[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6040972A - Nuclear magnetic resonance apparatus - Google Patents

Nuclear magnetic resonance apparatus

Info

Publication number
JPS6040972A
JPS6040972A JP58149474A JP14947483A JPS6040972A JP S6040972 A JPS6040972 A JP S6040972A JP 58149474 A JP58149474 A JP 58149474A JP 14947483 A JP14947483 A JP 14947483A JP S6040972 A JPS6040972 A JP S6040972A
Authority
JP
Japan
Prior art keywords
resonance signal
sampling
time
nuclear magnetic
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58149474A
Other languages
Japanese (ja)
Inventor
Hitoshi Sasabuchi
仁 笹渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58149474A priority Critical patent/JPS6040972A/en
Publication of JPS6040972A publication Critical patent/JPS6040972A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To remove a spurious peak, in a Fourier transform type nuclear magnetic resonance apparatus, by subtracting the time average value of time data, in which no separately sampled resonance signal is present, from measuring data containing a resonance signal. CONSTITUTION:A high frequency pulse is applied to a probe 4 which is placed to the side of a DC static magnetic field 3 through a phase inversion controller 2 and filled with a specimen to be measured, from a transmitter 1. By this pulse application, the specimen to be measured is excited and a resonance signal is detected by the probe 4 to be sent to phase detectors 6, 10 through a high frequency amplifier 5 while reference signals of the detectors 6, 10 are supplied from a phase controller 16. A central processing apparatus 14 samples the detected resonance signal and performs sampling at time when no resonance signal is present and also performs Fourier transform so as to subtract the time average value of the sampling data from the resonance signal to obtain a frequency spectrum. By this method, the spurious peak in the frequency spectrum due to a DC offset component can be removed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はフーリエ変換型核磁気共鳴装置に係シ、更に具
体的には直流オフセット成分による周波数スペクトル中
のスズリアスピークの除去を図った核磁気共鳴装置に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a Fourier transform type nuclear magnetic resonance apparatus, and more specifically to a nuclear magnetic resonance apparatus which aims to remove the tin-tin peak in the frequency spectrum due to a DC offset component. Relating to a resonator.

〔発明の背景〕[Background of the invention]

フーリエ変換型核磁気共鳴装置は直流静磁場中に置かれ
た被1i定試料に共鳴周波数に近い高周波成分を数マイ
クロ秒程度の短かい時間、パルス的に照射し、これによ
って生ずる共鳴信号をサンプリングし、該サンプリング
テークをフーリエ変換することにより周波数スペクトル
を得るものである。以下、図面に基づいて説明する。第
1図にフーリエ忽換型杉磁気共鳴装置のシステム構成を
示す。同図において、トランスミッタ1から位相反転制
御器2を介して直流静磁場3の巾にP□イかれたプロー
ブ4に高周波パルスが印加される。これによりグローブ
4内に詐゛かれた被測定試料が励起される。共鳴信号は
グローブ4で検出された後、高周波増幅器5を介して位
相検波器6へ送られ、0〜数十kH2程度の低周波成分
へ変換される。この信号成分は低周波増幅器7、低域通
過フィルタ8、A/D変換器9を介して中央制御装置1
4でサンプリングされる。一方高周波増幅器5の出力信
号は位相検波器10へも送られ、その出力信号は低周波
増幅器11、低域通過フィルタ12、A/D変換器13
を介して中央制御装置14によりサンプリングされる。
A Fourier transform nuclear magnetic resonance apparatus irradiates a sample placed in a DC static magnetic field with a high-frequency component close to the resonance frequency in a pulsed manner for a short period of several microseconds, and samples the resulting resonance signal. Then, a frequency spectrum is obtained by Fourier transforming the sampling take. The following will explain based on the drawings. Figure 1 shows the system configuration of the Fourier conversion type Sugi magnetic resonance apparatus. In the figure, a high-frequency pulse is applied from a transmitter 1 via a phase inversion controller 2 to a probe 4 which is set across the width of a DC static magnetic field 3. As a result, the sample to be measured hidden in the glove 4 is excited. After the resonance signal is detected by the globe 4, it is sent to the phase detector 6 via the high frequency amplifier 5, where it is converted into a low frequency component of about 0 to several tens of kilohertz. This signal component is transmitted to the central control unit 1 via a low frequency amplifier 7, a low pass filter 8, and an A/D converter 9.
Sampled at 4. On the other hand, the output signal of the high frequency amplifier 5 is also sent to the phase detector 10, and the output signal is sent to the low frequency amplifier 11, the low pass filter 12, and the A/D converter 13.
The data are sampled by the central controller 14 via the central controller 14.

− 一方、位相検波器6,10の参照信号は位相制御器16
によシ相互に90°シフトされており、従って位相検波
器6.10の出力信号も位相が90°異っている。これ
は複素共1(自信号としての実数部分、虚数部分に相当
しA/D変換器9゜13の出力信号は中央制御装置」4
によって複素フーリエ変換を受け、周波数スペクトルに
変換され、この周波数スペクトルは表示装置、15に表
示される。
- On the other hand, the reference signals of the phase detectors 6 and 10 are supplied to the phase controller 16.
Therefore, the output signals of the phase detector 6.10 also differ in phase by 90°. This corresponds to the complex 1 (real part and imaginary part as self-signs), and the output signal of the A/D converter 9.13 is the central control unit.
The signal is subjected to a complex Fourier transform and converted into a frequency spectrum, and this frequency spectrum is displayed on a display device 15.

上記構成からなる核磁気共鳴装置において、共鳴信号に
直流オフセット成分が重クイしている場合には第2図に
示すように周波数スペクトルは共鳴信号Aの他にスプリ
アスピークBを生じる。
In the nuclear magnetic resonance apparatus having the above-mentioned configuration, when a direct current offset component is heavily present in the resonance signal, spurious peaks B occur in the frequency spectrum in addition to the resonance signal A, as shown in FIG.

この直流オフセット成分を除去する方法の一つとして第
3図に示すように低周波増幅器にオフセット電流を逆位
相で重畳して出力端に現れるオフセットを減封せる方法
がある。この方法で減少させ得るオフセットの限界はノ
イズの数分の1〜十分の1程度である。
One method for removing this DC offset component is to reduce the offset appearing at the output end by superimposing an offset current on a low frequency amplifier with an opposite phase, as shown in FIG. The limit of the offset that can be reduced by this method is about one-tenth to one-tenth of the noise.

フーリエ変換は注目する周波数で回転する回転座椋系で
見た時系列信号の時間平均を取ることに相当する。特に
直流成分については実験座標系における単純な時間平均
である。従って直流成分はフーリエ変換によって共鳴信
号のS/N比が改善され、その改善皐はサンプリングの
データ点数の平方根に比例する。例えばデータ点数が1
6384点の場合には128倍のS/N改善効果がある
Fourier transform corresponds to taking the time average of a time-series signal seen in a rotating zagura system that rotates at the frequency of interest. In particular, the DC component is a simple time average in the experimental coordinate system. Therefore, the S/N ratio of the resonance signal of the DC component is improved by Fourier transformation, and the improvement is proportional to the square root of the number of sampling data points. For example, the number of data points is 1
In the case of 6384 points, there is an S/N improvement effect of 128 times.

すなわち、時間領域データにおいてノイズレベルの1/
128の直流オフセット成分があれば、それは周波数領
域のスペクトルて娃ノイズレベルと同程度の大きさで現
れる。従って、前述した低周波増幅器にオフセット電流
を逆位相でv竹・する方法では不十分である。
In other words, 1/1 of the noise level in time domain data.
If there is a DC offset component of 128, it appears in the frequency domain spectrum with a magnitude comparable to the noise level. Therefore, the above-described method of supplying offset currents in opposite phases to the low frequency amplifier is insufficient.

