[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1999050366A1 - Metallic material with organic composite coating excellent in corrosion resistance and coatability and reduced in finger mark adhesion and process for producing the same - Google Patents

Metallic material with organic composite coating excellent in corrosion resistance and coatability and reduced in finger mark adhesion and process for producing the same Download PDF

Info

Publication number
WO1999050366A1
WO1999050366A1 PCT/JP1999/001437 JP9901437W WO9950366A1 WO 1999050366 A1 WO1999050366 A1 WO 1999050366A1 JP 9901437 W JP9901437 W JP 9901437W WO 9950366 A1 WO9950366 A1 WO 9950366A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silane coupling
metal material
benzene ring
coupling agent
Prior art date
Application number
PCT/JP1999/001437
Other languages
French (fr)
Japanese (ja)
Inventor
Hirokatsu Bannai
Yasuhiko Nagashima
Original Assignee
Nihon Parkerizing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co., Ltd. filed Critical Nihon Parkerizing Co., Ltd.
Priority to KR1020007010870A priority Critical patent/KR20010042321A/en
Priority to AU28549/99A priority patent/AU2854999A/en
Publication of WO1999050366A1 publication Critical patent/WO1999050366A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints

Definitions

  • the present invention relates to a metal material that can impart excellent corrosion resistance, paintability and fingerprint resistance to the surface of a metal material, and is used for home appliances and building material products.
  • metal materials such as copper plates and aluminum plates with zinc-containing metal are used in a wide range of fields such as automobiles, building materials and home appliances.
  • zinc and aluminum corrode in the air and produce corrosion products (so-called white), which degrade the appearance of metallic materials and adversely affect paintability. It has the disadvantage that fingerprints and other stains can easily adhere to the product during the manufacture of the product, which can significantly reduce the commercial value.
  • the surface of the metal material was subjected to chromate treatment using a treatment solution mainly containing chromic acid, dichromic acid or salts thereof.
  • the upper layer is coated with a polyolefin resin having a carboxyl group containing colloidal silica, and a metal material is generally used.
  • hexavalent chromium in the chromate treatment solution used to treat metal material surfaces has a direct adverse effect on the human body. Chromating is often avoided.
  • wastewater containing hexavalent chromium needs to be treated specially as specified in the Water Pollution Control Law, which leads to an increase in the cost of kana as a whole.
  • chromate-treated metal materials have the major disadvantage that they cannot be recycled as chromium-containing industrial waste, which has become a major social problem.
  • a surface treatment method other than chromate a surface treatment agent using tannic acid containing polyvalent phenolcarbonic acid is well known.
  • the protective film formed by the reaction between the tannic acid and the metal material is barrier-free against invasion of corrosive substances, so that the corrosion resistance of the metal material is considered to be improved. ing.
  • the coating itself has been required to have high corrosion resistance. Therefore, a coating using tannic acid alone or in combination with an inorganic component has insufficient corrosion resistance, and practical application at present is not feasible. It is possible.
  • Japanese Patent Application Laid-Open No. 53-121034 discloses an aqueous solution comprising water-dispersible silica, an alkyd resin, and a trioxy silane compound applied to the metal surface. A method for doing so is disclosed.
  • a surface treatment method for imparting corrosion resistance to a metal material using a water-soluble resin composed of a hydroxypyrone compound derivative and a metal treatment using a water-soluble or water-dispersible polymer of a hydroxystyrene compound.
  • a method for imparting corrosion resistance to a material is disclosed in Japanese Patent Application Laid-Open No. 57-444751, and
  • An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a non-chromium-based organic composite coated metal material excellent in heat resistance, corrosion resistance, paintability and fingerprint resistance. is there.
  • the present inventors have conducted intensive studies to solve these problems of the conventional technology, and as a result, a silane coupling agent component as a first layer on a metal material surface and a polymer component having a specific chemical structure have been developed.
  • a silane coupling agent component as a first layer on a metal material surface and a polymer component having a specific chemical structure
  • the upper layer of the first layer is coated with a resin composition containing a silicide force
  • the present inventors have found an organic composite-coated metal material excellent in corrosion resistance, paintability, and fingerprint resistance, and a method for producing the same, and have completed the present invention. That is, the organic composite-coated metal material of the present invention has the following composition as a first layer on the surface of the metal material:
  • Silane coupling comprising one or more silane coupling compounds having at least one reactive functional group selected from active hydrogen-containing amino, epoxy, butyl, mercapto and methacryloxy groups Agent components and
  • X bonded to the benzene ring is a hydrogen atom, a hydroxy group, a C1-C5 alkyl group, a C1-C5 hydroxyalkyl group, a C6-C1 2, an aryl group, a benzyl group, a benzal group, an unsaturated hydrocarbon group condensed to the benzene ring to form a naphthalene ring, or a group of the following formula (II):
  • R 1 and R 2 in the formula (II) each represent a hydrogen atom, a hydroxyl group, a C 1 to C 5 alkyl group, or a C 1 to C 10 hydroxyalkyl group
  • Y 1 and Y 2 bonded to the benzene ring are each independently a hydrogen atom or a Z group represented by the following formulas (III) and (IV). :
  • R 3, R 4, R 5, R 6 and R 7 in the above formulas (III) and (IV) are each independently a hydrogen atom, a C 1 -C 10 alkyl group or C 1 X represents a hydroxyalkyl group of ⁇ 10, and each of X, Y1 and Y2 bonded to each benzene ring in the polymer molecule is X, bonded to another benzene ring.
  • Y 1 and Y 2 may be the same or different from each other, and the average number of substitutions of the Z group in each benzene ring in the polymer molecule is 0.2 to 1.0. is there.
  • the second layer is coated on the first layer with a resin composition containing silica in an amount of 5 to 70 parts by weight based on 100 parts by weight of the resin. Things.
  • the weight ratio (A) / (B) of the silane coupling agent component (A) to the polymer component (B) used in the organic composite coated metal material of the present invention 1:10 to 10; Preferably, there is.
  • silane adhesive used in the organic composite coated metal material of the present invention PT / JP99 / 01437
  • the pulling agent component (A) is a substance having the pulling agent component (A)
  • silane coupling agent comprising one or more silane coupling compounds having one or more active hydrogen-containing amino groups, and (b) one or more silane coupling compounds having one or more epoxysilane groups. It is preferable to include a silane coupling agent.
  • the equivalent ratio of the active hydrogen-containing amino group contained in the silane coupling agent (a) to the epoxy group contained in the silane coupling agent (b) used in the organic composite coated metal material of the present invention is 3: It is preferably from 1 to 13.
  • the weight ratio of the total amount of the silane coupling agent (a) and the silane coupling agent (b) used in the organic composite coated metal material of the present invention to the polymer component (B) [(a) + (b)] / (B) is preferably from 1: 5 to 5: 1.
  • the first layer film used in the organic composite coated metal material of the present invention includes a silane coupling agent component (A) composed of at least one silane coupling compound having a specific reactive functional group, It is a polymerization component (B) comprising one or more phenolic resin-based polymers containing an amino group.
  • the silane coupling compound contained in the silane coupling agent component (A) used in the present invention is a compound having a reactive functional group in one molecule comprising an active hydrogen-containing amino group, an epoxy group, a butyl group, a mercapto group and a methacryloxy group.
  • the structure is not particularly limited as long as it includes at least one selected member, but specific examples include those having the following compositions (1) to (4).
  • the silane coupling agent component (A) used in the present invention comprises one or more silane groups having one or more active hydrogen-containing amino groups.
  • the silane coupling agent preferably comprises a silane coupling agent (a) comprising a coupling compound and a silane coupling agent (b) comprising one or more silane coupling compounds having one or more epoxy groups.
  • the silane coupling agent component (A) used in the present invention is a silane coupling agent (a) composed of a silane coupling compound having an active hydrogen-containing amino group, and an epoxy group-containing silane coupling agent (b).
  • the equivalent ratio of the active hydrogen-containing amino group contained in the silane coupling agent to the epoxy group is preferably in the range of 3: 1 to 1: 3. If the equivalent ratio of the active hydrogen-containing amino group to the epoxy group exceeds 3: 1, the resulting film will have poor film formability, and will have insufficient corrosion resistance and paintability. If it is less than 1: 3, the corrosion resistance and paintability of the treated film may be saturated.
  • the polymer component (B) used in the present invention is an oligomer or a polymer containing the polymerized unit represented by the formula (I), and the polymerized unit of the formula (I) has an average polymerization degree of 2 to 5 It is 0.
  • X bonded to the benzene ring is a hydroxyl group, a C1-5 alkyl group such as a methyl, ethyl, propyl group, etc., and a C1-5 hydroxyalkyl group such as a hydroxy group.
  • C6 to C12 aryl groups such as hydroxymethyl, hydroxyethyl, hydroxypropyl, etc.
  • Benzyl group, benzal group, etc. an unsaturated hydrocarbon group condensed to the benzene ring to form a naphthalene ring
  • R 1 and R 2 in the formula (II) each independently represent a hydrogen atom, a hydroxyl group, a C 1 -C 10 alkyl group, for example, a methyl, ethyl, propyl group or the like; And a hydroxyalkyl group of 0, for example, hydroxymethyl, hydroxyshethyl, hydroxypropyl group and the like.
  • Y 1 and Y 2 bonded to the benzene ring are each independently a hydrogen atom or Z represented by the formula (III) or (IV). Having a group.
  • R 3, R 4, R 5, R 6 and R 7 in the formulas (III) and (IV) each independently represent a C 1 -C 10 alkyl group such as methyl, ethyl, propyl, etc.
  • C1 to C5 hydroxyalkyl groups for example, hydroxymethyl, hydroxyshethyl, hydroxypropyl and the like.
  • X and Y 1 in Formula (I) and Y 2 in Formula (II) each bonded to each benzene ring in the polymer molecule are X bonded to other benzene rings.
  • Y 1 and Y 2 may be the same or different from each other.
  • the average number of substitutions of the Z group in each benzene ring in the polymer molecule is from 0.2 to 1.0.
  • the average value of the number of substitutions of the Z group is an average value of the number of the Z groups introduced into each benzene ring in the polymer molecule.
