung von Polyoximethylencopolymeren wird oder werden bequemerweise ein cyclischer Ether oder mehrere cyclische Ether als Comonomer gemeinsam mit Formaldehyd und/oder Trioxan in die Polymerisation eingesetzt, so daß die Polyoximethylenkette mit ihrer Folge von ( -0CH2) -Einheiten von Einheiten unterbrochen wird, in denen mehr als ein Kohlenstoffatom zwischen zwei Sauerstoffatomen angeordnet ist. Beispiele für als Comonomere geeignete cyclische Ether sind Ethylenoxid, 1, 2-Propylenoxid, 1,2-Bu- tylenoxid, 1,3-Dioxan, 1, 3 -Dioxolan, Dioxepan, lineare Oligo- und Polyformale wie Polydioxolan oder Polydioxepan sowie Oximethylen - terpolymerisate.
Als Komponente b2) eignen sich grundsätzlich Polymerisate, die mit dem Polyoximethylenhomo- oder -compolymerisat bl) nicht mischbar sind. Derartige Polymerisate und ihre Herstellung sind dem Fachmann bekannt und in der Literatur beschrieben. Bevorzugte Polymerisate dieser Art sind Polyolefine, vinylaroma- tische Polymere, Polymerisate von Vinylestern aliphatischer Ci - Ca -Carbonsäuren, Polymerisate von Vinylalkylethern mit 1 bis 8 C -Atomen in der Alkylgruppe oder Polymerisate von Methacrylsäu- reestern mit mindestens 70 Gew. -% Einheiten, die sich von Meth- acrylsäureestern ableiten oder deren Mischungen.
Geeignete Polyolefine sind beispielsweise Polymerisate von Olefi- nen mit 2 bis 8 C -Atomen, insbesondere 2, 3 oder 4 C-Atomen, so- wie deren Copolymerisate. Besonders bevorzugt sind Polyethylen und Polypropylen sowie deren Copolymere. Derartige Polymere sind Massenprodukte, weit verbreitete Handelswaren und daher dem Fachmann bekannt. Geeignete vinylarom tische Polymerisate sind beispielsweise Polystyrol und Poly-α-methylstyrol sowie deren Copo- lymere mit bis zu 30 Gew. -% Comonomeren aus der Gruppe der Acryl- säureester sowie Acryl- oder Methacrylnitril . Auch derartige Polymerisate sind gängige Handelswaren. Geeignete Polymerisate von Vinylestern aliphatischer Cχ-C8-Carbonsäuren sind beispielsweise Polyvinylacetat oder Polyvinylpropionat, geeignete Polymerisate von Ci-Cβ -Vinylalkylethern sind beispielsweise Polyvinylmethyl- ether oder Polyvinylethylether . Als Polymerisate von Methacryl- säureestern mit mindestens 70 Gew. -% Einheiten, die sich von Me- thacrylsäureestern ableiten, werden beispielsweise Copolymere mit mindestens 70 Gew. -% Methacrylsäureestern von Cι-Cι -Alkoholen, insbesondere Methyl -methacrylat und/oder Ethyl-methacrylat, als Monomereinheiten verwendet. Als andere Comonomere können beispielsweise 0 - 30 Gew. -%, vorzugsweise 0 - 20 Gew. -% Acrylsäu- reester, vorzugsweise Methylacrylat und/oder Ethylacrylat verwendet werden.
Komponente c) ist ein Dispergierhilfsmittel . Dispergierhilfsmittel sind weit verbreitet und dem Fachmann bekannt. Im allgemeinen kann jedes Dispergierhilfsmittel verwendet werden, das zur Verbesserung der Homogenität der Spritzgussmasse führt. Bevorzugte Dispergierhilfsmittel sind oligomeres Polyethylenoxid mit einem mittleren Molekulargewicht von 200 bis 400, Stearinsäure, Hydroxystearinsäure, Fettalkohole, Fettalkoholsulfonate und Blockcopolymere aus Ethylen- und Propylenoxid. Als Dispergier- hilfsmittel kann auch ein Gemisch verschiedener Substanzen mit dispergierenden Eigenschaf en verwendet werden.
Das Metallpulver wird - beim Pulverspritzgussverfahren nach vorheriger Vermischung mit dem thermoplastischen Binder und gegebenenfalls mit den Hilfsstoffen - mit einem Formgebungswerkzeug, beispielsweise einer Presse, in eine Form gebracht, die zur Vermeidung etwaiger aufwendiger Nachbearbeitungen des fertigen Sinterformteils seiner gewünschten geometrischen Endform möglichst nahe kommt. Bei der Sinterung tritt bekanntlich ein Schwund der Werkstücke auf, der üblicherweise durch entsprechend größere Dimensionierung der Formteile vor Sinterung kompensiert wird.
