[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1999002837A1 - System zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs - Google Patents

System zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs Download PDF

Info

Publication number
WO1999002837A1
WO1999002837A1 PCT/DE1998/001565 DE9801565W WO9902837A1 WO 1999002837 A1 WO1999002837 A1 WO 1999002837A1 DE 9801565 W DE9801565 W DE 9801565W WO 9902837 A1 WO9902837 A1 WO 9902837A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
storage space
control
temperature
control valve
Prior art date
Application number
PCT/DE1998/001565
Other languages
English (en)
French (fr)
Inventor
Helmut Rembold
Ferdinand Grob
Dirk Mentgen
Heinz Stutzenberger
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US09/254,573 priority Critical patent/US6209521B1/en
Priority to DE59806437T priority patent/DE59806437D1/de
Priority to JP50796099A priority patent/JP4082744B2/ja
Priority to EP98934877A priority patent/EP0925434B1/de
Publication of WO1999002837A1 publication Critical patent/WO1999002837A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • F02D2041/1416Observer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure

Definitions

  • the invention relates to a method for operating a fuel supply system for an internal combustion engine, in particular a motor vehicle, in which fuel is fed into a storage space and a pressure is generated in the storage space, in which an actual value of the pressure in the storage space is measured, and in which the pressure in the storage space is regulated to a setpoint. Furthermore, the invention relates to a fuel supply system for an internal combustion engine, in particular of a motor vehicle, with a pump for delivering fuel to a storage space and for generating a pressure in the storage space, with a pressure sensor for measuring an actual value of the pressure in the
  • Storage space with a pressure control valve for influencing the pressure in the storage space, and with a control device which is provided with means with which the pressure in the storage space can be regulated to a desired value.
  • a fuel supply system is known, for example, in connection with direct-injection internal combustion engines. There the fuel is made available in the storage space under high pressure. The pressure in the storage space is regulated to the desired setpoint by means of the pressure control valve. To inject the fuel into a combustion chamber of the internal combustion engine, an injection valve belonging to the combustion chamber is opened and the injected fuel is then ignited with the aid of a spark plug.
  • the injection valves are arranged in such a way that the fuel is not injected into an intake manifold or the like, but rather directly into the combustion chambers.
  • the amount of fuel to be injected is set with the aid of the period of time that the respective injector is open. This time period depends on the pressure in the storage space. The greater the pressure, the shorter the time it takes to inject the same amount of fuel. To take into account the pressure in the storage space at the
  • a pressure sensor is assigned to the storage space, with which the actual value of the pressure in the storage space is measured.
  • the object of the invention is to provide a method and a fuel supply system of the type mentioned at the outset which enable correct fuel injection even in the event of a defect in the pressure sensor.
  • Regulation of the pressure in the storage space can be removed by a controller.
  • the control with which the pressure in the storage space is set to the desired setpoint is replaced by a controller.
  • the control system it is then possible to take into account the pressure in the storage space, at least to the extent that the quantity of fuel to be injected, that a largely correct injection is still guaranteed.
  • the actual values of the pressure in the storage space measured by the defective pressure sensor are therefore no longer taken into account when regulating the amount of fuel to be injected. Instead, this regulation is replaced, so that the control then supplies the pressure to be taken into account in the dimensioning of the quantity of fuel to be injected in the storage space.
  • an error in the regulation of the pressure in the storage space is detected, and after the detection of an error, the regulation is switched off and the control is switched on.
  • a defect in particular of the pressure sensor can be caused by a
  • Plausibility check can be recognized.
  • the signal driving the pressure control valve can be compared with the signal emitted by the pressure sensor. If these signals differ significantly from each other over a longer period of time, an error can be concluded from this. After the detection of an error regarding the regulation of the pressure in the storage space, the regulation can then be replaced by the controller. In this way it is ensured that the need for the control to be replaced by the control is reliably recognized and that the replacement as such is then carried out safely.
  • the regulation of the pressure in the storage space is replaced by an observer model.
  • the controller replacing the regulation therefore has an observer model. This determines the current operating state of the internal combustion engine from a plurality of input signals. Depending on this operating state, an output signal is then generated which represents a characteristic variable of the internal combustion engine. This output signal can then be used, for example, to simulate the pressure in the storage space in the event of a defect in the pressure sensor. With the aid of the observer model, it is thus possible to implement the control system which starts in the event of a defect in the regulation of the pressure in the storage space.
  • the observer model performs temperature compensation.
  • the temperature of the pressure control valve influencing the pressure in the storage space increases relatively strongly during the operation of the internal combustion engine and, in particular, when the pressure control valve is in the opened state.
  • the cross section of the passage opening of the pressure control valve also changes. This in turn causes a change in the amount of fuel flowing through the pressure control valve, which has a direct effect on the pressure in the storage space and thus on the amount of fuel to be injected.
  • the pressure sensor works without errors, these changes are compensated for by a target / actual value comparison of the desired and the actual pressure in the storage space and by the proposed regulation of the pressure in the storage space. If, on the other hand, the pressure sensor is defective, temperature compensation is carried out with the aid of the observer model in the controller replacing the control.
  • the observer model determines, for example, an output signal from a plurality of input signals, which corresponds to the temperature or the temperature changes of the pressure control valve. Out of it can then be concluded on the resulting change in the cross section of the passage opening of the pressure control valve, from which a corresponding compensation can be derived. This temperature compensation can then be taken into account when controlling the pressure control valve and thus when measuring the amount of fuel to be injected.
  • a supply voltage is provided to control the pressure in the storage space and is linked to a temperature-dependent factor.
  • the supply voltage is applied to the pressure control valve. If the supply voltage is changed by the temperature-dependent factor, the changing temperature of the pressure control valve can be compensated.
  • a control voltage is provided for controlling and / or regulating the pressure in the storage space and is linked to a temperature-dependent factor.
  • Control voltage the pressure control valve is controlled.
  • the cross section of the passage opening is dependent on the control voltage when the pressure control valve is in the opened state.
  • the control voltage thus corresponds to the amount of fuel flowing through the pressure control valve. If the control voltage is changed by the temperature-dependent factor, the temperature of the Pressure control valve can be compensated.
  • the factor is determined as a function of the temperature behavior of a pressure control valve influencing the pressure in the storage space. It is particularly expedient if the temperature behavior of the pressure control valve is determined as a function of the temperature behavior of a coil of the pressure control valve.
  • the passage opening of the pressure control valve is influenced electromagnetically. The cross section of the passage opening is larger, the smaller the control voltage that drives the pressure control valve. When the control voltage is large, a large current flows through the coil of the pressure control valve. This causes the coil to heat up. The heating of the coil in turn causes
  • Figure 1 shows a schematic block diagram of a fuel supply system according to the invention for an internal combustion engine of a motor vehicle
  • Figure 2a shows a schematic block diagram of a first embodiment of an inventive
  • Control and / or regulation of the fuel supply system of Figure 1 shows a schematic block diagram of a second embodiment of a control and / or regulation of the invention
  • FIG. 1 shows a fuel supply system 1 shown, which is intended for use in an internal combustion engine of a motor vehicle.
  • the fuel supply system 1 has a storage space 2, into which fuel can be conveyed from a container 3 by means of a first pump 4 with a pressure control valve 5 and by means of a second pump 6 with a pressure relief valve 7.
