[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5975544A - X-ray image tube and manufacture thereof - Google Patents

X-ray image tube and manufacture thereof

Info

Publication number
JPS5975544A
JPS5975544A JP18693782A JP18693782A JPS5975544A JP S5975544 A JPS5975544 A JP S5975544A JP 18693782 A JP18693782 A JP 18693782A JP 18693782 A JP18693782 A JP 18693782A JP S5975544 A JPS5975544 A JP S5975544A
Authority
JP
Japan
Prior art keywords
aluminum plate
image tube
ray image
vacuum
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18693782A
Other languages
Japanese (ja)
Inventor
Hiroshi Minami
博 南
Narimitsu Aramaki
荒牧 成光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18693782A priority Critical patent/JPS5975544A/en
Publication of JPS5975544A publication Critical patent/JPS5975544A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/244Manufacture or joining of vessels, leading-in conductors or bases specially adapted for cathode ray tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Abstract

PURPOSE:To obtain an image tube which is resistive to the atmospheric pressure and releases less amount of gas under the vacuum condition by exhausting an outer bulb sealed by a thin aluminum plate under the condition having no difference of pressure and then sticking a carbon fiber material to the outer surface of aluminum plate with the epoxy resin. CONSTITUTION:An input window 5 of the outer bulb 6 which is sealed at the aperture end of the cylindrical output part 4 having the bottom is made of a carbon fiber material 8 consisting of carbon having small atmoic number like a cloth of carbon fiber bonded to the outer surface of a very thin aluminum plate 7. An image tube 9 sealed by the thin aluminum plate 7 at the aperture end of output part 4 is set in a vacuum apparatus 10, and the insides of apparatus 10 and the bulb 9 are exhausted simultaneously to the vacuum condition in such a way as not generating pressure difference at the inside and outside of the aluminum plate. Thereafter, the carbon fiber material 8 made of a carbon fiber cloth is sticked to the outer surface of aluminum plate 7 within the apparatus 10; with the epoxy resin and is hardened. Thereby, the input window 5 can be formed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はX線イメージ管及びその製造方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to an X-ray image tube and a manufacturing method thereof.

〔発明の技術的背景〕[Technical background of the invention]

従来、X線イメージ管は第1図に示すように、真空外囲
器りが球面状の入力窓2と有底筒状の出力部3から構成
され、入力窓2はガラスやアルミニウムからなっている
7゜そして、入力窓2は入射X線を良く透過させ月つ大
気圧に嗣えるために、入力径が9インチのX?tMイメ
ー・ソ管では、ガラスの場合は4 mm位の厚さのもの
が、アルミニウムの場合は1叫位の厚さのものが用いら
れている。尚、外囲器1内にd5、入力窓2側に光電面
が設けられ、出力部3側には電子レンズが設けられてい
る(いず扛も図示せず)。
Conventionally, as shown in Fig. 1, an X-ray image tube has a vacuum envelope consisting of a spherical input window 2 and a bottomed cylindrical output section 3, and the input window 2 is made of glass or aluminum. The input window 2 has an input diameter of 9 inches to allow the incident X-rays to pass through well and to maintain the atmospheric pressure. In the case of tM imager tubes, glass tubes with a thickness of about 4 mm are used, and aluminum tubes with a thickness of about 1 mm thick are used. It should be noted that a photocathode d5 is provided inside the envelope 1, a photocathode is provided on the input window 2 side, and an electron lens is provided on the output section 3 side (both lenses are not shown).

〔背景技術の問題点〕[Problems with background technology]

入力窓20機能は2つに大別され、1つは外囲器1を形
成しX線イメージ管の内部を高真空に保つことであり、
他の1つはX線イメージ管に入射するX#i!の減衰及
び散乱を極力少なく透過させることである。
The functions of the input window 20 are roughly divided into two parts; one is to form the envelope 1 and maintain a high vacuum inside the X-ray image tube;
The other one is X#i! which is incident on the X-ray image tube! The aim is to transmit the light with as little attenuation and scattering as possible.