Die Verformung der Pulverspritzguss-Feedstocks erfolgt auf konventionelle Weise mit üblichen Spritzgussmaschinen. Die Formkörper werden auf übliche Weise, beispielsweise durch Pyrolyse, vom thermoplastischen Pulverspritzguss -Binder befreit („Entbinde- rung") . Aus der bevorzugten erfindungsgemäßen Spritzgussmasse wird der Binder vorzugsweise katalytisch entfernt, indem die
Grünlinge auf bekannte Weise mit einer eine gasförmige Säure enthaltenden Atmosphäre wärmebehandelt werden. Diese Atmosphäre wird durch Verdampfen einer Säure mit ausreichendem Dampfdruck hergestellt, bequemerweise durch Durchleiten eines Trägergases, insbe- sondere Stickstoff, durch ein Vorratsgefäß mit einer Säure, vorteilhafterweise Salpetersäure, und anschließendes Einleiten des säurehaltigen Gases in den Entbinderungsofen. Die optimale Säurekonzentration im Entbinderungsofen ist von der gewünschten Stahl - Zusammensetzung und von den Dimensionen des Werkstücks abhängig und wird im Einzelfall durch Routineversuche ermittelt. Im allgemeinen wird zur Entbinderung eine Behandlung in einer derartigen Atmosphäre bei Temperaturen im Temperaturbereich von 20°C bis 180°C über einen Zeitraum von 10 Minuten bis 24 Stunden genügen. Nach der Entbinderung etwaige noch vorhandene Reste des thermo- plastischen Binders und/oder der Hilfsstoffe werden beim Aufheizen auf Sintertemperatur pyrolysiert und dadurch vollständig entfernt.
Nach der Formgebung - und beim Spritzgussverfahren anschließender Entfernung des Binders - wird der Formling in einem Sinterofen zum Sinterformteil gesintert und, falls ein stickstofffreier oder stickstoffärmerer Vorläufer des erfindungsgemäßen Stahls verwen¬ det wurde, wird durch Nitridierung der gewünschte Stickstoffge¬ halt eingestellt.
Die zur Sinterung und gegebenenfalls zur Nitridierung optimale Zusammensetzung der Ofenatmosphäre und die optimale Temperatur - führung hängen von der exakten chemischen Zusammensetzung des eingesetzten oder herzustellenden Stahls oder seines Vorläufers, insbesondere seinem Stickstofflosungsvermögen, und von der Korngröße der eingesetzten Pulver ab. Im allgemeinen sind sowohl die Erhöhung des Stickstoffpartialdrucks in der Ofenatmosphäre als auch die Absenkung der Temperatur direkt mit höheren Stickstoff - gehalten im Stahl korreliert. Da aber mit einer Absenkung der Temperatur nicht nur der Sintervorgang selbst verlangsamt wird, sondern auch die Diffusionsgeschwindigkeit des Stickstoffs im Stahl sinkt, dauert der Sinter- und/oder Nitridierungsvorgang bei niedrigerer Temperatur entsprechend länger. Die zur Erzielung eines bestimmten gewünschten Stickstoffgehalts in einem homogenen, dichten Sinterformteil optimale Kombination von Ofenatmosphäre, insbesondere dem Stickstoffpartialdruck, Temperatur und Dauer von Sinterung und/oder Nitridierung sind im Einzelfall anhand weniger Routineversuche leicht zu ermitteln. Derartige Sinterverfahren sind beispielsweise in den Publikationen von Bahre et al . sowie Wohlfromm et al . beschrieben. Auf diese beiden Veröffentlichungen wird hiermit ausdrücklich Bezug genommen.