  • the storage space 2 is connected to injection valves 8, with which the fuel can be injected into associated combustion chambers of the internal combustion engine.
  • Injection valves 8 are preferably assigned directly to the combustion chambers, so that the fuel is injected directly into the combustion chambers.
  • the actual pressure p in the storage space 2 can be measured with the aid of a pressure sensor 9 connected to the same.
  • the pressure sensor 9 produces an output voltage of an actual value pist U, which is the actual p Durck corresponds.
  • the pressure control valve 10 has a coil, the armature of which is immersed in the passage opening of the pressure control valve 10. The cross section of this passage opening is changed by the position of the armature. The position of the armature depends on a control voltage U p acting on the pressure control valve 10, which can be analog or clocked.
  • the control voltage U p of the pressure control valve 10 is generated by a control unit 11, to which the actual value U p ⁇ st is supplied as an input signal.
  • the control device 11 is connected to a plurality of input signals 12 which characterize the respective operating state of the internal combustion engine.
  • the control unit 11 influences the pressure p in the storage space 2 with the aid of the pressure control valve 10, as will be described with reference to FIGS. 2a and 2b. Furthermore, the control unit 11 controls the injection valves 8, so that fuel is injected from the storage space 2 into the combustion chambers of the internal combustion engine. With the help of spark plugs, the fuel is ignited and burned in the combustion chambers.
  • FIG. 2a shows a control and / or regulation of the actual pressure p ⁇ st in the storage space 2. This control and / or regulation is implemented by appropriate means in the control unit 11.
  • Accelerator pedal and thus a driver signal representing load request ⁇ and a signal representing the speed of the internal combustion engine n M generates an output signal that Represented setpoint U psoll for the pressure in the storage space 2.
  • This setpoint U psoll is compared with the actual value U pigt and the difference is fed to a controller 14.
  • the controller 14 uses this to generate an output signal which is additively linked to the setpoint U psoll to the control voltage U p .
  • This output signal is in this case such generated by controller 14 that the resulting control voltage U p the pressure control valve 10 just influenced so that the actual value U pist of the pressure p isc in storage chamber 2 just a the target value U psoll corresponding pressure Complies.
  • the pressure control valve 10 is represented by an output stage 15 which serves for actuation and a resistor 16 which represents the coil.
  • the control voltage U p acts on the output stage 15, so that a current corresponding to the control voltage U p flows through the resistor 16.
  • a change in the control voltage U p causes a change in the current mentioned, which in turn has the consequence that the armature in the coil is displaced by a path corresponding to the change in current. This in turn means that the
  • Cross section of the passage opening of the pressure control valve 10 is opened or closed. In this way, more or less fuel can flow out of the storage space 2 into the tank 3, which is simultaneously accompanied by a reduction or increase in the actual pressure p isC in the storage space 2.
  • the current flowing through the resistor 16 heats up the sink.
  • the degree of heating ie the temperature of the coil and thus of the pressure control valve 10
  • the degree of heating is dependent on the current and thus on the control voltage U p and on its changes. If the control voltage U p is changed by the controller 14 or by the characteristic diagram 13, the temperature of the coil and thus the resistor 16 also changes. However, a change in the resistor 16 also has the consequence that the current through the resistor 16 in turn and thus the current through the coil changes. This in itself leads to a change in the pressure p ist in the storage space 2.
  • control unit 11 compares the control voltage U p which drives the pressure control valve 10 with the actual value U psit generated by the pressure sensor 9. This comparison can be carried out sporadically and / or cyclically when the internal combustion engine is started up. If the signals mentioned deviate significantly from one another over a longer period of time, then the control unit 11 deduces a defect in the pressure sensor 9 as an alternative which the control unit 11 can check and recognize the correct function of the pressure sensor 9.
  • control unit 11 detects a defect in the pressure sensor 9, the regulation of the pressure in the storage space 2, in particular the controller 14, which is illustrated and explained in FIG. 2a, is switched off.
  • the controller 14 therefore no longer generates an output signal.
  • the control voltage U p corresponds to the target value U psoll , that is to say the control voltage acts on the amplifier 15 unaffected by the actual value U pist .
  • the aforementioned regulation of the pressure in the storage space 2 is then replaced by a controller. This means that after switching off the control, a control of the pressure in the storage space 2 is switched on, with which the control is replaced. This replacement by the controller, as well as the controller as such, is carried out by the control unit 11.
  • An observer model 17 is provided to control the pressure in the storage space 2.
  • a plurality of input signals which characterize the operating state of the internal combustion engine and / or the motor vehicle, for example the load signal ⁇ , are fed to the latter
  • Temperature compensation carried out. This means that if the pressure sensor 9 is defective and the controller 14 is thus switched off, the changes in the temperature of the pressure control valve 10 are compensated for by the observer model 17.
  • the observer model 17 thus compensates for the changes in the temperature of the pressure control valve 10 by generating a corresponding factor k.
  • the following applies to the coil current i: i / Ampere U p x U 0 / Volt xkxl / R / Ohm.
  • the following applies to the resistor R: R R 0 x (1 + ⁇ x ⁇ T) .
  • p lst / bar cx U p x U 0 / volt xkx 1 / (R 0 x (1 + c. X ⁇ T)) / ohm (equation 1).
  • the value c is known from the characteristic curve of the pressure control valve 10.
  • U p is generated by the map 13 and corresponds to U psoll due to the switched-off controller 14.
  • U 0 is the supply voltage of the motor vehicle.
  • R 0 is the reference value of the resistor 16, which it has at a specific temperature, is a constant with which the resistance R, starting from the reference value R 0 , changes with a temperature change ⁇ T of the pressure control valve 10.
  • the temperature change ⁇ T of the pressure control valve 10 can be calculated by the observer model 17 with the aid of a heat balance calculation from the input signals of the observer model 17.
  • the hydraulic heat loss plays a role here, which arises in the pressure control valve 10 and which leads to the heating of the fuel. It is also possible for heat to be dissipated, for example when the internal combustion engine starts hot. Furthermore, the electrical heat loss in the pressure control valve 10 and the heat exchange of the pressure control valve 10 with the surroundings play a role. All of these heat contributions can be made from the
  • Input signals are calculated and a total of ⁇ T can be determined.
  • the factor k is coupled in for compensation in that it is linked to the supply voltage U 0 .
  • the supply voltage U 0 is therefore changed by the factor k.
  • the control of the pressure in the storage space 2 is thus achieved in FIG. 2a by temperature-dependent compensation of the supply voltage U 0 .
  • a control and / or regulation of the actual pressure p is shown in the storage space 2 in FIG. 2b. This control and / or regulation is implemented by appropriate means in the control unit 11.
  • the factor k is injected for compensation in that it is linked to the control voltage U p .
  • the control voltage U p is therefore changed by the factor k.
  • the control of the pressure in the storage space 2 is thus achieved in FIG. 2b by temperature-dependent compensation of the control voltage U p .
  • control voltage U p is an analog voltage
  • the factor k or k 'can be brought into effect immediately. If the control voltage U p is a clocked voltage, this results in an average mean value which ultimately corresponds to the analog control voltage U p . In this case, the factor k or k 'can be brought into effect by changing the clock ratio accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Es wird ein Kraftstoffversorgungssystem (1) für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs beschrieben. Das Kraftstoffversorgungssystem (1) ist mit einer Pumpe (4, 6) zur Förderung von Kraftstoff in einen Speicherraum (2) und zur Erzeugung eines Drucks (pist) in dem Speicherraum (2) versehen. Des weiteren ist ein Drucksensor (9) zur Messung eines Istwerts (Upist) des Drucks (pist) in dem Speicherraum (2) sowie ein Drucksteuerventil (10) zur Beeinflussung des Drucks (pist) in dem Speicherraum (2) vorgesehen. Ein Steuergerät (11) ist mit Mitteln versehen, mit denen der Druck in dem Speicherraum (2) auf einen Sollwert (Upso11) regelbar ist. Das Steuergerät (11) ist des weiteren mit Mitteln versehen, mit denen die Regelung des Drucks in dem Speicherraum (2) durch eine Steuerung ablösbar ist.

