[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1999046342A1 - Surface treatment composition for metallic material and method of treatment - Google Patents

Surface treatment composition for metallic material and method of treatment Download PDF

Info

Publication number
WO1999046342A1
WO1999046342A1 PCT/JP1999/001184 JP9901184W WO9946342A1 WO 1999046342 A1 WO1999046342 A1 WO 1999046342A1 JP 9901184 W JP9901184 W JP 9901184W WO 9946342 A1 WO9946342 A1 WO 9946342A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silane coupling
surface treatment
coupling agent
water
Prior art date
Application number
PCT/JP1999/001184
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiko Nagashima
Hirokatsu Bannai
Original Assignee
Nihon Parkerizing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co., Ltd. filed Critical Nihon Parkerizing Co., Ltd.
Priority to KR1020007010087A priority Critical patent/KR20010041809A/en
Priority to AU27476/99A priority patent/AU2747699A/en
Publication of WO1999046342A1 publication Critical patent/WO1999046342A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints

Definitions

  • the present invention relates to a surface treatment composition and a treatment method capable of imparting excellent corrosion resistance and coatability to the surface of a metal material.
  • metal materials such as copper plates and aluminum plates with zinc-containing metal are used in a wide range of fields such as automobiles, building materials and home appliances.
  • zinc and aluminum have the drawback that they corrode in the air and produce corrosion products (so-called white), which degrade the appearance of metallic materials and adversely affect paint adhesion. I have.
  • chromate treatment is generally performed on the surface of the metal material with a treatment liquid mainly containing chromic acid, dichromic acid or salts thereof.
  • hexavalent chromium in the chromate treatment solution used to treat metal material surfaces has a direct adverse effect on the human body. Chromate processing is often avoided. Also, wastewater containing hexavalent chromium needs to be treated specially as stipulated in the Water Pollution Control Law, which will increase the cost of kana as a whole. In addition, chromate-treated metal materials have the major drawback that they cannot be recycled as chromium-containing industrial waste, which has become a major social problem.
  • a surface treatment agent using tannic acid containing polyvalent phenolcarbonic acid is well known.
  • the protective film formed by the reaction between the tannic acid and the metal material is barrier-free against the intrusion of corrosive substances, so that the corrosion resistance of the metal material is considered to be improved. its dependent c
  • a film using tannic acid alone or in combination with an inorganic component has insufficient corrosion resistance and cannot be practically used at present.
  • JP-A-53-2012 discloses a method of applying an aqueous solution comprising water-dispersible silica, an alkyd resin and a trialkoxysilane compound to a metal surface.
  • a hydroxypyrone compound--a water-soluble resin composed of a conductor--a surface treatment method for imparting corrosion resistance to a metal material and a water-soluble or water-dispersible polymer of a hydroxystyrene compound.
  • Methods for imparting corrosion resistance to metal materials are disclosed in Japanese Patent Application Laid-Open Nos. 57-4751 and 1-177380, and the like.
  • An object of the present invention is to solve the problems of the prior art and to provide a surface treatment agent for non-chromium-based metal materials which is excellent in hardness, corrosion resistance, and coatability.
  • the present inventors have conducted intensive studies to solve these problems of the prior art, and as a result, dispersed a silane coupling agent component, a water-soluble polymer component having a specific chemical structure in a colloidal state.
  • a surface treatment agent that contains the treated inorganic compound, the corrosion resistance and paintability, especially the slip resistance when applying a forming process such as bending after painting (coin)
  • the present inventors have newly found that a film having excellent scratch resistance can be formed, and have completed the present invention. Ie
  • the surface treatment composition for a metal material of the present invention comprises an aqueous medium, and the following components dissolved in the aqueous medium:
  • a silane coupling agent component comprising at least one silane coupling compound having at least one reactive functional group selected from methacryloxy groups and
  • X bonded to the benzene ring is a hydrogen atom, a hydroxy group, a C1-C5 alkyl group, a C1-C5 hydroxyalkyl group.
  • C6-C1 2 an aryl group, a benzyl group, a benzal group, an unsaturated hydrid carbon group condensed with the benzene ring to form a naphthalene ring, or a group represented by the following formula (II):
  • R 1 and R 2 in the formula (II) represent a hydrogen atom, a hydroxyl group, a C1-C5 alkyl group, or a C1-C10 hydroxyalkyl group, respectively.
  • Y 1 and Y 2 bonded to the benzene ring are each independently a Z group represented by the following formula (III) or (IV): CH 2
  • R 3, R 4, R 5, R 6 and R 7 in the above formulas (III) and (IV) each independently represent a hydrogen atom, a C 1 -C 10 alkyl group or a C 1- Represents a C 10 hydroxyalkyl group, and the average value of the number of substitutions of the Z group in each benzene ring in the polymer molecule is 0.2 to 1.0.
  • the silane coupling agent component is silane coupling agent component
  • Weight ratio of (A) to water-soluble polymer component (B) (A) / (B) Force 1: 10-: L 0: 1; (A) + (B) of inorganic compound (C) It is preferred that the weight ratio (C) / [(A) + (B)] to the weight ratio be 1: 5 to 5: 1.
  • the silane coupling agent component (A) may comprise (a) a silane coupling agent comprising one or more silane coupling compounds having one or more active hydrogen-containing amino groups. And (b) a silane coupling agent comprising one or more silane coupling compounds having one or more epoxysilane groups.
  • the equivalent ratio of the active hydrogen-containing amino group contained in the silane coupling agent (a) to the epoxy group contained in the silane coupling agent (b) is 3: 1 to 1: 1. : 3 to be preferable.
  • the weight ratio of the total amount of the silane coupling agent (a) and the silane coupling agent (b) to the water-soluble polymer component (B) [(a) + (b)] / (B) is preferably 1: 5 to 5: 1.
  • the surface treatment method for a metal material of the present invention comprises the step of preparing an aqueous surface treatment solution containing the above-mentioned surface treatment chemical composition for a metal material of the present invention and adjusted to a pH value of 2.0 to 6.5. deposited on the material, dried, is 0.0 to 2. which is characterized in that to form a coating having a dry weight of O g / m 2.
  • the surface of the metal material is previously subjected to a phosphate treatment or a chemical plating treatment before the aqueous surface treatment solution is attached to the metal material.
  • the surface treating agent composition for a metal material of the present invention comprises a silane coupling agent component (A) comprising at least one silane coupling compound having a specific reactive functional group, and a silane coupling agent component containing a special amino group.
  • A silane coupling agent component
  • B water-soluble polymerization component
  • B water-soluble polymerization component
  • C inorganic compound
  • the silane coupling compound contained in the silane coupling agent component (A) used in the present invention is a compound having a reactive functional group in one molecule comprising an active hydrogen-containing amino group, an epoxy group, a butyl group, a mercapto group and a methacryloxy group.
  • the structure is not particularly limited as long as it contains at least one selected member, but specific examples include those having the following compositions (1) to (4).
  • silane coupling agent component (A) used in the present invention comprises one or more silane coupling agents having one or more active hydrogen-containing amino groups. It is preferable that the silane coupling agent comprises a silane coupling agent (a) composed of a compound and a silane coupling agent (b) composed of one or more silane coupling compounds having one or more epoxy groups.
  • the silane coupling agent component (A) in the surface treatment agent composition according to the present invention is a silane coupling agent (a) comprising a silane coupling compound having an active hydrogen-containing amino group, and an epoxy group-containing silane coupling agent.
  • the equivalent ratio of the active hydrogen-containing amino groups contained in the silane coupling agent to the epoxy groups is preferably in the range of 3: 1 to 1: 3. If the equivalent ratio of the active hydrogen-containing amino group to the epoxy group exceeds 3: 1, the resulting film has poor film-forming properties, resulting in insufficient corrosion resistance and paintability. If it is less than 1: 3, the corrosion resistance and paintability of the treated film may be saturated.
  • the water-soluble polymer component (B) used in the present invention is an oligomer or a polymer containing the polymerized unit represented by the formula (I), and the average polymerization degree of the polymerized unit of the formula (I) is 2 ⁇ 50.
  • X bonded to the benzene ring is a hydroxyl group, a C1-5 alkyl group, for example, a methyl, ethyl, propyl group, etc., a C1-5 hydroxyalkyl group, for example, C6-12 aryl groups such as hydroxymethyl, hydroxyxethyl, hydroxypropyl, etc.
  • Benzyl group, benzal group, etc. an unsaturated hydrocarbon group condensed to the benzene ring to form a naphthalene ring
  • R 1 and R 2 in the formula (II) each independently represent a hydrogen atom, a hydroxyl group, a C 1 -C 10 alkyl group, for example, a methyl, ethyl, propyl group or the like; Examples include a hydroxyalkyl group, for example, hydroxymethyl, hydroxyshethyl, hydroxypropyl group and the like.
  • Y 1 and Y 2 bonded to the benzene ring each independently have a Z group represented by the formula (III) or (IV).
  • R 3, R 4, R 5, R 6 and R 7 in the formulas (III) and (IV) each independently represent a C 1 -C 10 alkyl group such as methyl, ethyl, propyl, etc.
  • C 1 to C 5 hydroxyalkyl groups for example, hydroxymethyl, hydroxyxethyl, hydroxypropyl group and the like.
  • X and Y 1 in Formula (I) and Y 2 in Formula (II) each bonded to each benzene ring in the polymer molecule are X bonded to other benzene rings.
  • Y 1 and Y 2 may be the same or different from each other.
  • the average value of the number of substitution of the ⁇ ⁇ group in each benzene ring in the polymer molecule is from 0.2 to 1.0.
  • ⁇ in the formula (I) represents an average degree of polymerization of 2 to 50. When ⁇ is less than 2, the molecular weight of the obtained polymer is too small, the corrosion resistance of the obtained film is insufficient, and when it exceeds 50, the obtained surface treating agent composition and The stability of the aqueous treatment solution containing the compound is poor, causing practical inconvenience.
  • the average value of the number of substituted ⁇ groups is the average value of the number of ⁇ groups introduced into each benzene ring in the polymer molecule.
  • the resulting polymer will have insufficient water solubility, and the stability of the surface treatment composition will be poor.
  • the force exceeds 1.0, the water solubility of the obtained polymer becomes excessive, and the effect of improving the corrosion resistance and coating property of the obtained film becomes insufficient.
  • Each of R 3 to R 7 in the Z group represented by the formulas (III) and (IV) represents a C 1 to C 10 alkyl group and a C 1 to C 10 hydroxyalkyl group. Represent. When the number of carbon atoms is 11 or more, the film forming property of the formed film is reduced, so that the corrosion resistance and the paintability become insufficient.
  • At least one inorganic compound (C) selected from the group consisting of silica, a silicate, a metal salt compound and a mixture thereof used in the present invention is uniformly dispersed in a colloidal state in the aqueous medium. It must be a liquid. Therefore, use of fine particles is preferred.
  • the weight ratio (A) / (B) to the silane coupling agent component (A) and the water-soluble polymer component (B) is from 1:10 to 10: 1. And preferably 1: 5 to 5: 1. If the weight ratio is less than 1:10, that is, if the ratio of the silane coupling agent component (A) is low, the adhesion to the substrate surface is reduced, and the corrosion resistance and coating properties are insufficient. On the other hand, if it exceeds 10: 1, that is, if the silane coupling agent component (A) ratio is high, the film-forming properties of the film will be reduced, and the resulting film will have insufficient corrosion resistance and paintability. .
  • the weight ratio of the inorganic compound component (C) to the total amount of the silane coupling agent component (A) and the water-soluble polymer component (B) (C) / [( A) + (B)] is 1: 5 to 5: 1, preferably-.
  • the polymerization ratio is less than 1: 5, that is, when the ratio of the inorganic compound component (C) is small, the physical strength of the obtained film becomes insufficient, Paintability, especially coin scratching, is insufficient.
  • it exceeds 5: 1 that is, if the content of the inorganic compound component (C) is too large, the film-forming properties of the obtained surface treatment composition will decrease, so that the corrosion resistance of the resulting film. In particular, the adhesion becomes insufficient.
  • the aqueous surface treating solution containing the surface treating agent composition described above, having a pH adjusted to a range of 2.0 to 6.5, is adhered to the surface of the metal material, and dried to obtain a solution.
  • 0 to 2.0 g / ni 2 preferably 0.05 to:
  • a film having a dry weight of L.O g / m 2 is formed.
  • the aqueous treatment liquid in contact from 0.1 to 30 seconds at a temperature of 1 0 ⁇ 6 0 ° C to the metal surface, the surface treatment method that is preferable c
  • the present invention for heating drying, an aqueous surface treatment liquid
  • the surface treatment agent is adjusted by diluting or undiluted the composition with an aqueous medium, for example, water.
  • the PH value is, for example, phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, hydrofluoric acid, complex acid, etc. It is adjusted to a range of 2.0 to 6.5 using fluoride and organic acid.
  • Phosphoric acid, acidic phosphate, fluoride, and complex fluoride are preferably used for adjusting the pH value of the aqueous surface treatment solution used in the present invention.
  • the preferred PH value is 3.0-5.0. If the pH is less than 2.0, the reactivity between the composition in the obtained treatment liquid and the surface of the substrate becomes excessively high, resulting in poor coating, resulting in insufficient corrosion resistance and coating properties of the obtained coating. become. If the pH exceeds 6.5, the water-soluble polymer component (B) itself tends to precipitate out of the aqueous surface treatment solution, so that the life of the aqueous treatment solution is shortened.
  • the method of treating the surface of a metal material using the surface treating agent is not particularly limited, and for example, a dipping method, a spraying method, a roll coating method, and the like can be applied.
  • the processing temperature and the processing time are not particularly limited, but generally, the processing temperature is preferably 10 to 60 ° C, and the processing time is preferably 0.1 to 20 seconds. Further, it is preferable to heat and dry the treated metal material.
  • the heating temperature is preferably from 50 to 280 ° C.
  • the metal ion eluted and mixed from the metal material and the water-soluble polymer component (B) are complexed. May form body and precipitate.
  • a sequestering agent may be added to the surface treatment composition.
  • EDTA EDTA
  • Cy-DTA triethanolamine
  • dalconic acid heptgluconic acid
  • oxalic acid tartaric acid
  • lingic acid organic phosphonic acid
  • a surfactant for improving coatability may be added to the aqueous surface treatment solution used in the surface treatment method of the present invention.
  • the surfactant include commercially available anionic surfactants such as a carboxylate type, a sulfate type, a sulfonate type, and a phosphate type, a polyethylene glycol type nonionic surfactant, and a polyhydric alcohol type.
  • anionic surfactants such as a carboxylate type, a sulfate type, a sulfonate type, and a phosphate type, a polyethylene glycol type nonionic surfactant, and a polyhydric alcohol type.
  • examples include an ionic surfactant and an amine-based cationic surfactant.
  • the metal material used in the present invention can be selected from an iron plate, a zinc-plated copper plate, an aluminum plate, an aluminum alloy plate, a stainless steel plate and the like.
  • the steel sheet may be selected from steel sheets which have been subjected to a phosphate treatment or a chemical plating treatment. In this case, the corrosion resistance and the paintability are improved.
  • the chemical plating treatment includes, for example, substitution plating of metals such as cobalt, nickel, copper, iron, silver, and gold.
  • the inventors consider as follows. First, the metal surface is etched by phosphoric acid, acid phosphate, fluoride and complex fluoride in the surface treatment composition. As a result, the pH at the interface increases, and a reaction between the eluted metal ions and the water-soluble polymer component forms a poorly soluble film at the interface. It is thought that the corrosion resistance is improved because this hardly soluble film exerts a barrier effect.
  • the functional group (—OR group) in the hydrolyzed silane coupling agent can be brought into contact with the metal material surface by using the silane coupling agent component in combination. Oxane bond, and the other reactive functional group in the silane coupling agent reacts with the water-soluble polymer component, presumably improving the adhesion between the metal material and the water-soluble polymer component. Is done.
  • the inorganic compound component dispersed in a colloidal state forms fine irregularities on the surface of the metal material, and the irregularities exert an anchoring effect on the paint applied on the metallic material. It is presumed that they exhibit workability after painting such as inscratching property.
  • the present invention will be specifically described with reference to the following examples, but the scope of the present invention is not limited to these examples.
  • Electro-galvanized steel sheet (EG material)
  • the surface of the above metal material is treated with a medium alkaline degreasing agent (registered trademark: Fine Cleaner 4336, manufactured by Nippon Parkerizing Co., Ltd.). Chemical concentration: 20 g / liter, treatment temperature: 60 ° C, treatment time: 20 seconds Spray treatment was performed under the following conditions to remove dust and oil adhering to the surface. Next, the alkali remaining on the surface was washed with tap water to clean the surface of the test material.
  • a medium alkaline degreasing agent registered trademark: Fine Cleaner 4336, manufactured by Nippon Parkerizing Co., Ltd.
  • X — CH 2 — C 6 H 4 — OH
  • average number of Z group substitutions 0.75
  • a hot-dip galvanized steel sheet that had been cleaned in advance by the method described in (2) and then subjected to a Ueckel surface conditioner (manufactured by Nippon Parkerizing Co., Ltd .: (trademark) Preparen 4015; 2 OmgZm 2 as a Ueckel) GI) was applied with a treatment liquid E at 20 ° C by a roll coating method so as to have a dry weight of 1.5 g / m 2, and was dried so as to have an ultimate plate temperature of 15 (TC).
  • (GI) was coated with a treatment liquid C at 20 ° C by a roll coating method so as to have a dry weight of 0.1 lg / m 2, and was dried so that the reached plate temperature was 100 ° C.
  • Preliminary cleaning was performed by the method described in (2.), and treatment with zinc phosphate (manufactured by Nippon Parkerizing Co., Ltd .: (trademark) Palbond-1 L3300; coating weight 2 gZm 2 ) was performed by a known method.
  • zinc phosphate manufactured by Nippon Parkerizing Co., Ltd .: (trademark) Palbond-1 L3300; coating weight 2 gZm 2
  • GI hot-dip galvanized steel sheet
  • the treatment liquid E at 20 ° C was applied by a roll coating method so as to have a dry weight of 0.3 g / m 2, and was dried so that the reached plate temperature was 100 ° C.
  • the treatment liquid G at 30 ° C was applied by a roll coating method so as to have a dry weight of 0.3 g nom 2, and was dried so that the reached plate temperature was 200 ° C.
  • the treatment liquid H at 20 ° C was applied by a roll coating method so as to have a dry weight of 0.3 gZm 2, and was dried so that the ultimate plate temperature became 80 ° C.
  • Fused zinc which had been cleaned in advance by the method described in (2.) and then treated with a nickel surface conditioner (manufactured by Nippon Parkerizing Co., Ltd .: (trademark) Preparen 410; 20 mg zm 2 as Etkel)
  • Treatment solution I at 20 ° C is applied to a coated steel sheet (GI) by a roll coating method to a dry weight of 0.3 g / m 2 so that the ultimate sheet temperature reaches 150 ° C Was dried.
  • a hot-dip galvanized steel which had been cleaned in advance by the method described in (2.) and then treated with an Eckel surface conditioner (manufactured by Nippon Parkerizing Co., Ltd .: (registered trademark) Preparen 410; 2 Om gZm 2 as nickel).
  • the treatment solution J was applied to a coated steel sheet (GI) by a roll coating method so as to have a chromium content of 4 OmgZm 2, and was dried so that the ultimate sheet temperature reached 80 ° C.
  • a commercially available undercoat recoat (V-nit # 200, manufactured by Dainippon Co., Ltd.) was applied to each of the treated plates prepared in Examples and Comparative Examples (film thickness 5.5 ⁇ ) 200 ° C After baking, a top coat repaint (V-nit # 500, manufactured by Dai Nippon Paint Co., Ltd.) was applied (film thickness: 17 // m) 22 (TC baking to make a test plate.
  • a scratch reaching the copper plate base was cut into the coating film with a cutter, and a salt spray test specified in JIS Z 237 1 was performed for 480 hours. As a criterion, the width from the cut part (wake) was measured.
  • 3 mm or more to less than 5 mm
  • 5 mm or more to less than 10 mm
  • test plate After the test plate was immersed in boiling water for 2 hours, it was allowed to stand for one day, and the test was performed in the same manner as the primary bending adhesion test.
  • a 10-yen coin was placed at an angle of 45 ° with respect to each test plate, and the coating film was rubbed at a load of 3 kg at a constant speed, and the damage of the coating film was determined.
  • the scratch resistance of the coating film was evaluated according to the following criteria. 5 points: substrate exposure is 0% (only primer is exposed)
  • Base exposure is 50% or more to less than 80%
  • Base exposure is 80% or more
  • Examples 1 to 8 using the surface treatment composition of the present invention showed good corrosion resistance and coating properties, and Comparative Example 5 which was a general-purpose coating type chromate treatment. It has almost the same performance as.
  • Comparative Example 1 containing no silane coupling agent and Comparative Examples 3 and 4 using a composition outside the scope of the present invention exhibited inferior corrosion resistance and paintability (particularly, bending adhesion). I have.
  • Comparative Example 2 containing no inorganic compound component the slip resistance (coin scratch resistance) was poor.
  • the surface treatment agent of the present invention can provide excellent corrosion resistance and coating performance without using chromate, so it is suitable for the industry where solvent-based cleaning and water-based cleaning must be performed in accordance with future solvent regulations. It becomes possible. Furthermore, since there is no selectivity for a metal material, it is possible to improve the heat resistance and the paintability while utilizing the characteristics of the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