Üblicherweise werden Stickstoffpartialdrücke in der Ofenatmosphäre von mindestens 0,1, vorzugsweise mindestens 0,25 bar, angewandt. Dieser Stickstoffpartialdruck beträgt im allgemeinen höchstens 2 bar, vorzugsweise höchstens 1 bar. Die Ofenatmosphäre kann aus reinem Stickstoff bestehen oder auch Inertgase wie Argon und/oder reaktive Gase wie Wasserstoff enthalten. Meist ist es vorteilhaft, als Ofenatmosphäre eine Mischung aus Stickstoff und Wasserstoff zu verwenden, um möglicherweise störende oxidische Verunreinigungen der Metalle zu entfernen. Der Wasserstoffanteil, sofern vorhanden, beträgt im allgemeinen mindestens 5 Vol.-%, vorzugsweise mindestens 15 Vol.-%, und im allgemeinen höchstens 50 Vol.-%, vorzugsweise höchstens 30 Vol.-%. Falls gewünscht, kann diese Ofenatmosphäre zusätzlich auch Inertgase, beispielsweise Argon, enthalten. Die Ofenatmosphäre sollte vorzugsweise weitgehend trocken sein, im allgemeinen ist dazu ein Taupunkt von - 40 °C ausreichend.
Der (absolute) Druck im Sinter- und/oder Nitridi* '.-ungsofen beträgt üblicherweise mindestens 100 mbar, vorzugsweise mindestens 250 mbar. Er beträgt ferner im allgemeinen höchstens 2,5 bar, vorzugsweise höchstens 2 bar. In besonders bevorzugter Weise wird bei Normaldruck gearbeitet.
Die Sinter- und/oder Nitridierungstemperatur beträgt im allgemei- nen mindestens 1000°C, vorzugsweise mindestens 1050°C und in besonders bevorzugter Weise mindestens 1100 °C. Sie beträgt ferner im allgemeinen höchstens 1450°C, vorzugsweise höchstens 1400°C und in besonders bevorzugter Weise höchstens 1350 °C. Die Temperatur kann während des Sinter- und/oder Nitridierungsvorgangs variiert werden, beispielsweise, um das Werkstück erst bei einer höheren Temperatur vollständig oder weitgehend dicht zu sintern und anschließend bei einer niedrigeren Temperatur den gewünschten Stickstoffgehalt einzustellen.
Die optimalen Aufheizraten werden durch einige Routineversuche leicht ermittelt, üblicherweise betragen sie mindestens 1°C pro Minute, vorzugsweise mindestens 2°C pro Minute und in besonders bevorzugter Weise mindestens 3°C pro Minute. Aus wirtschaftlichen Erwägungen wird im allgemeinen eine möglichst hohe Aufheizrate angestrebt, um einen negativen Einfluß auf die Qualität der Sinterung und/oder Nitridierung zu vermeiden, wird jedoch meist eine Aufheizrate unterhalb von 20°C pro Minute einzustellen sein. Unter Umständen ist es vorteilhaft, während des Auf eizens auf die Sinter- und/oder Nitridierungstemperatur eine Wartezeit bei einer Temperatur, die unterhalb der Sinter- und/oder Nitridierungstemperatur liegt, einzuhalten, beispielsweise über einen Zeitraum von 30 Minuten bis zwei Stunden, beispielsweise eine Stunde, eine Temperatur im Bereich von 500°C bis 700°C, beispielsweise 600°C, zu halten.
Die Sinter- und/oder Nitridierungsdauer, also die Haltezeit bei Sinter- und/oder Nitridierungstemperatur, wird im allgemeinen so eingestellt, daß die Sinterformteile sowohl ausreichend dicht gesintert als auch ausreichend homogen nitridiert sind. Bei üblichen Sinter- und/oder Nitridierungstemperaturen, Stickstoffpar- tialdrücken und Formteilgrößen beträgt die Sinter- und/oder Ni - tridierungsdauer im allgemeinen mindestens 30 Minuten und vorzugsweise mindestens 60 Minuten. Diese Dauer des Sinter- und /oder Nitridierungsvorgangs bestimmt die Produktionsrate mit, deshalb wird die Sinterung und/oder Nitridierung vorzugsweise so durchgeführt, daß der Sinter- und/oder Nitridierungsvorgang aus wirtschaftlicher Sicht nicht unbefriedigend lang dauert. Im allgemeinen wird der Sinter- und Nitridierungsvorgang (ohne die Auf - heiz- und Abkühlphasen) nach höchstens 10 Stunden abgeschlossen werden können.
