[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2000060698A1 - Radioemetteur et procede de reglage de la directivite d'emission - Google Patents

Radioemetteur et procede de reglage de la directivite d'emission Download PDF

Info

Publication number
WO2000060698A1
WO2000060698A1 PCT/JP2000/001930 JP0001930W WO0060698A1 WO 2000060698 A1 WO2000060698 A1 WO 2000060698A1 JP 0001930 W JP0001930 W JP 0001930W WO 0060698 A1 WO0060698 A1 WO 0060698A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
signal
directivity
correction value
frequency
Prior art date
Application number
PCT/JP2000/001930
Other languages
English (en)
French (fr)
Other versions
WO2000060698A8 (fr
Inventor
Katsuhiko Hiramatsu
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to DE60036675T priority Critical patent/DE60036675T2/de
Priority to CA002332960A priority patent/CA2332960C/en
Priority to US09/701,342 priority patent/US6600935B1/en
Priority to EP00912896A priority patent/EP1093186B1/en
Priority to AU34532/00A priority patent/AU3453200A/en
Publication of WO2000060698A1 publication Critical patent/WO2000060698A1/ja
Publication of WO2000060698A8 publication Critical patent/WO2000060698A8/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal

Definitions

  • the present invention relates to a radio transmission device having a function of performing directional transmission and a transmission directivity adjustment method.
  • a propagation path in a digital wireless communication system is composed of a large number of multipaths, and thus has a frequency characteristic as a transmission path and a transmission characteristic having selectivity with respect to frequency. . Furthermore, with the movement of a communication terminal device such as a mobile device, these characteristics change over time, and the received signal undergoes different fading without a band. This fading is called selective fading.
  • This adaptive array technology is a technology in which a plurality of antenna elements are prepared, and signals received by these antenna elements are weighted and then combined.
  • transmission directivity control technique in which transmission is performed in the same directivity pattern as a reception directivity pattern based on a weight coefficient of a reception signal synthesized by an adaptive array technique.
  • this transmission directivity control technique since the unnecessary signal is not transmitted in the direction of arrival, the multipath propagation path can be compensated on the transmission side. This eliminates the need for sophisticated technology such as an equalizer at the receiver (terminal side). Further, since the unnecessary signal is not transmitted in the direction of arrival, the area where the transmitted radio wave reaches is limited, and the frequency utilization efficiency of the down link can be improved.
  • a wireless transmission device having a transmission directivity control function will be described with reference to FIG.
  • a transmission signal is modulated by a modulation circuit 1
  • the modulation signal is sent to the vector multiplication circuits 3 to 5 for performing directional transmission.
  • the vector multiplication is a process of changing the amplitude and phase of a transmission signal for directional transmission. In the case of directional transmission in which only the phase is changed, this is called phase shift, but it is described as vector multiplication with emphasis on generality.
  • the vector multiplication circuits 6 to 8 transmit the modulated signals for directivity transmission to the modulated signals obtained by the vector multiplication circuits 3 to 5 based on the weights from the transmission weight circuit 2 and the correction weight circuit 21. Multiplies the weights and sends the multiplied signal to the transmit RF circuits 9-11.
  • the transmission RF circuits 9 to 11 perform frequency conversion and amplification on the input signal to the transmission carrier frequency.
  • the frequency conversion is performed by adjusting the frequency using the frequency source 12.
  • This transmission signal is transmitted from antennas 16 to 18 through distributors 13 to 15.
  • the vector difference between each antenna at the output of the vector multiplication circuits 6 to 8 and the vector difference between each antenna at the antenna output end must be the same. There is. If this vector difference is different, directional transmission cannot be performed in the correct direction. However, since the outputs of the vector multiplication circuits 6 to 8 pass through the transmission RF circuits 9 to 11, respectively, the vector difference between the antennas at the antenna output end is equal to the output of the vector multiplication circuits 6 to 8. It may be different from the vector difference between each antenna.
  • signals are extracted from distributors 13 to 15 immediately before antennas 16 to 18 as shown in FIG.
  • the receiving RF circuit 19 converts the output to the same frequency as the output of the vector multiplier circuits 6 to 8.
  • the measuring device 20 measures the phase and the amplitude immediately before the transmission, and compares them with the phase and the amplitude output from the vector multiplication circuits 6 to 8. This process is performed for each antenna. As a result, an error caused by passing through the transmission RF circuits 9 to 11 can be obtained.
  • a correction value for correcting the amplitude and phase of each antenna is determined. Then, the correction value is stored in the correction wait circuit 21. This correction value is sent to the vector multiplication circuits 3 to 5, and is used when correcting the transmission weight sent from the transmission weight circuit 2. In order to detect the difference between the amplitude and the phase between the antennas, it is necessary that the respective phases and amplitudes in the respective measuring units of the measuring device 20 are adjusted to be the same.
  • An object of the present invention is to eliminate the need for a transition when adjusting the phase and amplitude
  • An object of the present invention is to provide a radio transmission apparatus and a transmission directivity adjustment method capable of correcting amplitude and phase characteristics with one reception RF section.
  • the subject of the present invention is to combine the signals of the respective antennas distributed by the distributor immediately before the antenna, and to use the combined signal and the reference signal so that the difference in phase and amplitude between the two is minimized.
  • the correction value of the antenna is obtained and updated, and the transmission directivity is adjusted using the correction value.
  • FIG. 1 is a block diagram showing the configuration of a conventional wireless transmission device
  • FIG. 2 is a block diagram showing a configuration of a wireless transmission apparatus according to Embodiment 1 of the present invention
  • Fig. 3 shows the configuration of a wireless receiver that performs wireless communication with the wireless transmitter shown in Fig. 2.
  • FIG. 4A is a signal point arrangement diagram for explaining the transmission directivity adjustment method in the above embodiment
  • FIG. 4B is a signal point arrangement diagram for explaining the transmission directivity adjustment method in the above embodiment
  • FIG. 4C is a signal point arrangement diagram for explaining the transmission directivity adjustment method in the above embodiment
  • FIG. 5 is a block diagram showing a configuration of a wireless transmission apparatus according to Embodiment 2 of the present invention.
  • FIG. 6 is a block diagram showing a configuration of a wireless transmission apparatus according to Embodiment 3 of the present invention.
  • FIG. 7 is a diagram for explaining transmission directivity adjustment in the above embodiment
  • FIG. 7B is a diagram for explaining transmission directivity adjustment in the above embodiment.
  • FIG. 2 is a block diagram showing a configuration of the radio transmission apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram showing a configuration of a wireless receiving device that performs wireless communication with the wireless transmitting device.
  • a transmission signal is modulated by a modulation circuit 101 and sent to a vector multiplication circuit 106 to 108 for performing directional transmission.
  • the vector multiplication is a process of changing the amplitude and phase of a transmission signal for directional transmission.
  • phase shift In the case of directional transmission that changes only the phase, it is called phase shift, but it is described as vector multiplication with emphasis on generality. 01 0
  • the vector multiplication circuits 106 to 108 are based on the weight from the transmission wait circuit 102 and the correction value from the correction value control circuit 121.
  • the modulated signal obtained in step 5 is multiplied by the transmission weight for directional transmission, and the multiplied signal is sent to the transmission RF circuits 109 to 11.
  • the transmission RF circuits 109 to 111 perform frequency conversion and amplification on the input signal to a transmission carrier frequency.
  • the frequency conversion is performed by adjusting the frequency using the frequency sources 112.
  • This transmission signal is transmitted from the antennas 116 to 118 through the dividers 113 to 115.
  • This radio transmitting apparatus includes a combining circuit 119 for combining outputs from the dividers 113 to 115, and a frequency of the frequency source 112 for the output from the combining circuit 119.
  • RF circuit 1202 that performs frequency conversion using delay circuit 122 that delays modulated signal, and phase and amplitude correction using delayed modulated signal and output from receive RF circuit 120 And a correction value control circuit for obtaining a value.
  • the signal transmitted from the wireless transmission device is received from the antenna 201 of the wireless reception device shown in Fig. 3, is frequency-converted and amplified by the reception RF circuit 202, and is modulated by the modulation circuit 203. To be received data.
  • a reference signal whose transmission content is known is input to the modulation circuit 101.
  • a reference signal and a transmission signal are input to the modulation circuit 101 by being appropriately switched by switching means (not shown).
  • the transmission weight is set to 1 for all antennas.
  • the transmission operation is performed in the same manner as in the normal communication state.
  • the reference signal is extracted from the dividers 113 to 115 immediately before the antennas 116 to 118, and sent to the combining circuit 119. These signals are combined in a combining circuit 119.
  • This combined signal is a signal that includes an error due to the transmission RF circuits 109 to 111.
  • This combining process is a process of combining the signals and then dividing by the number of antennas.
  • the vector (vector AX) from the input point ⁇ of the divider 113 to the output point X of the combining circuit 119 and the input point of the divider 114 The vector (vector BX) from B to the output point X of the synthesis circuit 1 19 and the vector (vector CX) from the input point C of the distributor 1 15 to the output point X of the synthesis circuit 1 19 must be adjusted to be the same.
  • the combined signal is sent to the reception RF circuit 120, is frequency-converted into a baseband signal at the same frequency as the frequency given to the transmission RF circuits 109 to 111, and is subjected to quadrature detection. As a result, information on the phase and the amplitude of the synthesized signal can be obtained. Further, the signal after the quadrature detection is converted into the same frequency as the output of the vector multiplication circuits 106 to 108. The synthesized baseband signal is input to the correction value control circuit 122.
  • the reference signal is input to the delay circuit 122 after being subjected to the modulation processing, and at least the modulation signal is input to the correction value control circuit 122 via the distributors 113 to 115. The period is delayed and sent to the correction value control circuit 122.
  • the phase and amplitude are compared between the synthesized baseband signal and the delayed reference signal, and the difference between the two is minimized.
  • the correction value for each antenna is determined, and this correction value is updated.
  • the correction value can be easily updated by an adaptive algorithm such as an error minimization method.
  • the weight correction value for each antenna is calculated. Based on this correction value, the vector multiplication circuits 103 to 105 adjust the transmission weight from the transmission weight circuit 102 by vector multiplication, and the transmission RF circuits 109 to The phase and amplitude errors caused by passing through 1 1 1 are eliminated.
  • the reference signal is modulated in the modulation circuit 101, and has a phase and an amplitude as shown in FIG. 4A. This phase and amplitude are known.
  • the reference RF signal is multiplied by the transmission weight and the radio frequency transmission processing is performed by the transmission RF circuits 109 to 111, as shown in FIG. 4B, the phases and amplitudes are shifted, respectively.
  • Each reference signal ( ⁇ , mouth, ⁇ ) corresponds to the output from distributors 113 to 115.
  • the signals are combined by the combining circuit 119 and divided by the number of antennas to obtain the phase and amplitude shown in Fig. 4C (the garden marks in the figure). This corresponds to the output of the combining circuit 119.
  • the correction value control circuit 122 obtains an error between the original reference signal ( ⁇ ) and the synthesized reference signal (Kuni), and calculates a correction value. This corresponds to the output of the correction value control circuit 122.
  • the phase and amplitude of the transmission signal are adjusted using this correction value.
  • the signal input to the modulation circuit 101 is switched from the reference signal to the transmission signal by the switching unit.
  • the transmission weight from the transmission weight circuit 102 is also switched to the transmission weight for the transmission signal. After the predetermined switching is performed in this way, the process shifts to directional transmission. Note that the transmission weight is determined based on, for example, the reception weight.
  • the phase and amplitude of the signal transmitted from each antenna are not individually corrected, but the vector multiplication circuits 106 to 108 This means that the difference between the vector difference between the antennas at the output of the antenna and the vector difference between the antennas at the antenna output end is calculated. Therefore, by adjusting such transmission directivity, directivity transmission can be performed accurately. In addition, it is not necessary to change the phase and the amplitude at the time of adjustment, and the amplitude and phase characteristics can be corrected by one reception RF section, so that the device can be simplified.
  • FIG. 5 is a block diagram showing a configuration of a wireless transmission apparatus according to Embodiment 2 of the present invention.
  • the transmission signal is modulated by the modulation circuit 401 and sent to the spreading circuit 402.
  • Spreading circuit 402 performs spreading processing on the modulated signal using a predetermined spreading code and sends the result to vector multiplication circuits 404 to 406 for performing directional transmission.
  • vector multiplication is a process of changing the amplitude and phase of a transmission signal for directional transmission. In the case of directional transmission that changes only the phase, it is called phase shift, but it is described as vector multiplication with emphasis on generality.
  • the vector multiplication circuits 404 to 406 multiply the spread signal by the weight from the transmission weight circuit 403, and send the multiplied signals to the synthesis circuits 407 to 409, respectively. .
  • the combining circuit 407 combines the spread signal with the reference signal that has been modulated by the modulation circuit 429 and spread by the spreading circuit 428 using a predetermined spreading code.
  • the combined signals are sent to vector multiplier circuits 410 to 412, respectively.
  • the vector multiplication circuits 4 1 0 to 4 12 perform vector multiplication processing on the synthesized signal based on the correction value from the correction value control circuit 4 26 and transmit the multiplied signal RF circuit 4 1 4 Send to ⁇ 4 1 6.
  • the transmission RF circuits 414 to 416 perform frequency conversion and amplification on the input signal to a transmission carrier frequency.
  • the frequency conversion is performed by adjusting the frequency using the frequency source 4 13.
  • This transmission signal is transmitted from the antennas 420 to 422 through the distributors 417 to 419.
  • this radio transmitting apparatus includes a synthesizing circuit 4 23 for synthesizing the outputs from the dividers 4 17 to 4 19, and a frequency of the frequency source 4 13 for the output from the synthesizing circuit 4 23.
  • Receive RF circuit 4 2 4 for performing frequency conversion using the signal
  • despread circuit 4 2 5 for performing despread processing on the output of receive RF circuit 4 2 4
  • a correction value control circuit 426 for obtaining a phase and amplitude correction value using the delayed modulated signal and the output from the reception RF circuit 424.
  • the signal transmitted from the wireless transmitting device is received from the antenna of the wireless receiving device, frequency-converted and amplified by the receiving RF circuit, and despread using the same spreading code used on the transmitting side. After being processed, it is modulated by a modulation circuit to become received data.
  • the transmission signal is sent to the modulation circuit 401, subjected to modulation processing, sent to the spreading circuit 402, and subjected to spreading processing using a predetermined spreading code.
  • the reference signal whose transmission content is already known is sent to modulation circuit 429 and, after being subjected to modulation processing, sent to spreading circuit 428 and subjected to spreading processing using a predetermined spreading code. .
  • the spread signal of the transmission signal is sent to vector multiplication circuits 404 to 406, where it is multiplied by the weight from transmission weight 403. Thereby, transmission directivity is formed.
  • the initial weight for each antenna is 1.
  • the spread signals of the transmission signals multiplied by the weights are sent to the combining circuits 407 to 409, respectively.
  • the spread signals of the reference signals are also sent to the combining circuits 407 to 409, respectively.
  • the combining circuits 407 to 409 combine the spread signal of the transmission signal and the spread signal of the reference signal.
  • the spread signal of the reference signal is subjected to a vector multiplication process using the correction value from the correction value control circuit 426 in the vector multiplication circuits 410 to 412, and the transmission direction is determined. Sex adjustments are made.
  • the spread signal of the reference signal and the spread signal of the transmission signal whose transmission directivity has been adjusted are sent to transmission RF circuits 414 to 416, where they are frequency-converted and amplified.
  • the second frequency conversion is performed using the frequency of the frequency source 4 13.
  • the spread signal of the transmission signal is transmitted from antennas 420 to 422 via distributors 417 to 419.
  • the spread signal of the reference signal is extracted from the distributors 4 17 to 4 19 immediately before the antennas 4 0 to 4 2 2 and sent to the combining circuit 4 2 3. These signals are combined by the combining circuit 423.
  • This synthesized signal is a signal including an error due to the transmission RF circuits 414 to 416.
  • This combining process is a process of combining the signals and dividing by the number of antennas.
  • a vector from the input point of the divider 4 17 to the output point of the combining circuit 1 19 and the vector from the input point of the divider 1 1 4 to the combining circuit 1 1 9 The vector up to the output point and the vector from the input point of the divider 1 15 to the output point of the combining circuit 1 19 need to be adjusted to be the same.
