[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1998036293A1 - Method for the automatic analysis of frequency passband of recorded signals - Google Patents

Method for the automatic analysis of frequency passband of recorded signals Download PDF

Info

Publication number
WO1998036293A1
WO1998036293A1 PCT/FR1998/000246 FR9800246W WO9836293A1 WO 1998036293 A1 WO1998036293 A1 WO 1998036293A1 FR 9800246 W FR9800246 W FR 9800246W WO 9836293 A1 WO9836293 A1 WO 9836293A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplitude
signals
spectrum
max
frequency
Prior art date
Application number
PCT/FR1998/000246
Other languages
French (fr)
Inventor
Eric De Bazelaire
Didier Rappin
Original Assignee
Elf Exploration Production
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Exploration Production filed Critical Elf Exploration Production
Priority to EP98908152A priority Critical patent/EP0894273A1/en
Publication of WO1998036293A1 publication Critical patent/WO1998036293A1/en
Priority to NO984762A priority patent/NO984762L/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/36Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
    • G01V1/364Seismic filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis

Definitions

  • the present invention relates to a method for automatic analysis of frequency bandwidth of recorded signals and more particularly of seismic signals recorded as a function of time.
  • the processing of seismic data sometimes requires knowing the frequency width of the passband of the signals propagating in a given medium and from which said seismic data are obtained.
  • the bandwidth defines the separating power of seismic events, that is to say the smallest distance that can exist between two signals and such that we can discern the two signals and not the result of their interference. The determination of the bandwidth is therefore necessary to avoid aliasing problems in the representation of the analysis spaces.
  • the object of the present invention is to propose a method for analyzing a bandwidth of signals or traces which can be implemented. works automatically, regardless of the number of available traces since it can take into consideration a single trace or even a portion of a trace, the estimate then being valid for the defined portion.
  • Another object of the present invention is to implement the method on collections of seismic traces, whatever the nature of the collection of treated traces, firing point, midpoint or other, or even sum or migrated section.
  • An object of the present invention is a bandwidth analysis method which is characterized in that it consists in: a) applying a Fourier transform on at least one of the signals, so as to obtain an amplitude spectrum of said signal, b) producing an average spectrum of said amplitude spectrum, c) analyzing said average spectrum, so as to produce a spectral component representative of said signal, and d) determining, from the representative spectral component, the minimum frequency values F m j n and maximum F max for which the amplitude of said spectral component is equal to half A max / 2 of the maximum amplitude A max .
  • Another characteristic according to the invention is that the analysis of the average spectrum can be carried out, for example, by filtering or a statistical analysis of said average spectrum.
  • Another characteristic according to the invention is a method characterized in that the Fourier transform is applied to the preprocessed signals.
  • Another characteristic according to the invention is a method characterized in that the amplitude spectra are filtered by means of a filtering capable of obtaining amplitude spectra centered around the zero value.
  • Another characteristic according to the invention is a method characterized in that the envelopes of the centered amplitude spectra are produced.
  • Another characteristic according to the invention is a method characterized in that it also consists in carrying out an explicit smoothing on at least part of the centered spectra of amplitude, so as to obtain a smoothed average spectrum.
  • Another characteristic according to the invention is a method characterized in that another Fourier transform is applied to the average spectrum so as to obtain a transformed spectrum.
  • Another characteristic according to the invention is a method characterized in that the position of the ⁇ barycenter of the transformed spectrum is determined.
  • Another characteristic according to the invention is a method characterized in that it also consists in filtering the average spectrum by means of a low-pass filter.
  • Another characteristic according to the invention is a method characterized in that the low-pass filter is limited by an upper slope which extends from 2 ⁇ to 4 ⁇ .
  • Another characteristic according to the invention is a method characterized in that the preprocessing of the signals consists of an initial filtering of said signals and in that the initial and low-pass filtering are combined so as to obtain a spectral component representative of said signals .
  • Another characteristic according to the invention is a method characterized in that it also consists in determining on the spectral component representative of the signals, the amplitude A max then the minimum values F m i n and maximum frequency F max for which the amplitude is equal to half A max / 2 of the maximum amplitude.
  • Another characteristic according to the invention is a method characterized in that it also consists in determining the frequency position of the barycenter of the spectral component representative of said signals, so as to calculate the carrier frequency F p of the signals.
  • FIG. 1 represents part of a collection of seismic traces ordered in common medium point (PMC),
  • FIG. 2 schematically represents the amplitude spectra of some of the traces of the collection of FIG. 1,
  • FIG. 5a represents the smoothed envelopes of the refocused amplitude spectra of FIG. 4,
  • FIG. 5b represents the average spectrum of the smoothed envelopes of FIG. 5a
  • FIG. 6 represents the amplitude spectrum of the Fourier transform applied to the average spectrum of FIG. 5b
  • FIG. 7a represents the low frequency component of the envelope of the mean spectrum of FIG. 5b
  • FIG. 7b represents the spectral component representative of the signals selected and processed from the PMC collection of FIG. 1,
  • FIG. 1 part of a collection of seismic traces sorted in common medium point (PMC) is represented, but it goes without saying that any other collection of traces could be used such as a collection point of fire, point of reception, or even a sum cut or migrated time.
  • the trace numbers 1 to 47 are indicated, as well as the offsets between the transmitter-receiver pairs that generated said traces, the transmission-reception device (or recording) not being shown because it is well known to specialists.
  • the times in ms of the arrivals of the seismic events represented on the traces are indicated, some of which only were selected for the implementation of the method according to the invention.
  • the processed traces will be identified by their serial number and / or by the corresponding offset because in a collection of PMC traces, each trace can be identified by the midpoint X Q and the offset h.
  • signals these are the signals received, after crossing the medium to be studied, having been recorded on the receivers, the corresponding recordings also being called traces.
  • a Fourier transform is applied to the positive part of the amplitude spectrum of the recordings or traces to be analyzed.
  • the amplitude spectrum of a recorded signal is contained in the amplitude spectrum of the source function which generated said signal.
  • the two amplitude spectra different from each other by a modulation representing the participation of all the information generators in the environment (underground) such as interfaces, faults, diffracting points.
  • a certain number of physical phenomena modify the amplitude spectrum of the signal by their contribution. This results in a character of increased complexity.
  • the curve sought is that which best corresponds to the amplitude spectrum of the apparent source function that we assimilate to that of the real source. This is the unmodulated amplitude spectrum and therefore the low frequency component of the amplitude of the spectrum of the signal to be analyzed.
  • a first step of the method according to the invention consists in preprocessing, preferably, the signals recorded before sorting into PMC collection, by performing for example the following operations:
  • a second step is to. calculate the set of Fourier transforms, from which the amplitude spectra are determined for the traces taken together for the analysis.
  • the amplitude spectra have been represented, after the Fourier transform, of traces whose serial number is between 1 and 45 with the corresponding offsets between 75 m and 2275 m.
  • the amplitude spectra obtained are characterized by the parts set to zero by the frequency filtering which is necessary for the elimination of specific noises which can pollute the edges of the frequency space (calibration error of the amplitude of zero, low frequency noise, time aliasing). As it can result in a continuous component which would disturb a new frequency analysis, we perform, in a third step, a filtering of the frequency peaks.
  • filtering ⁇ The filtering called "filtering ⁇ " is applied to the amplitude spectrum which is then considered as a new signal, with fixed characteristic parameters totally determined by a sampling step time past and the time limits of the input signal (recorded signal ).
  • the filtering ⁇ is carried out by means of a bandpass filter which is applied in the Fourier transformed space of the amplitude spectra and with the BLACKMAN function.
  • the minimum frequency used is, for example, ten times the sampling step ⁇ t of the input signal.
  • the other frequencies are deduced therefrom so as to present attenuation slopes on an octave at each limit (low and high), in order to avoid any disturbance due to the filtering ⁇ .
  • the result of the filtering ⁇ is shown in FIG.
  • Steps 1, 3 to 4 are steps for conditioning the spectral amplitude which make it possible to stabilize the results of the following steps. But it should be noted that they are not essential since one could directly use the amplitude spectra of the recorded signals obtained after application of the Fourier transform, for the implementation of the sixth step.
  • a fifth step which is preferred but not essential, consists in carrying out a first explicit smoothing on the envelopes of the centered amplitude spectra of FIG. 4.
  • An explicit smoothing is obtained by performing for the whole of a signal a calculation of the value samples by means of a weighting function of a predetermined number of values of the samples surrounding the sample to be calculated.
  • the smoothing is done for example by average in sliding window on a predetermined number of samples representative of the input signals to be processed, so as to obtain smoothed envelopes, as shown in FIG. 5a.
  • a sixth step consists in producing from the smoothed envelopes of FIG. 5a, an average smoothed spectrum. This is obtained by statistical analysis at constant frequency from the collection of amplitude spectra in Figure 2. Several statistical analyzes can be used including the arithmetic or quadratic mean, the median, the modal, such a list being nonlimiting and far from be exhaustive. In this way, an estimated average spectrum such as that shown in FIG. 5b is obtained.
  • a second Fourier transform is applied to the average spectrum of FIG. 5b.
  • a spectrum like that of FIG. 6, which represents the amplitude of the Fourier transform in time space and centered on time zero.
  • the width of the spectrum in FIG. 6 is defined by the position of its barycenter ⁇ . Any energy located beyond twice the value obtained is neglected because it is not representative, as in the case of Gaussian representations or functions of L 2 .
  • the theory of distributions of the Gaussian type or of L 2 standards shows that the energy representative of a signal is contained, with sufficient precision in the sense of information, in a subspace extending over two times a characteristic statistical quantity which can be the standard deviation or the barycenter according to the criteria and the probability distribution of the entity to be studied, in this case a set of consecutive samples belonging to the same signal and in particular to the same seismic trace.
  • the average spectrum of FIG. 5b is filtered (filtering ⁇ ') by a low-pass filter limited by an upper slope extending from 2 ⁇ to 4 ⁇ because an octave is used to go from 100% to 0% .
  • the amplitude at 100% is therefore maintained up to 2 and the transition to 0% on an octave gives the value 4 ⁇ .
  • Figure 7a The result of this operation is shown in Figure 7a.
  • the carrier frequency F p of the input signal is obtained by determining the frequency position of the barycenter G of the amplitude of the spectrum representative of FIG. 7b (energy center of gravity of the function).
  • the determination of the barycenter G is carried out, in a conventional manner, directly on the spectral component representative of the signals, by calculating the overall energy (mathematical integral from frequency 0 to the Nyquist frequency) then by identifying the frequency separating said spectral component in two parts of equal energy. Frequency deviations between the carrier frequency
  • the filtering ⁇ ' also applies in the Fourier transformed space of the amplitude spectra and with the same function (BLACKMAN function).
  • the filtering ⁇ 'could be replaced by another means. For example, it would be possible to perform a statistical form analysis of the mean spectrum function, looking in particular for the parameters describing a given function beforehand, a Gauss curve is often chosen, which best adjusts (usually in the least squares sense) the curve to be analyzed over an interval [ 0.2 ⁇ ] where ⁇ is the statistical length chosen for the analysis and which, in the embodiment of the invention, is the barycenter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