Der Sinter-und/oder Nitridierungsvorgang wird durch Abkühlen der Sinterformteile beendet. Je nach der Zusammensetzung des Stahls kann ein bestimmtes Abkühlverfahren erforderlich sein, beispielsweise ein möglichst schnelles Abkühlen, um Hochtemperaturphasen zu erhalten oder die Entmischung der Komponenten des Stahls zu verhindern. Im allgemeinen ist es auch aus wirtschaf lichen Überlegungen wünschenswert, möglichst schnell abzukühlen, um eine hohe Produktionsrate zu erreichen. Die Obergrenze der Abkühlrate ist erreicht, wenn in wirtschaftlich unbefriedigend hoher Menge Sinterformteile mit durch zu schnelles Abkühlen bedingten Fehlern wie Springen, Reißen oder Verformung auftreten. Die optimale Abkühlrate wird demnach in wenigen Routineversuchen leicht ermittelt. Im allgemeinen ist es empfehlenswert, Abkühlraten von mindestens 100°C pro Minute zu verwenden, bevorzugterweise von mindestens 200°C pro Minute. Die Sinterformteile können beispielsweise in kaltem Wasser oder Öl abgeschreckt werden. Anschließend an Sinterung und/oder Nitridierung kann jede gewünschte Nachbehandlung, beispielsweise Lösungsglühen und Abschrecken in Wasser oder Öl oder heißisostatisches Pressen der Sinterformteile vorgenommen werden. Bevorzugterweise werden die Sinterformteile lösungsgeglüht, indem sie über eine Zeit von mindestens 5 Minuten, vorzugsweise mindestens 10 Minuten und höchstens 2 Stunden, vorzugsweise höchstens einer Stunde bei einer Temperatur von mindestens 1000°C, vorzugsweise mindestens 1100°C und höchstens 1250°C, vorzugsweise höchstens 1200°C unter Inert- gas, beispielsweise unter Stickstoff und/oder Argon, wärmebehandelt werden und anschließend abgeschreckt werden, beispielsweise in kaltem Wasser.
Beispiele
Beispiel 1
An zweiundzwanzig Stählen verschiedener Zusammensetzung innerhalb der folgenden Grenzen:
Mangan: weniger als 17,0 Gew. -%; Chrom: mehr als 21,0 und höchstens 26,0 Gew.-%; Molybdän: weniger als 1,50 Gew. -%;
Stickstoff: mehr als 0,70 und höchstens 1,70 Gew.-%; und Kohlenstoff: mehr als 0,11 und höchstens 0,70 Gew.-%; Rest Eisen und unvermeidliche Verunreinigungen;
wurde die kritische Spaltkorrosionstemperatur gemessen. Diese ist ein Maß für den Widerstand gegen Lokalkorrosion. In der Abbildung sind die experimentellen Ergebnisse als offene Kreise über der Wirksumme des geprüften Stahls:
Wirksumme = Cr + 3,3 Mo + 20 C + 20 N - 0,5 Mn,
wobei das Elementsymbol für den Gehalt des Stahls an diesem Element in Gew.-% steht, aufgetragen. Als Vergleich wurden die mit Stählen, die sich von den obengenannten durch einen Molybdängehalt von mehr als 2,5 Gew. -% unterscheiden, erhaltenen Messergebnisse als volle Kreise eingetragen.
Der Vergleich zeigt, dass die erfindungsgemäßen Stähle trotz eines äußerst niedrigen Molybdängehalts überraschenderweise ebenso korrosionsbeständig sind (hohe kritische Spaltkorrosionstemperatur) wie Stähle mit einem deutlich höheren Gehalt des teuren Mo- lybdäns. Beispiel 2
Eine zehn-Kilogramm-Charge eines Stahls mit der Zusammensetzung 23 Gew. -% Chrom, 16 Gew. -% Mangan, 1,4 Gew. -% Molybdän, 0,17 Gew.-% Kohlenstoff, 0,82 Gew.-% Stickstoff, Rest Eisen, wurde im Vakuum- Induktionsofen bei einem Druck von 0,8 bar Stickstoff erschmolzen und abgegossen. Nach dem Schmieden, Lösungsglühen bei 1100°C und Abschrecken zeigte der Stahl ein homogen auste - nitisches Gefüge. Er wies in diesem Zustand eine Streckgrenze von 550 MPa auf. Nach Kaltverformen um 72 % Querschnittsabnahme erreicht der Stahl eine Streckgrenze von 2480 MPa und nach darauffolgendem Anlassen bei 500 °C über eine Stunde eine Streckgrenze von 2670 MPa.
Beispiel 3
Beispiel 2 wurde wiederholt, nach dem Abschrecken jedoch eine Kaltverformung um 92 % Querschnittsabnahme durchgeführt und anschließend angelassen. Dies führte zu einer außerordentlich hohen Streckgrenze von 3100 MPa.
Die Beispiele zeigen, dass der erfindungsgemäße Stahl nicht nur korrosionsfest ist, sondern auch eine überraschend hohe Festigkeit aufweist.