直流オフセット成分を除去する第2の方法として共鳴信
号を複数回、積算する場合に交互に高周波パルスの位相
を反転する方法が採用されている。
A second method for removing the DC offset component is to alternately invert the phase of the high-frequency pulse when integrating the resonance signal multiple times.

例えば1回目の測定における高周波パルスの位相が位相
反転制御器によシ反転されると、共鳴信号の位相は高周
波パルスの位相に追従するのに対して直流オフセット成
分の極性は影響を受け力い場合が多いので、共鳴信号と
直流オフセット成分とを分離することが可能となる。こ
の状態を第4図に示す。すなわち、第1回目の1lll
+定による共鳴信号(第4図(a))を第4図Φ)に示
す如く、位相反転させ、これら二つの共鳴信号を引算す
ると、スプリアスピークBは第4図(C)に示す如く、
消去される。
For example, when the phase of the high-frequency pulse in the first measurement is inverted by a phase inversion controller, the phase of the resonance signal follows the phase of the high-frequency pulse, whereas the polarity of the DC offset component is not affected. In many cases, it becomes possible to separate the resonance signal and the DC offset component. This state is shown in FIG. That is, the first 1llll
By inverting the phase of the + constant resonance signal (Figure 4(a)) as shown in Figure 4(Φ) and subtracting these two resonance signals, the spurious peak B becomes as shown in Figure 4(C). ,
will be deleted.

しかしながら、この方法は低濃度試別の測定や炭素核測
定等の如く複数回、積算する場合にのみ利用可能な方法
でsb、水素核測定の如く1回のみの測定に対しては利
用できない。
However, this method can only be used for multiple integrations such as low concentration sampling measurements and carbon nucleus measurements, and cannot be used for single measurements such as sb and hydrogen nucleus measurements.

〔発明の目的〕[Purpose of the invention]

本発明の目的は微少な直流オフセット成分を効率良く検
出し、共鳴信号の周波数スペクトルから直流オフセット
成分の除去を図った核磁気共鳴装置を提供することにあ
る。
An object of the present invention is to provide a nuclear magnetic resonance apparatus that efficiently detects minute DC offset components and removes the DC offset components from the frequency spectrum of resonance signals.

〔発明の概要〕[Summary of the invention]

本発明は、フーリエ変換型核磁気共鳴装置において、共
鳴信号を含む測定データから、別にサンプリングした共
鳴信号が存在しない時刻のデータの時間平均値を差引く
ことにより周波数スペクトル中の直流オフセット成分に
よるスプリアスピークを除去するものである。
In a Fourier transform type nuclear magnetic resonance apparatus, the present invention subtracts the time average value of separately sampled data at a time when no resonance signal exists from measurement data including a resonance signal, thereby eliminating spurious signals caused by DC offset components in the frequency spectrum. It removes peaks.

〔発明の実施例〕 本実施例では直流オフセット成分を正確に検出するため
に共鳴信号を含まないノイズ及び直流オフセット信号の
みを含む時系列信号を中央制御装fR14によりサンプ
リングし、該サンプリングデータの時間平均値を算出す
ることにより周波数スペクトル上における直流オフセッ
ト成分によるスプリアスピークの大きさをめるようにし
ている。
[Embodiment of the Invention] In this embodiment, in order to accurately detect the DC offset component, the central control unit fR14 samples a time-series signal that includes only the DC offset signal and the noise that does not include the resonance signal. By calculating the average value, the magnitude of the spurious peak due to the DC offset component on the frequency spectrum is calculated.

本実施例において中央制御装置14にょシ実行されるプ
ログラムの概略フローを第5図に示す。
FIG. 5 shows a schematic flow of the program executed by the central controller 14 in this embodiment.

