[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1995003619A1 - Schalter zur strombegrenzung - Google Patents

Schalter zur strombegrenzung Download PDF

Info

Publication number
WO1995003619A1
WO1995003619A1 PCT/DE1994/000862 DE9400862W WO9503619A1 WO 1995003619 A1 WO1995003619 A1 WO 1995003619A1 DE 9400862 W DE9400862 W DE 9400862W WO 9503619 A1 WO9503619 A1 WO 9503619A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch according
current
switch
contacts
moving contact
Prior art date
Application number
PCT/DE1994/000862
Other languages
English (en)
French (fr)
Inventor
David Walter Branston
Jörg KIESER
Werner Hartmann
Reinhard Maier
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19934325030 external-priority patent/DE4325030A1/de
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE59405547T priority Critical patent/DE59405547D1/de
Priority to US08/586,705 priority patent/US5859579A/en
Priority to EP94921596A priority patent/EP0750788B1/de
Priority to JP50486195A priority patent/JP3636461B2/ja
Publication of WO1995003619A1 publication Critical patent/WO1995003619A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/14Electrothermal mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H77/00Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting
    • H01H77/02Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism
    • H01H2077/025Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with pneumatic means, e.g. by arc pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/127Automatic release mechanisms with or without manual release using piezoelectric, electrostrictive or magnetostrictive trip units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H77/00Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting
    • H01H77/02Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism
    • H01H77/04Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrothermal opening