Claims

Patentansprüche
1. Nickelarmer austenitischer Stahl, der Eisen und folgende Be- standteile enthält:
Mangan: weniger als 17,0 Gew. -%;
Chrom: mehr als 21,0 und höchstens 26,0 Gew. -%;
Molybdän: weniger als 1,50 Gew. -%; Stickstoff: mehr als 0,70 und höchstens 1,70 Gew.-%; und
Kohlenstoff: mehr als 0,11 und höchstens 0,70 Gew.-%.
2. Stahl nach Anspruch 1, der zusätzlich enthält:
Kupfer: weniger als 2,5 Gew.-%;
Wolfram: weniger als 2 Gew. -%; und/oder Silicium: weniger als 2 Gew.-%.
3. Stahl nach Anspruch 2, der aus Eisen, unvermeidlichen Verun- reinigungen und folgenden Bestandteilen besteht:
Mangan: weniger als 17,0 Gew. -%;
Chrom: mehr als 21,0 und höchstens 26,0 Gew.-%;
Molybdän: weniger als 1,50 Gew. -%; Stickstoff: mehr als 0,70 und höchstens 1,70 Gew.-%;
Kohlenstoff: mehr als 0,11 und höchstens 0,70 Gew. -%;
Kupfer: weniger als 2,5 Gew.-%;
Wolfram: weniger als 2 Gew. -%,- und
Silicium: weniger als 2 Gew.-%.
4. Pulverspritzgussmasse, enthaltend den in den Ansprüchen 1, 2 oder 3 definierten Stahl, einen stickstofffreien oder stickstoffärmeren Vorläufer dieses Stahls oder eine Mischung der Bestandteile des Stahls oder seines Vorläufers, in Pulver- form, und einen thermoplastischen Binder.
5. Pulverspritzgussmasse nach Anspruch 4, bestehend aus:
a) 40 bis 70 Vol.-% des in den Ansprüchen 1, 2 oder 3 defi- nierten Stahls, eines stickstofffreien oder Stickstoff - ärmeren Vorläufers dieses Stahls oder einer Mischung der Bestandteile des Stahls oder seines Vorläufers, in Pulverform mit einer mittleren Partikelgröße von mindestens 0,1 Mikrometer, und höchstens 100, bevorzugterweise höch- stens 50 und in besonders bevorzugter Weise höchstens
20 Mikrometer; b) 30 bis 60 Vol.-% einer Mischung aus
bl) 50 bis 100 Gew. -% eines Polyoximethylenhomo- oder -copolymerisats und 5 b2) 0 bis 50 Gew.-% eines mit bl) nicht mischbaren Polymerisats, das sich thermisch ohne Rückstand entfernen läßt oder eine Mischung solcher Polymeren
10 als thermoplastischer Binder des Pulvers a) , und
c) 0 bis 5 Vol.-% eines Dispergierhilfsmittels.
6. Verfahren zur Herstellung von Formkörpern aus dem in den An- 15 Sprüchen 1, 2, oder 3 bestehenden Stahl, umfassend die Verfahrensschritte Spritzguss der in den Ansprüchen 4 oder 5 definierten Spritzgussmasse, Entbinderung und Sinterung.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass man 20 die Entbinderung durch katalytische Entfernung des Binders durchführt.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass man während oder nach der Sinterung den Stickstoffgehalt
25 des Stahls durch Nitridierung einstellt.
9. Verwendung des in den Ansprüchen 1, 2 oder 3 definierten Stahls als Werkstoff für Gegenstände, die zumindest gelegentlich mit dem menschlichen oder tierischen Körper in Kontakt
30 stehen.
10. Verwendung des in den Ansprüchen 1, 2 oder 3 definierten Stahls im Hoch- oder Tiefbau.
35 11. Verwendung des in den Ansprüchen 1, 2 oder 3 definierten Stahls zur Herstellung von technischen Apparaten.
12. Verwendung des in den Ansprüchen 1, 2 oder 3 definierten Stahls als Werkstoff in der Verkehrstechnik.
40
13. Verwendung des in den Ansprüchen 1, 2 oder 3 definierten Stahls als Werkstoff im Maschinen- und Anlagenbau.
5
14. Verwendung des in Anspruch 2 definierten Stahls, der jedoch weniger als 4 Gew. -% Kupfer enthält, als Werkstoff für Gegenstände, die zumindest gelegentlich mit dem menschlichen oder tierischen Körper in Kontakt stehen.
15. Verwendung des in Anspruch 2 definierten Stahls, der jedoch weniger als 4 Gew. -% Kupfer enthält, im Hoch- oder Tiefbau.
16. Verwendung des in Anspruch 2 definierten Stahls, der jedoch weniger als 4 Gew. -% Kupfer enthält, zur Herstellung von technischen Apparaten.
17. Verwendung des in Anspruch 2 definierten Stahls, der jedoch weniger als 4 Gew. -% Kupfer enthält, als Werkstoff in der Verkehrstechnik.
18. Verwendung des in Anspruch 2 definierten Stahls, der jedoch weniger als 4 Gew. -% Kupfer enthält, als Werkstoff im Maschinen- und Anlagenbau.
PCT/EP2000/004824 1999-05-26 2000-05-26 Nickelarmer austenitischer stahl WO2000073528A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002372563A CA2372563C (en) 1999-05-26 2000-05-26 Nickel-poor austenitic steel
AU56763/00A AU5676300A (en) 1999-05-26 2000-05-26 Nickel-poor austenitic steel
JP2001500012A JP4610822B2 (ja) 1999-05-26 2000-05-26 ニッケル含有量の少ないオーステナイト鋼
US09/979,670 US6682581B1 (en) 1999-05-26 2000-05-26 Nickel-poor austenitic steel
DE50014694T DE50014694D1 (de) 1999-05-26 2000-05-26 Nickelarmer austenitischer stahl
EP00941991A EP1198604B1 (de) 1999-05-26 2000-05-26 Nickelarmer austenitischer stahl

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH0981/99 1999-05-26
CH00981/99A CH694401A5 (de) 1999-05-26 1999-05-26 Nickelarmer, molybdänarmer, biokompatibler, nicht Allergie auslösender, korrosionsbeständiger austenitischer Stahl.