同図においてステップ50でプログラムが起動されると
、ステップ52で受信側のゲイン、フィルタの帯域幅等
の装置パラメータが設定され、次いでステップ54でト
ランスミッタ1より位相制御器2を介してプローブ4に
高周波パルスが印加される。
In the same figure, when the program is started in step 50, device parameters such as gain on the receiving side and filter bandwidth are set in step 52, and then in step 54, the signal is transmitted from the transmitter 1 to the probe 4 via the phase controller 2. A high frequency pulse is applied.

更にステップ56ではプローブ4により検出された共鳴
信号のサンプリングが行われる。ステップ58では共鳴
信号の存在しない時刻におけるノイズ及び直流オフセッ
ト信号のみを含む信号のサンプリングが行われる。次い
でステップ60ではステップ58で有られたサンプリン
グデータの時間平均値が算出され、ステップ62ではス
テップ56で得られたサンプリングデータのフーリエ変
換の演算が行われる。
Further, in step 56, sampling of the resonance signal detected by the probe 4 is performed. In step 58, a signal containing only noise and a DC offset signal at a time when no resonance signal is present is sampled. Next, in step 60, a time average value of the sampling data obtained in step 58 is calculated, and in step 62, a Fourier transform operation is performed on the sampling data obtained in step 56.

更にステップ64ではステップ62で得られた周波数ス
ペクトルからステップ60でめた時間平均値、すなわち
直流オフセット値が減3+2され、ステップ66で直流
オフセツl’分によるスプリアスピークを除去した周波
数スペクトルを得、ステップ68でプログラムの実行を
終了する。
Further, in step 64, the time average value obtained in step 60, that is, the DC offset value, is subtracted by 3+2 from the frequency spectrum obtained in step 62, and in step 66, a frequency spectrum is obtained from which spurious peaks due to the DC offset l' have been removed, Execution of the program ends at step 68.

ここでステップ58におけるノイズ及び直流オフセット
信号のみを含む信号のサンプリングは、通常の測定デー
タの取込後、全く同じ条件で高周波パルスのみ出さずに
取り込むようにすればよい。
Here, the sampling of the signal containing only the noise and the DC offset signal in step 58 may be performed under exactly the same conditions after the normal measurement data has been taken in, without emitting only the high-frequency pulse.

この場合には横軸の所定の点数のデータを記憶させる必
要がなくメモリの記憶容量を低減でき、且つ測定時間を
短縮することができる。
In this case, there is no need to store data for a predetermined number of points on the horizontal axis, so the storage capacity of the memory can be reduced, and the measurement time can be shortened.

才だ上記サンプリングは通常の1回の測定データ(時間
領域)の取り込みにおいて前半のデータには共鳴信号が
含まれ、後半のデータにはノイズと直流オフセット成分
のみとなるのでステップ58で後半の測定データのみ取
り込むようにし、ステップ60でめられる時間平均値に
よシ直流オフセット成分を検出して取り込んだ測定デー
タ全体を補正するようにしてもよい。
In the above sampling, when the normal one-time measurement data (time domain) is taken in, the first half of the data contains resonance signals, and the second half of the data contains only noise and DC offset components, so the second half of the measurement is performed in step 58. Alternatively, only the data may be captured, and the entire captured measurement data may be corrected by detecting the DC offset component using the time average value determined in step 60.

この場合には測定時間を更に短縮することができる。In this case, the measurement time can be further shortened.