The invention concerns a method for the automatic analysis of frequency passband of recorded signals, characterised in that it consists in: a) applying a Fourier transform on at least one of the signals to obtain an amplitude spectrum of said signal; b) producing a mean spectrum of said amplitude spectrum; c) analysing said mean spectrum so as to produce a spectral component representing said signal; d) determining, on the basis of the representative spectral component, the minimum (Fmin) and maximum (Fmax) frequency values for which the amplitude of said spectral component is equal to half (Amax/2) of the maximum amplitude (Amax). The invention is particularly useful for determining the passband of seismic signals.

Description

Méthode d'analyse automatique de bande passante fréquentielle de signaux enregistrés Method for automatic frequency bandwidth analysis of recorded signals
La présente invention concerne une méthode d'analyse automatique de bande passante fréquentielle de signaux enregistrés et plus particulièrement de signaux sismiques enregistrés en fonction du temps.The present invention relates to a method for automatic analysis of frequency bandwidth of recorded signals and more particularly of seismic signals recorded as a function of time.
Le traitement de données sismiques nécessite parfois de connaître la largeur fréquentielle de la bande passante des signaux se propageant dans un milieu donné et à partir duquel sont obtenues lesdites données sismiques. En effet, la bande passante définit le pouvoir séparateur des événements sismiques, c'est-à-dire la plus petite distance pouvant exister entre deux signaux et telle que l'on puisse discerner les deux signaux et non le résultat de leur interférence. La détermination de la bande passante est donc nécessaire pour éviter des problèmes d'aliasage dans la représentation des espaces d'analyse.The processing of seismic data sometimes requires knowing the frequency width of the passband of the signals propagating in a given medium and from which said seismic data are obtained. Indeed, the bandwidth defines the separating power of seismic events, that is to say the smallest distance that can exist between two signals and such that we can discern the two signals and not the result of their interference. The determination of the bandwidth is therefore necessary to avoid aliasing problems in the representation of the analysis spaces.
Dans la technique de traitement sismique dite POLYSTACK, élaborée par Eric de BAZELAIRE et basée sur l'analyse des courbures d'indicatrices, il est utilisé un nouveau paramètre dénommé tp qui est le temps de profondeur de mise au point et qui dépend de la bande passante B des signaux enregistrés constituant les traces des enregistrements.In the seismic processing technique known as POLYSTACK, developed by Eric de BAZELAIRE and based on the analysis of the curvatures of indicatrices, a new parameter called t p is used which is the development depth time and which depends on the bandwidth B of the recorded signals constituting the traces of the recordings.
Il existe plusieurs procédés pour calculer la bande passante des signaux enregistrés, mais aucun d'eux n'est automatique et ce, quelle que soit la forme des signaux enregistrés. En effet, les procédés de détermination de la bande passante de l'art antérieur comportent des limitations et ne peuvent donc être mis en oeuvre pour le traitement des collections de traces habituellement réalisées. Parmi les collections de traces très largement utilisées dans les traitements sismiques, on peut citer celles qui sont dites collections point de tir, collections point récepteur ou géophone, collections point milieux, avec ou sans corrections dynamiques. De plus, les procédés de l'art antérieur ne sont fiables que si on dispose d'un grand nombre de traces.There are several methods for calculating the bandwidth of recorded signals, but none of them is automatic, regardless of the form of the recorded signals. In fact, the methods of determining the bandwidth of the prior art have limitations and cannot therefore be used for processing the collections of traces usually produced. Among the collections of traces very widely used in seismic processing, one can cite those which are called point of fire collections, point or geophone point collections, point medium collections, with or without dynamic corrections. In addition, the methods of the prior art are only reliable if a large number of traces are available.
La présente invention a pour but de proposer une méthode d'analyse d'une bande passante de signaux ou traces qui peut être mise en oeuvre de façon automatique, quel que soit le nombre de traces disponibles puisqu'elle peut prendre en considération une seule trace ou même une portion de trace, l'estimation étant alors valable pour la portion définie.The object of the present invention is to propose a method for analyzing a bandwidth of signals or traces which can be implemented. works automatically, regardless of the number of available traces since it can take into consideration a single trace or even a portion of a trace, the estimate then being valid for the defined portion.
Un autre but de la présente invention est de mettre en oeuvre la méthode sur des collections de traces sismiques, quelle que soit la nature de la collection de traces traitée, point de tir, point milieu ou autre, ou encore coupe somme ou migrée.Another object of the present invention is to implement the method on collections of seismic traces, whatever the nature of the collection of treated traces, firing point, midpoint or other, or even sum or migrated section.
Un objet de la présente invention est une méthode d'analyse de bande passante qui est caractérisé en ce qu'elle consiste à : a) appliquer une transformée de Fourier sur au moins un des signaux, de manière à obtenir un spectre d'amplitude dudit signal, b) réaliser un spectre moyen dudit spectre d'amplitude, c) analyser ledit spectre moyen, de manière à produire une composante spectrale représentative dudit signal, et d) déterminer, à partir de la composante spectrale représentative, les valeurs de fréquence minimale Fmjn et maximale Fmax pour lesquelles l'amplitude de ladite composante spectrale est égale à la moitié Amax/2 de l'amplitude maximum Amax.An object of the present invention is a bandwidth analysis method which is characterized in that it consists in: a) applying a Fourier transform on at least one of the signals, so as to obtain an amplitude spectrum of said signal, b) producing an average spectrum of said amplitude spectrum, c) analyzing said average spectrum, so as to produce a spectral component representative of said signal, and d) determining, from the representative spectral component, the minimum frequency values F m j n and maximum F max for which the amplitude of said spectral component is equal to half A max / 2 of the maximum amplitude A max .
Une autre caractéristique selon l'invention est que l'analyse du spectre moyen peut être effectuée, par exemple, par un filtrage ou une analyse statistique dudit spectre moyen.Another characteristic according to the invention is that the analysis of the average spectrum can be carried out, for example, by filtering or a statistical analysis of said average spectrum.
Une autre caractéristique selon l'invention est une méthode caractérisée en ce qu'on analyse un ensemble de signaux sismiques enregistrés sous forme de traces. Une autre caractéristique selon l'invention est une méthode caractérisée en ce que les signaux à analyser sont préalablement prétraités.Another characteristic according to the invention is a method characterized in that a set of seismic signals recorded in the form of traces is analyzed. Another characteristic according to the invention is a method characterized in that the signals to be analyzed are pretreated beforehand.