Publications (1)

Publication Number Publication Date
WO2000073528A1 true WO2000073528A1 (de) 2000-12-07

Family

ID=4199701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/004824 WO2000073528A1 (de) 1999-05-26 2000-05-26 Nickelarmer austenitischer stahl

Country Status (13)

Country Link
US (1) US6682581B1 (de)
EP (1) EP1198604B1 (de)
JP (1) JP4610822B2 (de)
KR (1) KR100710092B1 (de)
CN (1) CN1129676C (de)
AT (1) ATE374845T1 (de)
AU (1) AU5676300A (de)
CA (1) CA2372563C (de)
CH (1) CH694401A5 (de)
DE (1) DE50014694D1 (de)
ES (1) ES2292445T3 (de)
RU (2) RU2259420C2 (de)
WO (1) WO2000073528A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1229142A1 (de) * 2001-02-05 2002-08-07 Daido Tokushuko Kabushiki Kaisha Hochfester, hochkorrosionsbeständiger und nichtmagnetischer rostfreier Stahl
WO2018083311A1 (fr) * 2016-11-04 2018-05-11 Richemont International Sa Resonateur pour piece d'horlogerie

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326274B2 (en) * 2001-10-18 2008-02-05 Praxis Powder Technology, Inc. Binder compositions and methods for binder assisted forming
JP4379804B2 (ja) * 2004-08-13 2009-12-09 大同特殊鋼株式会社 高窒素オーステナイト系ステンレス鋼
US20060047309A1 (en) * 2004-08-25 2006-03-02 Cichocki Frank R Jr Metal injection molded suture needles
JP4915202B2 (ja) * 2005-11-03 2012-04-11 大同特殊鋼株式会社 高窒素オーステナイト系ステンレス鋼
JP2007248397A (ja) * 2006-03-17 2007-09-27 Seiko Epson Corp 装飾品および時計
JP5249213B2 (ja) * 2006-07-13 2013-07-31 ビーエーエスエフ ソシエタス・ヨーロピア 金属成形体を製造するためのバインダーを含有する熱可塑性材料
JP5212602B2 (ja) * 2007-09-14 2013-06-19 セイコーエプソン株式会社 機器およびハウジング材の製造方法
KR20110073454A (ko) * 2008-09-17 2011-06-29 쿨 폴리머스 인코포레이티드 다성분 조성물 금속 사출 성형
CN101407610B (zh) * 2008-10-30 2014-03-12 嘉兴市瑞德材料科技有限公司 金属粉末注射成型粘结剂
EP2228578A1 (de) * 2009-03-13 2010-09-15 NV Bekaert SA Edelstahldraht mit hohem Stickstoffgehalt für ein flexibles Rohr
JP5958144B2 (ja) * 2011-07-26 2016-07-27 Jfeスチール株式会社 粉末冶金用鉄基混合粉および高強度鉄基焼結体ならびに高強度鉄基焼結体の製造方法
KR101350944B1 (ko) * 2011-10-21 2014-01-16 포항공과대학교 산학협력단 분말사출성형용 철계 합금
EP2728028B1 (de) * 2012-11-02 2018-04-04 The Swatch Group Research and Development Ltd. Nickel-free stainless-steel alloy
KR101531347B1 (ko) * 2012-12-24 2015-06-25 주식회사 포스코 철계 확산접합분말 제조 방법
CN103233174B (zh) * 2013-04-26 2015-06-10 中国科学院金属研究所 一种血管支架用高氮奥氏体不锈钢及其应用
CN103643168B (zh) * 2013-11-27 2015-10-28 江苏科技大学 一种排气门头部材料及其制备方法
CN103710642B (zh) * 2013-11-27 2015-10-28 江苏科技大学 一种高温强度性能优异的排气门头部材料及其制备方法
RU2647058C1 (ru) * 2017-03-20 2018-03-13 Юлия Алексеевна Щепочкина Сталь
EP3486009B1 (de) * 2017-11-17 2024-01-17 The Swatch Group Research and Development Ltd Sinterverfahren für einen austenitischen edelstahl
EP3739076A1 (de) * 2019-05-16 2020-11-18 The Swatch Group Research and Development Ltd Pulverzusammensetuzng aus nickelfreiem austenitischem edelstahl, und werkstück, das aus diesem pulver durch sintern hergestellt wird
CN111621705B (zh) * 2020-06-19 2021-05-25 深圳市泛海统联精密制造股份有限公司 一种无镍双相不锈钢的制备方法
RU2762470C1 (ru) * 2021-06-04 2021-12-21 Акционерное общество "Металлургический завод "Электросталь" Коррозионностойкая сталь и изделие, изготовленное из нее

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE675396A (de) * 1965-01-22 1966-07-20
US3904401A (en) * 1974-03-21 1975-09-09 Carpenter Technology Corp Corrosion resistant austenitic stainless steel
US4116683A (en) * 1973-04-11 1978-09-26 Institute Po Metaloznanie I Technologia Na Metalite Nickel-free austenitic corrosion-resistant steel
JPS61227154A (ja) * 1985-04-02 1986-10-09 Ube Ind Ltd Cr−Mn系耐熱鋳鋼
JPH02156046A (ja) * 1988-12-07 1990-06-15 Nippon Steel Corp 高強度ステンレス鋼およびその製造方法
EP0422360A1 (de) * 1989-10-12 1991-04-17 Vereinigte Schmiedewerke Gmbh Verwendung eines vollaustenitischen stickstoffhaltigen Stahls für Teile an Schienenfahrzeugen
EP0446708A2 (de) * 1990-03-08 1991-09-18 BASF Aktiengesellschaft Thermoplastische Massen für die Herstellung metallischer FormkÀ¶rper
US5362791A (en) * 1990-07-07 1994-11-08 Basf Aktiengesellschaft Thermoplastic compositions for producing metallic moldings

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE266900C (de)
US3936297A (en) * 1972-05-08 1976-02-03 Allegheny Ludlum Industries, Inc. Method of producing austenitic stainless steel
SE421430B (sv) * 1973-10-04 1981-12-21 Allegheny Ludlum Steel Austenitiskt rostfritt stal och forfarande for framstellning av detta
US3989474A (en) * 1974-02-25 1976-11-02 Armco Steel Corporation Austenitic stainless steel
US4217136A (en) 1974-05-01 1980-08-12 Allegheny Ludlum Steel Corporation Corrosion resistant austenitic stainless steel
US3943010A (en) 1974-06-12 1976-03-09 Allegheny Ludlum Industries, Inc. Process for producing austenitic ferrous alloys
US5338508A (en) * 1988-07-13 1994-08-16 Kawasaki Steel Corporation Alloy steel powders for injection molding use, their compounds and a method for making sintered parts from the same
DE3940438C1 (de) 1989-12-07 1991-05-23 Vereinigte Schmiedewerke Gmbh, 4630 Bochum, De
US5175900A (en) 1991-06-24 1993-01-05 Areway, Inc. Automatic index rotary buffing apparatus
AT397968B (de) 1992-07-07 1994-08-25 Boehler Ybbstalwerke Korrosionsbeständige legierung zur verwendung als werkstoff für in berührungskontakt mit lebewesen stehende teile
DE69314438T2 (de) * 1992-11-30 1998-05-14 Sumitomo Electric Industries Niedrig legierter Sinterstahl und Verfahren zu dessen Herstellung
JP3486936B2 (ja) 1993-12-08 2004-01-13 セイコーエプソン株式会社 時計外装部品用材料および時計用外装部品
DE19513407C1 (de) 1995-04-08 1996-10-10 Vsg En & Schmiedetechnik Gmbh Verwendung einer austenitischen Stahllegierung für hautverträgliche Gegenstände
DE19607828C2 (de) 1995-04-15 2003-06-18 Vsg En Und Schmiedetechnik Gmb Verfahren zum Herstellen eines austenitischen Cv-Mn-Stahls
DE19614006A1 (de) 1996-04-09 1997-10-16 Basf Ag Verfahren zur Herstellung von Granulat und Formteilen aus Hartmetall- oder Cermet-Materialien
EP0875591B1 (de) 1997-04-29 2000-08-23 Böhler Edelstahl GmbH & Co KG Verwendung einer biokompatiblen hautverträglichen Legierung
US5848350A (en) * 1997-10-31 1998-12-08 Flomet, Inc. Nickel-free stainless steel alloy processible through metal injection molding techniques to produce articles intended for use in contact with the human body
EP0964071A1 (de) * 1998-06-12 1999-12-15 Asulab S.A. Ferritischer rostfreier Stahl und Aussenteil für eine Uhr aus diesem Stahl
US6325766B1 (en) * 1999-12-01 2001-12-04 Advanced Cardiovascular Systems, Inc. Guidewire having substantially nickel-free high-nitrogen austenitic stainless steel alloy

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE675396A (de) * 1965-01-22 1966-07-20
US4116683A (en) * 1973-04-11 1978-09-26 Institute Po Metaloznanie I Technologia Na Metalite Nickel-free austenitic corrosion-resistant steel
US3904401A (en) * 1974-03-21 1975-09-09 Carpenter Technology Corp Corrosion resistant austenitic stainless steel
JPS61227154A (ja) * 1985-04-02 1986-10-09 Ube Ind Ltd Cr−Mn系耐熱鋳鋼
JPH02156046A (ja) * 1988-12-07 1990-06-15 Nippon Steel Corp 高強度ステンレス鋼およびその製造方法
EP0422360A1 (de) * 1989-10-12 1991-04-17 Vereinigte Schmiedewerke Gmbh Verwendung eines vollaustenitischen stickstoffhaltigen Stahls für Teile an Schienenfahrzeugen
EP0446708A2 (de) * 1990-03-08 1991-09-18 BASF Aktiengesellschaft Thermoplastische Massen für die Herstellung metallischer FormkÀ¶rper
US5362791A (en) * 1990-07-07 1994-11-08 Basf Aktiengesellschaft Thermoplastic compositions for producing metallic moldings