Description

Titel: System zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
BESCHREIBUNG
Die Erfindung betrifft ein Verfahren zum Betreiben eines Kraftstoffversorgungssystems für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs, bei dem Kraftstoff in einen Speicherraum gefördert und ein Druck in dem Speicherraum erzeugt wird, bei dem ein Istwert des Drucks in dem Speicherraum gemessen wird, und bei dem der Druck in dem Speicherraum auf einen Sollwert geregelt wird. Des weiteren betrifft die Erfindung ein Kraftstoffversorgungssystem für eine Brennkraftmaschine insbesondere eines Kraftfahrzeug, mit einer Pumpe zur Förderung von Kraftstoff in einen Speicherraum und zur Erzeugung eines Drucks in dem Speicherraum, mit einem Drucksensor zur Messung eines Istwerts des Drucks in dem
Speicherraum, mit einem Drucksteuerventil zur Beeinflussung des Drucks in dem Speicherraum, und mit einem Steuergerät, das mit Mitteln versehen ist, mit denen der Druck in dem Speicherraum auf einen Sollwert regelbar ist. Ein derartiges Kraftstoffversorgungssystem ist beispielsweise im Zusammenhang mit direkteinspritzenden Brennkraftmaschinen bekannt . Dort wird der Kraftstoff in dem Speicherraum unter einem hohen Druck zur Verfügung gestellt. Der Druck in dem Speicherraum wird mit Hilfe des Drucksteuerventils auf den erwünschten Sollwert geregelt. Zur Einspritzung des Kraftstoffs in einen Brennraum der Brennkraftmaschine wird ein zu dem Brennraum gehöriges Einspritzventil geöffnet und der eingespritzte Kraftstoff wird dann mit Hilfe einer Zündekerze gezündet. Bei direkteinspritzenden Brennkraftmaschinen sind die Einspritzventile derart angeordnet, daß der Kraftstoff nicht in ein Saugrohr oder dergleichen, sondern unmittelbar in die Brennräume eingespritzt wird.
Die Menge des einzuspritzenden Kraftstoffs wird mit Hilfe der Zeitdauer eingestellt, die das jeweilige Einspritzventil geöffnet ist. Diese Zeitdauer ist dabei von dem Druck in dem Speicherraum abhängig. Je größer der Druck, desto kürzer ist die Zeitdauer für die Einspritzung derselben Menge Kraftstoff. Zur Berücksichtigung des Drucks in dem Speicherraum bei der
Ermittlung der einzuspritzenden Zeitdauer ist dem Speicherraum ein Drucksensor zugeordnet, mit dem der Istwert des Drucks in dem Speicherraum gemessen wird.
Ist dieser Drucksensor defekt, werden also von dem Drucksensor fehlerhafte oder gar keine Werte gemessen, so wird dadurch die Zeitdauer und damit die Bemessung der Menge des einzuspritzenden Kraftstoffs verfälscht. Aufgabe der Erfindung ist es, ein Verfahren und ein Kraftstoffversorgungssystem der eingangs genannten Art zu schaffen, die auch bei einem Defekt des Drucksensors eine korrekte Einspritzung von Kraftstoff ermöglichen.
Diese Aufgabe wird bei einem Verfahren bzw. einem Kraftstoffversorgungssystem der eingangs genannten Art durch die Erfindung dadurch gelöst, daß die Regelung des Drucks in dem Speicherraum durch eine Steuerung abgelöst wird, bzw. daß das Steuergerät mit Mitteln versehen ist, mit denen die
Regelung des Drucks in dem Speicherraum durch eine Steuerung ablösbar ist .
Ist also beispielsweise der Drucksensor defekt, so wird die Regelung, mit der der Druck in dem Speicherraum auf den erwünschten Sollwert eingestellt wird, durch eine Steuerung ersetzt. Mit Hilfe der Steuerung ist es dann möglich, den Druck in dem Speicherraum zumindest insoweit bei der Bemessung der Menge des einzuspritzenden Kraftstoffs zu berücksichtigen, daß weiterhin eine weitgehend korrekte Einspritzung gewährleistet ist. Die von dem defekten Drucksensor gemessenen Istwerte des Drucks in dem Speicherraum werden also nicht mehr bei der Regelung der Menge des einzuspritzenden Kraftstoffs berücksichtigt. Statt dessen wird diese Regelung abgelöst, so daß dann durch die Steuerung der bei der Bemessung der Menge des einzuspritzenden Kraftstoffs zu berücksichtigende Druck in dem Speicherraum geliefert wird. Bei einer vorteilhaften Ausgestaltung der Erfindung wird ein Fehler der Regelung des Drucks in dem Speicherraum erkannt, und es wird nach der Erkennung eines Fehlers die Regelung abgeschaltet und die Steuerung eingeschaltet. Ein Defekt insbesondere des Drucksensors kann dabei durch eine
Plausibilitätskontrolle erkannt werden. Beispielsweise kann das das Drucksteuerventil ansteuernde Signal mit dem von dem Drucksensor abgegebenen Signal verglichen werden. Weichen diese Signale über einen längeren Zeitraum wesentlich voneinander ab, so kann daraus auf einen Fehler geschlossen werden. Nach der Erkennung eines Fehlers bezüglich der Regelung des Drucks in dem Speicherraum kann dann die Ablösung der Regelung durch die Steuerung erfolgen. Auf diese Weise wird gewährleistet, daß die Notwendigkeit einer Ablösung der Regelung durch die Steuerung sicher erkannt wird, und daß dann die Ablösung als solche sicher durchgeführt wird.
Bei einer vorteilhaften Weiterbildung der Erfindung wird die Regelung des Drucks in dem Speicherraum von einem Beobachtermodell abgelöst. Die die Regelung ablösende Steuerung weist also ein Beobachtermodell auf. Dieses ermittelt aus einer Mehrzahl von Eingangssignalen den jeweiligen momentanen Betriebszustand der Brennkraftmaschine. In Abhängigkeit von diesem Betriebszustand wird dann ein Ausgangssignal erzeugt, das eine charakteristische Größe der Brennkraftmaschine darstellt. Dieses Ausgangssignal kann dann dazu verwendet werden, beispielsweise den Druck in dem Speicherraum bei einem Defekt des Drucksensors nachzubilden. Mit Hilfe des Beoabachtermodells ist es somit möglich, die bei einem Defekt der Regelung des Drucks in dem Speicherraum einsetzende Steuerung zu realisieren.