Definitions

  • the invention relates to a switch for current limitation, with current connections and contacts, one of which is a fixed contact and the other a moving contact, and with an associated drive for opening the moving contact when a predetermined electrical current is exceeded.
  • ballasts for switches which specifically use the so-called PTC effect or PTC effect (positive temperature coefficient).
  • High-current resistors are used, which essentially consist of a polyethylene layer filled with soot, which has the PTC effect.
  • the base of the polymer resistor body should be connected to an electrode, a pressure device being present which applies a pressure perpendicular to the Electrodes and the bases of the resistance body of the conductive polymer layer exerts.
  • the object of the invention is to provide a switch for current limitation which operates on a different physical principle.
  • the drive for opening the moving contact is a thermodynamic drive. With such a drive, it is possible to apply sufficient switching energies by thermal means.
  • the contacts are arranged in a closed insulating material housing and a disk-shaped resistance body is arranged between the contacts.
  • a disk-shaped resistance body is arranged between the contacts.
  • the resistance body can consist of graphite-containing plastic, for example based on polyethylene, or can be formed by a large number of carbon fibers, which are brought into a film-like or felt-like consistency.
  • the switch according to the invention is used in energy distribution networks in the low-voltage range.
  • parts of the network In the event of a fault, especially in the event of a short circuit, parts of the network must be disconnected at higher branches.
  • the shutdown should take place as soon as possible, especially within the first half-wave concerned.
  • a limitation of the short-circuit current is also often required if the switch-off cannot be recognized quickly enough or if suitable measures can be taken.
  • the limitation of the short-circuit current also becomes a limitation of the amplitudes of the voltage peaks generated during the shutdown due to the inductive load component in the network and at the consumer and thus reduces the risk of further damage due to insulation faults which can be caused by such overvoltages.
  • the requirements for the required components increase, which must therefore have a high selectivity.
  • This state of the art corresponds in particular to such methods of causing a current limitation or current interruption in the event of a short circuit in low-voltage networks.
  • the most widespread means for this purpose is the circuit breaker, which, however, always carries the current as a zero-point switch for at least one half-wave and is therefore not suitable for current limiting and quick disconnection. Due to the relatively high masses that are moved in circuit breakers, rapid disconnection cannot be achieved with reasonable effort. Fast switches for high currents require very high acceleration forces to move the moving masses Bring electrode systems in milliseconds to distances of several millimeters in short times. This is generally not possible with conventional spring energy stores, so that correspondingly powerful drive mechanisms are necessary.
  • a bistable limiter can also be created by appropriate design of the switch.
  • Such a switch according to the invention can be locked in the closed state and can be set by a suitable force accumulator to a response threshold which is above the maximum current to be expected in the high-load range.
  • the volume resistance is so low that the nominal current losses are negligible.
  • the self-response threshold of the limiter is in the order of the prospective short-circuit current.
  • the contact resistances and thus the energy consumption in the area of the switch contacts increase.
  • the self-response threshold drops to a value in the nominal current range.
  • the unlocking can advantageously be triggered by an electronic short-circuit early detection.
  • the current limiter according to the invention is even able not only to limit the current but also to interrupt it completely, i.e. so to work as an opening switch.
  • a second locking unit is provided which locks the limiter operating as a quick switch in the open state. The limiter is thereby prevented from automatically returning to the closed state after a successful power interruption. A real bistable behavior is thus achieved.
  • a passive circuit with RLC elements can ensure that no harmful overvoltage peaks are generated in the event of the current being separated during the current half-wave.
  • voltage-limiting elements such as zener diodes, varistors, surge arresters or the like, can also be present.
  • FIGS. 2 to 4 show three alternative developments of such a switch for designing bistable limiters
  • the figure denotes an insulating material housing, which, for example, forms a rotationally symmetrical hollow cylinder about an axis I.
  • the hollow cylindrical insulating material housing 1 is closed by a flange 6.
  • a fixed contact 2 which has a current connection 2a in the axial direction, is fitted into the insulating housing 1 rotationally symmetrically to the axis I.
  • a moving contact 3 the current connection 3a of which also extends in the axial direction I, is fitted into the insulating housing 1 so as to be longitudinally movable.
  • a disk-shaped resistance body 4 is arranged between the fixed contact 2 and the moving contact 3 such that it rests on the surface of the fixed contact 2 without a space. For this purpose, the outer contour of the resistance body 4 is precisely fitted into the insulating housing 1.
  • a separating surface 8 which characterizes a variable space.
  • an expansion volume 9 is provided all around the wall of the insulating material housing 1.
  • the moving contact 3 is connected with its current connection 3a through a bellows 5 to the separating surface 8 of the resistance body. pers 4 pressed.
  • the spring body 5 defines a mechanical pretension, when the movement contact 3 is overcome, it is displaced in the horizontal direction.
  • the displacement can be limited by a ring 10 encircling the insulating housing 1, a suitable stroke distance d being able to be specified by appropriate dimensioning of an annular attachment part 3b on the moving contact 3 on the one hand and of the encircling ring 10 on the other hand.
  • the power connection 3a points in the figure on its outer
  • the switch described can be switched on in conventional energy distribution networks.
  • the current flows through the current connection 2a, the fixed contact 2, the resistance body 4 onto the moving contact 3 and from there via the current connection 3a further into the network.
  • the high-current discharge initially heats up the enclosed gas volume over the surface via the fixed contact 2 and the disk-shaped resistance body attached to it.
  • the resulting pressure wave displaces the moving contact 3 until it stops, locking in the open state via the pawl 7a and notch 7b.
  • the response threshold of the monostable switch shown in FIG. 1 is thus determined by the pressure force of the spring 5. This makes the switch self-triggering, but not controllable.
  • the contact pressure spring 5 is fastened to an axially movable part 6b of the housing cover 6 with the parts 6a and 6b.
  • the part 6b acting as a spring abutment is locked in position a via a locking mechanism 11a and 11b, so that the spring 5 is preloaded and generates the pressing force of the moving electrode 3 on the resistance body necessary for the closed state.
  • a spring 12 provided to accelerate the opening process is biased.
  • the latch 11 is unlocked by an actuator 13
  • the spring abutment 6b is accelerated in the axial direction away from the housing 1 by the springs 5 and 12, so that the contact force between the moving electrode 3 and the resistance body 4 drops to very low values within a very short time. This increases the contact resistance very strongly and the response threshold of the electrothermal drive drops to a value within the nominal current range of the switch.
  • the electrothermal drive is triggered and the switch limits and interrupts or opens the current within a very short time, i.e. far below the prospective short-circuit current.
  • the mechanism 3a and 7a and 7b locks the moving electrode 3 and thereby prevents the switch from being inadvertently closed again.
  • the actuator 13 is activated and triggered, for example, by electronic short-circuit detection.
  • the opening spring 12 acts directly on the moving electrode 3 and thus supports the opening by direct mechanical acceleration. This further accelerates the opening process and more strongly limits the current The same effect can be achieved if the opening spring 12 does not attach to the electrode 3, but rather to the guide element 3b or to the power supply 3a mechanically coupled to the moving electrode 3.
  • actuator 14 which is actuated simultaneously with the unlocking actuator 13. When actuated, the actuator 14 reduces its length, so that the contact pressure force is already reduced. is moved before the moving electrode 3 is moved by the opening force memory.
  • the piezoelectric actuator 14 is arranged parallel to the opening spring 12 and is lengthened when activated. As a result, the contact pressure force of the pressure spring 5 is briefly overcompensated and the spring action is supported in the initial phase of the opening process.
  • Curve 51 describes the time course of the prospective short-circuit current.
  • Curve 52 describes the current through the uncontrolled limiting element of conventional design, the value A indicating the fixed response threshold.
  • Curve 53 describes the current through the new bistable limiter or rapid switch, the response threshold B of the locked limiter being at or even above the prospective short-circuit current maximum.
  • the threshold C of the ent unlocked limiter is within the nominal Nenn ⁇ trom Suitees I, so that a very early initiation can occur at hazardous current values. It is triggered by active unlocking via the short-circuit early detection electronics and the unlocking actuator 13.
  • the short-circuit early detection electronics detect short circuits within a few microseconds after zero current. Due to the small moving masses in the actuator 13 and in the locking mechanisms 11a and 11b, a very early
  • the actuator 13 used for unlocking can be designed as an electromechanical or electromagnetic actuator. However, it can also be designed as a piezoelectric or piezostrictive element to accelerate the unlocking process due to reduced accelerated masses. Furthermore, an actuator with a magnetostrictive element can be used as an active component.
  • bistable limiters described which operate as current limiters, can be combined with early electronic short-circuit detection.
  • the limiter can operate as a current-limiting quick switch.
  • the suitable circuits for early detection of short circuits are known from the prior art.
  • the resistance body 4 can be made of conductive plastic, for example the known electrically conductive polyethylene.
  • conductive plastic for example the known electrically conductive polyethylene.
  • graphite can be used for filling.
  • the resistance body 4 can also be formed by graphite fibers, which have been brought into a foil or felt-like consistency by appropriate processing.
  • a defined, conductive, non-organic material can also be used instead of the previously made conductive organic material, such as soot-filled polyethylene.
  • highly doped semiconductor materials such as, in particular, polycrystalline silicon carbide, can also be used as resistance bodies.
  • the spatial shape can deviate from the rotational symmetry and, for example, be rectangular with flat resistance bodies. It can several resistance bodies can also be connected in series. Corresponding means for ventilating the interior of the housing from the insulating housing 1 can also be provided.

Landscapes

  • Switches Operated By Changes In Physical Conditions (AREA)
  • Breakers (AREA)
  • Thermally Actuated Switches (AREA)

Abstract

Derartige Schalter haben Stromanschlüsse für Kontakte, wobei der eine Kontakt ein Festkontakt und der andere Kontakt ein Bewegkontakt sein kann. Es ist ein Antrieb zum Öffnen des Bewegkontaktes bei Überschreiten einer vorgegebenen elektrischen Stromstärke vorgesehen. Erfindungsgemäß ist der elektrische Antrieb ein thermoelektrischer Antrieb. Dazu sind die Kontakte (2, 3) in einem abgeschlossenen Isolierstoffgehäuse (1) angeordnet und ist zwischen den Kontakten (2, 3) ein scheibenförmiger Widerstandskörper (4) vorhanden. Ein solcher Schalter kann vorteilhafterweise auch als bistabiler Limiter ausgelegt sein.