以上に説明した如く、本実施例によれば水素核測定の場
合のように1回のみの測定においても核スピン系に影響
を与えることなく、効果的に直流オフセットに起因する
スプリアスビータを周波数スペクトルから除去すること
ができる。
As explained above, according to this embodiment, spurious beaters caused by DC offset can be effectively eliminated from the frequency spectrum without affecting the nuclear spin system even in a single measurement like in the case of hydrogen nuclear measurements. can be removed from

〔発明の効果〕〔Effect of the invention〕

本発明ではフーリエ変換型核磁気共鳴装置において、共
鳴信号を含む測定データから、別にサンプリングした共
鳴信号が存在しない時刻のデータの時間平均値を差引く
ように構成したので、本発明によれば微少な直流オフセ
ット成分に起因するスプリアスピークを周波数スペクト
ルよJ)[めて効果的に除去することができる。
In the present invention, the Fourier transform nuclear magnetic resonance apparatus is configured to subtract the time average value of separately sampled data at a time when no resonance signal exists from the measurement data including the resonance signal. Spurious peaks caused by direct current offset components can be effectively removed from the frequency spectrum.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフーリエ変換型核磁気共鳴装置の構成を示すブ
ロック図、第2図は周波数スペクトル上に現れる直流オ
フセット成分に起因するスプリアスピークを示す図、第
3図はオフセット補償回路の構成を示す回路図、第4図
は+1111定データを初数回、積算する場合における
スプリアスピータが除去される過程を示す図、第5図は
本発明の実施例において中央制御装置14により実行さ
れるプログラムの内容を示すフローチャートである。 ・・・トランスミッタ、2.16・・・位相制御器、3
・・・磁石、4・・・グローブ、5・・・高周波増幅器
、6゜10・・・位相検出器、7.11・・・低周波増
1[怖、8゜12・・・低域通過フィルタ、9.13・
・・A/D変換器、14・・・中央制御装置、15・・
・表示装置。 代理人 弁理士 鵜沼辰之 躬 1図 ! 第20 第312] 第4−口 (I7)
Figure 1 is a block diagram showing the configuration of the Fourier transform nuclear magnetic resonance apparatus, Figure 2 is a diagram showing spurious peaks caused by DC offset components appearing on the frequency spectrum, and Figure 3 is the configuration of the offset compensation circuit. The circuit diagram, FIG. 4 is a diagram showing the process in which spurious speakers are removed when +1111 constant data is integrated the first number of times, and FIG. It is a flowchart showing the contents. ...Transmitter, 2.16...Phase controller, 3
...Magnet, 4...Glove, 5...High frequency amplifier, 6゜10...Phase detector, 7.11...Low frequency increase 1 [scary, 8゜12...Low pass Filter, 9.13・
... A/D converter, 14... Central control unit, 15...
・Display device. Agent Patent Attorney Tatsuyuki Unuma Figure 1! 20th 312th] 4th - Exit (I7)

Claims (1)

【特許請求の範囲】 1、 直流静磁場中に設置され被測定試料が鉢填された
プローブに高周波パルスを印加し、該グローブにより検
出された共鳴信号をサンプリングし、該サンプリングデ
ータをフーリエ変換するととにより周波数2ベクトルを
得るように栴成された核磁気共鳴装置において、別に前
記共鳴信号の存在しない時刻においてサンプリングし、
該サンプリングデータの時間平均値を前記共鳴信号より
差引くことを特徴とする核磁気共鳴装置。 2、共鳴信号の存在しない時刻におけるサンプリングテ
ークの時間平均値を、前記共鳴信号を含むサンプリング
テークをフーリエ変換して得られた周波数スペクトルよ
シ差引くことを特徴とする特許請求の範囲第1項に記載
の核磁気共鳴装置。
[Claims] 1. Applying a high frequency pulse to a probe placed in a DC static magnetic field and filled with a sample to be measured, sampling the resonance signal detected by the globe, and Fourier transforming the sampling data. In a nuclear magnetic resonance apparatus configured to obtain a two-frequency vector by sampling separately at a time when the resonance signal does not exist,
A nuclear magnetic resonance apparatus characterized in that a time average value of the sampling data is subtracted from the resonance signal. 2. Claim 1, characterized in that the time average value of the sampling take at a time when no resonance signal exists is subtracted from the frequency spectrum obtained by Fourier transforming the sampling take containing the resonance signal. The nuclear magnetic resonance apparatus described in .
JP58149474A 1983-08-16 1983-08-16 Nuclear magnetic resonance apparatus Pending JPS6040972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58149474A JPS6040972A (en) 1983-08-16 1983-08-16 Nuclear magnetic resonance apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58149474A JPS6040972A (en) 1983-08-16 1983-08-16 Nuclear magnetic resonance apparatus

Publications (1)

Publication Number Publication Date
JPS6040972A true JPS6040972A (en) 1985-03-04

Family

ID=15475934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58149474A Pending JPS6040972A (en) 1983-08-16 1983-08-16 Nuclear magnetic resonance apparatus

Country Status (1)

Country Link
JP (1) JPS6040972A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2759459A1 (en) * 1997-02-13 1998-08-14 Elf Aquitaine METHOD OF AUTOMATIC FREQUENTIAL BANDWIDTH ANALYSIS OF RECORDED SIGNALS
JP2009128352A (en) * 2007-11-22 2009-06-11 Etsuo Ban Method and apparatus for removing spurious signals of hf band magnetic resonance signals
CN105928965A (en) * 2016-05-11 2016-09-07 中国科学院武汉物理与数学研究所 Method for restraining nuclear magnetic resonance spectrum sampling truncation false peaks

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2759459A1 (en) * 1997-02-13 1998-08-14 Elf Aquitaine METHOD OF AUTOMATIC FREQUENTIAL BANDWIDTH ANALYSIS OF RECORDED SIGNALS
WO1998036293A1 (en) * 1997-02-13 1998-08-20 Elf Exploration Production Method for the automatic analysis of frequency passband of recorded signals
JP2009128352A (en) * 2007-11-22 2009-06-11 Etsuo Ban Method and apparatus for removing spurious signals of hf band magnetic resonance signals
CN105928965A (en) * 2016-05-11 2016-09-07 中国科学院武汉物理与数学研究所 Method for restraining nuclear magnetic resonance spectrum sampling truncation false peaks

Similar Documents

Publication Publication Date Title
US8324897B2 (en) Digital NMR signal processing systems and methods
CN112881959B (en) Gradient eddy current compensation method and system for magnetic resonance imaging
JPS6040972A (en) Nuclear magnetic resonance apparatus
US4954778A (en) Eddy current testing system using two samples with different time lags
JP3236710B2 (en) Measurement device for RMS values
US4656426A (en) Nuclear magnetic resonance data processing method
CN101963656B (en) Complementary field detection method and device
US4614907A (en) Method of obtaining pseudofiltering effect in process of data accumulation and nuclear magnetic resonance spectrometry utilizing same
Haekel et al. Self-broadening and shift for the J= 0− 1 rotational lines of CH3C14N and CH3C15N using the microwave transient emission technique
JP4417042B2 (en) Method and apparatus for measuring the noise level of an electronic object to be measured
JP3114955B2 (en) Nuclear magnetic resonance equipment
JP3274891B2 (en) Nuclear magnetic resonance inspection system
JP3111419B2 (en) Nuclear magnetic resonance inspection system
US3039048A (en) Gyromagnetic resonance detection method and apparatus
JPH01221153A (en) Mri device
JP2000284008A (en) Frequency measuring method and device
JP2000055952A (en) Apparatus for measuring circuit element
JPH0755905A (en) Spectrum analyzing method
JP3099562B2 (en) Analysis method of harmonic components in power system
JPH09133719A (en) Device and method for measuring impedance
Haasz et al. Frequency spectrum correction method for the ADC testing
JPH0396872A (en) Method and device for testing coil
JPS63302841A (en) Measuring data error compensating method of nuclear magnetic resonance imaging apparatus
JPH0670910A (en) Magnetic resonance image device
McElroy et al. The role of the ordinary and anharmonic Raman processes in Rb2PtI6