  • Each of R 3 to R 7 in the Z group represented by the formulas (III) and (IV) is a C 1 to C 10 alkyl group or a C 1 to C 10 hydroxyalkyl group. Represents When the number of carbon atoms is 11 or more, the film forming property of the formed film is reduced, so that the corrosion resistance and the paintability become insufficient.
  • the coating of the second layer used in the present invention preferably contains silica in an amount of 5 to 70 parts by weight based on 100 parts by weight of the resin. Preferably, it is 10 to 50 parts by weight. If the proportion is less than 5 parts by weight, the effect of improving the corrosion resistance and fingerprint resistance of the upper layer coating is lost, and the corrosion resistance and fingerprint resistance are reduced. On the other hand, if it exceeds 70 parts by weight, the coating of the upper layer becomes hard, and the corrosion resistance after processing decreases.
  • colloidal silica, organosilica sol, gas-phase silica, silica powder, etc. can be used for the compounded silica. Snowtex 0, C, OS, N of Nissan Chemical Co., Ltd., Nippon Aerosil Co., Ltd. Aerosil 100, 200, 300, etc. The particle size is not particularly limited.
  • the resin used for coating the second layer is preferably a resin having a hydroxyl group and / or a carboxyl group.
  • resins include commercially available epoxy resins, alkyd resins, acrylic resins, urethane resins, acryl-modified polyester resins, phenol-modified alkyd resins, polybutylbutyral resins, phenol resins, melamine resins, and ethylene acrylic resins.
  • Can be The structure and molecular weight of these resins are not particularly limited, but they must be within a range in which silicic acid can be uniformly dispersed and contained.
  • coating adhesion amount of the second layer 0. 1 to 5.
  • O g Zm 2 is preferred.
  • the upper layer coating is less than 0.1 g / m 2 , the corrosion resistance and the fingerprint resistance become insufficient.
  • it exceeds 5.0 g / m 2 the paintability, especially the adhesion, becomes insufficient.
  • a wax can be contained in the coating of the second layer, and lubricity can also be imparted.
  • an ordinary protective pigment for example, a molybdate-based pigment, a phosphate-based pigment, or a protective agent (for example, tannic acid, gallic acid) Phenolic carboxylic acids, etc.) may synergistically improve the corrosion resistance.
  • the weight ratio (A) Z (B) to the silane coupling agent component (A) and the water-soluble polymer component (B) is 1:10.
  • ⁇ : L 0: 1 is preferred, and preferably 1: 5 to 5: 1.
  • this weight ratio is less than 1:10, that is, if the ratio of the silane coupling agent component (A) is low, the adhesion to the substrate surface is reduced, and the corrosion resistance and coating properties become insufficient.
  • it exceeds 10: 1 that is, if the silane coupling agent component (A) ratio is high, the film-forming properties of the film decrease, and the corrosion resistance and paintability of the resulting film become insufficient.
  • an aqueous surface treatment solution containing the surface treatment agent composition as the first layer and having a pH adjusted to a range of 2.0 to 6.5 is adhered to the surface of the metal material.
  • the deposition amount after drying was dry 10 ⁇ 500mgZ m 2, preferably to be 5 0 ⁇ 50 OnigZni 2.
  • the aqueous treatment liquid is brought into contact with the surface of the metal material at a temperature of 10 to 60 ° C. for 0.1 to 30 seconds and dried by heating.
  • the pH of the first layer aqueous surface treatment solution is adjusted to the range of 2.0 to 6.5 using phosphoric acid, acidic phosphate, fluoride, complex fluoride, sulfuric acid, nitric acid, and organic acid. You.
  • the preferred PH value is between 3.0 and 5.0. If the pH is less than 2.0, the reactivity between the composition in the obtained processing solution and the substrate surface becomes excessively high, so that a film defect occurs and the obtained film has insufficient corrosion resistance and paintability. . If the pH exceeds 6.5, the water-soluble polymer component (B) itself tends to precipitate out of the aqueous aqueous surface treating solution, so that the life of the aqueous treating solution is shortened.
  • the method of treating the surface of a metal material using the surface treating agent is not particularly limited, and for example, an immersion method, a spray method, a roll coating method and the like can be applied.
  • the processing temperature and the processing time are not particularly limited, but generally, the processing temperature is preferably from 10 to 60 ° C, and the processing time is preferably from 0.1 to 20 seconds. Further, it is preferable to heat and dry the treated metal material.
  • the heating temperature is preferably from 50 to 280 ° C. 7
  • the metal ion eluted and mixed from the metal material and the water-soluble polymer component (B) form a complex.
  • precipitation may occur.
  • a sequestering agent may be added to the surface treatment composition.
  • the sequestering agent include EDTA, Cy-DTA, triethanolamine, dalconic acid, heptgluconic acid, oxalic acid, tartaric acid, and malic acid.
  • the treatment method is carried out at a temperature of 10 to 60 ° C for 0.1 to 10 seconds, followed by heating and drying. Is preferred.
  • the metal material used in the present invention can be selected from iron plates, zinc-plated copper plates, aluminum plates, aluminum alloy plates, stainless copper plates, and the like.
  • Electro-galvanized steel sheet (EG material)
  • the surface of the above metal material is treated with a medium alkali degreasing agent (registered trademark: Fine Talina 4336, manufactured by Nippon Parkerizing Co., Ltd.). Chemical concentration: 20 gZ liter, treatment temperature: 60 ° C, treatment time: 20 seconds Spray treatment was performed under the following conditions to remove dust and oil adhering to the surface. Next, the alkali remaining on the surface was washed with tap water to clean the surface of the test material.
  • a medium alkali degreasing agent registered trademark: Fine Talina 4336, manufactured by Nippon Parkerizing Co., Ltd.
  • Treatment liquid A at 25 ° C is roll-coated on a hot-dip galvanized steel sheet (GI) that has been previously cleaned by the method described in (2.) to a dry weight of 0.3 g / m 2. And dried at an ultimate plate temperature of 80 ° C.
  • An aqueous resin composition containing silica powder manufactured by Nippon Aerosil Co., Ltd., trade name: AEROSIL 200
  • the coating was applied at a dry weight of 2 g / m 2 and dried at an ultimate plate temperature of 100 ° C.
  • the treatment liquid B at 15 ° C was applied to the aluminum plate (AL) previously cleaned by the method described in (2.) by a roll coating method so as to have a dry weight of 0.1 gm 2 . Drying was performed so that the reached plate temperature was 150 ° C.
  • An aqueous resin composition containing silica powder (manufactured by Nippon Aerosil Co., Ltd., trade name: Aerosil 300) in a ratio of 70 parts by weight to 100 parts by weight of the phenol-modified alkyd resin was dried by a roll coating method. 1 gZm 2 and dried at an ultimate plate temperature of 150 ° C.
  • the treatment liquid B at 30 ° C is applied to a copper plate (GI) coated with hot-dip zinc that has been cleaned in advance as described in (2.) by a roll coating method to a dry weight of 0.05 g / m 2. And dried so that the plate temperature reached 100 ° C.
  • An aqueous resin composition containing 50 parts by weight of silica powder (trade name: Aerosil 200, manufactured by Nippon Aerosil Co., Ltd.) in 100 parts by weight of acryl resin as a dry weight by a roll coating method in an upper layer of the aqueous resin composition. g / m 2 was applied and dried at an ultimate plate temperature of 100 ° C.
  • silica powder trade name: Aerosil 200, manufactured by Nippon Aerosil Co., Ltd.
  • a treatment liquid D at 20 ° C is applied to a hot-dip zinc-plated copper plate (GI) previously cleaned by the method described in (2.) by a roll coating method so as to have a dry weight of 0.1 lg / m 2. And dried so that the reached plate temperature was 80 ° C.
  • An aqueous resin composition containing colloidal silica manufactured by Nissan Chemical Co., Ltd., trade name: Snowtex N
  • a treatment liquid E at 20 ° C by a roll coating method to a dry weight of 0.03 g nom 2 . And dried so that the reached plate temperature was 80 ° C.
  • the upper layer is roll-coated with an aqueous resin composition containing colloidal silica (produced by Nissan Chemical Co., Ltd., trade name: SNOTETUS TAS O) in a ratio of 20 parts by weight to 100 parts by weight of ethylene acryl resin. and dried in a dry weight 1 gZ m 2 coating reached plate temperature 8 0 law.
  • the treatment liquid D at 20 ° C was applied to a copper plate (EG) plated with electro-zinc which had been cleaned in advance according to (2. g / m 2 , and dried so that the reached plate temperature was 180 ° C.
  • An aqueous resin composition containing silica powder (trade name: Aerosil 200, manufactured by Nippon Aerosil Co., Ltd.) in an upper layer at a ratio of 50 parts by weight to 100 parts by weight of ethylene acryl resin was subjected to a roll coating method. in the 0. 0 5 gZm 2 applied it was dried at peak metal temperature 1 00 ° C as dry weight.
  • Colloidal silica (manufactured by Nissan Chemical Industries, Ltd., trade name: Snowtex N) was added to 100 parts by weight of ethylene acryl resin on an electro-zinc-plated copper plate (EG) previously cleaned by the method described in (2).
  • the aqueous resin composition contained in a ratio of 1 part by weight was applied as a dry weight of 1 gZm 2 by a roll coating method, and dried at a temperature of 100 ° C. of the arrival plate.
  • Whiteness occurrence rate 10% or more, less than 50%
  • test surface-treated metal material was coated under the following conditions, and a coating film adhesion test was performed.
  • a scratch reaching the copper plate body was made in the coating film with an acryl cutter, and a salt spray test specified in JIS-2372 was carried out for 240 hours. After the operation, the cut portion was peeled off with an adhesive tape, and the peel width was evaluated. Judgment standard is cut part The peeling width (mm) of the coating film from was measured.
  • Re j mm or more, less than 5 mm
  • 5 mm or more, less than 10 mm
  • a finger was pressed against the test plate, and the trace state of the fingerprint was visually evaluated.
  • the criteria are as follows.
  • Examples 1 to 8 using the surface treating agent composition of the present invention show good corrosion resistance, coating properties, corrosion resistance after painting, and fingerprint resistance.
  • Comparative Example 1 in which the upper layer coating treatment was not performed was inferior in corrosion resistance and fingerprint resistance.
  • Comparative Example 2 in which no silica was contained in the upper layer resin was inferior in corrosion resistance and fingerprint resistance.
  • Comparative Example 3, which contained silica outside the scope of the present invention exhibited a decrease in adhesion.
  • Comparative Example 4 in which the amount of the upper layer film is out of the range of the present invention satisfactory corrosion resistance cannot be obtained.
  • Comparative Example 5 in which the undercoating treatment was not performed the corrosion resistance and adhesion were extremely poor.
  • the organic composite coated metal material formed using the manufacturing method of the present invention can provide high corrosion resistance, paint adhesion and fingerprint resistance without using chromate, unlike conventional products. Regulations make it possible to adapt to industries that are forced to go chrome-free. Furthermore, since there is no selectivity for the metal material, it is possible to improve the heat resistance and the paintability while utilizing the characteristics of the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