Description

Beschreibung
Schalter zur Strombegrenzung
Die Erfindung bezieht sich auf einen Schalter zur Strom¬ begrenzung, mit Stromanschlüssen und Kontakten, von denen der eine ein Festkontakt und der andere ein Bewegkontakt ist, und mit einem zugehörigen Antrieb zum Öffnen des Bewegkontaktes bei Überschreiten einer vorgegebenen elektrischen Strom- stärke.
In Energieverteilungsnetzen soll im Kurzschlußfall der flie¬ ßende Strom möglichst gut begrenzt werden, um Schäden an Lei¬ tungen und Verbrauchern zu verhindern, die sonst nur durch massive Überdimensionierung auszuschließen sind. Konven¬ tionelle mechanische Niederspannungsschalter beziehen die für das Ausschalten erforderliche mechanische Energie aus einem Federspeicher. Gegebenenfalls kann eine zusätzliche Unter¬ stützung durch das Eigenmagnetfeld des Kurzschlußstromes er- folgen. Die Öffnungsgeschwindigkeit bei solchen Schaltern wird begrenzt durch den komplexen mechanischen Aufbau einer¬ seits und der begrenzten Federenergie andererseits. Dadurch ist die strombegrenzende Wirkung derartiger Schalter limi¬ tiert.
Aus der WO-A-91/12643 und der EP-A-0 487 920 sind strombe¬ grenzende Anordnungen als Vorschaltgeräte für Schalter be¬ kannt, die speziell den sog. Kaltleiter- oder PTC-Effekt (positive temperature coefficient) ausnutzen. Dabei werden Hochstromwiderstände verwendet, die im wesentlichen aus einer mit Ruß gefüllten Polyethylenschicht bestehen, welche den PTC-Effekt aufweist. Zur Gewährleistung des PTC-Effektes soll bei einem solchen als Schutzelement verwendbaren Hochstrom- widerstand der Polymer-Widerstandskörper mit seinen Grundflä- chen mit einer Elektrode verbunden sein, wobei eine Druckein¬ richtung vorhanden ist, die einen Druck senkrecht auf die Elektroden und die Grundflächen des Widerstandskörpers der leitfähigen Polymerschicht ausübt.
Aufgabe der Erfindung ist es demgegenüber, einen Schalter zur Strombegrenzung anzugeben, der nach anderem physikalischen Prinzip arbeitet.
Die Aufgabe ist erfindungsgemäß bei einem Schalter der ein¬ gangs genannten Art dadurch gelöst, daß der Antrieb zum Öff- nen des Bewegkontaktes ein thermodynamischer Antrieb ist. Mit einem solchen Antrieb ist es möglich, auf thermischem Wege ausreichende Schaltenergien aufzubringen.
Bei der Erfindung sind die Kontakte in einem abgeschlossenen Isolierstoffgehäuse angeordnet und zwischen den Kontakten ein scheibenförmiger Widerstandskörper angeordnet. Vorzugsweise ist zwischen Widerstandskörper und Bewegkontakt im Isolier¬ stoffgehäuse ein Expansionsvolumen vorhanden. Der Wider- standskörper kann dabei aus graphithaltigem Kunststoff, bei- spielsweise auf der Basis von Polyethylen, bestehen, oder durch eine Vielzahl von Kohlenstoffasern gebildet sein, die in eine folien- oder filzartige Konsistenz gebracht sind.
In Abweichung zum Stand der Technik wird also bei der Erfin- düng die zur Kontakttrennung erforderliche mechanische
Schaltenergie elektrothermisch aufgebracht. Hierzu heizt die im Kurzschlußfall auftretende stromstarke Entladung zunächst ein eingeschlossenes Gasvolumen auf. Die entstehende Druck¬ welle beaufschlagt einen beweglichen Kolben und verrichtet an ihm die mechanische Kontaktöffnungsarbeit.
Vorteilhafterweise wird bei der Erfindung durch die Verwen¬ dung eines großflächigen Widerstandskörpers mit gegenüber einem Metall wesentlich höherem elektrischen Widerstand durch die flächige Verbreitung des Stromflusse's einerseits eine lokalisierte AufSchmelzung der Elektroden verhindert. Ande- rerseits wird damit eine gleichmäßige Aufheizung des Gasrau¬ mes begünstigt.
Der erfindungsgemäße Schalter wird in Energieverteilungs- netzen im Niederspannungsbereich eingesetzt. Dabei müssen im Störfall, insbesondere bei Kurzschlüssen, Teile des Netzes an übergeordneten Abzweigen weggeschaltet werden. Um Schäden am Ort der Störung als auch im Bereich des Netzes zu begrenzen bzw. zu vermeiden, soll die Abschaltung so schnell wie mög- lieh, insbesondere noch innerhalb der ersten betroffenen Halbwelle, erfolgen. Häufig wird auch eine Begrenzung des Kurzschlußstromes gefordert, wenn die Abschaltung nicht schnell genug erkannt bzw. durch geeignete Maßnahmen vorge¬ nommen werden kann. Die Begrenzung des Kurzschlußstromes wird weiterhin zu einer Begrenzung der Amplituden der bei der Ab¬ schaltung erzeugten Spannungsspitzen aufgrund des induktiven Lastanteiles im Netz und beim Verbraucher und verringert somit die Gefahr weiterer Schäden aufgrund von Isolations¬ fehlern, die durch solche Überspannungen hervorgerufen werden können. Insbesondere bei Gebäudeinstallationen, aber auch in anderen Fällen, steigen dabei die Anforderungen an die erfor¬ derlichen Komponenten, die daher eine hohe Selektivität auf¬ weisen müssen.
Damit wird der Stand der Technik wesentlich verbessert. Diesem Stand der Technik entsprechen insbesondere solche Methoden, im Kurzschlußfall in Niederspannungsnetzen eine Strombegrenzung oder Stromunterbrechung herbeizuführen. Das für diesen Zweck verbreiteste Mittel ist der Leistungεschal- ter, der als NullpunktSchalter jedoch immer mindestens eine Halbwelle lang den Strom führt und daher allein nicht zur Strombegrenzung und Schnellabschaltung geeignet ist. Aufgrund der in Leistungsschaltern bewegten, relativ hohen Massen ist ein schnelles Abschalten nicht mit vertretbarem Aufwand zu erreichen. Schnellschalter für hohe Ströme erfordern sehr hohe Beschleunigungskräfte, um die bewegten Massen der Elektrodensysteme in kurzen Zeiten im Millisekundenbereich auf Abstände von mehreren Millimetern zu bringen. Dies ist mit herkömmlichen Federkraftspeichern im allgemeinen nicht möglich, so daß entsprechend leistungsfähige Antriebsmecha- nismen notwendig werden.
Technische Lösungen für letzteren Zweck waren bisher bei¬ spielsweise der pyrotechnische Antrieb mit chemischen Antriebsmitteln, die elektrisch gezündet werden, sowie der sogenannte Thomson-Antrieb. Aufgrund systemimmanenter Nach¬ teile haben jedoch beide Methoden keine weite Verbreitung gefunden.
Derartige Nachteile werden beim Strombegrenzer gemäß der Erfindung bereits beseitigt. Allerdings ist hier als rein passives Bauelement der Arbeitsbereich eingeschränkt, so daß zur Anpassung an den jeweiligen Einsatzbereich eine entspre¬ chend große Typenvielfalt gefordert ist. Eine aktive, mit einer Kurzschlußfrüherkennung gekoppelte Sehne11abSchaltung ist aufgrund des passiven Charakters der Funktionsweise nicht möglich.
Mit weiterer Erfindung kann durch eine entsprechende Ausle¬ gung des Schalters auch ein bistabiler Limiter geschaffen werden. Ein solcher erfindungsgemäßer Schalter ist im ge¬ schlossenen Zustand verriegelbar und durch einen geeigneten KraftSpeicher auf eine Ansprechschwelle, welche oberhalb dem im Hochlastbereich maximal zu erwartenden Strom liegt, ein¬ stellbar. Im verriegelten Zustand ist der Durchgangswider- stand so gering, daß die Nennstromverluste vernachlässigbar sind. Dadurch liegt die Eigenansprechschwelle des Limiters in der Größenordnung des prospektiven Kurzschlußstromes. Im entriegelten Zustand steigen die Übergangswiderstände und damit der Energieumsatz im Bereich der Schaltkontakte. Glei- chermaßen sinkt dabei die Eigenansprechschwelle auf einen Wert im Nennstrombereich. Vorteilhafterweise kann die Entriegelung durch eine elektro¬ nische Kurzschlußfrüherkennung ausgelöst werden. Dieses Ver¬ halten wird vorteilhaft dadurch unterstützt, daß ein zweiter Kraftspeicher verwendet wird, der im verriegelten Zustand ge¬ spannt ist und so konstruiert sein kann, daß er im entriegel¬ ten Zustand zur mechanischen Öffnung der Bewegelektrode des Begrenzers führt. Beim mechanischen Schließen und Verriegeln des Begrenzers wird dieser zweite Kraftspeicher automatisch gespannt.
Bei entsprechender Auslegung der Betriebsparameter ist der erfindungsgemäße Strombegrenzer sogar in der Lage, den Strom nicht nur zu begrenzen, sondern vollständig zu unterbrechen, d.h. also als öffnender Schalter zu arbeiten. In diesem Fall ist es besonders vorteilhaft, wenn eine zweite Verriegelungs¬ einheit vorgesehen wird, die den als Schnellschalter arbei¬ tenden Limiter im geöffneten Zustand verriegelt. Der Limiter wird dadurch daran gehindert, nach erfolgreicher Stromunter¬ brechung selbsttätig wieder in den geschlossenen Zustand überzugehen. Somit ist ein echtes bistabiles Verhalten er¬ reicht.
Beim erfindungsgemäßen Schalter kann durch eine passive Schaltung mit RLC-Gliedern erreicht werden, daß im Falle der Abscheidung des Stromes während der Stromhalbwelle keine schädlichen Überspannungsspitzen erzeugt werden. Dazu können auch spannungsbegrenzende Elemente, wie Zenerdiode, Varistor, Überspannungsabieiter od. dgl. , vorhanden sein.
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungs- beispielen anhand der Zeichnung in Verbindung mit den weite¬ ren Unteransprüchen. Es zeigen jeweils in schematischer Darstellung
Figur 1 einen elektrothermischen Schalter für Niederspan¬ nungsanwendungen, Figuren 2 bis 4 drei alternative Weiterbildungen eines sol¬ chen Schalters zur Auslegung bistabiler Limiter und
Figur 5 ein Strom-Zeitdiagramm zur Verdeutlichung des vor¬ teilhaften Schaltverhaltens.
In den Figuren sind gleiche bzw. gleichwirkende Teile mit gleichen Bezugszeichen versehen.
Der Figur ist ein Isolierstoffgehäuse mit 1 bezeichnet, das beispielsweise einen rotationssymmetrischen Hohlzylinder um eine Achse I bildet. Das hohlzylindrische Isolierstoffgehäuse 1 ist durch einen Flansch 6 abgeschlossen.
In das Isolierstoffgehäuse 1 ist rotationssymmetrisch zur Achse I ein Festkontakt 2 eingepaßt, der einen Stromanschluß 2a in Achsrichtung aufweist. Im Abstand dazu ist ein Beweg¬ kontakt 3, dessen Stromanschluß 3a ebenfalls in Achsrichtung I verläuft, längsbeweglich in das Isolierstoffgehäuse 1 ein¬ gepaßt. Zwischen dem Festkontakt 2 und dem Bewegkontakt 3 ist ein scheibenförmiger Widerstandskörper 4 derart angeord- net, daß er ohne Zwischenraum auf der Oberfläche des Festkon¬ taktes 2 anliegt. Die Außenkontur des Widerstandskörpers 4 ist dazu exakt in das Isolierstoffgehäuse 1 eingepaßt.
Zwischen der dem Festkontakt 2 abgewandten Oberfläche des Widerstandskörpers 4 und dem Bewegkontakt 3 befindet sich eine Trennfläche 8, welche einen variablen Zwischenraum kenn¬ zeichnet. Zusätzlich ist in die Wand des Isolierstoffgehäuses 1 umlaufend ein Expansionεvolumen 9 vorhanden.
Der Bewegkontakt 3 wird mit seinem Stromanschluß 3a durch einen Federbalg 5 auf die Trennfläche 8 des Widerstandskör- pers 4 aufgedrückt. Der Federkörper 5 definiert dabei eine mechanische Vorspannung, bei deren Überwinden der Beweg¬ kontakt 3 in horizontaler Richtung verschoben wird. Die Ver¬ schiebung kann dabei durch einen im Isolierstoffgehäuse 1 um- laufenden Ring 10 begrenzt werden, wobei sich durch entspre¬ chende Dimensionierung eines ringförmigen Ansatzteils 3b am Bewegkontakt 3 einerseits und des umlaufenden Ringes 10 ande¬ rerseits eine geeignete Hubstrecke d vorgeben läßt.
Der Stromanschluß 3a weist in der Figur an seinem äußeren
Ende eine Kerbe 7a auf, die in eine zugehörige Klinke 7b ein¬ greifen kann. Damit sind Mittel zur Arretierung des Bewegkon¬ taktes im geöffneten Zustand realisiert.
Der beschriebene Schalter kann in übliche Energievertei¬ lungsnetze eingeschaltet werden. Dabei fließt der Strom über den Stromanschluß 2a, den Festkontakt 2, den Widerstandskör- per 4 auf den Bewegkontakt 3 und von dort über den Stroman¬ schluß 3a weiter ins Netz. Im Kurzschlußfall heizt die strom- starke Entladung über den Festkontakt 2 und den daran anlie¬ genden scheibenförmigen Widerstandskörper zunächst flächen- haft das eingeschlossene Gasvolumen auf. Die somit entste¬ hende Druckwelle verschiebt den Bewegkontakt 3 bis zum An¬ schlag, wobei über die Klinke 7a und Kerbe 7b eine Verriege- lung im geöffneten Zustand erfolgt.
Die Ansprechschwelle des in Figur 1 dargestellten monostabi¬ len Schalters wird also durch die Andruckkraft der Feder 5 festgelegt. Damit ist der Schalter εelbstauslösend, aber nicht steuerbar.
In Figur 2 ist dagegen die Kontaktandruckfeder 5 befestigt an einem axial beweglichen Teil 6b des Gehäuεedeckelε 6 mit den Teilen 6a und 6b. Das als Federwiderlager wirkende Teil 6b wird in der Stellung a über einen Verriegelungsmechanismuε 11a und 11b verriegelt, so daß die Feder 5 vorgespannt iεt und die für den geschlossenen Zustand notwendige Andruckkraft der Bewegelektrode 3 auf den Widerstandskörper erzeugt. Gleichzeitig ist eine zur Beschleunigung des Öffnungsvorgan¬ ges vorgesehene Feder 12 vorgespannt. Bei Entriegelung der Verklinkung 11 durch einen Aktor 13 wird das Federwiderlager 6b von den Federn 5 und 12 in axialer Richtung vom Gehäuse 1 weg beschleunigt, so daß innerhalb sehr kurzer Zeit die An¬ druckkraft zwischen Bewegelektrode 3 und Widerstandskörper 4 auf sehr niedrige Werte abfällt. Dadurch erhöht sich der Übergangswiderstand sehr stark und die Ansprechεchwelle des elektrothermischen Antriebes fällt auf einen Wert innerhalb des Nennstrombereiches des Schalters.
Bei Ausbildung gemäß Figur 2 löst der elektrothermische An- trieb aus und der Schalter begrenzt und unterbricht bzw. öff¬ net den Strom innerhalb sehr kurzer Zeit, d.h. weit unterhalb des prospektiven Kurzschlußstromes. In vollständig geöffnetem Zustand verriegelt der Mechanismus 3a sowie 7a und 7b die Bewegelektrode 3 und verhindert dadurch ein ungewolltes neues Schließen des Schalters. Der Aktor 13 wird dabei beispiels¬ weise durch eine elektronische Kurzschlußerkennung ange¬ steuert und ausgelöst.
In einer anderen Ausführungsform gemäß Figur 3 greift die Öffnunsfeder 12 "direkt an der Bewegelektrode 3 an und unter¬ stützt somit die Öffnung durch direkte mechanische Beschleu¬ nigung. Dadurch wird eine weitere Beschleunigung des Öff¬ nungsvorganges und eine stärkere Begrenzung des Stromes er¬ reicht. Der gleiche Effekt kann erzielt werden, wenn die Öff- nungsfeder 12 nicht an der Elektrode 3, sondern am Führungs- element 3b oder an der mechanisch mit der Bewegelektrode 3 gekoppelten Stromzuführung 3a ansetzt. Speziell in Figur 3 ist der Kraftεpeicher 5 durch einen piezoelektrischen Aktor 14 ersetzt, welcher gleichzeitig mit dem Entriegelungsaktor 13 angesteuert wird. Der Aktor 14 verringert bei Ansteuerung seine Länge, so daß die Kontaktandruckkraft bereits verrin- gert wird, bevor die Bewegelektrode 3 vom Öffnungskraftspei¬ cher bewegt wird.
In der Ausführungsform gemäß Figur 4 ist der piezoelektriεche Aktor 14 parallel zur Öffnungsfeder 12 angeordnet und verlän¬ gert sich bei Ansteuerung. Dadurch wird die Kontaktandruck¬ kraft der Andruckfeder 5 kurzzeitig überkompensiert und die Federwirkung in der Anfangsphaεe des Öffnungsvorgangeε unter¬ stützt.
Aus der Diagrammdarstellung gemäß Figur 5 ergibt sich das Öffnungsverhalten des neuen Schalters. Die Kurve 51 be¬ schreibt den zeitlichen Verlauf des prospektiven Kurzschlu߬ stromes. Die Kurve 52 beschreibt den Strom durch das unge- steuerte Begrenzungselement herkömmlicher Bauweise, wobei der Wert A den fest eingestellten Ansprechschwellwert angibt. Die Kurve 53 beschreibt den Strom durch den neuen bistabilen Li¬ miter bzw. Schnellεchalter, wobei die Ansprechschwelle B des verriegelten Limiters bei oder sogar über dem prospektiven Kurzschlußstrommaximum liegt. Die Ansprechschwelle C des ent¬ riegelten Limiters liegt innerhalb des Nennεtrombereiches Inenn, so daß ein sehr frühes Auslösen bei ungefährlichen Stromwerten erfolgen kann. Die Auslösung erfolgt durch aktive Entriegelung über die Kurzschlußfrüherkennungselektronik und den Entriegelungsaktor 13.
Die Kurzεchlußfrüherkennungselektronik erkennt Kurzschlüsse bereits innerhalb weniger Mikrosekunden nach Strom-Null. Durch die geringen bewegten Massen im Aktor 13 und im Verrie- gelungsmechanismus 11a und 11b wird eine sehr frühzeitige
Strombegrenzung und Öffnung im Schalter erreicht, so daß die tatsächlich auftretenden Ströme auf unschädliche Werte inner¬ halb des Nennstrombereiches begrenzt werden. Die Selektivität wird dabei durch die Schwellwerteinstellung der Kurzεchluß- früherkennung erreicht und ist deshalb für ein einzelnes elektromechanisches Schaltelement des Types "BISTABILER LIMITER" in weiten Grenzen einstellbar.
Bei den Figuren 2 bis 4 kann der zur Entriegelung verwendete Aktor 13 als elektromechanischer oder elektromagnetiεcher Aktor ausgeführt sein. Er kann aber auch zur Beschleunigung des Entriegelungsvorganges aufgrund verringerter beschleunig¬ ter Massen als piezoelektrisches oder piezostriktives Element ausgeführt sein. Weiterhin kann ein Aktor mit einem magneto- striktiven Element als aktiver Komponente verwendet werden.
Es hat sich gezeigt, daß die beschriebenen, als Strombe¬ grenzer arbeitenden, bistabilen Limiter mit einer elektroni¬ schen Kurzschlußfrüherkennung kombiniert werden können. Glei¬ chermaßen kann in dieser Kombination der Limiter als strombe- grenzender Schnellschalter arbeiten. Die geeigneten Schaltun¬ gen für die Kurzschlußfrüherkennung sind vom Stand der Tech¬ nik bekannt.
Der Widerstandskörper 4 kann aus leitfähigem Kunststoff be- stehen, beispielsweise das bekannte elektrisch leitfähig ge¬ machte Polyethylen. Zur Füllung kommen beispielsweise Graphit in Frage. Der Widerstandskörper 4 kann auch durch Graphit¬ fasern gebildet sein, die durch eine entsprechende Bearbei¬ tung in eine folien oder filzartige Konsistenz gebracht wurden.
In Abweichung dazu kann auch ein definiert leitender, nicht- organischer Werkstoff anstelle des bisher verwendeten leit¬ fähig gemachten organischen Werkstoffes, wie Ruß gefülltes Polyethylen, verwendet werden. Als Widerstandskörper kommen aber auch hochdotierte Halbleitermaterialien, wie insbeson¬ dere polykristallines Siliciumcarbid, in Frage.
In weiteren Ausführungsformen kann die Raumform von der Rota- tionssymmetrie abweichen und beispielsweise rechteckig mit flächenhaften Widerstandskörpern vorhanden sein. Es können auch mehrere Widerstandskörper hintereinandergeschaltet sein. Weiterhin können auch entsprechende Mittel zur Belüftung des Gehäuseinneren vom Isolierstoffgehäuse 1 vorgesehen sein.

