WO1993013898A1 - Production of atomized powder of quenched high-purity metal - Google Patents
Production of atomized powder of quenched high-purity metal Download PDFInfo
- Publication number
- WO1993013898A1 WO1993013898A1 PCT/JP1988/000504 JP8800504W WO9313898A1 WO 1993013898 A1 WO1993013898 A1 WO 1993013898A1 JP 8800504 W JP8800504 W JP 8800504W WO 9313898 A1 WO9313898 A1 WO 9313898A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling
- melting vessel
- melting
- molten metal
- metal
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/10—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0278—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
- C22C33/0285—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
Definitions
- the present invention relates to a method for producing a metal powder, and particularly to a method for producing a high-purity and fine metal powder in a dry manner by rapidly cooling by impinging fine droplets by centrifugal force against a rotary cooling base. About.
- the metal melt flows down from the lower nozzle of the fixed crucible to the center of the rotating base and is scattered by centrifugal force.
- the method in which a metal sample rod is used as an electrode and melted with a plasma arc, etc. to rotate and scatter to powder the metal rod is injected and collided with the rotating cooling liquid to powder.
- the molten metal melt is formed in the shape of a circle on the outer periphery of the rotating base or rotating metal rod by centrifugal force, and the droplets are scattered from there. It takes a number of rotations.
- the production of fine particles is difficult due to the limitation of the safety of the rotating device, and the cooling rate is not so high because of the use of inert gas as the cooling medium, which causes the solidification.
- the cooling rate is not so high because of the use of inert gas as the cooling medium, which causes the solidification.
- drawbacks such as the longer flight distance required, the larger amount of particles attached to the peripheral wall, and the larger equipment.
- water is injected into the fixed crucible by applying pressure to the molten metal.
- the method of injecting and spraying into a rotating drum is excellent in the atomization characteristics of the powder, but has the problems that the surface of the powder particles is contaminated with the coolant and that many adhered particles are seen. ing. Furthermore, while simultaneously rotating the melting container and the cooling liquid container, the molten metal in the melting container is injected by centrifugal force while changing the rotation ratio or the rotation method of both containers, and the molten metal is injected into the cooling liquid in the cooling container to obtain powder.
- This method is excellent in terms of miniaturization characteristics, but has drawbacks such as the inability to avoid contamination of powder particles and the unsuitability for refractory metals.
- the present invention aims to eliminate the above-mentioned drawbacks of the conventional method.
- the droplets which have been made fine by centrifugal force, collide with a rotary cooling base and are rapidly cooled to obtain fine and fine metal particles of high purity. It is intended to provide a method for producing powder.
- the production method of the present invention includes a step of melting a metal in a melting vessel at a high frequency in a vacuum or gas atmosphere, a step of lowering the melting vessel to an appropriate emission position, and providing the melting vessel and its outer periphery. Simultaneously rotating the cooling base in the reverse direction to inject the molten metal in the molten container by centrifugal force; and impinging the cooling base rotating in the opposite direction to the molten metal injected by the centrifugal force to form droplets. And a step of further cooling while simultaneously dividing, and producing a high-purity metal powder by rapid cooling.
- FIG. 1 shows an example of an apparatus for carrying out a manufacturing method
- FIG. 1 is an overall configuration view showing a part of the apparatus
- FIG. 2 is an enlarged sectional view of the crucible and a cooling base.
- FIG. 1 is an overall configuration diagram of an apparatus for performing the production method of the present invention
- FIG. 2 is an enlarged cross-sectional view of a heating and melting unit and a cooling base in the embodiment.
- Reference numeral 1 denotes a melting crucible for melting and injecting a sample, which has a T-shaped cross section as shown in FIG. 2 and has injection nozzles at both lower ends. Below this is provided a cooling base 2 that further separates the injected droplets and simultaneously cools them.
- the cooling base has a mortar shape with an inclination angle of 5 to 20 °.
- Reference numeral 3 denotes a drive motor for rotating the crucible and the cooling base, each of which has an acceleration / deceleration mechanism.
- 5 is a high-frequency induction tool for melting the sample in the crucible
- 6 is an air cylinder for raising and lowering the crucible from the melting position to the predetermined injection position, and the injection position is adjusted with the adjusting screw 7. It will be adjusted.