A surface treatment composition which can impart excellent corrosion resistance and coatability to the surface of a metallic material; and a method of surface treatment. The composition comprises (A) a silane coupling agent ingredient having a reactive functional group such as an amino group containing active hydrogen or an epoxy group, (B) at least one water-soluble polymer ingredient comprising a water-soluble polymer represented by formula (I) having an average degree of polymerization of 2 to 50, and (C) a colloidal dispersion of an inorganic compound selected among silica, silicates, metal chlorides, etc. The method comprises applying an aqueous surface-treating fluid containing the composition and having a pH adjusted to 2.0 to 6.5 to form a film in an amount of 0.01 to 2.0 g/m2 on a dry basis.

Description

明 細 書 金属材料用表面処理剤組成物および処理方法 [技術分野]  Description Surface treatment agent composition for metal material and treatment method [Technical field]
本発明は、 金属材料の表面に優れた耐食性、 塗装性を付与することが できる表面処理組成物および処理方法に関するものである。  The present invention relates to a surface treatment composition and a treatment method capable of imparting excellent corrosion resistance and coatability to the surface of a metal material.
[背景技術] [Background technology]
一般的に亜鉛含有金属めつき銅板やアルミニウム板等の金属材料は自 動車、 建材並びに家電関係の広い分野に使用されている。 しかし、 亜鉛 やアルミニウムは、 大気中で腐食して腐食生成物 (いわゆる白鲭) を生 成させ、 これが金属材料の外観を低下させ、 更に塗装密着性にも悪影響 をおよぼすという欠点を有している。  Generally, metal materials such as copper plates and aluminum plates with zinc-containing metal are used in a wide range of fields such as automobiles, building materials and home appliances. However, zinc and aluminum have the drawback that they corrode in the air and produce corrosion products (so-called white), which degrade the appearance of metallic materials and adversely affect paint adhesion. I have.
そこで上記金属材料表面の耐食性および塗装密着性を改善するために, 金属材料の表面にクロム酸、 重クロム酸またはその塩類を主体にした処 理液でクロメ一ト処理が一般に行われている。  Therefore, in order to improve the corrosion resistance and coating adhesion of the metal material surface, chromate treatment is generally performed on the surface of the metal material with a treatment liquid mainly containing chromic acid, dichromic acid or salts thereof.
しかしながら、 近年、 環境保全に対する意識の高まリによリ、 金属材 料表面を処理するのに使用されるクロメ一ト処理液中の 6価クロムは人 体に直接的な悪影響をおよぼすためにクロメ一ト処理は敬遠されがちで ある。 また、 6価クロムを含む排水は水質汚濁防止法に規定されている 特別な処理を行う必要がぁリ、 これが全体としてかなリのコストアップ につながる。 また、 クロメート処理を施した金属材料は、 クロム含有の 産業廃棄物となリ リサイクルができないという大きな欠点がぁリ、 社会 的に大きな問題になっている。  However, in recent years, with increasing awareness of environmental protection, hexavalent chromium in the chromate treatment solution used to treat metal material surfaces has a direct adverse effect on the human body. Chromate processing is often avoided. Also, wastewater containing hexavalent chromium needs to be treated specially as stipulated in the Water Pollution Control Law, which will increase the cost of kana as a whole. In addition, chromate-treated metal materials have the major drawback that they cannot be recycled as chromium-containing industrial waste, which has become a major social problem.
一方、 クロメート以外の表面処理方法としては、 多価フエノールカル ボン酸を含有するタンニン酸を用いた表面処理剤が良く知られている。 タンニン酸の水溶液によって金属材料を処理すると、 タンユン酸と金属 材料との反応によって形成される保護皮膜が、 腐食物質の侵入に対しバ- リア一となるので、 前記金属材料の耐食性が向上すると考えられている c ところが、 近年、 製品の高品質化に伴い、 皮膜自体の高耐食性が要求 されてぉリ、 そのため、 タンニン酸単独、 若しくは無機成分を併用した 皮膜では耐食性が不十分で、 現状における実用化は不可能である。 On the other hand, as a surface treatment method other than chromate, a surface treatment agent using tannic acid containing polyvalent phenolcarbonic acid is well known. When a metal material is treated with an aqueous solution of tannic acid, the protective film formed by the reaction between the tannic acid and the metal material is barrier-free against the intrusion of corrosive substances, so that the corrosion resistance of the metal material is considered to be improved. its dependent c However, in recent years, along with the quality of the product, demand a high corrosion resistance of the coating itself Therefore, a film using tannic acid alone or in combination with an inorganic component has insufficient corrosion resistance and cannot be practically used at present.
そこで、 金属材料の耐食性を向上させる処理方法として、 特開昭 Therefore, as a treatment method for improving the corrosion resistance of metal materials, Japanese Patent Application Laid-Open
5 3 - 1 2 1 0 3 4号公報に、 水分散性シリカとアルキド樹脂と トリア ルコキシシラン化合物からなる水溶液を金属表面に塗布する方法が開示 されている。 JP-A-53-2012 discloses a method of applying an aqueous solution comprising water-dispersible silica, an alkyd resin and a trialkoxysilane compound to a metal surface.
また、 ヒ ドロキシピロン化合物锈導体からなる水溶性樹脂を使用して- 金属材料に耐食性を付与することを目的とした表面処理方法およびヒ ド ロキシスチレン化合物の水溶性又は水分散性重合体を用いて金属材料に 耐食性を付与する方法が特開昭 5 7— 4 4 7 5 1号公報、 および特開平 1 - 1 7 7 3 8 0号公報等に開示されている。  Further, using a hydroxypyrone compound--a water-soluble resin composed of a conductor--a surface treatment method for imparting corrosion resistance to a metal material and a water-soluble or water-dispersible polymer of a hydroxystyrene compound. Methods for imparting corrosion resistance to metal materials are disclosed in Japanese Patent Application Laid-Open Nos. 57-4751 and 1-177380, and the like.
しかしながら、 上記の何れの方法も、 金属材料表面にクロメート皮膜 に代替できるような優れた耐食性を付与し得る皮膜を形成できるもので はなく、 現実問題として前記問題点は何ら解決されていないのである。 従って、 現状では耐食性に優れた金属材料用のノンクロム系の表面処理 剤および表面処理方法は得られていないのである。  However, none of the above methods can form a film capable of imparting excellent corrosion resistance that can be substituted for a chromate film on the surface of a metal material, and the above problem has not been solved at all as a practical problem. . Therefore, at present, no chromium-free surface treatment agent and surface treatment method for metal materials with excellent corrosion resistance have not been obtained.
[発明の開示] [Disclosure of the Invention]
本発明は、 前記従来技術の有する問題点を解決するためのものでぁリ , 耐食性、 塗装性に優れたノンクロム系金属材料用表面処理剤を提供する ことを目的とするものである。  An object of the present invention is to solve the problems of the prior art and to provide a surface treatment agent for non-chromium-based metal materials which is excellent in hardness, corrosion resistance, and coatability.
本発明者らはこれらの従来技術の抱える問題点を解決すべく鋭意検討 を重ねてきた結果、 シランカップリング剤成分と、 特定の化学構造を有 する水溶性重合体成分と、 コロイド状態で分散した無機化合物とを含む 表面処理剤を用いて、 金属材料の表面を処理することによリ、 耐食性、 塗装性、 特に塗装後に折リ曲げ等の成形加工を施す際の耐滑リ性 (コィ ンスクラッチ性) に優れた皮膜が形成できることを新たに見いだし本発 明を完成するに至った。 すなわち  The present inventors have conducted intensive studies to solve these problems of the prior art, and as a result, dispersed a silane coupling agent component, a water-soluble polymer component having a specific chemical structure in a colloidal state. By treating the surface of the metal material with a surface treatment agent that contains the treated inorganic compound, the corrosion resistance and paintability, especially the slip resistance when applying a forming process such as bending after painting (coin) The present inventors have newly found that a film having excellent scratch resistance can be formed, and have completed the present invention. Ie
本発明の金属材料用表面処理組成物は水性媒体と、 この水性媒体に溶 解された下記成分:  The surface treatment composition for a metal material of the present invention comprises an aqueous medium, and the following components dissolved in the aqueous medium:
( A) 活性水素含有アミノ基、 エポキシ基、 ビュル基、 メルカプト基お よびメタクリロキシ基から選ばれた少なく とも 1個の反応性官能基を有 する 1種以上のシラン力ップリング化合物からなるシランカツプリング 剤成分および (A) Active hydrogen-containing amino, epoxy, bull, mercapto and other groups A silane coupling agent component comprising at least one silane coupling compound having at least one reactive functional group selected from methacryloxy groups and
(B) 下記一般式 ( I ) によリ表される 1種以上の水溶性重合体を 2〜 50の平均重合度で含む 1種以上の水溶性重合体成分:  (B) one or more water-soluble polymer components containing one or more water-soluble polymers represented by the following general formula (I) at an average degree of polymerization of 2 to 50:
Figure imgf000005_0001
Figure imgf000005_0001
[但し、 式中、 ベンゼン環に結合している Xは、 水素原子、 ヒ ドロキ シル基、 C 1〜C 5のアルキル基、 C 1〜C 5のヒ ドロキシアルキル基. C 6〜C 1 2のァリール基、 ベンジル基、 ベンザル基、 前記ベンゼン環 に縮合して、 ナフタレン環を形成する不飽和ハイ ド口カーボングループ 又は下記式 (II) の基:  [Wherein, X bonded to the benzene ring is a hydrogen atom, a hydroxy group, a C1-C5 alkyl group, a C1-C5 hydroxyalkyl group. C6-C1 2, an aryl group, a benzyl group, a benzal group, an unsaturated hydrid carbon group condensed with the benzene ring to form a naphthalene ring, or a group represented by the following formula (II):
R C ― R 2  R C ― R 2
( Π )
Figure imgf000005_0002
(Π)
Figure imgf000005_0002
Y 2 を表し、 式 (II) 中の R 1および R 2は、 それぞれ互いに水素原子、 ヒ ドロキシル基、 C 1〜C 5のアルキル基、 又は C 1〜C 1 0のヒ ドロキ シアルキル基を表し、 式 ( I) および (II) において、 ベンゼン環に結 合している Y 1および Y 2は、 それぞれ互いに独立に下記式 (III) 、 又は (IV) によリ表される Z基 : C H 2
Figure imgf000006_0001
R 1 and R 2 in the formula (II) represent a hydrogen atom, a hydroxyl group, a C1-C5 alkyl group, or a C1-C10 hydroxyalkyl group, respectively. In formulas (I) and (II), Y 1 and Y 2 bonded to the benzene ring are each independently a Z group represented by the following formula (III) or (IV): CH 2
Figure imgf000006_0001
Figure imgf000006_0002
Figure imgf000006_0002
を表し、 前記式 (III) および (IV) 中の R 3、 R4、 R 5、 R6およ ぴ R 7は、 それぞれ互いに独立に水素原子、 C 1〜C 1 0アルキル基又 は C 1〜C 10ヒ ドロキシアルキル基を表し、 前記重合体分子中の各べ ンゼン環における前記 Z基の置換数の平均値は 0. 2〜 1. 0である。 ] と  R 3, R 4, R 5, R 6 and R 7 in the above formulas (III) and (IV) each independently represent a hydrogen atom, a C 1 -C 10 alkyl group or a C 1- Represents a C 10 hydroxyalkyl group, and the average value of the number of substitutions of the Z group in each benzene ring in the polymer molecule is 0.2 to 1.0. ] When
(C) 前記水性媒体中にコロイ ド状態で分散したシリカ、 ケィ酸塩、 金 属塩化合物及びこれらの混合物から成る群から選ばれた少なく とも 1種 の無機化合物成分とを含むことを特徴とするものである。  (C) at least one inorganic compound component selected from the group consisting of silica, a silicate, a metal salt compound and a mixture thereof dispersed in a colloidal state in the aqueous medium. Is what you do.
本発明の表面処理剤組成物において、 前記シランカツプリング剤成分 In the surface treatment agent composition of the present invention, the silane coupling agent component
(A) の水溶性重合体成分 (B) に対する重量比 (A) / (B) 力 1 : 10〜: L 0 : 1であリ、 前記無機化合物 (C) の (A) + (B) に対す る重量比 (C) / [ (A) + (B) ] が 1 : 5〜5 : 1であることが好 ましい。 Weight ratio of (A) to water-soluble polymer component (B) (A) / (B) Force 1: 10-: L 0: 1; (A) + (B) of inorganic compound (C) It is preferred that the weight ratio (C) / [(A) + (B)] to the weight ratio be 1: 5 to 5: 1.
本発明の表面処理剤組成物において、 前記シラン力ップリング剤成分 (A) が (a) 1個以上の活性水素含有アミノ基を有する 1種以上のシ ランカップリング化合物から成るシランカップリング剤と、 (b) 1個 以上のエポキシシラン基を有する 1種以上のシランカツプリング化合物 からなるシランカツプリング剤とを含むことが好ましい。  In the surface treatment agent composition of the present invention, the silane coupling agent component (A) may comprise (a) a silane coupling agent comprising one or more silane coupling compounds having one or more active hydrogen-containing amino groups. And (b) a silane coupling agent comprising one or more silane coupling compounds having one or more epoxysilane groups.