Une autre caractéristique selon l'invention est une méthode caractérisée en ce que la transformée de Fourier est appliquée sur les signaux prétraités. Une autre caractéristique selon l'invention est une méthode caractérisée en ce que les spectres d'amplitude sont filtrés au moyen d'un filtrage apte à obtenir des spectres d'amplitude recentrés autour de la valeur nulle. Une autre caractéristique selon l'invention est une méthode caractérisée en ce qu'on réalise les enveloppes des spectres d'amplitude recentrés.Another characteristic according to the invention is a method characterized in that the Fourier transform is applied to the preprocessed signals. Another characteristic according to the invention is a method characterized in that the amplitude spectra are filtered by means of a filtering capable of obtaining amplitude spectra centered around the zero value. Another characteristic according to the invention is a method characterized in that the envelopes of the centered amplitude spectra are produced.
Une autre caractéristique selon l'invention est une méthode caractérisée en ce qu'elle consiste en outre à procéder à un lissage explicite sur au moins une partie des spectres d'amplitude recentrés, de manière à obtenir un spectre moyen lissé.Another characteristic according to the invention is a method characterized in that it also consists in carrying out an explicit smoothing on at least part of the centered spectra of amplitude, so as to obtain a smoothed average spectrum.
Une autre caractéristique selon l'invention est une méthode caractérisée en ce qu'on applique une autre transformée de Fourier sur le spectre moyen de manière à obtenir un spectre transformé.Another characteristic according to the invention is a method characterized in that another Fourier transform is applied to the average spectrum so as to obtain a transformed spectrum.
Une autre caractéristique selon l'invention est une méthode caractérisée en ce qu'on détermine la position du barycentre β du spectre transformé.Another characteristic according to the invention is a method characterized in that the position of the β barycenter of the transformed spectrum is determined.
Une autre caractéristique selon l'invention est une méthode caractérisée en ce qu'elle consiste en outre à filtrer le spectre moyen au moyen d'un filtre passe-bas.Another characteristic according to the invention is a method characterized in that it also consists in filtering the average spectrum by means of a low-pass filter.
Une autre caractéristique selon l'invention est une méthode caractérisée en ce que le filtre passe-bas est limité par une pente supérieure qui s'étend de 2β à 4β. Une autre caractéristique selon l'invention est une méthode caractérisée en ce que le prétraitement des signaux est constitué par un filtrage initial desdits signaux et en ce qu'on combine les filtrages initial et passe-bas de manière à obtenir une composante spectrale représentative desdits signaux. Une autre caractéristique selon l'invention est une méthode caractérisée en ce qu'elle consiste en outre à déterminer sur la composante spectrale représentative des signaux, l'amplitude Amax puis les valeurs minimale Fmin et maximale Fmax de fréquence pour lesquelles l'amplitude est égale à la moitié Amax/2 de l'amplitude maximum. Une autre caractéristique selon l'invention est une méthode caractérisée en ce qu'elle consiste en outre à déterminer la position fréquentielle du barycentre de la composante spectrale représentative desdits signaux, de manière à calculer la fréquence porteuse Fp des signaux.Another characteristic according to the invention is a method characterized in that the low-pass filter is limited by an upper slope which extends from 2β to 4β. Another characteristic according to the invention is a method characterized in that the preprocessing of the signals consists of an initial filtering of said signals and in that the initial and low-pass filtering are combined so as to obtain a spectral component representative of said signals . Another characteristic according to the invention is a method characterized in that it also consists in determining on the spectral component representative of the signals, the amplitude A max then the minimum values F m i n and maximum frequency F max for which the amplitude is equal to half A max / 2 of the maximum amplitude. Another characteristic according to the invention is a method characterized in that it also consists in determining the frequency position of the barycenter of the spectral component representative of said signals, so as to calculate the carrier frequency F p of the signals.
Une autre caractéristique selon l'invention est une méthode caractérisée en ce qu'elle consiste en outre à déterminer, à partir des valeurs Fmin> Fmax> B = Fmax - Fmin * la valeur de l' excentrement spectral E en utilisant la formule :Another characteristic according to the invention is a method characterized in that it also consists in determining, from the values F min> F max> B = F max - F min * the value of the spectral eccentricity E using the formula:
E = t mm ' t n - 2 F,E = t mm 't n - 2 F,
BB
D'autres avantages et caractéristiques de la présente invention ressortiront mieux à la lecture de la description d'un mode de réalisation ainsi que des dessins annexés sur lesquels :Other advantages and characteristics of the present invention will emerge more clearly on reading the description of an embodiment as well as the appended drawings in which:
- la figure 1 représente une partie d'une collection de traces sismiques ordonnées en point milieu commun (PMC),FIG. 1 represents part of a collection of seismic traces ordered in common medium point (PMC),
- la figure 2 représente schématiquement les spectres d'amplitude de certaines des traces de la collection de la figure 1 ,FIG. 2 schematically represents the amplitude spectra of some of the traces of the collection of FIG. 1,
- la figure 3 représente les spectres d'amplitude de la figure 2 mais recentrés, - la figure 4 représente les enveloppes des spectres d'amplitude recentrés de la figure 3,- Figure 3 represents the amplitude spectra of Figure 2 but refocused, - Figure 4 shows the envelopes of the amplitude spectra refocused of Figure 3,
- la figure 5a représente les enveloppes lissées des spectres d'amplitude recentrés de la figure 4,FIG. 5a represents the smoothed envelopes of the refocused amplitude spectra of FIG. 4,
- la figure 5b représente le spectre moyen des enveloppes lissées de la figure 5a,FIG. 5b represents the average spectrum of the smoothed envelopes of FIG. 5a,
- la figure 6 représente le spectre d'amplitude de la transformée de Fourier appliquée au spectre moyen de la figure 5b,FIG. 6 represents the amplitude spectrum of the Fourier transform applied to the average spectrum of FIG. 5b,
- la figure 7a représente la composante basse fréquence de l'enveloppe du spectre moyen de la figure 5b, - la figure 7b représente la composante spectrale représentative des signaux sélectionnés et traités de la collection PMC de la figure 1 ,FIG. 7a represents the low frequency component of the envelope of the mean spectrum of FIG. 5b, FIG. 7b represents the spectral component representative of the signals selected and processed from the PMC collection of FIG. 1,
Sur la figure 1 il est représenté une partie d'une collection de traces sismiques triées en point milieu commun (PMC), mais il va de soi qu'on pourrait utiliser toute autre collection de traces comme une collection point de tir, point récepteur, ou encore une coupe somme ou migrée temps. En abscisse, il est indiqué les numéros de trace 1 à 47 ainsi que les déports entre les couples émetteur-récepteur ayant généré lesdites traces, le dispositif d'émission-réception (ou enregistrement) n'étant pas représenté car il est bien connu des spécialistes. En ordonnées, il est indiqué les temps en ms des arrivées des événements sismiques représentés sur les traces et dont certaines seulement ont été sélectionnées pour la mise en oeuvre de la méthode selon l'invention. Dans ce qui suit les traces traitées seront repérées par leur numéro d'ordre et/ou par le déport correspondant car dans une collection de traces PMC, chaque trace peut être identifiée par le point milieu XQ et le déport h. De même, lorsqu'on se réfère à des signaux il s'agit des signaux reçus, après traversée du milieu à étudier, ayant été enregistrés sur les récepteurs, les enregistrements correspondants étant aussi appelés traces.In FIG. 1, part of a collection of seismic traces sorted in common medium point (PMC) is represented, but it goes without saying that any other collection of traces could be used such as a collection point of fire, point of reception, or even a sum cut or migrated time. On the abscissa, the trace numbers 1 to 47 are indicated, as well as the offsets between the transmitter-receiver pairs that generated said traces, the transmission-reception device (or recording) not being shown because it is well known to specialists. On the ordinate, the times in ms of the arrivals of the seismic events represented on the traces are indicated, some of which only were selected for the implementation of the method according to the invention. In what follows, the processed traces will be identified by their serial number and / or by the corresponding offset because in a collection of PMC traces, each trace can be identified by the midpoint X Q and the offset h. Likewise, when reference is made to signals, these are the signals received, after crossing the medium to be studied, having been recorded on the receivers, the corresponding recordings also being called traces.