  • the synthesized signal is sent to the reception RF circuit 424, is frequency-converted into a baseband signal at the same frequency as the frequency given to the transmission RF circuits 414 to 416, and is subjected to quadrature detection. As a result, information on the phase and the amplitude of the synthesized signal can be obtained.
  • the signal after the quadrature detection is converted to the same frequency as the output of the vector multiplication circuits 410 to 412.
  • the synthesized baseband signal is sent to the despreading circuit 425, and subjected to despreading processing using the spreading code used in the spreading circuit 428.
  • the despread signal is input to the correction value control circuit 426.
  • the spread signal of the reference signal is input to the delay circuit 4 27, and at least the period in which the spread signal of the reference signal is input to the correction value control circuit 4 26 via the dividers 4 17 to 4 19 The signal is delayed and sent to the correction value control circuit 4 26.
  • the synthesized despread signal and the delayed reference The phase and the amplitude are compared with the spread signal of the signal, and the correction value of each antenna is obtained so that the difference between the phase and the amplitude is minimized, and the correction value is updated.
  • the method of updating the correction value can be easily implemented by an adaptive algorithm such as an error minimization method.
  • the weight correction value for each antenna is calculated. Based on this correction value, the vector multiplier circuits 410 to 412 adjust the transmission weight from the transmission weight circuit 403 by vector multiplication, and the transmission RF circuits 414 to 416 The phase and amplitude errors caused by passing through are eliminated.
  • the transmission signal is transmitted in a state where the phase and the amplitude are adjusted, that is, the transmission directivity is adjusted.
  • the transmission weight from the transmission weight circuit 403 is also switched to the transmission weight for the transmission signal.
  • the transmission weight is obtained based on, for example, the reception weight.
  • the phases and amplitudes of the signals transmitted from the respective antennas are not individually corrected, but the vector multiplication circuits 4 10 to 4 12 This means that the difference between the vector difference between the antennas at the output of the antenna and the vector difference between the antennas at the antenna output end is calculated. Therefore, by adjusting such transmission directivity, directivity transmission can be performed accurately. In addition, it is not necessary to change the phase and the amplitude at the time of adjustment, and the amplitude and phase characteristics can be corrected by one reception RF section, so that the device can be simplified.
  • the processing can be performed without switching between the transmission signal and the reference signal. Therefore, the adjustment of the transmission directivity and the transmission according to the transmission directivity can be performed in parallel, and the result of the adjustment of the transmission directivity can be promptly reflected in the directivity transmission.
  • FIG. 6 is a block diagram showing a configuration of a radio transmission apparatus according to Embodiment 3 of the present invention.
  • the same parts as in the second embodiment are the same as those in the second embodiment, and a description thereof will be omitted.
  • the radio transmission apparatus shown in FIG. 6 includes a transmission weight circuit 501 for forming directivity different from a transmission signal, and vector multiplication circuits 502 to 504. The operation of the wireless transmission device having the above configuration will be described.
  • the transmission signal is sent to the modulation circuit 401, subjected to modulation processing, sent to the spreading circuit 402, and subjected to spreading processing using a predetermined spreading code.
  • the reference signal whose transmission content is already known is sent to modulation circuit 429 and, after being subjected to modulation processing, sent to spreading circuit 428 and subjected to spreading processing using a predetermined spreading code. .
  • the spread signal of the transmission signal is sent to vector multiplication circuits 404 to 406, where it is multiplied by the weight from transmission weight 403. Thereby, the first transmission directivity is formed.
  • the spread signal of the reference signal is sent to vector multiplication circuits 502 to 504, where it is multiplied by the weight from the transmission weight circuit 501.
  • the second transmission directivity is formed.
  • the initial weight for each antenna is 1.
  • the second transmission directivity is set such that, when the transmission antenna has transmission directivity in advance, the transmission directivity of the reference signal goes out of the directivity of the transmission antenna.
  • the spread signal of the transmission signal multiplied by the weight is sent to the combining circuits 407 to 409, respectively.
  • the spread signals of the reference signals are also sent to the combining circuits 407 to 409, respectively.
  • the combining circuits 407 to 409 combine the spread signal of the transmission signal and the spread signal of the reference signal.
  • the spread signal of the reference signal is subjected to a vector multiplication process using the correction value from the correction value control circuit 426 in the vector multiplication circuits 410 to 412, and the transmission direction is determined. Sex adjustments are made.
  • the spread signal of the reference signal and the spread signal of the transmission signal whose transmission directivity has been adjusted are sent to transmission RF circuits 414 to 416, where they are frequency-converted and amplified. This frequency conversion is performed using the frequency of the frequency source 4 13.
  • the spread signal of the transmission signal is transmitted from antennas 420 to 422 via distributors 417 to 419.
  • the method of adjusting the transmission directivity is performed in the same manner as in the second embodiment. Therefore, even in the radio transmission apparatus and the transmission directivity adjustment method of the present embodiment, the phases and amplitudes of the signals transmitted from the respective antennas are not individually corrected, but the vector multiplication circuits 410 to 4 This means that the difference between the vector difference between the antennas at the output of 12 and the vector difference between the antennas at the antenna output end is obtained. Therefore, the directional transmission can be accurately performed by such adjustment of the transmission directivity. Further, it is not necessary to change the phase and the amplitude at the time of adjustment, and the amplitude and phase characteristics can be corrected by one reception RF section, so that the apparatus can be simplified.
  • the processing can be performed without switching between the transmission signal and the reference signal. Therefore, the adjustment of the transmission directivity and the transmission according to the transmission directivity can be performed in parallel, and the result of the adjustment of the transmission directivity can be promptly reflected in the directivity transmission.
  • the radio transmitting apparatus sets the transmission directivity for the reference signal to be outside the directivity of the transmission antenna when the transmission antenna has transmission directivity in advance. Such effects can be obtained.
  • the transmission directivity is given by the product of the directivity given by digital processing and the directivity of the antenna.
  • the directivity of the antenna is 120 degrees
  • the signal arriving from outside of 120 degrees, for example, from the back side has the directivity of the antenna of 120 degrees. It is oppressed because it is not suitable for outside. The same can be considered for transmission. Therefore, as shown in Fig. 7B, by setting the transmission directivity of the reference signal for transmission calibration to be outside the directivity of the antenna, the calibration signal is not interfered by ordinary users. Can be inserted.
  • the radio transmission apparatus and the transmission directivity adjustment method according to Embodiments 1 to 3 can be applied to a base station apparatus in a digital radio communication system.
  • accurate transmission directivity can be formed with a simple configuration, and good wireless communication can be performed.
  • the present invention is not limited to the first to third embodiments, and can be implemented with various modifications.
  • a case is described in which only a transmitter is mounted on a wireless transmission device and only a receiver is mounted on a wireless reception device, but both the wireless transmission device and the wireless reception device are described. Since transmission and reception are possible, each has a transmitter and a receiver.
  • the case where the transmission directivity is variable is described.
  • the weight calculation function is used. Becomes unnecessary.
  • the radio transmission apparatus and the transmission directivity adjustment method of the present invention combine the signals of the respective antennas distributed by the distributor immediately before the antenna, and use the combined signal and the reference signal, The correction value of each antenna is obtained and updated so that the difference in phase and amplitude between them is minimized, and the transmission directivity is adjusted using this correction value. There is no need for reconnection, and the amplitude and phase characteristics can be corrected with one receiving RF unit. This also enables accurate directional transmission.
  • the present invention relates to a base station device and a communication terminal device in a digital radio communication system. Can be applied to any device. Thus, accurate transmission directivity can be formed with a simple configuration, and good wireless communication can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