Besonders zweckmäßig ist es, wenn eine Temperaturkompensation von dem Beobachtermodell durchgeführt wird. Insbesondere die Temperatur des den Druck in dem Speicherraum beeinflussenden Drucksteuerventils erhöht sich relativ stark während des Betriebs der Brennkraftmaschine und insbesondere im angesteuerten geöffneten Zustand des Drucksteuerventils. Dies hat zur Folge, daß sich der Querschnitt der Durchlaßöffnung des Drucksteuerventils ebenfalls verändert. Dies wiederum bewirkt eine Veränderung der Menge des durch das Drucksteuerventil durchfließenden Kraftstoffs, was sich direkt auf den Druck in dem Speicherraum und damit auf die Menge des einzuspritzenden Kraftstoffs auswirkt.
Bei fehlerfrei arbeitendem Drucksensor werden diese Änderungen durch einen Soll-Istwert-Vergleich des erwünschten und des tatsächlichen Drucks in dem Speicherraum und durch die vorgesehene Regelung des Drucks in dem Speicherraum kompensiert. Ist hingegen der Drucksensor defekt, so wird bei der die Regelung ablösenden Steuerung eine Temperaturkompensation mit Hilfe des Beobachtermodells durchgeführt. Dabei ermittelt das Beobachtermodell beispielsweise aus einer Mehrzahl von Eingangssignalen ein Ausgangssignal, das der Temperatur bzw. den Temperaturänderungen des Drucksteuerventils entspricht. Daraus kann dann auf die resultierende Veränderung des Querschnitts der Durchlaßöffnung des Drucksteuerventils geschlossen werden, woraus eine entsprechende Kompensation abgeleitet werden kann. Diese Temperaturkompensation kann dann bei der Ansteuerung des Drucksteuerventils und damit bei der Bemessung der Menge des einzuspritzenden Kraftstoffs berücksichtigt werden.
Bei einer vorteilhaften Ausgestaltung der Erfindung ist zur Steuerung des Drucks in dem Speicherraum eine Versorgungsspannung vorgesehen, die mit einem temperaturabhängigen Faktor verknüpft wird. Die Versorgungsspannung liegt an dem Drucksteuerventil an. Wird die VersorgungsSpannung durch den temperaturabhängigen Faktor verändert, so kann dadurch die sich ändernde Temperatur des Drucksteuerventils kompensiert werden.
Bei einer anderen vorteilhaften Ausgestaltung der Erfindung ist zur Steuerung und/oder Regelung des Drucks in dem Speicherraum eine Steuerspannung vorgesehen, die mit einem temperaturabhängigen Faktor verknüpft wird. Mit der
Steuerspannung wird das Drucksteuerventil angesteuert. Der Querschnitt der Durchlaßöffnung ist im angesteuerten geöffneten Zustand des Drucksteuerventils abhängig von der Steuerspannung. Die Steuerspannung entspricht somit der Menge des durch das Drucksteuerventil hindurchfließenden Kraftstoffs. Wird die Steuerspannung durch den temperaturabhängigen Faktor verändert, so kann dadurch die sich im angesteuerten Zustand ändernde Temperatur des Drucksteuerventils kompensiert werden.
Bei einer vorteilhaften Weiterbildung der Erfindung wird der Faktor in Abhängigkeit von dem Temperaturverhalten eines den Druck in dem Speicherraum beeinflussenden Drucksteuerventils ermittelt. Dabei ist es besonders zweckmäßig, wenn das Temperaturverhalten des Drucksteuerventils in Abhängigkeit von dem Temperaturverhalten einer Spule des Drucksteuerventils ermittelt wird. Die Durchlaßöffnung des Drucksteuerventils wird elektromagnetisch beeinflußt. Dabei ist der Querschnitt der Durchlaßöffnung um so größer, je kleiner die das Drucksteuerventil ansteuernde Steuerspannung ist. Bei einer großen Steuerspannung fließt ein hoher Strom durch die Spule des Drucksteuerventils. Dies hat eine Erwärmung der Spule zur Folge. Die Erwärmung der Spule wiederum bewirkt eine
Veränderung des elektrischen Widerstands der Spule, was wiederum zu einer Veränderung des Stroms durch die Spule und damit zu einer Veränderung des Querschnitts der Durchlaßöffnung des Drucksteuerventils führt. Wird dieses Temperaturverhalten der Spule im Rahmen des temperaturabhängigen Faktors berücksichtigt, so kann der Einfluß der eine Kompensation der beschriebenen temperaturabhängigen Veränderungen des Querschnitts der Durchlaßöffnung erreicht werden. Insbesondere kann der Einfluß der Erwärmung der Spule schon dadurch vermieden werden, daß sie durch einen entsprechenden, auf die Steuerspannung einwirkenden Faktor bei der Ermittlung der Steuerspannung berücksichtigt wird. Besonders zweckmäßig ist es, wenn der temperaturabhängige Faktor durch die Versorgungsspannung dividiert wird. Auf diese Weise wird erreicht, daß sich Schwankungen der Versorgungsspannung nicht auf den Faktor auswirken.
Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Figuren der Zeichnung dargestellt sind. Dabei bilden alle beschriebenen oder dargestellten Merkmale für sich oder in beliebiger
Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung sowie unabhängig von ihrer Formulierung bzw. Darstellung in der Beschreibung bzw. in der Zeichnung.
Figur 1 zeigt ein schematisches Blockschaltbild eines erfindungsgemäßen Kraftstoffversorgungssystems für eine Brennkraftmaschine eines Kraftfahrzeugs, Figur 2a zeigt ein schematisches Blockschaltbild eines ersten Ausführungsbeispiels einer erfindungsgemäßen
Steuerung und/oder Regelung des KraftstoffVersorgungssystems der Figur 1, und Figur 2b zeigt ein schematisches Blockschaltbild eines zweiten Ausführungsbeispiels einer erfindungsgemäßen Steuerung und/oder Regelung des
Kraftstoffversorgungssystems der Figur 1.
In der Figur 1 ist ein Kraftstoffversorgungssystem 1 dargestellt, das für den Einsatz in einer Brennkraftmaschine eines Kraftfahrzeugs vorgesehen ist.
Das Kraftstoffversorgungssystem 1 weist einen Speicherraum 2 auf, in den Kraftstoff aus einem Behälter 3 mittels einer ersten Pumpe 4 mit einem Druckregelventil 5 sowie mittels einer zweiten Pumpe 6 mit einem Überdruckventil 7 gefördert werden kann. Der Speicherraum 2 ist mit Einspritzventilen 8 verbunden, mit denen der Kraftstoff in zugehörige Brennräume der Brennkraftmaschine eingespritzt werden kann. Die
Einspritzventile 8 sind vorzugsweise den Brennräumen direkt zugeordnet, so daß der Kraftstoff direkt in die Brennräume eingespritzt wird.
Der tatsächliche Druck pιst in dem Speicherraum 2 ist mit Hilfe eines an denselben angeschlossenen Drucksensors 9 meßbar. Der Drucksensor 9 erzeugt als AusgangsSpannung einen Istwert Upist, der dem tatsächlichen Durck pist entspricht.