Lorsqu'on veut analyser la bande passante des signaux enregistrés, on cherche à déterminer la caractéristique fréquentielle corres- pondant à la largeur à mi-hauteur du spectre d'amplitude de la source du dispositif d'émission-réception. Malheureusement, la fonction source n'est pas disponible directement et elle doit donc être recherchée dans les signaux enregistrés dans lesquels elle se trouve convoluée par la réponse impulsionnelle du milieu et perturbée par du bruit et des parasites divers. Si on applique simplement une transformée de Fourier ou une autre opération de même nature, la transformée de Fourier obtenue reflète la même complexité que celle observée sur les enregistrements. Par complexité, il faut entendre uniquement le caractère complexe, c'est-à-dire, la combinaison de plusieurs éléments différents difficiles à distinguer ou à séparer.When we want to analyze the bandwidth of the recorded signals, we seek to determine the frequency characteristic corresponding to the width at half-height of the amplitude spectrum of the source of the transceiver device. Unfortunately, the source function is not available directly and it must therefore be sought in the recorded signals in which it is convolved by the impulse response of the medium and disturbed by various noise and parasites. If we simply apply a Fourier transform or another similar operation, the Fourier transform obtained reflects the same complexity as that observed on the records. Complexity means only the complex character, that is to say, the combination of several different elements which are difficult to distinguish or separate.
Selon au moins un procédé connu, une transformée de Fourier est appliquée sur la partie positive du spectre d'amplitude des enregistrements ou traces à analyser. En effet, le spectre d'amplitude d'un signal enregistré est contenu dans le spectre d'amplitude de la fonction source qui a généré ledit signal. Les deux spectres d'amplitude. (signal et source) différent entre eux par une modulation représentant la participation de tous les générateurs d'information du milieu (sous-sol) tels que les interfaces, les failles, les points diffractants. Un certain nombre de phénomènes physiques (atténuation, conversion d'ondes, rebonds multiples, diffusion, etc ..) modifient le spectre d'amplitude du signal par leur contribution. Il en résulte un caractère de complexité accrue. A part le phénomène de dispersion, d'importance négligeable dans la pratique en acquisition sismique pétrolière, les composantes liées à la source restent dans les limites du spectre d'amplitude de la fonction source. La courbe recherchée est celle qui correspond le mieux au spectre d'amplitude de la fonction source apparente qu'on assimile à celui de la vraie source. Il s'agit du spectre d'amplitude non modulé et donc de la composante basse fréquence de l'amplitude du spectre du signal à analyser. L'obtention de la fonction recherchée en faisant passer une courbe par l'ensemble des maxima de l'amplitude, comme dans les procédés connus, n'est pas satisfaisante car ces procédés sont trop sensibles à la présence des pics de fréquence de forte amplitude liés à des parasites et non à la fonction source. Le calcul ultérieur de l'enveloppe du spectre d'amplitude du signal enregistré ne permet pas de résoudre le problème car le module du spectre est positif. Une première étape de la méthode selon l'invention consiste à prétraiter, de préférence, les signaux enregistrés avant le tri en collection PMC, en effectuant par exemple les opérations suivantes :According to at least one known method, a Fourier transform is applied to the positive part of the amplitude spectrum of the recordings or traces to be analyzed. Indeed, the amplitude spectrum of a recorded signal is contained in the amplitude spectrum of the source function which generated said signal. The two amplitude spectra. (signal and source) different from each other by a modulation representing the participation of all the information generators in the environment (underground) such as interfaces, faults, diffracting points. A certain number of physical phenomena (attenuation, conversion of waves, multiple rebounds, diffusion, etc.) modify the amplitude spectrum of the signal by their contribution. This results in a character of increased complexity. Apart from the dispersion phenomenon, of negligible importance in the practice of oil seismic acquisition, the components linked to the source remain within the limits of the amplitude spectrum of the source function. The curve sought is that which best corresponds to the amplitude spectrum of the apparent source function that we assimilate to that of the real source. This is the unmodulated amplitude spectrum and therefore the low frequency component of the amplitude of the spectrum of the signal to be analyzed. Obtaining the desired function by passing a curve through all of the amplitude maxima, as in the known methods, is not satisfactory since these methods are too sensitive to the presence of frequency peaks of high amplitude linked to parasites and not to the source function. The subsequent calculation of the amplitude spectrum envelope of the recorded signal does not solve the problem because the modulus of the spectrum is positive. A first step of the method according to the invention consists in preprocessing, preferably, the signals recorded before sorting into PMC collection, by performing for example the following operations:
- récupération d'amplitude car l'atténuation est un phénomène très basse fréquence que les filtrages détruisent si elle n'est pas compensée, - filtrage passe-bande pour éliminer les très basses fréquences (au voisinage de zéro) et les hautes fréquences au voisinage de la fréquence de Nyquist.- amplitude recovery because attenuation is a very low frequency phenomenon which filtering destroys if it is not compensated, - bandpass filtering to eliminate very low frequencies (around zero) and high frequencies around of the Nyquist frequency.
Il faut noter au passage que le nombre de traces à traiter est sans incidence et qu'il n'est pas nécessaire d'appliquer un traitement particulier au préalable tel que correction dynamique, deconvolution ou traitement antimultiples dans la mesure où les caractéristiques de la fonction source sont présentes et non déformées dans les signaux enregistrés (enregistrements ou traces). Si une deconvolution a été effectuée, ce sont les caractéristiques de la fonction source équivalente qui seront estimées. Une deuxième étape consiste à . calculer l'ensemble des transformées de Fourier, à partir duquel on détermine les spectres d'amplitude et ce, pour les traces prises en commun pour l'analyse.It should be noted in passing that the number of traces to be treated has no incidence and that it is not necessary to apply a particular treatment beforehand such as dynamic correction, deconvolution or antimultiple treatment insofar as the characteristics of the function source are present and not distorted in the recorded signals (recordings or traces). If a deconvolution has been carried out, the characteristics of the equivalent source function will be estimated. A second step is to. calculate the set of Fourier transforms, from which the amplitude spectra are determined for the traces taken together for the analysis.
Sur la figure 2, on a représenté les spectres d'amplitude, après transformée de Fourier, des traces dont le numéro d'ordre est compris entre 1 et 45 avec les déports correspondants compris entre 75 m et 2275 m. Les spectres d'amplitude obtenus sont caractérisés par les parties mises à zéro par le filtrage en fréquence qui est nécessaire pour T élimination de bruits spécifiques qui peuvent polluer les bordures de l'espace des fréquences (erreur de calage de l'amplitude de zéro, bruit basse fréquence, aliasage temporel). Comme il peut en résulter une composante continue qui perturberait une nouvelle analyse fréquentielle, on effectue, dans une troisième étape, un filtrage des pics de fréquence. Le filtrage dit "filtrage τ" est appliqué au spectre d'amplitude qui est alors considéré comme un nouveau signal, avec des paramètres caractéristiques fixes totalement déterminés par un pas d'échantillonnage temps δt et les bornes temps du signal d'entrée (signal enregistré). Le filtrage τ est effectué au moyen d'un filtre passe-bande qui est appliqué dans l'espace transformée de Fourier des spectres d'amplitude et avec la fonction de BLACKMAN. La fréquence minimale utilisée est égale par exemple à dix fois le pas d'échantillonnage δt du signal d'entrée. Les autres fréquences en sont déduites de manière à présenter des pentes d'atténuation sur un octave à chaque limite (basse et haute) et ce, pour éviter toute perturbation due au filtrage τ. Le résultat du filtrage τ est représenté sur la figure 3, sur laquelle on peut observer des "signaux" comparables à des signaux de traces sismiques. En réalité, il s'agit de spectres d'amplitude recentrés autour de la valeur nulle. Les spectres d'amplitude recentrés sont non nuls sur toute la plage de l'espace de Fourier associé, ladite plage ayant approximativement pour limites 5 et 65 Hz dans le cas de l'exemple représenté. Dans une quatrième étape, on calcule les enveloppes des spectres d'amplitude recentrés, au sens du signal analytique. Les enveloppes des spectres d'amplitude recentrés sont représentées sur la figure 4.In FIG. 2, the amplitude spectra have been represented, after the Fourier transform, of traces whose serial number is between 1 and 45 with the corresponding offsets between 75 m and 2275 m. The amplitude spectra obtained are characterized by the parts set to zero by the frequency filtering which is necessary for the elimination of specific noises which can pollute the edges of the frequency space (calibration error of the amplitude of zero, low frequency noise, time aliasing). As it can result in a continuous component which would disturb a new frequency analysis, we perform, in a third step, a filtering of the frequency peaks. The filtering called "filtering τ" is applied to the amplitude spectrum which is then considered as a new signal, with fixed characteristic parameters totally determined by a sampling step time past and the time limits of the input signal (recorded signal ). The filtering τ is carried out by means of a bandpass filter which is applied in the Fourier transformed space of the amplitude spectra and with the BLACKMAN function. The minimum frequency used is, for example, ten times the sampling step δt of the input signal. The other frequencies are deduced therefrom so as to present attenuation slopes on an octave at each limit (low and high), in order to avoid any disturbance due to the filtering τ. The result of the filtering τ is shown in FIG. 3, in which one can observe "signals" comparable to signals of seismic traces. In reality, these are amplitude spectra centered around the zero value. The refocused amplitude spectra are non-zero over the entire range of the associated Fourier space, said range having approximately 5 and 65 Hz limits in the case of the example shown. In a fourth step, the envelopes of the refocused amplitude spectra are calculated, in the sense of the analytical signal. The envelopes of the centered amplitude spectra are shown in Figure 4.
Les étapes 1, 3 à 4 sont des étapes de conditionnement de l'amplitude spectrale qui permettent de stabiliser les résultats des étapes suivantes. Mais il faut noter qu'elles ne sont pas indispensables car on pourrait utiliser directement les spectres d'amplitude des signaux enregistrés obtenus après application de la transformée de Fourier, pour la mise en oeuvre de la sixième étape.Steps 1, 3 to 4 are steps for conditioning the spectral amplitude which make it possible to stabilize the results of the following steps. But it should be noted that they are not essential since one could directly use the amplitude spectra of the recorded signals obtained after application of the Fourier transform, for the implementation of the sixth step.
Une cinquième étape préférée mais non indispensable, consiste à effectuer un premier lissage explicite sur les enveloppes des spectres d'amplitude recentrés de la figure 4. Un lissage explicite s'obtient en effectuant pour l'ensemble d'un signal un calcul de la valeur des échantillons au moyen d'une fonction de pondération d'un nombre prédéterminé de valeurs des échantillons entourant l'échantillon à calculer. Dans l'exemple de réalisation selon l'invention, le lissage se fait par exemple par moyenne en fenêtre glissante sur un nombre prédéterminé d'échantillons représentatifs des signaux d'entrée à traiter, de manière à obtenir des enveloppes lissées, ainsi que cela est représenté sur la figure 5a.A fifth step which is preferred but not essential, consists in carrying out a first explicit smoothing on the envelopes of the centered amplitude spectra of FIG. 4. An explicit smoothing is obtained by performing for the whole of a signal a calculation of the value samples by means of a weighting function of a predetermined number of values of the samples surrounding the sample to be calculated. In the exemplary embodiment according to the invention, the smoothing is done for example by average in sliding window on a predetermined number of samples representative of the input signals to be processed, so as to obtain smoothed envelopes, as shown in FIG. 5a.
Une sixième étape consiste à réaliser à partir des enveloppes lissées de la figure 5a, un spectre lissé moyen. Ceci est obtenu par analyse statistique à fréquence constante de la collection des spectres d'amplitude de la figure 2. Plusieurs analyses statistiques peuvent être utilisées dont la moyenne arithmétique ou quadratique, la médiane, la modale, une telle liste étant non limitative et loin d'être exhaustive. De la sorte, on obtient un spectre moyen estimé tel que celui représenté sur la figure 5b.A sixth step consists in producing from the smoothed envelopes of FIG. 5a, an average smoothed spectrum. This is obtained by statistical analysis at constant frequency from the collection of amplitude spectra in Figure 2. Several statistical analyzes can be used including the arithmetic or quadratic mean, the median, the modal, such a list being nonlimiting and far from be exhaustive. In this way, an estimated average spectrum such as that shown in FIG. 5b is obtained.
A ce stade, il faut éliminer les irrégularités résiduelles du spectre moyen de la figure 5b de manière à éviter qu'une modulation résiduelle supérieure à un demi ne provoque une fausse mesure. Dans ce but et dans une septième étape, une deuxième transformée de Fourier est appliquée au spectre moyen de la figure 5b. On obtient de la sorte un spectre, comme celui de la figure 6, qui représente l'amplitude de la transformée de Fourier dans l'espace temps et centrée sur le temps zéro.At this stage, it is necessary to eliminate the residual irregularities from the average spectrum of FIG. 5b so as to avoid that a residual modulation greater than a half does not cause a false measurement. For this purpose and in a seventh step, a second Fourier transform is applied to the average spectrum of FIG. 5b. We thus obtain a spectrum, like that of FIG. 6, which represents the amplitude of the Fourier transform in time space and centered on time zero.