Claims

Patentansprüche
1. Schalter zur Strombegrenzung, mit Stromanschlüssen und Kontakten, von denen der eine ein Festkontakt und der andere ein Bewegkontakt ist, und mit einem zugehörigen Antrieb zum Öffnen des Bewegkontaktes bei Überschreiten einer vorgegebe¬ nen elektrischen Stromstärke , d a d u r c h g e - k e n n k e n n z e i c h n e t , daß der Antrieb ein thermoelektrischer Antrieb ist.
2. Schalter nach Anspruch 1, d a d u r c h g e k e n n ¬ z e i c h n e t , daß die Kontakte (2, 3) in einem abge¬ schlossenen Isolierstoffgehäuse (1) angeordnet sind und daß zwischen den Kontakten (2, 3) ein scheibenförmiger Wider- Standskörper (4) vorhanden ist.
3. Schalter nach Anspruch 2, d a d u r c h g e k e n n ¬ z e i c h n e t , daß zwischen Widerstandskörper (4) und Bewegkontakt (3) im Isolierstoffgehäuse (1) ein Expansions- volumen (9) vorhanden ist.
4. Schalter nach Anspruch 2, d a d u r c h g e k e n n ¬ z e i c h n e t , daß der Widerstandskörper (4) aus gra¬ phithaltigem Kunststoff, beispielsweise auf der Basis von Polyethylen, besteht.
5. Schalter nach Anspruch 2, d a d u r c h g e k e n n ¬ z e i c h n e t , daß der Widerεtandskörper (4) durch eine Vielzahl von Kohlenstoffasern gebildet ist, die in eine folien- oder filzartige Konsistenz gebracht sind.
6. Schalter nach einem der vorhergehenden Ansprüche, d a ¬ d u r c h g e k e n n z e i c h n e t , daß Isolier¬ stoffgehäuse (1), Kontakte (2, 3) und Widerstandskörper (4) jeweils einen rotationssymmetrischem Querschnitt haben.
7. Schalter nach Anspruch 6, d a d u r c h g e k e n n ¬ z e i c h n e t , daß Isolierstoffgehäuse (1) , Kontakte (2, 3) und Widerstandskörper rotationssymmetrisch und kolinear zu den Stromanschlüssen (2a, 3a) angeordnet sind.
8. Schalter nach einem der vorhergehenden Ansprüche, g e ¬ k e n n z e i c h n e t durch Mittel (5) zur Einstellung der Federkraft des Bewegkontaktes (3) .
9. Schalter nach einem der vorhergehenden Ansprüche, g e ¬ k e n n z e i c h n e t durch Mittel (5) zur Hubbegrenzung und Arretierung des Bewegkontaktes.
10. Schalter nach einem der vorhergehenden Ansprüche, g e - k e n n z e i c h n e t durch Mittel zur Belüftung des Gehäuseinneren.
11. Schalter zur Strombegrenzung, mit Stromanschlüssen und Kontakten, von denen der eine ein Festkontakt und der andere ein Bewegkontakt ist, und mit einem zugehörigen Antrieb zum Öffnen des Bewegkontaktes bei Überschreiten einer vorge¬ gebenen elektrischen Stromstärke, wobei der Antrieb ein thermoelektrischer Antrieb ist , g e k e n n z e i c h - n e t durch eine bistabile Auslegung des Schalters.
12. Schalter nach Anspruch 11, g e k e n n z e i c h n e t durch Mittel (6b, 11a, 11b) zur Verriegelung des Schalters im geschlossenen Zustand.
13. Schalter nach Anspruch 12, d a d u r c h g e ¬ k e n n z e i c h n e t , daß den Mitteln (6b, 11a, lib) zur Verriegelung ein Kraf Speicher (5) zugeordnet ist, der auf eine Stromansprechschwelle einstellbar ist, welche über den im Hochlastbereich zu erwartenden Strömen liegt.
14. Schalter nach Anspruch 13, d a d u r c h g e ¬ k e n n z e i c h n e t , daß der Kraftspeicher eine Andruckfeder (5) ist.
15. Schalter nach einem der Ansprüche 11 bis 14, d a ¬ d u r c h g e k e n n z e i c h n e t , daß daß die Ent¬ riegelung durch eine elektronische Kurzschlußfrüherkennung auslösbar ist.
16. Schalter nach Anspruch 15, d a d u r c h g e ¬ k e n n z e i c h n e t , daß den Mitteln zur Entriegelung ein zweiter Kraftspeicher (12) zugeordnet ist.
17. Schalter nach Anspruch 16, d a d u r c h g e - k e n n z e i c h n e t , daß zur Entriegelung Aktoren (13, 14) vorhanden sind.
18. Schalter nach einem der Ansprüche 11 bis 17, a ¬ d u r c h g e k e n n z e i c h n e t , daß die Aktoren Piezoaktoren (14) sind.
19. Schalter nach einem der Ansprüche 11 bis 18, d a ¬ d u r c h g e k e n n z e i c h n e t , daß der Wider¬ standskörper (4) aus einem gut leitenden, nichtorganischen Werkstoff, beispielsweise aus polykristallinem Silicium- carbid, besteht.
20. Schalter nach einem der Ansprüche 11 bis 19, g e ¬ k e n n z e i c h n e t durch eine passive Beschaltung mit RLC-Gliedern.
21. Schalter nach einem der vorhergehenden Ansprüche 11 bis 20, g e k e n n z e i c h n e t durch eine Beschaltung mit spannungsbegrenzenden Elementen, beispielsweise Zenerdiode, Varistor, Überspannungsabieiter od. dgl.
PCT/DE1994/000862 1993-07-26 1994-07-25 Schalter zur strombegrenzung WO1995003619A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59405547T DE59405547D1 (de) 1993-07-26 1994-07-25 Schalter zur strombegrenzung
US08/586,705 US5859579A (en) 1993-07-26 1994-07-25 Current--limiting switch
EP94921596A EP0750788B1 (de) 1993-07-26 1994-07-25 Schalter zur strombegrenzung
JP50486195A JP3636461B2 (ja) 1993-07-26 1994-07-25 電流制限開閉器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19934325030 DE4325030A1 (de) 1993-07-26 1993-07-26 Schalter zur Strombegrenzung
DEP4325030.0 1993-07-26
DE4425330A DE4425330A1 (de) 1993-07-26 1994-07-18 Schalter zur Strombegrenzung
DEP4425330.3 1994-07-18

Publications (1)

Publication Number Publication Date
WO1995003619A1 true WO1995003619A1 (de) 1995-02-02

Family

ID=25928039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/000862 WO1995003619A1 (de) 1993-07-26 1994-07-25 Schalter zur strombegrenzung

Country Status (5)

Country Link
US (1) US5859579A (de)
EP (1) EP0750788B1 (de)
JP (1) JP3636461B2 (de)
DE (2) DE4425330A1 (de)
WO (1) WO1995003619A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996019817A1 (de) * 1994-12-22 1996-06-27 Siemens Aktiengesellschaft Schalter zur strombegrenzung
US7916442B2 (en) 2004-07-27 2011-03-29 Siemens Aktiengesellschaft Breaker device for low-voltage applications
CN108962702A (zh) * 2018-08-14 2018-12-07 李涵 一种调压式熔断器
CN109959050A (zh) * 2017-12-22 2019-07-02 北京绿能嘉业新能源有限公司 一种过热保护电暖坑板

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19912713A1 (de) * 1999-03-20 2000-09-21 Abb Research Ltd Stromleitersperreinrichtung
US8155096B1 (en) 2000-12-01 2012-04-10 Ipr Licensing Inc. Antenna control system and method
KR100697917B1 (ko) * 2005-01-12 2007-03-20 엘에스전선 주식회사 Ptc 한류기
FR2884962A1 (fr) * 2005-04-22 2006-10-27 Norbert Roger Beyrard Contacteur disjoncteur a ouverture par declenchement a l'aide d'un actuateur piezo electrique.
DE102011108949A1 (de) * 2011-07-29 2013-01-31 Ceramtec Gmbh Elektromagnetisches Relais
TW201511058A (zh) * 2013-09-03 2015-03-16 Chuan-Sheng Wang 過熱破壞式安全構造及過熱破壞式安全插座與插頭
RU2642548C2 (ru) * 2013-12-17 2018-01-25 Сименс Акциенгезелльшафт Защитный электронный модуль для преобразователя hvdc
US9627821B1 (en) * 2016-07-27 2017-04-18 Atom Technology Inc. Power connector having a transparent observation portion to view the status of a contact limiting member
US20180286617A1 (en) * 2017-03-28 2018-10-04 Management Sciences, Inc. Method, System, and Apparatus to Prevent Electrical or Thermal-Based Hazards in Conduits

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3356808A (en) * 1966-02-28 1967-12-05 Westinghouse Electric Corp Circuit-interrupting devices having pressure-operated contacts
GB2042265A (en) * 1979-02-15 1980-09-17 Standard Telephones Cables Ltd Electrical overload cut-out device
EP0102574A2 (de) * 1982-08-21 1984-03-14 Limitor AG Bimetallschutzschalter

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743993A (en) * 1972-02-02 1973-07-03 Gen Electric Thermal overload protective device
US3848213A (en) * 1973-10-15 1974-11-12 Therm O Disc Inc Time delay relay
CH574676A5 (de) * 1974-08-29 1976-04-15 Bbc Brown Boveri & Cie
US4419650A (en) * 1979-08-23 1983-12-06 Georgina Chrystall Hirtle Liquid contact relay incorporating gas-containing finely reticular solid motor element for moving conductive liquid
IT1148325B (it) * 1981-06-09 1986-12-03 Ranco Inc Complesso ad interruttore termostatico con dispositivo di abbassamento di temperatura
US4542365A (en) * 1982-02-17 1985-09-17 Raychem Corporation PTC Circuit protection device
US4550301A (en) * 1982-02-17 1985-10-29 Raychem Corporation PTC Circuit protection device
US4549161A (en) * 1982-02-17 1985-10-22 Raychem Corporation PTC Circuit protection device
US4481498A (en) * 1982-02-17 1984-11-06 Raychem Corporation PTC Circuit protection device
JPS60262303A (ja) * 1984-06-11 1985-12-25 株式会社東芝 Ptcセラミツク組成物
SE465524B (sv) * 1990-02-08 1991-09-23 Asea Brown Boveri Anordning foer oeverlast- och kortslutningsskydd i elektriska anlaeggningar
US5382938A (en) * 1990-10-30 1995-01-17 Asea Brown Boveri Ab PTC element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3356808A (en) * 1966-02-28 1967-12-05 Westinghouse Electric Corp Circuit-interrupting devices having pressure-operated contacts
GB2042265A (en) * 1979-02-15 1980-09-17 Standard Telephones Cables Ltd Electrical overload cut-out device
EP0102574A2 (de) * 1982-08-21 1984-03-14 Limitor AG Bimetallschutzschalter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996019817A1 (de) * 1994-12-22 1996-06-27 Siemens Aktiengesellschaft Schalter zur strombegrenzung
US5907270A (en) * 1994-12-22 1999-05-25 Siemens Aktiengesellschaft Current-limiting switch
US7916442B2 (en) 2004-07-27 2011-03-29 Siemens Aktiengesellschaft Breaker device for low-voltage applications
CN109959050A (zh) * 2017-12-22 2019-07-02 北京绿能嘉业新能源有限公司 一种过热保护电暖坑板
CN108962702A (zh) * 2018-08-14 2018-12-07 李涵 一种调压式熔断器

Also Published As

Publication number Publication date
EP0750788B1 (de) 1998-03-25
DE59405547D1 (de) 1998-04-30
DE4425330A1 (de) 1996-01-25
US5859579A (en) 1999-01-12
JP3636461B2 (ja) 2005-04-06
JPH09501003A (ja) 1997-01-28
EP0750788A1 (de) 1997-01-02

Similar Documents

Publication Publication Date Title
DE69103135T2 (de) Vorrichtung zum motor- und kurzschlussschutz.
EP0657062B1 (de) Veränderbarer hochstromwiderstand und anwendung als schutzelement
EP2553691B1 (de) Überspannungsschutzeinrichtung, umfassend mindestens einen überspannungsableiter
EP0750788B1 (de) Schalter zur strombegrenzung
DE202006020737U1 (de) Passive oder aktive Kurzschließeinrichtung für den Einsatz in Nieder- und Mittelspannungsanlagen zum Sach- und Personenschutz
WO2007022744A1 (de) Strombegrenzender schalter
DE2154283A1 (de) Thyristor Überspannungsschutz schaltung und Schaltelement
WO2008049777A1 (de) Abtrennanordnung und verfahren zum betätigen einer abtrennanordnung
EP1644951B1 (de) Verfahren und vorrichtung zur strombegrenzung mit einem flüssigmetall-strombegrenzer
EP0717876B1 (de) Limiter zur strombegrenzung
EP1014403A1 (de) Strombegrenzender Schalter
DE2506021A1 (de) Ueberspannungs-schutzschaltung fuer hochleistungsthyristoren
EP3166193B1 (de) Schalteinrichtung für überspannungsschutzgeräte
DE19612841A1 (de) Strombegrenzender Widerstand mit PTC-Verhalten
EP1644952B1 (de) Verfahren und vorrichtung zur strombegrenzung mit einem selbstbetätigten strombegrenzer
DE69509774T2 (de) Überstromschutzvorrichtung für elektrische schaltungen
WO2014016156A1 (de) Vorrichtung zum schutz vor thermischer überlastung eines zu schützenden bauteils
EP3953957B1 (de) Verfahren zur unterbrechungsfreien anpassung von parametern eines stromkreises
DE102020121589A1 (de) Überspannungsschutzanordnung
WO2017012799A1 (de) Strombegrenzereinrichtung mit spule und schalter
EP1022755B1 (de) Strombegrenzender Schalter
DE102013225112B4 (de) Elektrisches Schaltgerät
WO2023213934A1 (de) Hybridschutzschaltervorrichtung, hybridschütz und verfahren
WO2024027907A1 (de) Schaltgerät
DE102020112849A1 (de) Elektrochemische Vorrichtung und Verfahren zum Abtrennen eines elektrochemischen Elements von einer Schaltungsanordnung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994921596

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08586705

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994921596

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994921596

Country of ref document: EP