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 011, no. 069 (C - 407) 3 March 1987 (1987-03-03) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 412 (C - 0755) 6 September 1990 (1990-09-06) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1229142A1 (de) * 2001-02-05 2002-08-07 Daido Tokushuko Kabushiki Kaisha Hochfester, hochkorrosionsbeständiger und nichtmagnetischer rostfreier Stahl
US6756011B2 (en) 2001-02-05 2004-06-29 Daido Tokushuko Kabushiki Kaisha High-strength, high corrosion-resistant and non-magnetic stainless steel
WO2018083311A1 (fr) * 2016-11-04 2018-05-11 Richemont International Sa Resonateur pour piece d'horlogerie
EP3327151A1 (de) * 2016-11-04 2018-05-30 Richemont International S.A. Resonator für uhr

Also Published As

Publication number Publication date
CA2372563A1 (en) 2000-12-07
AU5676300A (en) 2000-12-18
ATE374845T1 (de) 2007-10-15
ES2292445T3 (es) 2008-03-16
KR100710092B1 (ko) 2007-04-20
KR20020016631A (ko) 2002-03-04
EP1198604A1 (de) 2002-04-24
CN1351674A (zh) 2002-05-29
RU2259420C2 (ru) 2005-08-27
RU2394114C2 (ru) 2010-07-10
JP2003500544A (ja) 2003-01-07
CA2372563C (en) 2009-09-29
DE50014694D1 (de) 2007-11-15
JP4610822B2 (ja) 2011-01-12
RU2005112442A (ru) 2006-10-27
CN1129676C (zh) 2003-12-03
CH694401A5 (de) 2004-12-31
EP1198604B1 (de) 2007-10-03
US6682581B1 (en) 2004-01-27

Similar Documents

Publication Publication Date Title
EP1198604B1 (de) Nickelarmer austenitischer stahl
WO2001000897A1 (de) Nickelarmer austenitischer stahl
EP1144702A1 (de) Hartstoff-sinterformteil mit einem nickel- und kobaltfreien, stickstoffhaltigen stahl als binder der hartstoffphase
DE602004008192T2 (de) Rohes oder granuliertes Pulver zur Herstellung von Sinterkörpern, und Sinterkörper
EP2253398B1 (de) Verschleißbeständiger Werkstoff
DE60016634T2 (de) Herstellungsverfahren für fe-cr-al-legierung und eine solche legierung
US20150000468A1 (en) Metal powder for powder metallurgy and sintered body
KR100768700B1 (ko) 금속사출성형법을 이용한 합금 부품의 제조방법 및합금부품
EP3362210B1 (de) Pulver auf eisenbasis für pulverspritzgiessen
JP3856294B2 (ja) 焼結用ステンレス鋼粉末、焼結ステンレス鋼製造用造粒粉末および焼結ステンレス鋼
DE68927094T2 (de) Gesinterter legierungsstahl mit ausgezeichnetem korrosionswiderstand und verfahren zur herstellung
DE1935676A1 (de) Gesinterte austenitisch-ferritische Chromnickelstahllegierung
DE102020116865A1 (de) Nickel-Basislegierung für Pulver und Verfahren zur Herstellung eines Pulvers
DE69024582T2 (de) Stahllegierung zum Anwenden in spritzgegossenen pulvermetallurgisch hergestellten gesinterten Formkörpern
DE10120172C1 (de) Herstellung von Bauteilen durch Metallformspritzen (MIM)
DE68924678T2 (de) Stahllegierungspulver für Spritzgussverfahren, seine Verbindungen und ein Verfahren zur Herstellung von Sinterteilen daraus.
EP0149210B1 (de) Verfahren zum Herstellen hochfester, duktiler Körper aus Kohlenstoffreichen Eisenbasislegierungen
CH688914A5 (de) Korrosionsbeständige Legierung zur Verwendung als Werkstoff für am oder im menschlichen Körper verwendete Gegenstände, insbesondere zur Vermeidung von Nickel-Allergie.
JPH08209202A (ja) 切削性に優れた高強度焼結材料用合金鋼粉
DE102016122673A1 (de) Eisen-Kohlenstoff-Legierung sowie Verfahren zur Herstellung und Verwendung der Legierung
DE202008001976U9 (de) Fluiddichte Sintermetallteile
KR20200128158A (ko) 분말 야금용 합금 강분 및 분말 야금용 철기 혼합 분말
EP3189172B1 (de) Hochfeste, mechanische energie absorbierende und korrosionsbeständige formkörper aus eisenlegierungen und verfahren zu deren herstellung
WO2008077776A2 (de) Verfahren zum thermischen entbindern eines durch spritzgiessen, extrudieren oder verpressen unter verwendung einer thermoplastischen masse hergestellten metallischen und/oder keramischen formkörpers
DE1963860C (de) Eisen Chrom Sinterlegierung und Ver fahren zur Herstellung von Sinterformteilen hieraus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00807840.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000941991

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2372563

Country of ref document: CA

Ref document number: 2372563

Country of ref document: CA

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2001 500012

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017015035

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09979670

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020017015035

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000941991

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1020017015035

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2000941991

Country of ref document: EP