本発明の表面処理剤組成物において、 前記シランカップリング剤 (a に含まれる活性水素含有アミノ基の、 前記シランカップリング剤 (b) に含まれるエポキシ基に対する当量比が、 3 : 1〜 1 : 3であることが 好ましい。 In the surface treatment agent composition of the present invention, the equivalent ratio of the active hydrogen-containing amino group contained in the silane coupling agent (a) to the epoxy group contained in the silane coupling agent (b) is 3: 1 to 1: 1. : 3 to be preferable.
本発明の表面処理剤組成物において、 前記シランカップリング剤 (a ) と前記シランカップリング剤 (b ) との合計量の、 前記水溶性重合体成 分 (B ) に対する重量比 [ ( a ) + ( b ) ]/ ( B ) が 1 : 5〜5 : 1で あることが好ましい。  In the surface treating agent composition of the present invention, the weight ratio of the total amount of the silane coupling agent (a) and the silane coupling agent (b) to the water-soluble polymer component (B) [(a) + (b)] / (B) is preferably 1: 5 to 5: 1.
本発明の金属材料用表面処理方法は、 上記本発明の金属材料用表面処 理薬剤組成物を含み、 かつ 2 . 0〜6 . 5の P H値に調整された水性表 面処理液を、 金属材料に付着させ、 乾燥して、 0 . 0 1〜2 . O g/m2 の乾燥重量を有する皮膜を形成することを特徴とするものである。 The surface treatment method for a metal material of the present invention comprises the step of preparing an aqueous surface treatment solution containing the above-mentioned surface treatment chemical composition for a metal material of the present invention and adjusted to a pH value of 2.0 to 6.5. deposited on the material, dried, is 0.0 to 2. which is characterized in that to form a coating having a dry weight of O g / m 2.
本発明の金属材料用表面処理方法において、 前記水性表面処理液を金 属材料に付着させる前に金属材料表面を予めリン酸塩処理もしくは化学 めっき処理を施すことが好ましい。  In the surface treatment method for a metal material according to the present invention, it is preferable that the surface of the metal material is previously subjected to a phosphate treatment or a chemical plating treatment before the aqueous surface treatment solution is attached to the metal material.
本発明の金属材料用表面処理剤組成物は、 特定の反応性官能基を有す る 1種以上のシランカツプリング化合物から成るシランカツプリング剤 成分 (A) と、 特殊アミノ基を含む 1種以上のフエノール樹脂系重合体 から成る水溶性重合成分 (B ) と、 該水性媒体中にコロイ ド状態で分散 したシリカ、 ケィ酸塩、 金属塩化合物及びこれらの混合物からなる群か ら選ばれた少なく とも 1種の無機化合物 (C ) とが水性媒体に中に溶解 されている水溶液である。  The surface treating agent composition for a metal material of the present invention comprises a silane coupling agent component (A) comprising at least one silane coupling compound having a specific reactive functional group, and a silane coupling agent component containing a special amino group. Selected from the group consisting of the water-soluble polymerization component (B) comprising the above phenolic resin-based polymer, silica, silicate and metal salt compounds dispersed in a colloidal state in the aqueous medium, and a mixture thereof. It is an aqueous solution in which at least one inorganic compound (C) is dissolved in an aqueous medium.
本発明に用いられるシランカップリング剤成分 (A) に含まれるシラ ンカップリング化合物は、 1分子中に反応性官能基として活性水素含有 アミノ基、 エポキシ基、 ビュル基、 メルカプト基およびメタクリロキシ 基から選ばれた少なくとも 1個を含むものであれば、 特に構造は限定さ れないが、 具体的に例を挙げれば、 以下の①〜⑤のような組成のものを 使用することができる。  The silane coupling compound contained in the silane coupling agent component (A) used in the present invention is a compound having a reactive functional group in one molecule comprising an active hydrogen-containing amino group, an epoxy group, a butyl group, a mercapto group and a methacryloxy group. The structure is not particularly limited as long as it contains at least one selected member, but specific examples include those having the following compositions (1) to (4).
①ァミノ基を有するもの  (1) Having an amino group
N— ( 2 —アミノエチル) 3 —ァミノプロピルメチルジメ トキシシラン、 N— (アミノエチル) 3—ァミノプロピル トリメ トキシシラン、 3—ァミノプロピルトリエトキシシー ラン  N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (aminoethyl) 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane
②エポキシ基を有するもの 3—グリシドキシプロピルトリメ トキシシラン、 3—ダリ シドキシプロピルメチルジメ トキシシラン、 2— (3, 4 エポキシシクロへキシル) ェチルトェリメ トキシシラン(2) Having epoxy group 3-glycidoxypropyltrimethoxysilane, 3-dalicydoxypropylmethyldimethoxysilane, 2- (3,4 epoxycyclohexyl) ethylethylmethyxsilane
③ビニル基を有するもの (3) Having a vinyl group
ビュルトリエ トキシシラン  Burt Triethoxysilane
④メルカプト基を有するもの  も の Having a mercapto group
3 _メルカプトプロビルトリメ トキシシラン  3 _ mercaptoprovir trimethoxysilane
⑤メタクリ 口キシ基を有するもの  ⑤Methacrylic having a hydroxyl group
3—メタクリロキシプロピルトリメ トキシシラン、 3—メ タクリロキシプロピルメチルジメ トキシシラン 本発明に用いられるシランカップリング剤成分 (A) は、 1個以上の 活性水素含有アミノ基を有する 1種以上のシラン力ップリング化合物か らなるシランカップリング剤 (a) と、 1個以上のエポキシ基を有する 1種以上のシランカツプリング化合物からなるシランカツプリング剤 (b ) からなるものであることが好ましい。  3-Methacryloxypropyltrimethoxysilane, 3-Methacryloxypropylmethyldimethoxysilane The silane coupling agent component (A) used in the present invention comprises one or more silane coupling agents having one or more active hydrogen-containing amino groups. It is preferable that the silane coupling agent comprises a silane coupling agent (a) composed of a compound and a silane coupling agent (b) composed of one or more silane coupling compounds having one or more epoxy groups.
また、 本発明における表面処理剤組成物中のシランカツプリング剤成 分 (A) が活性水素含有アミノ基を有するシランカップリング化合物か ら成るシランカップリング剤 (a) と、 エポキシ基含有シランカツプリ ング剤 (b) から成る場合、 シランカップリング剤中の含まれる活性水 素含有アミノ基の、 エポキシ基に対する当量比は、 3 : 1〜 1 : 3の範 囲であることが好ましい。 この活性水素含有ァミノ基のエポキシ基に対 する当量比が 3 : 1を超えると、 得られる皮膜の成膜性が悪く、 耐食性 や塗装性が不十分になる。 またそれが 1 : 3未満の場合、 処理された皮 膜の耐食性や塗装性が飽和してしまうことがある。  Further, the silane coupling agent component (A) in the surface treatment agent composition according to the present invention is a silane coupling agent (a) comprising a silane coupling compound having an active hydrogen-containing amino group, and an epoxy group-containing silane coupling agent. When comprising the agent (b), the equivalent ratio of the active hydrogen-containing amino groups contained in the silane coupling agent to the epoxy groups is preferably in the range of 3: 1 to 1: 3. If the equivalent ratio of the active hydrogen-containing amino group to the epoxy group exceeds 3: 1, the resulting film has poor film-forming properties, resulting in insufficient corrosion resistance and paintability. If it is less than 1: 3, the corrosion resistance and paintability of the treated film may be saturated.
次に本発明に用いられる水溶性重合体成分 (B) は、 前記式 ( I ) で 示される重合単位を含むオリゴマー又はポリマーであリ、 式 ( I ) の重 合単位の平均重合度は 2〜 50である。  Next, the water-soluble polymer component (B) used in the present invention is an oligomer or a polymer containing the polymerized unit represented by the formula (I), and the average polymerization degree of the polymerized unit of the formula (I) is 2 ~ 50.
式 ( I ) において、 ベンゼン環に結合している Xは、 ヒ ドロキシル基、 C l〜5のアルキル基、 例えばメチル、 ェチル、 プロピル基等、 C l〜 - 5のヒ ドロキシアルキル基、 例えばヒ ドロキシメチル、 ヒ ドロキシェチ ル、 ヒ ドロキシプロピル基等、 C 6〜 1 2のァリール基、 例えばフエ二 ル、 ナフチル基等、 ベンジル基、 ベンザル基、 前記ベンゼン環に縮合し てナフタレン環を形成する不飽和ハイ ドロカーボングループ、 すなわちIn the formula (I), X bonded to the benzene ring is a hydroxyl group, a C1-5 alkyl group, for example, a methyl, ethyl, propyl group, etc., a C1-5 hydroxyalkyl group, for example, C6-12 aryl groups such as hydroxymethyl, hydroxyxethyl, hydroxypropyl, etc. Benzyl group, benzal group, etc., an unsaturated hydrocarbon group condensed to the benzene ring to form a naphthalene ring,
— CH = CH_CH = CH―、 又は = CH— CH= CH— CH =基、 又 は前記式 (II) の基を表すものである。 — CH = CH_CH = CH— or = CH—CH = CH—CH = or a group of the above formula (II).
式 (II) 中の R 1および R2は、 それぞれ互いに独立に、 水素原子、 ヒ ドロキシル基、 C 1〜C 10アルキル基、 例えばメチル、 ェチル、 プ 口ピル基等、 C 1〜C 1 0のヒ ドロキシアルキル基、 例えばヒ ドロキシ メチル、 ヒ ドロキシェチル、 ヒ ドロキシプロピル基等が挙げられる。 式 ( I ) および (II) において、 ベンゼン環に結合している Y 1およ び Y 2は、 それぞれ互いに独立に式 (III) 、 又は (IV) によリ表され る Z基を有する。 また、 式 (III) および (IV) の中の R 3、 R4、 R 5、 R 6および R 7は、 それぞれ互いに独立に C 1〜C 1 0のアルキル 基、 例えばメチル、 ェチル、 プロピル基等、 C 1〜C 5のヒ ドロキシァ ルキル基、 例えばヒ ドロキシメチル、 ヒ ドロキシェチル、 ヒ ドロキシプ 口ピル基等を表すものである。  R 1 and R 2 in the formula (II) each independently represent a hydrogen atom, a hydroxyl group, a C 1 -C 10 alkyl group, for example, a methyl, ethyl, propyl group or the like; Examples include a hydroxyalkyl group, for example, hydroxymethyl, hydroxyshethyl, hydroxypropyl group and the like. In the formulas (I) and (II), Y 1 and Y 2 bonded to the benzene ring each independently have a Z group represented by the formula (III) or (IV). R 3, R 4, R 5, R 6 and R 7 in the formulas (III) and (IV) each independently represent a C 1 -C 10 alkyl group such as methyl, ethyl, propyl, etc. And C 1 to C 5 hydroxyalkyl groups, for example, hydroxymethyl, hydroxyxethyl, hydroxypropyl group and the like.
前記重合体分子中の各ベンゼン環に結合している式 ( I ) 中の X、 Y 1および式 (II) 中の Y 2のぞれぞれは、 他のベンゼン環に結合してい る X、 Y 1および Y 2のそれぞれと同一であってもよく又は互いに異な つてもよい。  X and Y 1 in Formula (I) and Y 2 in Formula (II) each bonded to each benzene ring in the polymer molecule are X bonded to other benzene rings. , Y 1 and Y 2 may be the same or different from each other.
また、 前記重合体分子中の各ベンゼン環における前記 Ζ基の置換数の平 均値は、 0. 2〜 1. 0である。 また、 式 ( I ) 中の ηは、 2〜50の 平均重合度を表す。 ηが 2未満の場合、 得られた重合体の分子量が過小 であリ、 得られる皮膜の耐食性不十分になリ、 またそれが 50を超える と、 得られる表面処理剤組成物、 およびそれらを含む水性処理液の安定 性が悪くなリ、 実用上不都合を生じる。 Further, the average value of the number of substitution of the 前 記 group in each benzene ring in the polymer molecule is from 0.2 to 1.0. Further, η in the formula (I) represents an average degree of polymerization of 2 to 50. When η is less than 2, the molecular weight of the obtained polymer is too small, the corrosion resistance of the obtained film is insufficient, and when it exceeds 50, the obtained surface treating agent composition and The stability of the aqueous treatment solution containing the compound is poor, causing practical inconvenience.
Ζ基の置換数の平均値とは、 重合体分子中の全ベンゼン環において、 それぞれに導入されている Ζ基の数の平均値である。 例えば、 式 ( I) において、 η= 1 0であって、 且つ Xが式 (II) のベンゼン環含有基で ある場合、 この重合体の 1分子当たりのベンゼン環数は 20であり、 こ の重合体 1分子当たり、 10個のベンゼン環に各 1個宛の Ζ基が導入さ れている場合、 この重合体分子の Ζ基置換数平均値は、 [ (1 X 10) + (0 X 1 0) ] /20 = 0. 5となる。 The average value of the number of substituted Ζ groups is the average value of the number of Ζ groups introduced into each benzene ring in the polymer molecule. For example, in the formula (I), when η = 10 and X is a benzene ring-containing group of the formula (II), the number of benzene rings per molecule of the polymer is 20; If one Ζ group is introduced into each of 10 benzene rings per polymer molecule, the average number of Ζ group substitutions in this polymer molecule is [(1 X 10) + (0 X 10)] / 20 = 0.5.
この Z基置換数の平均値が 0. 2未満であると、 得られる重合体の水 溶性が不十分となリ、 表面処理剤組成物の安定性が悪くなる。 またそれ 力 1. 0を超えると、 得られる重合体の水溶性が過大になリ、 得られ る皮膜の耐食性、 塗装性向上効果が不十分となる。  If the average value of the number of Z group substitution is less than 0.2, the resulting polymer will have insufficient water solubility, and the stability of the surface treatment composition will be poor. On the other hand, if the force exceeds 1.0, the water solubility of the obtained polymer becomes excessive, and the effect of improving the corrosion resistance and coating property of the obtained film becomes insufficient.