- the production of the powder is carried out in the chamber 11 and the internal atmosphere can be selected from vacuum or inert gas.
- the atmosphere is maintained by the magnetic seal 8.
- the crucible 1 enclosing the metal sample is heated in the high-frequency induction coil 5 in a vacuum or gas atmosphere using the apparatus configured as described above. After rotating the cooling disk 2 after melting, lower the crucible 1 to the injection position and rotate the cooling disk 2 in the opposite direction to inject the molten metal. As the number of rotations increases, powder particles having a smaller particle diameter can be obtained, and the average particle diameter can be freely adjusted by the number of rotations. In addition, powder with high purity and a high cooling rate can be produced.
- the shape of the powder particles is spherical, the surface is smooth, and there is almost no adhesion of secondary particles.
- similar results were obtained for Superalloy powder and Zn powder.
- the T-shaped nozzle and the rotation of the cooling base are combined to manufacture under a vacuum or an inert gas atmosphere.Therefore, the following excellent effects which cannot be obtained by the conventional manufacturing method are obtained. can get.
- melt Since the melt is injected by centrifugal force due to high frequency induction melting, it is also suitable for high melting point materials, and can produce powder without gas envelope in powder particles.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
This invention relates to a dry-process production of high purity metal powder by quenching which comprises the steps of melting a metal inside a melting vessel by r.f. waves in a vacuum or in a gas atmosphere, lowering the melting vessel to an injection position, simultaneously rotating the melting vessel and a cooling stool disposed around the outer periphery of the melting vessel in opposite directions so as to eject the molten metal from the melting vessel by centrifugal force, causing the molten metal to impinge on a cooling stool rotating in an opposite direction and pulverizing further the molten metal droplets and cooling it simultaneously. In accordance with the method of the present invention, the molten metal is ejected from the vessel by the centrifugal force by combining a T-shaped nozzle with the rotation of the cooling stool in a vacuum or in an inert gas atmosphere and the molten droplets are caused to impinge on the cooling stool rotating reversely to obtain powdery particles. Therefore, the mean particle size of the resulting powdery particles can be varied freely by changing the ratio of the rotation speed of the melting vessel to that of the cooling stool. Moreover, the resulting powdery particles do not entrap any gas therein and powdery particles having a uniform particle size distribution and free from deposition of any secondary particles can be obtained.
Description
明 急冷高純度金属噴霧粉未の製造法 技 術 分 野 : Akira Production method of quenched high-purity metal spray powder not yet available
本発明は、 金属粉末の製造法に関し、 特に遠心力で微細 化された溶滴を回転冷却基盤に衝突させる こ とにより急冷 し-、 高純度でかつ微細な金属の粉末を乾式で製造する方法 に関する。 The present invention relates to a method for producing a metal powder, and particularly to a method for producing a high-purity and fine metal powder in a dry manner by rapidly cooling by impinging fine droplets by centrifugal force against a rotary cooling base. About.
背 景 技 術 : Background technology:
従来、 回転を利用して金属溶湯から直接金属粉末を製造 する方法と しては、 金属溶湯を固定したるつぼの下部ノ ズ ルから回転する基盤の中心に流下してこれを遠心力で飛散 させ粉体化する方法や、 金属試料棒を電極と してプラズマ アークなどで溶解しながら回転し飛散させ粉体化する方法 のほか、 金属榕湯を回転する冷却液に射出衝突させ、 粉体 化する方法などが知られている。 Conventionally, as a method of producing metal powder directly from molten metal by using rotation, the metal melt flows down from the lower nozzle of the fixed crucible to the center of the rotating base and is scattered by centrifugal force. In addition to the method of powdering, the method in which a metal sample rod is used as an electrode and melted with a plasma arc, etc. to rotate and scatter to powder, the metal rod is injected and collided with the rotating cooling liquid to powder. There are known methods.
前二者では溶解された金属溶湯が遠心力で 11転基盤又は 回転する金属棒の外周緣に璟状に形成され、 そこから溶滴 が飛散するため溶滴の微細化を計るには極めて大きな回転 数を要する。 しかし、 回転装置の安全面から限舁があって 微小径粒子の製造が困難である こ と、 及び冷却媒体と して 不活性ガスを使用しているため冷却速度はそれほど大き く な く 、 凝固に要する飛距離が長く なり周壁に付着する粒子 が多 く なつたり装置が大型になるなどの難点がある。 また 固定したるつぼ内の金属 湯を力'ス圧 よ て水を注入し
た回転 ドラムの中に射出し噴霧させる方法では、 粉末の微 細化特性に優れているが、 粉末粒子表面が冷却液で汚染さ れるうえ、 付着粒子が多く見られるなどの問題点を有して いる。 さらに溶融容器と冷却液容器を同時に回転させて両 容器の回転比またば回転方法を変化させながら溶融容器内 の溶湯を遠心力により射出させ、 これを冷却容器内の冷却 液中に突入させ粉末を製造する方法もある力 この方法で は微細化特性の点では優れているが、 粉体粒子の汚染を避 け得ないことや、 高融点金属には不適であるなどの欠点が ある。 In the former two, the molten metal melt is formed in the shape of a circle on the outer periphery of the rotating base or rotating metal rod by centrifugal force, and the droplets are scattered from there. It takes a number of rotations. However, the production of fine particles is difficult due to the limitation of the safety of the rotating device, and the cooling rate is not so high because of the use of inert gas as the cooling medium, which causes the solidification. However, there are some drawbacks, such as the longer flight distance required, the larger amount of particles attached to the peripheral wall, and the larger equipment. Also, water is injected into the fixed crucible by applying pressure to the molten metal. The method of injecting and spraying into a rotating drum is excellent in the atomization characteristics of the powder, but has the problems that the surface of the powder particles is contaminated with the coolant and that many adhered particles are seen. ing. Furthermore, while simultaneously rotating the melting container and the cooling liquid container, the molten metal in the melting container is injected by centrifugal force while changing the rotation ratio or the rotation method of both containers, and the molten metal is injected into the cooling liquid in the cooling container to obtain powder. This method is excellent in terms of miniaturization characteristics, but has drawbacks such as the inability to avoid contamination of powder particles and the unsuitability for refractory metals.
発 明 の 開 示 : Disclosure of the invention:
本発明ば、 上述のような従来の方法における欠点を除去 しょう とするもので、 遠心力で微細化された溶滴を回転冷 却基盤に衝突させて急冷し、 高純度で微細かつ球状の金属 粉末の製造法を提供するこ とを目的とする。 The present invention aims to eliminate the above-mentioned drawbacks of the conventional method. The droplets, which have been made fine by centrifugal force, collide with a rotary cooling base and are rapidly cooled to obtain fine and fine metal particles of high purity. It is intended to provide a method for producing powder.
本発明の製造法は、 真空またはガス雰囲気内において溶 融容器内の金属を高周波で溶解する工程と、 溶融容器を射 出適正位置まで降下させる工程と、 その溶融容器とその外 周に設けた冷却基盤とを同時に逆回転させて、 上記溶融容 器内の溶融金属を遠心力により射出する工程と、 遠心力に より射出された溶融金属と逆方向に回転する冷却基盤に衝 突させ溶滴をさらに分断すると同時に冷却する工程とより 成り、 急冷により高純度の金属粉末を製造するこ とを特徴 とする急冷高純度金属噴霧粉末の製造法にある。 The production method of the present invention includes a step of melting a metal in a melting vessel at a high frequency in a vacuum or gas atmosphere, a step of lowering the melting vessel to an appropriate emission position, and providing the melting vessel and its outer periphery. Simultaneously rotating the cooling base in the reverse direction to inject the molten metal in the molten container by centrifugal force; and impinging the cooling base rotating in the opposite direction to the molten metal injected by the centrifugal force to form droplets. And a step of further cooling while simultaneously dividing, and producing a high-purity metal powder by rapid cooling.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図面 本発明の一実施例としての急冷高純度金属粉末 &
製造法を実施するための装置の例を示すもので、 第 1 図は その一部を切断して示す全体構成図、 第 2図はそのるつぼ と冷却基盤の拡大断面図である。 Drawing Quenched high-purity metal powder as one embodiment of the present invention & FIG. 1 shows an example of an apparatus for carrying out a manufacturing method, and FIG. 1 is an overall configuration view showing a part of the apparatus, and FIG. 2 is an enlarged sectional view of the crucible and a cooling base.
1 …るつぼ 2 …冷却基盤 1 ... crucible 2 ... cooling base
3 , 4 …高速駆動モータ 3, 4… High-speed drive motor
5 …高周波誘導コ イ ル 6 …エア シ リ ンダー 5… High frequency induction coil 6… Air cylinder
7 …位置調整ネジ 8 …磁気シール 7… Position adjustment screw 8… Magnetic seal
9 …排気部 1 0 …ガス供給部 9… Exhaust section 10… Gas supply section
1 1 …チャ ンバ一 . 1 2 …オ リ フ ィ ス 1 1… chamber 1 2… orifice
発明を実施使用とする最良の形態 : BEST MODE FOR CARRYING OUT THE INVENTION:
以下、 図面により本発明の一実施例と しての金属粉末の 製造法について説明すると、 第 1 図は本発明の製造法を実 施するための装置の全体構成図、 第 2図は上記装置におけ る加熱溶解部と冷却基盤の拡大断面図である。 Hereinafter, a method for producing a metal powder as an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an overall configuration diagram of an apparatus for performing the production method of the present invention, and FIG. FIG. 2 is an enlarged cross-sectional view of a heating and melting unit and a cooling base in the embodiment.
符号 1 は、 試料の溶解と射出を行う ための溶解るつぼで 第 2図に示すように T字形断面を呈し下部両端に射出ノ ズ ルを有している。 この下方には射出された溶滴をさ らに分 断する と同時に冷却する冷却基盤 2 が設けられている。 冷 却基盤は傾斜角度 5 〜 2 0 ° のすり鉢状を呈している。 3 は、 るつぼおよび冷却基盤を回転させるための駆動モ一 タであり、 これらはいずれも増減速機構を有している。 5 はるつぼ内の試料を溶解するための高周波誘導ユイ ルで、 6 はるつぼを溶解位置から所定の射出位置に昇降させるた めのエア シ リ ンダ一であって、 射出位置は調整ネジ 7 で調 整される。 粉末の製造はチャ ンバ一 1 1 内で行われ、 内部 雰囲気は真空、 不活性ガスのいずれかを選択できるよ う に
なつており、 雰囲気の保持は磁気シール 8で保たれる。 このよう に構成された装置を使用し、 真空またはガス雰 囲気内において金属試料を封入したるつぼ 1 を高周波誘導 コイ ル 5内で加熱する。 溶解後冷却ディ スク 2を回転させ た後、 るつぼ 1 を射出位置まで降下させるとともに冷却デ イ スク 2 と逆方向に回転させて溶湯を射出する。 回転数が 増大するほど粒子径の小さい粉体粒子が得られるうえ、 平 均粒子径を回転数によって自由に調節できる。 また高純度 で冷却速度の大きい粉末を作成できる。 Reference numeral 1 denotes a melting crucible for melting and injecting a sample, which has a T-shaped cross section as shown in FIG. 2 and has injection nozzles at both lower ends. Below this is provided a cooling base 2 that further separates the injected droplets and simultaneously cools them. The cooling base has a mortar shape with an inclination angle of 5 to 20 °. Reference numeral 3 denotes a drive motor for rotating the crucible and the cooling base, each of which has an acceleration / deceleration mechanism. 5 is a high-frequency induction tool for melting the sample in the crucible, 6 is an air cylinder for raising and lowering the crucible from the melting position to the predetermined injection position, and the injection position is adjusted with the adjusting screw 7. It will be adjusted. The production of the powder is carried out in the chamber 11 and the internal atmosphere can be selected from vacuum or inert gas. The atmosphere is maintained by the magnetic seal 8. The crucible 1 enclosing the metal sample is heated in the high-frequency induction coil 5 in a vacuum or gas atmosphere using the apparatus configured as described above. After rotating the cooling disk 2 after melting, lower the crucible 1 to the injection position and rotate the cooling disk 2 in the opposite direction to inject the molten metal. As the number of rotations increases, powder particles having a smaller particle diameter can be obtained, and the average particle diameter can be freely adjusted by the number of rotations. In addition, powder with high purity and a high cooling rate can be produced.
実 施 例 : Example :
次に、 この製造法の実施例について説明すると F e 8 2— B 1 β合金の場合において、 オリ フィス径 0. 3腿、 冷却ディ スク材料として銅を使用した場合にば、 るつぼおよび冷却 基盤の回転数が共に約 1 0 0 0 0 r p mにおいて、 平均粒 子柽約 1 5 β m の球状粉体が得られた。 Next, this embodiment of the manufacturing method will be described when the F e 8 2 - In the case of B 1 beta alloy, sediment Fils diameter 0.3 thigh, if when using copper as a cooling disk material, the crucible and cooling infrastructure At a rotational speed of about 1000 rpm, a spherical powder having an average particle size of about 15 βm was obtained.
さらに粉体粒子の形状は球形で表面が滑面で二次粒子の 付着もほとんどみられない。 そのうえ一部微小粒子の中に 非晶質のものも舍まれるなど急冷効果の点でも優れている ことがわかった。 このほか、 スーパーァロイ粉や Z n粉に ついても同様の結果を得た。 Furthermore, the shape of the powder particles is spherical, the surface is smooth, and there is almost no adhesion of secondary particles. In addition, it was found that some of the fine particles were amorphous and that they were also excellent in quenching effect. In addition, similar results were obtained for Superalloy powder and Zn powder.
本発明の製造法によれば T字形ノ ズルと冷却基盤の回転 を組み合わせて真空や不活性ガス雰囲気の下で製造するの で、 従来の製造法では得られない次のような優れた効果が 得られる。 According to the manufacturing method of the present invention, the T-shaped nozzle and the rotation of the cooling base are combined to manufacture under a vacuum or an inert gas atmosphere.Therefore, the following excellent effects which cannot be obtained by the conventional manufacturing method are obtained. can get.
( I ) 溶融容器と冷却基盤を同時に逆回転させ、 その回転 比を変化することにより、 平均粒子径の異なる粉体粒子を
得る こ とができる。 (I) By simultaneously rotating the melting vessel and the cooling base in reverse, and changing the rotation ratio, powder particles with different average particle diameters can be obtained. Obtainable.
( 2 ) 高周波誘導溶解である う え融液を遠心力で射出して いるので高融点の材料にも適しており、 粉体粒子内にガス 包舍のない粉末を製造でき る。 (2) Since the melt is injected by centrifugal force due to high frequency induction melting, it is also suitable for high melting point materials, and can produce powder without gas envelope in powder particles.
( 3 ) 溶融るつぼに設けたオ リ フ ィ スを通して射出してい る うえ、 冷却基盤を使用 しているので、 二次粒子の付着が 見られず粒度分布が狭いうえ、 冷却速度の大きな粉末を製 造できる。
(3) Injection is performed through the orifice provided in the melting crucible, and since the cooling base is used, secondary particles are not observed and the particle size distribution is narrow. Can be manufactured.
Claims
1. 真空またはガス雰囲気内において、 溶融容器内の金属 を高周波で溶解する工程と、 溶融容器を射出位置まで降 下させる工程と、 その溶融容器とその外周に設けた冷却 基盤とを同時に逆回転させて、 上記溶融容器内の溶融金 属を遠心力により射出する工程と、 遠心力により射出さ れた溶融金属を逆方向に回転する冷却基盤に衝突させ、 溶滴をさらに分断すると同時に冷却する工程とより成り . 急冷により高純度の金属粉末を製造することを特徴とす る急冷高純度金属噴霧粉末の製造法。
1. In a vacuum or gas atmosphere, a step of melting the metal in the melting vessel with high frequency, a step of lowering the melting vessel to the injection position, and simultaneously rotating the melting vessel and the cooling base provided on its outer periphery in reverse. Then, a step of injecting the molten metal in the melting vessel by centrifugal force, and a step of injecting the molten metal injected by the centrifugal force against a cooling base rotating in the opposite direction to further separate droplets and simultaneously cool the droplets A method for producing a quenched high-purity metal spray powder characterized by producing high-purity metal powder by quenching.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/309,727 US4900355A (en) | 1987-11-30 | 1988-05-25 | Method for making high-purity metal powder by jet-cooling |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29990087A JPH01142005A (en) | 1987-11-30 | 1987-11-30 | Manufacture of rapidly cooled high purity metal atomized powder |
JP62/299900 | 1987-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993013898A1 true WO1993013898A1 (en) | 1993-07-22 |
Family
ID=17878290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1988/000504 WO1993013898A1 (en) | 1987-11-30 | 1988-05-25 | Production of atomized powder of quenched high-purity metal |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH01142005A (en) |