Pour estimer les paramètres de lissage, la largeur du spectre de la figure 6 est définie par la position de son barycentre β . Toute énergie située au-delà de deux fois la valeur obtenue est négligée car non représentative, comme dans le cas des représentations gaussiennes ou des fonctions de L2. En effet, la théorie des répartitions du type gaussien ou des normes L2 montre que l'énergie représentative d'un signal est contenue, avec une précision suffisante au sens de l'information, dans un sous-espace s 'étendant sur deux fois une grandeur statistique caractéristique qui peut être l' écart- type ou le barycentre selon les critères et la répartition de probabilité de l'entité à étudier, en l'occurrence un ensemble d'échantillons consécutifs appartenant à un même signal et notamment à une même trace sismique.To estimate the smoothing parameters, the width of the spectrum in FIG. 6 is defined by the position of its barycenter β. Any energy located beyond twice the value obtained is neglected because it is not representative, as in the case of Gaussian representations or functions of L 2 . Indeed, the theory of distributions of the Gaussian type or of L 2 standards shows that the energy representative of a signal is contained, with sufficient precision in the sense of information, in a subspace extending over two times a characteristic statistical quantity which can be the standard deviation or the barycenter according to the criteria and the probability distribution of the entity to be studied, in this case a set of consecutive samples belonging to the same signal and in particular to the same seismic trace.
Dans une autre étape, on filtre (filtrage τ') le spectre moyen de la figure 5b par un filtre passe-bas limité par une pente supérieure s 'étendant de 2β à 4β car on utilise un octave pour passer de 100 % à 0 % . L'amplitude à 100 % est donc maintenue jusqu'à 2 et le passage à 0 % sur un octave donne la valeur 4β. Le résultat de cette opération est représenté sur la figure 7a. On obtient ainsi une composante basse-fréquence de l'enveloppe moyenne ou mieux une composante spectrale représentative des signaux d' entrée. On pourrait, si on le désirait, arrêter la méthode à cette étape et déterminer la bande passante puisque ses limites et caractéristiques peuvent être déterminées directement à partir de la composante spectrale de la figure 7a, notamment lorsque les signaux d'entrée ne sont pas prétraités. Toutes les opérations précédentes ont été faites sur toute l'étendue du domaine spectral. Toutefois, il faut tenir compte des limites liées au filtre initial de prétraitement et appliqué aux signaux d'entrée. La combinaison des deux filtrages (initial et τ' du spectre moyen) produit un spectre tel que représenté sur la figure 7b et considéré comme étant la composante spectrale réelle et représentative des signaux d'entrée analysés.In another step, the average spectrum of FIG. 5b is filtered (filtering τ ') by a low-pass filter limited by an upper slope extending from 2β to 4β because an octave is used to go from 100% to 0% . The amplitude at 100% is therefore maintained up to 2 and the transition to 0% on an octave gives the value 4β. The result of this operation is shown in Figure 7a. We thus obtain a low-frequency component of the average envelope or better a spectral component representative of the signals of entry. We could, if desired, stop the method at this stage and determine the bandwidth since its limits and characteristics can be determined directly from the spectral component of Figure 7a, especially when the input signals are not preprocessed . All the preceding operations were carried out over the entire extent of the spectral range. However, it is necessary to take into account the limits linked to the initial preprocessing filter and applied to the input signals. The combination of the two filterings (initial and τ 'of the average spectrum) produces a spectrum as represented in FIG. 7b and considered as being the real spectral component and representative of the input signals analyzed.
Sur la composante spectrale de la figure 7b, on détermine la valeur maximale Amax de son amplitude. Elle est située à 15 Hz. Puis on calcule Amax/2 (ligne pointillée) et on calcule ou on détermine la plus petite valeur Fmm et la plus grande valeur Fmax de fréquence pour lesquelles l'amplitude est égale à Amax/2. Pour le spectre considéré de la figure 7b on trouve Fmjn = 7,4 Hz et Fmax = 50,8 Hz. La bande passante B des signaux d'entrée est donc 50,8 - 7,4 = 43,4 Hz.On the spectral component of FIG. 7b, the maximum value A max of its amplitude is determined. It is located at 15 Hz. Then we calculate A max / 2 (dotted line) and we calculate or determine the smallest value F mm and the largest value F max of frequency for which the amplitude is equal to A max / 2. For the spectrum considered in Figure 7b we find F mjn = 7.4 Hz and F max = 50.8 Hz. The bandwidth B of the input signals is therefore 50.8 - 7.4 = 43.4 Hz.
La fréquence porteuse Fp du signal d'entrée, considérée également comme étant la pseudo-période dudit signal, est obtenue en déterminant la position fréquentielle du barycentre G de l'amplitude du spectre représentatif de la figure 7b (centre de gravité énergétique de la fonction). La détermination du barycentre G est effectuée, de façon classique, directement sur la composante spectrale représentative des signaux, en calculant l'énergie globale (intégrale mathématique de la fréquence 0 à la fréquence de Nyquist) puis en identifiant la fréquence séparant ladite composante spectrale en deux parties d'égale énergie. Les écarts de fréquence entre la fréquence porteuseThe carrier frequency F p of the input signal, also considered to be the pseudo-period of said signal, is obtained by determining the frequency position of the barycenter G of the amplitude of the spectrum representative of FIG. 7b (energy center of gravity of the function). The determination of the barycenter G is carried out, in a conventional manner, directly on the spectral component representative of the signals, by calculating the overall energy (mathematical integral from frequency 0 to the Nyquist frequency) then by identifying the frequency separating said spectral component in two parts of equal energy. Frequency deviations between the carrier frequency
Fp et les limites Fmjn et Fmax de la bande passante B définissent l'excen- trement spectral E. En fin d'analyse, on dispose donc de la valeur de la fréquence porteuse Fp, de la fréquence Fmjn, de la fréquence Fmax, de la bande passante B = Fmax - Fmin et de l'excentrement E = (Fmin + Fmax -F p and the limits F m j n and F max of the passband B define the spectral excess E. At the end of the analysis, we therefore have the value of the carrier frequency F p , of the frequency F m j n , the frequency F max , the bandwidth B = F max - F min and the offset E = (F min + F max -
2Fp)/B.2F p ) / B.
Il faut noter que, comme le filtrage τ, le filtrage τ' s'applique également dans l'espace transformée de Fourier des spectres d'amplitude et avec la même fonction (fonction de BLACKMAN). Le filtrage τ' pourrait être remplacé par un autre moyen. Par exemple, il serait possible d'effectuer une analyse de forme statistique de la fonction spectre moyen en cherchant notamment les paramètres décrivant une fonction donnée au préalable, une courbe de Gauss étant souvent choisie, qui ajuste au mieux (habituellement au sens des moindres carrés) la courbe à analyser sur un intervalle [0,2α] où α est la longueur statistique choisie pour l'analyse et qui, dans le mode de réalisation de l'invention, est le barycentre. It should be noted that, like the filtering τ, the filtering τ 'also applies in the Fourier transformed space of the amplitude spectra and with the same function (BLACKMAN function). The filtering τ 'could be replaced by another means. For example, it would be possible to perform a statistical form analysis of the mean spectrum function, looking in particular for the parameters describing a given function beforehand, a Gauss curve is often chosen, which best adjusts (usually in the least squares sense) the curve to be analyzed over an interval [ 0.2α] where α is the statistical length chosen for the analysis and which, in the embodiment of the invention, is the barycenter.