A metallic material having a surface excellent in corrosion resistance and coatability and reduced in finger mark adhesion. The coated metallic material comprises a metallic material having on a surface thereof: a first coating layer obtained from (A) a silane coupling agent ingredient having a reactive functional group such as an amino group having active hydrogen or an epoxy group and (B) a polymer ingredient comprising a water-soluble polymer represented by formula (I) having an average degree of polymerization of 2 to 50; and formed on the first layer, a second coating layer made of a resin composition comprising 100 parts by weight of a resin and 5 to 70 parts by weight of silica.

Description

明 細 書 耐食性、 塗装性および耐指紋性に優れた有機複合被覆金属材料、 及びそ の製造方法  Description Organic composite coated metal material with excellent corrosion resistance, paintability and fingerprint resistance, and method for producing the same
[技術分野] [Technical field]
本発明は、 金属材料の表面に優れた耐食性、 塗装性及び耐指紋性を付 与することができ、 家電、 建材製品に使用される金属材料に関するもの である。  The present invention relates to a metal material that can impart excellent corrosion resistance, paintability and fingerprint resistance to the surface of a metal material, and is used for home appliances and building material products.
[背景技術] [Background technology]
一般的に亜鉛含有金属めつき銅板やアルミニゥム板等の金属材料は自 動車、 建材並びに家電関係の広い分野に使用されている。 しかし、 亜鉛 やアルミニウムは、 大気中で腐食して腐食生成物 (いわゆる白鲭) を生 成させ、 これが金属材料の外観を低下させ塗装性にも悪影響をおよぼし、 更に需要家で種々の工程を経て製品を製造する際に作業者の扱いによリ 指紋などの汚れが付着しやすく商品価値を著しく低下させる恐れがある という欠点を有している。  Generally, metal materials such as copper plates and aluminum plates with zinc-containing metal are used in a wide range of fields such as automobiles, building materials and home appliances. However, zinc and aluminum corrode in the air and produce corrosion products (so-called white), which degrade the appearance of metallic materials and adversely affect paintability. It has the disadvantage that fingerprints and other stains can easily adhere to the product during the manufacture of the product, which can significantly reduce the commercial value.
そこで上記金属材料表面の耐食性、 塗装性及び耐指紋性を改善するた めに、 金属材料の表面にクロム酸、 重クロム酸またはその塩類を主体に した処理液を用いたクロメート処理を施した後その上層にコロイダルシ リカを含有したカルボキシル基を有するポリオレフイン系樹脂の被覆が なされて金属材料が一般に使用されている。  Therefore, in order to improve the corrosion resistance, paintability, and fingerprint resistance of the metal material surface, the surface of the metal material was subjected to chromate treatment using a treatment solution mainly containing chromic acid, dichromic acid or salts thereof. The upper layer is coated with a polyolefin resin having a carboxyl group containing colloidal silica, and a metal material is generally used.
しかしながら、 近年、 環境保全に対する意識の高まリによリ、 金属材 料表面を処理するのに使用されるクロメ一ト処理液中の 6価クロムは人 体に直接的な悪影響をおよぼすためにクロメート処理は敬遠されがちで ある。 また、 6価クロムを含む排水は水質汚濁防止法に規定されている 特別な処理を行う必要があり、 これが全体としてかなリのコストアップ につながる。 また、 クロメート処理を施した金属材料は、 クロム含有の 産業廃棄物となリリサイクルができないという大きな欠点がぁリ、 社会 的に大きな問題になっている。 一方、 クロメート以外の表面処理方法としては、 多価フエノールカル ボン酸を含有するタンユン酸を用いた表面処理剤が良く知られている。 タンニン酸の水溶液によって金属材料を処理すると、 タンニン酸と金属 材料との反応によって形成される保護皮膜が、 腐食物質の侵入に対しバ リア一となるので、 前記金属材料の耐食性が向上すると考えられている。 ところが、 近年、 製品の高品質化に伴い、 皮膜自体の高耐食性が要求 されてぉリ、 そのため、 タンニン酸単独、 若しくは無機成分を併用した 皮膜では耐食性が不十分で、 現状における実用化は不可能である。 However, in recent years, with increasing awareness of environmental protection, hexavalent chromium in the chromate treatment solution used to treat metal material surfaces has a direct adverse effect on the human body. Chromating is often avoided. In addition, wastewater containing hexavalent chromium needs to be treated specially as specified in the Water Pollution Control Law, which leads to an increase in the cost of kana as a whole. In addition, chromate-treated metal materials have the major disadvantage that they cannot be recycled as chromium-containing industrial waste, which has become a major social problem. On the other hand, as a surface treatment method other than chromate, a surface treatment agent using tannic acid containing polyvalent phenolcarbonic acid is well known. When the metal material is treated with an aqueous solution of tannic acid, the protective film formed by the reaction between the tannic acid and the metal material is barrier-free against invasion of corrosive substances, so that the corrosion resistance of the metal material is considered to be improved. ing. However, in recent years, as the quality of products has increased, the coating itself has been required to have high corrosion resistance. Therefore, a coating using tannic acid alone or in combination with an inorganic component has insufficient corrosion resistance, and practical application at present is not feasible. It is possible.
そこで、 金属材料の耐食性を向上させる処理方法として、 特開昭 5 3 - 1 2 1 0 3 4号公報に、 水分散性シリカとアルキド榭脂と ト リアルコ キシシラン化合物からなる水溶液を金属表面に塗布する方法が開示され ている。  Therefore, as a treatment method for improving the corrosion resistance of a metal material, Japanese Patent Application Laid-Open No. 53-121034 discloses an aqueous solution comprising water-dispersible silica, an alkyd resin, and a trioxy silane compound applied to the metal surface. A method for doing so is disclosed.
また、 ヒ ドロキシピロン化合物誘導体からなる水溶性樹脂を使用して、 金属材料に耐食性を付与することを目的とした表面処理方法およびヒ ド ロキシスチレン化合物の水溶性又は水分散性重合体を用いて金属材料に 耐食性を付与する方法が特開昭 5 7 - 4 4 7 5 1号公報、 およぴ特開平 Also, a surface treatment method for imparting corrosion resistance to a metal material using a water-soluble resin composed of a hydroxypyrone compound derivative, and a metal treatment using a water-soluble or water-dispersible polymer of a hydroxystyrene compound. A method for imparting corrosion resistance to a material is disclosed in Japanese Patent Application Laid-Open No. 57-444751, and
1 - 1 7 7 3 8 0号公報等に開示されている。 It is disclosed in, for example, Japanese Patent Application Laid-Open No. 1-177380.
しかしながら、 上記の何れの方法も、 金属材料表面にクロメート皮膜 に代替できるような優れた耐食性を付与し得る皮膜を形成できるもので はなく、 現実問題として前記問題点は何ら解決されていないのである。 従って、 現状では耐食性に優れた金属材料用のノンク口ム系の表面処理 剤および表面処理方法は得られていないのである。  However, none of the above methods can form a film capable of imparting excellent corrosion resistance that can be substituted for a chromate film on the surface of a metal material, and the above problem has not been solved at all as a practical problem. . Therefore, at present, no non-stick surface treatment agent and surface treatment method for metal materials with excellent corrosion resistance have been obtained.
[発明の開示] [Disclosure of the Invention]
本発明は、 前記従来技術の有する問題点を解決するためのものでぁリ、 耐食性、 塗装性及び耐指紋性に優れたノンクロム系有機複合被覆金属材 料を提供することを目的とするものである。  An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a non-chromium-based organic composite coated metal material excellent in heat resistance, corrosion resistance, paintability and fingerprint resistance. is there.
本発明者らはこれらの従来技術の抱える問題点を解決すべく鋭意検討 を重ねてきた結果、 金属材料表面に第 1層としてシランカップリング剤 成分と、 特定の化学構造を有する重合体成分から成る組成物を皮膜とし て有し、 第 2層として第 1層の上層にシリ力含有樹脂組成物で被覆する ことによリ耐食性、 塗装性、 及び耐指紋性に優れた有機複合被覆金属材 料、 及びその製造方法を見出し本発明を完成するに至った。 すなわち 本発明の有機複合被覆金属材料は金属材料表面に第 1層として下記成 分 : The present inventors have conducted intensive studies to solve these problems of the conventional technology, and as a result, a silane coupling agent component as a first layer on a metal material surface and a polymer component having a specific chemical structure have been developed. As a film, and as a second layer, the upper layer of the first layer is coated with a resin composition containing a silicide force As a result, the present inventors have found an organic composite-coated metal material excellent in corrosion resistance, paintability, and fingerprint resistance, and a method for producing the same, and have completed the present invention. That is, the organic composite-coated metal material of the present invention has the following composition as a first layer on the surface of the metal material:
( A) 活性水素含有アミノ基、 エポキシ基、 ビュル基、 メルカプト基お よびメタクリロキシ基から選ばれた少なく とも 1個の反応性官能基を有 する 1種以上のシランカツプリング化合物からなるシランカツプリング 剤成分および  (A) Silane coupling comprising one or more silane coupling compounds having at least one reactive functional group selected from active hydrogen-containing amino, epoxy, butyl, mercapto and methacryloxy groups Agent components and
( B ) 下記一般式 ( I ) によリ表される 1種以上の重合体を 2〜 5 0の 平均重合度で含む 1種以上の重合体成分:  (B) one or more polymer components containing one or more polymers represented by the following general formula (I) with an average degree of polymerization of 2 to 50:
Figure imgf000005_0001
Figure imgf000005_0001
[但し、 式中、 ベンゼン環に結合している Xは、 水素原子、 ヒ ドロキ シル基、 C 1〜C 5のアルキル基、 C 1〜C 5のヒ ドロキシアルキル基、 C 6〜C 1 2のァリール基、 ベンジル基、 ベンザル基、 前記ベンゼン環 に縮合して、 ナフタレン環を形成する不飽和ハイ ドロカーボングループ 又は下記式 (I I ) の基: [Wherein, X bonded to the benzene ring is a hydrogen atom, a hydroxy group, a C1-C5 alkyl group, a C1-C5 hydroxyalkyl group, a C6-C1 2, an aryl group, a benzyl group, a benzal group, an unsaturated hydrocarbon group condensed to the benzene ring to form a naphthalene ring, or a group of the following formula (II):
R 1 — C — R 2 R 1 — C — R 2
Figure imgf000005_0002
Figure imgf000005_0002
0 H を表し、 式 (II) 中の R 1および R 2は、 それぞれ互いに水素原子、 ヒ ドロキシル基、 C 1〜C 5のアルキル基、 又は C 1〜C 1 0のヒ ドロキ シアルキル基を表し、 式 ( I ) および (II) において、 ベンゼン環に結 合している Y 1および Y 2は、 それぞれ互いに独立に水素原子又は、 下 記式 (III) 、 (IV) によリ表される Z基:
Figure imgf000006_0001
0 H R 1 and R 2 in the formula (II) each represent a hydrogen atom, a hydroxyl group, a C 1 to C 5 alkyl group, or a C 1 to C 10 hydroxyalkyl group, In (I) and (II), Y 1 and Y 2 bonded to the benzene ring are each independently a hydrogen atom or a Z group represented by the following formulas (III) and (IV). :
Figure imgf000006_0001
— C H 2 — C H 2
Figure imgf000006_0002
Figure imgf000006_0003
を表し、 前記式 (III) および (IV) 中の R 3、 R4、 R 5、 R 6およ び R 7は、 それぞれ互いに独立に水素原子、 C 1〜C 1 0のアルキル基 又は C 1〜C 1 0のヒ ドロキシアルキル基を表し、 前記重合体分子中の 各ベンゼン環に結合している X、 Y 1および Y 2のそれぞれは、 他のベ ンゼン環に結合している X、 Y 1および Y 2のそれぞれと同一であって もよく又は互いに異なってもよく、 前記重合体分子中の各ベンゼン環に おける前記 Z基の置換数の平均値は 0. 2〜 1. 0である。 ] とからな る皮膜を有し、 第 2層として第 1層の上層にシリカを樹脂 100重量部 に対して 5〜 70重量部の割合で含有する樹脂組成物で被覆したことを 特徴とするものである。
Figure imgf000006_0002
Figure imgf000006_0003