前者としては、外囲器として大気圧に耐える強度と真空
中でのガス放出の少ないことが要求される。この強度を
確保するために、既述のようにガラスでは約4咽の厚さ
が必要であり、アルミニウムでは約1鴫の厚さが必要と
なる。又、高真空を保つためには、X線イメージ管製造
工程において、外囲器に吸蔵及び吸着しているガスを除
くため、高温度のベーキングが必要となり、こ”れに1
制えるアルミニウムやガラスが用いられる。
For the former, the envelope is required to be strong enough to withstand atmospheric pressure and to emit little gas in a vacuum. In order to ensure this strength, as mentioned above, glass requires a thickness of approximately 4 mm, and aluminum requires a thickness of approximately 1 mm. In addition, in order to maintain a high vacuum, high-temperature baking is required in the X-ray image tube manufacturing process to remove gases occluded and adsorbed in the envelope.
Aluminum or glass is used to control the structure.

又、後者については、入射X線の減衰及び散乱を極力少
なくするため、原子番号の小さい元素で極力薄いものが
好ましい。結局、前者と後者の兼合いを考慮して、従来
は上記のようなものが用いられている。このように前者
の要求と後者の要求は互いに矛盾するもので、従来のも
r のけ第2図に示すX線透過率からも判るように、後者の
要求に対して甚だ不満足なものである。
Regarding the latter, in order to minimize attenuation and scattering of incident X-rays, it is preferable to use an element with a small atomic number and be as thin as possible. In the end, considering the balance between the former and the latter, the above-mentioned one has conventionally been used. In this way, the former requirement and the latter requirement are contradictory to each other, and as can be seen from the X-ray transmittance shown in Figure 2, the conventional model is extremely unsatisfactory with respect to the latter requirement. .

尚、第2図中、実線がガラスのJ5合、破線がアルミニ
ウムの場合である。
In FIG. 2, the solid line shows the case of J5 glass, and the broken line shows the case of aluminum.

〔うら明の目的〕[Uraaki's purpose]

この発明の目的は、入力窓材のX脚透過率を犬1]に改
良し、大気圧に耐えると共に真空中でのガス放出の少な
い入力窓を有するX線イメージ管及びその製造方法を提
供することである。
An object of the present invention is to provide an X-ray image tube having an input window that improves the X-leg transmittance of the input window material to 1], withstands atmospheric pressure, and releases less gas in a vacuum, and a method for manufacturing the same. That's true.

〔発明の概要〕[Summary of the invention]

このう6明は、外囲器を構成する入力窓が、薄いアルミ
ニウム板に原子番号の小さい炭素からな9アルミニウム
に比べ大巾に引張り強度が強い炭素繊維材を接着してな
り、アルミニウム板を非常に薄くできるので、X線の透
過率が非常に良い入力窓を有するX線イメージ管である
In this case, the input window that constitutes the envelope is made by bonding carbon fiber material, which has a much stronger tensile strength than 9 aluminum, which is made of carbon with a small atomic number, to a thin aluminum plate. It is an X-ray image tube that has an input window with very good X-ray transmittance because it can be made very thin.

又、この発明は、真空装置内で、非常に薄いアルミニウ
ム板を封着した外囲器を、アルミニウム板の内外で圧力
差がない状態で排気し、光電面形成まで完了し、次に同
真空装置内でアルミニウム板の外面に炭素繊維材をエポ
キシ樹脂で貼り合わせて硬化し、真空装置外に取出すよ
うにしたX線イメージ管の製造方法である。
In addition, the present invention evacuates an envelope sealed with a very thin aluminum plate in a vacuum device with no pressure difference between the inside and outside of the aluminum plate, completes the formation of the photocathode, and then evacuates the envelope in the same vacuum. This is a method of manufacturing an X-ray image tube in which a carbon fiber material is bonded to the outer surface of an aluminum plate with epoxy resin within the device, cured, and then taken out of the vacuum device.

〔発明の実施例〕[Embodiments of the invention]

このi1明によるX線イメージ管は、第3図に示すよう
に構成され、有底筒状の出力部4の開口端に入力忠臣が
封着されて真空外囲器互が形成されている゛。この人力
忠臣は、厚さ0.5 trvnの非常に薄いアルミニウ
ム板7と、このアルミニウム板7の外面に接着した炭素
繊維の布のような原子番号の小さい炭素からなる炭素繊
維材8とからなっている。尚、図示していないが、真空
外囲器互の出力部4内には電子レンズが収容され、入力
窓A側には光電面が設けられている。
The X-ray image tube based on this i1 light is constructed as shown in FIG. 3, in which an input loyal member is sealed to the open end of a bottomed cylindrical output section 4 to form a vacuum envelope. . This human power loyal retainer consists of a very thin aluminum plate 7 with a thickness of 0.5 trvn and a carbon fiber material 8 made of carbon with a low atomic number, such as carbon fiber cloth, adhered to the outer surface of the aluminum plate 7. ing. Although not shown, an electron lens is housed in the output section 4 of the vacuum envelope, and a photocathode is provided on the input window A side.