式 (III) および式 (IV) によリ表される Z基中の R 3〜R 7の各々 は、 C 1〜C 10のアルキル基、 C 1〜C 1 0のヒ ドロキシアルキル基 を表す。 これらの炭素数が 1 1以上になると、 形成される皮膜の成膜性 が低下するため、 耐食性、 塗装性が不十分になる。  Each of R 3 to R 7 in the Z group represented by the formulas (III) and (IV) represents a C 1 to C 10 alkyl group and a C 1 to C 10 hydroxyalkyl group. Represent. When the number of carbon atoms is 11 or more, the film forming property of the formed film is reduced, so that the corrosion resistance and the paintability become insufficient.
次に本発明に用いられるシリカ、 ケィ酸塩、 金属塩化合物およびこれ らの混合物から成る群から選ばれた少なく とも 1種の無機化合物 (C) は該水性媒体中に均一なコロイ ド状態分散液となるものでなければなら ない。 従って微粒子状のものの使用が好ましい。 この目的にはヒューム ドシリカもしくはコロイダルシリカ、 沈降シリカ、 天然産の粉末石英、 珪藻土、 黄土、 モンモリナイ トのようなケィ酸塩、 ラボナイ ト (商品名) として市販されている合成ケィ酸マグネシウム、 チタエアゾル、 ジルコ ユアゾル、 アルミナゾル、 硫酸バリウム、 リン酸亜鉛、 ベンガラ等など である。  Next, at least one inorganic compound (C) selected from the group consisting of silica, a silicate, a metal salt compound and a mixture thereof used in the present invention is uniformly dispersed in a colloidal state in the aqueous medium. It must be a liquid. Therefore, use of fine particles is preferred. For this purpose, fumed or colloidal silica, precipitated silica, powdered quartz of natural origin, diatomaceous earth, loess, silicates such as montmorillonite, synthetic magnesium silicate, commercially available as Rabonite (trade name), titanium aerosol, Zirco urea, alumina sol, barium sulfate, zinc phosphate, red iron oxide, etc.
本発明の表面処理剤中において、 前記シランカップリング剤成分 (A) と前記水溶性重合体成分 (B) に対する重量比 (A) / (B) は、 1 : 10〜 10 : 1であることが好ましく、 ょリ好ましくは 1 : 5〜 5 : 1 である。 この重量比が 1 : 10未満の場合、 すなわちシランカップリン グ剤成分 (A) の比率が低いと、 基体表面との接着力が低下するため、 耐食性、 塗装性は不十分になる。 またそれが 10 : 1を超えると、 すな わちシランカップリング剤成分 (A) 比率が高い場合、 皮膜の成膜性が 低下するため、 得られる皮膜の耐食性、 塗装性が不十分となる。  In the surface treatment agent of the present invention, the weight ratio (A) / (B) to the silane coupling agent component (A) and the water-soluble polymer component (B) is from 1:10 to 10: 1. And preferably 1: 5 to 5: 1. If the weight ratio is less than 1:10, that is, if the ratio of the silane coupling agent component (A) is low, the adhesion to the substrate surface is reduced, and the corrosion resistance and coating properties are insufficient. On the other hand, if it exceeds 10: 1, that is, if the silane coupling agent component (A) ratio is high, the film-forming properties of the film will be reduced, and the resulting film will have insufficient corrosion resistance and paintability. .
本発明の表面処理剤組成物中において、 前記無機化合物成分 (C) の 前記シランカップリング剤成分 (A) と前記水溶性重合体成分 (B) の 合計量に対する重量比 (C) / [ (A) + (B) ] は 1 : 5〜5 : 1で - あることが好ましい。 この重合比が 1 : 5未満の場合、 すなわち無機化 合物成分 (C) の比率が少ないと、 得られる皮膜の物理的強度が不足し、 塗装性、 特にコインスクラッチ性が不十分となる。 またそれが 5 : 1を 超えると、 すなわち無機化合物成分 (C) の含有率が過大になると、 得 られる表面処理組成物の成膜性が低下するため、 得られる皮膜の耐食性. 塗装性が、 特に密着性が不十分になる。 In the surface treatment agent composition of the present invention, the weight ratio of the inorganic compound component (C) to the total amount of the silane coupling agent component (A) and the water-soluble polymer component (B) (C) / [( A) + (B)] is 1: 5 to 5: 1, preferably-. When the polymerization ratio is less than 1: 5, that is, when the ratio of the inorganic compound component (C) is small, the physical strength of the obtained film becomes insufficient, Paintability, especially coin scratching, is insufficient. On the other hand, if it exceeds 5: 1, that is, if the content of the inorganic compound component (C) is too large, the film-forming properties of the obtained surface treatment composition will decrease, so that the corrosion resistance of the resulting film. In particular, the adhesion becomes insufficient.
次に本発明の表面処理方法について説明する。 本発明方法において、 上記の表面処理剤組成物を含み、 PHが 2. 0〜6. 5の範囲に調整さ れ水性表面処理液を、 金属材料表面に付着させ、 それを乾燥して 0. 0 1〜2. 0 g/ni2、 好ましくは 0. 05〜: L . O g/m2の乾燥重量を 有する皮膜を形成する。 このとき水性処理液を金属材料表面に 1 0〜6 0°Cの温度で 0. 1〜 30秒間接触させ、 加熱乾燥することが好ましい c また本発明の表面処理方法において、 水性表面処理液は、 表面処理剤 組成物を水性媒体、 たとえば水で希釈して、 又は希釈せずに調整される 力 このとき、 その PH値は、 例えばリン酸、 硫酸、 塩酸、 硝酸、 フッ 化水素酸、 錯フッ化物および有機酸を用いて 2. 0〜6. 5の範囲に調 整される。 Next, the surface treatment method of the present invention will be described. In the method of the present invention, the aqueous surface treating solution containing the surface treating agent composition described above, having a pH adjusted to a range of 2.0 to 6.5, is adhered to the surface of the metal material, and dried to obtain a solution. 0 to 2.0 g / ni 2 , preferably 0.05 to: A film having a dry weight of L.O g / m 2 is formed. In this case the aqueous treatment liquid in contact from 0.1 to 30 seconds at a temperature of 1 0~6 0 ° C to the metal surface, the surface treatment method that is preferable c The present invention for heating drying, an aqueous surface treatment liquid The surface treatment agent is adjusted by diluting or undiluted the composition with an aqueous medium, for example, water. At this time, the PH value is, for example, phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, hydrofluoric acid, complex acid, etc. It is adjusted to a range of 2.0 to 6.5 using fluoride and organic acid.
本発明に用いられる水性表面処理液の P H値の調整に、 リン酸、 酸性 リン酸塩、 フッ化物、 錯フッ化物を用いることが好ましい。 ょリ好まし レヽ P H値は 3. 0〜5. 0である。 pHが 2. 0未満では、 得られる処 理液中の組成物と基体表面との反応性が過度に高くなるので、 皮膜不良 が発生してしまい、 得られる皮膜の耐食性、 塗装性が不十分になる。 ま た P Hが 6. 5を超えると水溶性重合体成分 (B) 自体が水性表面処理 液から沈殿析出し易くなるため水性処理液の寿命が短くなる。  Phosphoric acid, acidic phosphate, fluoride, and complex fluoride are preferably used for adjusting the pH value of the aqueous surface treatment solution used in the present invention. The preferred PH value is 3.0-5.0. If the pH is less than 2.0, the reactivity between the composition in the obtained treatment liquid and the surface of the substrate becomes excessively high, resulting in poor coating, resulting in insufficient corrosion resistance and coating properties of the obtained coating. become. If the pH exceeds 6.5, the water-soluble polymer component (B) itself tends to precipitate out of the aqueous surface treatment solution, so that the life of the aqueous treatment solution is shortened.
また、 本表面処理剤を用いて、 金属材料の表面を処理する方法も特に 限定されるものではなく、 例えば浸漬方法、 スプレー方法、 およびロー ルコート法等を適応することができる。 また、 処理温度、 処理時間につ いても特に限定はないが、 一般に、 処理温度は 10〜60°Cであること が好ましく、 処理時間は 0. 1〜20秒であることが好ましい。 更に処 理された金属材料を加熱乾燥することが好ましい。 加熱温度としては 5 0〜 280°Cが好ましい。  The method of treating the surface of a metal material using the surface treating agent is not particularly limited, and for example, a dipping method, a spraying method, a roll coating method, and the like can be applied. The processing temperature and the processing time are not particularly limited, but generally, the processing temperature is preferably 10 to 60 ° C, and the processing time is preferably 0.1 to 20 seconds. Further, it is preferable to heat and dry the treated metal material. The heating temperature is preferably from 50 to 280 ° C.
なお、 本発明の表面処理剤組成物と金属材料とを接触させた際に、 金 属材料よリ溶出混入した金属イオンと、 水溶性重合体成分 (B) とが錯 体を形成し、 沈殿を生じる場合がある。 このような場合には表面処理剤 組成物中に金属封鎖剤を添加してもよい。 金属封鎖剤としては E D T A、 C y— D T A、 トリエタノールァミン、 ダルコン酸、 ヘプトグルコン酸、 蓚酸、 酒石酸、 リ ンゴ酸および有機ホスホン酸等が有効である。 When the surface treating agent composition of the present invention is brought into contact with the metal material, the metal ion eluted and mixed from the metal material and the water-soluble polymer component (B) are complexed. May form body and precipitate. In such a case, a sequestering agent may be added to the surface treatment composition. As a sequestering agent, EDTA, Cy-DTA, triethanolamine, dalconic acid, heptgluconic acid, oxalic acid, tartaric acid, lingic acid and organic phosphonic acid are effective.
また、 本発明の表面処理方法に用いられる水性表面処理液中には、 塗 布性を向上するための界面活性剤を配合してもよい。 界面活性剤として は市販のカルボン酸塩型、 硫酸エステル塩型、 スルホン酸塩型、 リン酸 塩エステル塩型等のァニオン性界面活性剤、 ポリエチレングリコール型 非イオン界面活性剤、 多価アルコール型非イオン界面活性剤、 アミン系 カチオン界面活性剤等が挙げられる。  Further, a surfactant for improving coatability may be added to the aqueous surface treatment solution used in the surface treatment method of the present invention. Examples of the surfactant include commercially available anionic surfactants such as a carboxylate type, a sulfate type, a sulfonate type, and a phosphate type, a polyethylene glycol type nonionic surfactant, and a polyhydric alcohol type. Examples include an ionic surfactant and an amine-based cationic surfactant.
本発明に用いられる金属材料には、 鉄板、 亜鉛系めつき銅板、 アルミ ニゥム板、 アルミニウム合金板、 ステンレス鋼板等から選ぶことができ る。 また前記鋼板にリン酸塩処理や化学めつき処理の前処理を施した鋼 板から選ぶこともでき、 この場合はよリ耐食性や塗装性が良好になる。 なお化学めつき処理とは、 例えばコバルト、 ニッケル、 銅、 鉄、 銀、 金 等の金属の置換めつきが挙げられる。  The metal material used in the present invention can be selected from an iron plate, a zinc-plated copper plate, an aluminum plate, an aluminum alloy plate, a stainless steel plate and the like. In addition, the steel sheet may be selected from steel sheets which have been subjected to a phosphate treatment or a chemical plating treatment. In this case, the corrosion resistance and the paintability are improved. Note that the chemical plating treatment includes, for example, substitution plating of metals such as cobalt, nickel, copper, iron, silver, and gold.
本発明の表面処理剤組成物で処理された金属材料の耐食性、 塗装性が 良好となる作用効果については未だ不明確な点が多々あるが、 本発明者 らは以下のように考える。 まず、 表面処理剤組成物中のリん酸、 酸性リ ん酸塩、 フッ化物および錯フッ化物によリ、 金属表面のエッチングが起 きる。 これによつて、 界面の p Hが上昇し、 溶出してきた金属イオンと 水溶性重合体成分との反応によリ、 難溶性の皮膜が界面に形成される。 この難溶性の皮膜がバリア効果を発揮するので、 耐食性が向上するもの と考えられる。 ただし、 このままでは金属材料と皮膜との密着性が低い ため、 シランカップリング剤成分を併用することで、 加水分解を受けた シランカップリング剤中の官能基 (—O R基) が金属材料表面とォキサ ン結合をつく リ、 更にシランカツプリング剤中のもう一方の反応性官能 基が水溶性重合体成分と反応するため、 金属材料と水溶性重合体成分と の密着性を向上させるものと推定される。 更にコロイド状態で分散した 無機化合物成分が金属材料表面に微細な凹凸を形成し、 この凹凸がその 上に塗布される塗料に対する投錨効果を発揮し、 十分な塗装性、 特にコ インスクラツチ性等の塗装後の加工性を発揮するものと推測される。 下記の実施例によリ本発明を具体的に説明するが、 本発明の範囲はこ れらの実施例によリ何ら限定されるものでない。 Although there are still many unclear points about the effects of the metal material treated with the surface treatment composition of the present invention, which can improve the corrosion resistance and the paintability, the inventors consider as follows. First, the metal surface is etched by phosphoric acid, acid phosphate, fluoride and complex fluoride in the surface treatment composition. As a result, the pH at the interface increases, and a reaction between the eluted metal ions and the water-soluble polymer component forms a poorly soluble film at the interface. It is thought that the corrosion resistance is improved because this hardly soluble film exerts a barrier effect. However, since the adhesion between the metal material and the film is low in this state, the functional group (—OR group) in the hydrolyzed silane coupling agent can be brought into contact with the metal material surface by using the silane coupling agent component in combination. Oxane bond, and the other reactive functional group in the silane coupling agent reacts with the water-soluble polymer component, presumably improving the adhesion between the metal material and the water-soluble polymer component. Is done. In addition, the inorganic compound component dispersed in a colloidal state forms fine irregularities on the surface of the metal material, and the irregularities exert an anchoring effect on the paint applied on the metallic material. It is presumed that they exhibit workability after painting such as inscratching property. The present invention will be specifically described with reference to the following examples, but the scope of the present invention is not limited to these examples.