Des weiteren ist an den Speicherraum 2 ein Drucksteuerventil
10 angeschlossen, in dessen geöffnetem Zustand Kraftstoff über eine Durchlaßδffnung in den Behälter 3 zurückfließen kann. Das Drucksteuerventil 10 weist eine Spule auf, deren Anker in die DruchlaßfÖffnung des Drucksteuerventils 10 eintaucht. Der Querschnitt dieser Durchlaßöffnung wird von der Stellung des Ankers verändert. Die Stellung des Ankers hängt dabei von einer das Drucksteuerventil 10 beaufschlagenden Steuerspannung Up ab, die analog oder getaktet sein kann. Die Steuerspannung Up des Drucksteuerventils 10 wird von einem Steuergerät 11 erzeugt, dem als Eingangssignal der Istwert Upιst zugeführt ist. Des weiteren ist das Steuergerät 11 mit einer Mehrzahl von Eingangssignalen 12 verbunden, die den jeweiligen Betriebszustand der Brennkraftmaschine charakterisieren.
Im Betrieb der Brennkraftmaschine wird Kraftstoff von den beiden Pumpen 4, 6 in den Speicherraum 2 gepumpt. Dadurch wird in dem Speicherraum 2 der Druck plst erzeugt. Dieser Druck plst wird von dem Drucksensor 9 gemessen und an das Steuergerät 11 als Istwert Upιst weitergegeben. Das Steuergerät 11 beeinflußt mit Hilfe des Drucksteuerventils 10 den Druck pιst in dem Speicherraum 2, wie dies anhand der Figuren 2a und 2b noch beschrieben werden wird. Des weiteren steuert das Steuergerät 11 die Einspritzventile 8 an, so daß Kraftstoff aus dem Speicherraum 2 in die Brennräume der Brennkraftmaschine eingespritzt wird. Mit Hilfe von Zündkerzen wird der Kraftstoff in den Brennräumen gezündet und verbrannt.
In der Figur 2a ist eine Steuerung und/oder Regelung des tatsächlichen Drucks pιst in dem Speicherraum 2 dargestellt. Diese Steuerung und/oder Regelung ist durch entsprechende Mittel in dem Steuergerät 11 realisiert.
Über ein Kennfeld 13 wird aus einem die Stellung eines
Fahrpedals und damit einen Fahrerwunsch repräsentierenden Lastsignals γ und einem die Drehzahl der Brennkraftmaschine darstellenden Signals nM ein Ausgangssignal erzeugt, das einen Sollwert Upsoll für den Druck in dem Speicherraum 2 darstellt. Dieser Sollwert Upsoll wird mit dem Istwert Upigt verglichen und die Differenz wird einem Regler 14 zugeführt. Der Regler 14 erzeugt daraus ein Ausgangssignal, das additiv mit dem Sollwert Upsoll zu der Steuerspannung Up verknüpft wird. Dieses Ausgangssignal wird dabei derart von dem Regler 14 erzeugt, daß die entstehende Steuerspannung Up das Drucksteuerventil 10 gerade so beeinflußt, daß der Istwert Upist des Drucks pisc in dem Speicherraum 2 gerade einem dem Sollwert Upsoll entsprechenden Druck entpricht .
In der Figur 2a ist das Drucksteuerventil 10 durch eine der Ansteuerung dienende Endstufe 15 und einen die Spule darstellenden Widerstand 16 repräsentiert. Die Steuerspannung Up beaufschlagt die Endstufe 15, so daß ein der Steuerspannung Up entsprechender Strom durch den Widerstand 16 fließt. Eine Veränderung der Steuerspannung Up bewirkt eine Veränderung des genannten Stroms, was wiederum zur Folge hat, daß der Anker in der Spule um einen der Stromänderung entsprechenden Weg verschoben wird. Dies wiederum hat zur Folge, daß der
Querschnitt der Durchlaßöffnung des Drucksteuerventils 10 weiter geöffnet oder verschlossen wird. Auf diese Weise kann mehr oder weniger Kraftstoff aus dem Speicherraum 2 in den Behälter 3 abfließen, was gleichzeitig mit einer Verringerung oder Erhöhung des tatsächlichen Drucks pisC in dem Speicherraum 2 einhergeht.
Durch den über den Widerstand 16 fließenden Strom erwärmt sich die Spule. Dabei ist der Grad der Erwärmung, also die Temperatur der Spule und damit des Drucksteuerventils 10 abhängig vom Strom und damit von der Steuerspannung Up und von deren Änderungen. Wird die Steuerspannung Up von dem Regler 14 oder durch das Kennfeld 13 verändert, so verändert sich auch die Temperatur der Spule und damit der Widerstand 16. Eine Veränderung des Widerstands 16 hat aber gleichzeitig zur Folge, daß sich wiederum der Strom durch den Widerstand 16 und damit der Strom durch die Spule ändert . Dies führt an sich zu einer Veränderung des Drucks pist in dem Speicherraum 2.
Durch den in der Figur 2a dargestellten und erläuterten Soll- Istwert-Vergleich wird jedoch die genannte Veränderung des Drucks pist in dem Speicherraum 2 ausgeregelt . Unabhängig von Veränderungen der Temperatur des Widerstands 16 wird von dem Regler 14 der Druck pist in dem Speicherraum 2 auf den durch den Sollwert Upsoll vorgegebenen Druck geregelt.
In nicht-dargestellter Weise wird von dem Steuergerät 11 die das Drucksteuerventil 10 ansteuernde Steuerspannung Up mit dem von dem Durcksensor 9 erzeugten Istwert Upsit verglichen. Dieser Vergleich kann bei der Inbetriebnahme der Brennkraftmaschine und/oder sporadisch und/oder zyklisch durchgeführt werden. Weichen die genannten Signale über einen längeren Zeitraum wesentlich voneinander ab, so schließt das Steuergerät 11 daraus auf einen Defekt des Drucksensors 9. Alternativ oder zusätzlich zu dem beschriebenen Vergleich sind auch noch andere Möglichkeiten von Plausibilitätskontrollen denkbar, mit denen das Steuergerät 11 die korrekte Funktion des Drucksensors 9 überprüfen und erkennen kann.
Wird von dem Steuergerät 11 ein Defekt des Drucksensors 9 erkannt, so wird die in der Figur 2a dargestellte und erläuterte Regelung des Drucks in dem Speicherraum 2, insbesondere der Regler 14 abgeschaltet. Der Regler 14 erzeugt somit kein Ausgangssignal mehr. Dies hat zur Folge, daß die Steuerspannung Up dem Sollwert Upsoll entspricht, daß also die Steuerspannung unbeeinflußt von dem Istwert Upist die Enstufe 15 beaufschlagt .
Die genannte Regelung des Drucks in dem Speicherraum 2 wird dann von einer Steuerung abgelöst. Dies bedeutet, daß nach dem Ausschalten der Regelung eine Steuerung des Drucks in dem Speicherraum 2 eingeschaltet wird, mit der die Regelung ersetzt wird. Diese Ablösung durch die Steuerung, wie auch die Steuerung als solche wird dabei von dem Steuergerät 11 durchgeführt .
Zur Steuerung des Drucks in dem Speicherraum 2 ist ein Beobachtermodell 17 vorgesehen. Diesem sind eine Mehrzahl von Eingangssignalen zugeführt, die den Betriebszustand der Brennkraftmaschine und/oder des Kraftfahrzeugs charakterisieren, beispielsweise das Lastsignal γ, die
Drehzahl der Brennkraftmaschine nM, die Geschwindigkeit des Kraftfahrzeugs, die Temperatur des Kühlwassers, die Temperatur der angesaugten Luft oder dergleichen. Aus diesen Eingangssignalen erzeugt das Beobachtermodell ein Ausgangssignal, das über ein Koppelglied 18 als Faktor k auf das Drucksteuerventil 10 einwirkt.
Mit Hilfe des Beobachtermodells 17 wird eine
Temperaturkompensation durchgeführt. Dies bedeutet, daß bei defektem Drucksensor 9 und damit abgeschaltetem Regler 14 die Veränderungen der Temperatur des Drucksteuerventils 10 durch das Beobachtermodell 17 ausgeglichen werden. Durch das Beobachtermodell 17 werden also durch die Erzeugung eines entsprechenden Faktors k die Veränderungen der Temperatur des Drucksteuerventils 10 kompensiert.
Zu diesem Zweck werden die Veränderungen der Temperatur des Drucksteuerventils 10 mit Hilfe der Eingangssignale des Beobachtermodells 17 nachgebildet. Der mathematische Zusammenhang ist dabei wie folgt:
Wenn, wie in der Figur 2a dargestellt, das Drucksteuerventil 10 an der Versorgungsspannung U0 anliegt, so gilt: Das
Drucksteuerventil 10 weist eine Kennlinie mit dem Zusammenhang pls-/bar = c x i/Ampere auf. Für den Spulenstrom i gilt: i/Ampere = Up x U0/Volt x k x l/R/Ohm. Die Steuerspannung Up stellt in diesem Fall eine normierte Steuergröße wie folgt dar: Up = Up'/Upmax mit O≤ Up ≤ 1. Für den Widerstand R gilt: R = R0 x (1 + α x ΔT) . Daraus ergibt sich insgesamt: plst/bar = c x Up x U0/Volt x k x 1 / (R0 x (1 + c. x ΔT) ) /Ohm (Gleichung 1) . Der Wert c ist aus der Kennlinie des Drucksteuerventils 10 bekannt. Up wird von dem Kennfeld 13 erzeugt und entspricht aufgrund des abgeschalteten Reglers 14 gleich Upsoll. U0 ist die Versorgungsspannung des Kraftfahrzeugs. R0 ist der Referenzwert des Widerstands 16, den dieser bei einer bestimmten Temperatur aufweist, ist eine Konstante, mit der sich der Widerstand R, ausgehend von dem Referenzwert R0, bei einer Temperaturänderung ΔT des Drucksteuerventils 10 verändert.
Die Temperaturänderung ΔT des Drucksteuerventils 10 kann von dem Beobachtermodell 17 mit Hilfe einer Wärmebilanzberechnung aus den Eingangssignalen des Beobachtermodells 17 berechnet werden. Dabei spielt die hydraulische Verlustwärme eine Rolle, die in dem Drucksteuerventil 10 entsteht, und die zur Erwärmung des Kraftstoffs führt. Dabei ist es auch möglich, daß Wärme abgeführt wird, beispielsweise bei einem Heißstart der Brennkraftmaschine. Des weiteren spielt die elektrische Verlustwärme in dem Drucksteuerventil 10 und der Wärmeaustausch des Drucksteuerventils 10 mit der Umgebung einer Rolle. All diese Wärmebeiträge können aus den
Eingangssignalen errechnet und damit insgesamt ΔT ermittelt werden .
Das Beobachtermodell 17 erzeugt nun den Faktor k gerade so, daß die Temperaturabhängigkeit der Gleichung 1, also der Term (1 + 0! x ΔT) kompensiert wird. Es wird also k = (1 + a x ΔT) gesetzt. Dies hat zur Folge, daß sich aus der Gleichung 1 folgendes ergibt: pist/bar = c x Up x U0/Volt x l/R0/Ohm (Gleichung 2) . Der Druck piat in dem Speicherraum 2 ist somit linear abhängig von der Steuerspannung Up. Die Temperaturabhängigkeit des Drucksteuerventils 10 ist somit kompensiert .
In der Figur 2a wird der Faktor k dadurch zur Kompensation eingekoppelt, daß er mit der Versorgungsspannung U0 verknüpft wird. Es wird also die Versorgungsspannung U0 um den Faktor k verändert. Es wird also in der Figur 2a die Steuerung des Drucks in dem Speicherraum 2 durch eine temperaturabhängige Kompensation der Versorgungsspannung U0 erreicht.
In der Figur 2b ist eine Steuerung und/oder Regelung des tatsächlichen Drucks pist in dem Speicherraum 2 dargestellt. Diese Steuerung und/oder Regelung ist durch entsprechende Mittel in dem Steuergerät 11 realisiert.
Die Steuerung und/oder Regelung der Figur 2b unterscheidet sich nur in der Einkopplung des Faktors k von der Steuerung und/oder Regelung der Figur 2a. Aus diesem Grund sind gleiche Bauteile oder Funktionen auch mit gleichen Bezugszeichen versehen. Auf eine nochmalige Beschreibung der Figur 2b wird verzichtet. Statt dessen ist nachfolgend nur der Unterschied zur Figur 2a erläutert.
In der Figur 2b wird der Faktor k dadurch zur Kompensation eingekoppelt, daß er mit der Steuerspannung Up verknüpft wird. Es wird also die Steuerspannung Up um den Faktor k verändert. Es wird also in der Figur 2b die Steuerung des Drucks in dem Speicherraum 2 durch eine temperaturabhängige Kompensation der Steuerspannung Up erreicht.
Des weiteren ist es in den Figuren 2a und 2b möglich, den Faktor k durch einen Faktor k' zu ersetzen, für den gilt: k' = k/U0/Volt. Dies kann dadurch erreicht werden, daß in dem Koppelglied 18 der Figuren 2a und 2b der Faktor k durch die Versorgungsspannung U0 dividiert wird. In der Figur 2b muß zu diesem Zweck die Versorgungsspannung U0 dem Koppelglied 18 zugeführt werden.
Aus Gleichung 2 ergibt sich dann: pisc/bar = c x Up x l/R0/Ohm.
Damit ist es möglich, den Einfluß von Schwankungen der VersorgungsSpannung U0 zu kompensieren.
Handelt es sich bei der Steuerspannung Up um eine analoge Spannung, so kann der Faktor k bzw. k' unmittelbar zur Wirkung gebracht werden. Handelt es sich bei der Steuerspannung Up um eine getaktete Spannung, so ergibt sich daraus ein Sapnnungsmittelwert, der letztlich der analogen Steuerspannung Up entspricht. Der Faktor k bzw. k' kann in diesem Fall durch eine entsprechende Veränderung des Taktverhältnisses zur Wirkung gebracht werden.

Claims

PATENTANSPRÜCHE
1. Verfahren zum Betreiben eines
Kraftstoffversorgungssystems (1) für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs, bei dem Kraftstoff in einen Speicherraum (2) gefördert und ein Druck (plst) in dem Speicherraum (2) erzeugt wird, bei dem ein Istwert (Upιst) des Drucks (pist) in dem Speicherraum (2) gemessen wird, und bei dem der Druck in dem Speicherraum (2) auf einen Sollwert (Upsoll) geregelt wird, dadurch gekennzeichnet, daß die Regelung des Drucks in dem Speicherraum (2) durch eine Steuerung abgelöst wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Fehler der Regelung des Drucks in dem Speicherraum (2) erkannt wird, und daß nach der Erkennung eines Fehlers die Regelung abgeschaltet und die Steuerung eingeschaltet wird.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Regelung des Drucks in dem Speicherraum (2) von einem Beobachtermodell (17) abgelöst wird.
Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß eine Temperaturkompensation von dem Beobachtermodell (17) durchgeführt wird.
Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zur Steuerung des Drucks in dem Speicherraum (2) eine Versorgungsspannung (U0) vorgesehen ist, die mit einem temperaturabhängigien Faktor (k) verknüpft wird .
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß zur Steuerung und/oder Regelung des Drucks in dem Speicherraum (2) eine Steuerspannung (Up) vorgesehen ist, die mit einem temperaturabhängigen Faktor (k) verknüpft wird.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß der Faktor (k) in Abhängigkeit von dem Temperaturverhalten eines den Druck in dem Speicherraum beeinflussenden Drucksteuerventils (10) ermittelt wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß das Temperaturverhalten des Drucksteuerventils (10) in Abhängigkeit von dem Temperaturverhalten einer Spule des Drucksteuerventils (10) ermittelt wird.
9. Verfahren nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, daß der temparaturabhängige Faktor (k) durch die Versorgungsspannung (U0) dividiert wird.
10. Verfahren nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, daß der temparaturabhängige Faktor (k) in Abhängigkeit von der Drehzahl der Brennkraftmaschine und/oder der Geschwindigkeit des Kraftfahrzeugs und/oder der Temperatur des Kühlwassers und/oder der Temperatur der angesaugten Luft erzeugt wird.
11. Elektrisches Speichermedium, insbesondere Read-Only- Memory, für ein Steuergerät (11) einer
Brennkraftmaschine, insbesondere eines Kraftfahrzeugs, auf dem ein Programm gespeichert ist, das auf einem Rechengerät, inbesondere auf einem Mikroprozessor, ablauffähig und zur Ausführung eines Verfahrens nach einem der Ansprüche 1 bis 10 geeignet ist.
12. Kraftstoffversorgungssystem (1) für eine
Brennkraftmaschine insbesondere eines Kraftfahrzeug, mit einer Pumpe (4, 6) zur Förderung von Kraftstoff in einen Speicherraum (2) und zur Erzeugung eines Drucks (pιsc) in dem Speicherraum (2) , mit einem Drucksensor (9) zur Messung eines Istwerts (Upist) des Drucks (pist) in dem Speicherraum (2) , mit einem Drucksteuerventil (10) zur Beeinflussung des Drucks (pisc) in dem Speicherraum (2) , und mit einem Steuergerät (11) , das mit Mitteln versehen ist, mit denen der Druck in dem Speicherraum (2) auf einen Sollwert (UpsoU) regelbar ist, dadurch gekennzeichnet, daß das Steuergerät (11) mit Mitteln versehen ist, mit denen die Regelung des Drucks in dem Speicherraum (2) durch eine Steuerung ablösbar ist.
13. KraftstoffVersorgungssystem (1) nach Anspruch 12, dadurch gekennzeichnet, daß das Steuergerät (11) mit Mitteln versehen ist, mit denen ein Fehler insbesondere des Drucksensor (9) erkennbar ist, und mit denen die Regelung ausschaltbar und die Steuerung einschaltbar ist.
14. Kraftstoffversorgungssysstem (1) nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß zur Steuerung des Drucks in dem Speicherraum (2) eine Versorgungsspannung (U0) mit einem temperaturabhängigen Faktor (k) verknüpfbar ist.
15. Kraftstoffversorgungssystem (1) nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß zur Steuerung und/oder Regelung des Drucks in dem Speicherraum (2) eine Steuerspannung (Up) mit einem temperaturabhängigen Faktor (k) verknüpfbar ist.
16. KraftstoffVersorgungssystem (1) nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, daß das Steuergerät (11) mit Mitteln versehen ist, mit denen das Temperaturverhalten insbesondere einer Spule des Drucksteuerventils (10) bei der Steuerung berücksichtigbar ist.
PCT/DE1998/001565 1997-07-08 1998-06-09 System zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs WO1999002837A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/254,573 US6209521B1 (en) 1997-07-08 1998-06-09 System for operating an internal combustion engine, in particular of a motor vehicle
DE59806437T DE59806437D1 (de) 1997-07-08 1998-06-09 System zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
JP50796099A JP4082744B2 (ja) 1997-07-08 1998-06-09 自動車等の内燃機関の作動システム
EP98934877A EP0925434B1 (de) 1997-07-08 1998-06-09 System zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19729101.5 1997-07-08
DE19729101A DE19729101A1 (de) 1997-07-08 1997-07-08 System zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs

Publications (1)

Publication Number Publication Date
WO1999002837A1 true WO1999002837A1 (de) 1999-01-21

Family

ID=7834988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/001565 WO1999002837A1 (de) 1997-07-08 1998-06-09 System zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs

Country Status (6)

Country Link
US (1) US6209521B1 (de)
EP (1) EP0925434B1 (de)
JP (1) JP4082744B2 (de)
KR (1) KR100696085B1 (de)
DE (2) DE19729101A1 (de)
WO (1) WO1999002837A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349244A (ja) * 2000-04-05 2001-12-21 Robert Bosch Gmbh 燃料調量システムの蓄圧器に存在する蓄圧を調整する方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2298305A1 (en) * 1999-07-07 2001-01-07 Jason Edward Yost System for detecting fuel injection timing
JP4566450B2 (ja) * 2001-05-17 2010-10-20 ボッシュ株式会社 蓄圧式燃料噴射装置
US7007676B1 (en) 2005-01-31 2006-03-07 Caterpillar Inc. Fuel system
WO2007083404A1 (ja) * 2006-01-20 2007-07-26 Bosch Corporation 内燃機関の燃料噴射システム
JP4657140B2 (ja) * 2006-04-24 2011-03-23 日立オートモティブシステムズ株式会社 エンジンの燃料供給装置
US7640078B2 (en) * 2006-07-05 2009-12-29 Advanced Energy Industries, Inc. Multi-mode control algorithm
DE102006045923A1 (de) * 2006-08-18 2008-02-21 Robert Bosch Gmbh Verfahren zur Bestimmung eines Raildruck-Sollwertes
JP4420097B2 (ja) * 2007-10-02 2010-02-24 株式会社デンソー 噴射異常検出装置及び燃料噴射システム
DE102008004877A1 (de) * 2008-01-17 2009-07-23 Robert Bosch Gmbh Stromberechnungseinheit, Stromberechnungssystem und Stromberechnungsverfahren
GB0908113D0 (en) 2009-05-12 2009-06-24 Goodrich Control Sys Ltd Metering valve control
DE102009050469B4 (de) * 2009-10-23 2015-11-05 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
JP5191983B2 (ja) * 2009-12-16 2013-05-08 日立オートモティブシステムズ株式会社 内燃機関の診断装置
US8707932B1 (en) * 2010-08-27 2014-04-29 Paragon Products, Llc Fuel transfer pump system
JP5387538B2 (ja) * 2010-10-18 2014-01-15 株式会社デンソー 筒内噴射式内燃機関のフェールセーフ制御装置
US10738727B2 (en) 2015-02-03 2020-08-11 Paragon Products, Llc Electric pump pressure sensorless electronic pressure limiting and flow leveling system
DE102018217327B4 (de) * 2018-10-10 2023-10-12 Vitesco Technologies GmbH Verfahren und Vorrichtung zur Plausibilisierung der Funktionsfähigkeit eines Hochdrucksensors einer Hochdruckkraftstoffeinspritzvorrichtung eines Kraftfahrzeugs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082066A (en) * 1976-05-03 1978-04-04 Allied Chemical Corporation Modulation for fuel density in fuel injection system
DE19622071A1 (de) * 1995-06-02 1997-01-02 Nippon Denso Co Kraftstoff-Zuführsystem für Brennkraftmaschine
US5609140A (en) * 1994-12-23 1997-03-11 Robert Bosch Gmbh Fuel supply system for an internal combustion engine
DE19548278A1 (de) * 1995-12-22 1997-06-26 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1597129A (en) * 1976-12-20 1981-09-03 Gen Electric Gas turbine engine control system
US4841936A (en) * 1985-06-27 1989-06-27 Toyota Jidosha Kabushiki Kaisha Fuel injection control device of an internal combustion engine
US4903669A (en) * 1989-04-03 1990-02-27 General Motors Corporation Method and apparatus for closed loop fuel control
JPH0569374U (ja) * 1992-02-28 1993-09-21 富士重工業株式会社 筒内直噴式エンジンの異常警告装置
JP3060266B2 (ja) * 1992-11-09 2000-07-10 株式会社ユニシアジェックス エンジンの燃料供給装置
US5493902A (en) * 1994-03-02 1996-02-27 Ford Motor Company On-board detection of pressure regulator malfunction
US5492099A (en) * 1995-01-06 1996-02-20 Caterpillar Inc. Cylinder fault detection using rail pressure signal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082066A (en) * 1976-05-03 1978-04-04 Allied Chemical Corporation Modulation for fuel density in fuel injection system
US5609140A (en) * 1994-12-23 1997-03-11 Robert Bosch Gmbh Fuel supply system for an internal combustion engine
DE19622071A1 (de) * 1995-06-02 1997-01-02 Nippon Denso Co Kraftstoff-Zuführsystem für Brennkraftmaschine
DE19548278A1 (de) * 1995-12-22 1997-06-26 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349244A (ja) * 2000-04-05 2001-12-21 Robert Bosch Gmbh 燃料調量システムの蓄圧器に存在する蓄圧を調整する方法

Also Published As

Publication number Publication date
DE19729101A1 (de) 1999-01-14
KR20000068451A (ko) 2000-11-25
DE59806437D1 (de) 2003-01-09
JP2001500219A (ja) 2001-01-09
JP4082744B2 (ja) 2008-04-30
US6209521B1 (en) 2001-04-03
KR100696085B1 (ko) 2007-03-20
EP0925434A1 (de) 1999-06-30
EP0925434B1 (de) 2002-11-27

Similar Documents

Publication Publication Date Title
DE60208499T2 (de) Steuerungsverfahren für ein Common Rail Einspritzsystem bei Ausfall des Raildrucksensor
DE102005058966B3 (de) Verfahren zur Adaption einer Vorsteuerung in einer Druckregelung für eine Common-Rail-Einspritzanlage für eine Brennkraftmaschine und Mittel zur Durchführung des Verfahrens
EP0925434B1 (de) System zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
DE10296833B4 (de) Verfahren zur Steuerung des Betriebs einer Kraftstoffeinspritzvorrichtung und Vorrichtung zur Kraftstoffeinspritzung
DE19618932C2 (de) Vorrichtung und Verfahren zur Regelung des Kraftstoffdruckes in einem Hochdruckspeicher
DE102010042467B4 (de) Ermittlung des Öffnungszeitpunkts eines Steuerventils eines indirekt angetriebenen Kraftstoffinjektors
DE10162989C1 (de) Schaltungsanordnung zum Regeln einer regelbaren Kraftstoffpumpe, Verfahren zum Regeln einer Förderleistung und Verfahren zum Überprüfen der Funktionsfähigkeit einer regelbaren Kraftstoffpumpe
DE19913477B4 (de) Verfahren zum Betreiben einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
EP1381764A1 (de) Verfahren und vorrichtung zur ansteuerung eines piezoaktors
DE10157641C2 (de) Verfahren zur Steuerung einer Brennkraftmaschine
WO2008009563A1 (de) Verfahren zum betreiben eines kraftstoffsystems einer brennkraftmaschine
WO2008019919A1 (de) Verfahren zur bestimmung eines raildruck-sollwertes
EP2080888B1 (de) Automatische Kraftstofferkennung
DE10137315A1 (de) Schaltungsanordnung und Verfahren zur Regelung einer elektrischen Kraftstoffpumpe in einem rücklauffreien Kraftstoff-Fördersystem
EP1825125B1 (de) Verfahren zum betreiben eines kraftstoffsystems einer brennkraftmaschine
DE10311141B4 (de) Verfahren, Computerprogramm, Speichermedium und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine insbesondere für ein Kraftfahrzeug
DE19909955B4 (de) Verfahren und Vorrichtung zum transienten Betrieb einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE102004049812B4 (de) Verfahren zum Betreiben einer Kraftstoffeinspritzanlage insbesondere eines Kraftfahrzeugs
DE10303573B4 (de) Verfahren, Computerprogramm, Speichermedium und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine insbesondere für ein Kraftfahrzeug
DE102011004514A1 (de) Verfahren und Steuergerät zur Einstellung einer Temperatur einer Glühstiftkerze
WO2009121652A1 (de) Verfahren zum bestimmen des effektiven kompressibilitätsmoduls eines einspritzsystems
DE102005058445B3 (de) Verfahren zur Ermittlung einer in einen Zylinder einer Brennkraftmaschine mit einer Common-Rail-Einspritzanlage eingespritzten Kraftstoffmemge und Mittel zur Durchführung des Verfahrens
DE102011084194A1 (de) Verfahren und Recheneinheit zum Betrieb einer Zumesseinheit eines Common-Rail-Kraftstoffeinspritzsystems und Recheneinheit
DE10305525A1 (de) Verfahren und Vorrichtung zur Adaption der Druckwellenkorrektur in einem Hochdruck-Einspritzsystem eines Kraftfahrzeuges im Fahrbetrieb
EP1045125B1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1998934877

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019997001824

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1999 507960

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09254573

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998934877

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997001824

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998934877

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997001824

Country of ref document: KR