明 細 書 無線送信装置及び送信指向性調整方法 技術分野
本発明は、 指向性送信を行なう機能を有する無線送信装置及び送信指向性調 整方法に関する。 背景技術
一般に、 ディジタル無線通信システムにおける伝搬路は、 多数のマルチパス から構成されているため、 伝送路として周波数特性を有しており、 周波数に対 して選択性を持った伝送特性を有している。 さらに、 移動機のような通信端末 装置の動きに伴って、 これらの特性は時間的にも変化し、 受信信号は帯域ない で異なったフェージングを受ける。 このフェージングを選択性フエージングと いう。
この選択性フエージングの対策として、 ァダプティブアレイ技術がある。 こ のァダプティブアレイ技術は、 複数のアンテナ素子を用意し、 これらのアンテ ナ素子で受信した信号に重み付けを行なった後に合成する技術である。
また、 ァダプティブアレイ技術で合成した受信信号の重み係数に基づいて、 受信指向性パターンと同一の指向性パ夕ーンで送信する、 送信指向性制御技術 がある。 この送信指向性制御技術においては、 不要信号が到来した方向には送 信しないので、 送信側でマルチパス伝搬路を補償することができる。 このため、 受信機 (端末側) に等化器などの高級な技術が不要になる。 さらに、 不要信号 が到来した方向には送信しないので、 送信した電波の届く領域が限定され、 下 り回線の周波数利用効率を向上させることができる。
図 1を用いて、 送信指向性制御機能を有する無線送信装置について説明する。 図 1に示すように、 無線送信装置においては、 変調回路 1で送信信号を変調し、 指向性送信を行なうためのべクトル乗算回路 3〜 5に変調信号を送る。 ここで、 べクトル乗算とは、 指向性送信のために送信信号の振幅と位相を変更する処理 のことである。 位相のみを変化させるような指向性送信の場合は位相シフトと いが、 一般性を重視してベクトル乗算と記述する。
べクトル乗算回路 6〜 8では、 送信ウェイ ト回路 2及び補正用ウェイト回路 2 1からのウェイトに基づいてべクトル乗算回路 3〜 5でそれぞれ求められ た、 変調信号に指向性送信のための送信ウェイトを乗算し、 乗算後の信号を送 信 R F回路 9〜 1 1に送る。
送信 R F回路 9〜 1 1では、 入力された信号について、 送信キャリア周波数 への周波数変換と増幅を行なう。 周波数変換は、 周波数源 1 2を用いて周波数 が調整されることにより行われる。 この送信信号は、 分配器 1 3〜 1 5を通つ て、 アンテナ 1 6〜 1 8から送信される。
指向性送信を正確に行なうためには、 べクトル乗算回路 6〜 8の出力におけ る各アンテナ間のべクトル差と、 アンテナ出力端における各アンテナ間のべク トル差とが同じである必要がある。 このベクトル差が異なる場合は、 正しい方 向に指向性送信を行なうことが出来ない。 しかしな力 ら、 ベクトル乗算回路 6 〜 8の出力は、 それぞれ送信 R F回路 9〜 1 1を通るので、 アンテナ出力端に おける各アンテナ間のべクトル差がべクトル乗算回路 6〜 8の出力における 各アンテナ間のべクトル差と異なってしまうことがある。
従来、 このようなベクトル差ずれを補正して指向性送信を調整する方法とし ては、 図 1に示すように、 ァンテナ 1 6〜 1 8の直前の分配器 1 3〜 1 5から 信号を取り出し、 送信機と同一の周波数源を用いて受信 R F回路 1 9でべクト ル乗算回路 6〜8の出力と同じ周波数に変換する。 そして、 測定器 2 0におい て、 送信直前の位相及び振幅を測定し、 ベクトル乗算回路 6〜8の出力である 位相及び振幅と比較する。 この処理を各アンテナについて行なう。 これにより、 送信 R F回路 9〜 1 1を通過することによる誤差を求めることができる。
さらに、 いずれか 1本のアンテナについての位相及び振幅を基準として、 そ れぞれのアンテナの振幅及び位相を補正するための補正値を決定する。 そして、 この補正値を補正用ウェイ卜回路 2 1に格納する。 この補正値は、 ベクトル乗 算回路 3〜5に送られ、 送信ウェイ ト回路 2から送られる送信ウェイトを補正 する際に用いられる。 なお、 それぞれのアンテナ間の振幅と位相の差を検出す るために、 測定器 2 0の各測定部におけるそれぞれの位相及び振幅は同一に調 整されている必要がある。
しかしながら、 このような調整方法においては、 測定の際にコネクタの接続 などが必要となるために調整が煩雑となり、 また、 接続毎に位相及び振幅を調 整する必要があるという問題がある。
一方、 コネクタのつなぎ代えなどを不要とするためには、 受信 R F回路をァ ンテナ数分 (例では 3つ) 用意すれば良いが、 一般的に振幅特性、 位相特性が 全く同一な受信 R F回路を複数用意するのは非常に難しい。 発明の開示
本発明の目的は、 位相及び振幅調整の際のつなぎ代えが不要であり、 かつ、
1つの受信 R F部で振幅及び位相特性を補正することが可能である無線送信 装置及び送信指向性調整方法を提供することである。
本発明の主題は、 アンテナ直前の分配器で分配したそれぞれのアンテナの信 号を合成し、 この合成信号と参照信号とを用いて、 両者の位相及び振幅の差が 最小になるように、 それぞれのアンテナの補正値を求めて更新し、 この補正値 を用いて送信指向性を調整することである。 図面の簡単な説明
図 1は、 従来の無線送信装置の構成を示すプロック図;
図 2は、 本発明の実施の形態 1に係る無線送信装置の構成を示すプロック 図;
図 3は、 図 2に示す無線送信装置と無線通信を行なう無線受信装置の構成を 示すブロック図;
図 4 Aは、 上記実施の形態における送信指向性調整方法を説明するための信 号点配置図;
図 4 Bは、 上記実施の形態における送信指向性調整方法を説明するための信 号点配置図;
図 4 Cは、 上記実施の形態における送信指向性調整方法を説明するための信 号点配置図;
図 5は、 本発明の実施の形態 2に係る無線送信装置の構成を示すプロック 図;
図 6は、 本発明の実施の形態 3に係る無線送信装置の構成を示すブロック 図;
図 7 Αは、 上記実施の形態における送信指向性調整を説明するための図;並 びに
図 7 Bは、 上記実施の形態における送信指向性調整を説明するための図であ る。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 添付図面を参照して詳細に説明する。 (実施の形態 1 )
図 2は、 本発明の実施の形態 1に係る無線送信装置の構成を示すブロック図 である。 また、 図 3は、 上記無線送信装置と無線通信を行なう無線受信装置の 構成を示すブロック図である。
無線送信装置では、 送信信号を変調回路 1 0 1で変調し、 指向性送信を行な うためのベクトル乗算回路 1 0 6〜 1 0 8に送る。 ここで、 ベクトル乗算とは、 指向性送信のために送信信号の振幅と位相を変更する処理のことである。 位相 のみを変化させるような指向性送信の場合は位相シフトといが、 一般性を重視 してべクトル乗算と記述する。 01 0
5
べクトル乗算回路 1 0 6〜 1 0 8では、 送信ウェイト回路 1 0 2からのゥェ ィ ト及び補正値制御回路 1 2 1からの補正値に基づいてべクトル乗算回路 1 0 3〜 1 0 5でそれぞれ求められた、 変調信号に指向性送信のための送信ゥェ ィ トを乗算し、 乗算後の信号を送信 R F回路 1 0 9〜 1 1 1に送る。
送信 R F回路 1 0 9〜 1 1 1では、 入力された信号について、 送信キャリア 周波数への周波数変換と増幅を行なう。 周波数変換は、 周波数源 1 1 2を用い て周波数が調整されることにより行われる。 この送信信号は、 分配器 1 1 3〜 1 1 5を通って、 アンテナ 1 1 6〜 1 1 8から送信される。
なお、 この無線送信装置は、 分配器 1 1 3〜 1 1 5からの出力を合成する合 成回路 1 1 9と、 合成回路 1 1 9からの出力に対して周波数源 1 1 2の周波数 を用いて周波数変換する受信 R F回路 1 2 0と、 変調信号を遅延させる遅延回 路 1 2 2と、 遅延させた変調信号と受信 R F回路 1 2 0からの出力を用いて位 相及び振幅の補正値を求める補正値制御回路 1 2 1とを備える。
一方、 無線送信装置から送信された信号は、 図 3に示す無線受信装置のアン テナ 2 0 1から受信され、 受信 R F回路 2 0 2で周波数変換及び増幅され、 変 調回路 2 0 3で変調されて受信データとなる。
次に、 上記構成を有する無線送信装置の動作について説明する。
まず、 通常の通信においては、 上述した動作が行なわれる。 指向性送信を正 確に行なうためには、 べクトル乗算回路 1 0 6〜 1 0 8の出力における各アン テナ間のベクトル差と、 アンテナ出力端における各アンテナ間のベクトル差と が同じである必要があり、 したがって両べクトル差を同じにする補正値算出動 作が必要となる。 次に、 この補正値算出動作について説明する。
変調回路 1 0 1に送信内容が既知である参照信号を入力する。 なお、 図 2に おいて、 変調回路 1 0 1には、 参照信号及び送信信号が、 図示しない切り替え 手段により適宜切り替えて入力されるようになっている。 また、 送信ウェイト は、 全てのアンテナを 1とする。 このようにして通常の通信状態と同様に送信 動作を行なう。 参照信号をアンテナ 1 1 6〜 1 1 8の直前の分配器 1 1 3〜 1 1 5から取 り出して、 合成回路 1 1 9に送る。 これらの信号は、 合成回路 1 1 9で合成さ れる。 この合成信号は、 送信 R F回路 1 0 9〜 1 1 1による誤差を含んだ信号 である。 なお、 この合成処理は、 それぞれの信号を合成した後にアンテナ数で 除算する処理である。