R 3, R 4, R 5, R 6 and R 7 in the above formulas (III) and (IV) are each independently a hydrogen atom, a C 1 -C 10 alkyl group or C 1 X represents a hydroxyalkyl group of ~ 10, and each of X, Y1 and Y2 bonded to each benzene ring in the polymer molecule is X, bonded to another benzene ring. Y 1 and Y 2 may be the same or different from each other, and the average number of substitutions of the Z group in each benzene ring in the polymer molecule is 0.2 to 1.0. is there. The second layer is coated on the first layer with a resin composition containing silica in an amount of 5 to 70 parts by weight based on 100 parts by weight of the resin. Things.
本発明の有機複合被覆金属材料において用いられる、 前記シラン力ッ プリング剤成分 (A) の重合体成分 (B) に対する重量比 (A) / (B) 、 1 : 10〜; I 0 : 1であることが好ましい。  The weight ratio (A) / (B) of the silane coupling agent component (A) to the polymer component (B) used in the organic composite coated metal material of the present invention, 1:10 to 10; Preferably, there is.
本発明の有機複合被覆金属材料において用いられる、 前記シラン力ッ P T/JP99/01437 The silane adhesive used in the organic composite coated metal material of the present invention. PT / JP99 / 01437
プリング剤成分 (A) が The pulling agent component (A) is
( a ) 1個以上の活性水素含有アミノ基を有する 1種以上のシランカツ プリング化合物から成るシランカップリング剤と、 (b ) 1個以上のェ ポキシシラン基を有する 1種以上のシラン力ップリング化合物からなる シランカップリング剤とを含むことが好ましい。  (a) a silane coupling agent comprising one or more silane coupling compounds having one or more active hydrogen-containing amino groups, and (b) one or more silane coupling compounds having one or more epoxysilane groups. It is preferable to include a silane coupling agent.
本発明の有機複合被覆金属材料において用いられる、 前記シラン力ッ プリング剤 (a ) に含まれる活性水素含有アミノ基の、 前記シランカツ プリング剤 (b ) に含まれるエポキシ基に対する当量比が、 3 : 1〜 1 3であることが好ましい。  The equivalent ratio of the active hydrogen-containing amino group contained in the silane coupling agent (a) to the epoxy group contained in the silane coupling agent (b) used in the organic composite coated metal material of the present invention is 3: It is preferably from 1 to 13.
本発明の有機複合被覆金属材料において用いられる、 前記シランカツ プリング剤 (a ) と前記シランカップリング剤 (b ) との合計量の、 前 記重合体成分 (B ) に対する重量比 [ ( a ) + ( b ) ]/ ( B ) が 1 : 5 〜 5 : 1であることが好ましい。 [発明を実施するための最良の形態]  The weight ratio of the total amount of the silane coupling agent (a) and the silane coupling agent (b) used in the organic composite coated metal material of the present invention to the polymer component (B) [(a) + (b)] / (B) is preferably from 1: 5 to 5: 1. [Best Mode for Carrying Out the Invention]
本発明の有機複合被覆金属材料においては用いられる第 1層目の皮膜 としては、 特定の反応性官能基を有する 1種以上のシランカップリング 化合物から成るシランカップリング剤成分 (A) と、 特殊アミノ基を含 む 1種以上のフエノール樹脂系重合体から成る重合成分 (B ) である。 本発明に用いられるシランカップリング剤成分 (A) に含まれるシラ ンカップリング化合物は、 1分子中に反応性官能基として活性水素含有 アミノ基、 エポキシ基、 ビュル基、 メルカプト基およびメタクリロキシ 基から選ばれた少なく とも 1個を含むものであれば、 特に構造は限定さ れないが、 具体的に例を挙げれば、 以下の①〜⑤のような組成のものを 使用することができる。  The first layer film used in the organic composite coated metal material of the present invention includes a silane coupling agent component (A) composed of at least one silane coupling compound having a specific reactive functional group, It is a polymerization component (B) comprising one or more phenolic resin-based polymers containing an amino group. The silane coupling compound contained in the silane coupling agent component (A) used in the present invention is a compound having a reactive functional group in one molecule comprising an active hydrogen-containing amino group, an epoxy group, a butyl group, a mercapto group and a methacryloxy group. The structure is not particularly limited as long as it includes at least one selected member, but specific examples include those having the following compositions (1) to (4).
①ァミノ基を有するもの  (1) Having an amino group
N— ( 2—アミノエチル) 3 —ァミノプロピルメチルジメ トキシシラン、 N— (アミノエチル) 3—ァミノプロピル トリメ トキシシラン、 3—ァミノプロピルトリエトキシシ ラン  N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (aminoethyl) 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane
②エポキシ基を有するもの 3—グリシドキシプロピルトリメ トキシシラン、 3—ダリ シドキシプロピルメチルジメ トキシシラン、 2— ( 3, 4 エポキシシクロへキシル) ェチルトェリメ トキシシラン(2) Having epoxy group 3-Glycidoxypropyltrimethoxysilane, 3-Dalicydoxypropylmethyldimethoxysilane, 2- (3,4 epoxycyclohexyl) ethylethyl methoxysilane
③ビュル基を有するもの (3) Having a bullet group
ビュルトリエトキシシラン  Bull triethoxysilane
④メルカプト基を有するもの  も の Having a mercapto group
3—メルカプトプロビルトリメ トキシシラン 3-Mercaptoprovir trimethoxysilane
⑤メタタリ口キシ基を有するもの も の Having a metalloxy group
3—メタクリロキシプロビルトリメ トキシシラン、 3—メ タクリロキシプロピルメチルジメ トキシシラン 本発明に用いられるシランカップリング剤成分 (A) は、 1個以上の 活性水素含有ァミノ基を有する 1種以上のシラン力ップリング化合物か らなるシランカップリング剤 (a ) と、 1個以上のエポキシ基を有する 1種以上のシランカツプリング化合物からなるシラン力ップリング剤 ( b ) からなるものであることが好ましい。  3-methacryloxypropyl trimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane The silane coupling agent component (A) used in the present invention comprises one or more silane groups having one or more active hydrogen-containing amino groups. The silane coupling agent preferably comprises a silane coupling agent (a) comprising a coupling compound and a silane coupling agent (b) comprising one or more silane coupling compounds having one or more epoxy groups.
また、 本発明に用いられるシランカップリング剤成分 (A) が活性水 素含有ァミノ基を有するシランカップリング化合物から成るシラン力ッ プリング剤 (a ) と、 エポキシ基含有シランカップリング剤 (b ) から 成る場合、 シランカツプリング剤中に含まれる活性水素含有アミノ基の、 エポキシ基に対する当量比は、 3 : 1〜 1 : 3の範囲であることが好ま しい。 この活性水素含有アミノ基のエポキシ基に対する当量比が 3 : 1 を超えると、 得られる皮膜の成膜性が悪く、 耐食性や塗装性が不十分に なる。 またそれが 1 : 3未満の場合、 処理された皮膜の耐食性や塗装性 が飽和してしまうことがある。  Further, the silane coupling agent component (A) used in the present invention is a silane coupling agent (a) composed of a silane coupling compound having an active hydrogen-containing amino group, and an epoxy group-containing silane coupling agent (b). In the case of comprising, the equivalent ratio of the active hydrogen-containing amino group contained in the silane coupling agent to the epoxy group is preferably in the range of 3: 1 to 1: 3. If the equivalent ratio of the active hydrogen-containing amino group to the epoxy group exceeds 3: 1, the resulting film will have poor film formability, and will have insufficient corrosion resistance and paintability. If it is less than 1: 3, the corrosion resistance and paintability of the treated film may be saturated.
次に本発明に用いられる重合体成分 (B ) は、 前記式 ( I ) で示され る重合単位を含むオリゴマー又はポリマーであリ、 式 ( I ) の重合単位 の平均重合度は 2〜 5 0である。  Next, the polymer component (B) used in the present invention is an oligomer or a polymer containing the polymerized unit represented by the formula (I), and the polymerized unit of the formula (I) has an average polymerization degree of 2 to 5 It is 0.
式 ( I ) において、 ベンゼン環に結合している Xは、 ヒ ドロキシル基、 C l〜5のアルキル基、 例えばメチル、 ェチル、 プロピル基等、 C l〜 5のヒ ドロキシアルキル基、 例えばヒ ドロキシメチル、 ヒ ドロキシェチ ル、 ヒ ドロキシプロピル基等、 C 6〜 1 2のァリール基、 例えばフエ二 ル、 ナフチル基等、 ベンジル基、 ベンザル基、 前記ベンゼン環に縮合し てナフタレン環を形成する不飽和ハイ ドロカーボングループ、 すなわちIn the formula (I), X bonded to the benzene ring is a hydroxyl group, a C1-5 alkyl group such as a methyl, ethyl, propyl group, etc., and a C1-5 hydroxyalkyl group such as a hydroxy group. C6 to C12 aryl groups such as hydroxymethyl, hydroxyethyl, hydroxypropyl, etc. Benzyl group, benzal group, etc., an unsaturated hydrocarbon group condensed to the benzene ring to form a naphthalene ring,
_CH=CH— CH = CH―、 又は =CH— CH = CH— CH=基、 又 は前記式 (II) の基を表すものである。 _CH = CH—CH = CH— or = CH—CH = CH—CH = or a group of the above formula (II).
式 (II) 中の R 1および R 2は、 それぞれ互いに独立に、 水素原子、 ヒ ドロキシル基、 C 1〜C 1 0アルキル基、 例えばメチル、 ェチル、 プ 口ピル基等、 C 1〜C 1 0のヒ ドロキシアルキル基、 例えばヒ ドロキシ メチル、 ヒ ドロキシェチル、 ヒ ドロキシプロピル基等が挙げられる。 式 ( I ) および (II) において、 ベンゼン環に結合している Y 1およ び Y 2は、 それぞれ互いに独立に、 水素原子、 又は式 (III) 又は (IV) によリ表される Z基を有する。 また、 式 (III) および (IV) の中の R 3、 R4、 R 5、 R 6および R 7は、 それぞれ互いに独立に C 1〜 C 1 0のアルキル基、 例えばメチル、 ェチル、 プロピル基等、 C 1〜C 5の ヒ ドロキシアルキル基、 例えばヒ ドロキシメチル、 ヒ ドロキシェチル、 ヒ ドロキシプロピル基等を表すものである。  R 1 and R 2 in the formula (II) each independently represent a hydrogen atom, a hydroxyl group, a C 1 -C 10 alkyl group, for example, a methyl, ethyl, propyl group or the like; And a hydroxyalkyl group of 0, for example, hydroxymethyl, hydroxyshethyl, hydroxypropyl group and the like. In the formulas (I) and (II), Y 1 and Y 2 bonded to the benzene ring are each independently a hydrogen atom or Z represented by the formula (III) or (IV). Having a group. R 3, R 4, R 5, R 6 and R 7 in the formulas (III) and (IV) each independently represent a C 1 -C 10 alkyl group such as methyl, ethyl, propyl, etc. And C1 to C5 hydroxyalkyl groups, for example, hydroxymethyl, hydroxyshethyl, hydroxypropyl and the like.
前記重合体分子中の各ベンゼン環に結合している式 ( I ) 中の X、 Y 1および式 (II) 中の Y 2のぞれぞれは、 他のベンゼン環に結合してい る X、 Y 1および Y 2のそれぞれと同一であってもよく又は互いに異な つてもよい。 また、 前記重合体分子中の各ベンゼン環における前記 Z基 の置換数の平均値は、 0. 2〜1. 0である。  X and Y 1 in Formula (I) and Y 2 in Formula (II) each bonded to each benzene ring in the polymer molecule are X bonded to other benzene rings. , Y 1 and Y 2 may be the same or different from each other. The average number of substitutions of the Z group in each benzene ring in the polymer molecule is from 0.2 to 1.0.
Z基の置換数の平均値とは、 重合体分子中の全ベンゼン環において、 それぞれに導入されている Z基の数の平均値である。 例えば、 式 ( I ) において、 n= 1 0であって、 且つ Xが式 (II) のベンゼン環含有基で ある場合、 この重合体の 1分子当たりのベンゼン環数は 20であリ、 こ の重合体 1分子当たリ、 10個のベンゼン環に各 1個宛の Z基が導入さ れている場合、 この重合体分子の Z基置換数平均値は、 [ ( 1 X 1 0 ) + (0 X 1 0) ] / 2 0 = 0. 5となる。  The average value of the number of substitutions of the Z group is an average value of the number of the Z groups introduced into each benzene ring in the polymer molecule. For example, in the formula (I), when n = 10 and X is a benzene ring-containing group of the formula (II), the number of benzene rings per molecule of the polymer is 20, If one Z molecule per molecule is introduced into 10 benzene rings per polymer molecule, the average number of Z group substitutions in this polymer molecule is [(1 X 10) + (0 X 10)] / 2 0 = 0.5.
この Z基置換数の平均値が 0. 2未満であると、 得られる重合体の金 属材料への密着性が不十分となリ塗装性が悪くなる。 またそれが、 1 . 0を超えると、 得られる重合体の親水性が大になリ、 得られる皮膜の耐 食性が不十分となる。 式 (I I I ) および式 (IV) によリ表される Z基中の R 3〜R 7の各々 は、 C 1〜C 1 0のアルキル基、 C 1〜C 1 0のヒ ドロキシアルキル基 を表す。 これらの炭素数が 1 1以上になると、 形成される皮膜の成膜性 が低下するため、 耐食性、 塗装性が不十分になる。 If the average value of the number of Z group substitution is less than 0.2, the recoating property becomes poor because the obtained polymer has insufficient adhesion to metal materials. On the other hand, if it exceeds 1.0, the resulting polymer will have high hydrophilicity and the resulting film will have insufficient corrosion resistance. Each of R 3 to R 7 in the Z group represented by the formulas (III) and (IV) is a C 1 to C 10 alkyl group or a C 1 to C 10 hydroxyalkyl group. Represents When the number of carbon atoms is 11 or more, the film forming property of the formed film is reduced, so that the corrosion resistance and the paintability become insufficient.
次に本発明で用いられる第 2層の被覆は、 シリカを樹脂 1 0 0重量部 に対して 5〜 7 0重量部の割合で含有することが好ましい。 ょリ好まし くは 1 0〜5 0重量部である。 この割合が 5重量部未満の場合、 上層被 覆の耐食性、 耐指紋性の向上効果がなくなリ、 耐食性、 耐指紋性が低下 する。 またそれが 7 0重量部を超えると、 上層被覆が硬くなリ、 加工後 耐食性が低下する。 配合されるシリカは市販されているコロイダルシリ 力、 オルガノシリカゾル、 気相シリカ、 シリカ粉末等を用いることがで き、 日産化学(株)のスノーテックス 0、 C、 O S、 N、 日本ァエロジル (株)のァエロジル 1 0 0、 2 0 0、 3 0 0などが挙げられる。 なお、 そ の粒径は特に限定されるものではない。  Next, the coating of the second layer used in the present invention preferably contains silica in an amount of 5 to 70 parts by weight based on 100 parts by weight of the resin. Preferably, it is 10 to 50 parts by weight. If the proportion is less than 5 parts by weight, the effect of improving the corrosion resistance and fingerprint resistance of the upper layer coating is lost, and the corrosion resistance and fingerprint resistance are reduced. On the other hand, if it exceeds 70 parts by weight, the coating of the upper layer becomes hard, and the corrosion resistance after processing decreases. Commercially available colloidal silica, organosilica sol, gas-phase silica, silica powder, etc. can be used for the compounded silica. Snowtex 0, C, OS, N of Nissan Chemical Co., Ltd., Nippon Aerosil Co., Ltd. Aerosil 100, 200, 300, etc. The particle size is not particularly limited.
第 2層の被覆に使用される榭脂は水酸基および 又はカルボキシル基 を有する樹脂であることが好ましい。 このような樹脂としては市販のェ ポキシ樹脂、 アルキッ ド樹脂、 アクリル樹脂、 ウレタン樹脂、 アクリル 変性ポリエステル樹脂、 フエノール変性アルキッ ド樹脂、 ポリ ビュルブ チラール樹脂、 フエノール樹脂、 メラミン樹脂、 エチレンアクリル樹脂 等が挙げられる。 これら樹脂の構造や分子量は特に限定はないが、 シリ 力を均一に分散含有できる範囲内である必要がある。  The resin used for coating the second layer is preferably a resin having a hydroxyl group and / or a carboxyl group. Examples of such resins include commercially available epoxy resins, alkyd resins, acrylic resins, urethane resins, acryl-modified polyester resins, phenol-modified alkyd resins, polybutylbutyral resins, phenol resins, melamine resins, and ethylene acrylic resins. Can be The structure and molecular weight of these resins are not particularly limited, but they must be within a range in which silicic acid can be uniformly dispersed and contained.
第 2層の被覆は付着量として 0 . 1〜5 . O g Zm2が好ましい。 こ の上層被覆が 0 . 1 g /m2未満の場合、 耐食性、 耐指紋性が不十分に なる。 また、 それが 5 . 0 g /m 2を超えると塗装性、 特に密着性が不 十分になる。 As coating adhesion amount of the second layer 0. 1 to 5. O g Zm 2 is preferred. When the upper layer coating is less than 0.1 g / m 2 , the corrosion resistance and the fingerprint resistance become insufficient. On the other hand, if it exceeds 5.0 g / m 2 , the paintability, especially the adhesion, becomes insufficient.
必要に応じて第 2層の被覆に、 ワックスを含有させることができ、 潤 滑性を付与することもできる。  If necessary, a wax can be contained in the coating of the second layer, and lubricity can also be imparted.
また、 第 2層の被覆に使用される樹脂中に、 必要に応じて、 通常の防 鲭用顔料、 例えばモリブデン酸系顔料、 リン酸塩系顔料、 防鲭剤 (例え ばタンニン酸、 没食子酸等のフエノール系カルボン酸) を添加しても相 乗効果的に耐食性が向上することもある。 本発明の製造方法で用いる表面処理剤中において、 前記シラン力ップ リング剤成分 (A) と前記水溶性重合体成分 (B) に対する重量比 (A) Z (B) は、 1 : 1 0〜: L 0 : 1であることが好ましく、 ょリ好ましく は 1 : 5〜5 : 1である。 この重量比が 1 : 10未満の場合、 すなわち シランカップリング剤成分 (A) の比率が低いと、 基体表面との接着力 が低下するため、 耐食性、 塗装性は不十分になる。 またそれが 1 0 : 1 を超えると、 すなわちシランカップリング剤成分 (A) 比率が高い場合、 皮膜の成膜性が低下するため、 得られる皮膜の耐食性、 塗装性が不十分 となる。 In the resin used for the coating of the second layer, if necessary, an ordinary protective pigment, for example, a molybdate-based pigment, a phosphate-based pigment, or a protective agent (for example, tannic acid, gallic acid) Phenolic carboxylic acids, etc.) may synergistically improve the corrosion resistance. In the surface treatment agent used in the production method of the present invention, the weight ratio (A) Z (B) to the silane coupling agent component (A) and the water-soluble polymer component (B) is 1:10. ~: L 0: 1 is preferred, and preferably 1: 5 to 5: 1. If this weight ratio is less than 1:10, that is, if the ratio of the silane coupling agent component (A) is low, the adhesion to the substrate surface is reduced, and the corrosion resistance and coating properties become insufficient. On the other hand, if it exceeds 10: 1, that is, if the silane coupling agent component (A) ratio is high, the film-forming properties of the film decrease, and the corrosion resistance and paintability of the resulting film become insufficient.
次に本発明の有機複合被覆金属材料の製造方法について説明する。 本 発明の製造方法においては、 第 1層として上記表面処理剤組成物を含み、 P Hが 2. 0〜6. 5の範囲に調整された水性表面処理液を、 金属材料 表面に付着させ、 それを乾燥して乾燥後の付着量が 10〜500mgZ m2、 好ましくは 5 0〜50 OnigZni2になるようにする。 このとき水 性処理液を金属材料表面に 1 0〜 60°Cの温度で 0. 1〜30秒間接触 させ、 加熱乾燥することが好ましい。 Next, a method for producing the organic composite coated metal material of the present invention will be described. In the production method of the present invention, an aqueous surface treatment solution containing the surface treatment agent composition as the first layer and having a pH adjusted to a range of 2.0 to 6.5 is adhered to the surface of the metal material. the deposition amount after drying was dry 10~500mgZ m 2, preferably to be 5 0~50 OnigZni 2. At this time, it is preferable that the aqueous treatment liquid is brought into contact with the surface of the metal material at a temperature of 10 to 60 ° C. for 0.1 to 30 seconds and dried by heating.
第 1層の水性表面処理液の PHは、 リン酸、 酸性リン酸塩、 フッ化物、 錯フッ化物、 硫酸、 硝酸、 有機酸を用いて、 2. 0〜6. 5の範囲に調 整される。 ょリ好ましい PH値は 3. 0〜5. 0である。 PH2. 0未 満では、 得られる処理液中の組成物と基体表面との反応性が過度に高く なるので、 皮膜不良が発生してしまい、 得られる皮膜の耐食性、 塗装性 が不十分になる。 また PH6. 5を超えると水溶性重合体成分 (B) 自 体が水性水性表面処理液から沈殿析出し易くなるため水性処理液の寿命 が短くなる。  The pH of the first layer aqueous surface treatment solution is adjusted to the range of 2.0 to 6.5 using phosphoric acid, acidic phosphate, fluoride, complex fluoride, sulfuric acid, nitric acid, and organic acid. You. The preferred PH value is between 3.0 and 5.0. If the pH is less than 2.0, the reactivity between the composition in the obtained processing solution and the substrate surface becomes excessively high, so that a film defect occurs and the obtained film has insufficient corrosion resistance and paintability. . If the pH exceeds 6.5, the water-soluble polymer component (B) itself tends to precipitate out of the aqueous aqueous surface treating solution, so that the life of the aqueous treating solution is shortened.
また本表面処理剤を用いて、 金属材料の表面を処理する方法も特に限 定されるものではなく、 例えば浸漬法、 スプレー法及びロールコート法 等を適応することができる。 また、 処理温度、 処理時間についても特に 限定はないが、 一般に、 処理温度は 1 0〜 60°Cであることが好ましく、 処理時間は 0. 1〜20秒であることが好ましい。 更に処理された金属 材料を加熱乾燥する事が好ましい。 加熱温度としては 50〜280°Cが 好ましい。 7 The method of treating the surface of a metal material using the surface treating agent is not particularly limited, and for example, an immersion method, a spray method, a roll coating method and the like can be applied. The processing temperature and the processing time are not particularly limited, but generally, the processing temperature is preferably from 10 to 60 ° C, and the processing time is preferably from 0.1 to 20 seconds. Further, it is preferable to heat and dry the treated metal material. The heating temperature is preferably from 50 to 280 ° C. 7
10  Ten
なお、 本発明の製造方法で用いる表面処理組成物と金属材料とを接触 させた際に、 金属材料よリ溶出混入した金属イオンと、 水溶性重合体成 分 (B) とが錯体を形成し、 沈殿を生ずる場合がある。 このような場合 には表面処理剤組成物中に金属封鎖剤を添加しても良い。 金属封鎖剤と しては EDTA、 Cy— DTA、 トリエタノールァミン、 ダルコン酸、 ヘプトグルコン酸、 蓚酸、 酒石酸、 リンゴ酸などが挙げられる。 When the surface treatment composition used in the production method of the present invention is brought into contact with the metal material, the metal ion eluted and mixed from the metal material and the water-soluble polymer component (B) form a complex. However, precipitation may occur. In such a case, a sequestering agent may be added to the surface treatment composition. Examples of the sequestering agent include EDTA, Cy-DTA, triethanolamine, dalconic acid, heptgluconic acid, oxalic acid, tartaric acid, and malic acid.
第 2層に適用する水性樹脂組成物については、 処理方法、 処理温度、 処理時間について特に限定はないが、 一般に処理温度は 1 0〜60°Cで 0. 1〜 10秒間接触させ、 加熱乾燥することが好ましい。  Regarding the aqueous resin composition applied to the second layer, there is no particular limitation on the treatment method, treatment temperature, and treatment time, but in general, the treatment is carried out at a temperature of 10 to 60 ° C for 0.1 to 10 seconds, followed by heating and drying. Is preferred.
本発明に用いられる金属材料には、 鉄板、 亜鉛系めつき銅板、 アルミ ユウム板、 アルミニウム合金板、 ステンレス銅板等から選ぶことができ る。  The metal material used in the present invention can be selected from iron plates, zinc-plated copper plates, aluminum plates, aluminum alloy plates, stainless copper plates, and the like.
下記の実施例によリ本発明を具体的に説明するが、 本発明の範囲はこ れらの実施例によリ何ら限定されるものでない。  The present invention will be specifically described with reference to the following examples, but the scope of the present invention is not limited to these examples.
1. 供試材 1. Test material
①冷延鋼板  ① Cold rolled steel sheet
市販の板厚 0. 6mm J I S G 3 14 1  Commercial thickness 0.6 mm J I S G 3 14 1
②亜鉛含有金属めつき銅板  (2) Copper plate with zinc-containing metal
市販の板厚 0. 6mm 溶融亜鉛めつき銅板 (G I材)  Commercially available 0.6mm hot-dip galvanized copper plate (GI material)
市販の板厚 0. 6mm 電気亜鉛めつき鋼板 ( E G材)  Commercially available sheet thickness 0.6 mm Electro-galvanized steel sheet (EG material)
③アルミニウム板  ③ Aluminum plate
市販の板厚 0. 6 mm J I S A 505 2  Commercially available plate thickness 0.6 mm J I S A 505 2
2. 銅板の清浄方法  2. How to clean copper plate
上記金属材料の表面を中アルカリ脱脂剤 (登録商標: ファインタリー ナー 43 36、 日本パーカライジング(株)製) 薬剤濃度: 20 gZリツ トルを用いて、 処理温度: 60°C、 処理時間: 20秒の条件でスプレー 処理し、 表面に付着しているゴミゃ油を除去した。 ついで表面に残存し ているアルカリ分を水道水にょリ洗浄し、 供試材の表面を清浄化した。 The surface of the above metal material is treated with a medium alkali degreasing agent (registered trademark: Fine Talina 4336, manufactured by Nippon Parkerizing Co., Ltd.). Chemical concentration: 20 gZ liter, treatment temperature: 60 ° C, treatment time: 20 seconds Spray treatment was performed under the following conditions to remove dust and oil adhering to the surface. Next, the alkali remaining on the surface was washed with tap water to clean the surface of the test material.
