[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1994022161A1 - X-ray image intensifier - Google Patents

X-ray image intensifier Download PDF

Info

Publication number
WO1994022161A1
WO1994022161A1 PCT/JP1994/000430 JP9400430W WO9422161A1 WO 1994022161 A1 WO1994022161 A1 WO 1994022161A1 JP 9400430 W JP9400430 W JP 9400430W WO 9422161 A1 WO9422161 A1 WO 9422161A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
input
input window
ray image
image intensifier
Prior art date
Application number
PCT/JP1994/000430
Other languages
French (fr)
Japanese (ja)
Inventor
Shirofumi Yamagishi
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to EP94910031A priority Critical patent/EP0644572B1/en
Priority to DE69418406T priority patent/DE69418406T2/en
Publication of WO1994022161A1 publication Critical patent/WO1994022161A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/36Photoelectric screens; Charge-storage screens
    • H01J29/38Photoelectric screens; Charge-storage screens not using charge storage, e.g. photo-emissive screen, extended cathode
    • H01J29/385Photocathodes comprising a layer which modified the wave length of impinging radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2231/00Cathode ray tubes or electron beam tubes
    • H01J2231/50Imaging and conversion tubes
    • H01J2231/50005Imaging and conversion tubes characterised by form of illumination
    • H01J2231/5001Photons
    • H01J2231/50031High energy photons
    • H01J2231/50036X-rays

Definitions

  • the present invention relates to an X-ray image intensifier.
  • X-ray image intensifiers have been developed using low-energy X-rays with an X-ray tube voltage of 30 KV (tube current 1 mA) or less and high-energy X-rays with an X-ray tube voltage of 30 V or more (tube current 1 mA).
  • the obtained X-ray images are converted into visible light images and are widely used for medical diagnosis and nondestructive inspection.
  • such a conventional X-ray image intensifier includes a vacuum envelope (hereinafter referred to as an envelope) 11 in order from the X-ray source A side. It has a basic configuration in which an input surface 12, a focusing electrode 13, an anode 14 and an output surface 15 are arranged.
  • the envelope 11 is a metal input window 11a into which X-rays enter, a glass body 11b supporting the focusing electrode, and an output surface 15 or an optical device supporting the output surface 15. It consists of a glass output section 11c.
  • An input surface 12 arranged at a predetermined distance from the input window 11a functions as a cathode, and an input substrate formed into a curved shape so as to project toward the X-ray source A side, for example, aluminum.
  • Metal substrate 1 2a A phosphor layer 12b for converting X-rays into visible light, formed on the concave side of the metal substrate 12a, and a transparent conductive film 12 formed on the phosphor layer 12b.
  • the transparent conductive film 12 c is usually made of indium oxide, IT 0 (a compound of indium oxide and tin oxide), and the like. It is used for preventing reaction between sodium iodide-activated cesium iodide and the material constituting the photocathode 12d, and for obtaining continuous conductivity on the surface of the phosphor layer.
  • IT 0 a compound of indium oxide and tin oxide
  • a first focusing electrode 13 a is disposed along the first focusing electrode 13 a, and a cylindrical second focusing electrode 13 b is disposed between the first focusing electrode 13 a and the output surface 15.
  • the first and second focusing electrodes 13a and 13b constitute an electrostatic electron lens system.
  • the X-rays B emitted from the X-ray source A pass through the subject C to reach the input window 11a, and the input window 11a
  • the X-ray image projected on is converted into an electronic image on the human surface described later.
  • This electron image is applied, for example, between the input surface 12 serving as a cathode and the anode 14.
  • the first jelly-bundle electrode 13 a with a partial voltage applied from the It is accelerated and focused by the electrostatic lens system formed by the second focusing electrode 13 b, and is converted again into visible light at the output surface 15.
  • a visible image that is enhanced by, for example, 1 ⁇ 100 or more compared to the intensity of visible light on the input surface 12 is obtained.
  • the input surface of the conventional X-ray image enhancement wire as described above has a predetermined distance between the input window 11a and the input surface 12 of the envelope. Due to the separation, the scattering of X-rays increases, resulting in a decrease in contrast.
  • this problem will be described with reference to FIG. 3 using an example of an X-ray image intensifier having an effective diameter of the input surface of 4 inches.
  • the tube voltage of the X-ray tube used to obtain the data in Fig. 3 was 50 KV, the tube current was 1 mA, and the vertical axis was the contrast (%) of the X-ray image intensifier.
  • the contrast ratio and Yokoyuki Yoko show the diameter (ram) of the lead disk.
  • the contrast (%) refers to the case where a predetermined amount of lead is placed at the center of the input effective visual field with respect to the luminance of the input effective visual field of the X-ray image intensity. This is the value that displays the luminance of the input effective visual field in percentage.
  • the contrast ratio is a ratio calculated quantitatively from the contrast (%).
  • Curve c in FIG. 3 shows the characteristics of the conventional X-ray imaging stiffener shown in FIG. 2. According to this, the diameter (mm) of the lead disk at the time of contrast measurement is shown. ) Becomes smaller at the boundary of 40 mm, the contrast decreases significantly. This means that the contrast of a smaller subject is larger than that of a larger subject. This means that it is significantly inferior to that of industrial equipment, and has the drawback that it is difficult to judge defects at small parts in industrial use.
  • Fig. 4 shows the experimental data of contrast when the same X-ray image intensifier was used and only the tube voltage of the X-ray tube was changed to 3 ° KV.
  • the contrast becomes smaller as the diameter (mm) of the lead disk at the time of contrast measurement becomes smaller at the boundary of 4 ° mm.
  • the degree of the decrease is steeper than in the case of Fig. 3.
  • Japanese Patent Publication No. 34-2032 / 32 discloses an X-ray image intensifier which forms an input surface directly on the inner surface of an aluminum input window. I have. Such a structure in which the input surface is formed directly on the inner surface of the input window and which uses aluminum as the input window has not yet been put to practical use.
  • an X-ray imaging tensioner with an input window made of such a thin material is assembled and evacuated, the input window is deformed due to the pressure difference between the inside and outside of the pipe, and the input surface is naturally deformed.
  • the desired photocathode cannot be obtained, and thus the output image may be distorted. Disclosure of the invention
  • An object of the present invention is to provide an X-ray imaging intensity fire that eliminates the above-mentioned disadvantages, maintains high luminance, and provides a high contrast.
  • a vacuum envelope having a metal X-ray input window, an input surface formed on an inner surface of the X-ray input window, and the vacuum envelope.
  • a focusing electrode, an anode, and an output surface which are sequentially arranged along the direction of travel of electrons emitted from the input surface, and the X-ray input window has an uneven surface on the surface on which the input surface is formed.
  • a hardened layer, the input surface comprising: a phosphor layer formed on the uneven surface hardened layer; and a photocathode formed on the phosphor layer.
  • the material of the X-ray input window made of metal is aluminum, aluminum alloy, or the like, which has a high X-ray transmittance and is difficult to process.
  • a material having a strength capable of withstanding a pressure difference between the inside and the outside of the X-ray image intensifier by being surface-hardened by the surface hardening treatment can be used.
  • the uneven surface hardened layer of the metallic X-ray input window can be formed by, for example, performing an uneven surface hardening treatment on a metal plate constituting the metallic X-ray input window.
  • the method for forming the uneven surface hardened layer can be performed, for example, as follows.
  • a metal plate is struck using a hard sphere having a particle size of 50 to 200 m, for example, a glass bead, at a pressure of 1 to 4 kg / cm 2 and a heating time of 1 to 5 minutes.
  • a surface hardening treatment is performed.
  • the surface of the metal plate becomes uneven, and an uneven surface hardened layer is formed.
  • the X-ray image intensifier of the present invention is particularly effective when using low-energy X-rays having an X-ray tube voltage of 30 KV (tube current of 1 mA) or less.
  • Figure 1 is a schematic diagram for explaining a conventional X-ray image intensity and X-ray imaging method.
  • FIG. 2 is a cross-sectional view showing a part of the conventional X-ray image finder shown in FIG.
  • FIG. 3 shows an embodiment of the X-ray image intensity according to the present invention and a conventional X-ray image—the contrast characteristics of the X-ray intensity is shown by the high energy X-ray.
  • FIG. 4 is a graph showing data obtained using a line.
  • FIG. 4 shows an embodiment of the X-ray image clarifying fire according to the present invention and a contrast characteristic of the conventional X-ray mag- netic fire fin with the low energy X-ray.
  • FIG. 4 is a graph showing data obtained using a line.
  • FIG. 5 is an enlarged cross-sectional view showing a main part of one embodiment of the X-ray imaging fire according to the present invention.
  • FIG. 6 is an enlarged sectional view showing a part of FIG.
  • FIG. 7 is a graph showing the relationship between the surface roughness of the surface-hardened A1 plate and the hardness of the surface-hardened layer.
  • BEST MODE FOR CARRYING OUT THE INVENTION The X-ray imaging fire of the present invention has an input surface directly formed on the inner surface of the input window, and an uneven surface hardening treatment on the inner surface of the input window. It has the same configuration as the conventional X-ray image intensifier shown in Fig. 1 except that it is applied. ⁇
  • the basic configuration is such that the input surface 12, the focusing electrode 13, the anode ⁇ 4, and the output surface 15 are arranged in the vacuum envelope 11 in order from the X-ray source ⁇ side.
  • the envelope 11 serves as the metal input window 11 a into which the X-rays are incident, the glass body 11 b supporting the focusing electrode, and the output surface 15 or supports the output surface 15. And a glass output section 1 1 c.
  • an uneven surface hardened layer 11d having an uneven surface is formed on the inner surface of the input window 11a by the uneven surface hardening treatment.
  • the material of the input window 11a used here is an aluminum alloy, and in particular, an ATM-500 series A1-Mg alloy is used.
  • the input window 11a was obtained by forming such an aluminum alloy plate into a dish shape by pressing, and performing the above-described uneven surface hardening treatment.
  • the input surface 12 is formed directly on the uneven surface of the uneven surface hardened layer 11 d.
  • the input surface 12 is composed of a light-reflective material layer 12 a formed on the uneven surface of the uneven surface hardened layer 11 d and a phosphor layer 12 b that converts X-rays formed thereon into visible light.
  • a transparent conductive film 12 c formed on the phosphor layer 12 b and visible light emitted from the phosphor layer 12 b formed on the transparent conductive film 12 c into electrons. It is composed of a photoelectric surface 12 d for conversion.
  • the transparent conductive film 12 c is usually made of indium oxide, ITO (a compound of indium oxide and tin oxide), etc., and alkali halide such as sodium iodide forming the phosphor layer 12 b is used.
  • alkali halide such as sodium iodide forming the phosphor layer 12 b is used.
  • the output surface here, the structure in which the optical glass substrate supporting the optical member also functions as a part of the envelope
  • An anode 14 supported on the envelope output section 1 1c side is arranged, and between the anode 14 and the input surface 12 serving as a cathode, for example, the inner wall of the envelope body 1 1b
  • a first focusing electrode 13a is provided along the line, and a cylindrical second focusing electrode 13b is provided between the focusing electrode 13a and the output surface 15.
  • the fact that the first and second focusing electrodes 13a, 13b constitute an electrostatic electron lens system is based on the conventional X-ray imaging enhancement shown in FIG. The structure is the same as that of a.
  • an uneven surface hardened layer 11 d is formed on the inner surface of the input window 11 a, and the input surface 12 is directly formed thereon. Is formed.
  • the Vickers hardness of the uneven surface hardened layer 11d is preferably 120 to 250, as described above. If the Vickers hardness is less than 120, it is insufficient to withstand the pressure difference between the inside and the outside of the X-ray image intensifier, and the X-ray input window 11a may be deformed. . On the other hand, if the Vickers hardness exceeds 250, the formability is reduced, which is not preferable.
  • the surface roughness of the uneven surface hardened layer 11 d is preferably 2 to 1 ° m. When the roughness is less than 2 / m, the hardness of the uneven surface hardened layer 11d is low, and is not enough to withstand the pressure difference between the inside and outside of the X-ray image. X-ray input window 1 1a may be deformed. On the other hand, when it exceeds 10 ⁇ , ⁇
  • the adhesion of the phosphor formed on the substrate is weak, and the film quality of the phosphor is difficult.
  • the present inventors conducted an experiment to determine the relationship between the surface roughness of A 1 by the surface hardening treatment, the hardness of the treated surface, the adhesion of the phosphor on the treated surface, and the film quality of the phosphor as follows. Done.
  • the Vickers hardness of the treated surface of these A1 input window samples was measured, and the results shown in FIG. 7 were obtained. From the graph in Fig. 7, it is necessary to have a roughness of 2 m or more to obtain a Vickers hardness of 120 or more that can withstand the pressure difference between the inside and outside of the X-ray image intensifier. I understand.
  • the surface roughness should preferably be 5 or more to obtain sufficient hardness of the A1 alloy input window plate, and the surface roughness should be 1 to obtain sufficient adhesion of the phosphor. 0 m or less is preferred It is understood that the surface roughness is preferably 10 m or less in order to obtain sufficient phosphor film quality. Considering these factors comprehensively, it is understood that the surface roughness is preferably 2 to 10 m.
  • the force ⁇ 5 and the hardness when the surface roughness is 5 m are not the best.
  • the best hardness can be obtained depending on the method of the uneven surface hardening treatment.
  • a metal plate (ASTM500 series) into the shape of the input window, it is subjected to uneven surface treatment with high pressure, and uneven surface hardening treatment to obtain a surface roughness of 10111 or more.
  • the A 1 plate is subjected to a concave / convex surface hardening treatment at a low pressure, and the previously formed irregularities are crushed, and the surface roughness may be reduced to about 5 m. As a result, even if the surface roughness is 5 m, it is possible to obtain a surface having a picker hardness of about 250.
  • the X-ray image intensifier of the present invention since the uneven surface hardened layer is formed on the inner surface of the X-ray input window, the X-ray image generated by evacuation is obtained.
  • the deformation of the X-ray input window due to the pressure difference between the inside and outside of the modifier is small, and the light emitted from the input surface is directed toward the photocathode due to the presence of the light reflective material layer formed on the uneven surface hardened layer. Produces high contrast output images.
  • an X-ray image intensifier that has good moldability of the X-ray input window and is advantageous in terms of price is also available. can get.
  • the low-energy X-ray is used as the X-ray source when using the X-ray image intensifier of the present invention, a higher contrast can be obtained for a small-sized object. It is possible to obtain an output image of the mouse.
  • the X-ray image intensifier of the present embodiment is characterized in that an input surface having a specific structure is formed. That is,
  • the thickness of the X-ray input window 11a is made of aluminum alloy (or aluminum) with a thickness of .5 mm. Processing has been applied.
  • This concave / convex surface hardening treatment a rough surface having a height of about several micron is formed and the surface is hardened. That is, the concave surface of the X-ray input window 11a thus processed is formed with a concave-convex surface hardened layer 11d.
  • an aluminum thin film 12a of about 2000 A which is a light reflective material layer, is formed.
  • This aluminum thin film is vacuum-deposited under a reduced pressure of about 2 xl O- 5 Pa.
  • a phosphor layer 12b having a thickness of about 400 m is formed on the light reflecting material layer 12a by vapor deposition.
  • the first layer of CsIZNa phosphor has a thickness of about 380 m under a pressure of 4.5 ⁇ 10_1Pa.
  • a second layer of CsIZNa phosphor is formed by vapor deposition under a pressure of 10 Pa or less to a thickness of about 20 ⁇ m.
  • the X-ray input window 11a including the phosphor layer 12b is welded to the envelope body 11c via a metal ring 11e.
  • the envelope body 11 joined to the X-ray input window 11a in this way is also joined to the envelope output section 11c ( then, on the phosphor layer 12b,
  • the photocathode 12d is formed via the transparent conductive film 12c or directly.
  • the X-ray B from the X-ray source A passes through the subject C and the input window
  • the X-ray B from the X-ray source A passes through the subject C and the input window
  • the X-ray B from the X-ray source A passes through the subject C and the input window
  • the X-ray B from the X-ray source A passes through the subject C and the input window
  • light is emitted at the point a, for example, in the phosphor layer 12b.
  • This light is directed toward the output surface b and toward the input window 11a.
  • the light c traveling toward the input window side is irregularly reflected there when reaching the surface hardened uneven surface 12f which is the surface of the input window 11a, and the irregularly reflected light d usually causes a decrease in luminance.
  • an aluminum thin film 12a as a light-reflective material layer is formed on the uneven surface hardened layer 11d, so that the light c reaches the uneven surface hardened layer 11d. Instead, the light is reflected by the aluminum thin film 12a, and the reflected light d is directed to the output surface 15 side, so that a decrease in luminance is prevented.
  • the vertical axis shows the contrast (%) and contrast ratio
  • the horizontal axis shows the diameter of the lead disk.
  • an experiment was performed using an X-ray imager with an effective input diameter of 4 inches, and a tube voltage of 50 KV and a tube current of 1 mA.
  • the straight lines a and b in Fig. 3 show examples using the input window of the structure of the present embodiment. Among them, the straight line a uses an aluminum input window, and the straight line b The cases where an input window made of lithium is used are shown.
  • the curve c shows an example of the conventional structure of the X-ray image intensifier shown in FIG. According to the results shown in Fig.
  • the contrast of the conventional structure of the X-ray image intensifier is reduced by the diameter of the bell disk (mm) and the diameter is reduced to 4 mm. While the contrast is remarkably reduced, the contrast of the X-ray imaging intensifier of the present embodiment is as shown by the straight lines a and b. It can be seen that it increases in proportion to the diameter of the disk (mm), is linearly proportional to the diameter of the lead disk, and depends on the diameter of the lead disk. This means that it is easy to make a determination in the case where the subject is a finer object, in the case where an attempt is made to make a difference in the shading by coloring.
  • the X-ray image intensifier of the present embodiment enables the practical use of an X-ray image intensifier having an input window and input surface structure, which has been considered difficult in the past. It is the one that was decided.
  • This embodiment uses the same X-ray image intensifier (the material of the input window is A1-Mg alloy) as in the first embodiment, and contrasts when low energy X-rays are used. It shows an example of measuring the characteristics.
  • Fig. 4 is a graph showing the contrast (%) and contrast ratio on the vertical axis and the diameter of the lead disk on the horizontal axis, as described above. The experiment was performed with an X-ray tube voltage of 30 KV and a tube current of ltnA.
  • the straight line d in FIG. 4 is an example using the input window of the structure of the present embodiment, and the curve e is the control when the conventional structure of the X-ray image intensifier shown in FIG. 1 is used. Indicates changes in the trajectory.
  • the contrast of the conventional X-ray image-given intensifier is high when high energy X-rays are used.
  • the diameter of the lead disk ( mm ) becomes significantly smaller as the diameter becomes smaller at the boundary of 40 mm.
  • the X-ray image of the example the contrast of the digi- intensifier is linearly proportional to the diameter of the lead disk and depends on the diameter of the lead disk, as shown by line d. Similar to the above, it is necessary to be able to make more accurate judgments in judging finer objects.

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Abstract

This invention discloses an X-ray image intensifier including a vacuum container having a metallic X-ray input window (11a), and an input plane formed on the inner surface of the X-ray input window. In the container, convergence electrodes, an anode and an output plane are sequentially disposed along the path of electrons emitted from the input plane. The X-ray input window has a hardened undulating layer (11d) on the surface thereof on the input side and the input plane has a phosphor layer (12b) formed on the hardened undulating layer, and a photoelectric surface (12d) formed on the phosphor layer.

Description

明細書 発明の名称  Description Title of Invention
X線ィ メ 一 ジィ ンテ ン シフ ァ イ ア 技術分野  X-ray imaging technology
本発明は、 X線イメ ージジイ ンテンシファイアに関する。  The present invention relates to an X-ray image intensifier.
背景技術 Background art
近年、 X線イメ ー ジジイ ンテ ンシファイアは、 X線管電圧 が 3 0 K V (管電流 1 m A ) 以下の低エネルギー X線や 3 0 V (管電流 1 m A ) 以上の高エネルギー X線によって得ら れる X線像を可視光像に変換して医療診断用や非破壊検査等 に利用するものと して普及している。  In recent years, X-ray image intensifiers have been developed using low-energy X-rays with an X-ray tube voltage of 30 KV (tube current 1 mA) or less and high-energy X-rays with an X-ray tube voltage of 30 V or more (tube current 1 mA). The obtained X-ray images are converted into visible light images and are widely used for medical diagnosis and nondestructive inspection.
このような従来の X線イメ ージジイ ンテンシファイアは、 図 1及び図 2に示すように、 真空外囲器 (以下、 外囲器と記 す) 1 1 内に、 X線源 A側から順に入力面 1 2、 集束電極 1 3、 陽極 1 4、 出力面 1 5を配置した基本構成と している。 外囲器 1 1 は、 X線が入射する金属製入力窓 1 1 a、 集束電 極を支持するガラス製胴部 1 1 b及び出力面 1 5を兼ねるか または出力面 1 5を支持する光学ガラス製出力部 1 1 c とか ら構成されている。  As shown in FIGS. 1 and 2, such a conventional X-ray image intensifier includes a vacuum envelope (hereinafter referred to as an envelope) 11 in order from the X-ray source A side. It has a basic configuration in which an input surface 12, a focusing electrode 13, an anode 14 and an output surface 15 are arranged. The envelope 11 is a metal input window 11a into which X-rays enter, a glass body 11b supporting the focusing electrode, and an output surface 15 or an optical device supporting the output surface 15. It consists of a glass output section 11c.
入力窓 1 1 aから所定間隔離れて配設された入力面 1 2は 陰極と して機能し、 X線源 A側に凸状をなすように曲面に成 形された入力基板例えばアル ミ ニウム金属基板 1 2 a と、 こ の金属基板 1 2 a の凹面側に形成された、 X線を可視光に変 換する蛍光体層 1 2 b と、 この蛍光体層 1 2 b上に形成され た透明導電膜 1 2 じ と、 この透明導電膜 1 2 c上に形成され、 蛍光体層 1 2 bで発光した可視光を電子に変換する光電面 1An input surface 12 arranged at a predetermined distance from the input window 11a functions as a cathode, and an input substrate formed into a curved shape so as to project toward the X-ray source A side, for example, aluminum. Metal substrate 1 2a A phosphor layer 12b for converting X-rays into visible light, formed on the concave side of the metal substrate 12a, and a transparent conductive film 12 formed on the phosphor layer 12b. A photocathode 1 formed on the transparent conductive film 12 c and converting visible light emitted from the phosphor layer 12 b into electrons.
2 d とにより構成されている。 こ こで透明導電膜 1 2 c は通 常、 酸化イ ンジウム、 I T 0 (酸化イ ンジウムと酸化錫の化 合物) 等により構成され、 蛍光体層 1 2を構成するアルカ リ ハライ ド例えば沃化ナ 卜 リ ゥ厶付活の沃化セシゥムと、 光電 面 1 2 dを構成する材料との反応を阻止するためと、 蛍光体 層表面での連続導電性を得るために用いられる。 2d. Here, the transparent conductive film 12 c is usually made of indium oxide, IT 0 (a compound of indium oxide and tin oxide), and the like. It is used for preventing reaction between sodium iodide-activated cesium iodide and the material constituting the photocathode 12d, and for obtaining continuous conductivity on the surface of the phosphor layer.
一方、 この入力面 1 2に対向して出力面 (二 こでは出力蛍 光体を支持する光学ガラス基板が外囲器の一部を兼ねる構造) 1 5が配設される側には、 外囲器出力部 1 1 c側にて支持さ れる陽極 1 4が配置され、 この陽極 1 4 と陰極となる入力面 1 2との間には、 例えば外囲器胴部 1 1 bの内壁に沿って第 1集束電極 1 3 aが配設され、 この粲束電極 1 3 a と出力面 1 5 との間には筒状の第 2集束電極 1 3 bが配設されている。 これら第 1及び第 2の集束電極 1 3 a , 1 3 b とで静電電子 レンズ系が構成されている。  On the other hand, on the side where the output surface (in this case, the structure in which the optical glass substrate supporting the output phosphor also serves as a part of the envelope) 15 facing the input surface 12 is provided, An anode 14 supported on the enclosure output section 1 1c side is arranged, and between the anode 14 and the input surface 12 serving as a cathode, for example, on the inner wall of the enclosure body 11b. A first focusing electrode 13 a is disposed along the first focusing electrode 13 a, and a cylindrical second focusing electrode 13 b is disposed between the first focusing electrode 13 a and the output surface 15. The first and second focusing electrodes 13a and 13b constitute an electrostatic electron lens system.
以上のように構成される X線ィメ 一ジジィ ンテン シフアイ ァでは、 X線源 Aから放射された X線 Bが被写体 Cを透過し て入力窓 1 1 a に達し、 この入力窓 1 1 a に投影された X線 像は後述する人力面で電子像に変換される。 この電子像は、 陰極となる入力面 1 2 と陽極 1 4 との間に印加された例えば In the X-ray image modifier configured as described above, the X-rays B emitted from the X-ray source A pass through the subject C to reach the input window 11a, and the input window 11a The X-ray image projected on is converted into an electronic image on the human surface described later. This electron image is applied, for example, between the input surface 12 serving as a cathode and the anode 14.
3 0 K Vの管電圧から分圧印加された第 1桀束電極 1 3 a と 第 2集束電極 1 3 b によって形成される静電 子レ ンズ系で 加速集束され、 出力面 1 5で再び可視光に変換される。 この 場合、 入力面 1 2での可視光強度に比し、 例えば 1 ◦ 0 0倍 以上に増強された可視像が得られる ものである。 The first jelly-bundle electrode 13 a with a partial voltage applied from the It is accelerated and focused by the electrostatic lens system formed by the second focusing electrode 13 b, and is converted again into visible light at the output surface 15. In this case, a visible image that is enhanced by, for example, 1 × 100 or more compared to the intensity of visible light on the input surface 12 is obtained.
上述のような従来の X線ィメ一ジジィ ンテンシフ ァ イアの 入力面は、 図 2にその拡大図を示すように、 外囲器の入力窓 1 1 a と入力面 1 2 とが所定間隔を隔てているため、 X線の 散乱が増大し、 コ ン トラス トの低下を来たすという問題があ る。 以下、 入力面有効径が 4イ ンチの X線イメ ージジイ ンテ ン シファイアを例にし、 この問題について図 3を参照して説 明する。  As shown in the enlarged view of FIG. 2, the input surface of the conventional X-ray image enhancement wire as described above has a predetermined distance between the input window 11a and the input surface 12 of the envelope. Due to the separation, the scattering of X-rays increases, resulting in a decrease in contrast. Hereinafter, this problem will be described with reference to FIG. 3 using an example of an X-ray image intensifier having an effective diameter of the input surface of 4 inches.
図 3のデータを得るために用いた X線管の管電圧は 5 0 K V、 管電流は 1 m Aであり、 縦軸に X線ィメ ージジイ ンテン シフ ァ イアのコ ン トラス ト (%) 及びコ ン トラス ト比、 横幸由 に鉛円板の直径 ( ram) を示す。 なお、 こ こでコ ン ト ラス ト ( % ) とは、 X線イメ ー ジジイ ンテンシフ ァ イアの入力有効 視野の輝度に対し、 入力有効視野の中心部に所定 ί圣の鉛を配 置したときの入力有効視野の輝度を百分率で表示した値であ る。 また、 コン トラス ト比はコ ン トラス ト (%) から定量的 に算定され.る比率である。  The tube voltage of the X-ray tube used to obtain the data in Fig. 3 was 50 KV, the tube current was 1 mA, and the vertical axis was the contrast (%) of the X-ray image intensifier. In addition, the contrast ratio and Yokoyuki Yoko show the diameter (ram) of the lead disk. Here, the contrast (%) refers to the case where a predetermined amount of lead is placed at the center of the input effective visual field with respect to the luminance of the input effective visual field of the X-ray image intensity. This is the value that displays the luminance of the input effective visual field in percentage. The contrast ratio is a ratio calculated quantitatively from the contrast (%).
図 3の曲線 c は、 図 2に示す従来構造の X線ィメ一ジジィ ンテン シフ ァ イアの特性を示すが、 これによれば、 コ ン トラ ス ト測定時の鉛円板の直径(mm)が 4 0 mmを境に小径になる程 コ ン ト ラス トは著しく 低下する。 このことは、 小さい寸法の 被写体のコ ン トラス トが、 大きい寸法の被写体のコ ン トラス トに比し、 著し く 劣るこ とを意味し、 工業用では細かい部位 での欠陥の判定がし難いという欠点がある。 Curve c in FIG. 3 shows the characteristics of the conventional X-ray imaging stiffener shown in FIG. 2. According to this, the diameter (mm) of the lead disk at the time of contrast measurement is shown. ) Becomes smaller at the boundary of 40 mm, the contrast decreases significantly. This means that the contrast of a smaller subject is larger than that of a larger subject. This means that it is significantly inferior to that of industrial equipment, and has the drawback that it is difficult to judge defects at small parts in industrial use.
また、 図 4は、 同じ X線イメ ー ジジイ ンテ ンシフ ァ イ アを 用い、 X線管の管電圧のみを 3 ◦ K Vに変更した場合のコ ン トラス トの実験データを示す。 図 4の直線 e によれば、 図 3 の直線 c と同様に、 コ ン トラス ト測定時の鉛円板の直径(mm) が 4 ◦ mmを境に小径になる程コ ン ト ラ ス トは著し く 低下する が、 その低下の程度は図 3の場合より急俊である。  Fig. 4 shows the experimental data of contrast when the same X-ray image intensifier was used and only the tube voltage of the X-ray tube was changed to 3 ° KV. According to the straight line e in FIG. 4, as in the case of the straight line c in FIG. 3, the contrast becomes smaller as the diameter (mm) of the lead disk at the time of contrast measurement becomes smaller at the boundary of 4 ° mm. Although it decreases significantly, the degree of the decrease is steeper than in the case of Fig. 3.
—方、 実公昭 3 4 - 2 0 8 3 2号公報ほかには、 アル ミ 二 ゥム製入力窓の内面に直接入力面を形成する X線ィメ 一ジジ イ ンテン シフ ァイアが開示されている。 し力、し、 このよ うな 入力窓内面に入力面を直接形成する構造のものでアルミニゥ ムを入力窓とする ものは、 未だ実用化に至っていない。 この ような薄い材料からなる入力窓を有する X線ィメ 一ジジィ ン テンシフ ァ イ アを組立てて真空排気すると、 管内外の圧力差 により入力窓が変形し、 当然のこ とながら入力面も変形し、 所望の光電面が得られず、 よって、 出力画像も歪んでしま う 力、りである。 発明の開示  On the other hand, Japanese Patent Publication No. 34-2032 / 32 discloses an X-ray image intensifier which forms an input surface directly on the inner surface of an aluminum input window. I have. Such a structure in which the input surface is formed directly on the inner surface of the input window and which uses aluminum as the input window has not yet been put to practical use. When an X-ray imaging tensioner with an input window made of such a thin material is assembled and evacuated, the input window is deformed due to the pressure difference between the inside and outside of the pipe, and the input surface is naturally deformed. However, the desired photocathode cannot be obtained, and thus the output image may be distorted. Disclosure of the invention
本発明の目的は、 上述の欠点を除去し、 高輝度を維持し、 かつ、 高コ ン トラス 卜が得られる X線ィメ 一ジジィ ンテンシ ファ イアを提供するこ とにある。  SUMMARY OF THE INVENTION An object of the present invention is to provide an X-ray imaging intensity fire that eliminates the above-mentioned disadvantages, maintains high luminance, and provides a high contrast.
本発明によると、 金厲製 X線入力窓を有する真空外囲器と . 前記 X線入力窓内面に形成された入力面と、 前記真空外囲器 内に前記入力面から発する電子の進行 ^向に沿って順に配置 された集束電極、 陽極及び出力面とを具備し、 前記 X線入力 窓は、 入力面が形成された側の面に凹凸表面硬化層を有し、 前記入力面は、 前記凹凸表面硬化層上に形成された蛍光体層 と、 この蛍光体層上に形成された光電面とを具備する X線ィ メ一ジジィ ンテン シフ ァイアが提供される。 According to the present invention, there is provided a vacuum envelope having a metal X-ray input window, an input surface formed on an inner surface of the X-ray input window, and the vacuum envelope. A focusing electrode, an anode, and an output surface which are sequentially arranged along the direction of travel of electrons emitted from the input surface, and the X-ray input window has an uneven surface on the surface on which the input surface is formed. A hardened layer, the input surface comprising: a phosphor layer formed on the uneven surface hardened layer; and a photocathode formed on the phosphor layer. Is provided.
本発明の X線ィメ — ジジィ ンテンシファイアにおいて、 金 厲製 X線入力窓の材質と しては、 アル ミニウム又はアルミ二 ゥム合金等の、 X線透過率が高く 、 加工がしゃすく 、 かつ表 面硬化処理により表面硬化されるこ とによって X線ィメ ージ ジイ ンテンシフ ァ イアの内外の圧力差に耐え得る強度を有す るに至る材質を使用し得る。  In the X-ray image of the present invention, the material of the X-ray input window made of metal is aluminum, aluminum alloy, or the like, which has a high X-ray transmittance and is difficult to process. In addition, a material having a strength capable of withstanding a pressure difference between the inside and the outside of the X-ray image intensifier by being surface-hardened by the surface hardening treatment can be used.
金属製 X線入力窓の凹凸表面硬化層は、 金属製 X線入力窓 を構成する金属板に、 例えば凹凸表面硬化処理を施すこ とに より、 形成し得る。 この凹凸表面硬化層形成のための方法は 例えば次のようにして行なう ことが出来る。  The uneven surface hardened layer of the metallic X-ray input window can be formed by, for example, performing an uneven surface hardening treatment on a metal plate constituting the metallic X-ray input window. The method for forming the uneven surface hardened layer can be performed, for example, as follows.
すなわち、 金属板に、 粒径 5 0〜 2 0 0 mの硬球、 例え ばガラスビ―ズを用いて、 1〜 4 k gノ c m 2 の圧力で、 加 ェ時間 1 ~ 5分で、 射突させるこ とにより、 表面硬化処理を 行う。 その結果、 金属板の表面は、 凹凸面となるとともに、 凹凸表面硬化層が形成される。 That is, a metal plate is struck using a hard sphere having a particle size of 50 to 200 m, for example, a glass bead, at a pressure of 1 to 4 kg / cm 2 and a heating time of 1 to 5 minutes. Thus, a surface hardening treatment is performed. As a result, the surface of the metal plate becomes uneven, and an uneven surface hardened layer is formed.
本発明の X線ィメ一ジジィ ンテンシファイアは、 X線管電 圧が 3 0 K V (管電流 1 m A ) 以下の低エネルギー X線を使 用する時に、 特に効果的である。 図面の簡単な説明 The X-ray image intensifier of the present invention is particularly effective when using low-energy X-rays having an X-ray tube voltage of 30 KV (tube current of 1 mA) or less. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 従来の X線イ メ ー ジジイ ンテン シフ ァ イ アと X線 撮影方法を説明するための概略図。  Figure 1 is a schematic diagram for explaining a conventional X-ray image intensity and X-ray imaging method.
図 2は、 図 1 の従来の X線ィ メ — ジジィ ンテン シフ ァ イア の一部を取り出して示す断面図。  FIG. 2 is a cross-sectional view showing a part of the conventional X-ray image finder shown in FIG.
図 3は、 本発明に係る X線ィ メ 一ジジィ ンテン シフ ァ イア の 1実施例と従来の X線ィ メ — ジ ジィ ンテ ン シフ ァ イ アの コ ン ト ラ ス ト特性を高エネルギー X線を用いて得たデータを示 すグラフ図。  FIG. 3 shows an embodiment of the X-ray image intensity according to the present invention and a conventional X-ray image—the contrast characteristics of the X-ray intensity is shown by the high energy X-ray. FIG. 4 is a graph showing data obtained using a line.
図 4 は、 本発明に係る X線ィ メ 一ジジィ ンテン シフ ァ イア の 1実施例と従来の X線ィメ — ジ ジィ ンテ ン シフ ァ イ アの コ ン ト ラ ス ト特性を低エネルギー X線を用いて得たデータを示 すグラフ図。  FIG. 4 shows an embodiment of the X-ray image clarifying fire according to the present invention and a contrast characteristic of the conventional X-ray mag- netic fire fin with the low energy X-ray. FIG. 4 is a graph showing data obtained using a line.
図 5は、 本発明に係る X線ィ メ — ジジィ ンテン シフ ァ イア の 1実施例の要部を拡大して示す断面図。  FIG. 5 is an enlarged cross-sectional view showing a main part of one embodiment of the X-ray imaging fire according to the present invention.
図 6は、 図 5の一部を拡大して示す断面図。  FIG. 6 is an enlarged sectional view showing a part of FIG.
図 7 は、 表面硬化処理された A 1 板の表面の粗さ と、 表面 硬化層の硬度と-の関係を示すグラフ図。 発明を実施するための最良の形態 本発明の X線ィ メ 一ジジィ ンテン シフ ァ イアは、 入力窓の 内面に直接入力面が形成されている こ と、 及び入力窓の内面 に凹凸硬化処理が施されている こ とを除いて、 図 1 に示す従 来の X線ィ メ 一ジジィ ンテ ン シフ ァ イアと同様の構成を有す γ FIG. 7 is a graph showing the relationship between the surface roughness of the surface-hardened A1 plate and the hardness of the surface-hardened layer. BEST MODE FOR CARRYING OUT THE INVENTION The X-ray imaging fire of the present invention has an input surface directly formed on the inner surface of the input window, and an uneven surface hardening treatment on the inner surface of the input window. It has the same configuration as the conventional X-ray image intensifier shown in Fig. 1 except that it is applied. γ
すなわち、 図 1 に示すように、 真空外囲器 1 1 内に、 X線 源 Α側から順に入力面 1 2、 集束電極 1 3、 陽極〗 4、 出力 面 1 5を配置した基本構成と し、 外囲器 1 1 は、 X線が入射 する金属製入力窓 1 1 a、 集束電極を支持するガラス製胴部 1 1 b及び出力面 1 5を兼ねるかまたは出力面 1 5を支持す るガラス製出力部 1 1 c とから構成されている。 That is, as shown in Fig. 1, the basic configuration is such that the input surface 12, the focusing electrode 13, the anode〗 4, and the output surface 15 are arranged in the vacuum envelope 11 in order from the X-ray source Α side. The envelope 11 serves as the metal input window 11 a into which the X-rays are incident, the glass body 11 b supporting the focusing electrode, and the output surface 15 or supports the output surface 15. And a glass output section 1 1 c.
図 5に示すように、 入力窓 1 1 a の内面は、 凹凸表面硬化 処理により凹凸面を有する凹凸表面硬化層 1 1 dが形成され ている。 こ こで用いている入力窓 1 1 aの材質は、 アル ミ 二 ゥム合金であり、 特に A S T M 5 0 0 0番系の A 1 — M g合 金を用いた。 入力窓 1 1 aは、 このようなアル ミニウム合金 板をプレスにて皿状に成形加工し、 上述の凹凸表面硬化処理 を行う こ とにより得た。  As shown in FIG. 5, an uneven surface hardened layer 11d having an uneven surface is formed on the inner surface of the input window 11a by the uneven surface hardening treatment. The material of the input window 11a used here is an aluminum alloy, and in particular, an ATM-500 series A1-Mg alloy is used. The input window 11a was obtained by forming such an aluminum alloy plate into a dish shape by pressing, and performing the above-described uneven surface hardening treatment.
この凹凸表面硬化層 1 1 dの凹凸面には、 入力面 1 2が直 接形成されている。 入力面 1 2は、 凹凸表面硬化層 1 1 d の 凹凸面に形成された光反射性物質層 1 2 a と、 この上に形成 された X線を可視光に変換する蛍光体層 1 2 b と、 この蛍光 '体層 1 2 b上に形成された透明導電膜 1 2 c と、 この透明導 電膜 1 2 c上に形成され、 蛍光体層 1 2 bで発光した可視光 を電子に変換する光電面 1 2 d とにより構成されている。 こ こで透明導電膜 1 2 c は通常、 酸化イ ンジウム、 I T O (酸 化イ ンジウムと酸化錫の化合物) 等により構成され、 蛍光体 層 1 2 bを構成するアルカ リ ハライ ド例えば沃化ナ ト リ ウム 付活の沃化セシウムと、 光電面 1 2 dを構成する材料との反 応を阻止するためと、 蛍光体層表面部での連続導電性を得る ために用いられる。 The input surface 12 is formed directly on the uneven surface of the uneven surface hardened layer 11 d. The input surface 12 is composed of a light-reflective material layer 12 a formed on the uneven surface of the uneven surface hardened layer 11 d and a phosphor layer 12 b that converts X-rays formed thereon into visible light. And a transparent conductive film 12 c formed on the phosphor layer 12 b and visible light emitted from the phosphor layer 12 b formed on the transparent conductive film 12 c into electrons. It is composed of a photoelectric surface 12 d for conversion. Here, the transparent conductive film 12 c is usually made of indium oxide, ITO (a compound of indium oxide and tin oxide), etc., and alkali halide such as sodium iodide forming the phosphor layer 12 b is used. To prevent reaction between the activated cesium iodide and the material constituting the photocathode 12d, and to obtain continuous conductivity on the surface of the phosphor layer Used for
一方、 この入力面 1 2に対向して出力面 (こ こでは出力 ¾ 光体を支持する光学ガラ ス基板が外囲器の一部を兼ねる構造) 1 5が配設される側には、 外囲器出力部 1 1 c側にて支持さ れる陽極 1 4が配置され、 この陽極 1 4 と陰極となる入力面 1 2との間には、 例えば外囲器胴部 1 1 bの内壁に沿って第 1集束電極 1 3 aが配設され、 この集束電極 1 3 a と出力面 1 5 との間には筒状の第 2集束電極 1 3 bが配設されている。 これら第 1及び第 2の集束電極 1 3 a, 1 3 b とで静電電子 レンズ系が構成されているこ とは、 図 1 に示す従来の X線ィ メ 一ジ ジィ ンテ ン シフ ァ イ アの構造と同様であ る。  On the other hand, on the side on which the output surface (here, the structure in which the optical glass substrate supporting the optical member also functions as a part of the envelope) 15 is disposed in opposition to the input surface 12, An anode 14 supported on the envelope output section 1 1c side is arranged, and between the anode 14 and the input surface 12 serving as a cathode, for example, the inner wall of the envelope body 1 1b A first focusing electrode 13a is provided along the line, and a cylindrical second focusing electrode 13b is provided between the focusing electrode 13a and the output surface 15. The fact that the first and second focusing electrodes 13a, 13b constitute an electrostatic electron lens system is based on the conventional X-ray imaging enhancement shown in FIG. The structure is the same as that of a.
既に述べたように、 本発明の X線ィメ 一ジジィ ンテ ン シフ アイァでは、 入力窓 1 1 aの内面に凹凸表面硬化層 1 1 dカ《 形成され、 その上に直接入力面 1 2が形成されている。 この 凹凸表面硬化層 1 1 dのビッカーズ硬度は、 上述のように、 1 2 0〜 2 5 0であるのが好ま しい。 ビッカーズ硬度が 1 2 0未満では、 X線ィメ 一ジジィ ンテ ン シフ ァ イ アの内外の圧 力差に耐え得るには不十分であり、 X線入力窓 1 1 aが変形 する恐れがある。 一方、 ビッカ—ズ硬度が 2 5 0を越えると、 成形加工性が低く なり、 好ま し く ない。  As described above, in the X-ray imaging intensifier of the present invention, an uneven surface hardened layer 11 d is formed on the inner surface of the input window 11 a, and the input surface 12 is directly formed thereon. Is formed. The Vickers hardness of the uneven surface hardened layer 11d is preferably 120 to 250, as described above. If the Vickers hardness is less than 120, it is insufficient to withstand the pressure difference between the inside and the outside of the X-ray image intensifier, and the X-ray input window 11a may be deformed. . On the other hand, if the Vickers hardness exceeds 250, the formability is reduced, which is not preferable.
凹凸表面硬化層 1 1 dの表面の粗さは、 2〜 1 ◦ mであ るのが好ま しい。 粗さが 2 / m未満では、 凹凸表面硬化層 1 1 d の硬度が低く 、 X線ィメ — ジ ジィ ンテ ン シフ ァ イ アの内 外の圧力差に耐え得るには不十分であり、 X線入力窓 1 1 a が変形する恐れがある。 一方、 1 0 πιを越えると、 その上 ^ The surface roughness of the uneven surface hardened layer 11 d is preferably 2 to 1 ° m. When the roughness is less than 2 / m, the hardness of the uneven surface hardened layer 11d is low, and is not enough to withstand the pressure difference between the inside and outside of the X-ray image. X-ray input window 1 1a may be deformed. On the other hand, when it exceeds 10 πι, ^
に形成される蛍光体の付着性が弱く 、 かつ蛍光体の膜質に難 点がある。 The adhesion of the phosphor formed on the substrate is weak, and the film quality of the phosphor is difficult.
本発明者らは、 表面硬化処理による A 1 の表面の粗さと、 処理面の硬度、 処理面上への蛍光体の付着力、 及び蛍光体の 膜質との関係を求める実験を次のように行なった。  The present inventors conducted an experiment to determine the relationship between the surface roughness of A 1 by the surface hardening treatment, the hardness of the treated surface, the adhesion of the phosphor on the treated surface, and the film quality of the phosphor as follows. Done.
すなわち、 厚さ ◦ . 5 m mの上述の A 1 — M g合金板を入 力窓の形状に成形加工した後に、 粒径 1 0 ◦ ; mのガラスビ -ズを用いて凹凸表面硬化処理を行い、 圧力及び加工時間を 種々変化させて、 種々の粗さの処理面を有する A 1 合金入力 窓試料を得た。  That is, after forming the above-mentioned A 1 -Mg alloy plate having a thickness of 0.5 mm into the shape of an input window, an uneven surface hardening treatment was performed using a glass bead with a particle size of 10 ° m. By changing the pressure, the processing time, and the like, we obtained A1 alloy input window samples with various roughnesses.
これら A 1 入力窓試料の処理面のビッカ—ス硬度を測定し たところ、 図 7に示す結果を得た。 図 7のグラフから、 X線 ィメ一ジジィ ンテンシフ ァ イアの内外の圧力差に耐え得る ビ ッカ—ズ硬度 1 2 0以上を得るには、 2 m以上の粗さが必 要であることがわかる。  The Vickers hardness of the treated surface of these A1 input window samples was measured, and the results shown in FIG. 7 were obtained. From the graph in Fig. 7, it is necessary to have a roughness of 2 m or more to obtain a Vickers hardness of 120 or more that can withstand the pressure difference between the inside and outside of the X-ray image intensifier. I understand.
次に、 A 1 合金入力窓試料の処理面上に蛍光体層を蒸着に より形成して、 その付着力及び蛍光体層の膜質を調べた。 そ の結果を下記表.1 に示す。 Next, a phosphor layer was formed by vapor deposition on the treated surface of the A1 alloy input window sample, and the adhesion and the film quality of the phosphor layer were examined. The results are shown in Table 1 below.
表 1 table 1
処理面の粗さ 2<x<5 x = 5 5<x<10 10< x Surface roughness 2 <x <5 x = 5 5 <x <10 10 <x
( m ) (m)
硬度 X 〇  Hardness X 〇
X △ ◎ ◎ く  X △ ◎ ◎
蛍光体 2  Phosphor 2
付着力 〇 〇 ◎ 〇 △ 蛍光体  Adhesion 〇 〇 ◎ 〇 △ Phosphor
◎ ◎ ◎ Δ χ ◎ ◎ ◎ Δ χ
◎ 取良 ◎ Tori
〇 良好  〇 good
Δ やや良好  Δ Somewhat good
X 不良  X bad
上記表 1から、 A 1 合金入力窓板の充分な硬度を得るため には、 表面粗さは 5以上が好ま しいこ と、 充分な蛍光体の付 着力を得るためには表面粗さは 1 0 m以下が好ま しいこ と 充分な蛍光体の膜質を得るためには表面粗さは 1 0 m以下 が好ま しいことがわかる。 これらを総合的に勘案すると、 表 面粗さは、 2〜 1 0 mが好ま しいこ とがわかる。  From Table 1 above, the surface roughness should preferably be 5 or more to obtain sufficient hardness of the A1 alloy input window plate, and the surface roughness should be 1 to obtain sufficient adhesion of the phosphor. 0 m or less is preferred It is understood that the surface roughness is preferably 10 m or less in order to obtain sufficient phosphor film quality. Considering these factors comprehensively, it is understood that the surface roughness is preferably 2 to 10 m.
なお、 上述のように、 蛍光体の付着力及び膜質のみに着目 すると、 表面粗さが 5 mのときが最も良好である力 <、 硬度 については最良ではない。 しかし、 表面粗さが 5 ii mであつ ても、 凹凸表面硬化処理の仕方によ っては、 最良の硬度を得 ることが可能である。  As described above, focusing only on the adhesion and the film quality of the phosphor, the force <5 and the hardness when the surface roughness is 5 m are not the best. However, even if the surface roughness is 5 im, the best hardness can be obtained depending on the method of the uneven surface hardening treatment.
すなわち、 まず、 最良の硬度を得るために、 A 1 — M g合 金板 (A S T M 5 0 0 0番系) を入力窓の形状に成形後、 高 い圧力で凹凸表面処理し、 凹凸表面硬化処理し、 1 0 111又 はそれ以上の表面粗さを得る。 次に、 A 1 板を低い圧力で凹 凸表面硬化処理し、 先に形成された凹凸をつぶし、 表面粗さ を 5 m程度とすればよい。 その結果、 表面粗さが 5 mで あっても、 2 5 0程度のピツカ—ス硬度の表面を得るこ とが 可能である。 That is, first, to obtain the best hardness, After shaping a metal plate (ASTM500 series) into the shape of the input window, it is subjected to uneven surface treatment with high pressure, and uneven surface hardening treatment to obtain a surface roughness of 10111 or more. Next, the A 1 plate is subjected to a concave / convex surface hardening treatment at a low pressure, and the previously formed irregularities are crushed, and the surface roughness may be reduced to about 5 m. As a result, even if the surface roughness is 5 m, it is possible to obtain a surface having a picker hardness of about 250.
以上説明したように、 本発明の X線イメ ー ジジイ ンテ ンシ ファイアによれば、 X線入力窓内面に凹凸表面硬化層が形成 されているので、 真空排気により生ずる X線ィメ一ジジィ ン テ ンシファイアの内外の圧力差による X線入力窓の変形が少 なく 、 また、 凹凸表面硬化層上に形成された光反射性物質層 の存在により、 入力面で発光した光が光電面方向に向かい、 高コ ン トラス 卜の出力画像をもたらす。  As described above, according to the X-ray image intensifier of the present invention, since the uneven surface hardened layer is formed on the inner surface of the X-ray input window, the X-ray image generated by evacuation is obtained. The deformation of the X-ray input window due to the pressure difference between the inside and outside of the modifier is small, and the light emitted from the input surface is directed toward the photocathode due to the presence of the light reflective material layer formed on the uneven surface hardened layer. Produces high contrast output images.
また、 X線入力窓の材質と して A 1 又は A 1 合金を用いた 場合には、 X線入力窓の成形性が良く かつ、 価格面でも有利 な X線ィメ一ジジィ ンテンシファイアが得られる。  Also, when A1 or A1 alloy is used as the material of the X-ray input window, an X-ray image intensifier that has good moldability of the X-ray input window and is advantageous in terms of price is also available. can get.
更に、 本発明の X線ィメ一ジジィ ンテ ン シフ ァ イ アの使用 に際し、 X線源と して低エネルギー X線を採用した場合には 小さい寸法の被写体において、 より高コ ン ト ラ ス 卜の出力画 像を得ることが可能である。  Further, when the low-energy X-ray is used as the X-ray source when using the X-ray image intensifier of the present invention, a higher contrast can be obtained for a small-sized object. It is possible to obtain an output image of the mouse.
以下、 本発明の実施例について説明す 。  Hereinafter, examples of the present invention will be described.
(実施例 1 )  (Example 1)
本実施例の X線ィメ ージィ ンテ ンシフ ァ イ ア —は、 特定構 造の入力面を形成したこ とを特徴とする ものである。 即ち、 X線入力窓 1 1 aの材質と して厚さ ◦ . 5 ミ リ のアル ミ ニゥ ム合金 (又はアル ミ ニウム) を用い、 この X線入力窓 1 1 a の凹面に、 例えば凹凸表面硬化処理が施されている。 この凹 凸表面硬化処理により、 凹凸面の高さが数ミ ク ロ ン程度の粗 さの粗面が形成されるとと もに、 表面は硬化している。 すな わち、 このように処理された X線入力窓 1 1 aの凹面は、 凹 凸表面硬化層 1 1 dが形成されている。 The X-ray image intensifier of the present embodiment is characterized in that an input surface having a specific structure is formed. That is, The thickness of the X-ray input window 11a is made of aluminum alloy (or aluminum) with a thickness of .5 mm. Processing has been applied. By this concave / convex surface hardening treatment, a rough surface having a height of about several micron is formed and the surface is hardened. That is, the concave surface of the X-ray input window 11a thus processed is formed with a concave-convex surface hardened layer 11d.
この凹凸表面硬化層 1 1 dの凹凸面上には、 光反射性物質 層である 20 00 A程度のアルミニウム薄膜 1 2 aが形成さ れている。 このアルミニゥ厶薄膜は、 約 2 x l O—5P aの減 圧下で真空蒸着されている。 また、 この光反射性物質層 1 2 a上には厚さ約 4 0 0 mの蛍光体層 1 2 bが蒸着により形 成されている。 この蛍光体層 1 2 bは、 基板温度約 1 80° Cでまず第 1層の C s I ZN a蛍光体が 4. 5 x 1 0 _1 P a の圧力下で約 380 mの厚さに形成され、 次いで第 2層の C s I ZN a蛍光体が 1 0つ P a以下の圧力下で約 2 0 〇 ミ ク ロ ンの厚さに蒸着により形成されている。 On the uneven surface of the uneven surface hardened layer 11d, an aluminum thin film 12a of about 2000 A, which is a light reflective material layer, is formed. This aluminum thin film is vacuum-deposited under a reduced pressure of about 2 xl O- 5 Pa. A phosphor layer 12b having a thickness of about 400 m is formed on the light reflecting material layer 12a by vapor deposition. At a substrate temperature of about 180 ° C., the first layer of CsIZNa phosphor has a thickness of about 380 m under a pressure of 4.5 × 10_1Pa. Then, a second layer of CsIZNa phosphor is formed by vapor deposition under a pressure of 10 Pa or less to a thickness of about 20 μm.
尚、 この蛍光体層 1 2 bを含む X線入力窓 1 1 aは、 外囲 器胴部 1 1 c とは、 金属製例えば鋼製リ ング 1 1 eを介して 溶接される。 このよ う に X線入力窓 1 1 a と接合された外囲 器胴部 1 1 は、 次いで外囲器出力部 1 1 c と も接合される ( その後、 蛍光体層 1 2 b上に、 透明導電膜 1 2 cを介するか 又は直接.に、 光電面 1 2 dが形成されるこ ととなる。 The X-ray input window 11a including the phosphor layer 12b is welded to the envelope body 11c via a metal ring 11e. The envelope body 11 joined to the X-ray input window 11a in this way is also joined to the envelope output section 11c ( then, on the phosphor layer 12b, The photocathode 12d is formed via the transparent conductive film 12c or directly.
以上のように構成される X線イメ ージイ ンテン シファ イア 一では、 X線源 Aからの X線 Bが被写体 Cを透過し、 入力窓 1 1 a に入射すると、 図 6に示すように、 蛍光体層 1 2 b内 例えば a点で発光が生じ、 この光は出力面方向に向かう光 b と、 入力窓 1 1 a側に向かう光 c とに分かれる。 このうち入 力窓側に向かう光 c は、 入力窓 1 1 aの表面である表面硬化 凹凸面 1 2 f に達するとそこで乱反射し、 この乱反射光 dは 通常、 輝度の低下要因となる。 しかし、 凹凸表面硬化層 1 1 d上には光反射性物質層と してのアルミ二ゥム薄膜 1 2 aが 形成されており、 そのため光 c は凹凸表面硬化層 1 1 dに到 達することなく アルミニゥム薄膜 1 2 a により反射され、 反 射光 dは出力面 1 5側に向かう こととなり、 輝度の低下は防 止される。 In the X-ray image intensity configured as described above, the X-ray B from the X-ray source A passes through the subject C and the input window As shown in Fig. 6, when the light enters the light emitting layer 11a, light is emitted at the point a, for example, in the phosphor layer 12b. This light is directed toward the output surface b and toward the input window 11a. c. Of the light, the light c traveling toward the input window side is irregularly reflected there when reaching the surface hardened uneven surface 12f which is the surface of the input window 11a, and the irregularly reflected light d usually causes a decrease in luminance. However, an aluminum thin film 12a as a light-reflective material layer is formed on the uneven surface hardened layer 11d, so that the light c reaches the uneven surface hardened layer 11d. Instead, the light is reflected by the aluminum thin film 12a, and the reflected light d is directed to the output surface 15 side, so that a decrease in luminance is prevented.
以下、 入力面有効径が 4 イ ンチの場合を例にとり、 本実施 例の X線ィメ ージィ ンテンシフ ァ イア一と、 従来構造の X線 イ メ ー ジイ ンテンシフ ァ イア一を用い、 コ ン トラス ト特性の 比較データについて図 3を参照して説明する。  In the following, taking the case where the effective diameter of the input surface is 4 inches as an example, using the X-ray image intensifier of this embodiment and the X-ray image intensifier of the conventional structure, the contrast is obtained. The comparison data of the load characteristics will be described with reference to FIG.
図 3は、 既に述べたとおり、 縦軸にコ ン ト ラス ト (%) 及 びコ ン トラス ト比、 横軸に鉛円板の直径を示す。 図中、 有効 入力径が 4 ィ ンチの X線ィメ — ジィ ンテン シフ ァ イア -を用 い、 その管電圧を 5 0 K V、 管電流を 1 mAと して実験した。 図 3の直線 a , bはいずれも本実施例構造の入力窓を用いた 例を示し、 そのうち直線 a はアル ミ ニウムからなる入力窓を 用いた場合、 直線 bはアル ミニウムと同寸法のベリ リ ウムか らなる入力窓を用いた場合をそれぞれ示す。 曲線 c は前述の とおり、 図 1 に示す従来構造の X線イメ ージジイ ンテンシフ アイァの例をそれぞれ示す。 図 3に示す結果によれば、 従来構造の X線ィ メ ー ジジイ ン テ ンシフ ァ イ アの コ ン ト ラ ス トは鈴円板の直径 (mm)力く 4 〇 mm を境に小径になる程コ ン ト ラ ス トが著しく低下するのに対し , 本実施例の X線ィメ ー ジィ ンテ ン シフ ァ イ アの コ ン ト ラ ス ト は、 直線 a, bに示すように、 円板の直径(m m)に比例して 向上し、 鉛円板の直径に直線的に比例し、 鉛円板の直径に依 存していることが分かる。 このこ とは、 被写体がより細かい 物の場合の判定において、 色付けによりその濃淡の差をつけ よう とする場合に判定がし易いことを意味する。 In Fig. 3, as mentioned above, the vertical axis shows the contrast (%) and contrast ratio, and the horizontal axis shows the diameter of the lead disk. In the figure, an experiment was performed using an X-ray imager with an effective input diameter of 4 inches, and a tube voltage of 50 KV and a tube current of 1 mA. The straight lines a and b in Fig. 3 show examples using the input window of the structure of the present embodiment. Among them, the straight line a uses an aluminum input window, and the straight line b The cases where an input window made of lithium is used are shown. As described above, the curve c shows an example of the conventional structure of the X-ray image intensifier shown in FIG. According to the results shown in Fig. 3, the contrast of the conventional structure of the X-ray image intensifier is reduced by the diameter of the bell disk (mm) and the diameter is reduced to 4 mm. While the contrast is remarkably reduced, the contrast of the X-ray imaging intensifier of the present embodiment is as shown by the straight lines a and b. It can be seen that it increases in proportion to the diameter of the disk (mm), is linearly proportional to the diameter of the lead disk, and depends on the diameter of the lead disk. This means that it is easy to make a determination in the case where the subject is a finer object, in the case where an attempt is made to make a difference in the shading by coloring.
こ のよ う に、 本実施例の X線ィメ 一ジジィ ンテ ン シフアイ ァは従来、 困難とされた入力窓兼入力面構造の X線イメ ージ ジイ ンテン シフ ァ イ アの実用化を可能に した ものである。  As described above, the X-ray image intensifier of the present embodiment enables the practical use of an X-ray image intensifier having an input window and input surface structure, which has been considered difficult in the past. It is the one that was decided.
実施例 2  Example 2
本実施例は、 実施例 1 と同じ X線イメ ージジイ ンテ ン シフ アイァ (入力窓の材質は A 1 - M g合金) を用い、 低ェネル ギー X線を使用した場合のコ ン ト ラ ス ト特性を測定した例を 示すものである。 図 4は、 上述のとおり、 縦軸にコ ン トラ ス ト (%) 及びコ.ン ト ラ ス ト比、 横軸に鉛円板の直径を示すグ ラ フである。 X線管電圧は 3 0 K V、 管電流は l tnAで実験し た。  This embodiment uses the same X-ray image intensifier (the material of the input window is A1-Mg alloy) as in the first embodiment, and contrasts when low energy X-rays are used. It shows an example of measuring the characteristics. Fig. 4 is a graph showing the contrast (%) and contrast ratio on the vertical axis and the diameter of the lead disk on the horizontal axis, as described above. The experiment was performed with an X-ray tube voltage of 30 KV and a tube current of ltnA.
図 4の直線 dは本実施例構造の入力窓を用いた例、 曲線 e は、 図 1 に示す従来構造の X線ィ メ 一ジ ジ ィ ンテ ン シフ ア イ ァを用いた場合のコ ン 卜ラス 卜の変化を示す。  The straight line d in FIG. 4 is an example using the input window of the structure of the present embodiment, and the curve e is the control when the conventional structure of the X-ray image intensifier shown in FIG. 1 is used. Indicates changes in the trajectory.
図 4によれば、 従来構造の X線ィメ —ジジィ ンテ ン シフ ァ ィァのコ ン トラス トは、 高エネルギー X線を使 fflした場合 P P According to Fig. 4, the contrast of the conventional X-ray image-given intensifier is high when high energy X-rays are used. PP
1 5  1 5
(X線管電圧 50 K V、 管電流 1 m A ) に比し、 鉛円板の直 径(mm)が 4 0 mmを境に小 ί圣になる程より著しく低下するのに 対し、 本実施例の X線ィメ — ジ ジィ ンテ ン シフ ァ イ アのコ ン トラス トは、 直線 dに示すように、 鉛円板の直径に直線的に 比例し、 鉛円板の直径に依存し、 上記と同様に被写体がより 細かい物の判定においてさ らに、 高精度の判定ができること 力、ねカヽる In contrast to (X-ray tube voltage 50 KV, tube current 1 mA), the diameter of the lead disk ( mm ) becomes significantly smaller as the diameter becomes smaller at the boundary of 40 mm. The X-ray image of the example — the contrast of the digi- intensifier is linearly proportional to the diameter of the lead disk and depends on the diameter of the lead disk, as shown by line d. Similar to the above, it is necessary to be able to make more accurate judgments in judging finer objects.
以上説明したように、 本発明によると、 従来困難とされた 入力窓内面に直接入力面を形成した構造の X線イメ ージジィ ンテ ン シフ ァ イ アの実用化と、 よ り コ ン ト ラ ス ト の向上した X線ィメ一ジジィ ンテンシファイアの実現を可能にしたもの As described above, according to the present invention, the practical use of an X-ray image intensifier having a structure in which an input surface is formed directly on the inner surface of an input window, which has been considered difficult, has been achieved. X-ray image intensifier with improved efficiency
" *める 0 "* Mel 0
なお、 入力窓材は、 上記実施例で用いた A 1 一 M g合金以 外に、 1 ー 8 - 5 1 系合金 (A S T M 6 0 0 0番系) を 用いても、 同様の効果が得られる。  The same effect can be obtained by using a 1-8-51 series alloy (ASTM 600 series) in addition to the A1 Mg alloy used in the above embodiment as the input window material. Can be

Claims

請求の範囲 The scope of the claims
1 . 金属製 X線入力窓を有する真空外囲器と、 前記 X線入 力窓内面に形成された入力面と、 前記真空外囲器内に前記入 力面から発する電子の進行方向に沿って順に配置された桀束 電極、 陽極及び出力面とを具備し、 前記 X線入力窓は、 入力 面が形成された側の面に凹凸表面硬化層を有し、 前記入力面 は、 前記凹凸表面硬化層上に形成された蛍光体層と、 こ の蛍 光体層上に形成された光電面とを具備する X線ィ メ ージィ ン テ ン シフ ァ イ ア。  1. A vacuum envelope having a metal X-ray input window, an input surface formed on the inner surface of the X-ray input window, and a traveling direction of electrons emitted from the input surface in the vacuum envelope. The X-ray input window has an uneven surface hardened layer on the surface on which the input surface is formed, and the input surface includes the uneven surface. An X-ray image intensifier comprising a phosphor layer formed on a surface hardened layer and a photocathode formed on the phosphor layer.
2 . 前記金属製 X線入力窓の材質がアル ミニウム又はアル ミニゥム合金であるこ とを特徴とする請求項 1 に記載の X線 ィ メ ー ジィ ンテ ン シフ ァ イ ア。  2. The X-ray imaging intensifier according to claim 1, wherein the material of the metal X-ray input window is aluminum or aluminum alloy.
3 . 前記凹凸表面硬化層の表面の粗さは、 2 〜 1 0 mで ある請求項 1 に記載の X線ィメ ー ジイ ンテ ン シフ ァ イ ア。  3. The X-ray image intensifier according to claim 1, wherein the surface roughness of the uneven surface hardened layer is 2 to 10 m.
4 . 前記凹凸表面硬化層のビッカーズ硬度は、 1 2 0 〜 2 5 0である請求項 1 に記載の X線ィメ —ジィ ンテ ン シフアイ ァ。  4. The X-ray image sifter according to claim 1, wherein the Vickers hardness of the uneven surface hardened layer is from 120 to 250.
5 . 前記凹凸表面硬化層は、 入力窓材を入力窓の形状に成 形後、 硬球を入力窓材表面に射突させるこ とにより得られる 請求項 1 に記載の X線ィメ ージイ ンテ ンシフ ァ イ ア。  5. The X-ray image intensifier according to claim 1, wherein the uneven surface hardened layer is obtained by shaping the input window material into the shape of the input window and then projecting a hard sphere against the surface of the input window material. Fire.
6 . 前記入力面は、 前記凹凸表面硬化層上に形成された光 反射性物質層を更に具備する請求項 1 に記載の X線イ メ ー ジ ィ ンテン シフ ァ イ ア。  6. The X-ray image intensifier according to claim 1, wherein the input surface further comprises a light reflective material layer formed on the uneven surface hardened layer.
7 . 前記光反射性物質層は、 金属薄膜である請求項 6に記 載の X線ィ メ ー ジィ ンテ ン シフ ァ イ ア。  7. The X-ray image intensifier according to claim 6, wherein the light-reflective material layer is a metal thin film.
PCT/JP1994/000430 1993-03-17 1994-03-17 X-ray image intensifier WO1994022161A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP94910031A EP0644572B1 (en) 1993-03-17 1994-03-17 X-ray image intensifier
DE69418406T DE69418406T2 (en) 1993-03-17 1994-03-17 X-RAY AMPLIFIER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5/56270 1993-03-17
JP5627093 1993-03-17

Publications (1)

Publication Number Publication Date
WO1994022161A1 true WO1994022161A1 (en) 1994-09-29

Family

ID=13022402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000430 WO1994022161A1 (en) 1993-03-17 1994-03-17 X-ray image intensifier

Country Status (4)

Country Link
EP (1) EP0644572B1 (en)
CN (1) CN1059514C (en)
DE (1) DE69418406T2 (en)
WO (1) WO1994022161A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012731A1 (en) * 1996-09-18 1998-03-26 Kabushiki Kaisha Toshiba X-ray image tube and method for manufacturing the same
JP3756681B2 (en) 1997-11-21 2006-03-15 東芝電子エンジニアリング株式会社 Radiation image tube and manufacturing method thereof
DE19808723C1 (en) * 1998-03-02 1999-11-11 Siemens Ag X-ray image intensifier with an aluminum input window and method for its production
WO2003019599A1 (en) * 2001-08-29 2003-03-06 Kabushiki Kaisha Toshiba Production method and production device for x-ray image detector, and x-ray image detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150535A (en) * 1979-05-11 1980-11-22 Shimadzu Corp Input fluorescent screen for x-ray image tube
JPS5975544A (en) * 1982-10-25 1984-04-28 Toshiba Corp X-ray image tube and manufacture thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1284529B (en) * 1963-02-14 1968-12-05 Forschungslaboratorium Dr Ing X-ray image intensifier
US3693018A (en) * 1966-12-27 1972-09-19 Varian Associates X-ray image intensifier tubes having the photo-cathode formed directly on the pick-up screen
DE2137392A1 (en) * 1971-07-26 1973-02-08 Siemens Ag Image intensifier screen - with halogenide phosphor layer pressed to roughened carrier plate
US4011454A (en) * 1975-04-28 1977-03-08 General Electric Company Structured X-ray phosphor screen
JPS53122356A (en) * 1977-04-01 1978-10-25 Hitachi Ltd X-ray fluorescent film
US4300046A (en) * 1978-07-12 1981-11-10 Diagnostic Information, Inc. Panel type X-ray image intensifier tube and radiographic camera system
JPS5645556A (en) * 1979-09-21 1981-04-25 Toshiba Corp X-ray image intensifier and its manufacturing method
JPS58131644A (en) * 1981-12-26 1983-08-05 Toshiba Corp Input screen of radiation image multiplier tube and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150535A (en) * 1979-05-11 1980-11-22 Shimadzu Corp Input fluorescent screen for x-ray image tube
JPS5975544A (en) * 1982-10-25 1984-04-28 Toshiba Corp X-ray image tube and manufacture thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0644572A4 *

Also Published As

Publication number Publication date
DE69418406D1 (en) 1999-06-17
EP0644572B1 (en) 1999-05-12
DE69418406T2 (en) 1999-10-07
CN1059514C (en) 2000-12-13
EP0644572A4 (en) 1995-05-24
CN1105803A (en) 1995-07-26
EP0644572A1 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
US2555424A (en) Apparatus for fluoroscopy and radiography
US3473066A (en) X-ray image intensifier tube having a non-specular backing for the scintillator layer
JPH07503810A (en) X-ray microscope with direct conversion X-ray photocathode
CA1116316A (en) Direct view, panel type x-ray image intensifier tube
WO1994022161A1 (en) X-ray image intensifier
JPS5828700B2 (en) luminous screen
US2739258A (en) System of intensification of x-ray images
US2700116A (en) Device for intensification of X-ray images
US4870473A (en) X-ray image intensifier having a support ring that prevents implosion
US5401964A (en) Reduced electron scattering phosphor screen for high resolution transmission electron microscope imaging
US20130266119A1 (en) Micro-focus x-ray generation apparatus and x-ray imaging apparatus
US5646477A (en) X-ray image intensifier
CN203850242U (en) An X ray image intensifier
US2681420A (en) X-ray image-intensifying tube
US2690516A (en) Method and device for producing neutron images
JPH0564413B2 (en)
US3235737A (en) Fast response gamma-ray image converter
EP0399378B1 (en) X-ray image intensifier
JPH0460296B2 (en)
US2782332A (en) Method and device for reading images of invisible radiation
US2898475A (en) Light intensifier
JPH0125181B2 (en)
JPH05299044A (en) Image intensifier
JPH11500857A (en) X-ray detector
JPH1054878A (en) Fluorescent device and image pickup device and inspection device using the fluorescent device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

ENP Entry into the national phase

Ref country code: US

Ref document number: 1994 335777

Date of ref document: 19941116

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1994910031

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994910031

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1996 725502

Date of ref document: 19961004

Kind code of ref document: A

Format of ref document f/p: F

WWG Wipo information: grant in national office

Ref document number: 1994910031

Country of ref document: EP