WO1996018672A2 - Mit kohlendioxid getriebener schaum aus styrolpolymeren - Google Patents
Mit kohlendioxid getriebener schaum aus styrolpolymeren Download PDFInfo
- Publication number
- WO1996018672A2 WO1996018672A2 PCT/EP1995/004811 EP9504811W WO9618672A2 WO 1996018672 A2 WO1996018672 A2 WO 1996018672A2 EP 9504811 W EP9504811 W EP 9504811W WO 9618672 A2 WO9618672 A2 WO 9618672A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- foam
- styrene polymer
- impact
- polystyrene
- styrene
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/122—Hydrogen, oxygen, CO2, nitrogen or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2325/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2325/02—Homopolymers or copolymers of hydrocarbons
- C08J2325/04—Homopolymers or copolymers of styrene
Definitions
- Polystyrene foams are produced technically either by foaming pre-expanded beads containing blowing agent with water vapor in non-tightly closing forms or - these foams are often referred to as extrusion foams - by squeezing out a blowing agent-containing melt from a nozzle and then thermoforming if required.
- extrusion foam is produced with a large number of blowing agents, e.g. B. aliphatic optionally halogenated hydrocarbons (US 4,344,710 and 4,424,287).
- blowing agents e.g. B. aliphatic optionally halogenated hydrocarbons (US 4,344,710 and 4,424,287).
- An advantage of the foaming of polystyrene with these blowing agents is that they diffuse out of the cells of the foam only a little because of their high molecular weight and thus facilitate the subsequent foaming in the subsequent thermoforming process, i.e. allow a lower foam density.
- polystyrene foam in particular in the form of foils and profiles, has recently been increasingly produced using carbon dioxide or mixtures of carbon dioxide and other gases:
- EP 55,437 describes the production of post-foam or thermoformable polystyrene films with blowing agents containing carbon dioxide. Experience has shown that these foils have a rough surface and clearly stiff / brittle behavior.
- No. 5,250,577 describes the production of foils from polystyrene foam with pure carbon dioxide. These films are less flammable than the films driven with hydrocarbons (especially pentane) and also have no ozone-depleting potential like the films driven with fluorochlorohydrocarbons (CFCs).
- CFCs fluorochlorohydrocarbons
- the post-foaming behavior of these films in the thermoforming process is worse than the behavior of films which have been produced using conventional blowing agents.
- the molded articles are significantly more brittle compared to the foams blown with the help of pentane or CFC, i.e. worse.
- 20 high-impact polystyrene in the broadest sense according to the invention is a mixture of a styrene homopolymer or copolymer with a rubber heterogeneously distributed therein .
- polymers containing rubber in particle form with at least 65% by weight of styrene or the styrene derivatives which are usually regarded as equivalents examples include: impact-resistant polystyrene in the narrower sense (HIPS), styrene-acrylonitrile copolymers (SAN) with up to 35, preferably 9 to 33 and in particular 18 to
- ABS or ASA acrylonitrile
- styrene-maleic anhydride copolymers with up to 35% by weight of maleic anhydride
- styrene-N-phenylmaleimide copolymers with up to 35% by weight of N-phenylmaleimide
- styrene -Butyl acrylate copolymers with up to 35% by weight of acrylic acid and their mixtures and the polymers or copolymers
- styrene equivalents such as poly-alpha-methylstyrene etc.
- Homo polystyrene and styrene-acrylonitrile copolymers with 18 to 27% by weight of acrylonitrile are preferably used.
- Styrene (buta) diene block copolymers are also to be regarded as impact-modified polystyrene.
- High-impact polystyrene contains up to 18, preferably 4 to 10% by weight of a rubber phase which has been produced from, for example, butadiene and isoprene, preferably butadiene.
- the production of impact-resistant polystyrene can be carried out by batchwise or continuous polymerization of the styrene monomers, if appropriate together with (meth) acrylonitrile, in the presence of one of the customary ones Rubbers such as polybutadiene and / or polyisoprene or a so-called block rubber are produced in two or more reaction zones (US 3,243,481; US 3,903,202).
- the impact-resistant polystyrene produced by the process described in DE 1,770,392 or DE 2,525,019 is preferably used.
- Ordinary impact-resistant polystyrene is a molding composition based on polystyrene as a so-called hard matrix, which contains a rubber, in particular a polybutadiene or acrylate rubber, as a finely dispersed phase.
- the average particle size of the rubber for the purpose of the invention is not critical and can e.g. are in the range from about 0.3 to 20, preferably 1 to 15, particularly preferably 2 to 10 ⁇ m (2,000 to 10,000 nm; average particle diameter, for example calculated from electron microscopic thin-section images).
- the rubber content can e.g. to 20, preferably 4 to 10 wt .-%, based on 100 wt .-% impact-resistant polystyrene mass. This proportion is also not critical, but largely depends on the desired degree of improvement in the mechanical behavior.
- Impact-resistant polystyrene either consists of a homopolymer of, for example, styrene, p-methylstyrene, alpha-methylstyrene, 2,4-dimethylstyrene and tert-butylstyrene, or a copolymer of the above. Group of one of the aforementioned monomers with e.g. up to 35% by weight of a comonomer. Styrene is preferably used alone or in a mixture with acrylonitrile.
- styrene copolymers are polymers with at least 65% by weight of styrene.
- examples include: styrene-acrylonitrile copolymers with up to 35% by weight of acrylonitrile, preferably with 9 to 33, particularly preferably with 18 to 27% by weight of acrylonitrile, styrene-maleic anhydride copolymers with up to 35% by weight.