このとき、 正確な補正値を求めるために、 分配器 1 1 3の入力点 Αから合成 回路 1 1 9の出力点 Xまでのべクトル(べクトル AX)と、分配器 1 1 4の入力 点 Bから合成回路 1 1 9の出力点 Xまでのベクトル (ベクトル B X) と、 分配 器 1 1 5の入力点 Cから合成回路 1 1 9の出力点 Xまでのべクトル (べクトル C X) とは、 同一であるように調整されている必要がある。
次いで、 合成信号は、 受信 R F回路 1 2 0に送られて、 送信 R F回路 1 0 9 〜 1 1 1に与える周波数と同一の周波数でベースバンド信号に周波数変換さ れ、 さらに直交検波される。 これにより、 合成信号についての位相と振幅の情 報が得られる。 さらに、 直交検波後の信号は、 べクトル乗算回路 1 0 6〜 1 0 8の出力と同じ周波数に変換される。 この合成されたベースバンド信号は、 補 正値制御回路 1 2 1に入力される。
一方、 参照信号は、 変調処理された後に遅延回路 1 2 2に入力され、 少なく とも変調信号が分配器 1 1 3〜 1 1 5を経由して補正値制御回路 1 2 1に入 力される期間遅延されて、 補正値制御回路 1 2 1に送られる。
補正値制御回路 1 2 1では、 合成されたベースバンド信号と、 遅延処理され た参照信号との間で、 位相及び振幅が比較され、 両者の位相及び振幅の差が最 小になるように、 それぞれのアンテナの補正値が求められ、 この補正値は更新 される。 なお、 補正値の更新方法は、 誤差最小化法などの適応アルゴリズムで 容易に実施することができる。
このようにして、 各アンテナに対するウェイトの補正値を算出する。 この補 正値に基づいて、 べクトル乗算回路 1 0 3〜 1 0 5で、 送信ウェイト回路 1 0 2からの送信ウェイトがべクトル乗算により調整され、 送信 R F回路 1 0 9〜 1 1 1を通ることにより生じる位相及び振幅の誤差が解消される。
この位相及び振幅の誤差解消について、 図 4を用いて説明する。 参照信号は、 変調回路 1 0 1において変調され、 図 4 Aに示すような位相及び振幅を示す。 この位相及び振幅は既知である。 参照信号に送信ウェイ卜が乗算されて送信 R F回路 1 0 9〜 1 1 1で無線送信処理が行なわれると、 図 4 Bに示すように、 それぞれ位相及び振幅にずれが生じる。 それぞれの参照信号 (〇印、 口印、 △ 印) は、 分配器 1 1 3〜 1 1 5からの出力に対応する。
これを合成回路 1 1 9で合成し、 アンテナ数で除すと、 図 4 Cに示す位相及 び振幅となる (図中の園印) 。 これは、 合成回路 1 1 9の出力に相当する。 補 正値制御回路 1 2 1では、 もとの参照信号 (〇印) と合成した参照信号 (國印) との間で誤差を求め、 補正値を算出する。 これは、 補正値制御回路 1 2 1の出 力に相当する。 この補正値を用いて送信信号の位相及び振幅を調整する。
このように、 位相及び振幅が調整され、 すなわち送信指向性が調整された後 に、 切り替え手段により変調回路 1 0 1に入力する信号を参照信号から送信信 号に切り替える。 また、 送信ウェイト回路 1 0 2からの送信ウェイトも送信信 号用の送信ウェイ卜に切り替える。 このように所定の切り替えが行なわれた後 に、 指向性送信に移行する。 なお、 送信ウェイトは、 例えば受信ウェイトに基 づいて求められる。
本実施の形態の無線送信装置及び送信指向性調整方法においては、 それぞれ のアンテナから送信される信号についての位相及び振幅を個々に補正してい ないが、 べクトル乗算回路 1 0 6〜1 0 8の出力における各アンテナ間のべク トル差と、 アンテナ出力端における各アンテナ間のべクトル差との差を求めて いることになる。 したがって、 このような送信指向性の調整により、 指向性送 信を正確に行なうことができる。 また、 位相及び振幅調整の際のつなぎ代えが 不要であり、 かつ、 1つの受信 R F部で振幅及び位相特性を補正することが可 能であり、 装置の簡略化を図ることができる。
(実施の形態 2 ) 本実施の形態では、 本発明の送信指向性の調整方法を C D M Aシステムに適 用した場合について説明する。
図 5は、 本発明の実施の形態 2に係る無線送信装置の構成を示すプロック図 である。
無線送信装置では、 送信信号を変調回路 4 0 1で変調し、 拡散回路 4 0 2に 送る。 拡散回路 4 0 2では、 所定の拡散符号を用いて変調信号に拡散処理を行 ない、 指向性送信を行なうためのベクトル乗算回路 4 0 4〜4 0 6に送る。 こ こで、 ベクトル乗算とは、 指向性送信のために送信信号の振幅と位相を変更す る処理のことである。 位相のみを変化させるような指向性送信の場合は位相シ フトといが、 一般性を重視してベクトル乗算と記述する。
べクトル乗算回路 4 0 4〜4 0 6では、 送信ウェイ ト回路 4 0 3からのゥェ ィトを拡散信号に乗算し、 乗算後の信号を合成回路 4 0 7〜4 0 9にそれぞれ 送る。 合成回路 4 0 7では、 変調回路 4 2 9で変調され、 拡散回路 4 2 8にお いて所定の拡散符号を用いて拡散処理された参照信号と、 前記拡散信号とが合 成される。
合成された信号は、 それぞれべクトル乗算回路 4 1 0〜4 1 2に送られる。 べクトル乗算回路 4 1 0〜4 1 2では、 補正値制御回路 4 2 6からの補正値に 基づいて、 合成信号に対してベクトル乗算処理を行ない、 乗算後の信号を送信 R F回路 4 1 4〜4 1 6に送る。
送信 R F回路 4 1 4〜4 1 6では、 入力された信号について、 送信キャリア 周波数への周波数変換と増幅を行なう。 周波数変換は、 周波数源 4 1 3を用い て周波数が調整されることにより行われる。 この送信信号は、 分配器 4 1 7〜 4 1 9を通って、 アンテナ 4 2 0〜4 2 2から送信される。
なお、 この無線送信装置は、 分配器 4 1 7〜4 1 9からの出力を合成する合 成回路 4 2 3と、 合成回路 4 2 3からの出力に対して周波数源 4 1 3の周波数 を用いて周波数変換する受信 R F回路 4 2 4と、 受信 R F回路 4 2 4の出力に ついて逆拡散処理を行なう逆拡散回路 4 2 5と、 参照信号についての拡散信号 を遅延させる遅延回路 4 2 7と、 遅延させた変調信号と受信 R F回路 4 2 4か らの出力を用いて位相及び振幅の補正値を求める補正値制御回路 4 2 6とを 備える。
一方、 無線送信装置から送信された信号は、 無線受信装置のアンテナから受 信され、 受信 R F回路で周波数変換及び増幅され、 送信側で使用された拡散符 号と同じ拡散符号を用いて逆拡散処理された後に、 変調回路で変調されて受信 データとなる。
次に、 上記構成を有する無線送信装置の動作について説明する。
指向性送信を正確に行なうためには、 べクトル乗算回路 4 1 0〜4 1 2の出 力における各アンテナ間のベクトル差と、 アンテナ出力端における各アンテナ 間のベタトル差とが同じである必要があり、 したがって両べクトル差を同じに する補正値算出動作が必要となる。 この補正値算出動作について説明する。 送信信号は、 変調回路 4 0 1に送られ、 変調処理された後に、 拡散回路 4 0 2に送られて、 所定の拡散符号を用いて拡散処理される。 一方、 送信内容が既 知である参照信号は、 変調回路 4 2 9に送られ、 変調処理された後に、 拡散回 路 4 2 8に送られて、 所定の拡散符号を用いて拡散処理される。 ここで、 拡散 処理される際に用いられる拡散符号は、 送信信号用と参照信号用で異ならせる 必要がある。
送信信号の拡散信号は、 ベクトル乗算回路 4 0 4〜4 0 6に送られて、 そこ で送信ウェイト 4 0 3からのウェイトが乗算される。 これにより送信指向性が 形成される。 なお、 各アンテナへの初期ウェイトは 1とする。
ウェイ卜が乗算された送信信号の拡散信号は、 合成回路 4 0 7〜4 0 9にそ れぞれ送られる。 また、 参照信号の拡散信号もそれぞれ合成回路 4 0 7〜4 0 9に送られる。 合成回路 4 0 7〜4 0 9では、 送信信号の拡散信号と参照信号 の拡散信号が合成される。
参照信号の拡散信号については、 べクトル乗算回路 4 1 0〜4 1 2において、 補正値制御回路 4 2 6からの補正値を用いてべクトル乗算処理され、 送信指向 性の調整が行なわれる。
送信指向性が調整された参照信号の拡散信号及び送信信号の拡散信号は、 送 信 R F回路 4 1 4〜4 1 6に送られ、 そこで周波数変換され、 増幅される。 二 の周波数変換は、 周波数源 4 1 3の周波数を用いて行われる。 送信信号の拡散 信号については、 分配器 4 1 7〜4 1 9を介してアンテナ 4 2 0 ~ 4 2 2から 送信される。
参照信号の拡散信号については、 アンテナ 4 2 0〜4 2 2の直前の分配器 4 1 7〜4 1 9から取り出して、 合成回路 4 2 3に送る。 これらの信号は、 合成 回路 4 2 3で合成される。 この合成信号は、 送信 R F回路 4 1 4〜4 1 6によ る誤差を含んだ信号である。 なお、 この合成処理は、 それぞれの信号を合成し た後にアンテナ数で除算する処理である。
このとき、 正確な補正値を求めるために、 分配器 4 1 7の入力点から合成回 路 1 1 9の出力点までのベクトルと、 分配器 1 1 4の入力点から合成回路 1 1 9の出力点までのベクトルと、 分配器 1 1 5の入力点から合成回路 1 1 9の出 力点までのベクトルとは、 同一であるように調整されている必要がある。 次いで、 合成信号は、 受信 R F回路 4 2 4に送られて、 送信 R F回路 4 1 4 〜4 1 6に与える周波数と同一の周波数でベースバンド信号に周波数変換さ れ、 さらに直交検波される。 これにより、 合成信号についての位相と振幅の情 報が得られる。 さらに、 直交検波後の信号は、 べクトル乗算回路 4 1 0〜4 1 2の出力と同じ周波数に変換される。 この合成されたベースバンド信号は、 逆 拡散回路 4 2 5に送られ、 拡散回路 4 2 8で使用された拡散符号を用いて逆拡 散処理される。 この逆拡散処理された信号は、 補正値制御回路 4 2 6に入力さ れる。
一方、 参照信号の拡散信号は、 遅延回路 4 2 7に入力され、 少なくとも参照 信号の拡散信号が分配器 4 1 7〜4 1 9を経由して補正値制御回路 4 2 6に 入力される期間遅延されて、 補正値制御回路 4 2 6に送られる。
補正値制御回路 4 2 6では、 合成された逆拡散信号と、 遅延処理された参照 信号の拡散信号との間で、 位相及び振幅が比較され、 両者の位相及び振幅の差 が最小になるように、 それぞれのアンテナの補正値が求められ、 この補正値は 更新される。 なお、 補正値の更新方法は、 誤差最小化法などの適応アルゴリズ ムで容易に実施することができる。
このようにして、 各アンテナに対するウェイトの補正値を算出する。 この補 正値に基づいて、 べクトル乗算回路 4 1 0〜4 1 2で、 送信ウェイト回路 4 0 3からの送信ウェイ卜がべクトル乗算により調整され、 送信 R F回路 4 1 4〜 4 1 6を通ることにより生じる位相及び振幅の誤差が解消される。
このように、 位相及び振幅が調整され、 すなわち送信指向性が調整された状 態で送信信号が送信される。 また、 送信ウエイト回路 4 0 3からの送信ウェイ トも送信信号用の送信ウェイトに切り替える。 なお、 送信ウェイトは、 例えば 受信ウェイトに基づいて求められる。
本実施の形態の無線送信装置及び送信指向性調整方法においては、 それぞれ のアンテナから送信される信号についての位相及び振幅を個々に補正してい ないが、 べクトル乗算回路 4 1 0〜4 1 2の出力における各アンテナ間のべク トル差と、 アンテナ出力端における各アンテナ間のべクトル差との差を求めて いることになる。 したがって、 このような送信指向性の調整により、 指向性送 信を正確に行なうことができる。 また、 位相及び振幅調整の際のつなぎ代えが 不要であり、 かつ、 1つの受信 R F部で振幅及び位相特性を補正することが可 能であり、 装置の簡略化を図ることができる。
また、 送信信号と参照信号を符号分割しているので、 送信信号と参照信号と を切り替えることなく、 処理することができる。 したがって、 送信指向性の調 整と送信指向性にしたがった送信とを並行して行なうことができ、 送信指向性 を調整した結果を迅速に指向性送信に反映させることができる。
(実施の形態 3 )
本実施の形態では、 他ユーザへの干渉を抑えながら、 本発明の送信指向性の 調整方法を C D MAシステムに適用した場合について説明する。 図 6は、 本発明の実施の形態 3に係る無線送信装置の構成を示すプロック図 である。 本実施の形態において、 実施の形態 2と同じ部分については実施の形 態 2と同じとしてその説明は省略する。
図 6に示す無線送信装置は、 送信信号と異なる指向性を形成するための送信 ウェイト回路 5 0 1と、 ベクトル乗算回路 5 0 2〜5 0 4とを備えている。 上記構成を有する無線送信装置の動作について説明する。
送信信号は、 変調回路 4 0 1に送られ、 変調処理された後に、 拡散回路 4 0 2に送られて、 所定の拡散符号を用いて拡散処理される。 一方、 送信内容が既 知である参照信号は、 変調回路 4 2 9に送られ、 変調処理された後に、 拡散回 路 4 2 8に送られて、 所定の拡散符号を用いて拡散処理される。 ここで、 拡散 処理される際に用いられる拡散符号は、 送信信号用と参照信号用で異ならせる 必要がある。
送信信号の拡散信号は、 ベクトル乗算回路 4 0 4〜4 0 6に送られて、 そこ で送信ウェイト 4 0 3からのウェイトが乗算される。 これにより第 1の送信指 向性が形成される。
参照信号の拡散信号は、 べクトル乗算回路 5 0 2〜5 0 4に送られて、 そこ で送信ウェイト回路 5 0 1からのウェイ卜が乗算される。 これにより第 2の送 信指向性が形成される。 なお、 各アンテナへの初期ウェイトは 1とする。 この 第 2の送信指向性は、 送信アンテナにあらかじめ送信指向性がある場合に、 参 照信号についての送信指向性が送信アンテナの指向性の外に出るように設定 する。
ウェイトが乗算された送信信号の拡散信号は、 合成回路 4 0 7〜4 0 9にそ れぞれ送られる。 また、 参照信号の拡散信号もそれぞれ合成回路 4 0 7〜4 0 9に送られる。 合成回路 4 0 7〜4 0 9では、 送信信号の拡散信号と参照信号 の拡散信号が合成される。
参照信号の拡散信号については、 べクトル乗算回路 4 1 0〜4 1 2において、 補正値制御回路 4 2 6からの補正値を用いてべクトル乗算処理され、 送信指向 性の調整が行なわれる。
送信指向性が調整された参照信号の拡散信号及び送信信号の拡散信号は、 送 信 R F回路 4 1 4〜4 1 6に送られ、 そこで周波数変換され、 増幅される。 こ の周波数変換は、 周波数源 4 1 3の周波数を用いて行われる。 送信信号の拡散 信号については、 分配器 4 1 7〜4 1 9を介してアンテナ 4 2 0〜4 2 2から 送信される。
この無線送信装置において、 送信指向性の調整方法は、 実施の形態 2と同様 にして行なう。 したがって、 本実施の形態の無線送信装置及び送信指向性調整 方法においても、 それぞれのアンテナから送信される信号についての位相及び 振幅を個々に補正していないが、 べクトル乗算回路 4 1 0〜4 1 2の出力にお ける各アンテナ間のべクトル差と、 アンテナ出力端における各アンテナ間のベ クトル差との差を求めていることになる。 したがって、 このような送信指向性 の調整により、 指向性送信を正確に行なうことができる。 また、 位相及び振幅 調整の際のつなぎ代えが不要であり、 かつ、 1つの受信 R F部で振幅及び位相 特性を補正することが可能であり、 装置の簡略化を図ることができる。
また、 送信信号と参照信号を符号分割しているので、 送信信号と参照信号と を切り替えることなく、 処理することができる。 したがって、 送信指向性の調 整と送信指向性にしたがった送信とを並行して行なうことができ、 送信指向性 を調整した結果を迅速に指向性送信に反映させることができる。
さらに、 本実施の形態における無線送信装置は、 送信アンテナにあらかじめ 送信指向性がある場合に、 参照信号についての送信指向性が送信アンテナの指 向性の外に出るように設定するので、 次のような効果が得られる。
送信指向性は、 ディジタル処理で与えた指向性と、 アンテナの指向性の積で 与えられる。 受信で考えると、 図 7 Αに示すように、 アンテナの指向性が 1 2 0度の場合、 1 2 0度の外から、 例えば裏側から到来する信号は、 アンテナの 指向性が 1 2 0度の外には向いていないので抑圧される。 送信の場合も同様に 考えることができる。 したがって、 図 7 Bに示すように、 送信キャリブレーション用の参照信号に ついての送信指向性をアンテナの指向性の外に向かうように設定することに よって、 通常のユーザに干渉なくキヤリブレーシヨン信号を挿入することがで きる。
上記実施の形態 1〜 3に係る無線送信装置及び送信指向性調整方法は、 ディ ジ夕ル無線通信システムにおける基地局装置に適用することができる。 これに より、 簡易な構成により、 正確な送信指向性を形成することができ、 良好に無 線通信を行なうことができる。
本発明は、 上記実施の形態 1〜3に限定されず、 種々変更して実施すること が可能である。 例えば、 上記実施の形態 1〜3においては、 無線送信装置に送 信機のみを搭載し、 無線受信装置に受信機のみを搭載した場合について説明し ているが、 無線送信装置及び無線受信装置共に送受信が可能であるので、 それ ぞれ送信機及び受信機を備えている。 また、 上記実施の形態 1〜3においては、 送信指向性が可変である場合について説明しているが、 本発明の装置及び方法 において、 送信指向性が固定である場合には、 ウェイ卜算出機能は不要となる。 以上説明したように本発明の無線送信装置及び送信指向性調整方法は、 ァン テナ直前の分配器で分配したそれぞれのアンテナの信号を合成し、 この合成信 号と参照信号とを用いて、 両者の位相及び振幅の差が最小になるように、 それ ぞれのアンテナの補正値を求めて更新し、 この補正値を用いて送信指向性を調 整するので、 位相及び振幅調整の際のつなぎ代えが不要であり、 かつ、 1つの 受信 R F部で振幅及び位相特性を補正することが可能である。 また、 これによ り、 正確な指向性送信を行なうことができる。
本明細書は、 1 9 9 9年 3月 3 1日出願の特願平 1 1一 0 9 3 9 8 3号に基 づくものである。 この内容はすべてここに含めておく。 産業上の利用可能性
本発明は、 ディジ夕ル無線通信システムにおける基地局装置及び通信端末装 置に適用することができる。 これにより、 簡易な構成により、 正確な送信指向 性を形成することができ、 良好に無線通信を行なうことができる。

Claims

請求の範囲
1 . 複数のアンテナに対して送信ウェイトを設定し、 この送信ゥェ ィ卜にしたがって送信指向性を形成する指向性形成器と、 前記送信指向性にし たがう無線周波数の既知信号を合成して合成信号を得る第 1の合成器と、 前記 無線周波数の合成信号をベースバンド信号に周波数変換する周波数変換器と、 前記ベースバンド信号及び既知信号から前記送信ウェイ 卜の補正値を求める 補正値算出器と、 補正値に基づく送信ウェイ卜にしたがって形成された送信指 向性で送信を行なう送信器と、 を具備する無線送信装置。
2 . 補正値算出器は、 前記ベースバンド信号と前記既知信号との差 が最小になるような補正値を算出する請求項 1記載の無線送信装置。
3 . 複数のアンテナに対して送信ウェイトを設定し、 この送信ゥェ ィ卜にしたがって第 1の送信指向性を形成する第 1の指向性形成器と、 第 1の 拡散符号により拡散変調され、 前記第 1の送信指向性にしたがって各アンテナ から送信される送信信号及び第 2の拡散符号により拡散変調された既知信号 を合成する第 2の合成器と、 所定の周波数で無線周波数に周波数変換され、 前 記送信指向性にしたがう既知信号を合成して合成信号を得る第 1の合成器と、 前記無線周波数の合成信号をベースバンド信号に周波数変換する周波数変換 器と、 前記ベースバンド信号を逆拡散処理して逆拡散信号を得る逆拡散処理器 と、 前記拡散変調された既知信号及び前記逆拡散信号から前記送信ウェイ卜の 補正値を求める補正値算出器と、 補正値に基づく送信ウェイ卜にしたがって形 成された送信指向性で送信を行なう送信器と、 を具備する無線送信装置。
4 . 補正値算出器は、 前記ベースバンド信号と前記既知信号との差 が最小になるような補正値を算出する請求項 3記載の無線送信装置。
5 . 前記既知信号について前記第 1の送信指向性と異なる第 2の送 信指向性を形成する第 2の指向性形成器を具備することを特徴とする請求項
3記載の無線送信装置。
6 . 無線送信装置を備えた基地局装置であって、 前記無線送信装置 は、 複数のアンテナに対して送信ウェイトを設定し、 この送信ウェイトにした がって送信指向性を形成する指向性形成器と、 前記送信指向性にしたがう無線 周波数の既知信号を合成して合成信号を得る第 1の合成器と、 前記無線周波数 の合成信号をベースバンド信号に周波数変換する周波数変換器と、 前記ベース バンド信号及び既知信号から前記送信ウェイ トの補正値を求める補正値算出 器と、 補正値に基づく送信ウェイ卜にしたがって形成された送信指向性で送信 を行なう送信器と、 を具備する。
7 . 無線送信装置を備えた基地局装置と無線通信を行なうことを特 徵とする通信端末装置であって、 前記無線送信装置は、 複数のアンテナに対し て送信ウェイトを設定し、 この送信ウェイトにしたがって送信指向性を形成す る指向性形成器と、 前記送信指向性にしたがう無線周波数の既知信号を合成し て合成信号を得る第 1の合成器と、 前記無線周波数の合成信号をベースバンド 信号に周波数変換する周波数変換器と、 前記ベースバンド信号及び既知信号か ら前記送信ウェイ卜の補正値を求める補正値算出器と、 補正値に基づく送信ゥ エイトにしたがって形成された送信指向性で送信を行なう送信器と、 を具備す る。
8 . 複数のアンテナに対して送信ウェイトを設定し、 この送信ゥェ ィ卜にしたがって送信指向性を形成する指向性形成工程と、 前記送信指向性に したがう無線周波数の既知信号を合成して合成信号を得る第 1の合成工程と、 前記無線周波数の合成信号をベースバンド信号に周波数変換する周波数変換 工程と、 前記ベースバンド信号及び既知信号から前記送信ウェイ卜の補正値を 求める補正値算出工程と、 を具備する送信指向性調整方法。
9 . 複数のアンテナに対して送信ウェイトを設定し、 この送信ゥェ ィ卜にしたがって第 1の送信指向性を形成する第 1の指向性形成工程と、 第 1 の拡散符号により拡散変調され、 前記第 1の送信指向性にしたがって各アンテ ナから送信される送信信号及び第 2の拡散符号により拡散変調された既知信 号を合成する第 2の合成工程と、 所定の周波数で無線周波数に周波数変換され、 前記送信指向性にしたがう既知信号を合成して合成信号を得る第 1の合成ェ 程と、 前記無線周波数の合成信号をベースバンド信号に周波数変換する周波数 変換工程と、 前記ベースバンド信号を逆拡散処理して逆拡散信号を得る逆拡散 処理工程と、 前記拡散変調された既知信号及び前記逆拡散信号から前記送信ゥ エイ卜の補正値を求める補正値算出工程と、 を具備する送信指向性調整方法。
PCT/JP2000/001930 1999-03-31 2000-03-29 Radioemetteur et procede de reglage de la directivite d'emission WO2000060698A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE60036675T DE60036675T2 (de) 1999-03-31 2000-03-29 Funksender und verfahren zur einstellung der senderrichtung
CA002332960A CA2332960C (en) 1999-03-31 2000-03-29 Radio transmission device and transmission directivity adjusting method
US09/701,342 US6600935B1 (en) 1999-03-31 2000-03-29 Radio transmission device and transmission directivity adjusting method
EP00912896A EP1093186B1 (en) 1999-03-31 2000-03-29 Radio transmitter and transmission directivity adjusting method
AU34532/00A AU3453200A (en) 1999-03-31 2000-03-29 Radio transmitter and transmission directivity adjusting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/93983 1999-03-31
JP11093983A JP2000286629A (ja) 1999-03-31 1999-03-31 無線送信装置及び送信指向性調整方法

Publications (2)

Publication Number Publication Date
WO2000060698A1 true WO2000060698A1 (fr) 2000-10-12
WO2000060698A8 WO2000060698A8 (fr) 2001-03-22

Family

ID=14097653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001930 WO2000060698A1 (fr) 1999-03-31 2000-03-29 Radioemetteur et procede de reglage de la directivite d'emission

Country Status (8)

Country Link
US (1) US6600935B1 (ja)
EP (1) EP1093186B1 (ja)
JP (1) JP2000286629A (ja)
CN (1) CN1171352C (ja)
AU (1) AU3453200A (ja)
CA (1) CA2332960C (ja)
DE (1) DE60036675T2 (ja)
WO (1) WO2000060698A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4318389B2 (ja) * 2000-04-03 2009-08-19 三洋電機株式会社 アダプティブアレー装置、無線基地局、携帯電話機
US7039135B2 (en) * 2001-10-11 2006-05-02 D.S.P.C. Technologies Ltd. Interference reduction using low complexity antenna array
JP3913696B2 (ja) * 2003-03-19 2007-05-09 三洋電機株式会社 基地局装置
JP4326902B2 (ja) * 2003-10-15 2009-09-09 Kddi株式会社 アレーアンテナ用rf回路伝送特性調整装置およびその方法
JP4209355B2 (ja) 2004-03-30 2009-01-14 富士通株式会社 位相キャリブレーション方法及び位相キャリブレーション装置
JP4528236B2 (ja) 2005-09-29 2010-08-18 株式会社日立製作所 無線基地局装置および通信方法
EP2372836B1 (en) * 2010-03-18 2017-05-03 Alcatel Lucent Antenna array calibration
CN102299730B (zh) * 2010-06-22 2015-09-16 中兴通讯股份有限公司 一种基于tdd多点协作传输的天线校正方法及系统
JP5536614B2 (ja) * 2010-10-27 2014-07-02 京セラ株式会社 通信装置及び通信方法
JP6276065B2 (ja) * 2014-02-26 2018-02-07 パナソニック株式会社 無線通信方法及び無線通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154604A (ja) * 1987-12-10 1989-06-16 Nec Corp アレイアンテナ
JPH01241203A (ja) * 1988-03-22 1989-09-26 Mitsubishi Electric Corp ディジタルビームフォーミング装置
JPH052423A (ja) * 1991-06-26 1993-01-08 Daifuku Co Ltd 移動車の操作装置
JPH10336149A (ja) * 1997-05-28 1998-12-18 Matsushita Electric Ind Co Ltd アレーアンテナ無線cdma通信装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412414A (en) * 1988-04-08 1995-05-02 Martin Marietta Corporation Self monitoring/calibrating phased array radar and an interchangeable, adjustable transmit/receive sub-assembly
JP2626514B2 (ja) * 1993-11-08 1997-07-02 日本電気株式会社 基地局送受信装置
FI105430B (fi) * 1995-05-24 2000-08-15 Nokia Networks Oy Tukiasemalaitteisto sekä menetelmä antennikeilan suuntaamiseksi
JP3441256B2 (ja) * 1995-09-06 2003-08-25 株式会社東芝 無線通信システム
EP0807989B1 (en) * 1996-05-17 2001-06-27 Motorola Ltd Devices for transmitter path weights and methods therefor
GB2313523B (en) * 1996-05-23 2000-06-07 Motorola Ltd Self-calibration apparatus and method for communication device
JP3585701B2 (ja) * 1997-06-12 2004-11-04 富士通株式会社 セルラ移動通信システム無線基地局

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154604A (ja) * 1987-12-10 1989-06-16 Nec Corp アレイアンテナ
JPH01241203A (ja) * 1988-03-22 1989-09-26 Mitsubishi Electric Corp ディジタルビームフォーミング装置
JPH052423A (ja) * 1991-06-26 1993-01-08 Daifuku Co Ltd 移動車の操作装置
JPH10336149A (ja) * 1997-05-28 1998-12-18 Matsushita Electric Ind Co Ltd アレーアンテナ無線cdma通信装置

Also Published As

Publication number Publication date
CA2332960C (en) 2004-11-02
US6600935B1 (en) 2003-07-29
CN1171352C (zh) 2004-10-13
DE60036675T2 (de) 2008-01-31
EP1093186A4 (en) 2004-07-07
DE60036675D1 (de) 2007-11-22
CN1296648A (zh) 2001-05-23
WO2000060698A8 (fr) 2001-03-22
EP1093186A1 (en) 2001-04-18
CA2332960A1 (en) 2000-10-12
JP2000286629A (ja) 2000-10-13
AU3453200A (en) 2000-10-23
EP1093186B1 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
JP4531607B2 (ja) キャリブレーション装置
JP4478606B2 (ja) リニアアレイアンテナの校正装置及び校正方法
JP5186748B2 (ja) 無線通信装置および無線通信方法
US9300382B2 (en) Wireless signal processor and wireless apparatus
EP1161001A2 (en) Multi-beam receiving apparatus
JP3519276B2 (ja) キャリブレーション装置
WO2002095983A1 (fr) Emetteur/recepteur a antenne reseau et procede pour l'etalonner
JP2002135034A (ja) アレーアンテナ校正方法およびアレーアンテナ受信装置
JPH1146180A (ja) アレーアンテナ無線受信装置のキャリブレーション装置
WO2001039394A1 (fr) Recepteur sans fil et procede d'etalonnage de ce dernier
JP3673732B2 (ja) アレーアンテナ送信パターン校正方法
JP3932456B2 (ja) 移動通信システムの受信信号補正装置及びその方法
JP2006019991A (ja) 通信装置、キャリブレーション方法及びプログラム
WO2000060698A1 (fr) Radioemetteur et procede de reglage de la directivite d'emission
JP2010114652A (ja) アレイアンテナを用いた無線通信装置、及びアレイアンテナのキャリブレーションにおける位相補正方法
JP4578725B2 (ja) 通信装置およびその送信アレーアンテナ校正方法
WO2001063799A1 (fr) Procede et dispositif de radiocommunication utilisant une antenne reseau
JP3589605B2 (ja) 適応アレーアンテナ送受信装置
JP2010213217A (ja) アレイアンテナ通信装置およびその制御方法ならびにプログラム
JP2002084217A (ja) 基地局装置および到来方向推定方法
JP4215887B2 (ja) 基地局アンテナ装置
JP2001358520A (ja) 適応アレーアンテナ送受信装置
JP4447503B2 (ja) 通信装置及びキャリブレーションウエイト推定方法
CN100583681C (zh) 自适应阵列天线收发装置
JP2003163622A (ja) アダプティブアレーアンテナ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00800344.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref document number: 2332960

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2000912896

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09701342

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: C1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WR Later publication of a revised version of an international search report
WWP Wipo information: published in national office

Ref document number: 2000912896

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000912896

Country of ref document: EP