3. 第一層表面処理液組成 3. Composition of first layer surface treatment solution
く処理液 A>  Processing solution A>
シランカップリング剤成分 (A) として 3—メルカプトプロピルトリ メ トキシシラン、 水溶性重合体成分 (B) として n = 5、 X=水素、 Y 1 =Z = -CH2N (CH3) 2、 Z基置換数平均値 = 1、 (A) : (B) = 1 : 8になるように調整した。 更に H2S i F6で p Hが 3. 0になる ように調整した後、 脱イオン水にて希釈し、 固形分として 1 0重量%と した。 3-mercaptopropyl tri as silane coupling agent component (A) Main Tokishishiran, n = 5, X = hydrogen as a water-soluble polymer component (B), Y 1 = Z = -CH 2 N (CH 3) 2, Z group substitution number average = 1, (A): ( B ) = 1: Adjusted to 8. After adjusting the pH to 3.0 with H 2 SiF 6 , the mixture was diluted with deionized water to a solid content of 10% by weight.
<処理液 B >  <Treatment liquid B>
シランカップリング剤成分 (A) として N— (2—アミノエチル) 一 3—ァミノプロビルトリメ トキシシランと、 水溶性重合体成分 (B) と して n= 5、 X =— CH2— C6H4— OH、 Y 1 = Z=_CH2N (C H 3) 2、 Z基置換数平均値 =0. 50、 (A) : (B) = 5 : 1になるよ うに調整した。 更に HFで p Hが 4. 0になるように調整した後、 脱ィ オン水にて希釈し、 固形分として 1 0重量%とした。 N- (2-aminoethyl) -13-aminopropyltrimethoxysilane as the silane coupling agent component (A) and n = 5, X = —CH 2 — C as the water-soluble polymer component (B) 6 H 4 —OH, Y 1 = Z = _CH 2 N (CH 3 ) 2 , Z-group substitution average value = 0.50, (A): (B) = 5: 1. After adjusting the pH to 4.0 with HF, the mixture was diluted with deionized water to obtain a solid content of 10% by weight.
<処理液 C >  <Treatment liquid C>
シランカップリング剤成分 (A) として 3—ァミノプロピルトリエト キシシラン + 3—グリシドキシプロピルメチルジメ トキシシラン (アミ ノ基中の活性水素 : エポキシ基の当量比 = 1 : 2) と、 水溶性重合体成 分 (B) として n = 5、 X =— CH2— C6H4— OH、 Y 1 = Z = -C H2N (CH3) 2、 Z基置換数平均値 = 0. 75、 (A) : (B) = 1 : 1になるように調整した。 更に H2T i F6で p Hが 4. 0になるように 調整した後、 脱イオン水にて希釈し、 固形分として 1 0重量%とした。 As silane coupling agent component (A), 3-aminopropyltriethoxysilane + 3-glycidoxypropylmethyldimethoxysilane (active hydrogen in amino group: equivalent ratio of epoxy group = 1: 2) and water solubility n as the polymer Ingredient (B) = 5, X = - CH 2 - C 6 H 4 - OH, Y 1 = Z = -CH 2 n (CH 3) 2, Z group substitution number average = 0.75 , (A): (B) = 1: 1 Further, the pH was adjusted to 4.0 with H 2 Ti F 6 , and then diluted with deionized water to obtain a solid content of 10% by weight.
<処理液 D >  <Treatment liquid D>
シランカップリング剤成分 (A) として N— (2—アミノエチル) 3 —ァミノプロビルトリメ トキシシシラン + 3—グリシドキシプロピルメ チルジメ トキシシラン (ァミノ基中の活性水素: エポキシ基の当量比 = 1 : 2) と、 水溶性重合体成分 (B) として n= 5、 X = -CH2-C6 H4— OH、 Y 1 = Z = -CH2N (CH3) 2、 Z基置換数平均値 =0. 75、 (A) : (B) = 1 : 1、 になるように調整した。 更にリン酸で p Hが 3. 0になるように調整した後、 脱イオン水にて希釈し、 固形分 と して 1 0重量%とした。 As the silane coupling agent component (A), N- (2-aminoethyl) 3 -aminopropyltrimethoxysilane + 3-glycidoxypropylmethyldimethoxysilane (active hydrogen in amino group: equivalent ratio of epoxy group = 1) : 2) and n = 5, X = -CH 2 -C 6 H 4 —OH, Y 1 = Z = -CH 2 N (CH 3 ) 2 , Z group substitution number as the water-soluble polymer component (B) The average value was adjusted to 0.75, and (A): (B) = 1: 1. After adjusting the pH to 3.0 with phosphoric acid, the mixture was diluted with deionized water to obtain a solid content of 10% by weight.
<処理液 E〉  <Treatment liquid E>
シランカップリング剤成分 (A) として N— ( 2—アミノエチル) 一 3—ァミ ノプロピルト リメ トキシシラン + 3—ダリシドキシプロピルメ チルジメ トキシシラン (ァミノ基中の活性水素:エポキシ基の当量比 == 1 : 1) と、 水溶性重合体成分 (B) として n= 5、 X=水素、 Y l = Z=-CH2N (CH3) 2、 Z基置換数平均値 =0. 3、 (A) : (B) = 1 : 1になるように調整した。 更に H2T i F6とリン酸で p Hが 4. 0になるように調整した後、 脱イオン水にて希釈し、 固形分として 1 0 重量%とした。 N- (2-aminoethyl) -one as silane coupling agent component (A) 3-aminopropyltrimethoxysilane + 3-dalicidoxypropylmethyldimethoxysilane (equivalent ratio of active hydrogen in epoxy group to epoxy group == 1: 1) and n = 5 as water-soluble polymer component (B) , X = hydrogen, Y 1 = Z = —CH 2 N (CH 3 ) 2 , Z group substitution average value = 0.3, (A): (B) = 1: 1. Further, after adjusting the pH to 4.0 with H 2 Ti F 6 and phosphoric acid, the mixture was diluted with deionized water to obtain a solid content of 10% by weight.
ぐ実施例 1 >  Example 1>
予め (2. ) に記載した方法で清浄にした溶融亜鉛めつき鋼板 (G I) に、 25 °Cの処理液 Aをロールコート法にて、 乾燥重量として 0. 3 g /m2になるように塗布し、 到達板温度 80°Cで乾燥を行った。 その上 層にシリカ粉末 (日本ァエロジル(株)製、 商標: ァエロジル 200) を ァクリル変性アルキド榭脂 1 00重量部に対して 30重量部の割合で含 有する水性榭脂組成物をロールコート法で乾燥重量として 2 g/m2塗 布し到達板温度 1 00°Cで乾燥した。 Treatment liquid A at 25 ° C is roll-coated on a hot-dip galvanized steel sheet (GI) that has been previously cleaned by the method described in (2.) to a dry weight of 0.3 g / m 2. And dried at an ultimate plate temperature of 80 ° C. An aqueous resin composition containing silica powder (manufactured by Nippon Aerosil Co., Ltd., trade name: AEROSIL 200) in an upper layer at a ratio of 30 parts by weight to 100 parts by weight of the acryl-modified alkyd resin by a roll coating method. The coating was applied at a dry weight of 2 g / m 2 and dried at an ultimate plate temperature of 100 ° C.
<実施例 2 >  <Example 2>
予め (2. ) に記載した方法で清浄にしたアルミニウム板 (AL) に、 1 5 °Cの処理液 Bをロールコート法にて、 乾燥重量として 0. 1 g m 2になるように塗布し、 到達板温 1 50°Cになるように乾燥を行った。 その上層にシリカ粉末 (日本ァエロジル(株)製、 商標: ァエロジル 30 0) をフエノール変性アルキッド榭脂 100重量部に対して 70重量部 の割合で含有する水性樹脂組成物をロールコート法で乾燥重量として 1 gZm2塗布し到達板温度 1 50°Cで乾燥した。 The treatment liquid B at 15 ° C was applied to the aluminum plate (AL) previously cleaned by the method described in (2.) by a roll coating method so as to have a dry weight of 0.1 gm 2 . Drying was performed so that the reached plate temperature was 150 ° C. An aqueous resin composition containing silica powder (manufactured by Nippon Aerosil Co., Ltd., trade name: Aerosil 300) in a ratio of 70 parts by weight to 100 parts by weight of the phenol-modified alkyd resin was dried by a roll coating method. 1 gZm 2 and dried at an ultimate plate temperature of 150 ° C.
ぐ実施例 3 >  Example 3>
予め (2. ) に記載した方法で清浄にした溶融亜鉛めつき銅板 (G I) に、 30°Cの処理液 Bをロールコート法にて、 乾燥重量として 0. 05 g/m2になるように塗布し、 到達板温 100°Cになるように乾燥を行 つた。 その上層にシリカ粉末 (日本ァエロジル(株)製、 商標: ァエロジ ル 200) をァクリル樹脂 1 00重量部に対して 50重量部の割合で含 有する水性樹脂組成物をロールコート法で乾燥重量として 3 g/m2塗 布し到達板温度 1 00°Cで乾燥した。 ぐ実施例 4 > The treatment liquid B at 30 ° C is applied to a copper plate (GI) coated with hot-dip zinc that has been cleaned in advance as described in (2.) by a roll coating method to a dry weight of 0.05 g / m 2. And dried so that the plate temperature reached 100 ° C. An aqueous resin composition containing 50 parts by weight of silica powder (trade name: Aerosil 200, manufactured by Nippon Aerosil Co., Ltd.) in 100 parts by weight of acryl resin as a dry weight by a roll coating method in an upper layer of the aqueous resin composition. g / m 2 was applied and dried at an ultimate plate temperature of 100 ° C. Example 4>
予め (2. ) に記載した方法で清浄にした電気亜鉛めつき銅板 (E G) に、 2 CTCの処理液 Cをロールコート法にて、 乾燥重量として 0. 0 5 gZm2になるように塗布し、 到達板温 1 8 0°Cになるように乾燥を行 つた。 その上層にコロイダルシリカ (日産化学(株)製、 商標: スノーテ ックス N) をエチレンァクリル榭脂 1 0 0重量部に対して 7 0重量部の 割合で含有する水性樹脂組成物をロールコート法で乾燥重量として 1 g Zm2塗布し到達板温度 1 0 0°Cで乾燥した。 Apply 2 CTC treatment solution C by roll coating to a dry weight of 0.05 gZm 2 on an electrogalvanized copper plate (EG) that has been cleaned in advance as described in (2.). Then, drying was performed so that the reached plate temperature was 180 ° C. An aqueous resin composition containing 70 parts by weight of colloidal silica (manufactured by Nissan Chemical Co., Ltd., trade name: Snowtex N) in an amount of 100 parts by weight of ethylene acryl resin is roll-coated on the upper layer. Was applied as a dry weight of 1 g Zm 2 and dried at an ultimate plate temperature of 100 ° C.
ぐ実施例 5 >  Example 5>
予め (2. ) に記載した方法で清浄にした溶融亜鉛めつき銅板 (G I ) に、 2 0 °Cの処理液 Dをロールコート法にて、 乾燥重量として 0. l g /m2になるように塗布し、 到達板温 8 0°Cになるように乾燥を行った。 その上層にコロイダルシリカ (日産化学(株)製、 商標: スノーテックス N) をエチレンァクリル樹脂 1 0 0重量部に対して 2 0重量部の割合で 含有する水性榭脂組成物をロールコート法で乾燥重量として 2 g/m2 塗布し到達板温度 1 8 0°Cで乾燥した。 A treatment liquid D at 20 ° C is applied to a hot-dip zinc-plated copper plate (GI) previously cleaned by the method described in (2.) by a roll coating method so as to have a dry weight of 0.1 lg / m 2. And dried so that the reached plate temperature was 80 ° C. An aqueous resin composition containing colloidal silica (manufactured by Nissan Chemical Co., Ltd., trade name: Snowtex N) at a ratio of 100 parts by weight of ethylene acryl resin to the upper layer by a roll coating method. Was applied at a dry weight of 2 g / m 2 and dried at an ultimate plate temperature of 180 ° C.
<実施例 6 >  <Example 6>
予め (2. ) に記載した方法で清浄にした溶融亜鉛めつき銅板 (G I ) に、 2 0°Cの処理液 Eをロールコート法にて、 乾燥重量として 0. 0 3 gノ m2になるように塗布し、 到達板温 8 0°Cになるように乾燥を行つ た。 その上層にコロイダルシリカ (日産化学(株)製、 商標:スノーテツ タス O) をエチレンァクリル榭脂 1 0 0重量部に対して 2 0重量部の割 合で含有する水性樹脂組成物をロールコート法で乾燥重量として 1 gZ m2塗布し到達板温度 8 0でで乾燥した。 To a molten zinc plated copper plate (GI) previously cleaned by the method described in (2.), apply a treatment liquid E at 20 ° C by a roll coating method to a dry weight of 0.03 g nom 2 . And dried so that the reached plate temperature was 80 ° C. The upper layer is roll-coated with an aqueous resin composition containing colloidal silica (produced by Nissan Chemical Co., Ltd., trade name: SNOTETUS TAS O) in a ratio of 20 parts by weight to 100 parts by weight of ethylene acryl resin. and dried in a dry weight 1 gZ m 2 coating reached plate temperature 8 0 law.
<実施例 7 >  <Example 7>
予め (2. ) に記載した方法で清浄にした溶融亜鉛めつき銅板 (G I ) に、 20°Cの処理液 Eをロールコート法にて、 乾燥重量として 0. 5 g /m2になるように塗布し、 到達板温 8 0°Cになるように乾燥を行った。 その上層にコロイダルシリカ (日産化学(株)製、 商標: スノーテックス O) をウレタン変性エポキシ榭脂 1 0 0重量部に対して 7 0重量部の割 合で含有する水性樹脂組成物をロールコ一ト法で乾燥重量として 0. 3 g/m2塗布し到達板温度 1 80°Cで乾燥した。 Applying a treatment solution E at 20 ° C to a copper plate (GI) coated with hot-dip zinc, which was previously cleaned by the method described in (2.), using a roll coat method to obtain a dry weight of 0.5 g / m 2. And dried so that the reached plate temperature was 80 ° C. An aqueous resin composition containing colloidal silica (manufactured by Nissan Chemical Co., Ltd., trade name: Snowtex O) in an upper layer at a ratio of 70 parts by weight to 100 parts by weight of the urethane-modified epoxy resin was roll-coated. 0.3 as dry weight by g / m 2 was applied and dried at an ultimate plate temperature of 180 ° C.
く実施例 8 >  Example 8>
予め ( 2. ) に記載した方法で清浄にした冷延鋼板 (S PC) に、 2 0°Cの処理液 Eをロールコート法にて、 乾燥重量として 0. 5 gZm2 になるように塗布し、 到達板温 80°Cになるように乾燥を行った。 その 上層にコロイダルシリカ (日産化学(株)製、 商標:スノーテックス N) をウレタン変性エポキシ榭脂 100重量部に対して 70重量部の割合で 含有する水性樹脂組成物をロールコート法で乾燥重量として 4 g/m2 塗布し到達板温度 1 80°Cで乾燥した。 Apply the treatment liquid E at 20 ° C to a cold-rolled steel sheet (SPC) previously cleaned by the method described in (2) by a roll coating method to a dry weight of 0.5 gZm 2. Then, drying was performed so that the reached plate temperature was 80 ° C. An aqueous resin composition containing colloidal silica (manufactured by Nissan Chemical Co., Ltd., trade name: Snowtex N) at a ratio of 70 parts by weight to 100 parts by weight of the urethane-modified epoxy resin is dried by a roll coating method. 4 g / m 2 and dried at an ultimate plate temperature of 180 ° C.
<比較例 1 >  <Comparative Example 1>
予め (2. ) に記載した方法で清浄にした溶融亜鉛めつき銅板 (G I ) に、 20°Cの処理液 Cをロールコート法にて、 乾燥重量として 0. 3 g /m2になるように塗布し、 到達板温 1 80°Cになるように乾燥を行つ た。 Applying a treatment liquid C at 20 ° C to a dry zinc coated copper plate (GI) previously cleaned by the method described in (2.) by a roll coating method to a dry weight of 0.3 g / m 2. And dried to reach a plate temperature of 180 ° C.
<比較例 2 >  <Comparative Example 2>
予め (2. ) に記載した方法で清浄にした電気亜鉛めつき銅板 (EG) に、 20°Cの処理液 Aをロールコート法にて、 乾燥重量として 0. 0 5 gZm2になるように塗布し、 到達板温 80°Cになるように乾燥を行つ た。 その上層にウレタン樹脂のみの水性樹脂組成物をロールコート法で 乾燥重量として 1 g/m2塗布し到達板温度 1 00°Cで乾燥した。 Apply a treatment solution A at 20 ° C to a copper plate (EG) coated with electro-zinc that has been cleaned in advance as described in (2.) by a roll coating method so that the dry weight becomes 0.05 gZm 2. It was applied and dried so that the plate temperature reached 80 ° C. The upper layer was coated with an aqueous resin composition containing only a urethane resin by a roll coating method at a dry weight of 1 g / m 2 , and dried at an ultimate plate temperature of 100 ° C.
<比較例 3 >  <Comparative Example 3>
予め (2. ) に記載した方法で清浄にしたアルミニウム (AL) に、 30°Cの処理液 Bをロールコート法にて、 乾燥重量として 0. 1 gZm 2になるように塗布し、 到達板温 1 80°Cになるように乾燥を行った。 その上層にコロイダルシリカ (日産化学(株)製、 商標:スノーテックス N) をエチレンァクリル榭脂 100重量部に対して 90重量部の割合で 含有する水性樹脂組成物をロールコート法で乾燥重量として 1 gZm2 塗布し到達板温度 1 00°Cで乾燥した。 Apply the treatment liquid B at 30 ° C to the aluminum (AL) previously cleaned by the method described in (2) by the roll coating method so that the dry weight becomes 0.1 gZm 2. Drying was performed at a temperature of 180 ° C. An aqueous resin composition containing, as an upper layer, colloidal silica (manufactured by Nissan Chemical Industries, Ltd., trade name: Snowtex N) in a ratio of 90 parts by weight to 100 parts by weight of ethylene acryl resin is dried by a roll coating method. 1 gZm 2 and dried at an ultimate plate temperature of 100 ° C.
<比較例 4 >  <Comparative Example 4>
予め (2. ) に記載した方法で清浄にした電気亜鉛めつき銅板 (EG) に、 20 °Cの処理液 Dをロールコート法にて、 乾燥重量として 0. 05 g /m2になるように塗布し、 到達板温 1 8 0°Cになるように乾燥を行 つた。 その上層にシリカ粉末(日本ァエロジル(株)製、 商標 : ァエロジ ル 2 00)をエチレンァクリル樹脂 1 0 0重量部に対して 5 0重量部の 割合で含有する水性樹脂組成物をロールコート法で乾燥重量として 0. 0 5 gZm2塗布し到達板温度 1 00°Cで乾燥した。 The treatment liquid D at 20 ° C was applied to a copper plate (EG) plated with electro-zinc which had been cleaned in advance according to (2. g / m 2 , and dried so that the reached plate temperature was 180 ° C. An aqueous resin composition containing silica powder (trade name: Aerosil 200, manufactured by Nippon Aerosil Co., Ltd.) in an upper layer at a ratio of 50 parts by weight to 100 parts by weight of ethylene acryl resin was subjected to a roll coating method. in the 0. 0 5 gZm 2 applied it was dried at peak metal temperature 1 00 ° C as dry weight.
<比較例 5 >  <Comparative Example 5>
予め ( 2. ) に記載した方法で清浄にした電気亜鉛めつき銅板 (EG) にコロイダルシリカ (日産化学(株)製、 商標: スノーテックス N) をェ チレンァクリル樹脂 1 00重量部に対して 50重量部の割合で含有する 水性樹脂組成物をロールコート法で乾燥重量として 1 gZm2塗布し到 達板温度 1 00°Cで乾燥した。 Colloidal silica (manufactured by Nissan Chemical Industries, Ltd., trade name: Snowtex N) was added to 100 parts by weight of ethylene acryl resin on an electro-zinc-plated copper plate (EG) previously cleaned by the method described in (2). The aqueous resin composition contained in a ratio of 1 part by weight was applied as a dry weight of 1 gZm 2 by a roll coating method, and dried at a temperature of 100 ° C. of the arrival plate.
3. 評価試験方法 3. Evaluation test method
以下に示す評価方法にて評価した。 その結果を表 1に示す。  The evaluation was performed by the following evaluation method. The results are shown in Table 1.
【表 1】 評価 ¾験結果 [Table 1] Evaluation test results
Figure imgf000017_0001
Figure imgf000017_0001
3. 1. 耐食性  3. 1. Corrosion resistance
供試材について、 J I S Z 2 3 7 1に規定された塩水噴霧試験を 2 4 0時間実施した。 耐白鲭性を目視にて測定し、 評価した。 評価基準は, 以下の通リである。 For the test material, the salt spray test specified in JISZ 237 Performed for 40 hours. The whiteness resistance was visually measured and evaluated. The evaluation criteria are as follows.
◎ : 白鲭発生率 5 %未満  ◎: White 鲭 Occurrence rate of less than 5%
〇 : 白鲭発生率 5 %以上、 1 0 %未満  :: Whiteness occurrence rate 5% or more, less than 10%
Δ : 白鲭発生率 1 0 %以上、 5 0 %未満  Δ: Whiteness occurrence rate 10% or more, less than 50%
X : 白鲭発生率 5 0 %以上  X: White 鲭 incidence rate 50% or more
3 . 2. 塗装密着性  3. 2. Paint adhesion
供試表面処理金属材料に、 下記条件で塗装を施し、 塗膜密着性試験を 行った。  The test surface-treated metal material was coated under the following conditions, and a coating film adhesion test was performed.
塗装条件 Painting conditions
塗料 : 関西ペイント (株) 社製アミラック # 1 0 0 0 (商標) (白塗 料) Paint: Amilac # 100 (trademark) manufactured by Kansai Paint Co., Ltd. (white paint)
塗装法 バーコ一ト法、 Painting method Bar coating method,
焼付 1 4 0 °C、 2 0分間 Baking 140 ° C, 20 minutes
膜厚 2 5 μ τη Film thickness 25 μ τη
3 . 2. 1 . 一次密着性 3.2.1 Primary adhesion
塗膜 ί 、 1mm角、 1 0 0個の碁盤目を NTカッターで切リ入れ、 この 供試材をエリクセン試験機で 5ππη押し出した後、 この押し出し凸部に粘 着テープによる剥離テス トを行い、 塗膜剥離個数にて評価した。 評価基 準を以下に示す。  100 mm square, 100 squares of the coating film were cut and cut with an NT cutter, and this test material was extruded with a Erichsen tester for 5ππη. And the number of peeled coating films was evaluated. The evaluation criteria are shown below.
◎:剥離なし  :: No peeling
〇 :剥離個数 1個以上、 1 0個未満  〇: 1 or more peeled, less than 10
△ :剥離個数 1 1個以上、 5 0個未満  △: Number of peeled 1 1 or more, less than 50
X : 白鲭発生率 5 1個以上、 1 0 0個未満  X: White bleed rate 5 1 or more, less than 100
3 . 2. 2. 二次密着性 3. 2. 2. Secondary adhesion
試験板を沸水中に 2時間浸漬した後、 一次密着性試験と同様なテスト を行い評価した。  After immersing the test plate in boiling water for 2 hours, the same test as the primary adhesion test was performed and evaluated.
3 . 3. 塗装後耐食性 3. 3. Corrosion resistance after painting
塗膜に銅板素地に達する傷をァクリルカッターで入れ、 J I S— Ζ 2 3 7 1に規定された塩水噴霧試験を 2 4 0時間実施した。 実施後粘着テ ープにてカット部を剥離させ、 剥離幅で評価した。 判定基準はカット部 からの塗膜剥離幅 (mm) を測定した。 A scratch reaching the copper plate body was made in the coating film with an acryl cutter, and a salt spray test specified in JIS-2372 was carried out for 240 hours. After the operation, the cut portion was peeled off with an adhesive tape, and the peel width was evaluated. Judgment standard is cut part The peeling width (mm) of the coating film from was measured.
◎ : 3 m m未満  ◎: less than 3 mm
リ : j m m以上、 5 m m未満  Re: j mm or more, less than 5 mm
Δ : 5 m m以上、 1 0 mm未満  Δ: 5 mm or more, less than 10 mm
X : 1 0 m m以上  X: 10 mm or more
3 . 4 . 耐指紋性  3.4. Fingerprint resistance
供試板に指を押しつけ、 指紋の痕跡状態を目視によリ評価した。 なお. 判定基準は以下の通りである。  A finger was pressed against the test plate, and the trace state of the fingerprint was visually evaluated. The criteria are as follows.
◎:指紋の痕跡が全く残らない  :: No trace of fingerprint remains
〇 :指紋の痕跡が極わずかに残る  〇: Traces of fingerprints remain very slightly
△ :指紋の痕跡が軽度に残る  △: Traces of fingerprints remain slightly
X :指紋の痕跡が鮮明に残る  X: Fingerprint traces remain clear
表 1の結果から明らかなように本発明の表面処理剤組成物を用いた実 施例 1〜 8は、 良好な耐食性、 塗装性、 塗装後耐食性及び耐指紋性を示 している。 しかし、 上層皮膜処理を行わない比較例 1は、 耐食性、 耐指 紋性が劣っている。 また、 上層榭脂中にシリカを含んでいない比較例 2 は、 耐食性、 耐指紋性が劣っている。 本発明の範囲外のシリカを含んで いた比較例 3は、 密着性の低下が見られた。 また本発明の範囲外の上層 皮膜量である比較例 4では、 満足する耐食性が得られない。 下地処理を 行わない比較例 5では、 耐食性、 密着性がかなリ劣っていた。  As is clear from the results in Table 1, Examples 1 to 8 using the surface treating agent composition of the present invention show good corrosion resistance, coating properties, corrosion resistance after painting, and fingerprint resistance. However, Comparative Example 1 in which the upper layer coating treatment was not performed was inferior in corrosion resistance and fingerprint resistance. Comparative Example 2, in which no silica was contained in the upper layer resin, was inferior in corrosion resistance and fingerprint resistance. Comparative Example 3, which contained silica outside the scope of the present invention, exhibited a decrease in adhesion. Further, in Comparative Example 4 in which the amount of the upper layer film is out of the range of the present invention, satisfactory corrosion resistance cannot be obtained. In Comparative Example 5 in which the undercoating treatment was not performed, the corrosion resistance and adhesion were extremely poor.
[産業上の利用可能性] [Industrial applicability]
本発明の製造方法を用いて形成された有機複合被覆金属材料は、 従来 品のように、 クロメートを使用せずに高耐食性能、 塗装密着性及び耐指 紋性能が得られるため、 今後の排水規制にょリ、 クロムフリー化を余儀 なく される業界に対しての適応が可能となる。 更に、 金属材料に対する 選択性が無いため、 材料の特性を生かしたまま、 防鲭性ゃ塗装性も向上 させることができる。  The organic composite coated metal material formed using the manufacturing method of the present invention can provide high corrosion resistance, paint adhesion and fingerprint resistance without using chromate, unlike conventional products. Regulations make it possible to adapt to industries that are forced to go chrome-free. Furthermore, since there is no selectivity for the metal material, it is possible to improve the heat resistance and the paintability while utilizing the characteristics of the material.
また、 環境保全やリサイクル性等の社会問題に対する対応策としても、 極めて有効で且つ実用上の効果も大きい。  It is also extremely effective and has a large practical effect as a countermeasure against social issues such as environmental conservation and recyclability.

Claims

請 求 の 範 囲 The scope of the claims
( 1 ) 金属材料表面に第 1層として下記成分: (1) The following components as a first layer on the metal material surface:
(A) 活性水素含有アミノ基、 エポキシ基、 ビュル基、 メルカプト基お よびメタタリロキシ基から選ばれた少なく とも 1個の反応性官能基を有 する 1種以上のシランカツプリング化合物からなるシランカツプリング 剤成分および  (A) Silane coupling comprising one or more silane coupling compounds having at least one reactive functional group selected from active hydrogen-containing amino, epoxy, bull, mercapto and metathalyloxy groups. Agent components and
(B) 下記一般式 ( I ) によリ表される 1種以上の重合体を 2〜50の 平均重合度で含む 1種以上の重合体成分:  (B) one or more polymer components containing one or more polymers represented by the following general formula (I) with an average degree of polymerization of 2 to 50:
Figure imgf000020_0001
Figure imgf000020_0001
[但し、 式中、 ベンゼン環に結合している Xは、 水素原子、 ヒ ドロキ シル基、 C 1〜C 5のアルキル基、 C 1〜C 5のヒ ドロキシアルキル基、 C 6〜C 1 2のァリール基、 ベンジル基、 ベンザル基、 前記ベンゼン環 に縮合して、 ナフタレン [Wherein, X bonded to the benzene ring is a hydrogen atom, a hydroxy group, a C1-C5 alkyl group, a C1-C5 hydroxyalkyl group, a C6-C1 Condensed with the aryl group, benzyl group, benzal group and the benzene ring
環を形成する不飽和ハイ ド口カーボングループ又は下記式 (Π) の基: An unsaturated hydrid carbon group forming a ring or a group of the following formula (II):
R 1 — c R 2 R 1 — c R 2
Figure imgf000020_0002
Figure imgf000020_0002
011 0 11
を表し、 式 (II) 中の R 1および R 2は、 それぞれ互いに水素原子、 ヒ ドロキシル基、 C 1〜C 5のアルキル基、 又は C 1〜C 1 0のヒ ドロキ シアルキル基を表し、 式 ( I ) および (Π) において、 ベンゼン環に結 合している Y 1および Y 2は、 それぞれ互いに独立に水素原子、 または 下記式 (III) 、 (IV) によリ表される Z基:
Figure imgf000021_0001
Wherein R 1 and R 2 in the formula (II) are each a hydrogen atom, Represents a droxyl group, a C1-C5 alkyl group, or a C1-C10 hydroxyalkyl group, and in formulas (I) and (Π), Y 1 and Y 2 bonded to a benzene ring; Are each independently a hydrogen atom or a Z group represented by the following formulas (III) and (IV):
Figure imgf000021_0001
C H 2 ― N C H 2 ― N
Figure imgf000021_0002
Figure imgf000021_0003
を表し、 前記式 (III) および (IV) 中の R 3、 R4、 R 5、 R 6およ び R 7は、 それぞれ互いに独立に水素原子、 C 1〜C 1 0のアルキル基 又は C 1〜C 1 0のヒ ドロキシアルキル基を表し、 前記重合体分子中の 各ベンゼン環に結合している X、 Y 1および Y 2のそれぞれは、 他のベ ンゼン環に結合している X、 Y 1および Y 2のそれぞれと同一であって もよく又は互いに異なってもよく、 前記重合体分子中の各ベンゼン環に おける前記 Z基の置換数の平均値は 0. 2〜1. 0である。 ] とからな る皮膜を有し、 第 2層として第 1層の上層ににシリカを樹脂 1 00重量 部に対して 5〜70重量部の割合で含有する樹脂組成物で被覆したこと を特徴とする耐食性、 塗装性および耐指紋性に優れた有機複合被覆金属 材料。
Figure imgf000021_0002
Figure imgf000021_0003
R 3, R 4, R 5, R 6 and R 7 in the above formulas (III) and (IV) are each independently a hydrogen atom, a C 1 -C 10 alkyl group or C 1 X represents a hydroxyalkyl group of ~ 10, and each of X, Y1 and Y2 bonded to each benzene ring in the polymer molecule is X, bonded to another benzene ring. Each of Y 1 and Y 2 may be the same or different from each other, and the average value of the number of substitution of the Z group in each benzene ring in the polymer molecule is 0.2 to 1.0. is there. The second layer is coated on the first layer with a resin composition containing silica in an amount of 5 to 70 parts by weight based on 100 parts by weight of the resin. Organic composite coated metal material with excellent corrosion resistance, paintability and fingerprint resistance.
(2) 前記シランカップリング剤成分 (A) の重合体成分 (B) に対す る重量比 (A) / (B) 力 1 : 1 0〜: L 0 : 1である、 請求項 1に記 載の有機複合被覆金属材料。 (2) The weight ratio of the silane coupling agent component (A) to the polymer component (B), wherein (A) / (B) force is 1:10 to: L0: 1. Organic composite coated metal material.
(3) 前記シランカップリング剤成分 (A) 力 S (a) 1個以上の活性水 素含有アミノ基を有する 1種以上のシランカツプリング化合物から成る シランカップリング剤と、 (b) 1個以上のエポキシ基を有する 1種以 上のシランカツプリング化合物からなるシラン力ップリング剤とを含む, 請求項 1に記載の有機複合被覆金属材料。 (3) the silane coupling agent component (A) force S (a) a silane coupling agent comprising one or more silane coupling compounds having one or more active hydrogen-containing amino groups; and (b) one silane coupling agent. The organic composite-coated metal material according to claim 1, comprising a silane coupling agent comprising one or more silane coupling compounds having the epoxy group.
(4) 前記シランカップリング剤 (a) に含まれる活性水素含有アミノ 基の、 前記シランカップリング剤 (b) に含まれるエポキシ基に対する 当量比が、 3 : :!〜 1 : 3である、 請求項 3に記載の有機複合被覆金属 材料。 (4) The equivalent ratio of the active hydrogen-containing amino group contained in the silane coupling agent (a) to the epoxy group contained in the silane coupling agent (b) is 3 ::! To 1: 3, The organic composite-coated metal material according to claim 3.
(5) 前記シランカップリング剤 (a) と前記シランカップリング剤 (b) との合計量の、 前記重合体成分 (B) に対する重量比 [ (a) + (b) ]/ (B) が 1 : 5〜5 : 1である、 請求項 3または 4に記載の 有機複合被覆金属材料。 (5) The weight ratio of the total amount of the silane coupling agent (a) and the silane coupling agent (b) to the polymer component (B) [(a) + (b)] / (B) is: The organic composite-coated metal material according to claim 3, wherein the ratio is 1: 5 to 5: 1.
(6) 第 2層樹脂が、 水酸基またはカルボシキル基を有する構造のもの である請求項 1に記載の有機複合被覆金属材料。 (6) The organic composite coated metal material according to claim 1, wherein the second layer resin has a structure having a hydroxyl group or a carboxyl group.
(7) 第 1層成分として、 水性媒体と、 この水性媒体中に溶解された下 記成分: (7) As a first layer component, an aqueous medium, and the following components dissolved in the aqueous medium:
(A) 活性水素含有アミノ基、 エポキシ基、 ビュル基、 メルカプト基お よびメタクリロキシ基から選ばれた少なく とも 1個の反応性官能基を有 する 1種以上のシラン力ップリング化合物からなるシランカップリング 剤成分および  (A) Silane coupling consisting of one or more silane coupling compounds having at least one reactive functional group selected from active hydrogen-containing amino, epoxy, butyl, mercapto and methacryloxy groups Agent components and
(B) 下記一般式 ( I ) によリ表される 1種以上の水溶性重合体を 2〜 50の平均重合度で含む 1種以上の水溶性重合体成分:
Figure imgf000023_0001
(B) one or more water-soluble polymer components containing one or more water-soluble polymers represented by the following general formula (I) at an average degree of polymerization of 2 to 50:
Figure imgf000023_0001
[但し、 式中、 ベンゼン環に結合している Xは、 水素原子、 ヒ ドロキ シル基、 C 1〜C 5のアルキル基、 C 1〜C 5のヒ ドロキシアルキル基, C 6〜C 1 2のァリール基、 ベンジル基、 ベンザル基、 前記ベンゼン環 に縮合して、 ナフタレン環を形成する不飽和ハイ ドロカーボングループ 又は下記式 (II) の基: [Wherein, in the formula, X bonded to the benzene ring is a hydrogen atom, a hydroxy group, a C1-C5 alkyl group, a C1-C5 hydroxyalkyl group, a C6-C1 2, an aryl group, a benzyl group, a benzal group, an unsaturated hydrocarbon group condensed with the benzene ring to form a naphthalene ring, or a group represented by the following formula (II):
Figure imgf000023_0002
Figure imgf000023_0002
0 H  0 H
を表し、 式 (II) 中の R 1および R 2は、 それぞれ互いに水素原子、 ヒ ドロキシル基、 C 1〜C 5のアルキル基、 又は C 1〜C 1 0のヒ ドロキ シアルキル基を表し、 式 ( I ) および (II) において、 ベンゼン環に結 合している Y 1および Y 2は、 それぞれ互いに独立に水素原子、 または 下記式 (III) 、 (IV) によリ表される Z基:
Figure imgf000024_0001
R 1 and R 2 in the formula (II) each represent a hydrogen atom, a hydroxyl group, a C 1 to C 5 alkyl group, or a C 1 to C 10 hydroxyalkyl group, In (I) and (II), Y 1 and Y 2 bonded to the benzene ring are each independently a hydrogen atom or a Z group represented by the following formulas (III) and (IV):
Figure imgf000024_0001
— C H 2 ― N — C H 2 ― N
Figure imgf000024_0002
Figure imgf000024_0002
Figure imgf000024_0003
を表し、 前記式 (III) および (IV) 中の R 3、 R4、 R 5、 R 6およ び R 7は、 それぞれ互いに独立に水素原子、 C 1〜C 1 0のアルキル基 又は C 1〜(: 1 0のヒ ドロキシアルキル基を表し、 前記重合体分子中の 各ベンゼン環に結合している X、 Y 1および Y 2のそれぞれは、 他のベ ンゼン環に結合している X、 Y 1および Y 2のそれぞれと同一であって もよく又は互いに異なってもよく、 前記重合体分子中の各ベンゼン環に おける前記 Z基の置換数の平均値は 0. 2〜1. 0である。 ] とからな る P H値 2. 0〜6. 5に調整された水性組成物を金属材料表面に乾燥 後の付着量が 1 0〜50 OmgZm2になるように塗布、 乾燥した後、 その上層に第 2層としてシリカを水性榭脂 1 00重量部に対して 5〜 7 0重量部の割合で含有する水性樹脂組成物を乾燥後の付着量が 0. 1〜 5. 0 gZm2になるように塗布、 乾燥することを特徴とする耐食性、 塗装性、 及び耐指紋性に優れた有機複合被覆金属材料の製造方法。
Figure imgf000024_0003
R 3, R 4, R 5, R 6 and R 7 in the above formulas (III) and (IV) are each independently a hydrogen atom, a C 1 -C 10 alkyl group or C 1 ~ (: Represents a 10 hydroxyalkyl group, and each of X, Y1 and Y2 bonded to each benzene ring in the polymer molecule is X bonded to another benzene ring , Y 1 and Y 2 may be the same as or different from each other, and the average number of substitutions of the Z group in each benzene ring in the polymer molecule is 0.2 to 1.0. in it.] Do that PH value from a 2.0 to 6. applying a 5 aqueous composition is adjusted to such deposition amount after drying on the metal material surface is 1 0~50 OmgZm 2, dried An aqueous resin composition containing silica in an amount of 5 to 70 parts by weight per 100 parts by weight of the aqueous resin as a second layer on the second layer has an adhesion amount after drying of 0.1 to 5.0 gZm. 2. A method for producing an organic composite coated metal material having excellent corrosion resistance, paintability, and fingerprint resistance, which is characterized by being applied and dried so as to be 2 .
PCT/JP1999/001437 1998-03-30 1999-03-23 Metallic material with organic composite coating excellent in corrosion resistance and coatability and reduced in finger mark adhesion and process for producing the same WO1999050366A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020007010870A KR20010042321A (en) 1998-03-30 1999-03-23 Metallic material with organic composite coating excellent in corrosion resistance and coatability and reduced in finger mark adhesion and process for producing the same
AU28549/99A AU2854999A (en) 1998-03-30 1999-03-23 Metallic material with organic composite coating excellent in corrosion resistance and coatability and reduced in finger mark adhesion and process for producingthe same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10083288A JPH11276987A (en) 1998-03-30 1998-03-30 Organic multiple coated metallic material excellent in corrosion resistance, coating property and finger print resistance and its production
JP10/83288 1998-03-30

Publications (1)

Publication Number Publication Date
WO1999050366A1 true WO1999050366A1 (en) 1999-10-07

Family

ID=13798212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001437 WO1999050366A1 (en) 1998-03-30 1999-03-23 Metallic material with organic composite coating excellent in corrosion resistance and coatability and reduced in finger mark adhesion and process for producing the same

Country Status (6)

Country Link
JP (1) JPH11276987A (en)
KR (1) KR20010042321A (en)
CN (1) CN1172987C (en)
AU (1) AU2854999A (en)
TW (1) TW446737B (en)
WO (1) WO1999050366A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105131793A (en) * 2015-09-07 2015-12-09 王际宽 Preparation method for paint for ion sheet material

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101392142B (en) * 2008-11-06 2011-11-16 同济大学 Method for preparing environment-friendly type anti-corrosive and anti-fingerprint metal surface coating
JP5182535B2 (en) * 2010-05-28 2013-04-17 信越化学工業株式会社 Water-based siloxane coating composition and method for producing the same, surface treatment agent, surface-treated steel material, and coated steel material
JP5537340B2 (en) * 2010-08-31 2014-07-02 日新製鋼株式会社 Surface treatment liquid, surface treated steel plate and method for producing the same
CN102925026A (en) * 2012-10-30 2013-02-13 北京羽林军石油科技有限公司 100%-solid-content double-component liquid modified epoxy resin paint and preparation method thereof
CN103881569B (en) * 2014-01-17 2016-03-02 北京科技大学 A kind of silica is than the high-temperature-resistant and anti-corrosion compound coating of graded
CN109880414A (en) * 2019-02-25 2019-06-14 海安南京大学高新技术研究院 A kind of preparation method of chromium plating stainless steel surface anti-fingerprint paint
CN114316728A (en) * 2020-09-29 2022-04-12 立邦工业涂料(上海)有限公司 Quick-drying water-based coating system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503545A (en) * 1988-11-08 1991-08-08 セカ エス.アー. Phenolic resol dispersion with low formalin content
JPH0644819A (en) * 1992-07-24 1994-02-18 Kao Corp Conductive paste and conductive paint film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503545A (en) * 1988-11-08 1991-08-08 セカ エス.アー. Phenolic resol dispersion with low formalin content
JPH0644819A (en) * 1992-07-24 1994-02-18 Kao Corp Conductive paste and conductive paint film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105131793A (en) * 2015-09-07 2015-12-09 王际宽 Preparation method for paint for ion sheet material

Also Published As

Publication number Publication date
CN1303421A (en) 2001-07-11
AU2854999A (en) 1999-10-18
TW446737B (en) 2001-07-21
CN1172987C (en) 2004-10-27
JPH11276987A (en) 1999-10-12
KR20010042321A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
JP3898302B2 (en) Surface treatment agent composition for metal material and treatment method
JP5252925B2 (en) Surface chemical conversion liquid and method for producing chemical conversion metal plate
AU2006260006B2 (en) Chrome-free composition of low temperature curing for treating a metal surface and a metal sheet using the same
WO1999046342A1 (en) Surface treatment composition for metallic material and method of treatment
CA1215934A (en) Surface treated steel sheet for paint coating
JP3883831B2 (en) Surface-treated steel sheet with excellent white rust resistance and method for producing the same
JPH0873775A (en) Metal surface treating agent for forming coating film excellent in fingerprint resistance, corrosion resistance and adhesion of coating film and method of treating therewith
JP4007627B2 (en) Surface treatment agent composition for metal material and treatment method
SK50972008A3 (en) Chrome free resin composition having good alkaline resistance and forming properties, method for surface treating steel sheet using the same and surface-treated steel sheet
EP0742849A1 (en) Surface treatment agent for zinciferous-plated steel
US5846342A (en) Surface treatment agent for zinciferous-plated steel
CN100391625C (en) Zinc coated steel plate with excellent alkali resistance and solvent resistance
WO1999050366A1 (en) Metallic material with organic composite coating excellent in corrosion resistance and coatability and reduced in finger mark adhesion and process for producing the same
EP0826747B1 (en) Aqueous anti-rust agent, anti-rust method, and anti-rust treated metal material
JP3993729B2 (en) Metal plate material excellent in corrosion resistance, paintability, fingerprint resistance and workability, and manufacturing method thereof
EP2246126A1 (en) Coated steel which has excellent bending properties
JP5123052B2 (en) Surface chemical conversion solution, chemical conversion metal plate and method for producing the same, and upper-layer metal plate and method for producing the same
JP2004002958A (en) Non-chromium treated, galvanized steel sheet, and method of producing the same
WO2009093545A1 (en) Coated steel product
KR102443787B1 (en) surface conditioner for metal plate
US6706328B2 (en) Metal sheet material with superior corrosion resistance
JPH03202480A (en) Production of plated steel sheet having corrosion-resisting chromium chelate film
WO2023017668A1 (en) Hexavalent chromium-free water-based surface treatment solution, surface-treated metal, and surface treatment method
MX2008006835A (en) Surface-treated steel sheet
JPH10251864A (en) Production of galvanized steel sheet excellent in white rust resistance, paint adhesion and alkali-resistant degreasability

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99806861.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN HU ID IN KR MX PL RU SG US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007010870

Country of ref document: KR

Ref document number: 1200000866

Country of ref document: VN

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1020007010870

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020007010870

Country of ref document: KR