- Polystyrene and styrene / acrylonitrile copolymers with 18-27% by weight of acrylonitrile are preferably used.
- Styrene-butadiene block copolymers in the sense of the invention have the following structure:
- S is a sequence of styrene monomer having a molecular weight of 3,000 to 500,000, preferably 5,000 to 250,000, particular ⁇ DERS preferably 10,000 to 100,000
- Styrene monomers in the sense of the above description of the copolymers are those mentioned for homopolymers.
- Conjugated dienes are, for example, butadiene and isoprene, preferably budadiene.
- the styrene-butadiene block copolymers are produced by sequential anionic polymerization.
- Star-shaped block copolymers are generally obtained by coupling several "living" ionic polymers with the sequence structure (S) n (B) m (S) n (B) m should not mean that one or more sequences S precede one or more sequences B. Rather, (S) n (B) m means that the sequences S and B can follow one another in any order for all n from 2 to 10 and all m from 2 to 10.
- the different block copolymers can be either thermoplastic elastomers or impact-resistant thermoplastics.
- thermoplastic elastomers the phase with the lower glass transition temperature, ie. H. the conjugated dienes in sequence B, larger in volume than the phase with the higher glass temperature.
- impact-resistant thermoplastics the phase-volume ratio is reversed.
- linear thermoplastic elastomers are Shell's Kraton® brands and Fina Chemicals' Finaprene® brands.
- linear impact-resistant thermoplastics are Styrolux® KR 2691 from BASF Aktiengesellschaft, the Fina-clear® brands from Fina Chemicals, the Clearen® brands from Denka Kagaku and the Asaflex® brands from Asahi.
- star-shaped impact-resistant thermoplastics are Styrolux® 684 D from BASF Aktiengesellschaft and the K-Resin® brands from Phillips Petroleum Company.
- All mixtures containing more than 90% by weight of carbon dioxide can be used for foaming.
- the remaining proportions of up to 10% by weight can be, for example, butane, pentane, hexane, halogenated aliphatic hydrocarbons, methanol, ethanol, propanol.
- Approximately pure carbon dioxide is preferred in an amount of, for example, 0.5 to 6% by weight, based on the sum of the polymers.
- the propellant gas is preferably used in liquid form and metered into the polymer melt, i.e. added, which may already be mixed homogeneously beforehand.
- a tandem extrusion line is used but is not essential.
- a primary extruder is usually used to melt the polymer mixture, homogenized and then adding the blowing agent.
- the mixture is mixed homogeneously in a secondary extruder.
- extrusion is typically carried out via an annular die into a zone of lower pressure, a foam film tube having a thickness of preferably up to 1 cm, particularly preferably up to 0.5 cm, being produced.
- the polymer blowing agent mixture is extruded through a profile nozzle, which is followed by a calibration device.
- the method according to the invention does not otherwise differ from the prior art;
- the usual additives such as pigments, nucleating agents, stabilizers, etc.
- nucleating agents which reduce the cell size are talc, silica aerosols, but also chemical blowing agents such as mixtures of citric acid and sodium hydrogen carbonate.
- the foam density that can be achieved is generally between 30 and 200 kg / m 3 , preferably between 40 and 160 kg / m 3 .
- the cell diameters in all spatial directions are preferably less than 1 mm and particularly preferably less than 0.5 mm.
- the inflation ratio, which can be adjusted by stretching the extruded tube over a mandrel, is generally 2 or more.
- the foam temperature at the nozzle should preferably be below 160 ° C for foils and profiles.
- the tube is cut open at one or more points and wound up.
- the hose can also be used without side slits are used, e.g. B. for label sleeves.
- the foam sheet is processed into shaped bodies such as cups, cups, bowls etc.
- ZDSK 53 laterally connected twin-screw extruder
- the film die head had a nozzle diameter of 100 mm.
- the gap widths were 0.5 and 0.7 mm.
- the cooling bulb diameter was 340 mm.
- the CO 2 was metered in liquid form via a cooled membrane pump.
- the flow rate was regulated via the decrease in weight of the C0 2 bottle standing on a balance.
- the toughness of an approximately 2 mm thick film from component A was to be improved.
- component A impact-resistant polystyrene was added.
- the gap width was set to 0.7 mm.
- the throughput was 50 kg / h. 1.8% of CO 2 were metered in.
- the films had a uniform thickness of 1.9 mm.
- the mass temperature, density and post-foaming capacity of the foam films produced in these tests are summarized in the following table.
- the foaming power of e.g. Foam foamed with CFCs is based on the fact that the CFC molecules can hardly leave the foam due to their low diffusion rate. Air diffuses into the cells during the storage period of the foils. The internal pressure rises. This increased internal pressure is used to look up.
- thermoplastic polymers which are inherently brittle (for example polystyrene, polymethyl methacrylate, poly (styrene-acrylonitrile) become impact-resistant through the incorporation of elastomeric discrete microparticles.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Schaumförmiges Styrolpolymerisat aus einem durch Extrusion aufgeschäumten und gegebenenfalls weiterverarbeiteten Styrol-homo- oder copolymeren und einem Treibmittel, das im wesentlichen aus Kohlendioxid besteht, enthaltend schlagzähes Polystyrol.
Description
Mit Kohlendioxid getriebener Schaum aus Styrolpolymeren
Beschreibung
Polystyrolschäume werden technisch entweder durch das Aufschäumen vorgeschäumter treibmittelhaltiger Perlen mit Wasserdampf in nicht dicht schließenden Formen oder - diese Schäume werden oft als Extrusionsschäume bezeichnet - durch Auspressen einer treib- mittelhaltigen Schmelze aus einer Düse und bei Bedarf anschlie¬ ßendes Thermoformen hergestellt.
Während für das Aufschäumen der Perlen gewöhnlich Pentan als Treibmittel verwendet wird, wird Extrusionsschäum mit einer Viel- zahl von Treibmitteln hergestellt, z. B. aliphatischen ggf. halo- genierten Kohlenwasserstoffen (US 4.344.710 und 4.424.287) . Ein Vorteil des Schäumens von Polystyrol mit diesen Treibmitteln be¬ steht darin, daß sie aufgrund ihres hohen Molekulargewichts aus den Zellen des Schaums nur wenig herausdiffundieren und somit im anschließenden Thermoformprozeß das Nachschäumen erleichtern, d.h. eine geringere Schaumdichte ermöglichen.
Polystyrolschaum, insbesondere in Form von Folien und Profilen, wird neuerdings aber aus Gründen des Umweltschutzes zunehmend mit Hilfe von Kohlendioxid oder Mischungen aus Kohlendioxid und ande¬ ren Gasen hergestellt:
EP 55,437 beschreibt die Herstellung von nachschäum- bzw. thermo- formbaren Polystyrolfolien mit kohlendioxidhaltigen Treibmitteln. Diese Folien haben erfahrungsgemäß eine rauhe Oberfläche und ein deutlich steif/sprödes Verhalten.
US 5,250,577 beschreibt die Herstellung von Folien aus Poly¬ styrolschaum mit reinem Kohlendioxid. Diese Folien sind weniger leicht entflammbar als die mit Kohlenwasserstoffen (insbesondere Pentan) getriebenen Folien und haben auch kein Ozon abbauendes Potential wie die mit Fluor-Chlor-Kohlenwasserstoffen (FCKW) ge¬ triebenen Folien. Allerdings ist das Nachschäumverhalten dieser Folien im Thermoformprozeß schlechter als das Verhalten von Folien, die mit herkömmlichen Treibmitteln hergestellt wurden. Vor allem sind die geformten Artikel verglichen mit den mit Hilfe von Pentan oder FCKW getriebenen Schäumen deutlich spröder, d.h. schlechter.
Es wurde nun gefunden, daß das Aufschäumen von schlagzähem Poly¬ styrol (HIPS, Block-Copolymere, ABS) oder Mischungen von schlag¬ zähem Polystyrol und Standardpolystyrol mit Kohlendioxid als
Treibmittel Schaumfolien und daraus gefertigte Artikel liefert, welche eine deutlich geringere Sprodigkeit aufweisen als die aus¬ schließlich aus Standardpolystyrol gefertigten. Vor allem Folien und Profile aus geschäumtem schlagzahem Polystyrol oder 5 Mischungen, die gesch umtes schlagzahes Polystyrol und Standard¬ polystyrol enthalten, sind f r den Einsatz als Gebrauchsgegen¬ stände besser geeignet, da sie mechanischen Belastungen besser standhalten als mit Kohlendioxid geschäumte Folien und Profile, die lediglich Standardpolystyrol enthalten. Diese Wirkung ist
10 nicht ohne weiters zu verstehen, weil die Wandstarken der Zell- wande von Schaumpolystyrol in der Größenordnung des Durchmessers der für schlagzahes Polystyrol typischen Kautschukpartikel lie¬ gen, sodaß die übliche Erklärung für den Schlagzäheffekt (vgl. A.Echte, in C.K. Riew (ed.), Adv.Chem.Ser. 222, 15 ff. (1989))
15 hier versagt .
Wahrend Standardpolystyrol ein Styrolhomopolymerisat ohne andere Zusätze als die niedermolekularen üblichen Hilfsmittel (Gleitmit¬ tel, Stabilisatoren, evt. Flammschutzmittel usw.) darstellt, ist 20 schlagzahes Polystyrol im weitesten, erfindungsgemäßen Sinn eine Mischung aus einem Styrolhomo- oder Copolymerisat mit einem darin heterogen verteilten Kautschuk.
Schlagzähes Polystyrol im Sinne der Erfindung sind demnach
25 Kautschuk in Teilchenform enthaltende Polymere mit mindestens 65 Gew.-% Styrol oder den üblicherweise als Äquivalente angesehenen Styrolabkommlingen. Beispielhaft seien genannt: schlagzahes Poly¬ styrol im engeren Sinne (HIPS) , Styrol-Acrylnitril-Copolymere (SAN) mit bis zu 35, bevorzugt 9 bis 33 und insbesondere 18 bis
30 27 Gew.-% Acrylnitril (ABS oder ASA), Styrol-Maleinsäureanhydrid- Copolymere mit bis zu 35 Gew.-% Malemsaureanhydrid, Styrol-N- Phenylmaleinimid-Copolymere mit bis zu 35 Gew.-% N-Phenylmaleini- mid, Styrol-Butylacrylat-Copolymere mit bis zu 35 Gew.-% Acryl- saure sowie deren Mischungen und die Polymeren oder Copolymeren
35 mit Styroläquivalenten wie Poly-alpha-methylstyrol usw. Bevorzugt werden (Homo)polystyrol und Styrol-Acrylnitril-Copolymere mit 18 bis 27 Gew.-% Acrylnitril eingesetzt. Ebenfalls als schlagzah mo¬ difiziertes Polystyrol haben Styrol- (Buta)dien-Blockcopolymeri- sate zu gelten.
40
Schlagzahes Polystyrol enthalt bis zu 18, bevorzugt 4 bis 10 Gew.-% einer Kautschukphase, welche hergestellt wurde aus bei¬ spielsweise Butadien und Isopren, bevorzugt Butadien.
45 Die Herstellung von schlagzahem Polystyrol kann durch absatzweise oder kontinuierliche Polymerisation der Styrolmonomeren, ggf. zu¬ sammen mit (Meth)acrylnitril, in Gegenwart einer der üblichen
Kautschuksorten wie Polybutadien und/oder Polyisopren oder einem sog. Blockkautschuk, in zwei oder mehr Reaktionszonen hergestellt werden (US 3,243,481; US 3,903,202). Bevorzugt wird das nach dem in DE 1,770,392 oder DE 2,525,019 beschriebenen Verfahren herge- stellte schlagzähe Polystyrol verwendet.
Gewöhnliches schlagzähes Polystyrol (HIPS) ist eine auf Polysty¬ rol als sog. Hartmatrix aufgebaute Formmasse, die einen Kautschuk, insbesondere einen Polybutadien- oder Acrylatkautschuk als fein dispergierte Phase enthält. Die mittlere Teilchengröße des Kautschuks für die Zweck der Erfindung ist nicht kritisch und kann z.B. im Bereich von etwa 0,3 bis 20, bevorzugt 1 bis 15, be¬ sonders bevorzugt 2 bis 10 μm (2.000 bis 10.000 nm; mittlerer Teilchendurchmesser z.B. berechnet aus elektronenmikroskopischen Dünnschnittaufnahmen) liegen. Der Kautschukgehalt kann z.B. bis 20, bevorzugt 4 bis 10 Gew.-% betragen, bezogen auf 100 Gew.-% schlagzähe Polystyrolmasse. Auch dieser Anteil ist nicht kri¬ tisch, sondern hängt weitgehend vom gewünschten Grad der Verbes¬ serung des mechanischen Verhaltens ab.
Schlagzähes Polystyrol besteht entweder aus einem Homopolymerisat von beispielsweise Styrol, p-Methylstyrol, alpha-Methylstyrol, 2,4-Dimethylstyrol sowie tert.-Butylstyrol, oder einem Copoly¬ merisat aus der o.g. Gruppe eines der vorgenannten Monomeren mit z.B. bis zu 35 Gew.-% eines Comonomeren. Bevorzugt wird Styrol allein oder in Mischung mit Acrylnitril eingesetzt.
Styrolcopolymerisate im Sinne der Erfindung sind Polymere mit mindestens 65 Gew.-% Styrol. Beispielhaft seien genannt: Styrol- Acrylnitril-Copolymere mit bis zu 35 Gew.-% Acrylnitril, bevor¬ zugt mit 9 bis 33, besonders bevorzugt mit 18 bis 27 Gew.-% Acrylnitril, Styrol-Maleinsäureanhydrid-Copolymere mit bis zu 35 Gew.-% Maleinsäureanhydrid, N-Phenylmaleinimid-Copolymere mit bis zu 35 Gew.-% N-Phenylmaleinimid, Styrol-Butylacrylat-Copoly- mere mit bis zu 35 Gew. -% Acrylsäure sowie deren Mischungen. Be¬ vorzugt werden Polystyrol und Styrol-Acrylnitril-Copolymere mit 18 - 27 Gew.-% Acrylnitril eingesetzt.
Styrol-Butadien-Blockcopolymere im Sinne der Erfindung haben fol- genden Aufbau:
( (S)m-B(B)n-)p
wobei S eine Sequenz von Styrolmonomeren mit einem Molekularge- wicht von 3.000 bis 500.000, bevorzugt 5.000 bis 250.000, beson¬ ders bevorzugt 10.000 bis 100.000, B eine Sequenz konjugierter Diene mit einem Molekulargewicht von 1.000 bis 500.000, bevorzugt
2.000 bis 200.000, besonders bevorzugt 3.000 bis 100.000 und m und n unabhängig voneinander ganze Zahlen von 1 bis 10 und p = ganze Zahlen von 2 bis 10.
Styrolmonomere im Sinne der vorstehenden Beschreibung der Copolymeren sind die für Homopolymere genannten.
Konjugierte Diene sind beispielsweise Butadien und Isopren, be¬ vorzugt Budadien. Die Styrol-Butadien-Blockcopolymere werden her- gestellt durch sequentielle anionische Polymerisation. Die Block¬ übergänge zwischen den Sequenzen S und B können scharf getrennt oder verschmiert sein, beispielsweise durch Zugabe sog. "randomi- zer" wie z. B. Tetrahydrofuran. Wenn p = 2 ist, bedeutet dies li¬ neare Blockcopolymere mit dem Aufbau S-B-S. Für p = 3 bis 10 re- sultieren sternförmige Blockcopolymere. Sternförmige Block¬ copolymere werden in der Regel erhalten durch Kupplung mehrerer "lebender" ionischer Polymerisate mit dem Sequenzaufbau (S)n(B)m»(S)n(B)m soll nicht bedeuten, daß eine oder mehrere Se¬ quenzen S vor einer oder mehrerer Sequenzen B stehen. Vielmehr bedeutet (S)n(B)m, daß für alle n von 2 bis 10 und alle m von 2 bis 10 die Sequenzen S und B in jeder beliebigen Reihenfolge auf¬ einander folgen können.
Die unterschiedlichen Blockcopolymere können, je nach Anteil der monomeren monoethylenisch ungesättigten Aromaten und der konju¬ gierten Diene, entweder thermoplastische Elastomere oder schlag¬ feste Thermoplaste sein. Im Falle der thermoplastischen Elasto¬ meren ist die Phase mit der niedrigeren Glastemperatur, d. h. die konjugierten Diene in Sequenz B, volumenmäßig größer als die Phase mit der höheren Glastemperatur. Im Fall der schlagfesten Thermoplaste ist das Phasen-Volumenverhältnis umgekehrt.
Beispiele für lineare thermoplastische Elastomere sind die Kraton®-Marken der Shell, die Finaprene®-Marken der Fina Chemicals. Beispiele für lineare schlagfeste Thermoplaste sind Styrolux® KR 2691 der BASF Aktiengesellschaft, die Fina- clear®-Marken der Fina Chemicals, die Clearen®-Marken der Denka Kagaku und die Asaflex®-Marken der Asahi. Beispiele für sternför¬ mige schlagfeste Thermoplaste sind Styrolux® 684 D der BASF Aktiengesellschaft und die K-Resin®-Marken der Phillips Petroleum Company.
Zum Verschäumen können alle Mischungen eingesetzt werden, die mehr als 90 Gew.-% Kohlendioxid enthalten. Die restlichen Anteile von bis zu 10 Gew.-% können beispielsweise Butan, Pentan, Hexan, halogenierte aliphatische Kohlenwasserstoffe, Methanol, Ethanol, Propanol sein. Bevorzugt wird annähernd reines Kohlendioxid in
einer Mengen von z.B.0,5 bis 6 Gew.-% bezogen auf die Summe der Polymeren verwendet.
Das Treibgas wird bevorzugt in flüssiger Form verwendet und zur Polymerschmelze zudosiert, d.h. zugegeben, die vorher bereits ho¬ mogen gemischt sein kann. Typischerweise wird eine Tandem- Extru- sionsanlage verwendet, ist jedoch nicht unbedingt erforderlich. Beim Tandem-Extrusionsprozeß wird üblicherweise ein Primärextru¬ der zum Aufschmelzen der Polymermischung eingesetzt, homogeni- siert und anschließend das Treibmittel hinzugegeben. In einem Se¬ kundärextruder wird homogen durchmischt.
Weitere Beispiele möglicher Verfahren sind solche mit nur einem Extruder mit Abkühlzone oder einem Doppelschneckenextruder unter Verwendung eines Wärmetauschers.
Bei der Schaumfolienextrusion wird typischerweise über eine Ring- düse« in eine Zone niedrigeren Drucks extrudiert, wobei ein Schaumfolienschlauch mit einer Dicke von bevorzugt bis zu 1 cm, besonders bevorzugt bis zu 0,5 cm entsteht.
Bei der Herstellung von Schaumprofilen wird das Polymer-Treibmit¬ telgemisch über eine Profildüse extrudiert, an die sich eine Kalibriereinrichtung anschließt.
Es versteht sich, daß sich das erfindungsgemäße Verfahren im übrigen nicht vom Stande der Technik unterscheidet; beispiels¬ weise können die üblichen Additive, wie Pigmente, Nukleierungs- mittel, Stabilisatoren etc. an jeder Stelle des Prozesses hinzu- gegeben werden, bevorzugt aber in den Extruder.Beispiele für Nukleierungsmittel, welche die Zellgröße verringern sind Talkum, Kieselsäure-Aerosole, aber auch chemische Treibmittel wie Mischungen aus Zitronensäure und Natriumhydrogencarbonat.
Die erzielbare Schaumdichte liegt i.a. zwischen 30 und 200 kg/m3, bevorzugt zwischen 40 und 160 kg/m3. Die Zelldurchmesser in allen Raumrichtungen sind bevorzugt kleiner als 1 mm und besonders be¬ vorzugt kleiner als 0,5 mm. Das Aufblasverhältnis, welches durch das Dehnen des extrudierten Schlauchs über einen Dorn eingestellt werden kann, liegt i.a. bei einem Wert von 2 oder mehr.
Die Schaumtemperatur an der Düse sollte bei Folien und Profilen bevorzugt unter 160 °C liegen. Um eine thermoformbare Folie zu er¬ halten, wird der Schlauch an einer oder mehreren Stellen aufge- schnitten und aufgewickelt. Der Schlauch kann jedoch auch ohne
seitliches Aufschlitzen verwendet werden, z. B. f r Etiketten¬ hülsen.
In dem Thermoformprozeß, der sich an die Schaumfolienherstellung anschließen kann, und der üblicherweise nach einer Wartezeit von mehreren Stunden bis Tagen stattfindet, wird die Schaumfolie zu Formkörpern wie Bechern, Tassen, Schalen etc. verarbeitet.
In den nachstehenden Beispielen wurden folgende Materialien verwendet:
A) Polystyrol, glasklar: Gewichtsmittel Mw = 240.000 g/mol, Mw/Mn = 2.4; MVR = 3.1
(Polystyrol 158 K der BASF) .
B) Polystyrol, glasklar: Gewichtsmittel Mw = 315.000 g/mol, Mw/Mn = 2.6; MVR = 1.1
(Polystyrol 165 H der BASF) .
C) Polystyrol, glasklar: Gewichtsmittel M„ = 180.000 g/mol, Mw/Mn = 2.1; MVR = 9.3 (Polystyrol KR 2608 der BASF) .
D) Polystyrol, schlagfest: Iodzahl 40; Vicat B = 89°C; MVR = 4.3 (Polystyrol 585 K der BASF); schlagfestes Polystyrol, herge¬ stellt gemäß EP 274 109.
E) Polystyrol, schlagfest: Iodzahl 63, Vicat B 89 °C, MVR = 3.1 (Polystyrol KR 2713 der BASF); schlagfestes Polystyrol, ent- haltend 15 % Polybutadien als Zellteilchen mit einer mittle¬ ren Teilchengröße von 2,5 μm.
F) S/B-Blockcopolymer: S/B-Verhältnis 75/25, MVR = 14 (Styrolux® KR 2688 der BASF) .
Die vorstehenden Angaben zu den technischen Eigenschaften der verwendeten Produkte wurden nach folgenden Meßmethoden ermittelt:
Vicat B t°C] nach ISO 306 Schmelzindex MVR (200/5) [ml/10 min] nach ISO 1133
Molekulargewicht Mw, Mn: Gelpermeationschromatographie an Polysty¬ rol-Gelen mit Tetrahydrofuran als Eluent bei 23°C; Eichung mit mo¬ nodispersem Standard-Polystyrol
Versuchsauf au
Die Versuche wurden auf einer üblichen Tandem-Anlage durchge¬ führt. Diese Anlage besteht aus einem Einschneckenkühlextruder (KE 90 der Fa. Berstorff, L = 32 D) und einem seitlich ange¬ schlossenen ZweiSchneckenextruder (ZDSK 53; Herst. Werner & Pfleiderer, L = 21 D) zum Aufschmelzen der Formmasse und Einmi¬ schen des Treibmittels.
Der Folienblaskopf hatte einen Düsendurchmesser von 100 mm. Die Spaltweiten betrugen 0,5 und 0,7 mm. Der Kühlbirnendurchmesser betrug 340 mm. Die Cθ2-Dosierung erfolgte in flüssiger Form über eine gekühlte Membranpumpe. Der Mengenstrom wurde über die Ge¬ wichtsabnahme der auf einer Waage stehenden C02-Flasche geregelt.
Folien mit Schlagzähkomponente
In einer Versuchsreihe sollte die Zähigkeit einer ca. 2 mm dicken Folie aus Komponente A verbessert werden. Dazu wurden der Kompo- nente A schlagzähes Polystyrol zugegeben. Die Spaltweite wurde auf 0,7 mm eingestellt. Der Durchsatz betrug 50 kg/h. Es wurden 1,8 % C02 zudosiert.
Die Folien hatten eine einheitliche Stärke von 1,9 mm. Masse- temperatur, Dichte und Nachschäumvermögen der bei diesen Versu¬ chen hergestellten Schaumfolien sind in der folgenden Tabelle zusammengefaßt.
Tabelle 1
(*Reproduktionsversuch)
Das Nachschäumvermögen der 1,9 mm dicken Folien aus A allein liegt bei ca. 60 % und ist somit deutlich schlechter als bei den dünnen Folien. Die Zugabe von 10 % der schlagzahen Komponente verbessert das Nachschäumvermögen auf Werte, die zwischen 73 und 80 % liegen. Dies kann auf der Absenkung der Vicattemperatur be¬ ruhen. In 100°c heißem Wasser sind die Folie somit weicher als die ausschließlich aus A gefertigten Proben.
Diese Tendenz bestätigt sich bei der Probe, die 30 % E enthält. Bei ihre steigt das Nachschäumvermögen auf 120 % an. Eine weitere Erhöhung des zugegebenen Anteils führt jedoch zu einer drasti¬ schen Abnahme des Nachschaumvermogens. Dies kann darauf beruhen, daß die Wärmeformbestandigkeit (Vicat) soweit abgesunken ist, daß der Schaum im kochenden Wasser kollabiert.
Verbesserung des Nachschaumvermogens
Das Nachschäumvermögen einer z.B. mit FCKW geschäumten Folie be¬ ruht darauf, daß die FCKW - Moleküle den Schaum aufgrund ihrer geringen Diffusionsgeschwindigkeit kaum verlassen können. Wahrend der Lagerzeit der Folien diffundiert Luft in die Zellen. Der Zei¬ linnendruck steigt. Dieser erhöhte Innendruck wird zum Nach- schaumen genutzt.
Bei einer CO2 geschäumten Folie diffundiert, aufgrund ahnlich gro¬ ßer Diffusionskoeffizienten, die Luft genau so schnell in die Zellen wie das CO2 hinaus. Es kann sich kein Überdruck in den Zel¬ len bilden.
Hier kann ein Nachschaumen unter Wasserdampf Abhilfe schaffen. Der Wasserdampf diffundiert nämlich ca. 20 mal schneller in die Folie als Luft oder CO2 hinaus.
Diese Überlegung bestätigt sich, wie die nachfolgende Tabelle 2 zeigt. Die eingespannte Folie wurde dabei für 20 bzw. 30 sec Was¬ serdampf unterschiedlichen Drucks ausgesetzt.
Es ist bekannt, daß thermoplastische Polymere, die von Natur aus spröde sind (z.B. Polystyrol, Polymethylmethacrylat, Poly(styrol- acrylnitril) durch das Einlagern von elastomeren diskreten Mikro- partikeln schlagzäh werden.
Tabelle 2
Claims
1. Schaumformiges Styrolpolymerisat aus einem durch Extrusion aufgeschäumten und gegebenenfalls weiterverarbeiteten Styrol- homo- oder copolymeren und einem Treibmittel, das im wesent¬ lichen aus Kohlendioxid besteht, enthaltend schlagzah modifi¬ ziertes Polystyrol.
2. Schaumformiges Styrolpolymerisat nach Anspruch 1, dadurch ge¬ kennzeichnet, daß es, bezogen auf den gesamten Polymeranteil, 1 bis 30 Gewichtsprozent schlagzähes Polystyrol enthält, wo¬ bei der Kautschukanteil eingerechnet ist.
3. Schaumformiges Styrolpolymerisat nach Anspruch 1, dadurch ge¬ kennzeichnet, daß es, bezogen auf den gesamten Polymeranteil, 0,5 bis 20 Gew.-% eines teilchenformigen Kautschuks enthalt.
4. Schaumformiges Styrolpolymerisat nach Anspruch 1, dadurch ge- kennzeichnet, daß es eine Zellstruktur mit einem mittlerem
Zelldurchmesser von weniger als 1 mm besitzt.
5. Schaumformiges Styrolpolymerisat nach Anspruch 1, dadurch ge¬ kennzeichnet, daß es eine Dichte zwischen 30 und 200 kg/m3 aufweist.
6. Schaumformiges Styrolpolymerisat nach Anspruch 1, dadurch ge¬ kennzeichnet, daß es eine Dichte zwischen 45 und 150 kg/m3 aufweist.
7. Schaumformiges Styrolpolymerisat nach Anspruch 1, dadurch ge¬ kennzeichnet, daß es in Form einer Folie mit einer Folien¬ starke von 10 mm oder weniger vorliegt.
8. Schaumformiges Styrolpolymerisat nach Anspruch 1, dadurch ge¬ kennzeichnet, daß es in Form eines Profils vorliegt.
9. Schaumbare Mischung, bestehend im wesentlichen aus einem Styrolpolymerisat, schlagfestem Polystyrol bzw. dessen partikelformigem Kautschukanteil und Kohlendioxid als Treib¬ mittel.
10. Schaumbare Mischung nach Anspruch 9, enthaltend ein Nukleierungsmittel.
11. Verfahren zur Herstellung eines schaumformigen Styrol- polymerisats nach einem der Ansprüche 1 bis 8, gekennzeichnet durch die folgenden Schritte:
- Aufschmelzen und Mischen eines Styrolpolymerisats und eines schlagfesten Polystyrols;
kontinuierliche Zudosierung im wesentlichen von Kohlen¬ dioxid in einer Menge von 0,5 bis 6 Gew.-%, bezogen auf die gesamte Polymermenge, in die geschmolzene Mischung
Vermischung von Kohlendixoid und Polymermischung;
Extrusion und Aufschäumen der Mischung bei einer Temperatur von weniger als 160 °C sowie gegebenenfalls
Nachverformung des Rohschaums.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß Koh- lendioxid in flussiger Form dosiert wird
13. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die Extrusion über eine Profildüse vorgenommen wird.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die Extrusion über eine Ringdüse vorgenommen und der erhaltene Schlauch mit Hilfe eines Dorns geweitet wird.
15. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß das Extrudat vor der Weiterverarbeitung durch eine Wärmebehand¬ lung gealtert wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP4445140.7 | 1994-12-17 | ||
DE19944445140 DE4445140A1 (de) | 1994-12-17 | 1994-12-17 | Mit Kohlendioxid getriebener Schaum aus Styrolpolymeren |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1996018672A2 true WO1996018672A2 (de) | 1996-06-20 |
WO1996018672A3 WO1996018672A3 (de) | 1996-08-29 |
Family
ID=6536165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1995/004811 WO1996018672A2 (de) | 1994-12-17 | 1995-12-07 | Mit kohlendioxid getriebener schaum aus styrolpolymeren |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE4445140A1 (de) |
WO (1) | WO1996018672A2 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6093352A (en) * | 1998-09-16 | 2000-07-25 | Owens Corning Fiberglas Technology, Inc. | Process for producing foam by monitoring key process parameters |
US6123881A (en) * | 1998-09-16 | 2000-09-26 | Owens Corning Fiberglas Technology, Inc. | Process for producing extruded foam products having polystyrene blends with high levels of CO2 as a blowing agent |
US6187831B1 (en) | 1998-09-16 | 2001-02-13 | Owens Corning Fiberglas Technology, Inc. | Process for producing extruded foam products with higher levels of CO2 as a blowing agent |
US6268046B1 (en) | 1998-10-21 | 2001-07-31 | Owens Corning Fiberglas Technology, Inc. | Process for producing extruded foam products having polystyrene blends with high levels of CO2 as a blowing agent |
EP2072563B2 (de) † | 2007-12-19 | 2015-07-29 | Armacell Enterprise GmbH & Co. KG | Polymermischung für thermoplastische zelluläre Materialien |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10226041A1 (de) * | 2002-06-12 | 2003-12-24 | Brugg Rohrsysteme Gmbh | Verfahren zur Herstellung eines wärmeisolierten Leitungsrohres |
DE102006004896A1 (de) * | 2006-02-03 | 2007-08-16 | Depron B.V. | Thermoplastischer Schaum und Verpackungsschale aus thermoplastischem Schaum |
BE1019920A5 (nl) * | 2011-05-31 | 2013-02-05 | Orac Holding Nv | Werkwijze voor de continue vervaardiging van polystyreen profielen. |
DE112013001864A5 (de) | 2012-04-02 | 2015-03-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Herstellung von Lebensmittelverpackungen und nach diesem Verfahren hergestellte Lebensmittelverpackung |
EP3632970B1 (de) | 2018-10-04 | 2022-04-27 | Basf Se | Verfahren zur kontinuierlichen herstellung eines teilkristallinen thermoplastischen polymerschaums |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0055437A2 (de) * | 1980-12-27 | 1982-07-07 | Sekisui Kaseihin Kogyo Kabushiki Kaisha | Verfahren zur kontinuierlichen Herstellung von Gegenständen aus geschäumtem Polystyrol |
DE3923913A1 (de) * | 1989-07-19 | 1991-02-07 | Marquet & Cie Noel | Verfahren zur herstellung von geschaeumten kunststoffen |
US5244927A (en) * | 1992-06-09 | 1993-09-14 | The Dow Chemical Company | Low density styrene polymer foams and process for preparing same |
US5288740A (en) * | 1992-10-23 | 1994-02-22 | The Dow Chemical Company | Process for making alkenyl aromatic foam packing bodies with carbon dioxide and/or ethane blowing agent systems |
WO1994028058A1 (de) * | 1993-05-27 | 1994-12-08 | Basf Aktiengesellschaft | Unter verwendung halogenfreier treibmittel hergestellte schaumstoffplatten |
-
1994
- 1994-12-17 DE DE19944445140 patent/DE4445140A1/de not_active Withdrawn
-
1995
- 1995-12-07 WO PCT/EP1995/004811 patent/WO1996018672A2/de active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0055437A2 (de) * | 1980-12-27 | 1982-07-07 | Sekisui Kaseihin Kogyo Kabushiki Kaisha | Verfahren zur kontinuierlichen Herstellung von Gegenständen aus geschäumtem Polystyrol |
DE3923913A1 (de) * | 1989-07-19 | 1991-02-07 | Marquet & Cie Noel | Verfahren zur herstellung von geschaeumten kunststoffen |
US5244927A (en) * | 1992-06-09 | 1993-09-14 | The Dow Chemical Company | Low density styrene polymer foams and process for preparing same |
US5288740A (en) * | 1992-10-23 | 1994-02-22 | The Dow Chemical Company | Process for making alkenyl aromatic foam packing bodies with carbon dioxide and/or ethane blowing agent systems |
WO1994028058A1 (de) * | 1993-05-27 | 1994-12-08 | Basf Aktiengesellschaft | Unter verwendung halogenfreier treibmittel hergestellte schaumstoffplatten |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6093352A (en) * | 1998-09-16 | 2000-07-25 | Owens Corning Fiberglas Technology, Inc. | Process for producing foam by monitoring key process parameters |
US6123881A (en) * | 1998-09-16 | 2000-09-26 | Owens Corning Fiberglas Technology, Inc. | Process for producing extruded foam products having polystyrene blends with high levels of CO2 as a blowing agent |
US6187831B1 (en) | 1998-09-16 | 2001-02-13 | Owens Corning Fiberglas Technology, Inc. | Process for producing extruded foam products with higher levels of CO2 as a blowing agent |
US6268046B1 (en) | 1998-10-21 | 2001-07-31 | Owens Corning Fiberglas Technology, Inc. | Process for producing extruded foam products having polystyrene blends with high levels of CO2 as a blowing agent |
EP2072563B2 (de) † | 2007-12-19 | 2015-07-29 | Armacell Enterprise GmbH & Co. KG | Polymermischung für thermoplastische zelluläre Materialien |
Also Published As
Publication number | Publication date |
---|---|
DE4445140A1 (de) | 1996-06-20 |
WO1996018672A3 (de) | 1996-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2144959B1 (de) | Elastischer partikelschaumstoff auf basis von polyolefin/styrolpolymer-mischungen | |
EP2384355B1 (de) | Elastischer partikelschaumstoff auf basis von polyolefin/styrolpolymer-mischungen | |
EP2384354B1 (de) | Elastischer partikelschaumstoff auf basis von polyolefin/styrolpolymer-mischungen | |
EP0700413A1 (de) | Unter verwendung halogenfreier treibmittel hergestellte schaumstoffplatten | |
DE4416861A1 (de) | Expandierbare Styrolpolymerisate | |
WO2012062682A1 (de) | Verfahren zur herstellung von expandierbaren thermoplastischen partikeln mit verbesserter expandierbarkeit | |
DE69022838T2 (de) | Polyphenylenetherschaumstoffe abgeleitet von expandierbaren Mikroteilchen aus Polyphenylenether mit niedriger Grenzviskosität. | |
DE69925014T2 (de) | Verfahren zur herstellung von extrudiertem schaumstoff | |
EP0708145B1 (de) | Thermoplastische Formmassen | |
WO1996018672A2 (de) | Mit kohlendioxid getriebener schaum aus styrolpolymeren | |
EP0682077B1 (de) | Expandierbare Styrolpolymerisate | |
DE102004008201A1 (de) | Verfahren zur Herstellung füllstoffhaltiger Schaumstoffplatten | |
EP1031600B1 (de) | Schaumstoffplatten mit verminderter Wärmeleitfähigkeit | |
WO2009133167A1 (de) | Ps-schaumstoffe mit geringem metallgehalt | |
EP0872513A1 (de) | Expandierbare Styrolpolymerisate | |
DE2434206A1 (de) | Verfahren zur herstellung von profilprodukten | |
DE60021602T2 (de) | Verfahren zur herstellung von geschäumten kunststoffen und vorrichtung zur durchführung des verfahrens | |
DE69933936T2 (de) | Verfahren zur herstellung von styrolschaumstoff | |
DE19710442A1 (de) | Expandierbare Styrolpolymerisate | |
DE69416833T2 (de) | Verbesserte styrolharz-formzusammensetzung und schaum | |
EP0088960A1 (de) | Thermoplastische Formmasse | |
EP1086177A1 (de) | Thermoplastische formmassen | |
EP4153668B1 (de) | Kleinzellige polystyrol-schäume und verfahren zu deren herstellung | |
EP0767213A2 (de) | Thermoplastische Formmassen | |
DE69118557T2 (de) | Hochglänzende schlagfeste Styrolharzzusammensetzung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
AK | Designated states |
Kind code of ref document: A3 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |