[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1993013898A1 - Production de poudre atomisee de metal trempe de grande purete - Google Patents

Production de poudre atomisee de metal trempe de grande purete Download PDF

Info

Publication number
WO1993013898A1
WO1993013898A1 PCT/JP1988/000504 JP8800504W WO9313898A1 WO 1993013898 A1 WO1993013898 A1 WO 1993013898A1 JP 8800504 W JP8800504 W JP 8800504W WO 9313898 A1 WO9313898 A1 WO 9313898A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
melting vessel
melting
molten metal
metal
Prior art date
Application number
PCT/JP1988/000504
Other languages
English (en)
Japanese (ja)
Inventor
Koichi Tanno
Masaaki Yagi
Original Assignee
Koichi Tanno
Masaaki Yagi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koichi Tanno, Masaaki Yagi filed Critical Koichi Tanno
Priority to US07/309,727 priority Critical patent/US4900355A/en
Publication of WO1993013898A1 publication Critical patent/WO1993013898A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%

Definitions

  • the present invention relates to a method for producing a metal powder, and particularly to a method for producing a high-purity and fine metal powder in a dry manner by rapidly cooling by impinging fine droplets by centrifugal force against a rotary cooling base. About.
  • the metal melt flows down from the lower nozzle of the fixed crucible to the center of the rotating base and is scattered by centrifugal force.
  • the method in which a metal sample rod is used as an electrode and melted with a plasma arc, etc. to rotate and scatter to powder the metal rod is injected and collided with the rotating cooling liquid to powder.
  • the molten metal melt is formed in the shape of a circle on the outer periphery of the rotating base or rotating metal rod by centrifugal force, and the droplets are scattered from there. It takes a number of rotations.
  • the production of fine particles is difficult due to the limitation of the safety of the rotating device, and the cooling rate is not so high because of the use of inert gas as the cooling medium, which causes the solidification.
  • the cooling rate is not so high because of the use of inert gas as the cooling medium, which causes the solidification.
  • drawbacks such as the longer flight distance required, the larger amount of particles attached to the peripheral wall, and the larger equipment.
  • water is injected into the fixed crucible by applying pressure to the molten metal.
  • the method of injecting and spraying into a rotating drum is excellent in the atomization characteristics of the powder, but has the problems that the surface of the powder particles is contaminated with the coolant and that many adhered particles are seen. ing. Furthermore, while simultaneously rotating the melting container and the cooling liquid container, the molten metal in the melting container is injected by centrifugal force while changing the rotation ratio or the rotation method of both containers, and the molten metal is injected into the cooling liquid in the cooling container to obtain powder.
  • This method is excellent in terms of miniaturization characteristics, but has drawbacks such as the inability to avoid contamination of powder particles and the unsuitability for refractory metals.
  • the present invention aims to eliminate the above-mentioned drawbacks of the conventional method.
  • the droplets which have been made fine by centrifugal force, collide with a rotary cooling base and are rapidly cooled to obtain fine and fine metal particles of high purity. It is intended to provide a method for producing powder.
  • the production method of the present invention includes a step of melting a metal in a melting vessel at a high frequency in a vacuum or gas atmosphere, a step of lowering the melting vessel to an appropriate emission position, and providing the melting vessel and its outer periphery. Simultaneously rotating the cooling base in the reverse direction to inject the molten metal in the molten container by centrifugal force; and impinging the cooling base rotating in the opposite direction to the molten metal injected by the centrifugal force to form droplets. And a step of further cooling while simultaneously dividing, and producing a high-purity metal powder by rapid cooling.
  • FIG. 1 shows an example of an apparatus for carrying out a manufacturing method
  • FIG. 1 is an overall configuration view showing a part of the apparatus
  • FIG. 2 is an enlarged sectional view of the crucible and a cooling base.
  • FIG. 1 is an overall configuration diagram of an apparatus for performing the production method of the present invention
  • FIG. 2 is an enlarged cross-sectional view of a heating and melting unit and a cooling base in the embodiment.
  • Reference numeral 1 denotes a melting crucible for melting and injecting a sample, which has a T-shaped cross section as shown in FIG. 2 and has injection nozzles at both lower ends. Below this is provided a cooling base 2 that further separates the injected droplets and simultaneously cools them.
  • the cooling base has a mortar shape with an inclination angle of 5 to 20 °.
  • Reference numeral 3 denotes a drive motor for rotating the crucible and the cooling base, each of which has an acceleration / deceleration mechanism.
  • 5 is a high-frequency induction tool for melting the sample in the crucible
  • 6 is an air cylinder for raising and lowering the crucible from the melting position to the predetermined injection position, and the injection position is adjusted with the adjusting screw 7. It will be adjusted.
  • the production of the powder is carried out in the chamber 11 and the internal atmosphere can be selected from vacuum or inert gas.
  • the atmosphere is maintained by the magnetic seal 8.
  • the crucible 1 enclosing the metal sample is heated in the high-frequency induction coil 5 in a vacuum or gas atmosphere using the apparatus configured as described above. After rotating the cooling disk 2 after melting, lower the crucible 1 to the injection position and rotate the cooling disk 2 in the opposite direction to inject the molten metal. As the number of rotations increases, powder particles having a smaller particle diameter can be obtained, and the average particle diameter can be freely adjusted by the number of rotations. In addition, powder with high purity and a high cooling rate can be produced.
  • the shape of the powder particles is spherical, the surface is smooth, and there is almost no adhesion of secondary particles.
  • similar results were obtained for Superalloy powder and Zn powder.
  • the T-shaped nozzle and the rotation of the cooling base are combined to manufacture under a vacuum or an inert gas atmosphere.Therefore, the following excellent effects which cannot be obtained by the conventional manufacturing method are obtained. can get.
  • melt Since the melt is injected by centrifugal force due to high frequency induction melting, it is also suitable for high melting point materials, and can produce powder without gas envelope in powder particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Procédé de production à sec d'une poudre métallique de grande pureté par trempe, consistant à fondre un métal à l'intérieur d'un creuset en le soumettant à un rayonnement H.F. sous vide ou dans une atmosphère gazeuse, à abaisser le creuset jusque dans une position d'injection, à faire tourner simultanément dans des sens opposés le creuset et un fond refroidisseur placé autour de la périphérie externe du creuset, afin d'éjecter le métal fondu du creuset par la force centrifuge, pour qu'il tombe sur le fond refroidisseur tournant dans le sens opposé, et à pulvériser encore plus les gouttelettes de métal fondu, tout en les refroidissant. Selon ce procédé, le métal fondu est éjecté du creuset par la force centrifuge; à cet effet, on combine un ajutage en T avec la rotation du fond refroidisseur sous vide ou dans une atmosphère composée d'un gaz inerte, et on fait en sorte que les gouttelettes fondues tombent sur le fond refroidisseur tournant dans le sens opposé afin d'obtenir des particules poudreuse. Il est ainsi possible de faire varier librement la granulométrie moyenne des particules résultantes, en modifiant le rapport entre la vitesse de rotation du creuset et celle du fond refroidisseur. Ce procédé permet en outre d'obtenir des particules poudreuses ne contenant pas de gaz, qui présentent une répartition granulométrique uniforme et sont dépourvues de dépôts de particules secondaires.
PCT/JP1988/000504 1987-11-30 1988-05-25 Production de poudre atomisee de metal trempe de grande purete WO1993013898A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/309,727 US4900355A (en) 1987-11-30 1988-05-25 Method for making high-purity metal powder by jet-cooling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29990087A JPH01142005A (ja) 1987-11-30 1987-11-30 急冷高純度金属噴霧粉末の製造法
JP62/299900 1987-11-30