Claims

REVENDICATIONS
1. Méthode d'analyse automatique de bande passante fréquentielle de signaux enregistrés en fonction du temps, du type consistant à appliquer une transformée de Fourier sur au moins un des signaux, de manière à obtenir un spectre d'amplitude dudit signal, caractérisée en ce qu'elle consiste en outre à : a) réaliser un spectre moyen dudit spectre d'amplitude, b) analyser ledit spectre moyen, de manière à produire une composante spectrale moyenne représentative dudit signal, et c) déterminer, à partir de la composante spectrale moyenne, les valeurs de fréquence minimale (Fmjn) et maximale (Fmax) pour lesquelles l'amplitude de ladite composante spectrale moyenne est égale à la moitié1. Method for automatic analysis of frequency bandwidth of signals recorded as a function of time, of the type consisting in applying a Fourier transform on at least one of the signals, so as to obtain an amplitude spectrum of said signal, characterized in that that it further consists in: a) producing an average spectrum of said amplitude spectrum, b) analyzing said average spectrum, so as to produce an average spectral component representative of said signal, and c) determining, from the spectral component mean, the minimum (F m j n ) and maximum (F max ) frequency values for which the amplitude of said mean spectral component is equal to half
(Amax/2) de l'amplitude maximum (Amax).(A max / 2) of the maximum amplitude (A max ).
2. Méthode selon la revendication 1, caractérisée en ce que l'analyse du spectre moyen est effectuée au moyen d'un filtrage ou une analyse statistique dudit spectre moyen. 2. Method according to claim 1, characterized in that the analysis of the average spectrum is carried out by means of filtering or a statistical analysis of said average spectrum.
3. Méthode selon la revendication 1, caractérisée en ce qu'on analyse un ensemble de signaux sismiques enregistrés sous forme de traces.3. Method according to claim 1, characterized in that a set of seismic signals recorded in the form of traces is analyzed.
4. Méthode selon les revendications 1 et 3, caractérisée en ce que les signaux à analyser sont préalablement prétraités.4. Method according to claims 1 and 3, characterized in that the signals to be analyzed are pretreated beforehand.
5. Méthode selon les revendications 1 et 4, caractérisée en ce que la transformée de Fourier est appliquée sur les signaux prétraités.5. Method according to claims 1 and 4, characterized in that the Fourier transform is applied to the pretreated signals.
6. Méthode selon l'une des revendications 1 à 5, caractérisée en ce que les spectres d'amplitude sont filtrés au moyen d'un filtrage apte à obtenir des spectres d'amplitude recentrés autour de la valeur nulle.6. Method according to one of claims 1 to 5, characterized in that the amplitude spectra are filtered by means of a filtering capable of obtaining amplitude spectra centered around the zero value.
7. Méthode selon la revendication 6, caractérisée en ce qu'on réalise les enveloppes des spectres d'amplitude recentrés.7. Method according to claim 6, characterized in that the envelopes of the centered amplitude spectra are produced.
8. Méthode selon la revendication 6 ou 7, caractérisée en ce qu'elle consiste en outre à procéder à un lissage explicite sur au moins une partie des spectres d'amplitude recentrés, de manière à obtenir un spectre moyen lissé. 8. Method according to claim 6 or 7, characterized in that it also consists in carrying out an explicit smoothing on at least part of the centered spectra of amplitude, so as to obtain a smoothed average spectrum.
9. Méthode selon la revendication 1 ou 8, caractérisée en ce qu'on applique une autre transformée de Fourier sur le spectre moyen de manière à obtenir un spectre transformé.9. Method according to claim 1 or 8, characterized in that another Fourier transform is applied to the average spectrum so as to obtain a transformed spectrum.
10. Méthode selon la revendication 9, caractérisée en ce qu'on détermine la position du barycentre β du spectre transformé.10. Method according to claim 9, characterized in that the position of the β barycenter of the transformed spectrum is determined.
11. Méthode selon la revendication 1 ou 8, caractérisée en ce qu'elle consiste en outre à filtrer le spectre moyen au moyen d'un filtre passe-bas.11. Method according to claim 1 or 8, characterized in that it also consists in filtering the average spectrum by means of a low-pass filter.
12. Méthode selon les revendications 9 et 10, caractérisée en ce que le filtre passe-bas est limité par une pente supérieure qui s'étend de 2β à 4β. 12. Method according to claims 9 and 10, characterized in that the low-pass filter is limited by an upper slope which extends from 2β to 4β.
13. Méthode selon les revendications 3 et 11 ou 12, caractérisée en ce que le prétraitement des signaux est constitué par un filtrage initial desdits signaux et en ce qu'on combine les filtrages initial et passe-bas de manière à obtenir une composante spectrale représentative desdits signaux.13. Method according to claims 3 and 11 or 12, characterized in that the preprocessing of the signals consists of an initial filtering of said signals and in that the initial and low-pass filtering are combined so as to obtain a representative spectral component of said signals.
14. Méthode selon la revendication 13, caractérisée en ce qu'elle consiste en outre à déterminer sur la composante spectrale représentative des signaux, l'amplitude (Amax) puis les valeurs minimale (Fmin) et maximale (Fmax) de fréquence pour lesquelles l'amplitude est égale à la moitié (Amax/2) de l'amplitude maximum.14. Method according to claim 13, characterized in that it also consists in determining on the spectral component representative of the signals, the amplitude (A max ) then the minimum (F m i n ) and maximum (F max ) values. frequency for which the amplitude is equal to half (A max / 2) of the maximum amplitude.
15. Méthode selon l'une des revendications 1, 11 à 14, caractérisée en ce qu'elle consiste en outre à déterminer la position fréquentielle du barycentre de la composante spectrale représentative desdits signaux, de manière à calculer la fréquence porteuse (Fp) des signaux.15. Method according to one of claims 1, 11 to 14, characterized in that it also consists in determining the frequency position of the barycenter of the spectral component representative of said signals, so as to calculate the carrier frequency (F p ) signals.
16. Méthode selon la revendication 15, caractérisée en ce qu'elle consiste en outre à déterminer, à partir des valeurs Frain, Fmax, B •= Fmax - Fmjn et Fp, la valeur de l'excentrement spectral (E) en utilisant la formule :16. Method according to claim 15, characterized in that it also consists in determining, from the values F ra i n , F max , B • = F max - F mjn and F p , the value of the offset spectral (E) using the formula:
Figure imgf000014_0001
Figure imgf000014_0001
PCT/FR1998/000246 1997-02-13 1998-02-09 Method for the automatic analysis of frequency passband of recorded signals WO1998036293A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP98908152A EP0894273A1 (en) 1997-02-13 1998-02-09 Method for the automatic analysis of frequency passband of recorded signals
NO984762A NO984762L (en) 1997-02-13 1998-10-12 Procedure for the automatic analysis of frequency pass band for registered signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9701686A FR2759459B1 (en) 1997-02-13 1997-02-13 METHOD OF AUTOMATIC FREQUENTIAL BANDWIDTH ANALYSIS OF RECORDED SIGNALS
FR97/01686 1997-02-13

Publications (1)

Publication Number Publication Date
WO1998036293A1 true WO1998036293A1 (en) 1998-08-20

Family

ID=9503674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/000246 WO1998036293A1 (en) 1997-02-13 1998-02-09 Method for the automatic analysis of frequency passband of recorded signals

Country Status (5)

Country Link
EP (1) EP0894273A1 (en)
CA (1) CA2250355A1 (en)
FR (1) FR2759459B1 (en)
NO (1) NO984762L (en)
WO (1) WO1998036293A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118465843A (en) * 2024-07-08 2024-08-09 中国地质科学院地球物理地球化学勘查研究所 Seismic data processing method, device, medium and product for maintaining phase characteristics

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110728A (en) * 1976-09-24 1978-08-29 Texaco Inc. Seismic data processing apparatus for obtaining alpha values from seismic data
JPS58184542A (en) * 1982-04-22 1983-10-28 Toshiba Corp System for detecting acoustic abnormality
JPS6040972A (en) * 1983-08-16 1985-03-04 Hitachi Ltd Nuclear magnetic resonance apparatus
JPS6412288A (en) * 1987-07-06 1989-01-17 Nippon Telegraph & Telephone Detecting method of stratum surface and underground object and its apparatus
US4896116A (en) * 1986-10-30 1990-01-23 Nippon Telegraph And Telephone Corporation Pulse radar method and apparatus for detecting an object
US5461305A (en) * 1992-06-10 1995-10-24 Samsung Electronics Co., Ltd. Preprocessing circuit for measuring signal envelope flatness degree in a reproducer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110728A (en) * 1976-09-24 1978-08-29 Texaco Inc. Seismic data processing apparatus for obtaining alpha values from seismic data
JPS58184542A (en) * 1982-04-22 1983-10-28 Toshiba Corp System for detecting acoustic abnormality
JPS6040972A (en) * 1983-08-16 1985-03-04 Hitachi Ltd Nuclear magnetic resonance apparatus
US4896116A (en) * 1986-10-30 1990-01-23 Nippon Telegraph And Telephone Corporation Pulse radar method and apparatus for detecting an object
JPS6412288A (en) * 1987-07-06 1989-01-17 Nippon Telegraph & Telephone Detecting method of stratum surface and underground object and its apparatus
US5461305A (en) * 1992-06-10 1995-10-24 Samsung Electronics Co., Ltd. Preprocessing circuit for measuring signal envelope flatness degree in a reproducer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section PQ Week 9712, Derwent World Patents Index; Class Q56, AN 97-130709, XP002045665 *
PATENT ABSTRACTS OF JAPAN vol. 008, no. 031 (P - 253) 9 February 1984 (1984-02-09) *
PATENT ABSTRACTS OF JAPAN vol. 009, no. 163 (P - 371) 9 July 1985 (1985-07-09) *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 185 (P - 865) 2 May 1989 (1989-05-02) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118465843A (en) * 2024-07-08 2024-08-09 中国地质科学院地球物理地球化学勘查研究所 Seismic data processing method, device, medium and product for maintaining phase characteristics

Also Published As

Publication number Publication date
EP0894273A1 (en) 1999-02-03
NO984762D0 (en) 1998-10-12
FR2759459B1 (en) 1999-03-26
NO984762L (en) 1998-12-14
CA2250355A1 (en) 1998-08-20
FR2759459A1 (en) 1998-08-14

Similar Documents

Publication Publication Date Title
EP1255126B1 (en) Method of facilitating the time monitoring of the evolution of physical states in a subterranean formation
EP0024961B1 (en) Method of transient current geophysical prospecting
EP0918317B1 (en) Frequency filtering method using a Wiener filter applied to noise reduction of audio signals
EP1877826B1 (en) Markov sequence detection
EP0749083A1 (en) Method and device for the determination of the frequency spectrum of a signal
EP1410240B1 (en) Method and circuit for real time frequency analysis of a non-stationary signal
EP3132358A1 (en) Digital detection method
FR2888946A1 (en) Wind noise attenuation method, for land-base seismic survey, involves attenuating coherent wind noise in seismic data set generated from sweep signal by applying coherent noise filter to data set, and correlating data set with sweep signal
EP0756182B1 (en) Method for filtering elliptical waves propagating in a medium
EP3583403B1 (en) Method for estimating the intensity of a wave emitted by an emitting source
FR2686982A1 (en) METHOD FOR SPECTROSCOPY OF NUCLEAR IMPULSES AT HIGH COUNTING RATES.
EP0410826B1 (en) Iterative motion estimation process, between a reference image and a current image, and device for canying out the process
EP2196821A1 (en) Method for multi-dimensional temporal kinematic filtering of radar blips, from antenna tower to antenna tower
EP1615049B1 (en) Fast coherent treatment for codes with periodical line spectra
WO1998036293A1 (en) Method for the automatic analysis of frequency passband of recorded signals
FR2755243A1 (en) ADVANCED PRE-SUM MIGRATION METHOD
CN112213773A (en) Seismic resolution improving method and electronic equipment
EP1895433A1 (en) Method of phase estimation for sinusoidal modelling of a digital signal
WO2004031806A2 (en) Method of reducing harmonic noise in vibroseismic signals
FR2884620A1 (en) METHOD FOR PROCESSING SEISMIC DATA FOR AVO OR AVOA CHARACTERIZATION
WO2016132068A1 (en) Method for determining bathymetry from quasi-synchronous optical satellite images
FR3137453A1 (en) METHOD FOR AUTOMATICALLY IDENTIFYING AN ACOUSTIC SOURCE FROM AN ACOUSTIC SIGNAL PRODUCED
EP4166931B1 (en) Method for multi-species mapping of an area from spectral data
FR2953050A1 (en) Method for detecting curve points in input image, involves determining curve points in input image by selecting pixels of image whose associated curve intensity coefficient satisfies predetermined selection criteria
EP2656531B1 (en) Impulse noise measurement by spectral detection

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998908152

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2250355

Country of ref document: CA

Ref country code: CA

Ref document number: 2250355

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09171136

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998908152

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998908152

Country of ref document: EP