1. 供試材  1. Test material
①冷延銅板  ① Cold rolled copper plate
市販の板厚 0. 6 mm J I S G 3 141  Commercially available plate thickness 0.6 mm J I S G 3 141
②亜鉛含有金属めつき鋼板  ②Zinc-containing steel sheet
市販の板厚 0. 6mm 溶融亜鉛めつき鋼板 (G I材)  Commercially available sheet thickness 0.6mm hot-dip galvanized steel sheet (GI material)
市販の板厚 0. 6 mm 電気亜鉛めつき鋼板 (EG材)  Commercially available sheet thickness 0.6 mm Electro-galvanized steel sheet (EG material)
③アルミニウム板  ③ Aluminum plate
市販の板厚 0. 6 mm J I S A 5052  Commercially available plate thickness 0.6 mm J I S A 5052
2. 銅板の清浄方法  2. How to clean copper plate
上記金属材料の表面を中アルカリ脱脂剤 (登録商標: ファインクリー ナー 4336、 日本パーカライジング(株)製) 薬剤濃度: 20 g/リツ トルを用いて、 処理温度 : 60°C、 処理時間 : 20秒の条件でスプレー 処理し、 表面に付着しているゴミゃ油を除去した。 ついで表面に残存し ているアルカリ分を水道水によリ洗浄し、 供試材の表面を清浄化した。 The surface of the above metal material is treated with a medium alkaline degreasing agent (registered trademark: Fine Cleaner 4336, manufactured by Nippon Parkerizing Co., Ltd.). Chemical concentration: 20 g / liter, treatment temperature: 60 ° C, treatment time: 20 seconds Spray treatment was performed under the following conditions to remove dust and oil adhering to the surface. Next, the alkali remaining on the surface was washed with tap water to clean the surface of the test material.
3. 表面処理液組成 3. Composition of surface treatment liquid
<処理液 >  <Treatment liquid>
シランカップリング剤成分 (A) として 3—メルカプトプロピルトリ メ トキシシラン、 水溶性重合体成分 (B) として n = 5、 X=水素、 Y 1 = Z=-CH2N (CH3) 2、 Z基置換数平均値 = 1、 無機化合物成 分 (C) としてコロイダルシリカを用いて、 (A) : (B) = 1 : 8、 (C) : [ (A) + (B) ]= 1 : 5になるように調整した。 更に H2S i F6で pHが 5. 0になるように調整した後、 脱イオン水にて希釈し、 固形分として 10重量%とした。 Silane coupling agent component (A) as a 3-mercaptopropyl trimethinecyanine Tokishishiran, n = 5 as a water-soluble polymer component (B), X = hydrogen, Y 1 = Z = -CH 2 N (CH 3) 2, Z Average number of group substitution = 1, using colloidal silica as inorganic compound component (C), (A): (B) = 1: 8, (C): [(A) + (B)] = 1: Adjusted to be 5. After adjusting the pH to 5.0 with H 2 SiF 6 , the mixture was diluted with deionized water to obtain a solid content of 10% by weight.
<処理液 B >  <Treatment liquid B>
シランカップリング剤成分 (A) として N— (2—アミノエチル) ― 3—ァミノプロビルトリメ トキシシランと、 水溶性重合体成分 (B) と して n = 5、 X =— CH2— C6H4_OH、 Y 1 = Ζ =-CH2N(CH3 ) 2、 Ζ基置換数平均値 =0. 75、 無機化合物成分 (C) としてアル ミナゾルを用いて、 (A) : (B) = 5 : 1、 (C) : [ (A) + (B) ]= 1 : 1になるように調整した。 更に HFで pHが 4. 0になるよう に調整した後、 脱イオン水にて希釈し、 固形分とし 10重量%とした。 N— (2-aminoethyl) -3-aminopropyltrimethoxysilane as the silane coupling agent component (A) and n = 5, X = —CH 2 — C as the water-soluble polymer component (B) 6 H 4 _OH, Y 1 = Ζ = -CH 2 N (CH 3 ) 2, 置換 group substitution number average = 0.75, Al as inorganic compound component (C) It adjusted so that (A) :( B) = 5: 1 and (C): [(A) + (B)] = 1: 1 using minasol. After adjusting the pH to 4.0 with HF, the mixture was diluted with deionized water to obtain a solid content of 10% by weight.
<処理液 C >  <Treatment liquid C>
シランカップリング剤成分 (A) として 3—ァミノプロピルトリエト キシシラン + 3—グリシドキシプロピルメチルジメ トキシシラン (アミ ノ基中の活性水素 :エポキシ基の当量比 = 1 : 2) と、 水溶性重合体成 分 (B) として n = 5、 X =— CH2_C6H4— OH、 Y 1 = Z =— C H2N (CH3) 2、 Z基置換数平均値 =0. 75、 無機化合物成分 (C) として硫酸バリウムを用いて、 (A) : (B) = l : l、 (C) : [ ( A) + (B) ]= 1 : 2になるように調整した。 更に H2T i F6で p H が 4. 0になるように調整した後、 脱イオン水にて希釈し、 固形分とし て 1 0重量%とした。 As silane coupling agent component (A), 3-aminopropyltriethoxysilane + 3-glycidoxypropylmethyldimethoxysilane (active hydrogen in amino group: equivalent ratio of epoxy group = 1: 2), and water solubility n = 5 as the polymer Ingredient (B), X = - CH 2 _C 6 H 4 - OH, Y 1 = Z = -. CH 2 n (CH 3) 2, Z group substitution number average = 0 75, Barium sulfate was used as the inorganic compound component (C), and adjustment was performed so that (A): (B) = l: l, and (C): [(A) + (B)] = 1: 2. Further, after adjusting the pH to 4.0 with H 2 Ti F 6 , the mixture was diluted with deionized water to obtain a solid content of 10% by weight.
<処理液 D >  <Treatment liquid D>
シランカップリング剤成分 (A) として 3—ァミノプロピルトリエト キシシラン + 3—グリシドキシプロピルメチルジメ トキシシラン (アミ ノ基中の活性水素 :エポキシ基の当量比 = 1 : 3) と、 水溶性重合体成 分 (B) として n = 5、 X =— CH2— C6H4— OH、 Y 1 = Z = - C H2N (CH3) 2、 Z基置換数平均値 =0. 75、 無機化合物成分 (C) としてコロイダルシリカを用いて、 (A) : (B) = 1 : 1、 (C) : [ (A) + (B) ]=4 : 1になるように調整した。 更にリン酸で p Hが 3. 0になるように調整した後、 脱イオン水にて希釈し、 固形分として 10重量%とした。 As a silane coupling agent component (A), 3-aminopropyltriethoxysilane + 3-glycidoxypropylmethyldimethoxysilane (active hydrogen in amino groups: equivalent ratio of epoxy groups = 1: 3) and water solubility As polymer component (B), n = 5, X = — CH 2 — C 6 H 4 — OH, Y 1 = Z =-CH 2 N (CH 3 ) 2 , average number of Z group substitutions = 0.75 The composition was adjusted so that (A) :( B) = 1: 1 and (C): [(A) + (B)] = 4: 1 using colloidal silica as the inorganic compound component (C). After adjusting the pH to 3.0 with phosphoric acid, the mixture was diluted with deionized water to obtain a solid content of 10% by weight.
<処理液 E >  <Treatment liquid E>
シランカップリング剤成分 (A) として N— (2—アミノエチル) 一 3—ァミノプロビルトリ メ トキシシラン + 3—グリ シドキシプロピルメ チルジメ トキシシラン (ァミノ基中の活性水素:エポキシ基の当量比 = 1 : 1) と、 水溶性重合体成分 (B) として n = 5、 X=水素、 Y l = Z = -CH2N (CH3) 2、 Z基置換数平均値 = 1、 無機化合物成分 ( C) としてコロイダルシリカを用いて、 (A) : (B) = 1 : 1、 (C) : [ (A) + (B) ]= 1 : 1になるように調整した。 更に: H2T i F6と リン酸で p Hが 4. 0になるように調整した後、 脱イオン水にて希釈し、 固形分として 10重量%とした。 The silane coupling agent component (A) is N- (2-aminoethyl) -13-aminopropyltrimethoxysilane + 3-glycidoxypropylmethyldimethoxysilane (active hydrogen in amino group: equivalent ratio of epoxy group) = 1: 1) and n = 5, X = hydrogen, Y l = Z = -CH 2 N (CH 3 ) 2, water-soluble polymer component (B), Z group substitution average = 1, inorganic compound Using colloidal silica as the component (C), adjustment was made so that (A) :( B) = 1: 1 and (C): [(A) + (B)] = 1: 1. Further: H 2 T i F 6 After adjusting the pH to 4.0 with phosphoric acid, the mixture was diluted with deionized water to obtain a solid content of 10% by weight.
く比較処理液 F >  Comparative processing solution F>
水溶性重合体成分 (B)として n = 5、 X=水素、 Y 1 =Z=— CH2 N (CH3) 2、 Z基置換数平均値 = 1、 無機化合物成分 (C) としてコ ロイダルシリカを用いて、 (C) : (B) = 1 : 1になるように調整し た。 更に H2T i F6とリン酸で pHが 4. 0になるように調整した後、 脱イオン水で希釈し、 固形分として 1 0重量%とした。 N = 5, X = hydrogen, Y 1 = Z = —CH 2 N (CH 3 ) 2 , average number of Z group substitution = 1 as water-soluble polymer component (B), colloidal silica as inorganic compound component (C) Was adjusted so that (C) :( B) = 1: 1. Further, after adjusting the pH to 4.0 with H 2 Ti F 6 and phosphoric acid, the mixture was diluted with deionized water to obtain a solid content of 10% by weight.
く比較処理液 G>  Comparative processing solution G>
シランカップリング剤成分 (A) として N— (2—アミノエチル) 一 3—ァミノプロビルトリメ トキシシラン + 3—グリシドキシプロピルメ チルジメ トキシシラン (ァミノ基中の活性水素:エポキシ基の当量比 = 1 : 1) と、 水溶性重合体成分 (B) として n = 5、 X=水素、 Y l = Ζ =— CH2N (CH3) 2、 Z基置換数平均値 = 1を用いて、 (A) : (B) = 1 : 1になるように調整した。 更にリン酸で PHが 3. 0にな るように調整した後、 脱イオン水で希釈し、 固形分として 1 0重量%と した。 As the silane coupling agent component (A), N- (2-aminoethyl) -13-aminopropyltrimethoxysilane + 3-glycidoxypropylmethyldimethoxysilane (active hydrogen in amino group: equivalent ratio of epoxy group = 1: 1) and n = 5, X = hydrogen, Y l = Ζ = — CH 2 N (CH 3 ) 2, Z group substitution average = 1, as the water-soluble polymer component (B), (A): Adjusted so that (B) = 1: 1. After adjusting the pH to 3.0 with phosphoric acid, the mixture was diluted with deionized water to a solid content of 10% by weight.
く比較処理液 H>  Comparative processing solution H>
シランカップリング剤成分 (A) として 3—メルカプトプロピルトリ メ トキシシラン、 水溶性重合体成分 (B) として n = 5、 X=水素、 Y 1 = Z = -CH2N (CH3) 2、 Z基置換数平均値 = 1、 無機化合物成 分 (C) として硫酸バリウムを用いて、 (A) : (B) = l : 8、 (C) : [ (A) + (B) ]= 1 : 20になるように調整した。 更に HFで pH が 4. 5になるまで調整した後、 固形分が 1 0重量%になるように脱ィ オン水にて希釈した。 Silane coupling agent component (A) as a 3-mercaptopropyl trimethinecyanine Tokishishiran, n = 5 as a water-soluble polymer component (B), X = hydrogen, Y 1 = Z = -CH 2 N (CH 3) 2, Z Average number of group substitution = 1, using barium sulfate as inorganic compound component (C), (A): (B) = l: 8, (C): [(A) + (B)] = 1: Adjusted to be 20. After adjusting the pH to 4.5 with HF, the mixture was diluted with deionized water to a solid content of 10% by weight.
<比較処理液 I >  <Comparative treatment solution I>
シランカップリング剤成分 (A) として 3—ァミノプロピルトリエト キシシラン + 3—グリシドキシプロピルメチルジメ トキシシラン (アミ ノ基中の活性水素 :エポキシ基の当量比 == 1 : 3) と、 水溶性重合体成^ 分 (B) として n = 5、 X =— CH2—C6H4— OH、 Y 1 = Z = _C H2N (CH3) 2、 Z基置換数平均値 =0. 75、 無機化合物成分 (C) としてコロイダルシリカを用いて、 (A) : (B) = 1 : 1、 (C) : [ (A) + (B) ]= 1 : 2になるように調整した。 更にリン酸で PHが 1. 0になるように調整した後、 脱イオン水にて希釈し、 固形分として 10重量%とした。 3-Aminopropyltriethoxysilane + 3-glycidoxypropylmethyldimethoxysilane (active hydrogen in amino groups: equivalent ratio of epoxy groups == 1: 3) as silane coupling agent component (A), and water-soluble N = 5, X = — CH 2 —C 6 H 4 — OH, Y 1 = Z = _C H 2 N (CH 3 ) 2 , average number of Z group substitution = 0 75, Inorganic compound component (C) And (C): [(A) + (B)] = 1: 2 by using colloidal silica. After adjusting the pH to 1.0 with phosphoric acid, the mixture was diluted with deionized water to obtain a solid content of 10% by weight.
<比較処理液 J >  <Comparative treatment liquid J>
塗布型クロメ一ト (日本パーカライジング (株) 製;商標: ジンクロ ムー 1 300 AN)  Coating type chromate (manufactured by Nippon Parkerizing Co., Ltd .; trademark: Zincro Mu 1300 AN)
<実施例 1 >  <Example 1>
予め (2. ) に記載した方法で清浄にした溶融亜鉛めつき鋼板 (G I ) に、 25°Cの処理液 Aをロールコート法にて、 乾燥重量として 0. 3 g Zm2になるように塗布し、 到達板温 80°Cで乾燥を行った。 Apply the treatment liquid A at 25 ° C to the hot-dip galvanized steel sheet (GI) previously cleaned by the method described in (2.) by the roll coating method so that the dry weight becomes 0.3 g Zm 2. It was applied and dried at the ultimate plate temperature of 80 ° C.
ぐ実施例 2 >  Example 2>
予め (2. ) に記載した方法で清浄にしたアルミニウム板 (AL) に、 1 5°Cの処理液 Bをロールコート法にて、 乾燥重量として 0. 1 g/m2 になるように塗布し、 到達板温 1 50°Cになるように乾燥を行った。 Apply the treatment liquid B at 15 ° C to the aluminum plate (AL), which has been previously cleaned by the method described in (2.), using a roll coating method to a dry weight of 0.1 g / m 2. Then, drying was performed so that the reached plate temperature became 150 ° C.
ぐ実施例 3 >  Example 3>
予め (2. ) に記載した方法で清浄にした溶融亜鉛めつき鋼板 (G I ) に、 30°Cの処理液 Cをロールコート法にて、 乾燥重量として 1. O g /m2になるように塗布し、 到達板温 100°Cになるように乾燥を行つ た。 Applying a treatment liquid C at 30 ° C to a hot-dip galvanized steel sheet (GI) previously cleaned by the method described in (2.) by a roll coating method to a dry weight of 1. O g / m 2. And dried so that the plate temperature reached 100 ° C.
<実施例 4 >  <Example 4>
予め (2. ) に記載した方法で清浄にした電気亜鉛めつき銅板 (EG) に、 20°Cの処理液 Dをロールコート法にて、 乾燥重量として 0. 05 gZm2になるように塗布し、 到達板温 1 80°Cになるように乾燥を行 つた。 Apply a treatment solution D at 20 ° C to a copper plate (EG) coated with electro-zinc, which has been cleaned in advance as described in (2.), using a roll coat method to a dry weight of 0.05 gZm 2. Then, drying was performed so that the reached plate temperature was 180 ° C.
<実施例 5 >  <Example 5>
予め (2. ) に記載した方法で清浄し、 続いてュッケル表面調整剤 (日本パーカライジング (株) 製: (商標) プレパレン 401 5 ;ュッ ケルとして 2 OmgZm2) を行った溶融亜鉛めつき鋼板 (G I) に、 20 °Cの処理液 Eをロールコート法にて、 乾燥重量として 1. 5 g/m2 になるように塗布し、 到達板温 15 (TCになるように乾燥を行った。 <実施例 6 > A hot-dip galvanized steel sheet that had been cleaned in advance by the method described in (2) and then subjected to a Ueckel surface conditioner (manufactured by Nippon Parkerizing Co., Ltd .: (trademark) Preparen 4015; 2 OmgZm 2 as a Ueckel) GI) was applied with a treatment liquid E at 20 ° C by a roll coating method so as to have a dry weight of 1.5 g / m 2, and was dried so as to have an ultimate plate temperature of 15 (TC). <Example 6>
予め (2. ) に記載した方法で清浄し、 続いてニッケル表面調整剤 (日本パーカライジング (株) 製: (商標) プレパレン 401 5 ;ニッ ケルとして 2 Om gZm2) を行った溶融亜鉛めつき鋼板 (G I) に、 20°Cの処理液 Cをロールコート法にて、 乾燥重量として 0. lg/m2 になるように塗布し、 到達板温 100°Cになるように乾燥を行った。 A hot-dip galvanized steel sheet which has been previously cleaned by the method described in (2), and subsequently subjected to a nickel surface conditioner (manufactured by Nippon Parkerizing Co., Ltd .: (trademark) Preparen 4015; nickel: 2 OmgZm 2 ). (GI) was coated with a treatment liquid C at 20 ° C by a roll coating method so as to have a dry weight of 0.1 lg / m 2, and was dried so that the reached plate temperature was 100 ° C.
く実施例 7 >  Example 7>
予め (2. ) に記載した方法で清浄し、 続いて公知の方法にてリン酸 亜鉛処理 (日本パーカライジング (株) 製: (商標) パルボンド一 L 3 300 ;皮膜重量 2 gZm2) を行った溶融亜鉛めつき鋼板 (G I ) に、Preliminary cleaning was performed by the method described in (2.), and treatment with zinc phosphate (manufactured by Nippon Parkerizing Co., Ltd .: (trademark) Palbond-1 L3300; coating weight 2 gZm 2 ) was performed by a known method. For hot-dip galvanized steel sheet (GI)
20°Cの処理液 Eをロールコート法にて、 乾燥重量として 0. 3g/m2 になるように塗布し、 到達板温 100°Cになるように乾燥を行った。 The treatment liquid E at 20 ° C was applied by a roll coating method so as to have a dry weight of 0.3 g / m 2, and was dried so that the reached plate temperature was 100 ° C.
ぐ実施例 8 >  Example 8>
予め (2. ) に記載した方法で清浄し、 続いて公知の方法にてリン酸 亜鉛処理 (日本パーカライジング (株) 製: (商標) パルボンド— L 3 020 ;皮膜重量 2 g/m2) を行った冷延銅板 (S P C) に、 20 °C の処理液 Eをロールコート法にて、 乾燥重量として 0. 1 g/m2にな るように塗布し、 到達板温 100°Cになるように乾燥を行った。 It was previously cleaned by the method described in (2.), and then treated with zinc phosphate by a known method (manufactured by Nippon Parkerizing Co., Ltd .: (trademark) Palbond-L3020; film weight 2 g / m 2 ). Apply the treatment solution E at 20 ° C to the cold-rolled copper plate (SPC) by the roll coating method to a dry weight of 0.1 g / m 2 , and reach the ultimate plate temperature of 100 ° C. Was dried as described above.
<比較例 1 >  <Comparative Example 1>
予め (2. ) に記載した方法で清浄にした溶融亜鉛めつき鋼板 (G I ) に、 30°Cの処理液 Fをロールコート法にて、 乾燥重量として 1. O g /m2になるように塗布し、 到達板温 100°Cになるように乾燥を行つ た。 Applying the treatment liquid F at 30 ° C to the hot-dip galvanized steel sheet (GI) previously cleaned by the method described in (2.) by roll coating so that the dry weight becomes 1. O g / m 2. And dried so that the plate temperature reached 100 ° C.
<比較例 2 >  <Comparative Example 2>
予め (2. ) に記載した方法で清浄にしたアルミニウム板 (AL) に、 The aluminum plate (AL), which was previously cleaned by the method described in (2.),
30°Cの処理液 Gをロールコート法にて、 乾燥重量として 0. 3gノ m2 になるように塗布し、 到達板温 200°Cになるように乾燥を行った。 The treatment liquid G at 30 ° C was applied by a roll coating method so as to have a dry weight of 0.3 g nom 2, and was dried so that the reached plate temperature was 200 ° C.
<比較例 3 >  <Comparative Example 3>
予め (2. ) に記載した方法で清浄にし、 続いてュッゲル表面調整剤 (日本パーカライジング (株) 製: (商標) プレパレン 401 5 ;ニッ ケルとして 20mgZm2) を行った溶融亜鉛めつき銅板 (G I) に、 20°Cの処理液 Hをロールコート法にて、 乾燥重量として 0. 3 gZm2 になるように塗布し、 到達板温 8 0°Cになるように乾燥を行った。 A copper plate (GI) coated with a hot-dip galvanized steel which had been cleaned in advance by the method described in (2.), and subsequently treated with a Ugger surface conditioner (manufactured by Nippon Parkerizing Co., Ltd .: (trademark) Preparen 4015; nickel: 20 mgZm 2 ) ) The treatment liquid H at 20 ° C was applied by a roll coating method so as to have a dry weight of 0.3 gZm 2, and was dried so that the ultimate plate temperature became 80 ° C.
<比較例 4 >  <Comparative Example 4>
予め (2. ) に記載した方法で清浄にし、 続いてニッケル表面調整剤 (日本パーカライジング (株) 製: (商標) プレパレン 4 0 1 5 ;エツ ケルとして 2 0m gZm2) を行った溶融亜鉛めつき鋼板 (G I ) に、 2 0°Cの処理液 Iをロールコート法にて、 乾燥重量として 0. 3 g/m2 になるように塗布し、 到達板温 1 5 0°Cになるように乾燥を行った。 Fused zinc which had been cleaned in advance by the method described in (2.) and then treated with a nickel surface conditioner (manufactured by Nippon Parkerizing Co., Ltd .: (trademark) Preparen 410; 20 mg zm 2 as Etkel) Treatment solution I at 20 ° C is applied to a coated steel sheet (GI) by a roll coating method to a dry weight of 0.3 g / m 2 so that the ultimate sheet temperature reaches 150 ° C Was dried.
<比較例 5 >  <Comparative Example 5>
予め (2. ) に記載した方法で清浄にし、 続いてエッケル表面調整剤 (日本パーカライジング (株) 製: (商標) プレパレン 4 0 1 5 ;ニッ ケルとして 2 Om gZm2) を行った溶融亜鉛めつき鋼板 (G I ) に、 処理液 Jをロールコート法にて、 クロムとして 4 O mgZm2になるよ うに塗布し、 到達板温 8 0°Cになるように乾燥を行った。 A hot-dip galvanized steel which had been cleaned in advance by the method described in (2.) and then treated with an Eckel surface conditioner (manufactured by Nippon Parkerizing Co., Ltd .: (registered trademark) Preparen 410; 2 Om gZm 2 as nickel). The treatment solution J was applied to a coated steel sheet (GI) by a roll coating method so as to have a chromium content of 4 OmgZm 2, and was dried so that the ultimate sheet temperature reached 80 ° C.
3. 試験板作製方法 3. Test plate preparation method
実施例及び比較例で作製した各処理板に市販の下塗リ塗料 (大日本塗 料 (株) 製、 Vニット # 2 0 0) を塗布 (膜厚 5. 5 μ ηι) 2 0 0 °C焼 き付けし、 更に上塗リ塗料 (大日本塗料 (株) 製、 Vニット # 5 0 0) を塗布 (膜厚 1 7 // m) 2 2 (TC焼き付けを行い試験板とした。  A commercially available undercoat recoat (V-nit # 200, manufactured by Dainippon Co., Ltd.) was applied to each of the treated plates prepared in Examples and Comparative Examples (film thickness 5.5 μηι) 200 ° C After baking, a top coat repaint (V-nit # 500, manufactured by Dai Nippon Paint Co., Ltd.) was applied (film thickness: 17 // m) 22 (TC baking to make a test plate.
3. 評価試験方法 3. Evaluation test method
以下に示す評価方法にて評価した。 その結果を表 1に示す。  The evaluation was performed by the following evaluation method. The results are shown in Table 1.
3. 1. 耐食性試験 3. 1. Corrosion resistance test
塗膜に銅板素地に達する傷をカッターで入れ、 J I S— Z 2 3 7 1に 規定された塩水噴霧試験を 4 8 0時間実施した。 判定基準はカツト部か らの鲭幅 (醒) を測定した。  A scratch reaching the copper plate base was cut into the coating film with a cutter, and a salt spray test specified in JIS Z 237 1 was performed for 480 hours. As a criterion, the width from the cut part (wake) was measured.
© : 3 mm未満  ©: Less than 3 mm
◦ : 3 mm以上〜 5 mm未満  ◦: 3 mm or more to less than 5 mm
Δ : 5 mm以上〜 1 0 mm未満  Δ: 5 mm or more to less than 10 mm
X : 1 Omm以上  X: 1 Omm or more
3. 2. 折リ曲げ密着性試験 3. 2. Bending adhesion test
3. 2. 1. —次折リ曲げ密着性試験 J I S— G 33 1 2の試験法に準じて各試験板に対し 20°Cにおける 折り曲げ内側間隔板 2枚の 2 T折リ曲げ試験を行い、 テープ剥離後の剥 離状態で下記の判定基準に準じて評価を行った。 3. 2. 1.—Next bending re-bending adhesion test A 2T bending test was performed on each test plate at 20 ° C in accordance with the test method of JIS-G3312 at 20 ° C. The evaluation was performed according to the following.
【表 1】  【table 1】
評価試験結果  Evaluation test results
Figure imgf000019_0001
Figure imgf000019_0001
. 2. 2. 二次折リ曲げ密着性試験 2. 2. Secondary bending / bending adhesion test
試験板を沸水中に 2時間浸漬した後、 一日放置し一次折り曲げ密着性 試験と同様に試験を行った。  After the test plate was immersed in boiling water for 2 hours, it was allowed to stand for one day, and the test was performed in the same manner as the primary bending adhesion test.
判定基準は以下の通リである。 The criteria are as follows.
5点:剥離なし  5 points: no peeling
4点:剥離面積 10%未満  4 points: Peeling area less than 10%
3点:剥離面積 10 %以上〜 50 %未満  3 points: Peeling area 10% or more to less than 50%
2点:剥離面積 50%以上〜 80 %未満  2 points: Peeling area 50% or more to less than 80%
1点:剥離面積 80%以上  1 point: Peeling area 80% or more
3. 3. コインスクラッチ性試験 3. 3. Coinscratch test
1 0円硬貨を各試験板に対して 45° の角度に設置し、 塗膜を 3Kg の荷重、 一定速度でこすリ、 塗膜の傷つき性を判定した。 尚、 塗膜の傷 つき性は下記判定基準で評価した。 5点:素地の露出が 0 % (プライマーのみ露出) A 10-yen coin was placed at an angle of 45 ° with respect to each test plate, and the coating film was rubbed at a load of 3 kg at a constant speed, and the damage of the coating film was determined. The scratch resistance of the coating film was evaluated according to the following criteria. 5 points: substrate exposure is 0% (only primer is exposed)
4点:素地の露出が 1 0 %未満  4 points: Substrate exposure less than 10%
3点:素地の露出が 1 0 %以上〜 5 0 %未満  3 points: Base exposure of 10% or more to less than 50%
2点:素地の露出が 5 0 %以上〜 8 0 %未満  2 points: Base exposure is 50% or more to less than 80%
1点:素地の露出が 8 0 %以上  1 point: Base exposure is 80% or more
表 1の結果から明らかなように本発明の表面処理剤組成物を用いた実 施例 1〜8は、 良好な耐食性および塗膜性を示し、 汎用塗布型クロメ一 ト処理である比較例 5とほぼ同等の性能を有している。 しかしシラン力 ップリング剤を含んでいない比較例 1や本発明の範囲外の組成物を用い た比較例 3および比較例 4は、 耐食性や塗装性 (特に折リ曲げ密着性) がかなリ劣っている。 また、 無機化合物成分を含んでいない比較例 2で は、 耐滑リ性 (コインスクラッチ性) が劣っていた。  As is evident from the results in Table 1, Examples 1 to 8 using the surface treatment composition of the present invention showed good corrosion resistance and coating properties, and Comparative Example 5 which was a general-purpose coating type chromate treatment. It has almost the same performance as. However, Comparative Example 1 containing no silane coupling agent and Comparative Examples 3 and 4 using a composition outside the scope of the present invention exhibited inferior corrosion resistance and paintability (particularly, bending adhesion). I have. In Comparative Example 2 containing no inorganic compound component, the slip resistance (coin scratch resistance) was poor.
[産業上の利用可能性] [Industrial applicability]
本発明の表面処理剤は、 クロメートを使用せずに優れた耐食性能や塗 装性能が得られるため、 今後の溶剤規制にょリ、 溶剤洗浄から水系洗浄 を余儀なくされる業界に対しての適応が可能となる。 更に、 金属材料に 対する選択性が無いため、 材料の特性を生かしたまま、 防鲭性ゃ塗装性 も向上させることができる。  The surface treatment agent of the present invention can provide excellent corrosion resistance and coating performance without using chromate, so it is suitable for the industry where solvent-based cleaning and water-based cleaning must be performed in accordance with future solvent regulations. It becomes possible. Furthermore, since there is no selectivity for a metal material, it is possible to improve the heat resistance and the paintability while utilizing the characteristics of the material.
また、 環境保全やリサイクル性等の社会問題に対する対応策としても、 極めて有効で且つ実用上の効果も大きい。 It is also extremely effective and has a large practical effect as a countermeasure against social issues such as environmental conservation and recyclability.

Claims

求 の 範 囲 Range of request
1. 水性媒体と、 この水性媒体中に溶解された下記成分: 1. An aqueous medium and the following components dissolved in the aqueous medium:
(A) 活性水素含有アミノ基、 エポキシ基、 ビュル基、 メルカプト基お よびメタクリロキシ基から選ばれた少なく とも 1個の反応性官能基を有 する 1種以上のシラン力ップリング化合物からなるシランカツプリング 剤成分および  (A) Silane coupling comprising one or more silane coupling compounds having at least one reactive functional group selected from active hydrogen-containing amino, epoxy, butyl, mercapto and methacryloxy groups Agent components and
(B) 下記一般式 ( I) によリ表される 1種以上の水溶性重合体を 2〜 50の平均重合度で含む 1種以上の水溶性重合体成分:  (B) One or more water-soluble polymer components containing one or more water-soluble polymers represented by the following general formula (I) at an average degree of polymerization of 2 to 50:
Figure imgf000021_0001
Figure imgf000021_0001
[伹し、 式中、 ベンゼン環に結合している Xは、 水素原子、 ヒ ドロキ シル基、 C 1〜C 5のアルキル基、 C 1〜C 5のヒ ドロキシアルキル基. C 6〜C 1 2のァリール基、 ベンジル基、 ベンザル基、 前記ベンゼン環 に縮合して、 ナフタレン環を形成する不飽和ハイ ドロカーボングループ 又は下記式 (II) の基: [Wherein, X bonded to the benzene ring is a hydrogen atom, a hydroxyl group, a C1-C5 alkyl group, a C1-C5 hydroxyalkyl group. C6-C An aryl group, a benzyl group, a benzal group, an unsaturated hydrocarbon group condensed to the benzene ring to form a naphthalene ring, or a group represented by the following formula (II):
R ― C ― R 2  R ― C ― R 2
( II )
Figure imgf000021_0002
(II)
Figure imgf000021_0002
Y 2  Y 2
H  H
を表し、 式 (II) 中の R 1および R 2は、 それぞれ互いに水素原子、 ヒ ドロキシル基、 C 1〜C 5のアルキル基、 又は C 1〜C 1 0のヒ ドロキ シアルキル基を表し、 式 ( I) および (II) において、 ベンゼン環に結 合している Y 1および Y 2は、 それぞれ互いに独立に下記式 (ΙΠ) 、 又は (IV) によリ表される Z基: Wherein R 1 and R 2 in the formula (II) are each a hydrogen atom, a hydroxy group, a C 1 -C 5 alkyl group, or a C 1 -C 10 hydroxy group. In the formulas (I) and (II), Y 1 and Y 2 each represents a cycloalkyl group, and each of Y 1 and Y 2 independently of each other is represented by the following formula (式) or (IV) Z group:
— C H 2 ― N— C H 2 ― N
Figure imgf000022_0001
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000022_0002
を表し、 前記式 (III) および (IV) 中の R3、 R4、 R 5、 R6およ び R 7は、 それぞれ互いに独立に水素原子、 C 1〜C 1 0のアルキル基 又は C 1〜C 10のヒ ドロキシアルキル基を表し、 前記重合体分子中の 各ベンゼン環における前記 Z基の置換数の平均値は 0. 2〜1. 0であ る。 ] と  R3, R4, R5, R6 and R7 in the above formulas (III) and (IV) each independently represent a hydrogen atom, a C1-C10 alkyl group or a C1-C Represents 10 hydroxyalkyl groups, and the average number of substitutions of the Z group in each benzene ring in the polymer molecule is 0.2 to 1.0. ] When
(C) 前記水性媒体中にコロイ ド状態で分散したシリカ、 ケィ酸塩、 金 属塩化合物及びこれらの混合物から成る群から選ばれた少なくとも 1種 の無機化合物成分とを含むことを特徴とする金属材料用表面処理剤組成 物。  (C) at least one inorganic compound component selected from the group consisting of silica, a silicate, a metal salt compound and a mixture thereof dispersed in a colloidal state in the aqueous medium. Surface treatment composition for metal materials.
2. 前記シランカップリング剤成分 (A) との水溶性重合体成分 (B) に対する重量比 (A) / (B) 力 1 : 10〜: 10 : 1であリ、 前記無 機化合物 (C) の (A) / (B) に対する重量比 (C) / [ (A) + (B) ] が 1 : 5〜5 : 1である、 請求項 1に記載の表面処理剤組成物。 2. The weight ratio of the silane coupling agent component (A) to the water-soluble polymer component (B) (A) / (B) force 1:10 to: 10: 1, the inorganic compound (C The surface treatment agent composition according to claim 1, wherein the weight ratio (C) / [(A) + (B)] of (A) to (A) / (B) is 1: 5 to 5: 1.
3. 前記シランカップリング剤成分 (A) が (a) 1個以上の活性水素 含有アミノ基を有する 1種以上のシランカツプリング化合物から成るシ ランカップリング剤と、 (b) 1個以上のエポキシ基を有する 1種以上 のシラン力ップリング化合物からなるシランカツプリング剤とを含む、 請求項 1に記載の表面処理組成物。 3. The silane coupling agent component (A) comprises (a) one or more silane coupling compounds having one or more active hydrogen-containing amino groups, and (b) one or more silane coupling agents. One or more with epoxy group 2. The surface treatment composition according to claim 1, comprising a silane coupling agent comprising the silane coupling compound.
4. 前記シランカップリング剤 (a) に含まれる活性水素含有アミノ基 の、 前記シランカップリング剤 (b) に含まれるエポキシ基に対する当 量比が、 3 : 1〜1 : 3である、 請求項 3に記載の表面処理剤。 4. The equivalent ratio of the active hydrogen-containing amino group contained in the silane coupling agent (a) to the epoxy group contained in the silane coupling agent (b) is 3: 1 to 1: 3. Item 4. The surface treatment agent according to item 3.
5. 前記シランカップリング剤 (a) と前記シランカップリング剤 (b) との合計量の、 前記水溶性重合体成分 (B) に対する重量比 [ (a) + (b) ]/ (B) が 1 : 1〜5 : 1である、 請求項 3または 4に記載の 表面処理組成物。 5. The weight ratio of the total amount of the silane coupling agent (a) and the silane coupling agent (b) to the water-soluble polymer component (B) [(a) + (b)] / (B) The surface treatment composition according to claim 3, wherein the ratio is 1: 1 to 5: 1.
6. 請求項 1〜 5の何れか 1項に記載の金属材料用表面処理剤組成物を 含み、 かつ 2. 0〜6. 5の p H値に調整された水性表面処理液を、 金 属材料表面に付着させ、 乾燥して、 0. 01〜2. O gZni2の乾燥重 量を有する皮膜を形成することを特徴とする金属材料用表面処理方法。 6. An aqueous surface treatment liquid containing the surface treatment agent composition for a metal material according to any one of claims 1 to 5 and adjusted to a pH value of 2.0 to 6.5, comprising: A surface treatment method for a metal material, wherein the method is applied to a material surface and dried to form a film having a dry weight of 0.01 to 2. OgZni2.
7. 前記水性表面処理液を金属材料表面に付着させる前に、 予め該表面 をリン酸塩処理や化学めつき処理を施すものである、 請求項 6に記載の 金属材料用表面処理方法。 7. The surface treatment method for a metal material according to claim 6, wherein before the aqueous surface treatment liquid is attached to the surface of the metal material, the surface is subjected to a phosphate treatment or a chemical plating treatment.
PCT/JP1999/001184 1998-03-12 1999-03-11 Surface treatment composition for metallic material and method of treatment WO1999046342A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020007010087A KR20010041809A (en) 1998-03-12 1999-03-11 Surface treatment composition and surface treatment method for metallic materials
AU27476/99A AU2747699A (en) 1998-03-12 1999-03-11 Surface treatment composition for metallic material and method of treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10060773A JPH11256096A (en) 1998-03-12 1998-03-12 Surface treatment agent composition for metallic material and treatment process
JP10/60773 1998-03-12

Publications (1)

Publication Number Publication Date
WO1999046342A1 true WO1999046342A1 (en) 1999-09-16

Family

ID=13151953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001184 WO1999046342A1 (en) 1998-03-12 1999-03-11 Surface treatment composition for metallic material and method of treatment

Country Status (5)

Country Link
JP (1) JPH11256096A (en)
KR (1) KR20010041809A (en)
CN (1) CN1299401A (en)
AU (1) AU2747699A (en)
WO (1) WO1999046342A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1002889A2 (en) * 1998-11-18 2000-05-24 Nippon Paint Co., Ltd. Anti-corrosive coating compositions and methods for metal materials
EP1108755A1 (en) * 1999-12-13 2001-06-20 Nippon Paint Co., Ltd. Method of producing a water-base resin composition for rust-preventive coating
CN114381148A (en) * 2021-12-03 2022-04-22 广东红日星实业有限公司 Treating agent and preparation method and application thereof

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3822012B2 (en) * 2000-01-12 2006-09-13 大日精化工業株式会社 Modified silane coupling agent and coating composition using the same
US7402214B2 (en) * 2002-04-29 2008-07-22 Ppg Industries Ohio, Inc. Conversion coatings including alkaline earth metal fluoride complexes
KR100776811B1 (en) 2002-07-23 2007-11-19 제이에프이 스틸 가부시키가이샤 Surface-treated steel sheet excellent in resistance to white rust and method for production thereof
JP4290621B2 (en) * 2004-09-01 2009-07-08 日本メクトロン株式会社 Electroless copper plating method for multilayer flexible printed circuit board
JP2006281710A (en) * 2005-04-04 2006-10-19 Sumitomo Metal Ind Ltd Coated steel plate excellent in film adhesion and its manufacturing method
KR100685028B1 (en) * 2005-06-20 2007-02-20 주식회사 포스코 Chrome-Free Composition of Low Temperature Curing For Treating a Metal Surface and a Metal Sheet Using The Same
US7981937B2 (en) * 2006-01-11 2011-07-19 Aurora Specialty Chemistries Corp. Aurora Stable dispersion of DBNPA in viscosified brine
CN100551982C (en) * 2006-12-14 2009-10-21 自贡市斯纳防锈蚀技术有限公司 Douple-component water-thinned epoxy zinc-rich silane metal paint
KR100816523B1 (en) 2006-12-29 2008-03-24 (주)디피아이 홀딩스 Coating composition for plated steel
CN101760736B (en) * 2008-12-26 2013-11-20 汉高(中国)投资有限公司 Galvanized steel sheet surface treating agent, galvanized steel sheet and preparation methods thereof
KR101298998B1 (en) * 2009-07-29 2013-08-26 한국화학연구원 Surface treatment agent composition, method for preparing the same, copper foil for flexible printed circuit board, and flexible copper clad laminate
CN103031061B (en) * 2011-09-28 2015-06-03 攀钢集团攀枝花钢铁研究院有限公司 Metal protective coating and hot galvanizing metal material and hot dip aluminum-zinc metal material
CN103013337B (en) * 2011-09-28 2015-08-12 攀钢集团攀枝花钢铁研究院有限公司 A kind of metal protection coating and hot-dip galvanized metal material and hot-dip aluminizing zinc metallic substance
CN103031043B (en) * 2011-09-28 2015-06-24 攀钢集团攀枝花钢铁研究院有限公司 Metal protective coating and hot galvanizing metal material and hot dip aluminum-zinc metal material
CN103031042B (en) * 2011-09-28 2015-06-24 攀钢集团攀枝花钢铁研究院有限公司 Metal protective coating and hot galvanizing metal material and hot dip aluminum-zinc metal material
CN103360811B (en) * 2012-03-31 2016-01-20 攀钢集团攀枝花钢铁研究院有限公司 A kind of metal protection coating and uses thereof and hot-dip metal plated material
CN103360825B (en) * 2012-03-31 2016-01-06 攀钢集团攀枝花钢铁研究院有限公司 A kind of metal protection coating and uses thereof and hot-dip metal plated material
CN103360831B (en) * 2012-03-31 2016-01-06 攀钢集团攀枝花钢铁研究院有限公司 A kind of metal protection coating and uses thereof and hot-dip metal plated material
CN103360818B (en) * 2012-03-31 2016-01-20 攀钢集团攀枝花钢铁研究院有限公司 A kind of metal protection coating and uses thereof and hot-dip metal plated material
CN103360832B (en) * 2012-03-31 2016-01-13 攀钢集团攀枝花钢铁研究院有限公司 A kind of metal protection coating and uses thereof and hot-dip metal plated material
JP6093868B2 (en) * 2012-09-28 2017-03-08 日本パーカライジング株式会社 Water glass alkaline composition for passivation treatment
CN104059478B (en) * 2013-05-03 2016-07-20 攀钢集团攀枝花钢铁研究院有限公司 Anticorrosive coating and its production and use and hot-dip metal plated material
CN104059408B (en) * 2013-05-03 2016-06-22 攀钢集团攀枝花钢铁研究院有限公司 A kind of coating liquid and its production and use and hot-dip metal plated material
CN104059497B (en) * 2013-05-03 2016-08-03 攀钢集团攀枝花钢铁研究院有限公司 Metal protector and its production and use and hot-dip metal plated material
CN104059492B (en) * 2013-05-03 2016-08-03 攀钢集团攀枝花钢铁研究院有限公司 A kind of anticorrosion passivating solution and its production and use and a kind of hot-dip metal plated material
CN104059484B (en) * 2013-05-03 2016-08-03 攀钢集团攀枝花钢铁研究院有限公司 Antirust water paint and its production and use and hot-dip metal plated material
CN104059477B (en) * 2013-05-03 2016-03-30 攀钢集团攀枝花钢铁研究院有限公司 The material of metal level protective coating and its production and use and metal-containing layer
CN104059413B (en) * 2013-05-03 2016-08-03 攀钢集团攀枝花钢铁研究院有限公司 Metal protection water paint and its production and use and hot-dip metal plated material
CN104059480B (en) * 2013-05-03 2016-07-06 攀钢集团攀枝花钢铁研究院有限公司 Rust-proofing coating and its production and use
CN104059499B (en) * 2013-05-03 2016-06-22 攀钢集团攀枝花钢铁研究院有限公司 A kind of inhibition protective agent and its production and use and hot-dip metal plated material
CN103468205B (en) * 2013-09-23 2015-09-09 无锡阳工机械制造有限公司 A kind of polishing anti-corrosive pulp for iron tool
CN104031543A (en) * 2014-06-13 2014-09-10 苏州汉力新材料有限公司 Laminated metal protection coating and metal material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503545A (en) * 1988-11-08 1991-08-08 セカ エス.アー. Phenolic resol dispersion with low formalin content
JPH0644819A (en) * 1992-07-24 1994-02-18 Kao Corp Conductive paste and conductive paint film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503545A (en) * 1988-11-08 1991-08-08 セカ エス.アー. Phenolic resol dispersion with low formalin content
JPH0644819A (en) * 1992-07-24 1994-02-18 Kao Corp Conductive paste and conductive paint film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1002889A2 (en) * 1998-11-18 2000-05-24 Nippon Paint Co., Ltd. Anti-corrosive coating compositions and methods for metal materials
EP1002889A3 (en) * 1998-11-18 2000-09-13 Nippon Paint Co., Ltd. Anti-corrosive coating compositions and methods for metal materials
EP1108755A1 (en) * 1999-12-13 2001-06-20 Nippon Paint Co., Ltd. Method of producing a water-base resin composition for rust-preventive coating
US6447589B2 (en) 1999-12-13 2002-09-10 Nippon Paint Co., Ltd. Method of producing a water-base resin composition for rust-preventive coating
CN114381148A (en) * 2021-12-03 2022-04-22 广东红日星实业有限公司 Treating agent and preparation method and application thereof

Also Published As

Publication number Publication date
CN1299401A (en) 2001-06-13
KR20010041809A (en) 2001-05-25
JPH11256096A (en) 1999-09-21
AU2747699A (en) 1999-09-27

Similar Documents

Publication Publication Date Title
WO1999046342A1 (en) Surface treatment composition for metallic material and method of treatment
JP3898302B2 (en) Surface treatment agent composition for metal material and treatment method
US6132808A (en) Method of treating metals using amino silanes and multi-silyl-functional silanes in admixture
JP3857866B2 (en) Non-chromate metal surface treatment agent, surface treatment method and treated painted steel
EP1163296B1 (en) Method of treating metals using ureido silanes and multi-silyl-functional silanes in admixture
KR101463527B1 (en) Surface treatment liquid for zinc or zinc alloy coated steel sheet, zinc or zinc alloy coated steel sheet, and method for manufacturing the same
JPH0873775A (en) Metal surface treating agent for forming coating film excellent in fingerprint resistance, corrosion resistance and adhesion of coating film and method of treating therewith
JP4007627B2 (en) Surface treatment agent composition for metal material and treatment method
WO1998019798A2 (en) Method of preventing corrosion of metal sheet using vinyl silanes
JP2006213958A (en) Composition for surface treatment of metallic material, and treatment method
WO1999014399A1 (en) Method and compositions for preventing corrosion of metal substrates
JP5112783B2 (en) Solution composition and surface treatment method of metal surface treatment agent based on zirconium
WO2007100018A1 (en) Composition for metal surface treatment, metal surface treatment method, and metal material
TW574419B (en) Coating composition for forming titanium oxide film and method of forming titanium oxide film
EP0742849A1 (en) Surface treatment agent for zinciferous-plated steel
AU2018204389B2 (en) A chromium-free water based coating for treating a Galvannealed or galvanized steel surface
JP3993729B2 (en) Metal plate material excellent in corrosion resistance, paintability, fingerprint resistance and workability, and manufacturing method thereof
WO1999050366A1 (en) Metallic material with organic composite coating excellent in corrosion resistance and coatability and reduced in finger mark adhesion and process for producing the same
KR101079412B1 (en) Conversion Coating Composition Imparting Superior Corrosion Resistance and Paintability to Zinc Plating Steel Sheet and Treatment Method By Using the Same
US6706328B2 (en) Metal sheet material with superior corrosion resistance
AU724978C (en) Method and compositions for preventing corrosion of metal substrates
KR20020083580A (en) Nonchromate metallic surface-treating agent, method for surface treatment, and treated steel material
MXPA00002566A (en) Method and compositions for preventing corrosion of metal substrates

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99805846.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN HU ID IN KR PL SG US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2000/00379/MU

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020007010087

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1200000798

Country of ref document: VN

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1020007010087

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1020007010087

Country of ref document: KR