次に、上記X線イメージ管の製造方法について説明する
と、先ず出力部4の開口端に非常に薄いアルミニウム板
7を封着したX線イメージ管!を、第4図に示すように
真空装置10内に入れる。そして、アルミニウム板7の
内外で圧力差を生じないように、真空装置10内とX線
イメージ管!内を同時に排気して真空にする。
Next, to explain the manufacturing method of the above-mentioned X-ray image tube, first, an X-ray image tube is produced in which a very thin aluminum plate 7 is sealed to the open end of the output section 4! is placed into a vacuum device 10 as shown in FIG. Then, in order to prevent a pressure difference between the inside and outside of the aluminum plate 7, the inside of the vacuum device 10 and the X-ray image tube! At the same time, evacuate the inside to create a vacuum.

次に、X線イメージ管2を真空装置ス0内で、エポキシ
樹脂の硬化温度よυ遥かに高い200〜300℃でベー
キングし、X線イメージ管互内の吸蔵及び吸着ガスを排
気し、管内に光電面を作る。続いて真空装置10内で、
アルミニウム板2の外面に例えば約1箭厚さの炭素繊維
の布である炭素繊維材8をエポキシ樹脂で貼り合わせ、
硬化させれば、入力息女ができあがる。
Next, the X-ray image tube 2 is baked in a vacuum device at 200 to 300 degrees Celsius, which is much higher than the curing temperature of the epoxy resin, and the occluded and adsorbed gas inside the X-ray image tube is evacuated. Create a photocathode. Next, in the vacuum device 10,
A carbon fiber material 8, which is a carbon fiber cloth having a thickness of approximately 1 inch, is bonded to the outer surface of the aluminum plate 2 using epoxy resin.
If you harden it, you will have an input daughter.

尚、炭素h1を維の引張り強Lid、アルミニウムに比
べ約10倍の300に9/vm2位あるので、薄いアル
ミニウム板7でも炭素繊維材8を貼り合わせた複合材は
アルミニウムよりも充分強くなり、薄いアルミニウムの
複合材である入力忠臣は充分大気圧に酬えることができ
るようになる。
Furthermore, carbon h1 is about 300/9/vm2, which is about 10 times the tensile strength of fibers compared to aluminum, so even if the aluminum plate 7 is thin, the composite material made by bonding the carbon fiber material 8 will be sufficiently stronger than aluminum. The Input Loyalty, a thin aluminum composite material, will be able to withstand atmospheric pressure.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、X線像を感度良く鮮鋭な画像に変換
するX線イメージ省を提供できる。
According to the present invention, it is possible to provide an X-ray image saving method that converts an X-ray image into a sharp image with high sensitivity.

即ち、入力忠臣はアルミニウム板70部分が真空中でベ
ーキング排気しているので、X線イメージ管として製造
されてからの1内へのガス放出が非常に少なく、X線イ
メージ管として寿命が長い。更にこの発明では、炭素繊
維材8がアルミニウム板7に貼シ合わせであるので、大
気圧に耐えることができ、X線透過率の非常に良い入力
忠臣を有するX線イメージ管が得られる従って、このX
線イメージ管を用いた医療用X線装置は、被検者のX線
被曝を大巾に低減でき又、感度が優れ、画像のコントラ
ストの大巾な向上により、診断能が向上し大変有用であ
る。
That is, since the aluminum plate 70 portion of the input tube is baked and evacuated in a vacuum, there is very little gas released into the tube after it is manufactured as an X-ray image tube, and the life of the X-ray image tube is long. Furthermore, in this invention, since the carbon fiber material 8 is laminated to the aluminum plate 7, an X-ray image tube can be obtained which can withstand atmospheric pressure and has a very good input faithfulness of X-ray transmittance. This X
Medical X-ray equipment that uses a radiation image tube can greatly reduce the X-ray exposure of patients, has excellent sensitivity, and greatly improves image contrast, improving diagnostic performance and is extremely useful. be.

特に低エネルギー線質のX線透視像の観紐に非常に効果
的である。
It is particularly effective for viewing X-ray fluoroscopic images with low energy radiation quality.

次に第5図乃至第7図は、この発明における各種の変形
例を示したもので、上記実施例と同様効果が得られる。
Next, FIGS. 5 to 7 show various modifications of the present invention, which provide the same effects as the above embodiments.

先ず、第5図の変形例では、真空気密と耐気圧機能は別
々に機能させるため、同図(、)の真空気密を保つ入力
部には、厚いアルミニウム材は手狭である。そして、こ
の変形例ではX線イメージ管内に従来配置されている入
力螢光面保持のアルミニウム基板は通常約0.5調厚さ
のものを用いるので、このアルミニウム基板を同図(、
)の真空気密板11と併用させてし)る。従って、この
変形例では、真空気密板11の管内側に入力螢光面が形
成されていることになる。このX線イメージ管12−に
同図(b)のように耐熱性耐気圧カバー13を取付ける
。この耐熱性耐気圧カバー13を取付けた状態でX珈イ
メージ管のガス除去・光電面作りを行なう。即ち、X線
イメージ管12の内部と耐熱性剛気圧カッぐ−13と真
空気密板11の間の空間の両者の空気を同時に排気し、
真空気密板1ノの表裏に圧力差を生じないようにして、
その変形を防ぎ乍らX線イメージ管、仁ノーを排気・加
熱してガスの除去を行ない、引続き光電面を作成する。
First, in the modified example shown in FIG. 5, the vacuum sealing and pressure resistance functions are performed separately, so that the thick aluminum material is too small for the input section that maintains the vacuum sealing shown in FIG. In this modification, the input fluorescent surface holding aluminum substrate conventionally placed in the X-ray image tube is usually about 0.5 scale thick, so this aluminum substrate is
) is used in conjunction with the vacuum seal plate 11). Therefore, in this modification, an input fluorescent surface is formed on the inside of the tube of the vacuum seal plate 11. A heat-resistant and pressure-resistant cover 13 is attached to this X-ray image tube 12- as shown in FIG. With this heat-resistant and pressure-resistant cover 13 attached, gas removal and photocathode formation of the X-ray image tube are performed. That is, the air in both the inside of the X-ray image tube 12 and the space between the heat-resistant rigid pressure cage 13 and the vacuum airtight plate 11 is exhausted at the same time.
Make sure that there is no pressure difference between the front and back of the vacuum-tight plate 1.
While preventing its deformation, the X-ray image tube and tube are evacuated and heated to remove gas, and then a photocathode is created.

次に、耐熱性耐気圧カバー13を取付けたまま真空の部
屋に入れ、その中で制熱性面・j気圧カッ々−13を取
外し、同図(C)のようにX線透過率の良し)耐気圧カ
バー(入力窓)24を取付ける。この耐気圧カバーLA
は、X線透過率を良くするために、同図(d)のように
薄いアルミニウム板15の両側に、引張強度がアルミニ
ウムの約10倍もある炭素繊維をエポキシ樹脂で貼り付
けたものを用いている。従来の約2mのアルミニウムの
入力窓に対して、アルミニウム板15は0.51mのア
ルミニウム材を使用し、炭素繊維を工、i5キシ樹脂で
貼り付けた膜16.17はそれぞれ0.5 ttaとし
た。炭素繊維のX線吸収はアルミニウムに比べると非常
に少ないので、X線透過率はアルミニウム板15の厚さ
で殆ど決まる。従って、この変形例でもX線透過率が大
巾に良くなり、特にX 13線質の低い所でbその効果
が著しい。又、側熱性耐気圧カバー13を用いる代りに
、真空装置内でXHイメージ管12の内外に圧力差が生
じないように、真空装置内とX線イメージ管12内とを
同時に排気してガス除去・光電面作りを行ない、同時に
真空装置内で耐気圧カバーLAを取付けても良い。又、
入力螢光面はこの変形例のように真空気密板11に直接
形成せず、従来のように入力面を管内に配置することが
でき、この場合は真空気密板1ノは凸型の必要はない。
Next, the heat-resistant and pressure-resistant cover 13 is placed in a vacuum chamber with the cover 13 still attached, and the heat-suppressing surface/pressure cover 13 is removed inside the vacuum chamber, and the heat-resistant surface 13 is removed to ensure good X-ray transmittance as shown in the same figure (C). Install the pressure-resistant cover (input window) 24. This pressure resistant cover LA
In order to improve the X-ray transmittance, carbon fibers, which have a tensile strength about 10 times that of aluminum, are attached to both sides of a thin aluminum plate 15 using epoxy resin, as shown in Figure (d). ing. In contrast to the conventional aluminum input window of about 2 m, the aluminum plate 15 is made of 0.51 m of aluminum material, and the membranes 16 and 17 made of carbon fiber and pasted with i5 xy resin each have a thickness of 0.5 tta. did. Since the X-ray absorption of carbon fiber is much lower than that of aluminum, the X-ray transmittance is almost determined by the thickness of the aluminum plate 15. Therefore, this modified example also greatly improves the X-ray transmittance, and the effect is particularly remarkable in areas where the quality of X13 radiation is low. Also, instead of using the side heating pressure-resistant cover 13, the inside of the vacuum device and the inside of the X-ray image tube 12 are simultaneously evacuated to remove gas so that no pressure difference occurs between the inside and outside of the XH image tube 12 inside the vacuum device.・At the same time as making the photocathode, it is also possible to attach the pressure-resistant cover LA inside the vacuum device. or,
The input fluorescent surface is not formed directly on the vacuum seal plate 11 as in this modification, but can be placed inside the tube as in the conventional case. In this case, the vacuum seal plate 1 does not need to be convex. do not have.

尚、入力窓つまり耐気圧力z<−14と真空気密板11
で形成される空間は、電子レンズを含む空間と真空的に
分離されているので、電子レンズを含む空間のように島
真空は必要とせず、単に真空気密板11の表裏にこれを
変形させるような圧力差が生じなければ良いので、耐気
圧カバーL1は加熱ガス除去等高度のガス除去は必要と
しない。
In addition, the input window, that is, the air pressure resistance z<-14 and the vacuum seal plate 11
Since the space formed by this is vacuum-separated from the space containing the electron lens, it does not require an island vacuum like the space containing the electron lens. Since it is sufficient that no significant pressure difference occurs, the pressure-resistant cover L1 does not require advanced gas removal such as heating gas removal.

次に、第6図のX線イメージ肯LLの場合は、真空気密
板19には入力螢光面が形成されてなく、入力螢光面は
管内に配置されてし)る。従って、真空気密板19に入
力螢光面として必要な凸型構造である必要がないので、
非常に薄くできる。この変形例では、100μm厚さの
アルミニウム板である。このx%イメージ91Bに同図
(b)のように耐熱性耐気圧力/4−20を取付け、X
線イメージ管り亙のガス除去・光電面形成を行ない、真
空の部屋で耐熱性耐気圧カッ々−20を取外し、同図(
C)のような耐気圧力/? −,21を取付ける。この
耐気圧カバーゑユは、図のように凸型である必要がない
ので、耐気圧カバー貝は調性がなくても良い。引張強度
があれば、凹型の状態で大気圧に耐えることができる。
Next, in the case of X-ray image positive LL in FIG. 6, no input fluorescent surface is formed on the vacuum airtight plate 19, and the input fluorescent surface is disposed inside the tube. Therefore, there is no need for the vacuum airtight plate 19 to have a convex structure, which is necessary as an input fluorescent surface.
Can be made very thin. In this variant, it is an aluminum plate with a thickness of 100 μm. Attach heat resistance and air pressure resistance/4-20 to this x% image 91B as shown in the same figure (b),
After removing the gas from the line image tube and forming the photocathode, we removed the heat-resistant and pressure-resistant cutter-20 in a vacuum room.
C) Resistance pressure like/? -, install 21. This pressure-resistant cover shell does not need to be convex as shown in the figure, so the pressure-resistant cover shell does not need to have a tonality. If it has tensile strength, it can withstand atmospheric pressure in a concave state.

従って、アルミニウム板22に貼った炭素繊維をエポキ
シ樹脂等でシートに形成した膜23のみで耐えることが
できる。尚、炭素繊維膜は必ずしも金属膜のように完全
にピンホールをなくせないので、同図(C)のように真
空気密を保つため展性に富んだフィルム例えば樹脂のフ
ィルム+金趙の薄膜を垂ね合せても良いし、貼り付けて
も良い。
Therefore, only the film 23 made of carbon fibers attached to the aluminum plate 22 and formed into a sheet using epoxy resin or the like can withstand the damage. Note that carbon fiber membranes cannot always completely eliminate pinholes like metal membranes, so a malleable film such as a resin film + Jincho thin film is used to maintain vacuum tightness, as shown in the same figure (C). They may be hung together or pasted together.

次に第7図に示すX線イメージ管24は、薄い金縞膜例
えば100μm厚さのアルミニウム膜25で分離された
電子レンズを含む空間と、エポキシ樹脂咎で接沼形成さ
れた炭素繊維を含む膜からなる入力窓26と上記アルミ
ニウム膜25で形成される空間よりなる。そして、入力
窓26は耐熱性がなく、約150℃位になると使用して
いる樹脂が劣化する。そこで、このX線イメージ管24
のガス除去・光電面形成工程において、霜、子レンズを
含む空間の隔壁はガス除去・光電面形成に必要な温度に
充分加熱し、入力窓26は外囲器の外側から入力窓26
に使用している樹脂が劣化しないように、室玲等により
冷却する。又、両回が真空中にあるアルミニウム膜26
は、電子レンズを含む隔壁の一部忙なすので、加熱が必
要であり、高周波加熱で加熱する。このようにして人力
窓26をX線イメージ管LAのガス除去・光電面形成前
から組立を行なう。
Next, the X-ray image tube 24 shown in FIG. 7 includes a space containing an electron lens separated by a thin gold striped film, for example, an aluminum film 25 with a thickness of 100 μm, and a space containing carbon fibers surrounded by epoxy resin. It consists of an input window 26 made of a film and a space formed by the aluminum film 25. The input window 26 has no heat resistance, and the resin used therein deteriorates when the temperature reaches about 150°C. Therefore, this X-ray image tube 24
In the gas removal and photocathode formation process, the partition wall of the space containing the frost and the child lens is sufficiently heated to the temperature required for gas removal and photocathode formation, and the input window 26 is opened from the outside of the envelope.
In order to prevent the resin used in the process from deteriorating, cool it down using a vacuum cleaner or the like. In addition, the aluminum film 26 is placed in a vacuum both times.
Since the part of the partition wall containing the electron lens is heated, it is necessary to heat it using high frequency heating. In this way, the manual window 26 is assembled before the gas is removed from the X-ray image tube LA and the photocathode is formed.

尚、第5図乃至第7図においても、上記実施例と同様、
電子レンズや光電1面は省略しである。
Incidentally, also in FIGS. 5 to 7, similar to the above embodiment,
The electronic lens and photoelectric 1st surface are omitted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のX線イメージ管の外1」器を示す断面図
、第2図は従来の外囲器におけるX線エネルギーに対す
るX線透過率の間係を示す特性曲線図、第3図はこの発
明の一実施例に係るX線イメー・ゾ管を示す断面図、第
4図はこの発明のX線イメージ管の製造方法を示す断面
図、第5図乃至第7図はこの発明の変形例の3例を示す
1つ1而シ1である。 4・・・出力’iB %互・・・入力窓、互・・・真空
外囲器、7・・・アルミニウム板、8・・・炭素繊維材
、9・・・X線イメージ管、10・・・真空装置。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図 X線工オルキ”−(keV) 第3図 第4図 第5図 ″、A6図 第7図 フ6
Figure 1 is a cross-sectional view of a conventional X-ray image tube. Figure 2 is a characteristic curve diagram showing the relationship between X-ray transmittance and X-ray energy in a conventional envelope. Figure 3 is a cross-sectional view showing an X-ray image tube according to an embodiment of the present invention, FIG. 4 is a cross-sectional view showing a method for manufacturing an X-ray image tube according to the present invention, and FIGS. One by one shows three examples of modifications. 4...Output 'iB% mutually...input window, mutually...vacuum envelope, 7...aluminum plate, 8...carbon fiber material, 9...X-ray image tube, 10... ...Vacuum equipment. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)外囲器が、電子レンズを収容する有底筒状の出力
部と、この出力部の開口端に封着された入力窓とを具備
するX線イメージ管において、上記入力窓は、薄いアル
ミニウム板及びこのアルミニウム板に接着された炭素繊
維材を有してなることを特徴とするX線イメージ管。
(1) An X-ray image tube in which the envelope includes a bottomed cylindrical output section that accommodates an electron lens, and an input window sealed to the open end of the output section, the input window comprising: An X-ray image tube comprising a thin aluminum plate and a carbon fiber material bonded to the aluminum plate.
(2)真空部が、上記電子レンズを含む部分と上記入力
窓に面する部分の2つに分離されている特許請求の範囲
第1項記載のX線イメージ管。
(2) The X-ray image tube according to claim 1, wherein the vacuum section is separated into two parts: a part including the electron lens and a part facing the input window.
(3)真空装置内で、有底筒状出力部の開口端に非常に
薄いアルミニウム板を封着した外囲器を、上記アルミニ
ウム板の内外で圧力差がない状態で排気し、光電面形成
まで完了し、次に同真空装置内で上記アルミニウム板に
炭素繊維材をエポキシ樹脂で貼シ合わせて硬化し、真空
装置外に取出すようにしたことを特徴とするX線イメー
ジ管の製造方法。
(3) In a vacuum device, an envelope with a very thin aluminum plate sealed to the open end of the bottomed cylindrical output part is evacuated with no pressure difference between the inside and outside of the aluminum plate, and the photocathode is formed. A method for manufacturing an X-ray image tube, characterized in that the carbon fiber material is bonded to the aluminum plate with epoxy resin in the same vacuum apparatus, cured, and taken out of the vacuum apparatus.
JP18693782A 1982-10-25 1982-10-25 X-ray image tube and manufacture thereof Pending JPS5975544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18693782A JPS5975544A (en) 1982-10-25 1982-10-25 X-ray image tube and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18693782A JPS5975544A (en) 1982-10-25 1982-10-25 X-ray image tube and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5975544A true JPS5975544A (en) 1984-04-28

Family

ID=16197324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18693782A Pending JPS5975544A (en) 1982-10-25 1982-10-25 X-ray image tube and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5975544A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386230A (en) * 1986-09-29 1988-04-16 Toshiba Corp X-ray image multiplier tube
JPS63307650A (en) * 1987-05-22 1988-12-15 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ X-ray image intensifier
WO1994022161A1 (en) * 1993-03-17 1994-09-29 Kabushiki Kaisha Toshiba X-ray image intensifier
US5646477A (en) * 1993-03-17 1997-07-08 Kabushiki Kaisha Toshiba X-ray image intensifier
US6320303B1 (en) 1997-11-21 2001-11-20 Kabushiki Kaisha Toshiba Radioactive-ray image tube having input member formed of a clad material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386230A (en) * 1986-09-29 1988-04-16 Toshiba Corp X-ray image multiplier tube
JPS63307650A (en) * 1987-05-22 1988-12-15 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ X-ray image intensifier
WO1994022161A1 (en) * 1993-03-17 1994-09-29 Kabushiki Kaisha Toshiba X-ray image intensifier
US5646477A (en) * 1993-03-17 1997-07-08 Kabushiki Kaisha Toshiba X-ray image intensifier
US6320303B1 (en) 1997-11-21 2001-11-20 Kabushiki Kaisha Toshiba Radioactive-ray image tube having input member formed of a clad material

Similar Documents

Publication Publication Date Title
JPS5838903B2 (en) Denshikan Oyobi Sonoseizouhouhou
JPS5975544A (en) X-ray image tube and manufacture thereof
US4238043A (en) X-ray image intensifier
EP0403802A2 (en) X-ray image intensifier and method of manufacturing input screen
CN113594002B (en) Multi-alkali cathode of optical fiber window and manufacturing method thereof
JP3492777B2 (en) Radiation image intensifier tube and method of manufacturing the same
US3244921A (en) Optical fiber face-plate assembly for image tubes
US4550251A (en) Image intensifier tube with increased contrast ratio
US3894258A (en) Proximity image tube with bellows focussing structure
US3011919A (en) Method of forming a multi-layer pick-up screen
JP2001508928A (en) Method of manufacturing flat glass panel for image display device
JPS61172455U (en)
US2748304A (en) Electric discharge tube for intensifying fluorescent images produced with the use ofchi-rays
CA1060941A (en) Image intensifier tube of the proximity focus type
US3961931A (en) Apparatus for heat-bonding optical fibers
JPS61200646A (en) Manufacture of image tube
JPS5871536A (en) Input surface of x-ray-image amplifier tube and its manufacture
JPH05174746A (en) X-ray image intensifier
US3128531A (en) Dynodes for electron discharge tubes and methods of making same
JPS5917394B2 (en) Plastic scintillation radiation detector
US4855586A (en) X-ray detector tube with sidewall-supporting rear wall
JPS5986140A (en) Phototube
JPS5960944A (en) Manufacture of input face for x-ray image multiplier tube
JPS61110933A (en) Pickup tube
JPS6086733A (en) Manufacture of cathode-ray tube