Publications (1)

Publication Number Publication Date
WO1993013898A1 true WO1993013898A1 (fr) 1993-07-22

Family

ID=17878290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1988/000504 WO1993013898A1 (fr) 1987-11-30 1988-05-25 Production de poudre atomisee de metal trempe de grande purete

Country Status (2)

Country Link
JP (1) JPH01142005A (fr)
WO (1) WO1993013898A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588673A (zh) * 2015-01-28 2015-05-06 大连理工大学 一种高效制备金属球形超细粉体的装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264115A (ja) * 1993-03-09 1994-09-20 Takeshi Masumoto 金属粉末製造装置
CN104174859B (zh) * 2014-09-03 2016-03-09 陕西维克德科技开发有限公司 金属棒料高转速旋转进给装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191302A (ja) * 1984-10-09 1986-05-09 Nagaoka Gijutsu Kagaku Univ 金属粉末製造装置
JPS6247415A (ja) * 1985-08-27 1987-03-02 Ishikawajima Harima Heavy Ind Co Ltd 金属粉末の製造方法及び装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435342A (en) * 1981-11-04 1984-03-06 Wentzell Jospeh M Methods for producing very fine particle size metal powders
JPS6077906A (ja) * 1983-10-04 1985-05-02 Ube Ind Ltd 非晶質金属粒状物の製造装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191302A (ja) * 1984-10-09 1986-05-09 Nagaoka Gijutsu Kagaku Univ 金属粉末製造装置
JPS6247415A (ja) * 1985-08-27 1987-03-02 Ishikawajima Harima Heavy Ind Co Ltd 金属粉末の製造方法及び装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588673A (zh) * 2015-01-28 2015-05-06 大连理工大学 一种高效制备金属球形超细粉体的装置及方法

Also Published As

Publication number Publication date
JPH0321603B2 (fr) 1991-03-25
JPH01142005A (ja) 1989-06-02

Similar Documents

Publication Publication Date Title
US4386896A (en) Apparatus for making metallic glass powder
US4689074A (en) Method and apparatus for forming ultrafine metal powders
JPH0791571B2 (ja) チタン粒子の製造法
JPS5835563B2 (ja) ガラス質金属粉末の製法およびその装置
US4648820A (en) Apparatus for producing rapidly quenched metal particles
US4482375A (en) Laser melt spin atomized metal powder and process
US5332198A (en) Method for producing rapidly-solidified flake-like metal powder and apparatus for producing the same
US4613076A (en) Apparatus and method for forming fine liquid metal droplets
US4523621A (en) Method for making metallic glass powder
US4435342A (en) Methods for producing very fine particle size metal powders
US5738705A (en) Atomizer with liquid spray quenching
US4824478A (en) Method and apparatus for producing fine metal powder
US5855642A (en) System and method for producing fine metallic and ceramic powders
CA1133671A (fr) Methode de fabrication de poudre verriere metallisee, et produit connexe
US4900355A (en) Method for making high-purity metal powder by jet-cooling
US4355057A (en) Formation of alloy powders through solid particle quenching
WO1993013898A1 (fr) Production de poudre atomisee de metal trempe de grande purete
JPH0754019A (ja) 多段階分裂及び急冷による粉末の作製法
JP3511082B2 (ja) 金属微細粉末の製造法
US4377375A (en) Apparatus for forming alloy powders through solid particle quenching
US4014964A (en) Process for making metal powder using a laser
Thursfield et al. A gas atomization spray quenching technique for bulk splat cooling
WO1982003809A1 (fr) Dispositif de pulverisation d'un metal ou d'un autre materiau
JPH0293007A (ja) 粉末の製造法
JPS61170503A (ja) アルミニウムまたはアルミニウム基合金の微粉末の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US