[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1992014245A1 - Method for reproducing signal in optically recording medium - Google Patents

Method for reproducing signal in optically recording medium Download PDF

Info

Publication number
WO1992014245A1
WO1992014245A1 PCT/JP1991/001438 JP9101438W WO9214245A1 WO 1992014245 A1 WO1992014245 A1 WO 1992014245A1 JP 9101438 W JP9101438 W JP 9101438W WO 9214245 A1 WO9214245 A1 WO 9214245A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording medium
optical recording
reproducing
reproduction
layer
Prior art date
Application number
PCT/JP1991/001438
Other languages
English (en)
French (fr)
Inventor
Atsushi Fukumoto
Toshiki Udagawa
Shunji Yoshimura
Masumi Ono
Kouichi Yasuda
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US07/941,058 priority Critical patent/US5390162A/en
Priority to DE69119418T priority patent/DE69119418T2/de
Priority to JP3516541A priority patent/JP3057517B2/ja
Priority to EP91917831A priority patent/EP0536404B1/en
Publication of WO1992014245A1 publication Critical patent/WO1992014245A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10502Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed
    • G11B11/10515Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10595Control of operating function
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/02Control of operating function, e.g. switching from recording to reproducing

Definitions

  • the present invention relates to a signal reproducing method for an optical recording medium that reads a signal while irradiating the optical recording medium with a light beam.
  • the present invention relates to a signal reproducing method for an optical recording medium capable of reproducing information.
  • Optical recording media can be broadly classified into read-only media such as so-called compact discs, and signal-recordable media such as magneto-optical discs.
  • read-only media such as so-called compact discs
  • signal-recordable media such as magneto-optical discs.
  • the recording density of information on an optical recording medium is determined by the S / N of a reproduced signal.
  • conventional general optical recording / reproduction as shown in Fig. 1, reading of laser light or the like from an optical recording medium is performed.
  • the entire area of the beam spot SP which is the light irradiation area of the light beam, is used as the reproduction signal area. Therefore, reproducible recording density is determined by the diameter D SP of the beam spot of the read light.
  • the diameter D SP of the beam 'spot SP of the read laser beam is smaller than the pitch q of the recording RP RP.
  • Two recording pits are located in the SP SP. There is no input, the reproduction output waveform is as shown in B of Fig. 1, and the reproduction signal is readable.
  • the recording pit SP is formed at a high density, and the diameter D SP in the beam spot SP is equal to the recording pit RP.
  • Subo' DOO diameter D SP is the wavelength of the laser beam; and I, depends on the numerical aperture N 5 A of the objective lens, this Subo' preparative diameter D SP, reading light bi one beam scanning direction (recording track direction)
  • the track density is determined according to the pit density along the axis (so-called linear density) and the interval between adjacent tracks (so-called track pitch) in the direction orthogonal to the scanning direction of the read light beam.
  • the physical and optical limits of these linear and track densities are all determined by the wavelength of the light source of the reading light and the numerical aperture NA of the objective lens.
  • the spatial frequency during signal reproduction is generally 2 ⁇ ⁇ ⁇ ⁇ is the reading limit.
  • Optical recording media capable of reproducing such high-density information include magneto-optical recording media capable of recording signals and optical recording media of variable reflectivity capable of reproducing at least.
  • the magneto-optical recording medium includes, for example, a magnetic layer (for example, a magnetic layer having an easy axis of magnetization in a direction perpendicular to the film surface and having an excellent magneto-optical effect) on one main surface of a transparent substrate or a light-transmitting substrate made of polycarbonate or the like.
  • a magnetic layer for example, a magnetic layer having an easy axis of magnetization in a direction perpendicular to the film surface and having an excellent magneto-optical effect
  • Io metal alloy thin film together with a dielectric layer, a surface protection layer, and the like, and a signal is recorded and reproduced by irradiating a laser beam or the like from the transparent substrate side.
  • the magnetic layer is locally heated to, for example, a temperature near a Curie point by laser light irradiation or the like, and the coercive force in this portion is extinguished to allow external marking.
  • thermomagnetic recording which is performed by magnetizing in the direction of the applied recording magnetic field.
  • the signal reproduction from the magneto-optical recording medium is performed by using a magneto-optical effect (so-called magnetic Kerr effect, Faraday effect) in which the plane of polarization of linearly polarized light such as laser light is rotated depending on the direction of magnetization of the magnetic layer.
  • the above-mentioned reflectivity change type optical recording medium is formed by forming a material whose reflectivity changes with temperature on a transparent substrate on which a phase pit is formed. At the time of signal reproduction, read light is written to the recording medium. It irradiates and reads the phase pits while partially changing the reflectivity within the scanning spot of the readout light.
  • the recording magnetic layer is an exchange-coupling multilayer film consisting of a reproducing layer, an intermediate layer, and a recording layer, and the magnetic domains of the reproducing layer heated by the reproducing light beam during reproduction are enlarged, reduced, or erased at the high temperature part.
  • a recording layer of a magneto-optical recording medium is composed of a multilayer film including a reproducing layer and a recording holding layer that are magnetically coupled.
  • the magnetization direction of the reproducing layer is aligned in advance and the erased state is set.
  • the reproducing layer is heated to a predetermined temperature or higher by irradiating laser light, and the recording holding layer is heated only in this heated state.
  • the erasing-type high-density reproduction technology will be described with reference to FIGS.
  • the recording medium in which the information recording pit RP is exposed is irradiated with the laser beam LB at room temperature and heated, so that the irradiated laser beam LB is irradiated.
  • a write-erase area ER is formed in the beam-spot SP, and the recording RP RP in the remaining area RD in the beam spot SP is read. Reproduction with increased density is performed.
  • the recording medium for this erasure-type high-density reproduction is an exchange-coupled magnetic multilayer film composed of amorphous rare-earth (Gd, Tb) -ferrous (Fe, Co) ferrimagnetic films for magneto-optical recording.
  • a primary layer (a lower surface in the figure) of a transparent substrate 60 such as polycarbonate is provided with a reproducing layer 61, which is a first magnetic film, and a second magnetic layer. It has a structure in which a cutting layer (intermediate layer) 62 as a film and a recording holding layer 63 as a third magnetic film are sequentially laminated.
  • the first magnetic film (reproducing layer) 61 for example, a material having GdFeC 0 and a crystal temperature T C 1 > 400 ° C. is used, and the second magnetic film (cutting layer, intermediate layer) is used.
  • the arrows in each of the magnetic films 61, 62, and 63 in C of FIG. 2 indicate the direction of magnetization of each magnetic domain. Hread indicates the direction of the reproducing magnetic field.
  • each layer 63, 62, 61 of the recording medium is magnetically coupled in a state of magnetostatic coupling or exchange coupling.
  • the recording magnetic domain of the holding layer 63 is transferred to the reproducing layer 61 via the cutting layer 62.
  • the medium temperature is increased by irradiating the recording medium with laser light LB, the temperature change of the medium is delayed with the scanning of the laser light and appears above the predetermined temperature TOP.
  • the area (recording / erasing area ER) appears slightly behind the beam spot SP in the laser scanning direction.
  • the amount of the shift depends on the scanning speed of the laser light, that is, the moving speed of the recording medium (corresponding to the linear speed in a magneto-optical disk).
  • the predetermined temperature TOP the magnetic coupling between the recording holding layer 63 and the reproducing layer 61 disappears, and the magnetic domains of the reproducing layer 61 are aligned with the directions of the reproducing magnetic fields H RE and D , so that the magnetic field on the medium surface is reduced.
  • the recording pit is erased.
  • the region RD excluding the overlapping region with the region ER having the predetermined temperature TOP or higher becomes the substantial reproduction region.
  • the beam spot SP of the laser beam is partially masked by the region ER where the temperature is equal to or higher than the predetermined temperature TOP, and a small region that is not masked becomes the reproduction region RD, thereby realizing high-density reproduction.
  • the scanning spot SP of the laser beam is detected by detecting, for example, the angle of one rotation of the reflected light from the small reproduction area (reading area RD) which is not masked by the masking area (recording / erasing area ER). Since the reproduction of data is performed, it is equivalent to reducing the diameter of the beam spot SP, and the linear recording density and the track density can be increased.
  • the recording medium in which the information recording pit RP has disappeared at room temperature (initialized state) is irradiated with laser light and heated.
  • a signal detection area DT which is a recording embossed area is formed in the beam spot SP of the irradiation laser beam, and only the recording pit RP in the signal detection area DT is read to increase the reproduction linear density.
  • the recording medium for this raised high-density reproduction is magnetostatic coupling or It has a magnetic multilayer structure of magnetic exchange coupling.
  • a first magnetic film is formed on one main surface (lower surface in the figure) of a transparent substrate 70 such as polycarbonate. It has a structure in which a layer 71, a reproduction auxiliary layer 72 as a second magnetic film, an intermediate layer 73 as a third magnetic film, and a recording holding layer 74 as a fourth magnetic film are sequentially laminated.
  • the first magnetic film (reproducing layer) 71 is, for example, a second magnetic film (reproducing auxiliary layer) 72 having GdFeC 0 and a temperature T c ]> 300 ° C.
  • the third magnetic film (intermediate layer) 73 has a Curie temperature T C2 120 ° C. at T b Fe C 0 A 1.
  • a fourth magnetic layer (recording holding layer) 7 4 may, for example, those of T b F e C 0 can Interview Li first temperature T C4 2 5 0 ° C Used respectively.
  • the magnitude of the initialization magnetic field H in is larger than the magnetic field H CP for reversing the magnetization of the reproducing layer (H in > H CP ), and is sufficiently larger than the magnetic field H cr for reversing the magnetization of the recording holding layer. rather small (H in "H CP) are selected.
  • Each magnetic film 71 in C, 7 2, 7 arrow 3, 7 4 indicates the direction of magnetization of the magnetic domains, H in the orientation of the initializing magnetic field, H re ad will come towards the playing field Are respectively shown.
  • Recording holding layer 7 4 the initializing magnetic field H in, a layer which holds the recording pit without being influenced by the reproducing magnetic field H re 4d, also regeneration temperature, etc., at room temperature, 0
  • the perpendicular anisotropy of the intermediate layer 73 is smaller than that of the auxiliary reproduction layer 72 and the recording holding layer 74. Therefore, when a domain wall is formed between the reproducing layer 71 and the recording layer 74, the domain wall is stably present in the intermediate layer 73. Therefore, the reproduction layer 71 and the auxiliary reproduction layer 72 stably maintain the erased state (initialized state).
  • the auxiliary readout layer 72 acts to increase the coercive force of the readout layer 71 at room temperature. Therefore, the magnetization of the readout auxiliary layer 7 1 and the magnetization of the readout auxiliary layer 7 2 aligned by the initialization magnetic field are reduced. However, even if the domain wall exists, it exists stably. In addition, during reproduction, the coercive force of the auxiliary reproduction layer 72 rapidly decreases around the reproduction temperature T s , so that the domain wall confined in the intermediate layer 73 extends to the auxiliary reproduction layer 13. Finally, the reproducing layer 71 is inverted to eliminate the domain wall. Through this process, a pit appears on the reproduction layer 71.
  • the reproduction layer 71 has a small magnetization reversal magnetic field Hep even at room temperature, and its magnetization is easily reversed. Therefore, the reproducing layer 71 is, by the initializing magnetic field H i n, the magnetization of the entire surface is aligned in the same direction. The uniform magnetization is supported by the reproduction auxiliary layer 72 and a stable state is maintained even when there is a domain wall with the recording holding layer 74. Then, as described above, at the time of reproduction, the recording pit appears because the domain wall with the recording holding layer 74 disappears.
  • the laser beam LB is irradiated while applying the reproducing magnetic field H reed in the opposite direction.
  • the reproducing magnetic field H reed at a reproducing temperature T RP after the temperature rise by laser light irradiation, a magnetic field equal to or more than a magnetic field that inverts the reproducing layer 71 and the auxiliary reproducing layer 72 and eliminates the domain wall of the intermediate layer 73. is necessary.
  • the reproducing layer 71 and the auxiliary reproducing layer 72 have such a size that the direction of the magnetic field is not reversed.
  • the area where the predetermined reproduction temperature T RP or higher (recording embossed area) is slightly shifted behind the beam spot SP in the scanning direction.
  • the amount of the deviation depends on the scanning speed of the laser beam, that is, the moving speed of the recording medium (corresponding to the linear speed in the case of a magneto-optical disc).
  • the coercive force of the auxiliary reproduction layer 72 decreases, and the magnetic field disappears when the reproduction magnetic field H re , d is applied. Transcribed to 1.
  • the recording medium in which the information recording pit has disappeared at room temperature is irradiated with laser light and heated, so that the beam spot of the irradiated laser light is emitted.
  • a recording embossed area is formed at a position slightly deviated from the laser beam in the scanning direction of the laser beam, and a higher-temperature recording / erasing area is formed in the recording embossed area.
  • a magneto-optical recording medium having at least a reproducing layer, an intermediate layer, and a recording holding layer is used.
  • the reproducing layer is irradiated with laser light, a reproducing magnetic field is applied, and the temperature distribution generated by the laser irradiation is used to maintain the initialized state, the portion where the information on the recording holding layer is transferred, and the reproducing magnetic field direction.
  • the recording area RP in the read area RD and the signal detection area DT which are substantial signal reproduction areas, in the beam spot SP.
  • the distance between the pits in the laser light scanning direction and the direction perpendicular to the laser light scanning direction is shortened.
  • the density can be increased by increasing the linear density and the track density, and the recording capacity of the medium can be increased.
  • the size of the reproduction region that is, the region RD in FIG. 2 and the region DT in FIG.
  • the optical power fluctuates depending on the scanning speed of reading light such as laser light, that is, the medium moving speed (corresponding to the linear speed of a magneto-optical disk or the like).
  • the linear velocity is different, so that the size of the read area RD or the signal detection area DT, which is a substantial reproduction area, differs depending on the reproduction position. Therefore, it is not always possible to perform good and stable playback of SZN.
  • the reflectance change 5 As high-density reproduction or ultra-high-resolution reproduction, the reflectance change 5
  • the present invention has been made in view of such circumstances, and even if there is a change in the linear velocity of a magneto-optical recording medium or an optical recording medium of a reflectance change type, the substantial size of the above-mentioned reproducing area is It is an object of the present invention to provide a method for reproducing an optical recording medium that can maintain a constant value and read information stably.
  • a method for reproducing an optical recording medium includes a recording layer and a reproducing layer, wherein the recording layer and the reproducing layer are magnetically coupled in a steady state, and are irradiated with a read light beam during reproduction.
  • the magnetic coupling between the recording layer and the reproducing layer in a region where the temperature rises to a predetermined temperature or higher is eliminated, and the recorded information held in the recording layer is reproduced in the light irradiation region excluding the magnetic coupling eliminated region.
  • a method of reproducing an optical recording medium that reads data from a layer when the optical recording medium is rotated at a constant rotation speed to perform reproduction, a reproduction position on the optical recording medium is detected, and the reproduction position at the reproduction position is detected. 0 for linear velocity
  • the size of the magnetic coupling annihilation region is controlled accordingly.
  • the reproducing method of the optical recording medium according to the present invention has a recording layer and a reproducing layer, and after arranging the magnetization directions of the reproducing layer, irradiating the reading light beam during reproduction to a temperature higher than or equal to a predetermined temperature. Keep the above recording layer in the ascending area.
  • the recorded information is transferred to the reproduction layer and raised, and the reproduction layer
  • a reproducing method of an optical recording medium for reading the recording information from a raised area when reproducing by rotating the optical recording medium at a constant rotation speed, a reproducing position on the optical recording medium is detected, The size of the raised area is controlled according to the linear velocity at the reproduction position.
  • the readout light beam is applied to an optical disk whose position is formed in accordance with a signal and whose reflectance changes with temperature.
  • the reproduction method of the optical recording medium in which the phase pit is read while the reflectance is partially changed in the spot when the above-mentioned optical recording medium is rotated at a constant rotation speed and the reproduction is performed. Then, the playback position on the optical recording medium is detected, and the size of the portion where the reflectance changes within the scanning spot of the read light beam is controlled in accordance with the linear velocity at the playback position. It was made.
  • the output of a laser light source that irradiates the read light beam onto the optical recording medium may be controlled based on an output obtained by detecting a reproduction position of the optical recording medium.
  • the output control of the laser light source is performed based on an output obtained by comparing the output of detecting the reproduction position of the optical recording medium with the output reference value of the laser light source corresponding to the linear velocity of the optical recording medium stored in the storage means. May be performed.
  • the size of the magnetic coupling disappearance region, the raised region, or the portion where the reflectivity is changed may be controlled based on the output level of reproducing the optical recording medium.
  • FIG. 1 is a diagram for explaining the relationship between the spot diameter of a laser beam and the recording density of a reproducible recording pit.
  • FIG. 2 is a diagram for explaining an erasing type magneto-optical recording medium, a reproducing method thereof, and a substantial reproducing area of the medium.
  • FIG. 3 is a diagram for explaining a raised type magneto-optical recording medium, a reproducing method thereof, and a substantial reproducing area of the medium.
  • FIG. 4 is a diagram for explaining that a substantial reproduction area changes due to a change in the linear velocity of the magneto-optical recording medium.
  • FIG. 5 is a block diagram showing a main part of a disk reproducing apparatus to which an embodiment of the method for reproducing an optical recording medium according to the present invention is applied.
  • FIG. 6 is a block diagram showing a section format of data recorded on a magneto-optical disk.
  • FIG. 7 is a diagram for explaining that the mask area is changed by changing the laser power.
  • FIG. 8 is a diagram for explaining that the mask area changes by changing the external magnetic field.
  • FIG. 9 is a block diagram showing a main part of a disk reproducing apparatus to which another embodiment of the reproducing method according to the present invention is applied.
  • FIG. 10 shows still another embodiment 5 of the reproducing method of the optical recording medium according to the present invention.
  • FIG. 2 is a block diagram showing a main part of the disk reproducing apparatus to which the symbol “” is applied.
  • FIG. 11 is a diagram for explaining a magneto-optical disk of the rotational drive system of the modified CAV.
  • FIG. 12 is a block diagram showing a main part of a disc reproducing apparatus to which still another embodiment of the method for reproducing an optical recording medium according to the present invention is applied, and FIG. 13 is shown in FIG.
  • FIG. 1 is a schematic cross-sectional view showing a main part of an example of a phase change optical disc which is an example of a reflectivity variable optical disc used in an embodiment.
  • FIG. 14 is a schematic cross-sectional view showing a main part of another example of the phase change optical disk.
  • FIG. 15 is a schematic cross-sectional view showing a main part of still another example of the phase change optical disc.
  • FIG. 16 is a diagram showing a phase change state for explaining the above phase change type optical disk.
  • FIG. 17 is a diagram showing another phase change state for explaining the above phase change type optical disc.
  • FIG. 18 is a diagram showing a relationship between a read light spot and a temperature distribution for explaining the above-mentioned phase change optical disk.
  • FIG. 19 is a schematic cross-sectional view showing a main part of another example of a reflectance changing type optical disk used in the embodiment shown in FIG.
  • FIG. 20 is a characteristic diagram showing how the spectral reflectance characteristics of the interference filter change with temperature.
  • a magneto-optical disk 11 is used as a magneto-optical recording medium, and the above-mentioned erasing type or raised type reproducing method i o is applied.
  • the magneto-optical disk 11 is driven to rotate by a constant rotation speed (CAV) method.
  • the record holding layer is composed of, for example, TbFeC0, and the temperature of the coil is 300 ° (, and the cutting layer (intermediate layer) is, for example, TbFeC.
  • the curing temperature is 120 ° C
  • the regeneration layer for example, GdFeCo and the curing temperature is 400. C.
  • the playback method of the raised type is 0.
  • the recording holding layer is, for example, TbFeCo and the curing temperature is 250 ° (:, the intermediate layer is, for example, GdFeCo and the curing temperature is 2 ° C).
  • the regeneration trapping layer is, for example, TbFeC0A1 and the Curie temperature is 120 ° C, and the regeneration layer is, for example, GdFeC0 and the Curie temperature is 300 ° C. Use the ones with C or higher respectively 5
  • data is sequentially recorded on the magneto-optical disk 11 as a plurality of sectors per track, and each sector is configured as shown in FIG. 6, for example. That is, one sector is composed of a preformat section and a recording / reproducing section.
  • the preformat portion is previously recorded on the magneto-optical disk 11 by pitting. During recording, this preformat part is detected, and data and other data are recorded only in the recording / reproducing part.
  • the pre-format part includes a sector synchronization part and an address part.
  • the address part records a track address and address data including the sector address.
  • the track address is, for example, a track number that is sequentially numbered sequentially from the recording start position, for example, from the inner circumference side. This track address corresponds to the radial position of the magneto-optical disk 11.
  • the sector address indicates the number of the sector in the track.
  • the optical pickup position in the radial direction of the magneto-optical disk 11, that is, the reproduction position is detected, and the reproduction position at the reproduction position is detected.
  • the reproduction area (readout area) in the case of the erasure type or the reproduction area (signal detection area) in the case of the relief type (the signal detection area) ensures that the size of the DT is always constant.
  • a laser light beam from a laser light source 12 such as a semiconductor laser is incident on the reproducing layer of the magneto-optical disk 11.
  • the reproducing magnetic field H reed is generated when a driving current is supplied from the driver 32 to the magnetic field generating coil 31.
  • Magnetic field generator The beam 31 is provided on the surface of the magneto-optical disk 11 opposite to the surface on which the laser light beam is irradiated, opposite to the laser light source 12.
  • the driver 22 is supplied with the reference value M ref from the reference value generating circuit 23 so that the magnitude of the read magnetic field H read generated from the magnetic field generating coil 21 becomes a predetermined constant value corresponding to the reference value. Has been.
  • the reflected light from the reproducing area RD or DT in the laser beam spot is transmitted through the optical system (not shown) to the reproducing photodetector 1. It is incident on 3 and is photoelectrically converted.
  • the output signal of the photodetector 13 is supplied to a signal processing circuit 15 via a head amplifier 14 to obtain an RF signal, which is supplied to a data reproducing system and demodulated.
  • a part of the laser beam from the laser light source 12 is incident on a photodetector 21 for laser power monitoring.
  • the photoelectric conversion output of the photodetector 21 is supplied to an auto power control circuit 22.
  • the output of the photodetector 21 is compared with a reproduction laser power setting reference value REF described later, and the comparison error output is sent to the laser drive circuit 23, and the laser light source 23
  • the output power of 12 is controlled.
  • the output power of the laser light source 12 is controlled so as to be a value corresponding to the reproduction laser power setting reference value R EF.
  • the reproduction laser power setting reference value REF is set according to the linear velocity at each reproduction position in the radial direction of the magneto-optical disk 11 as described below. .
  • a ROM 24 is provided for storing a table of the reproduction laser power setting reference values REF corresponding to the one-to-one correspondence.
  • the reproduction laser power setting reference value REF when the reproduction track position is each track position, in the state of the linear velocity, the erase type magneto-optical disk or the raised type When a magneto-optical disk is reproduced, a value is detected such that the size of the substantial reproduction area (read area RD or signal detection area DT) described above always becomes a constant size appropriate for reproduction. It is stored in ROM 24.
  • Whether the size of the reproduction area RD or DT is optimal and constant is determined, for example, when the information of the predetermined reference pattern is reproduced and the RF signal level from the signal processing circuit 15 becomes a predetermined value. Can be detected depending on
  • the track address is extracted from the reproduced signal and identified.
  • This track address is supplied to ROM 24 as its read address.
  • a different read laser power setting reference value R EF is read from ROM 24 depending on the linear velocity at the read track position.
  • the read setting reference value REF is supplied to the auto power control circuit 22, and the output power of the laser light source 12 is changed according to the linear velocity at the reproducing position on the magneto-optical disc 11 at that time. It is controlled so as to correspond to the set reference value REF.
  • the temperature distribution for the laser beam scanning spot changes according to the linear velocity of the disk at the reproducing position. If the output power changes, the linear velocity of the magneto-optical disc 11 is constant, even if the linear velocity of the magneto-optical disc 11 is constant. As shown in (1), the size of the region exceeding the predetermined threshold temperature ⁇ changes like S1, S2. Therefore, by controlling the laser power as described above, even if the linear velocity of the magneto-optical disk 11 at the reproduction position changes, the size of the reproduction areas RD and DT can be kept constant. It is.
  • the reproduction area RD in the erasing type or the embossing type reproducing method can be controlled by controlling the laser power.
  • DT can be kept constant, stable playback can always be performed.
  • the generation circuit of the reproduction laser power setting reference value R E F is R O M
  • a circuit for calculating the reproduction laser power setting reference value R EF from the track address information by calculation may be used.
  • one laser power setting reference value may be made to correspond to a plurality of tracks.
  • the laser power setting reference value corresponding to the linear velocity at the center track position of the multiple tracks is used as the laser power setting reference value for the multiple tracks.
  • the laser power is controlled to keep the size of the reproducing regions RD and DT constant even when the linear velocity of the magneto-optical disk changes, but the external magnetic field (the reproducing magnetic field H re , d )
  • the same effect can be obtained by controlling
  • the temperature begins can mask region (recording erased region) ER is precisely the queue of the intermediate layer 6 2 Lee temperature T c 2
  • reproducing magnetic field Hr "d reproduction layer when the exchange coupling force between the 6 1 of coercive force and reproduction layer 61 and the recording holding layer 6 3 was H w
  • FIG. 8 shows the temperature characteristics of Hci + Hw.
  • T c ] is the Curie temperature of the reproducing layer 61.
  • T C2 of the intermediate layer At a temperature equal to or higher than the Curie temperature T C2 of the intermediate layer, the coercive force is the same as in the case of a single reproducing layer.
  • the magnetization of the reproducing layer 61 of the magneto-optical disk to align in one direction may be multiplied by H el + H w is greater than the magnetic field. Therefore, even in the same temperature distribution state, the reproducing magnetic field H read is H r as shown in FIG. Is applied, the mask area ER is the area above the temperature T C2 , but if the magnitude of the reproducing magnetic field H re "is H rl , the temperature is lower than the temperature T C2. range up to T beta is Ri Do the mask region ER, change the size of the mask region in accordance with the magnitude of the reproducing magnetic field H re ad, this result, it changes the size of the reproducing region RD.
  • the reproduction area can always be made constant.
  • FIG. 9 shows an example of a main part of a reproducing apparatus when controlling the reproducing magnetic field in accordance with the linear velocity of the magneto-optical disk. Also in the case of this example, the magneto-optical disk 11 performs the rotation drive control at a constant rotation speed (CAV) as in the above-described example.
  • CAV constant rotation speed
  • a constant laser power setting reference value REF from the reference value generation circuit 25 is supplied to the auto power control circuit 22 and the output laser power of the laser light source 12 is adjusted according to the reference value REF. It is controlled to a constant value.
  • the reference value M ref from the reference value generation circuit 33 is fed to the addition circuit 34 and added to the correction value from R 0M 35 for generating the correction value. Then, the drive signal of the added value is supplied to the driver 32. Therefore, when the correction value is zero, the magnitude of the reproducing magnetic field H re , d becomes a predetermined value according to the reference value REF, and changes around the predetermined value according to the correction value. Become.
  • R0M35 stores a table of correction values corresponding to the linear velocity of the magneto-optical disk 11 at the reproduction position, and the track address from the address decoder 17 is stored in this table. Input as read address of ROM35. Also in this example, the correction value stored in the ROM 35 is large even when the linear velocity according to each of the different reproduction positions in the radial direction of the magneto-optical disk 11 is large. Value is always constant.
  • the RF signal level from the signal processing circuit 15 becomes a predetermined value. Can be detected depending on whether or not Therefore, during playback, a track address is detected from the playback signal by the address decoder 17, and a correction value corresponding to the linear velocity at the playback position is read from the R ⁇ M 35 by the track address. , And supplied to the addition circuit 54. As a result, the magnitude of the reproducing magnetic fields H re and d is controlled, and the magnitudes of the reproducing areas RD and DT are always kept constant.
  • a circuit for generating a correction value from a track address information by calculation may be used as the correction value generation circuit.
  • the laser power and the external magnetic field may be independently controlled according to the linear velocity at the reproduction position of the disc, but the laser power and the external magnetic field may be simultaneously controlled. Good.
  • the radial position of the optical pickup on the magneto-optical disk 11 during reproduction can be detected by extracting the track address in the reproduction signal as in the above example.
  • the position of the optical pickup may be detected by a position sensor.
  • FIG. 10 shows an example of this case.
  • both the laser power and the reproducing magnetic field are controlled.
  • the optical pickup 40 includes a laser light source 12, photodetectors 13 and 21, and an optical system (not shown).
  • the optical pickup 40 is configured to be slid in the radial direction of the magneto-optical disk 11 by a radial feed mechanism 41.
  • the radial feed mechanism 41 is provided with a position sensor 42 composed of, for example, a potentiometer.
  • the position of the laser beam scanning spot from the backup 40 in the radial direction of the magneto-optical disk 11, that is, the reproduction position is detected.
  • the sensor output of the position sensor 42 is supplied to a reproduction position determination circuit 43.
  • the reproduction position output on the magneto-optical disk 11 from the raw position determination circuit 43 is used to correct the ROM 24 for generating the reproduction laser power setting reference value and the reproduction magnetic fields H re and d described above. Is supplied as the read address to the R0M35 for generating the correction value of.
  • ROM 24 and R 035 store the size of the playback area RD and DT even if the linear velocity at each playback position changes by the combination of the laser power setting reference value REF and the correction value. Each set reference value and correction value corresponding to each linear velocity are recorded so that the value does not change and remains constant.
  • the laser power and the reproducing magnetic field are controlled in accordance with the linear velocity at the reproducing position, and the reproducing region RD or the constant size is always constant at any reproducing position on the magneto-optical disk 11 as in the above-described example. Since reproduction is performed by the reflected light from the DT, stable reproduction can always be performed.
  • the radial direction of the magneto-optical disk 11 is divided into predetermined ranges, and the laser power setting reference value REF and the correction value correspond one-to-one to one linear velocity representing each divided range. In this way, different values may be read from R0M24 and R0M for each of the divided ranges.
  • the magneto-optical disk is driven to rotate by a CAV (constant rotation speed) method.
  • CAV constant rotation speed
  • the present invention is also applicable to a case where a so-called modified CAV method is used. I can do it.
  • the rotation drive system adopts the CAV system, but as shown in Fig. 11, the disk radial direction is divided into several zones ZN.
  • the recording and reproduction are performed by changing the data clock frequency for each zone, and the recording density is increased by keeping the linear recording density in each zone ZN from the inner circumference to the outer circumference of the disk approximately constant.
  • the recording pit RP changes the linear recording density according to the track position in the radial direction, but the linear recording density changes Almost negligible for frequency.
  • the recording density can be increased by adopting a constant linear velocity (CLV) method as the rotation drive method.
  • CLV constant linear velocity
  • the rotation depends on the track position of the magneto-optical disk. Since control to change the number is necessary, especially for data recording, the control of the number of revolutions of the spindle motor during data access becomes complicated, and the access speed is reduced.
  • the rotational drive can be performed by the CAV, the access speed can be increased, the recording density can be improved, and high-speed data access can be performed. It has the advantage of being able to.
  • the laser power control or the reproducing magnetic field control according to the linear velocity at the above-mentioned reproducing position, or the control of both of them.
  • the size of the reproduction area is always kept constant and stable reproduction is performed.
  • this modified CAV for example, information indicating the number of the zone from the inner peripheral side is written in the middle of the data, so the radial position of the zone is detected from the information of this zone. Then, based on this radial position information, the above control may be performed assuming one linear velocity for each zone.
  • the combination of the above-described modified CAV rotation drive method and the erasure type or raised type reproduction method makes it possible to achieve a higher performance than when CAV is used as the rotation drive method. It is capable of recording and reproducing density. Moreover, when the reproducing method according to the present invention is applied to a magneto-optical disk for data recording, the access speed is higher than that of CLV.
  • the present invention can be applied to a magneto-optical disk of a type in which the erasing type and the floating type are mixed.
  • the high-density reproducing technology using these magneto-optical recording media it is possible to read the recording pit only from the reproducing area of the beam spot smaller than the beam spot area in the spot. Even if there is a change in the linear velocity of the magneto-optical recording medium, the size of the substantial reproduction area can always be kept constant, and stable reproduction can be performed. Therefore, it is possible to increase the recording density, increase the recording capacity of the medium, and improve the quality. A good reproduction signal can always be obtained.
  • the embodiment of the present invention described above is an example using a magneto-optical recording medium capable of recording signals.
  • an embodiment in which the present invention is applied to an optical recording medium of a reflectance change type will be described. Will be described.
  • No. 3 proposes an optical disk in the specification and drawings.
  • readout light is applied to an optical disc whose phase pit is formed in accordance with a signal and the reflectivity changes with temperature, and the reflectivity of the readout light within the scanning spot is measured.
  • a signal reproduction method for optical discs characterized by reading the phase pit while partially changing it.
  • the reflectivity of the transparent substrate on which the phase pit is formed is changed due to the phase change.
  • a material layer that changes is formed, and when the reading light is irradiated, the material layer partially changes its phase within the scanning robot of the reading light, and returns to an initial state after reading.
  • phase-change optical disk is proposed.
  • phase change material layer that can be crystallized after melting is used as the material layer, and when the read light is irradiated, the phase change material layer is partially melted in the scanning spot of the read light. It is preferable that the liquid crystal be converted to a liquid phase in the crystallization region to change the reflectance and return to a crystalline state after reading.
  • Such a reflectivity-change type optical recording medium particularly a disc to which another embodiment of the reproducing method according to the present invention using a phase-change type optical disc is applied.
  • Fig. 12 shows the main parts of the recycling system.
  • the optical disk 100 is a variable-reflectivity optical disk, particularly a variable-optical-disk type. Those whose reflectivity is lower than the above-mentioned magneto-optical type correspond to the erasure type, and those whose reflectivity of the portion where the temperature rises are higher than the reflectivity of the other portions correspond to the above-mentioned magneto-optical type. .
  • the present embodiment not only any type of phase-change type optical disc can be used, but also a reflectivity-change type optical disc based on another principle can be used.
  • Fig. 12 differs from the configuration of Fig. 5 described above in that the magnetic field generating coil 21 for applying a magnetic field, the driver 22 and the reference value generating circuit 33 are removed, and the magneto-optical disk 11 is replaced.
  • the only difference is that an optical disk I 100 of the reflectance change type is used, and the other configurations are exactly the same. That is, also in this example, the track address is detected.
  • the portion where the reflectivity is changed 0 By detecting the optical pickup position in the radial direction of the reflective optical disc 100, that is, the reproduction position, and controlling the laser beam power in accordance with the linear velocity at the reproduction position, the portion where the reflectivity is changed 0 so that the size of the high reflectivity portion, which is a substantial reproduction area in the laser beam spot, is always constant.
  • a light beam from a laser light source 12 is incident on an optical disk 100, and reflected light from a reproduction area, which is a partial area of the laser light beam spot, is used as a reproduction photodetector. 13 and is photoelectrically converted.
  • the output signal of the photodetector 13 is
  • the signal is supplied to the signal processing circuit 15 via the amplifier 14 and the RF signal is obtained. This is supplied to the data reproduction system and demodulated.
  • a part of the laser light from the laser light source 12 is incident on a photodetector 16 for laser power monitoring, is subjected to photoelectric conversion and output, and is supplied to an auto-control circuit 22.
  • the output of the photodetector 21 is compared with the reproduction laser reference setting value REF, and the comparison error output is supplied to the laser drive circuit 23, and Output power of light source 1 and 2 controlled 3 3 o
  • a part of the laser beam from the laser light source 12 is incident on a photodetector 21 for laser power monitoring.
  • the photoelectric conversion output of the photodetector 21 is controlled by the above-described closed loop control so that the output power of the laser light source 12 becomes a value corresponding to the reproduction laser power setting reference value R EF.
  • the set reference value R EF is adapted to be in accordance with the linear velocity at each reproduction position in the radial direction of the optical disc 100 of the reflectance change type.
  • the ROM 24 is provided which stores a table of the reproduction laser power setting reference values REF corresponding to the linear velocities at the respective track positions of the optical disc 100 on a one-to-one basis.
  • the reproduction laser power setting reference value REF when the reproduction track position is each track position, the optical disk 100 in the state of the linear velocity is substantially described later.
  • a value such that the size of the appropriate reproduction area always becomes a constant size suitable for reproduction is detected and stored in the ROM 24. Whether or not the size of the reproduction area is optimal and constant is determined by, for example, whether or not the level of the RF signal from the signal processing circuit 15 when the information of the predetermined reference pattern is reproduced has reached a predetermined value.
  • the track address is extracted from the reproduced signal and identified.
  • This track address is supplied to ROM 24 as its read address.
  • a different read laser power setting reference value R EF is read from ROM 24 depending on the linear velocity at the read track position.
  • the read setting reference value REF is supplied to the auto power control circuit 22 and the output power of the laser light source 12 is changed according to the linear velocity at the reproduction position on the optical disk 100 at that time. According to the setting reference value REF
  • the size of the reproduction area can be kept constant even when the linear velocity of the magneto-optical disk 11 at the reproduction position changes.
  • the size of the reproduction area can be kept constant by controlling the laser power, so that stable reproduction can always be performed.
  • the linear velocity May be used to control the intensity of the read light beam, or to control the size of the portion where the reflectance changes based on the level of the signal read from the optical recording medium.
  • the set value may be obtained by calculation.
  • the present invention can be similarly applied to the case where the above-described modified CAV rotation drive method is employed.
  • phase-change material layer that can be crystallized after melting was used as the reflectance-change optical disk 100 used in the embodiment of FIG.
  • This phase change material layer is partially liquidized in the melt-crystallized region within the scanning spot of the readout light, changes the reflectivity, and describes a phase change type disk that returns to a crystalline state after readout. I do.
  • the optical disk of the phase change type used as the optical disk 100 of FIG. 12 has a transparent substrate 100 2 on which a phase pit 101 is formed as shown in a schematic sectional view of a main part in FIG.
  • a phase-change material layer 104 is formed on the upper surface (the lower surface side in the figure) via the first dielectric layer 103, and on this material layer 104 (the lower surface side in the figure, and so on) ),
  • a second dielectric layer 105 is formed, and a reflective film 106 is formed thereon.
  • the first dielectric layer 103 and the second dielectric layer 105 set optical characteristics such as reflectance.
  • a protective film (not shown) is often formed on the reflective film 106 as necessary.
  • phase change material layer 104 is directly formed on a transparent substrate 102 on which a pit 101 is formed. It is also possible to use a product in which only As shown in FIG. 15, a first dielectric layer 103, a phase change material layer 104, and a second dielectric layer 103 are formed on a transparent substrate 102 on which a phase pit 101 is formed. May be used in which the dielectric layers 105 are sequentially formed.
  • the transparent substrate 102 a glass substrate, a synthetic resin substrate such as polycarbonate or methyl acrylate, or the like can be used, and a photopolymer is formed on the substrate.
  • a transparent substrate 102 a glass substrate, a synthetic resin substrate such as polycarbonate or methyl acrylate, or the like can be used, and a photopolymer is formed on the substrate.
  • Various configurations can be employed, such as forming a pit 101 by a stamper.
  • phase change material layer 104 Materials that can be used for the phase change material layer 104 include those that partially change phase within the scanning spot of the readout light, return to the initial state after reading out, and change reflectivity due to the phase change.
  • S b 2 S e 3, S b 2 T e 3 such chalcogenide bets, namely chalcogen compound is used, also, as another chalcogenide bets or single chalcogen, S e, the single T e
  • these forces are lucogenites, namely, BiTe, BiSe, In—Se, In—5Sb—Te, In—SbSe, In—Se—T 1, chalcogenite-based materials such as Ge—Te—Sb and Ge—Te are used.
  • a chalcogen or chalcogenite constitutes the phase-change material phase 104, its properties such as thermal conductivity and specific heat are determined in order to form a favorable temperature distribution by reading light with a semiconductor laser beam. Desirable features
  • first dielectric layer 103 and the second dielectric layer 105 for example, S i 3 N 4 , S i ⁇ , S i 0 2 , A 1 N, A 1 2 ⁇ 3 , Five
  • the reflective film 1 As Al, Cu, Ag, Au or the like can be used, and these elements may be those obtained by adding a small amount of additives.
  • phase-change optical disk a phase-change material layer that can be crystallized after melting is formed on a transparent substrate on which a phase pit has been formed.
  • the change material layer is partially liquidized in the melt crystallization region in the scanning spot of the readout light, changes the reflectivity, and returns to the crystalline state after the readout.
  • a specific example of the optical disc having the configuration 3 will be described.
  • a so-called glass 2P substrate is used as the transparent substrate 102 in FIG. 13, and a phase pitch 101 formed on one main surface of the substrate 102 has a track pitch of 1.6 mm. m, pit depth approx. 1200 A, pit width 0.
  • a first dielectric layer 103 made of A1N having a thickness of 90 OA is formed on one main surface of the transparent substrate 102 having the pit 101 by depositing.
  • Sb 2 Se 3 was deposited as a phase change material layer 104 on the lower surface side (the same applies to the lower side in the figure).
  • a second dielectric layer 105 made of A1N having a thickness of 30 OA is formed thereon, and an A1 reflective film 106 is further formed thereon with a thickness of 30 OA. It was deposited to a thickness.
  • the following operation was first performed using a portion where no signal is recorded, that is, a mirror surface portion where the phase pit 101 does not exist.
  • a laser beam of, for example, 780 nm is irradiated so as to focus on one point of the optical disk, and the optical disk is gradually cooled and initialized (crystallized).
  • the laser power P is applied to the same point, and 0 ⁇ P ⁇ 10 mW.
  • the laser pulse light was irradiated while being fixed within the range.
  • the pulse width t was set to 260 nsec ⁇ t ⁇ 2.6 sec.
  • a molten crystallization region A region in a molten state in which a liquid state can be obtained once and then becomes a crystallized state again due to a decrease in temperature is referred to as a molten crystallization region.
  • Fig. 16 shows the case where Sb 2 Se 3 is used as the material layer 104 as described above.
  • the horizontal axis represents the irradiation laser light pulse width, and the vertical axis represents the laser light power. It shows these values and the phase state of the phase change material ⁇ 104.
  • the region indicated by the diagonal lines below the curve a is the region where the phase change material layer 104 maintains the initial state in which it is not melted. Becomes a liquid phase i.e.
  • the laser beam spot Tsu bets is excluded (room temperature extent until) a melt crystallization region returns to crystalline state when they are immobilized by being cooled, the region R 3 showing the curve b over the cross hatched in pairs to this, the laser beam spot
  • the molten amorphous region becomes an amorphous state, that is, becomes an amorphous state when cooled and solidified by removing the heat.
  • the liquid Kashiwa state in the melt crystallization area R 2 in FIG. 1 6 may occur during reproduction, from the heated state by irradiation with light read at the time of reproduction to room temperature During the cooling process,
  • the reproduction light power, the configuration of the optical disc, the material, the thickness of each film, etc. are selected so that the time ⁇ t required to change from the melting point MP of the melting point to the solid phase becomes longer than the time required for crystallization t. .
  • the reflectance in the initialized state that is, the reflectance in the crystallized state was 57%, and the reflectance in the molten state was 16%.
  • the reproducing power was set to 9 mW and the linear velocity was set to 3 mZsec, the C / N was 25 dB when the reproduction was performed.
  • phase change is performed similarly to FIG. Figure 17 shows the measurement results.
  • portions corresponding to those in FIG. 16 are denoted by the same reference numerals, and description thereof is omitted.
  • the reflectance in the crystallized state that is, in the initialized state was 20%, and in the molten state, 10%.
  • the optical disk used in the embodiment of the present invention reproduces the optical disk with ultra-high resolution by utilizing the temperature distribution in the scanning spot for the optical disk.
  • phase change optical disk is irradiated with a laser beam
  • the horizontal axis shows the position of the spot scanning method X.
  • the light intensity distribution of the beam formed by irradiating the laser to the optical disk now •
  • the light intensity distribution of the spot SP is shown by the broken line in the figure. It looks like a.
  • the temperature distribution in the phase change material layer 104 is It appears slightly behind in the beam scanning direction X corresponding to the scanning speed of the dot SP, and becomes a solid line b in the figure.
  • the temperature of the optical disk of the medium gradually rises from the leading end in the scanning direction with respect to the beam spot SP, and finally the temperature increases.
  • the temperature is higher than the melting point MP of the phase change material layer 104.
  • the phase-change material layer 104 changes from an initial crystalline state to a molten state, and the transition to the molten state causes, for example, a decrease in reflectance. In this case, the reflectivity of the hatched area ⁇ ⁇ in the beam spot SP becomes lower.
  • phase bits 101 can be performed, and for other phase pits, this is in a region where the reflectivity is extremely low and is not read out. As described above, even if there are a plurality of phase bits 101 in the same spot S #, the reading can be performed only with respect to a single phase bit 101.
  • the shortest phase pit interval of the recording signal along the scanning direction of the readout light beam is ⁇ ⁇ 2 ⁇ ⁇
  • phase change material By selecting various conditions such as the composition and thickness of the phase change material, it is possible to increase the reflectivity in the molten state and decrease the reflectivity in the crystalline state.In this case, as shown in FIG. One phase pit 101 exists in the high-temperature area P x in the laser beam spot SP, and the reading is performed only from one phase pit 101 in this area PX.
  • the initial state such as the crystalline state is in a state of being cooled to ambient temperature Create an irreversible phase change that does not return Even in the case of a misalignment, it is only necessary to perform an initialization operation by some means, and this does not depart from the gist of the present invention, for example, irradiating an elliptical spot after a laser spot for reproduction.
  • phase change material layer 1 0 4 or heated to the melt crystallization region R 2, do it by heating to the crystallization temperature or higher at a temperature lower than the melting point MP, the phase change material layer 1 0 4 amorphous (Amorufu A)
  • the state returns to the crystalline state from the state, and is initialized.
  • the reflectivity is changed by the phase change of the medium.
  • the change in the reflectivity may use any phenomenon.
  • the present invention shown in FIG. the reflectance may be changed depending on the temperature by using the change in the spectral characteristic due to the adsorption of moisture in the interference filter.
  • Mg F layer 1 3 3 and Z n S layer 1 3 4 described above are vapor deposited, during the deposition forming these, about the ultimate vacuum example 1 0 _ 4 Torr and than normal low Then, the film structure becomes a so-called porous structure, in which water remains. Then, in the interference filter composed of the film in which the moisture remains, the reflectance spectral characteristics are significantly different between room temperature and when the temperature is raised to near the boiling point of water, as shown in FIG. 20, for example.
  • the wavelength as shown in the figure the curve i is at room temperature; whereas has the characteristics of the inflection point I R, when raising the temperature to near the boiling point, the wavelength as shown in the figure the curve ii lambda H A sharp wavelength shift is observed, with the characteristic having an inflection point and returning to the characteristic shown by the curve i when the temperature decreases.
  • This phenomenon is thought to be due to the fact that the refractive index changes significantly due to the vaporization of water, and the spectral characteristics change due to this effect.
  • high-density reproduction is performed using this change in reflectance.
  • High The principle that enables density regeneration is as described with reference to Fig. 18 described above.
  • the region where the water is vaporized and the wavelength shift occurs corresponds to the high reflectance region, and the temperature rises. The parts that are not covered are masked.
  • the reflectance characteristic returns to the original state when the temperature decreases. No special erasing operation is required.
  • the optical disk of the reflectance change type described above As the optical disk 100 in FIG. 12 described above, even if there is a linear velocity change in accordance with the radial position of the optical disk 100, Since the size of the substantial reproduction area (the area with the higher reflectivity of the areas P x and P z in FIG. 18 above) can always be kept constant, stable reproduction can be performed. A high quality reproduced signal can always be obtained.
  • the present invention is not limited to only the above-described embodiment.
  • the present invention is applied not only to a disk-shaped optical recording medium but also to a card-shaped or sheet-shaped recording medium. can do.

Description

明 細 書 光記録媒体の信号再生方法 技 術 分 野 本発明は、 光記録媒体に対して光ビームを照射しながら信号を読 み取るような光記録媒体の信号再生方法に関し、 特に、 高密度情報 の再生が行える光記録媒体の信号再生方法に関する。
i o
背 景 技 術 光記録媒体は、 いわゆるコンパク トディスク等のような再生専用 媒体と、 光磁気ディスク等のような信号の記録が可能な媒体とに大 別できるが、 これらいずれの光記録媒体においても、 記録密度をさ らに高めるこ とが望まれている。 これは、 記録される信号としてデ イ ジタル · ビデオ信号を考慮する場合にディ ジタル · オーディオ信 号の数倍から十数倍ものデータ量を必要とするこ とや、 ディ ジタル • オーディォ信号を記録する場合でもディ スク等の媒体の寸法をよ 0 り小さ く してプレーヤ等の製品をさらに小型化したい等の要求があ るからである。 また、 一般のデータディスクとしても、 より大きな 記録容量が望まれている。
ところで、 光記録媒体への情報の記録密度は、 再生信号の S / N によって決められている。 従来の一般的な光学的な記録再生におい ては、 図 1 に示すように、 光記録媒体に対する レーザ光等の読み出 し光ビームの光照射領域であるビームスポッ ト S Pの領域の全てを 再生信号領域としている。 このため、 再生可能な記録密度は、 読み 出し光のビーム · スポッ トの径 D S Pにより定まる。
例えば、 図 1 の Aに示すように、 読み出しレーザ光のビーム ' ス ポッ ト S Pの径 D S Pが記録ピッ ト R Pのピッチ qより も小さければ. スボッ ト S P内に 2個の記録ピッ トが入ることはなく、 再生出力波 形は図 1 の Bに示すようになり、 再生信号は読み取り可能である。 ところが、 図 1 の Cに示すように、 高密度で記録ピッ ト S Pが形成 されており、 ビーム ' スポッ ト S P内の径 D S Pが記録ピッ ト R Pの
I o ピッチ qよりも大きくなると、 スポッ ト S P内に 2個以上のピッ ト が同時に入り込むようになり、 再生出力波形は図 1 の Dに示すよう に略々一定となり、 その 2個の記録ピッ トを分離して再生すること ができず、 再生不能となる。
スボッ ト径 D S Pは、 レーザ光の波長; I と、 対物レンズの開口数 N 5 Aに依存しており、 このスボッ ト径 D S Pによって、 読み出し光ビ一 ムの走査方向 (記録トラック方向) に沿ったピッ 卜の密度 (いわゆ る線密度) や、 読み出し光ビームの走査方向に直交する方向の隣接 トラック間隔 (いわゆる トラック ピッチ) に応じた トラッ ク密度が 定められる。 すなわち、 これらの線密度やトラッ ク密度の物理光学 0 的限界は、 いずれも読み出し光の光源の波長ス及び対物レンズの開 口数 N Aによって決まり、 例えば信号再生時の空間周波数について は、 一般に 2 Ν Α Ζ λが読み取り限界とされている。 このことから、 光記録媒体において高密度化を実現するためには、 先ず再生光学系 の光源 (例えば半導体レーザ) の波長 Iを短く し、 対物レンズの開 口数 Ν Αを大きくすることが必要とされている。 ところで、 本件出願人は、 読み取り光ビームのスポッ ト径を変更 しなくても、 読み取り可能な線記録密度及びトラ ッ ク密度を高くで きるようにした光記録媒体及びその再生方法を先に提案している。 このような高密度情報の再生が可能な光記録媒体としては、 信号の 記録が可能な光磁気記録媒体と、 少なく とも再生が可能な反射率変 化型光記録媒体とが挙げられる。
上記光磁気記録媒体は、 例えばポリカーボネー ト等から成る透明 基板あるいは光透過性基体の一主面に、 膜面と垂直方向に磁化容易 軸を有し優れた磁気光学効果を有する磁性層 (例えば希土類一遷移
I o 金属合金薄膜) を、 誘電体層や表面保護層等と共に積層して構成さ れたものであり、 上記透明基板側からレーザ光等を照射して信号の 記録、 再生が行われる。 この光磁気記録媒体に対する信号記録は、 レーザ光照射等によって上記磁性層を局部的に例えばキュ リ一点近 傍の温度にまで加熱し、 この部分の保磁力を消滅させて外部から印
1 5 加される記録磁界の向きに磁化することにより行う、 いわゆる熱磁 気記録である。 また光磁気記録媒体からの信号再生は、 上記 性層 の磁化の向きにより レーザ光等の直線偏光の偏光面が回転する磁気 光学効果 (いわゆる磁気カー効果、 ファラディ効果) を利用して行 われる。
0 上記反射率変化型光記録媒体は、 位相ピッ トが形成された透明基 板上に、 温度によって反射率が変化する材料が形成されて成り、 信 号再生時には、 該記録媒体に読み出し光を照射し、 読み出し光の走 査スポッ ト内で反射率を部分的に変化させながら位相ピッ トを読み 取るものである。
以下、 上記記録可能な光磁気記録媒体における高密度再生、 ある いはいわゆる超高解像度再生について、 さらに説明する。
本件出願人は、 先に例えば特開平 1 一 1 4 3 0 4 1号公報、 特開 平 1 一 1 4 3 0 4 2号公報等において、 情報ビッ ト (磁区) を再生 時に拡大、 縮小あるいは消滅させることにより再生分解能を向上さ せるような光磁気記録媒体の信号再生方法を提案している。 この技 術は、 記録磁性層を再生層、 中間層、 記録層から成る交換結合多層 膜とし、 再生時において再生光ビームで加熱された再生層の磁区を 温度の高い部分で拡大、 縮小あるいは消去することにより、 再生時 の情報ビッ ト間の干渉を減少させ、 光の回折限界以下の周期の信号 を再生可能とするものである。 また、 特願平 1 一 2 2 9 3 9 5号の 明細書及び図面においては、 光磁気記録媒体の記録層を磁気的に結 合される再生層と記録保持層とを含む多層膜で構成し、 予め再生層 の磁化の向きを揃えて消去状態としておく とともに、 再生時にはレ 一ザ光の照射によって再生層を所定の温度以上に昇温し、 この昇温 された状態でのみ記録保持層に書き込まれた磁気信号を再生層に転 写しながら読み取るようにすることにより、 クロス トークを解消し て線記録密度、 トラック密度の向上を図る技術を提案している。
これらの高密度再生技術をまとめると、 消去型と浮き出し型とに 大別でき、 それぞれの概要を図 2及び図 3に示す。
先ず図 2の A、 B、 Cを参照しながら消去型の高密度再生技術に ついて説明する。 この消去型の場合には、 図 2の Bに示すように、 常温にて情報記録ピッ ト R Pが表れている状態の記録媒体にレーザ 光 L Bを照射して加熱することで、 照射レーザ光 L Bのビーム - ス ポッ ト S P内に記録消去領域 E Rを形成し、 ビーム · スポッ ト S P 内の残りの領域 R D内の記録ピッ ト R Pを読み取ることにより、 線 密度を高めた再生を行っている。 これは、 ビーム ' スポッ ト S P内 の記録ピッ ト R Pを読み取る際に、 記録消去領域 E Rをマスク とす ることで読み取り領域 (再生領域) R Dの幅 dを狭く し、 レーザ光 の走査方向 ( トラッ ク方向) に沿った密度 (いわゆる線記録密度) を高めた再生を可能とするものである。
この消去型高密度再生のための記録媒体は、 光磁気記録用ァモル ファス稀土類 (G d , T b ) —鉄属 ( F e , C o ) フェ リ磁性膜か ら成る交換結合磁性多層膜構造を有し、 図 2の Aに示す例では、 ポ リカーボネー ト等の透明基板 6 0の一主面 (図中下面) に、 第 1 の 磁性膜である再生層 6 1、 第 2の磁性膜である切断層 (中間層) 6 2、 及び第 3の磁性膜である記録保持層 6 3を順次積層した構造を 有している。 第 1 の磁性膜 (再生層) 6 1 は、 例えば G d F e C 0 でキユ リ一温度 TC 1 > 4 0 0 ° Cのものが用いられ、 第 2の磁性膜 (切断層、 中間層) 6 2は、 例えば T b F e C 0 A 1 でキュ リー温 度 TC2= 1 2 0 ° Cのものが用いられ、 第 3の磁性膜 (記録保持層) 6 3は、 例えば T b F e C 0でキユ リ一温度 TC3 = 3 0 0 ° Cのも のが用いられる。 なお、 図 2の C中の各磁性膜 6 1、 6 2、 6 3内 の矢印は各磁区の磁化の向きを示している。 また、 Hr e adは再生磁 界の向きを示している。
再生時の動作を簡単に説明すると、 所定温度 TOPより下の常温で は記録媒体の各層 6 3、 6 2、 6 1 が静磁結合あるいは交換結合の 状態で磁気的に結合しており、 記録保持層 6 3の記録磁区が切断層 6 2を介して再生層 6 1 に転写されている。 この記録媒体に対して レーザ光 L Bを照射して媒体温度を高めると、 レーザ光の走査に伴 つて媒体の温度変化は遅延されて表れ、 上記所定温度 TOP以上とな る領域 (記録消去領域 E R) はビーム ' スポッ ト S Pよりもレーザ 走査方向の後方側にややずれて表れる。 このずれ量は上記レーザ光 の走査速度、 すなわち記録媒体の移動速度 (光磁気ディスクでは線 速度に相当) に応じたものとなる。 上記所定温度 TOP以上では記録 保持層 6 3 と再生層 6 1 との磁気的結合が消滅し、 再生層 6 1 の磁 区が再生磁界 HR E,Dの向きに揃えられることにより、 媒体表面上で は記録ピッ 卜が消去された状態となる。 そして、 走査スポッ ト S P の領域の内、 上記所定温度 TOP以上となる領域 E Rとの重なり領域 を除く領域 R Dが実質的な再生領域となる。 すなわち、 レーザ光の ビーム · スポッ ト S Pは上記所定温度 TOP以上となる領域 E Rによ り一部がマスクされ、 マスクされない小さい領域が再生領域 R Dと なって、 高密度再生を実現している。
こう して、 レーザ光ビームの走査スポッ ト S Pがマスク領域 (記 録消去領域 E R) によりマスクされない小さい再生領域 (読み取り 領域 R D) からの反射光の例えば力一回転角を検出することにより ピッ トの再生が行われるので、 ビーム · スポッ ト S Pの径を小さ く したことに等しくなり、 線記録密度及びトラック密度を上げること ができる。
次に、 図 3の Bに示す浮き出し型の高密度再生技術では、 常温で 情報記録ピッ ト R Pが消えている状態 (初期化状態) の記録媒体に レーザ光を照射して加熱することにより、 照射レーザ光のビーム スポッ ト S P内に記録浮き出し領域である信号検出領域 D Tを形成 し、 この信号検出領域 D T内の記録ピッ ト R Pのみを読み取るよう にすることで再生線密度を高めている。
この浮き出し高密度再生のための記録媒体は、 静磁結合あるいは 磁気的交換結合の磁性多層膜構造を有するものであり、 図 3の Aの 例では、 ポリカーボネー ト等の透明基板 7 0の一主面 (図中下面) に第 1 の磁性膜である再生層 7 1 、 第 2の磁性膜である再生補助層 7 2、 第 3の磁性膜である中間層 7 3、 第 4の磁性膜である記録保 持層 7 4を順次積層した構造を有している。 第 1 の磁性膜 (再生層) 7 1 は、 例えば G d F e C 0でキユ リ一温度 Tc】 〉 3 0 0 ° Cのも の、 第 2の磁性膜 (再生補助層) 7 2は、 例えば T b F e C 0 A 1 でキュ リー温度 TC2 1 2 0 ° Cのもの、 第 3の磁性膜 (中間層) 7 3は、 例えば G d F e C 0でキユ リ一温度 TC3 2 5 0 ° Cのも ι o の、 第 4の磁性膜 (記録保持層) 7 4は、 例えば T b F e C 0でキ ュ リ一温度 TC4 2 5 0 ° Cのものがそれぞれ用いられる。 ここで 初期化磁界 H i nの大きさは、 再生層の磁化を反転させる磁界 H CPよ り大き く (H i n> HCP) 、 また、 記録保持層の磁化を反転させる磁 界 Hc rより充分小さ く (H i n《HCP) 選定されている。 なお、 図 3 5
の C中の各磁性膜 7 1 、 7 2、 7 3、 7 4内の矢印は各磁区の磁化 の向きを示し、 H i nは初期化磁界の向きを、 H r e adは再生磁界の向 きをそれぞれ示している。
記録保持層 7 4 は、 初期化磁界 H i n、 再生磁界 Hr e 4d、 また再生 温度等に影響されずに記録ピッ トを保持している層であって、 室温、 0
再生温度において充分な保磁力がある。
中間層 7 3の垂直異方性は再生補助層 7 2、 記録保持層 7 4 に比 ベ小さい。 このため、 再生層 7 1 と、 記録層 7 4 との間に磁壁を作 る際、 磁壁が安定にこの中間層 7 3に存在する。 そのため、 再生層 7 1 、 再生補助層 7 2は、 安定に消去状態 (初期化状態) を維持す 5
る o 再生補助層 7 2は、 室温での再生層 7 1 の保磁力を大きくする働 きをしており、 このため、 初期化磁界によって揃えられた再生層 7 1、 再生補助層 7 2の磁化は、 磁壁が存在しても安定に存在する。 また、 再生補助層 7 2は、 再生時には、 再生温度 T s 近傍で保磁力 が急激に小さ くなり、 このため、 中間層 7 3に閉じ込められていた 磁壁が再生補助層 1 3にまで拡がって最終的に再生層 7 1 を反転さ せ、 磁壁を消滅させる。 この過程により、 再生層 7 1 にピッ トが現 れるようになる。
再生層 7 1 は室温でも磁化反転磁界 H e pが小さ く、 その磁化は容 易に反転する。 このため、 再生層 7 1 は、 初期化磁界 H i nにより、 その全面の磁化が同方向に揃う。 揃った磁化は、 再生補助層 7 2に 支えられて記録保持層 7 4 との間に磁壁がある場合でも安定な状態 が保たれる。 そして、 上述のように、 再生時には、 記録保持層 7 4 との間の磁壁が消滅することにより、 記録ピッ トが現れる。
再生時の動作を簡単に説明すると、 先ず再生前に初期化磁界 H i n により再生層 7 1 及び再生補助曆 7 2の磁化の向きを一方向 (図 3 では上方向) に揃える。 このとき、 中間層 7 3に磁壁 (図 3では横 向きの矢印で示す) が安定に存在し、 再生層 7 1、 再生補助層 7 2 は、 安定に初期化状態を維持する。
次に、 逆方向の再生磁界 H r e e dを印加しながらレーザ光 L Bを照 射する。 この再生磁界 H r e e dとしては、 レーザ光照射による昇温後 の再生温度 T R Pにおいて、 再生層 7 1、 再生補助層 7 2を反転させ、 中間層 7 3の磁壁を消滅させる磁界以上の磁界が必要である。 また、 再生層 7 1 、 再生補助層 7 2が、 その磁界方向を反転してしまわな い程度の大きさとされる。 レーザ光 L Bの走査に伴って媒体の温度変化は遅延されて表れる から、 所定の再生温度 T R P以上となる領域 (記録浮き出し領域) は ビーム · スポッ ト S Pより も走査方向の後方側にややずれて表れる このずれ量は上記レーザ光の走査速度、 すなわち記録媒体の移動速 度 (光磁気ディ スクでは線速度に相当) に応じたものとなる。 上記 所定再生温度 T R P以上では、 再生補助層 7 2の保磁力が低下し、 再 生磁界 H r e , dが印加されることによって磁壁がなく なり、 記録保持 層 7 4の情報が再生層 7 1 に転写される。 これによつて、 レーザ光 L Bのビーム · スポッ ト S P内で上記再生温度 T R Pに達する前の領 域がマスクされ、 このスポッ ト S P内の残部が記録浮き出し領域で ある信号検出領域 (再生領域) D Tとなる。 この信号検出領域 D T からの反射光の偏向面の例えばカー回転角を検出することにより、 高密度再生が可能となる。
すなわち、 レーザ光 L Bのビーム · スポッ ト S Pの内部領域にお いて、 上記再生温度 T R Pに達する前の領域は、 記録ピッ トが現れな いマスク領域であり、 残りの信号検出領域 (再生領域) D Tは、 ス ポッ ト径ょり小さいので、 前述と同様に線記録密度及びトラ ッ ク密 度を高くすることができる。
さらに、 これらの消去型と浮き出し型とを混合した高密度再生技 術も考えられている。 この技術においては、 上述したように、 常温 で情報記録ピッ トが消えている状態 (初期化状態) の記録媒体にレ 一ザ光を照射して加熱することで、 照射レーザ光のビーム · スポッ 卜に対してレーザ光走査方向の後方側にややずれた位置に記録浮き 出し領域を形成すると共に、 この記録浮き出し領域内にさらに高温 の記録消去領域を形成している。 また、 本件出願人が先に提出した特願平 3 - 4 1 8 1 1 0号の明 細書及び図面においては、 少なく とも再生層、 中間層、 記録保持層 を有する光磁気記録媒体を用い、 再生層にレーザ光を照射すると共 に再生磁界を印加し、 このレーザ照射により生ずる温度分布を利用 して、 初期化状態を維持する部分、 記録保持層の情報が転写される 部分、 再生磁界方向に磁化の向きが揃えられる部分をレンズ視野内 に生ぜしめることにより、 レンズ視野内を光学的にマスク したのと 等価な状態とし、 線記録密度及びトラック密度を高め、 また、 再生 パワーが変動しても記録保持層の情報が転写される領域が縮小ある
I o いは拡大することがなく、 再生時の周波数特性も良好なものとした 光磁気記録媒体における信号再生方法を提案している。
これらの光磁気記録媒体を用いた高密度再生技術によれば、 ビー ム · スポッ ト S P内で、 実質的な信号再生領域である上記読み取り 領域 R Dや信号検出領域 D T内の記録ピッ ト R Pのみを読み取るよ うにしている。 この読み取り領域 R Dや信号検出領域 D Tの寸法が、 ビーム · スポッ ト S Pの寸法よりも小さ くなることから、 レーザ光 走査方向、 及びレーザ光走査方向に直交する方向のピッ ト配置間隔 を短くすることができ、 線密度及びトラック密度を上げて高密度化 が図れ、 媒体記録容量の増大が図れることになる。
0
ところで、 以上説明したような高密度の情報を再生する方法にお いて、 再生領域である上記図 2の領域 R Dや、 上記図 3の領域 D T の大きさは、 外部再生磁界が一定で、 レーザ光パワーが一定であつ ても、 レーザ光等の読み出し光の走査速度、 すなわち媒体移動速度 (光磁気ディスク等の線速度に相当) により変動してしまう。
5
例えば、 上記図 2 と共に説明した消去タイプの再生方法において は、 光磁気ディスク等の記録媒体の移動速度 (線速度) が低い場合 には、 単位移動距離当たりの走査スポッ ト S Pの通過時間が長くな るために、 レーザビーム照射による温度分布状態は、 図 4の Bの曲 線 aで示すように、 キュ リー温度 T e を越える記録消去領域 (マス ク領域) が図 4の Aの低線速時マスク領域 E R L Sのように広くなる ので、 実質的な読み取り領域 (再生領域) R Dは小さ くなる。 また、 線速度が高い場合には、 単位移動距離当たりの走査スポッ ト S Pの通過時間が短く なるために、 図 4の Bの曲線 bで示すよう に、 レーザビ一厶照射による温度分布状態は、 キュ リー温度 T e を i o 越える記録消去領域 (マスク領域) が図 4の Aの高線速度時マスク 領域 E R H Tのように狭くなるので、 実質的な読み取り領域 (再生領 域) R Dは大きくなる。
一方、 浮き出しタイプの場合には、 その原理から明らかなように- 光記録媒体の線速度が低い場合には、 再生領域が大き く なり、 光記
1 5
録媒体の線速度が高い場合には再生領域が小さ く なる。
以上のように、 消去タイプ及び浮き出しタイプの再生方法におい て、 媒体移動速度が変動すると、 S / Nの良い安定な再生を行う こ とができない虞れがある。 例えば回転速度一定 ( C A V ) で光磁気 ディスクを回転させて再生を行う場合には、 再生ビーム走査スポッ 0
ト位置すなわち再生位置が光磁気ディスクの半径方向に異なると、 線速度が異なるため、 再生位置により実質的な再生領域である上記 読み取り領域 R D又は信号検出領域 D Tの大きさが異なるこ とにな り、 常に S Z Nの良い安定な再生を行う ことができない。
また、 高密度再生あるいは超高解像度再生として、 前記反射率変 5
化型の光記録媒体を再生する際にも同様のことがいえ、 読み出し光 ビーム内で反射率の変化している部分の大きさが媒体移動速度 (線 速度) によって変化するため、 実質的な再生領域である反射率の高 い部分の大きさが媒体の線速度によって変動することになり、 安定 した再生が行えなくなる虞れがある。
本発明は、 このような実情に鑑みてなされたものであり、 光磁気 記録媒体や反射率変化型の光記録媒体の線速度の変化があっても、 上記の実質的な再生領域の大きさを一定に保ち、 安定な情報読み出 しができるような光記録媒体の再生方法の提供を目的とする。 i o 発 明 の 開 示
本発明に係る光記録媒体の再生方法は、 記録層と再生層とを有し、 記録層と、 再生層とが定常状態で磁気的に結合しており、 再生時の 読み出し光ビームの照射により所定温度以上に温度上昇する領域の 5 上記記録層と再生層との磁気的結合を消滅させ、 その磁気的結合消 滅領域を除く光照射領域において上記記録層に保持された記録情報 を前記再生層から読み出すようにする光記録媒体の再生方法におい て、 上記光記録媒体を一定の回転速度で回転させて再生を行う場合 に、 光記録媒体上の再生位置を検出し、 その再生位置での線速度に 0
応じて上記磁気的結合消滅領域の大きさを制御するようにしたもの である。
また、 本発明に係る光記録媒体の再生方法は、 記録層と再生層と を有し、 再生層の磁化の方向を揃えた後、 再生時の読み出し光ビー ムの照射により所定温度以上に温度上昇する領域の上記記録層に保 5
持された記録情報を再生層に転写させて浮き出させ、 この再生層の 浮き出し領域から前記記録情報を読み出すようにする光記録媒体の 再生方法において、 上記光記録媒体を一定の回転速度で回転させて 再生を行う場合に、 光記録媒体上の再生位置を検出し、 その再生位 置での線速度に応じて上記浮き出し領域の大きさを制御するように したものである。
さらに、 本発明に係る光記録媒体の再生方法は、 信号に応じて位 枏ピッ トが形成されるとともに温度によって反射率が変化する光デ ィスクに対して読み出し光ビームを照射し、 読み出し光ビームの走 查スポッ ト内で反射率を部分的に変化させながら位相ピッ トを読み 取るようにした光記録媒体の再生方法において、 上記光記録媒体を 一定の回転速度で回転させて再生を行う場合に、 光記録媒体上の再 生位置を検出し、 その再生位置での線速度に応じて上記読み出し光 ビームの走査スポッ ト内で反射率が変化している部分の大きさを制 御するようにしたものである。
上記光記録媒体の再生方法は、 上記光記録媒体の再生位置を検出 した出力に基づいて、 上記読み出し光ビームを上記光記録媒体に照 射するレーザ光源の出力制御を行うようにすることができる。 また 上記光記録媒体の再生位置を検出した出力と記憶手段に記憶された 上記光記録媒体の線速度に対応する上記レーザ光源の出力基準値と を比較した出力に基づいて上記レーザ光源の出力制御を行うように してもよい。 また、 上記光記録媒体を再生した出力のレベルに基づ いて上記磁気的結合消滅領域や、 上記浮き出し領域や、 上記反射率 が変化している部分の大きさを制御するようにしてもよい。
従って、 本発明に係る光記録媒体の信号再生方法によれば、 光記 録媒体の線速度が変化しても、 あるいは媒体上の再生位置が変化し てその位置での線速度が変化しても、 実質的な再生領域の大きさが 変わらないので、 安定に S Z Nの良い再生を行う ことができる。 図 面 の 簡 単 な 説 明 図 1 はレーザビームのスポッ ト径と、 再生可能な記録ピッ トの記 録密度との関係を説明するための図である。
図 2は消去タイプの光磁気記録媒体、 その再生方法及びその媒体 の実質的な再生領域を説明するための図である。
i o 図 3は浮き出しタイプの光磁気記録媒体、 その再生方法及びその 媒体の実質的な再生領域を説明するための図である。
図 4は光磁気記録媒体の線速度変化により実質的な再生領域が変 化することを説明するための図である。
図 5は本発明に係る光記録媒体の再生方法の一実施例が適用され たディスク再生装置の要部を示すプロック図である。
図 6は光磁気ディスクに記録するデータのセク夕フォーマツ トを 示すブロック図である。
図 7はレーザパワーを変えることによりマスク領域が変わること を説明するための図である。
0
図 8は外部磁界を変えることによりマスク領域が変わることを説 明するための図である。
図 9は本発明による再生方法の他の実施例が適用されたディスク 再生装置の要部を示すプロック図である。
図 1 0は本発明に係る光記録媒体の再生方法のさらに他の実施例 5
が適用されたディスグ再生装置の要部を示すプロック図である。 図 1 1 はモディ ファイ ド C A Vの回転駆動方式の光磁気ディスク を説明するための図である。
図 1 2は本発明に係る光記録媒体の再生方法のさらにまた他の実 施例が適用されたディスク再生装置の要部を示すプロッ ク図である, 図 1 3は上記図 1 2に示す実施例に用いられる反射率変化型光デ ィスクの一例となる相変化型光ディスクの一例の要部を示す概略断 面図である。
図 1 4 は上記相変化型光ディスクの他の例の要部を示す概略断面 図である。
i o 図 1 5は上記相変化型光ディスクのさらに他の例の要部を示す概 略断面図である。
図 1 6は上記相変化型光ディスクの説明に供する相変化状態を示 す図である。
図 1 7は上記相変化型光ディスクの説明に供する他の相変化状態 を示す図である。
図 1 8は上記相変化型光ディ スクの説明に供する読み出し光スポ ッ トと温度分布との関係を示す図である。
図 1 9は上記図 9に示す実施例に用いられる反射率変化型の光デ ィ スクの他の例の要部を示す概略断面図である。
0
図 2 0 は干渉フィルタにおける温度による反射率分光特性の変化 の様子を示す特性図である。
5 発明を実施するための最良の形態 以下、 本発明に係る光記録媒体のいくつかの実施例について、 図 面を参照しながら説明する。 すなわち、 先ず、 記録可能な媒体とし ての光磁気記録媒体に本発明を適用した実施例を説明し、 次に、 少 なく とも再生が可能な媒体としての反射率変化型光記録媒体に本発 明を適用した実施例を説明する。
図 5において、 光磁気記録媒体としては光磁気ディスク 1 1 を用 いており、 前述した消去タイプあるいは浮き出しタイプの再生方法 i o が適用されるものである。 この場合、 この光磁気ディスク 1 1 は、 回転数一定 (C A V ) 方式で回転駆動される。
例えば、 消去タイプの再生方法が適用される光磁気ディスクとし ては、 前記図 2 と共に説明したように、 光磁気記録用アモルファス 稀土類 (G d, T b ) 一鉄属 (F e, C o ) フヱ リ磁性膜から成る 5
交換結合磁性多層膜構造を有し、 記録保持層は例えば T b F e C 0 で構成され、 キユ リ一温度が 3 0 0 ° ( 、 切断層 (中間層) は例え ば T b F e C 0 A 1 でキュ リ一温度丁が 1 2 0 ° C、 再生層は例え ば G d F e C oでキュ リ一温度が 4 0 0。 C以上のものがそれぞれ 用いられるものが使用される。 また、 浮き出しタイプの再生方法が 0
適用される光磁気ディスクとしては、 記録保持層は例えば T b F e C oでキュ リ一温度が 2 5 0 ° (:、 中間層は例えば G d F e C 0で キユ リ—温度が 2 5 0 ° C、 再生捕助層は例えば T b F e C 0 A 1 でキュ リ一温度が 1 2 0 ° C , 再生層は例えば G d F e C 0でキュ リー温度が 3 0 0 ° C以上のものがそれぞれ用いられるものが使用 5
される。 この場合、 光磁気ディスク 1 1 には、 データが 1 トラッ ク当たり 複数のセクタとして順次記録されるが、 各セクタは、 例えば図 6の ように構成されている。 すなわち、 1 セクタはプリ フ ォーマッ ト部 と記録再生部とで構成される。 プリ フ ォーマッ ト部は、 予め光磁気 ディスク 1 1 にピッ トにより記録されている。 記録時には、 このプ リ フ ォーマツ ト部を検知して、 記録再生部にのみデータその他の記 録がなされる。
プリ フ ォーマッ ト部は、 セクタ同期部とァ ドレス部とからなり、 ア ドレス部には トラッ クア ドレスと、 セクタア ドレスを含むア ドレ スデータが記録されている。 トラッ クア ドレスは、 記録開始位置で ある例えば内周側から順次連続番号が付された トラック番号であり - この トラ ッ クァ ドレスは光磁気ディスク 1 1 の半径方向の位置に対 応している。 また、 セクタア ドレスは、 そのセクタがその トラッ ク 内における何番目のセクタであるかを示している。
この例では、 以下に説明するように、 前記トラックア ドレスを検 出するこ とにより、 光磁気ディスク 1 1 の半径方向の光ピッ クア ツ プ位置、 すなわち再生位置を検知し、 その再生位置における線速度 に応じてレーザ光パワーを制御することにより、 消去タイプの場合 の再生領域 (読み出し領域) R D又は浮き出しタイプの場合の再生 領域 (信号検出領域) D Tの大きさが常に一定になるようにしてい る
読み出し光として、 半導体レーザ等のレーザ光源 1 2からのレー ザ光ビームが光磁気ディスク 1 1 の再生層に入射する。
この例の場合、 再生磁界 H r e e dが、 磁界発生コイル 3 1 に ドライ バ 3 2から駆動電流が供給されるこ とにより発生する。 磁界発生コ ィル 3 1 は、 光磁気ディスク 1 1 のレーザ光ビームを照射する面と は反対側の面側において、 レーザ光源 1 2 と対向する位置に設けら れる。 ドライバ 2 2には基準値発生回路 2 3からの基準値 M r e f が 供給され、 磁界発生コイル 2 1 から発生する再生磁界 H r e a dの大き さがこの基準値に応じた所定の一定値になるようにされている。 そして、 前述した消去タイプ又は浮き出しタイプの再生方法によ り、 レーザ光のビーム ' スポッ トの内の前記再生領域 R D又は D T からの反射光が図示しない光学系を介して再生用フォ トディテクタ 1 3に入射されて光電変換される。
o このフォ トディテクタ 1 3の出力信号は、 へッ ドアンプ 1 4 を介 して信号処理回路 1 5に供給されて R F信号が得られ、 これがデー 夕再生系に供耠されて復調される。
また、 レーザ光源 1 2のレーザ光の一部は、 レーザパワーモニタ 用のフ ォ トディテクタ 2 1 に入射される。 このフォ トディテクタ 2 1 の光電変換出力は、 オー トパワーコ ン トロール回路 2 2 に供給さ れる。 オー トパワーコン トロール回路 2 2では、 フ ォ トディテクタ 2 1 の出力と、 後述する再生レーザパワー設定基準値 R E Fとが比 較され、 その比較誤差出力がレーザドライブ回路 2 3に洪耠され、 レーザ光源 1 2の出力パワーが制御される。 以上の閉ループの制御 により、 レーザ光源 1 2の出力パワーが、 再生レーザパワー設定基 準値 R E Fに応じた値になるように制御される。
この例の場合、 再生レーザパワー設定基準値 R E Fは、 以下に説 明するように、 光磁気ディスク 1 1 の半径方向の各再生位置におけ る線速度に応じたものとなるようにされている。
すなわち、 光磁気ディスク 1 1 の各トラッ ク位置における線速度 に 1対 1 に対応する再生レーザパワー設定基準値 R E Fのテーブル を記憶している R O M 2 4が設けられる。 この場合、 この再生レー ザパワー設定基準値 R E Fとしては、 予め、 再生トラ ッ ク位置が各 トラ ッ ク位置であるときに、 その線速度の状態において、 消去タイ プの光磁気ディスク又は浮き出しタイプの光磁気ディスクを再生し たとき、 前述した実質的な再生領域 (読み出し領域 R D又は信号検 出領域 D T ) の大きさが、 常に再生に適切な一定の大きさとなるよ うな値が検出されて、 R O M 2 4 に記憶されている。
再生領域 R D又は D Tの大きさが最適の一定の大きさであるか否 かは、 例えば所定の基準パターンの情報を再生したときに信号処理 回路 1 5からの R F信号レベルが所定値になっているか否かにより 検出できる。
そして、 データ再生系 1 6のア ドレスデコーダ 1 7において、 再 生信号から トラ ッ クア ドレスが抽出されて識別される。 この トラッ クア ドレスは、 R O M 2 4 にその読み出しア ドレスとして供給され る。 R O M 2 4からは再生トラ ッ ク位置での線速度に応じて異なる 再生レーザパワー設定基準値 R E Fが読み出される。 そして、 読み 出された設定基準値 R E Fが、 オー トパワーコン トロール回路 2 2 に供給され、 レーザ光源 1 2の出力パワーが、 その時の光磁気ディ スク 1 1上の再生位置での線速度に応じて設定基準値 R E Fに応じ たものとなるように制御される。
前述したように、 光磁気ディスク 1 1上の半径方向の再生位置が 変わると、 レーザビーム走査スポッ 卜に対する温度分布は、 再生位 置でのディスクの線速度に応じて変化してしまうが、 レーザ出力パ ヮ一が変化すれば、 光磁気ディ スク 1 1 の線速度が一定でも、 図 7 に示すように、 所定の閾値温度 Τ Θを越える領域の大きさが S 1、 S 2のように変化する。 従って、 以上のようにレーザパワーをコン トロールすることにより、 再生位置での光磁気ディスク 1 1 の線速 度が変わっても、 前記再生領域 R D及び D Tの大きさを一定に保つ ことができるものである。
以上のようにして、 光磁気ディスク 1 1 の半径方向の再生位置が 変わって線速度が変化しても、 レーザパワーをコン トロールするこ とにより、 消去タイプ又は浮き出しタイプの再生方法における再生 領域 R D又は D Tを一定に保つことができるので、 常に、 安定な再 i o 生を行う ことができる。
なお、 再生レーザパワー設定基準値 R E Fの発生回路は、 R O M
2 4を用いる代わりに、 トラックア ドレスの情報から再生レーザパ ヮー設定基準値 R E Fを演算により求める回路を用いるようにして もよい。
I 5 また、 各 1 トラック毎にレーザパワー設定基準値を変更するので はなく、 複数トラッ ク毎に、 1つのレーザパワー設基準値を対応さ せるようにしてもよい。 その場合には、 例えばその複数トラッ クの 中央トラッ ク位置における線速度に対応するレーザパワー設定基準 値を、 その複数トラックに対するレーザパワー設定基準値として用 0
いるようにしることができる。
以上の例では、 レーザパワーをコン トロールして光磁気ディスク の線速度が変わっても上記再生領域 R D及び D Tの大きさを一定に するようにしたが、 外部磁界 (再生磁界 H r e , d) を制御するように しても、 同様の効果が得られる。
5
すなわち、 例えば消去タイプの再生方法を考えた場合、 前述の図 2 と共に説明した例において、 マスク領域 (記録消去領域) E Rが でき始める温度は、 正確には中間層 6 2のキュ リー温度 Tc 2ではな く、 再生磁界 Hr"dも関与し、 再生層 6 1の保磁力を 再生層 6 1 と記録保持層 6 3 との間の交換結合力を Hw としたとき、
Figure imgf000023_0001
となる温度である。 再生層 6 1 と記録層 6 3間の交換結合力 Hw は. 温度が上がるに従い小さ くなり、 中間層 6 2のキュ リー温度 Tc 2で 零になる。
Hci + Hw の温度特性を図示すると、 図 8のようになる。 この図 で Tc】は再生層 6 1 のキュ リー温度であり、 中間層のキュ リー温度 TC2以上の温度では、 再生層が 1層の場合の保磁力と同様になる。
この光磁気ディスクの再生層 6 1の磁化を一方向に揃えるには、 上記 ( 1 ) 式に示したように、 Hel + Hw より大きい磁界をかけれ ば良い。 従って、 同じ温度分布状態でも、 図 8で再生磁界 Hreadと して H r。をかけた場合には、 キユ リ一温度 TC2以上の範囲がマスク 領域 E Rとなるが、 再生磁界 Hre "の大きさが Hrlの場合には、 キ ユ リ一温度 TC2より低い温度 Τβ までの範囲がマスク領域 E Rとな り、 再生磁界 H r e adの大きさに応じてマスク領域の大きさが変わり、 この結果、 再生領域 RDの大きさが変わる。
従って、 光磁気ディスク 1 1の温度に応じて外部磁界、 例えば再 生磁界 Hreedを変えるコ ン トロールをすることにより、 常に再生領 域を一定の大きさにすることができる。
浮き出しタイプの再生方法の場合にも、 同様にして再生磁界をコ ン トロールするこ とにより、 再生領域 DTの大きさを一定にするこ とができる。 図 9は、 再生磁界を光磁気ディスクの線速度に応じてコン ト口一 ルする場合の再生装置の要部の一例である。 この例の場合も、 光磁 気ディスク 1 1は、 回転数一定 ( C A V) の回転駆動制御を行うの は前述の例と同様である。
この例の場合、 基準値発生回路 2 5からの一定のレーザパワー設 定基準値 R E Fがォー トパワーコン トロール回路 2 2に供給され、 レーザ光源 1 2の出力レーザパワーは、 この基準値 R E Fに応じた 一定値に制御される。
また、 基準値発生回路 3 3からの基準値 Mref は、 加算回路 3 4 に洪耠され、 補正値発生用の R 0M 3 5 らの補正値と加算される。 そして、 その加算値の駆動信号がドライバ 3 2に供耠される。 従つ て、 再生磁界 Hre,dの大きさは、 補正値が零の場合には、 基準値 R E Fに応じた所定値となり、 補正値に応じてその所定値を中心とし て変化するものとなる。
そして、 この例の場合、 R0M 3 5は、 再生位置での光磁気ディ スク 1 1の線速度に応じた補正値のテーブルを記憶するもので、 ァ ドレスデコーダ 1 7からの トラックア ドレスがこの R OM 3 5の読 み出しア ドレスとして入力される。 この例の場合も、 R OM 3 5に 記憶された補正値は、 光磁気ディスク 1 1の半径方向に異なる各再 生位置に応じた線速度のときにも、 上記再生領域 RD及び DTの大 きさが常に一定になる値とされている。
この場合にも、 上記再生領域 R D及び D Tの大きさが一定である か否かは、 例えば所定の基準パターンの情報を再生したときに信号 処理回路 1 5からの R F信号レベルが所定値になっているか否かに より検出できる。 従って、 再生時、 再生信号から トラッ クア ドレスがア ドレスデコ ーダ 1 7により検出され、 この トラッ クア ドレスにより R〇M 3 5 からは、 その再生位置の線速度に応じた補正値が読み出され、 加算 回路 5 4 に供給される。 これにより、 再生磁界 H r e , dの大きさが制 御され、 上記再生領域 R D及び D Tの大きさが常に一定になるよう にされる。
なお、 補正値の発生回路は、 R O M 3 5を用いる代わりに、 トラ ッ クァ ドレスの情報から補正値を演算により求める回路を用いるよ うにしても良い。
また、 上記の例のように、 ディスクの再生位置での線速度に応じ てレーザパワーや外部磁界をそれぞれ単独に制御しても良いが、 レ 一ザパワーと外部磁界を同時に制御するようにしてもよい。
光磁気ディスク 1 1 の上の再生時の光ピッ クァップの半径方向の 位置、 すなわち再生位置は、 上記の例のように再生信号中の トラ ッ クア ドレスを抽出して検出することもできるが、 光ピッ クアップの 位置を位置センサにより検出するようにしてもよい。
図 1 0の例は、 この場合の一例を示し、 さらにの例では、 レーザ パワーと、 再生磁界とを共に制御するようにしている。
図 1 0において、 光ピッ クアップ 4 0は、 レーザ光源 1 2、 フ ォ トディ テクタ 1 3及び 2 1 を具備すると共に、 図示しないが光学系 を具備している。 この光ピッ クアップ 4 0は、 半径方向送り機構 4 1 により、 光磁気ディスク 1 1 の半径方向に摺動移動されるように 構成されている。
この半径方向送り機構 4 1 には、 例えばポテンショ メータ等から なる位置センサ 4 2が設けられ、 この位置センサ 4 2により光ピッ クアップ 4 0からのレーザビーム走査スポッ トの光磁気ディスク 1 1の半径方向の位置、 すなわち再生位置が検知される。 この位置セ ンサ 4 2のセンサ出力は、 再生位置判別回路 4 3に供給される。 こ の 生位置判別回路 4 3からの光磁気ディスク 1 1上の再生位置出 力は、 前述した再生レーザパワー設定基準値発生用の R OM 2 4及 び再生磁界 Hre,dを補正するための補正値発生用の R 0M 3 5に、 その読み出しァ ドレスとして供給される。
この例の場合には、 ROM2 4 と R 03 5には、 レーザパワー設 定基準値 R E Fと補正値との組により、 各再生位置の線速度が変化 しても再生領域 RD、 DTの大きさが変化せず、 常に一定となるよ うに、 それぞれ線速度に対応した各設定基準値及び補正値が記億さ れている。
従って、 再生位置の線速度に応じてレーザパワー及び再生磁界が 制御され、 前述した例と同様に、 光磁気ディスク 1 1のいずれの再 生位置においても、 常に一定の大きさの再生領域 R D又は D Tから の反射光により再生を行うので、 常に安定した再生が行う ことがで きるものである。
この例の場合も、 光磁気ディスク 1 1の半径方向を所定範囲毎に 分割し、 各分割範囲を代表する一の線速度にレーザパワー設定基準 値 R E F及び補正値が 1対 1 にが対応するようにして、 前記各分割 範囲毎に R 0M 2 4及び 3 5から異なる値を読み出すようにしても 良い。
なお、 前述の例と同様にして、 ROM2 4及び R0M 3 5の代わ りに位置センサ 4 2からの半径方向位置情報から再生レーザパワー 設定基準値 R E F及び補正値を求める演算回路を用いるようにして も良い。
以上の例では、 光磁気ディスクを C A V (回転速度一定) 方式で 回転駆動させるようにしたが、 この発明は、 いわゆるモディ フ ァイ ド C A V方式の回転駆動方式を採用する場合にも適用することがで きる。
すなわち、 モディ ファイ ド C A Vほ方式の光磁気ディスクにおい ては、 回転駆動方式は C A V方式を採るものであるが、 図 1 1 に示 すように、 ディスクの半径方向をいくつかのゾーン Z Nに分割し、 各ゾーン毎にデータクロッ ク周波数を変えて記録再生を行い、 ディ スクの内周側から外周側までの各ゾーン Z Nにおける線記録密度を 略々一定にして、 記録密度を高くするこ とができるようにしている, この場合、 各ゾーン Z N内では、 記録ピッ ト R Pは半径方向の ト ラ ッ ク位置に応じて線記録密度が変化するが、 その線記録密度の変 化はクロッ ク周波数に対してほとんど無視できる。
なお、 回転駆動方式として、 線速度一定 ( C L V ) 方式を採用す れば記録密度は高密度にするこ とができるが、 この C L Vの場合に は、 光磁気ディ スクの トラ ッ ク位置により回転数を変える制御が必 要であるため、 特にデータ記録用の場合に、 データアクセス時にス ピン ドルモータの回転数制御が複雑となり、 アクセス速度が遅く な つてしまう。 この点、 モディ ファイ ド C A V方式の場合には、 回転 駆動は C A Vで行う ことができ、 Ύクセス速度を速くするこ とがで き、 記録密度の向上と、 高速のデータアクセスを行う こ とができる という利点がある。
しかし、 光磁気ディ スクは回転数一定で回転するため、 上記の例 と同様に、 ディ スク半径方向の再生位置の違いにより線速度が異な り、 実質的な再生領域 R D又は D Tの大きさが異なってしまう こと
(こな o
そこで、 このモディ ファイ ド C A Vの回転駆動方式の光磁気ディ スク再生装置の場合には、 前述した再生位置での線速度に応じたレ 一ザパワーコン ト口ール又は再生磁界コン トロールあるいは両者の コン トロールを行って、 常に再生領域の大きさを一定にして、 安定 に再生を行う ものである。 この場合に、 このモディ ファイ ド C A V の場合には、 例えば内周側から何番目のゾーンかを示す情報がデー 夕中に書き込まれるので、 このゾーンの情報からそのゾーンの半径 方向の位置を検出し、 この半径位置情報に基づき、 ゾーン毎に一の 線速度を想定して前記のコン トロールを行うようにしてもよい。
以上のことから明らかなように、 上述したモディ フアイ ド C A V の回転駆動方式と、 消去タイプあるいは浮き出しタイプの再生方法 を組み合わせることにより、 回転駆動方式として C A Vを採用する 場合に比較して、 さらに高密度の記録再生ができるものである。 し かも、 この発明による再生方法をデータ記録用光磁気ディスクに適 用した場合に、 C L Vに比べてアクセス速度は速い。
さらに、 前述した消去型と浮き出し型とを混合したタイプの光磁 気ディスクに本発明を適用することもできる。
これらの光磁気記録媒体を用いた高密度再生技術によれば、 ビー ム · スポッ ト内の該ビーム · スポッ ト面積より も狭い部分の再生領 域のみから記録ピッ トの読み出しが可能となり、 しかも光磁気記録 媒体の線速度の変化があっても、 常に実質的な再生領域の大きさを 一定にすることができ、 安定に再生を行う ことができる。 従って、 高密度化が可能となり、 媒体記録容量の増大が図れると共に、 品質 のよい再生信号を常に得ることができる。
以上説明した本発明の実施例は、 信号の記録が可能な光磁気記録 媒体を用いる例であつたが、 次に、 本発明を反射率変化型の光記録 媒体に適用した実施例について、 以下に説明する。
この反射率変化型の光記録媒体に関する技術としては、 本件出願 人が先に特願平 2 — 9 4 4 5 2号の明細書及び図面において光ディ スクの信号再生方法を提案しており、 また、 特願平 2 - 2 9 1 7 7
3号の明細書及び図面において光ディスクを提案している。 すなわ ち、 前者においては、 信号に応じて位相ピッ トが形成されるととも に温度によって反射率が変化する光ディスクに対して読み出し光を 照射し、 読み出し光の走査スポッ ト内で反射率を部分的に変化させ ながら位相ピッ トを読み取ることを特徴とする光ディスクの信号再 生方法を提案しており、 後者においては、 位相ピッ トが形成された 透明基板上に、 相変化によって反射率が変化する材料層が形成され てなり、 読み出し光が照射されたときに、 上記材料層が、 読み出し 光の走査スボッ ト内で部分的に相変化するとともに、 読み出し後に は初期状態に戻ることを特徴とする、 いわゆる相変化型の光ディ ス クを提案している。
こ こで、 上記材料層として、 溶融後結晶化し得る相変化材料層を 用い、 読み出し光が照射されたときに、 この相変化材料層が読み出 し光の走査スポッ ト内で部分的に溶融結晶化領域で液相化して反射 率が変化すると共に、 読み出し後には結晶状態に戻るようにするこ とが好ま しい。
このような反射率変化型の光記録媒体、 特に相変化型の光ディ ス クを用いた本発明による再生方法の他の実施例が適用されたディ ス ク再生装置の要部を図 1 2に示す。
この図 1 2において、 光ディスク 1 0 0は、 反射率変化型、 特に 栢変化型の光ディスクであり、 読み出し光となる レーザ光が照射さ れて温度が上昇した部分の反射率が他の部分の反射率より低いもの が上記光磁気の場合の消去タイプに、 また、 温度が上昇した部分の 反射率が他の部分の反射率より高いものが上記光磁気の場合の浮き 出しタイプにそれぞれ対応する。 本実施例は、 いずれのタイプの相 変化型光ディスクも使用可能であるのみならず、 他の原理に基づく 反射率変化型の光ディスクも使用可能である。
I o この図 1 2の構成は、 上述した図 5の構成において、 磁界印加の ための磁界発生コィル 2 1、 ドライバ 2 2、 基準値発生回路 3 3を 除去し、 光磁気ディスク 1 1 の代わりに反射率変化型の光ディスク I 0 0を用いた点が異なるのみで、 他の構成は全く同じである。 すなわち、 この例においても、 前記トラックア ドレスを検出する 5
ことにより、 反射型光ディスク 1 0 0の半径方向の光ピックアップ 位置、 すなわち再生位置を検知し、 その再生位置における線速度に 応じてレーザ光パワーを制御することにより、 反射率が変化してい る部分の大きさを制御し、 レーザ光のビーム ' スポッ ト内の実質的 な再生領域である反射率の高い部分の大きさが常に一定になるよう 0
にしている。
図 1 2において、 レーザ光源 1 2からの光ビームが光ディスク 1 0 0に入射され、 レーザ光のビーム · スポッ トの内の一部領域とな る再生領域からの反射光が再生用フォ トディテクタ 1 3に入射され て光電変換され、 このフォ トディテクタ 1 3の出力信号は、 へッ ド 5
アンプ 1 4を介して信号処理回路 1 5に供耠されて R F信号が得ら れ、 これがデータ再生系に供給されて復調される。
また、 レーザ光源 1 2のレーザ光の一部は、 レーザパワーモニタ 用のフ ォ トディテクタ 1 6 に入射されて光電変換出力され、 オー ト ヮーコン トロール回路 2 2 に供給される。 ォ一 トパワーコ ン トロ ール回路 2 2では、 フ ォ トディテクタ 2 1 の出力と、 再生レーザ ヮ一設定基準値 R E Fとが比較され、 その比較誤差出力がレーザド ライブ回路 2 3 に供給され、 レーザ光源 1 2の出力パワーが制御さ 3 ø o
また、 レーザ光源 1 2のレーザ光の一部は、 レーザパワーモニタ 用のフ ォ トディテクタ 2 1 に入射される。 このフ ォ トディテクタ 2 1 の光電変換出力は、 以上の閉ループの制御により、 レーザ光源 1 2の出力パワーが、 再生レーザパワー設定基準値 R E Fに応じた値 になるように制御される。 この設定基準値 R E Fは、 反射率変化型 の光ディスク 1 0 0の半径方向の各再生位置における線速度に応じ たものとなるようにされている。
すなわち、 光ディスク 1 0 0の各トラッ ク位置における線速度に 1 対 1 に対応する再生レーザパワー設定基準値 R E Fのテーブルを 記憶している R O M 2 4が設けられる。 この場合、 この再生レーザ パワー設定基準値 R E Fとしては、 予め、 再生トラッ ク位置が各 ト ラ ッ ク位置であるときに、 その線速度の状態において、 光ディ スク 1 0 0の後述する実質的な再生領域の大きさが、 常に再生に適切な 一定の大きさとなるような値が検出されて、 R O M 2 4 に記憶され ている。 再生領域の大きさが最適の一定の大きさであるか否かは、 例えば所定の基準パターンの情報を再生したときに信号処理回路 1 5からの R F信号レベルが所定値になっているか否かにより検出で きる。
そして、 データ再生系 1 6のア ドレスデコーダ 1 7において、 再 生信号から トラッ クア ドレスが抽出されて識別される。 この トラ ッ クア ドレスは、 R O M 2 4にその読み出しア ドレスとして供給され る。 R O M 2 4からは再生トラッ ク位置での線速度に応じて異なる 再生レーザパワー設定基準値 R E Fが読み出される。 そして、 読み 出された設定基準値 R E Fが、 オー トパワーコン トロール回路 2 2 に供給され、 レーザ光源 1 2の出力パワーが、 その時の光ディ スク 1 0 0上の再生位置での線速度に応じて設定基準値 R E Fに応じた
I o ものとなるように制御される。
反射率変化型の光ディスク 1 0 0の場合も、 上述した光磁気ディ スクの場合と同様に、 光ディスク 1 0 0上の半径方向の再生位置が 変わると、 レーザビーム走査スポッ トに対する温度分布は、 再生位 置でのディスクの線速度に応じて変化してしまうが、 レーザ出力パ ヮ一が変化すれば、 反射率が変化する部分の大きさが変化する。 従 つて、 以上のようにレーザパワーをコントロールすることにより、 再生位置での光磁気ディスク 1 1 の線速度が変わっても、 上記再生 領域の大きさを一定に保つことができるものである。
以上のようにして、 反射率変化型の光ディスク 1 0 0の半径方向 0
の再生位置が変わって線速度が変化しても、 レーザパワーをコン ト ロールすることにより、 上記再生領域の大きさを一定に保つことが できるので、 常に、 安定な再生を行う ことができる。 この図 1 2の実施例の場合も、 上記光磁気ディスクを用いる場合 5
と同様な変形が可能であり、 例えばディスク回転驟動に伴う線速度 に基づいて、 読み出し光ビームの強度を制御するようにしたり、 光 記録媒体から読み出された信号のレベルに基づいて上記反射率の変 化している部分の大きさを制御するようにしてもよい。 また、 R〇 M 2 4を用いる代わりに、 設定値を演算により求めるようにしても よい。 さらに、 上記モディ ファイ ド C A Vの回転駆動方式を採用す る場合にも同様に適用することができる。
次に、 上記図 1 2の実施例に用いられる反射率変化型の光デイ ス ク 1 0 0 として、 溶融後結晶化し得る相変化材料層を用い、 読み出 し光が照射されたときに、 この相変化材料層が読み出し光の走査ス ポッ ト内で部分的に溶融結晶化領域で液相化して反射率が変化する と共に、 読み出し後には結晶状態に戻るような相変化型のディスク について説明する。
上記図 1 2の光ディスク 1 0 0 として用いられる上記相変化型の 光ディスクは、 図 1 3に要部の概略断面図を示すように、 位相ピッ ト 1 0 1 が形成された透明基板 1 0 2上 (図中では下面側) に、 第 1 の誘電体層 1 0 3を介して相変化材料層 1 0 4が形成され、 この 材料層 1 0 4の上 (図中の下面側、 以下同様) に第 2の誘電体層 1 0 5が形成され、 その上に反射膜 1 0 6が形成されてなつている。 これら第 1 の誘電体層 1 0 3及び第 2の誘電体層 1 0 5 によって光 学特性、 例えば反射率等の設定がなされる。
さらに必要に応じて、 反射膜 1 0 6の上に保護膜 (図示せず) が 被着形成されるこ とも多い。
この他、 この相変化型の光ディスクの構造としては、 例えば図 1 4 に示すように、 ピッ ト 1 0 1 が形成された透明基板 1 0 2上に直 接的に相変化材料層 1 0 4のみを密着形成したものを用いてもよく、 また、 図 1 5に示すように、 位相ピッ ト 1 0 1が形成された透明基 板 1 0 2上に、 第 1の誘電体層 1 0 3、 相変化材料層 1 0 4、 及び 第 2の誘電体層 1 0 5を順次形成したものを用いてもよい。
ここで、 上記透明基板 1 0 2としては、 ガラス基板、 ポリカーボ ネー トやメ夕ク リ レー ト等の合成樹脂基板等を用いることができ、 また、 基板上にフォ トポリマを被着形成してスタンパによって位栢 ピッ ト 1 0 1を形成する等の種々の構成を採ることができる。
上記相変化材料層 1 0 4に使用可能な材料としては、 読み出し光 の走査スポッ ト内で部分的に相変化し、 読み出し後には初期状態に i o 戻り、 相変化によって反射率が変化するものが挙げられる。 具体的 には、 S b2 S e 3 、 S b 2 T e 3 等のカルコゲナイ ト、 すなわち カルコゲン化合物が用いられ、 また、 他のカルコゲナイ トあるいは 単体のカルコゲンとして、 S e、 T eの各単体、 さらにこれらの力 ルコゲナイ ト、 すなわち B i T e、 B i S e、 I n— S e、 I n— 5 S b— T e、 I n - S b S e、 I n— S e - T 1、 G e— T e— S b、 G e— T e等のカルコゲナイ ト系材料等が用いられる。 このよ うなカルコゲン、 カルコゲナイ トによって相変化材料相 1 0 4を構 成するときは、 その熱伝動率、 比熱等の特性を、 半導体レーザ光に よる読み出し光によって良好な温度分布を形成する上で望ましい特 0
性とすることができ、 後述するような溶融結晶化領域での溶融状態 の形成を良好に行う ことができ、 SZNあるいは CZNの高い超高 解像度の生成を行う ことができる。
また上記第 1の誘電体層 1 0 3及び第 2の誘電体層 1 0 5として は、 例えば S i 3 N4 、 S i〇、 S i 02 、 A 1 N、 A 123 、 5
Z n S. MgF2 等を用いることができる。 さらに、 上記反射膜 1 0 6 としては、 A l、 C u、 A g、 A u等を用いることができ、 こ れらの元素に少量の添加物が添加されたものであつてもよい。
以下、 相変化型の光ディスクの具体例として、 位相ピッ トが形成 された透明基板上に、 溶融後結晶化し得る相変化材料層が形成され てなり、 読み出し光が照射されたときに、 上記相変化材料層が読み 出し光の走査スポッ ト内で部分的に溶融結晶化領域で液相化して反 射率が変化すると共に、 読み出し後には結晶状態に戻るようなもの であって、 上記図 1 3の構成を有する光ディスクの具体例について 説明する。
図 1 3の透明基板 1 0 2 としては、 いわゆるガラス 2 P基板を使 用し、 この基板 1 0 2の一主面に形成される位相ピッ ト 1 0 1 は、 トラッ ク ピッチ 1 . 6 〃 m、 ピッ ト深さ約 1 2 0 0 A、 ピッ ト幅 0.
5 u mの設定条件で形成した。 そして、 このピッ ト 1 0 1 を有する 透明基板 1 0 2の一主面に厚さ 9 0 O Aの A 1 Nよりなる第 1 の誘 電体層 1 0 3を被着形成し、 これの上 (図では下面側、 以下同様) に相変化材料層 1 0 4 として S b 2 S e 3 を被着形成した。 さ らに、 これの上に厚さ 3 0 O Aの A 1 Nによる第 2の誘電体層 1 0 5を被 着形成し、 さらにこれの上に A 1 反射膜 1 0 6を 3 0 O Aの厚さに 被着形成した。
このような構成の光ディスクにおいて、 信号が記録されていない 部分すなわち位相ピッ ト 1 0 1 が存在しない鏡面部分を用いて、 先 ず以下の操作を行った。
すなわち、 最初に上記光ディ スクの 1 点にフ ォーカスさせるよう に例えば 7 8 0 n mのレーザ光を照射して、 徐冷して初期化 (結晶 化) する。 次に、 同一点にレーザパワー Pを、 0 < P≤ 1 0 m Wの 範囲で固定してレーザパルス光を照射した。 この場合、 パルス幅 t は、 2 6 0 n sec ≤ t ≤ 2 . 6 sec とした。 その結果、 パルス光 照射前と、 照射後の冷却 (常温) 後とで、 両固相状態での反射率が 変化すれば、 材料層が結晶から非晶質に変化したことになる。 そし て、 この操作で、 最初と最後で反射率変化がなかった場合でも、 パ ルス光の照射中に、 戻り光量が一旦変化したとすれば、 それは結晶 状態の膜が一旦液相化されて再び結晶化されたことを意味する。 こ のように一旦液相状態になって後、 温度低下によって再び結晶化状 態になり得る溶融化状態の領域を、 溶融結晶化領域と称する。
図 1 6は、 上述のように栢変化材料層 1 0 4 として S b 2 S e 3 を用いた場合において、 横軸に照射レーザ光パルス幅を、 縦軸にレ 一ザ光パワーをそれぞれとり、 これらの各値と相変化材料曆 1 0 4 の相状態を示したものである。 同図中、 曲線 aより下方の斜線を付 して示した領域 は、 相変化材料層 1 0 4が溶融化しない初期状 態を保持したままである場合の領域である。 同図において曲線 aよ り上方においてはレーザ光スポッ ト照射によって液相すなわち溶融 状態になるが、 特に曲線 a と b との間の領域 R 2 は、 レーザ光スポ ッ トが排除されて (常温程度にまで) 冷却されることによって固相 化されたときに結晶化状態に戻る溶融結晶化領域であり、 これに対 して曲線 bより上方の交差斜線で示す領域 R 3 は、 レーザ光スポッ トを排除して冷却されて固相化されたときに非晶質すなわちァモル ファス状態になる溶融非晶質化領域である。
本実施例の上記具体例においては、 図 1 6における溶融結晶化領 域 R 2 での液栢状態が再生時に生じ得るように、 その再生時の読み 出し光の照射による加熱状態から常温までの冷却過程において、 そ の融点 M Pから固相化に至るに要する時間△ tが結晶化に要する時 間 t , より大となるように、 再生光パワー、 光ディスクの構成、 材 料、 各膜厚等の選定がなされる。
上記具体例において、 初期化状態の反射率すなわち結晶化状態の 反射率は 5 7 %、 溶融状態では 1 6 %であった。 そして、 その再生 パワーを 9 m Wとし、 線速を 3 m Z sec に設定して再生を行ったと きの C / Nは 2 5 d Bであった。
次に、 上述のような相変化型光ディ スクの他の具体例として、 相 変化材料層 1 0 4 に S b 2 T e 3 を用いた場合において、 上記図 1 6 と同様にその相変化状態を測定した結果を図 1 7に示す。 この図 1 7において、 上記図 1 6 と対応する部分には同一符号を付して説 明を省略する。 この S b 2 T e 3 を用いた具体例においては、 結晶 化状態、 すなわち初期化状態における反射率は 2 0 %、 溶融状態に おいては 1 0 %となった。
なお、 S b 2 S e 3 、 S b 2 T e 3 等のカルコゲナイ トあるいは カルコゲンにおいて、 非晶質状態の反射率と、 溶融状態の反射率は 殆ど同程度の値を示す。 そして、 本発明の実施例に用いられる光デ イスクは、 その再生に当たって該光ディスクに対する走査スポッ ト 内における温度分布を利用して超高解像度をもって再生する。
こ こで、 上記相変化型光ディスクにレーザ光ビームを照射した場 合を、 図 1 8を参照しながら説明する。
図 1 8において、 横軸はスポッ トの走査方法 Xに関する位置を示 したもので、 今光ディ スクにレーザが照射されて形成されたビーム • スポッ ト S Pの光強度分布は、 同図中破線 aのようになる。 これ に対して相変化型材料層 1 0 4 における温度分布は、 ビーム · スポ ッ ト S Pの走査速度に対応してビーム走査方向 Xの後方側にやや遅 れて表れ、 同図中実線 bのようになる。
ここで、 レーザ光ビームが図中の矢印 X方向に走査されていると き、 媒体の光ディスクは、 ビーム ' スポッ ト S Pに対して、 走査方 向の先端側から次第に温度が上昇し、 遂には相変化型材料層 1 0 4 の融点 M P以上の温度となる。 この段階で、 相変化型材料層 1 0 4 は初期の結晶状態から溶融状態になり、 この溶融状態への移行によ つて、 例えば反射率が低下する。 この場合、 ビーム ' スポッ ト S P 内で図中斜線を付して示した領域 Ρ χ の反射率が低くなる。 すなわ
I o ち、 ビーム ■ スポッ ト S Ρ内で、 位相ピッ ト 1 0 1 の読み出しが殆 ど不可能な領域 Ρ χ と、 結晶化状態を保持した領域 Ρ ζ とが存在す る。 従って、 図示のように同一スポッ ト S P内に例えば 2つの位相 ピッ ト 1 0 1 が存在している場合においても、 反射率が大なる領域 Ρ ζ に存在する 1 つの位相ピッ ト 1 0 1 に関してのみその読み出し
I 5 を行う ことができ、 他の位相ピッ トに関しては、 これが反射率が極 めて低い領域 にあってこれの読み出しがなされない。 このよう に、 同一スポッ ト S Ρ内に複数の位相ピッ ト 1 0 1 が存在しても、 単一の位相ピッ ト 1 0 1 に関してのみその読み出しを行うことがで きる。
0 従って、 上記読み出し光ビームの波長を; I、 対物レンズの開口数 を Ν Αとするとき、 上記読み出し光ビームの走査方向に沿った記録 信号の最短の位相ピッ ト間隔を Ι Ζ 2 Ν Α以下としても良好な読み 出しが行えることが明らかであり、 超高解像度をもつて信号の読み 出しを行う ことができ、 記録密度、 特に線密度の向上が図れ、 媒体 記録容量を増大させることができる。 ところで、 上述した例においては、 相変化材料層 1 0 4が溶融状 態のときに反射率が低く結晶状態で高い膜厚等の諸条件を設定した 場合であるが、 各層の構成、 厚さ、 相変化材料の構成、 厚さ等の諸 条件の選定によって溶融状態においての反射率を高め結晶状態にお ける反射率を低下させる構成とすることもでき、 この場合は、 図 1 8で示したレーザ光スボッ ト S P内の高温領域 P x 内に 1 つの位相 ピッ ト 1 0 1 が存在するようにし、 この領域 P X にある 1 つの位相 ピッ ト 1 0 1 からのみその読み出しを行う構成とするこ とができる ( また、 レーザ光照射により温度が上昇して、 例えば上記溶融非晶質 化領域 R 3 に達すること等により、 常温にまで冷却された状態では 上記結晶化状態等の初期状態に戻らないような不可逆的な相変化を 生ずる場合であっても、 何らかの手段で初期化する操作を行えばよ く、 本発明の要旨から逸脱するものではない。 例えば、 再生のため のレーザスボッ トの後に長円系のスポッ トを照射し、 相変化材料層 1 0 4を上記溶融結晶化領域 R 2 にまで加熱したり、 融点 M P以下 で結晶化温度以上の温度に加熱してやれば、 相変化材料層 1 0 4 は 非晶質 (アモルフ ァス) 状態から結晶状態に復帰し、 いわゆる初期 化される。
また、 上述した実施例においては、 媒体の相変化により反射率を 変化させているが、 反射率変化はいかなる現象を利用したものであ つてもよ く、 例えば、 図 1 9 に示す本発明のさらに他の実施例のよ うに、 干渉フィルタにおける水分吸着による分光特性の変化を利用 して、 温度によって反射率を変化させてもよい。
すなわち、 この図 1 9 において、 位相ピッ ト 1 3 1 が形成された 透明基板 1 3 2上に、 屈折率の大き く異なる材料を、 それぞれ厚さ が再生光の波長 λの 1 /4となるように繰り返し成膜することによ り干渉フィル夕が形成されてなるものである。 本例では、 屈折率の 大きく異なる材料として、 Mg F層 1 3 3 (屈折率 1. 3 8 ) と、 Z n S層 1 3 4 (屈折率 2. 3 5 ) を採用した。 勿論、 これに限ら ず屈折率の差が大きくなる材料の組合せであれば如何なるものであ つてもよく、 例えば、 屈折率の小さな S i 0 (屈折率 1. 5) 等が 挙げられ、 また屈折率の大きな材料としては T i 02 (屈折率 2. 7 3) ゃ。 602 (屈折率 2. 3 5) 等が挙げられる。
上述の Mg F層 1 3 3や Z n S層 1 3 4は蒸着形成されるが、 こ れらを蒸着形成する際に、 到達真空度を例えば 1 0 _4 Torr 程度と 通常よりも低く設定すると、 膜構造がいわゆるポ一ラスなものとな り、 そこに水分が残留する。 そして、 この水分が残留した膜からな る干渉フィル夕においては、 室温と水の沸点近く まで温度を上げた 時とで、 例えば図 2 0に示すように、 反射率分光特性が大きく異な る。 すなわち、 室温では図中曲線 iで示すように波長; I R を変曲点 とする特性を示すのに対して、 沸点近く にまで温度を上げると、 図 中曲線 iiで示すように波長 λ H を変曲点とする特性になり、 温度が 下がると再び曲線 iで示す特性に戻るというように、 急峻な波長シ フ トが観察される。 この現象は、 水分が気化することにより屈折率 が大き く変わり、 この影響で分光特性が変化することによるものと 考えられている。
従って、 再生光の光源の波長をこれら変曲点; I R 、 λ Η の中間の 波長; I。 に選べば、 室温時と加熱時でダイナミ ッ クに反射率が変化 することになる。
本実施例では、 この反射率変化を利用して高密度再生を行う。 高 密度再生が可能となる原理は、 前述した図 1 8 とともに説明した通 りで、 この場合には水分が気化して波長シフ 卜が起こつた領域が高 反射率領域に相当し、 温度が上昇していない部分がマスクされた形 となる。 本例では温度が下がると反射率特性が元の状態に戻るので. 特別な消去操作は必要ない。
以上説明したような反射率変化型の光ディスクを、 上記図 1 2の 光ディ スク 1 0 0 として用いることにより、 光ディスク 1 0 0の半 径方向の位置に応じた線速度変化があっても、 常に実質的な再生領 域 (上記図 1 8の領域 P x 、 P z の内の反射率が高い方の領域) の 大きさを一定にすることができることから、 安定に再生を行う こと ができ、 品質の良い再生信号を常に得ることができる。
なお、 本発明は上記実施例のみに限定されるものではなく、 例え ば、 上記光記録媒体としては、 ディスク状のみならず、 カー ド状、 シー ト状等の記録媒体にも本発明を適用するこ とができる。

Claims

請 求 の 範 囲
1 . 記録層と再生層とを有し、 記録層と、 再生層とが定常状態で磁 気的に結合しており、 再生時の読み出し光ビームの照射により所定 温度以上に温度上昇する領域の前記記録層と再生層との磁気的結合 を消滅させ、 その磁気的結合消滅領域を除く光照射領域において前 記記録層に保持された記録情報を前記再生層から読み出すようにす る光記録媒体の再生方法において、
上記光記録媒体を一定の回転速度で回転させて再生を行う場合に、 光記録媒体上の再生位置を検出し、 その再生位置での線速度に応じ て上記磁気的結合消滅領域の大きさを制御するようにした光記録媒 体の再生方法。
2 . 上記光記録媒体の再生方法は、 上記光記録媒体の再生位置を検 出した出力に基づいて、 上記読み出し光ビームを上記光記録媒体に 照射するレーザ光源の出力制御を行うようにした請求項 1記載の光 記録媒体の再生方法。
3 . 上記光記録媒体の再生方法は、 上記光記録媒体の再生位置を検 出した出力と記億手段に記億された上記光記録媒体の線速度に対応 する上記レーザ光源の出力基準値とを比較した出力に基づいて上記 レーザ光源の出力制御を行うようにした請求項 2記載の光記録媒体 の再生方法。
4 . 上記光記録媒体の再生方法は、 上記光記録媒体を再生した出力 のレベルに基づいて上記磁気的結合消滅領域の大きさを制御するよ うにした請求項 1 記載の光記録媒体の再生方法。
5 . 記録層と再生層とを有し、 再生層の磁化の方向を揃えた後、 再 生時の読み出し光ビームの照射により所定温度以上に温度上昇する 領域の上記記録層に保持された記録情報を再生層に転写させて浮き 出させ、 この再生層の浮き出し領域から前記記録情報を読み出すよ うにする光記録媒体の再生方法において、
上記光記録媒体を一定の回転速度で回転させて再生を行う場合に 光記録媒体上の再生位置を検出し、 その再生位置での線速度に応じ て上記浮き出し領域の大きさを制御するようにした光記録媒体の再 生方法。
6 . 上記光記録媒体の再生方法は、 上記光記録媒体の再生位置を検 出した出力に基づいて、 上記読み出し光ビームを上記光記録媒体に 照射するレーザ光源の出力制御を行うようにした請求項 5記載の光 記録媒体の再生方法。
7 . 上記光記録媒体の再生方法は、 上記光記録媒体の再生位置を検 出した出力と記憶手段に記憶された上記光記録媒体の線速度に対応 する上記レーザ光源の出力基準値とを比較した出力に基づいて上記 レーザ光源の出力制御を行うようにした請求項 6記載の光記録媒体 の再生方法。
8 . 上記光記録媒体の再生方法は、 上記光記録媒体の再生位置を検 出した出力に基づいて、 上記読み出し光ビームと上記光記録媒体を 挟んで相対向する側より外部磁界発生手段によって上記光記録媒体 に印加される外部磁界の強さを制御するようにした請求項 5又は 6 記載の光記録媒体の再生方法。
9 . 上記光記録媒体の再生方法は、 上記光記録媒体の再生位置を検 出した出力と記億手段に記憶された上記光記録媒体の線速度に対応 する補正値を、 上記読み出し光ビームと上記光記録媒体を挟んで相 対向する側より上記光記録媒体に外部磁界を印加する外部磁界発生 手段の入力信号に加算することによって、 上記外部磁界発生手段か ら外部磁界の強さを制御するようにした請求項 5又は 6記載の光記 録媒体の再生方法。
1 0 . 上記光記録媒体の再生方法は、 上記光記録媒体を再生した出 力のレベルに基づいて上記磁気的結合消滅領域の大きさを制御する ようにした請求項 5記載の光記録媒体の再生方法。
1 1 . 信号に応じて位相ピッ トが形成されるとともに温度によって 反射率が変化する光ディスクに対して読み出し光ビームを照射し、 i o 読み出し光ビームの走査スポッ ト内で反射率を部分的に変化させな がら位栢ピッ トを読み取るようにした光記録媒体の再生方法におい て、
上記光記録媒体を一定の回転速度で回転させて再生を行う場合に、 光記録媒体上の再生位置を検出し、 その再生位置での線速度に応じ 5 て上記読み出し光ビームの走査スポッ ト内で反射率が変化している 部分の大きさを制御するようにした光記録媒体の再生方法。
1 2 . 上記光記録媒体の再生方法は、 上記光記録媒体の再生位置を 検出した出力に基づいて、 上記読み出し光ビームを上記光記録媒体 に照射するレーザ光源の出力制御を行うようにした請求項 1 1記載 0 の光記録媒体の再生方法。
1 3 . 上記光記録媒体の再生方法は、 上記光記録媒体の再生位置を 検出した出力と記億手段に記憶された上記光記録媒体の線速度に対 応する上記レーザ光源の出力基準値とを比較した出力に基づいて上 記レーザ光源の出力制御を行うようにした請求項 1 2記載の光記録 媒体の再生方法。
1 4 . 上記光記録媒体の再生方法は、 上記光記録媒体を再生した出 力のレベルに基づいて上記読み出し光ビームの走査スポッ ト内で反 射率が変化している部分の大きさを制御をするようにした請求項 1 1記載の光記録媒体の再生方法。
PCT/JP1991/001438 1991-02-05 1991-10-19 Method for reproducing signal in optically recording medium WO1992014245A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US07/941,058 US5390162A (en) 1991-02-05 1991-10-19 Method for reproducing signals recorded on optical recording medium
DE69119418T DE69119418T2 (de) 1991-02-05 1991-10-19 Verfahren zur wiedergabe eines signals aus einem optischen aufzeichnungsmedium
JP3516541A JP3057517B2 (ja) 1991-02-05 1991-10-19 光記録媒体の信号再生方法
EP91917831A EP0536404B1 (en) 1991-02-05 1991-10-19 Method for reproducing signal in optically recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3554591 1991-02-05
JP3/35545 1991-02-05

Publications (1)

Publication Number Publication Date
WO1992014245A1 true WO1992014245A1 (en) 1992-08-20

Family

ID=12444702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001438 WO1992014245A1 (en) 1991-02-05 1991-10-19 Method for reproducing signal in optically recording medium

Country Status (5)

Country Link
US (1) US5390162A (ja)
EP (1) EP0536404B1 (ja)
JP (1) JP3057517B2 (ja)
DE (1) DE69119418T2 (ja)
WO (1) WO1992014245A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174503B1 (en) 1998-09-03 2001-01-16 Lockheed Martin Energy Research Corporation Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69231042T2 (de) * 1991-02-08 2000-09-28 Sony Corp., Tokio/Tokyo Magnetooptisches Aufzeichnungs- und/oder -wiedergabegerät
US5610879A (en) * 1993-03-05 1997-03-11 Matsushita Electric Industrial Co. Ltd. Optical reproducing device, optical reproducing method using the same, and optical record medium used in the same
ES2161240T3 (es) * 1993-11-17 2001-12-01 Canon Kk Aparato de grabacion/reproduccion optica de informacion y metodo con funcion de ajuste de la potencia de reproduccion.
JP3333613B2 (ja) * 1993-12-07 2002-10-15 株式会社日立製作所 光情報記録媒体並びに光情報記録再生方法及び光情報記録再生装置
JP3177395B2 (ja) * 1995-01-31 2001-06-18 シャープ株式会社 光磁気記録媒体及びその再生方法
US5726954A (en) * 1995-04-10 1998-03-10 Nikon Corporation Optical recording method and apparatus
US5771211A (en) * 1995-04-26 1998-06-23 Sanyo Electric Co., Ltd. Magneto-optical recording media having a reading layer with a specified range of temperature coefficients of a kerr rotation angle
US5949751A (en) * 1995-09-07 1999-09-07 Pioneer Electronic Corporation Optical recording medium and a method for reproducing information recorded from same
US5625615A (en) * 1995-12-08 1997-04-29 International Business Machines Corporation Optical storage drive employing variable write speed for reduced laser write power
US6111841A (en) * 1996-01-10 2000-08-29 Nikon Corporation Apparatus for and method of controlling playback light intensity for an optical recording medium
US6226233B1 (en) 1996-07-30 2001-05-01 Seagate Technology, Inc. Magneto-optical system utilizing MSR media
JPH1092045A (ja) * 1996-09-18 1998-04-10 Canon Inc 信号再生装置
JPH1092047A (ja) * 1996-09-19 1998-04-10 Canon Inc 光学的情報記録再生方法と光学的情報記録再生装置
JPH10106007A (ja) * 1996-09-30 1998-04-24 Nikon Corp 情報再生装置
US6278667B1 (en) * 1998-01-30 2001-08-21 Seagate Technology, Inc. System and method for light power control in a magneto-optical drive
JP3778399B2 (ja) * 1998-03-16 2006-05-24 富士通株式会社 光学的記憶装置及び光記憶媒体の記録再生方法
JP4277369B2 (ja) * 1999-06-18 2009-06-10 ソニー株式会社 光再生装置、光再生方法、光記録装置、および光記録方法、並びに記録媒体
US6483299B1 (en) 1999-11-12 2002-11-19 Seagate Technology Llc Apparatus and method for measuring magnetic properties of recording mediums
JP2002222520A (ja) * 2001-01-24 2002-08-09 Mitsubishi Chemicals Corp 磁化パターン形成方法及び磁化パターン形成装置並びに磁気ディスク及び磁気記録装置
US7283444B2 (en) * 2001-12-04 2007-10-16 Lg Electronics Inc. Method and device for determining disk size and stopping a rotating disk without using frequency generator signals
JP2003178451A (ja) * 2001-12-11 2003-06-27 Yamaha Corp 光ディスク記録方法及び光ディスク記録装置
KR20040025028A (ko) * 2002-09-18 2004-03-24 삼성전자주식회사 데이터 기록 장치 및 그 방법
JP2004334940A (ja) * 2003-05-01 2004-11-25 Pioneer Electronic Corp 回転制御装置、その方法、そのプログラム、そのプログラムを記録した記録媒体、および、情報処理装置
JP4637964B2 (ja) * 2006-07-04 2011-02-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 様々な読出速度において光記録担体から情報を取り出す装置および方法
US8339911B2 (en) * 2006-07-04 2012-12-25 Koninklijke Philips Electronics N.V. Method and device for retrieving information from an optical record carrier at various reading speeds

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159605A (ja) * 1984-08-31 1986-03-27 Canon Inc 情報記録再生装置
JPS63187439A (ja) * 1987-01-30 1988-08-03 Hitachi Ltd 光磁気記録方式
JPH01143042A (ja) * 1987-11-30 1989-06-05 Sony Corp 光磁気記録媒体の信号再生方法
JPH01143041A (ja) * 1987-11-30 1989-06-05 Sony Corp 光磁気記録媒体の信号再生方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5369006A (en) * 1976-11-30 1978-06-20 Sony Corp Reproducer of disc form signal recording media
JPS57212627A (en) * 1981-06-24 1982-12-27 Tdk Corp Optical recording method
JPS6443041A (en) * 1987-08-07 1989-02-15 Toshiba Corp Automatic power distribution line monitoring device
JPS6443042A (en) * 1987-08-10 1989-02-15 Shibaura Eng Works Ltd Motor
JP2655682B2 (ja) * 1988-06-08 1997-09-24 株式会社日立製作所 光磁気情報記録再生装置
JP2846342B2 (ja) * 1989-06-07 1999-01-13 株式会社日立製作所 高密度光再生装置
US5168482A (en) * 1989-08-31 1992-12-01 Sony Corporation Magnetooptical recording and playback method employing multi-layer recording medium with record holding layer and playback layer
JP3057516B2 (ja) * 1991-02-05 2000-06-26 ソニー株式会社 光記録媒体の信号再生方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159605A (ja) * 1984-08-31 1986-03-27 Canon Inc 情報記録再生装置
JPS63187439A (ja) * 1987-01-30 1988-08-03 Hitachi Ltd 光磁気記録方式
JPH01143042A (ja) * 1987-11-30 1989-06-05 Sony Corp 光磁気記録媒体の信号再生方法
JPH01143041A (ja) * 1987-11-30 1989-06-05 Sony Corp 光磁気記録媒体の信号再生方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0536404A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174503B1 (en) 1998-09-03 2001-01-16 Lockheed Martin Energy Research Corporation Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

Also Published As

Publication number Publication date
JP3057517B2 (ja) 2000-06-26
DE69119418D1 (de) 1996-06-13
US5390162A (en) 1995-02-14
DE69119418T2 (de) 1997-01-09
EP0536404B1 (en) 1996-05-08
EP0536404A1 (en) 1993-04-14
EP0536404A4 (en) 1993-01-22

Similar Documents

Publication Publication Date Title
WO1992014245A1 (en) Method for reproducing signal in optically recording medium
JP3057516B2 (ja) 光記録媒体の信号再生方法
JP3057518B2 (ja) 光記録媒体の信号再生方法
US5432774A (en) Optical recording medium
JP3226418B2 (ja) 熱的記録媒体の記録方法
JPH1186372A (ja) 磁性記録媒体の信号再生方法
JPS60155495A (ja) 光学情報記録媒体
JP2723004B2 (ja) 光記録媒体およびその記録再生方法
JP3580830B2 (ja) 磁気光学記録媒体
JPH05198029A (ja) 光磁気記録媒体
JP2650357B2 (ja) 光学情報記録部材の記録方法
WO1992015092A1 (en) Optically recording medium
JP3334146B2 (ja) 光学ヘッド装置
JPH08329521A (ja) 光記録媒体
JP3626211B2 (ja) 光記録媒体の信号再生方法
JP2004095098A (ja) 光記録媒体
JP2006338717A (ja) 光ディスク
JP2000057577A (ja) 光記録媒体
JPH0917028A (ja) 光学的情報記録媒体及びその情報再生方法
JPH0567348A (ja) 情報記録用媒体
JP2000057626A (ja) 光記録媒体
JPH04316888A (ja) 光記録媒体
JP2000207791A (ja) 磁性記録媒体
JP2005293768A (ja) 光学的記録媒体
JP2006079661A (ja) 光磁気記録媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 1991917831

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991917831

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991917831

Country of ref document: EP