WO (1) | WO1993013898A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104588673A (en) * | 2015-01-28 | 2015-05-06 | 大连理工大学 | Device and method for efficiently preparing metal spherical ultrafine powder |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06264115A (en) * | 1993-03-09 | 1994-09-20 | Takeshi Masumoto | Apparatus for production of metallic powder |
CN104174859B (en) * | 2014-09-03 | 2016-03-09 | 陕西维克德科技开发有限公司 | Metal bar material height rotating speed swivel feeding device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6191302A (en) * | 1984-10-09 | 1986-05-09 | Nagaoka Gijutsu Kagaku Univ | Apparatus for producing metallic powder |
JPS6247415A (en) * | 1985-08-27 | 1987-03-02 | Ishikawajima Harima Heavy Ind Co Ltd | Method and apparatus for producing metallic powder |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4435342A (en) * | 1981-11-04 | 1984-03-06 | Wentzell Jospeh M | Methods for producing very fine particle size metal powders |
JPS6077906A (en) * | 1983-10-04 | 1985-05-02 | Ube Ind Ltd | Apparatus for manufacturing granular material consisting of amorphous metal |
-
1987
- 1987-11-30 JP JP29990087A patent/JPH01142005A/en active Granted
-
1988
- 1988-05-25 WO PCT/JP1988/000504 patent/WO1993013898A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6191302A (en) * | 1984-10-09 | 1986-05-09 | Nagaoka Gijutsu Kagaku Univ | Apparatus for producing metallic powder |
JPS6247415A (en) * | 1985-08-27 | 1987-03-02 | Ishikawajima Harima Heavy Ind Co Ltd | Method and apparatus for producing metallic powder |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104588673A (en) * | 2015-01-28 | 2015-05-06 | 大连理工大学 | Device and method for efficiently preparing metal spherical ultrafine powder |
Also Published As
Publication number | Publication date |
---|---|
JPH0321603B2 (en) | 1991-03-25 |
JPH01142005A (en) | 1989-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4386896A (en) | Apparatus for making metallic glass powder | |
US4689074A (en) | Method and apparatus for forming ultrafine metal powders | |
JPH0791571B2 (en) | Method for producing titanium particles | |
JPS5835563B2 (en) | Manufacturing method and equipment for glassy metal powder | |
US4648820A (en) | Apparatus for producing rapidly quenched metal particles | |
US4482375A (en) | Laser melt spin atomized metal powder and process | |
US5332198A (en) | Method for producing rapidly-solidified flake-like metal powder and apparatus for producing the same | |
US4613076A (en) | Apparatus and method for forming fine liquid metal droplets | |
US4523621A (en) | Method for making metallic glass powder | |
US4435342A (en) | Methods for producing very fine particle size metal powders | |
US5738705A (en) | Atomizer with liquid spray quenching | |
US4824478A (en) | Method and apparatus for producing fine metal powder | |
US5855642A (en) | System and method for producing fine metallic and ceramic powders | |
CA1133671A (en) | Method for making metallic glass powder and product | |
US4900355A (en) | Method for making high-purity metal powder by jet-cooling | |
US4355057A (en) | Formation of alloy powders through solid particle quenching | |
WO1993013898A1 (en) | Production of atomized powder of quenched high-purity metal | |
JPH0754019A (en) | Production of powder by multistage fissure and quenching | |
JP3511082B2 (en) | Manufacturing method of metal fine powder | |
US4377375A (en) | Apparatus for forming alloy powders through solid particle quenching | |
US4014964A (en) | Process for making metal powder using a laser | |
Thursfield et al. | A gas atomization spray quenching technique for bulk splat cooling | |
WO1982003809A1 (en) | Apparatus for spraying metal or other material | |
JPH0293007A (en) | Manufacture of powder | |
JPS61170503A (en) | Production of pulverous powder of aluminum or aluminum alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |