[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1992004541A1 - Ignition timing control device in engine - Google Patents

Ignition timing control device in engine Download PDF

Info

Publication number
WO1992004541A1
WO1992004541A1 PCT/JP1991/001141 JP9101141W WO9204541A1 WO 1992004541 A1 WO1992004541 A1 WO 1992004541A1 JP 9101141 W JP9101141 W JP 9101141W WO 9204541 A1 WO9204541 A1 WO 9204541A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition timing
engine
throttle opening
value
sampling
Prior art date
Application number
PCT/JP1991/001141
Other languages
English (en)
French (fr)
Inventor
Mitsuhiko Oonuma
Sakae Saito
Hitoshi Kamura
Original Assignee
Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Jidosha Kogyo Kabushiki Kaisha filed Critical Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Priority to DE4192105A priority Critical patent/DE4192105C1/de
Publication of WO1992004541A1 publication Critical patent/WO1992004541A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • F02P5/1521Digital data processing dependent on pinking with particular means during a transient phase, e.g. starting, acceleration, deceleration, gear change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/1455Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means by using a second control of the closed loop type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1504Digital data processing using one central computing unit with particular means during a transient phase, e.g. acceleration, deceleration, gear change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an ignition timing control device for a spark ignition type engine (internal combustion engine) such as a gasoline engine, and more particularly, to an ignition timing control device having means for avoiding transient knocking when the engine is accelerating.
  • a spark ignition type engine internal combustion engine
  • gasoline engine such as a gasoline engine
  • an ignition timing control device having means for avoiding transient knocking when the engine is accelerating.
  • ignition timing control of a gasoline engine has been performed, for example, as follows.
  • the operating state of the engine is detected from a flow rate sensor for detecting the intake air amount of the engine and an engine speed sensor for detecting the engine speed, and the intake air amount A is determined based on the detection results from these sensors.
  • Basic ignition timing information is obtained from a map (ignition timing map), and the basic ignition timing information is appropriately corrected. Based on the ignition timing information thus obtained, an ignition means (spark plug, ignition coil, etc.) is obtained.
  • the ignition timing of the engine is controlled by operating the engine.
  • the ignition is performed based on the actual volumetric efficiency Ev (hereinafter referred to as Evr as appropriate) based on the sampled intake air amount A.
  • Evr the actual volumetric efficiency
  • the ignition timing on the partial side is looked up more than the ignition timing based on the actual intake air amount, leading to a slight advance, and transient knocking occurs.
  • the ignition timing map From this, the volumetric efficiency for raising the ignition timing (ignition timing map volumetric efficiency for lookup) Ev (hereinafter referred to as Evm as appropriate) is corrected so as to be a value without delay. It may be possible to let them re-night.
  • the ignition timing map look-up volume is changed according to the throttle opening variation (throttle opening deviation) ⁇ .
  • the efficiency Evm can be corrected.
  • FIGS. 7 (a) to 7 (c) are time charts for explaining such correction of the volumetric efficiency Evm for the ignition timing map look-up, and FIGS. 7 (a) to 7 (a) are slots for acceleration.
  • Figure 7 (b) shows the volumetric efficiency Evm for the ignition timing map-up corresponding to this
  • Figure 7 (c) shows the control of the ignition timing corresponding to this. The state is shown.
  • Evm Evr + ( ⁇ 0 x GTH / 4) x K EVNE ⁇ ⁇ (1)
  • G TH ignition timing acceleration correction gain
  • K EVEN Ignition timing acceleration correction rotation speed coefficient
  • the ignition timing acceleration correction rotational speed coefficient K EVEN is a coefficient corresponding to the engine rotational speed Ne as shown in FIG.
  • the throttle opening change amount ⁇ 0 takes a peak value
  • the peak value is held as a sample value of the throttle opening change amount ⁇ 0 only for four strokes (four ignition periods) thereafter. Therefore, during this period, the corrected volumetric efficiency Evm is also held at this peak value.
  • the reason why the sample value of the throttle opening change amount ⁇ 0 is held in this way is to correct an overshoot in volumetric efficiency immediately after the intake air amount is fully opened.
  • the relationship between the ignition timing map lookup volumetric efficiency Evm and the ignition timing is as shown in FIG. 8 when the engine speed Ne is constant, and the volumetric efficiency increases during general acceleration, and the ignition timing increases. Is the value on the retard side.
  • the corrected Evm is not corrected In comparison with the case, the amount is increased by the amount indicated by the oblique line.
  • the ignition timing becomes as shown by the broken line in FIG. 7 (c), and is corrected to the retard side by the diagonal line, and transient knocking is avoided.
  • a special acceleration pattern that is, a special throttle opening change pattern
  • FIG. 10 (a) to (f) are time charts showing the volume efficiency correction status in such a special acceleration pattern
  • FIG. 10 (a) is the throttle during acceleration
  • Fig. 10 (b) shows the corresponding real volume efficiency (actual Ev) Evr
  • Fig. 10 (c) shows the corresponding change in throttle opening change
  • Fig. 10 (d) indicates the volumetric efficiency Evm for the corresponding ignition timing mappleup
  • Fig. 10 (e) indicates the control state (retard correction amount) of the corresponding ignition timing.
  • FI G.10 (f) indicates the corresponding engine stroke.
  • the sample value of the throttle opening change amount ⁇ 0 is held at the point where the throttle opening 0 increases and takes the first peak value h1 as shown by P1, [FIG. (Refer to (c))], and the value of the volumetric efficiency correction amount [see the hatched portion in FIG. 10 (d)] is held correspondingly. Then, this correction amount is added, for example, to the actual volumetric efficiency Evr to determine the ignition timing map look-up volumetric efficiency Evm [see the reference HI section in FIG. 10 (d)]. After the first hold of the sample value of the throttle opening change amount ⁇ 0, the throttle opening 6> changes again so as to increase as shown by P2, and the throttle is returned to 0 once.
  • the sample value of the tor opening change amount ⁇ 0 is again held at an appropriate value [see the symbol h 2 in FIG. 10 (c)], and the value of the volumetric efficiency correction amount is also restored. It is held [see code H2 in FIG. 10 d)].
  • An engine ignition timing control that ensures that knocking at the time of acceleration is reliably prevented while preventing rapid acceleration of the engine as much as possible. It is intended to provide a control device. Disclosure of the invention An engine ignition timing control device according to claim 1 of the present invention is a throttle opening control device that calculates a throttle opening change amount based on a value obtained by sampling the throttle opening of the engine. Means for calculating the actual volume efficiency based on the actual intake air amount and the actual engine speed, and the actual volume efficiency calculating means for calculating the actual volume efficiency based on the information on the throttle opening change amount.
  • Volume efficiency calculating means having volume efficiency correcting means for correcting volume efficiency and calculating effective volume efficiency; ignition timing setting means for setting ignition timing according to the effective volume efficiency and engine speed; and the ignition timing Control means for outputting an ignition timing control signal based on the ignition timing set by the setting means; ignition means operating in response to the ignition timing control signal; If (E vr) exceeds a predetermined threshold value corresponding to the vicinity of the throttle fully open value, the throttle opening change amount sampling means is provided with sampling inhibition means for inhibiting the sampling operation. It is characterized by:
  • the throttle opening change amount sampling means updates and stores the throttle opening change amount at predetermined intervals.
  • the volumetric efficiency correction means be configured to use a stored value of the throttle opening change amount as information on the throttle opening change amount.
  • the throttle opening change amount sampling means holds the stored value at the time when sampling is prohibited by the sampling prohibiting means for a predetermined period.
  • the throttle value change amount sampling means performs only the stored value holding period.
  • the predetermined period related to storing the stored value from when the sampling is prohibited is set as the stored value holding period.
  • the throttle opening change amount sampling means is configured to clear the storage after the storage value holding period has expired.
  • the threshold value of the sampling prohibiting means is set to approximately 95% of the volumetric efficiency corresponding to the fully open value of the throttle.
  • the throttle opening change amount sampling means updates and stores the throttle opening change amount at predetermined intervals.
  • the volume efficiency correction means uses the stored value of the throttle opening change as information relating to the throttle opening change, and the throttle opening change sampler is used.
  • the sampling means is configured to clear the stored value when sampling is prohibited by the sampling prohibition means.
  • the throttle opening change amount sampling means terminates the increasing trend of the stored value and the period during which the state of the stored value does not change is equal to or longer than a predetermined storage holding period, the stored value is stored.
  • the storage value is held for a holding period, and the storage value is held for the elapsed time when the storage value is shorter than the storage value holding period.
  • the throttle opening change amount sampling means is configured to clear the storage after expiration of the storage value holding period. More preferably, the threshold value of the sampling prohibition means is set to a value at which the throttle is fully opened. Set approximately 95% of the volumetric efficiency corresponding to the value.
  • the throttle opening change amount sampling means updates and stores the throttle opening change amount at predetermined intervals, and Up
  • the volume efficiency correction means is configured to use the stored value of the throttle opening change amount as the information related to the throttle opening change amount, and then controls the ignition timing according to the engine coolant temperature. It is also preferable to configure as follows.
  • the advance value of the ignition timing is preferably set to be smaller as the cooling water temperature is higher.
  • the throttle opening change amount sampling means updates and stores the throttle opening change amount at predetermined intervals
  • the volume efficiency correction means is configured to use the stored value of the throttle opening change amount as the information related to the throttle opening change amount, and then sets the ignition timing in accordance with the intake air temperature of the engine. It is also preferable to configure the control.
  • the ignition timing is retarded in the region where the intake air temperature is low and in the region where the intake air temperature is high, and the advance and retard are not performed in the other region.
  • the throttle opening change amount sampling means updates and stores the throttle opening change amount at predetermined intervals
  • the volume efficiency correction means is configured to use the stored value of the throttle opening change amount as the information on the throttle opening change amount, and then the information on the engine speed during the idle operation of the engine. It is also preferred that the ignition timing is controlled based on the following.
  • the information on the engine speed is the engine speed itself, and the ignition timing is set when the engine speed exceeds a target speed set according to the idle operation state information. And the ignition timing is advanced when the engine rotation speed falls below the target rotation speed.
  • the information on the engine speed is stored in the engine.
  • the ignition timing is retarded when the engine rotation speed is increasing, and the ignition timing is advanced when the engine rotation speed is decreasing.
  • the throttle opening change amount sampling means samples the throttle opening of the engine to a value obtained by sampling.
  • the throttle opening change amount is calculated based on the throttle opening degree
  • the volumetric efficiency calculating means calculates the actual volumetric efficiency based on the actual intake air amount and the actual engine speed by the real volumetric efficiency calculating means.
  • the effective volumetric efficiency is calculated by correcting the actual volumetric efficiency based on the information on the throttle opening change amount.
  • the ignition timing setting means sets an ignition timing according to the effective volumetric efficiency and the engine speed, and outputs an ignition timing control signal based on the ignition timing set by the ignition timing setting means. Then, the ignition means operates in response to the ignition timing control signal.
  • the sampling prohibiting means samples the throttle opening change amount sampling means. Prohibit the switching operation.
  • FIGS. 1 to 6 show an ignition timing control device for an engine according to an embodiment of the present invention.
  • FIG. 1 is a control block diagram.
  • FIG. 2 is an engine system having the device.
  • FIG. 3 is a control block diagram of the above engine system, and
  • FIG. 4 (a) to FIG. 4 (c) are flow charts showing the contents of control by this device, respectively.
  • FI G. 4 (d) is a flowchart of control according to a modification of the basic ignition timing setting control of FI G. 4 (a)
  • FI G. 5 is a prohibition of sampling of the throttle opening change. Sampling prohibited area determination map that determines the volumetric efficiency area.
  • FIG. 7 to Fig. 10 show the engine ignition timing control system considered in the process of devising this device, and Fig. 7 is for the ignition timing map lookup.
  • Fig. 8 is a time chart for explaining the correction of the volumetric efficiency E vm, Fig. 8 shows the relationship between the volumetric efficiency Evm for ignition timing map lookup and the ignition timing, and Fig. 9 is the ignition timing acceleration correction rotation.
  • FIG. 10 is a time chart showing correction in an acceleration pattern that causes the problem.
  • this device controls a gasoline engine system mounted on a car.
  • gasoline engine E (hereinafter simply referred to as engine E) has an intake passage 2 and an exhaust passage 3 leading to its combustion chamber 1, and the intake passage 2 and the combustion chamber 1 is controlled by an intake valve 4 to communicate with each other, and the exhaust passage 3 and the combustion chamber 1 are controlled by an exhaust valve 5 to communicate with each other.
  • the intake passage 2 is provided with an air cleaner 6, a throttle valve 7, and an electromagnetic fuel injection valve (injector) 8, which constitutes a first engine adjustment element that affects the operation of the engine, in order from the upstream side.
  • the exhaust passage 3 is provided with a catalytic converter (three-way catalyst) 9 for purifying exhaust gas and a muffler (muffler) (not shown) in order from the upstream side.
  • Indicator 8 has the same number of cylinders in the intake manifold. Thus, it constitutes a so-called multipoint junction (MPI). Therefore, assuming that the engine E of this embodiment is, for example, an in-line four-cylinder engine, four injectors 8 are provided.
  • MPI multipoint junction
  • the throttle valve 7 is connected to the accelerator pedal via a wire cable, so that the opening varies according to the amount of depression of the accelerator pedal.
  • the motor is also driven to open and close by the motor for ISC (ISC motor) 10, so that the opening of the throttle valve 7 can be changed without stepping on the accelerator pedal during idling. .
  • a spark plug 18 as an ignition means is directed toward the combustion chamber 1 (in FIG. 2, the ignition plug 18 should be drawn near the combustion chamber 1 originally, For convenience, spark plugs 18 are shown in different positions), and each spark plug 18 is connected to a display 50, and this display 50 Connected to ignition coil 51.
  • the power transistor 52 with the ignition coil 51 is turned off, a high voltage is generated in the ignition coil 51 and one of the four spark plugs 18 connected to the distributor 50 is sparked. (Ignition). Note that the ignition coil 51 starts charging by turning on the power transistor 52.
  • the ignition plug 18, the display 50, the ignition coil 51, and the power transistor 52 constitute ignition means.
  • the air sucked through the air cleaner 6 according to the opening of the throttle valve 7 is mixed with the fuel from the injector 8 at the intake manifold so as to have an appropriate air-fuel ratio, and the combustion chamber By igniting the ignition plug 18 at an appropriate timing within 1, the fuel is burned to generate engine torque, and then the mixture is discharged to the exhaust gas.
  • the exhaust gas is discharged into the exhaust passage 3 and the catalyst converter 9 removes the three harmful components C 0, HC, and N 0 X in the exhaust gas, then is muffled by the muffler and released to the atmosphere. It has become.
  • an air flow sensor 11 as a volume flow meter for detecting the amount of intake air from Karman vortex information
  • an intake air temperature sensor 12 for detecting the intake air temperature, and the like, are provided at the portion where the air cleaner is provided.
  • an atmospheric pressure sensor 13 that detects the atmospheric pressure.
  • a potentiometer that detects the degree of opening of the throttle valve 7 is provided at the throttle valve installation portion.
  • An idle switch 15 for detecting the idling state and a motor position sensor 16 for detecting the position of the ISC motor 10 are provided.
  • an oxygen concentration sensor for detecting the oxygen concentration in the exhaust gas (0 2 concentration) 1 7 provided
  • the output voltage has a rapidly changing characteristics in the vicinity of the stoichiometric air-fuel ratio, the leaner than the stoichiometric air-fuel ratio The voltage is low, and the voltage on the rich side is higher than the stoichiometric air-fuel ratio.
  • a water temperature sensor 19 for detecting an engine cooling water temperature is provided, and a crank angle sensor 21 for detecting a crank angle (the crank angle sensor 21 is an engine for detecting an engine speed N). Since the crank angle sensor 21 is also referred to as an engine speed sensor, if necessary, the TDC sensor detects the top dead center of the first cylinder (reference cylinder). 2 and 2 are provided on the display evening 50, respectively.
  • the detection signals from the above-mentioned sensors 11 to 17, 19, 21, 22 are input to an electronic control unit (ECU) 23.
  • a signal from a voltage signal ignition switch (key switch) 26 from a battery sensor 25 that detects the voltage of the battery 24 is also input to the ECU 23. ing.
  • the hardware configuration of the ECU 23 is as shown in FIG. 3.
  • Power The ECU 23 has a CPU 27 as its main part.
  • the CPU 27 has an intake air temperature sensor 12 Detection signals from the barometric pressure sensor 13, throttle sensor 14, 02 sensor 17, water temperature sensor 19, and battery sensor 25 are input via the input face 28 and the AZD converter 30, and the idle sensor 15 and the detection signals from the ignition switch 26 are input via the input interface 29, and the detection signals from the air flow sensor 11, the crank angle sensor 21 and the TDC sensor 22 are directly input to the input port. Input to the keyboard.
  • the CPU 27 is connected to a battery 24 by a ROM 31 for storing program data and fixed value data, a RAM 32 to be updated and sequentially rewritten, and a battery 24 via a bus line. During that time, the stored contents are retained to exchange data with the backed-up battery backup RAM (BURAM) 33.
  • BURAM battery backup RAM
  • the data in the RAM 32 disappears and is reset when the ignition switch 26 is turned off.
  • an ignition timing control signal is output from the CPU 27 to the power transistor 52 via the ignition driver 53, and furthermore, for example, four ignition plugs 1 from the ignition coil 51 via the display 50. 8 sparks sequentially.
  • this ignition timing control device obtains two-dimensional basic ignition timing data (advance angle data) ⁇ .
  • water temperature correction means 59 with water temperature correction map MP 5 intake temperature correction means 61 with intake temperature correction map MP 7, idle stable It is provided with an idle stabilization correction means 62 having a stabilization correction map MP 8.
  • the basic ignition timing here corresponds to the ignition timing described in the claims.
  • the basic ignition timing setting means 58 in the ignition timing map MP3, AZN (intake air amount Z engine speed) Therefore, if the volumetric efficiency Ev and the engine speed Ne are known, the basic ignition timing is obtained from the map value. ⁇ . Is determined (look-up is possible).
  • the value of the volume efficiency E v is calculated by a volume efficiency calculating means (E v calculating means) 80, and the volume efficiency calculating means 80 includes an actual volume efficiency calculating means 81 and a volume efficiency correcting means 83. It is composed of
  • the actual volume efficiency calculating means 8 1 calculates the actual volume efficiency E vr from the actual intake air amount A detected by the air flow sensor 11 and the actual engine speed Ne detected by the engine speed sensor 21. .
  • the volumetric efficiency correction means 83 is a correction for avoiding transient knocking during acceleration of the engine, and is used for indirectly correcting the ignition timing through the volumetric efficiency correction. It is. Specifically, the acceleration determining means 72 determines that the engine is in an accelerating state. At this time, the volumetric efficiency correcting means 83 obtains the sampling data of the throttle opening change amount (increase amount) ⁇ of the engine. When sent, the correction is performed so that the volumetric efficiency EV increases in accordance with the magnitude of ⁇ 0. If it is not determined that the vehicle is in the accelerated state, the above correction is not performed, and the actual volume efficiency E vr calculated by the actual volume efficiency calculation means 81 is used for the basic ignition timing map lookup volume efficiency described later. (Effective volume efficiency :) Output as E vm.
  • the throttle opening change ⁇ 0 is stored as ⁇ ⁇ ⁇ ⁇ 0 in the memory. Acceleration judgment can also be performed using ⁇ .
  • the above-mentioned volume efficiency correction is performed as in the time chart shown in FIG. 7 described above, except when sampling of the throttle opening change amount ⁇ 0 is prohibited.
  • the volumetric efficiency correction is performed while the throttle opening variation ⁇ 0 increases from the start of acceleration to the actual volumetric efficiency Evr (until the throttle opening variation ⁇ 0 reaches a peak).
  • the throttle opening change amount delta theta of sampling per ring after reaching the slot torr opening change amount delta 0 Gapi over click a predetermined period and hold the peak value delta 0 P This is done according to the held peak value P.
  • this hold should be performed only while each cylinder ignites once. For example, in the case of a four-cylinder engine, hold for only four strokes (four ignitions).
  • the determination as to whether the throttle opening change amount ⁇ 0 is at the peak is made by, for example, determining the difference ( ⁇ 0) between the current throttle opening change amount 0 and the stored value ⁇ ⁇ of the throttle opening change amount. — ⁇ ⁇ 0) is calculated, and when this difference changes from positive to negative, it is determined that the previous stored value 0 ⁇ 0 of the throttle opening change amount was the peak value.
  • the throttle opening change amount ⁇ 0 is calculated by the throttle opening change amount sampling means 84 based on the detection information from the throttle sensor 14 and output as data.
  • the throttle opening change amount sampling means 84 is provided with sampling prohibition means (shown as prohibition means in FIG. 1) 85.
  • the sampling prohibiting means 85 is provided at a predetermined stage near the full open value before the actual volume efficiency Evr reaches a value corresponding to the throttle full open value. Outputs a sampling prohibition signal that prohibits sampling of the throttle opening change amount.Here, the area where the actual volume efficiency E vr is 95% or more of the full open value is set as the sampling prohibition area.
  • the throttle opening change amount sampling means 84 sets the stored value ⁇ stored at the time when the sampling is prohibited to a predetermined period. It is configured to hold only.
  • the throttle opening change amount sampling means 84 determines that the state in which the stored value ⁇ Then, the stored value ⁇ 0 is held for this predetermined period (stored value holding period), and when the state where the stored value is almost constant is less than the stored value holding period, the stored value M 0 is stored for this elapsed time. Both are configured so that the stored value ⁇ 0 is cleared thereafter.
  • the retention period of the stored value ⁇ 6> from the time when the above-described sampling is prohibited can be the stored value retention period.
  • the volume efficiency E vm for basic ignition timing map lookup obtained by appropriately correcting the actual volume efficiency E vr during acceleration by the volume efficiency correction means 83 and the engine speed sensor 21 1 Detected Based on the engine speed Ne, the basic ignition timing can be looked up from the ignition ignition map MP3.
  • Water temperature correction map MP 5 is the cooling water temperature WT and the advance angle theta, stores the relationship between Nyutau, the relationship is as the water temperature is high, advance value theta, Nyutau is turned so that a small.
  • the intake air temperature correction map MP 7 stores the relationship between the intake air temperature AT and the retard angle and the advance angle ⁇ ⁇ . The relationship is such that the intake air temperature AT is retarded at low and high intake temperatures, It is 0 where AT is medium. .
  • the idle stabilization correction map MP 8 includes, for example, for proportional control (P control) and differential control (D control).
  • P control the engine speed Ne and ignition timing information ⁇ I DP
  • the relationship between the engine speed N e and the engine speed N e is set by the ISC (idle speed control) target engine speed setting means 73. . If it is higher, the engine is retarded, and the engine speed N e becomes the ISC target engine speed N e. If it is lower, it will be advanced.
  • the relationship between the engine speed change ⁇ e and the ignition timing information 0 1 DD is stored, and the relationship is as follows. When it is lowered, it is advanced. In each case, a dead zone is provided to prevent hunting.
  • a water temperature correction data ⁇ WT from the water temperature correction means 5 9 is the summing in summing means 6 3
  • intake air temperature data theta Arufatau from intake air temperature correction means 6 1, depending on the operating condition correction unit 6-9, the engine operating condition Appropriate correction is performed, and the data from the operating state correcting means 69 is added to the data ( ⁇ . + ⁇ ⁇ ⁇ ) from the adding means 63 by the adding means 65. .
  • the data from the adding means G5 is further added to the eye by the adding means 66.
  • the dollar stabilization correction means, and the idle stabilization data ⁇ 1DP , D 1D D from the control unit 62 are added to the data and sent to the evening imaging control unit (control means) 68.
  • a switch 67 is interposed between the idle stabilization correcting means 62 and the adding means 66, and the switch 67 is provided with the idle switch 15 as an engine. Closed when turned on at idle and open otherwise.
  • the evening imaging control unit 68 determines the ignition timing from the evening in which various correction data (AT, ⁇ , DP, ⁇ , DD) are added to the basic ignition timing data ⁇ 0 , and Outputs the ignition timing control signal.
  • a control signal for fuel injection is output from the CPU 27 through the injector driver 34, and for example, the four injectors 8 are sequentially driven. .
  • the ignition timing control device for an engine is configured as described above.
  • the process of setting the ignition timing will be described below with reference to each of the flow charts of FIGS. 4 (a) to (c). It will be described according to.
  • FI G. 4 (a) is the main routine for setting the ignition timing, and FI G. 4 (b) is at the bottom dead center of each cylinder at 90 ° according to the crank pulse.
  • Fig. 4 (c) is an acceleration state detection routine.
  • the timer interrupt routine is executed by a timer interrupt every 10 milliseconds (ms). This is an embedded routine.
  • the crank interruption routine will be described.
  • the latest ignition timing SA out is set every time before ignition of each cylinder (at 90 ° from the bottom dead center). Is set to the ignition driver 53 (step b1), and the ignition driver 53 is triggered (step b2). Then, based on the detection information A and Ne from the air flow sensor 11 and the engine speed sensor, the actual volume efficiency Calculate the air volume Z engine speed) (step b 3) and capture the detection information (engine speed) Ne from the engine speed sensor (step b 4).
  • step b5 the throttle valve is set when the throttle opening change amount ⁇ reaches a peak, or when the actual volumetric efficiency Evr exceeds a threshold value Evs set for the sampling prohibition determination.
  • step b6 the count value CO UNT is incremented, and the process proceeds to step b7.
  • step b8 the flag FLG is cleared, and at step b9, the stored value M0 of the throttle change amount is cleared, and then the process returns.
  • step b5 Return immediately if NO is determined in step b5.
  • the acceleration state detection routine which is an interrupt routine performed every 10 milliseconds, is described in FIG. 4 (c).
  • the throttle opening 0 detected by the throttle sensor 14 is read (step c1), and the throttle opening 0 is determined from the throttle opening 0 and the previous throttle opening stored in the memory.
  • step c4 determines whether or not the current throttle opening change amount ⁇ 0 is larger than the previous throttle opening change amount ⁇ ⁇ 0 stored in the memory. If 0 is larger than ⁇ 0, the throttle opening variation ⁇ 0 is still increasing and not a peak, and the process proceeds to step c5.
  • step c10 it is determined whether or not the flag FLG is set to 1. If YES, the process proceeds to step c10. If N ⁇ , the process proceeds to the next step 6, and the current throttle opening change amount ⁇ S Is stored as the stored value ⁇ , and the count value C OUNT is set to 0 in step c7.
  • step c10 the current throttle opening ⁇ is stored as the stored value MS, and the routine returns. If the vehicle is not accelerating in step c3, return immediately. If the throttle opening change amount ⁇ 0 is not in the increasing state in step c4, the process proceeds to step c8, where it is determined whether or not the count value C 0 UNT is 0. That is, if the number has been increasing immediately before, the process proceeds to step c9, where the flag FLG is set to 1 and then returns. If it is N 0 in step c8, return immediately.
  • step 1 the actual volumetric efficiency Evr is set from AZN (intake air amount, engine speed) (step a 1). Then, in step a 2, the flag FLG is set or not, that is, ⁇ S is held. It is determined whether it is a period. If Y E S, go to step a6.
  • step a3 it is determined whether the actual volume efficiency Ev has exceeded the sampling inhibition threshold Evs. If YES, the flag FLG is set as described above (step a4). ) If NO, go to step a5.
  • the determination in step a3 can be made from the actual volume efficiency Evr and the engine speed N e using a sampling prohibited area determination map as shown in FIG.
  • step a5 an ignition timing acceleration correction rotation speed coefficient K EVEN is set according to the engine rotation speed Ne. Between the value of Ne and the value of KEVEN
  • step a7 the basic ignition timing data SA is obtained from the map (ignition timing map MP3) relating to the volumetric efficiency Evm and the engine speed Ne obtained in this manner.
  • step a8 other operating parameters Isseki (e.g., ⁇ , ⁇ ⁇ , ⁇ AT , ⁇ , DP, ⁇ 1D) sets the ignition timing correction de Isseki SA 3 based on.
  • the ignition timing S Aout set in this way is
  • step c4 of the acceleration state detection routine the actual volume efficiency Evr increases the width near the fully open value.
  • the sample value of the throttle opening change amount ⁇ 0 is held at the first peak value h1 for the four strokes of ignition at the time of taking the first peak value h1 [see FIG. 6 (c)].
  • the value of the correction amount for the ignition timing mapple volume efficiency Evm is held [see the hatched part in FIG. 6 (d)].
  • the actual volumetric efficiency Evr becomes ⁇ ⁇ Sampling prohibition EV (N e)
  • the throttle opening change Sampling of the quantity ⁇ S is prohibited, and the sample value is not updated.
  • FIG.4 (d) is a modification of FIG.4 (a), and as shown in the control flow shown in FIG.4 (d), the real volume efficiency Evr sets the threshold Evs When it exceeds (that is, when sampling is prohibited), the throttle opening change amount sampling means 8 4 is set so that the stored value ⁇ ⁇ ⁇ of the throttle change amount is cleared (step a 4 ′). May be configured. In this case, too, the control of this embodiment can be applied to the control of the above embodiment [see FIG. 4 (b) and FIG. 4 (c)].
  • the sampling prohibited area of the actual volume efficiency Evr is not limited to the one in the above-described embodiment, and an appropriate area close to the fully open value can be set.
  • the peak value hold period sets a period in which each cylinder fires once, in accordance with the number of cylinders of the engine, and is not limited to the embodiment.
  • this engine ignition timing control device it is possible to set an appropriate ignition timing in various acceleration patterns, to prevent the engine from accelerating as quickly as possible, to prevent knocking during acceleration, and to achieve a smooth operation. Since acceleration can be realized, it is particularly suitable for use in ignition timing control of engines mounted on automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Description

明 細 書
ェンジンの点火時期制御装置
技術分野
この発明は、 ガソ リ ンエンジン等の火花点火式のエンジン (内燃 機関) における点火時期制御装置に関し、 特に、 エンジンの加速時 に過渡ノ ッキングを回避するための手段をそなえた点火時期制御装 置に関する。 背景技術
従来より、 ガソ リ ンエンジンの点火時期制御は例えば次のように して行なわれている。
すなわち、 エンジンの吸入空気量を検出する流量センサおよびェ ンジン回転数を検出するェンジン回転数センサからェンジンの運転 状態を検出し、 これらのセンサからの検出結果に基づいて吸入空気 量 Aをエンジン回転数 N eで割って得られる値 A / N e として得ら れる体積効率 E V (実体積効率 E vr) とエンジン回転数 N e とで決ま る進角値 (点火時期情報) をもった 2次元マップ (点火時期マップ ) から基本点火時期情報を求め、 この基本点火時期情報に適宜の補 正を行ない、 このようにして得られた点火時期情報に基づき点火手 段 (点火プラグや点火コイル等) を作動させることにより、 ェンジ ンの点火時期を制御している。
ところで、 一般に、 エンジンの加速時には、 エンジンの吸入空気 量 Aのサンプリ ングが後れるので、 このサンプリ ングした吸入空気 量 Aに基づく実体積効率 E v (以下、 適宜 E vrという) に基づいて 点火時期マップから点火時期をルックアップすると、 実際の吸入空 気量に基づく点火時期よりもパーシャル側の点火時期をルッ クアツ プすることになつて、 進角気味となり、 過渡ノ ッキングが発生する そこで、 この過渡ノ ッキングを回避するために、 点火時期マップ から点火時期をルツクアップするための体積効率 (点火時期マップ ルッ クアップ用体積効率) Ev (以下、 適宜 Evmという) を遅れの ない値となるように補正して、 これにより、 点火時期を間接的にリ 夕一 ドさせることが考えられる。
例えば、 加速状態の指標としてスロッ トル開度の変化量 (偏差) Δ 0に着目して、 スロ ッ トル開度変化量 (スロッ トル開度偏差) Δ Θに応じて点火時期マップルックアツプ用体積効率 Evmを補正する ことができる。
F I G. 7 ( a ) 〜 ( c ) はこのような点火時期マップルックァ ップ用体積効率 Evmの補正を説明するためのタイムチヤー トであり 、 F I G. 7 ( a ) は加速時のスロッ トル開度変化量厶 0を示し、 F I G. 7 (b ) はこれに対応した点火時期マップルツクアップ用 体積効率 Evmを示し、 F I G. 7 ( c ) はこれに対応した点火時期 の制御状態を示している。
なお、 ここでは 4気筒エンジンを例に説明する。
F I G. 7 ( a ) に示すように、 加速が判定された時点からスロ ッ トル開度変化量 Δ 0が増大していく と、 このスロッ トル開度変化 量 Δ 0の大きさに応じて、 体積効率 Evrを F I G. 7 (b ) に破線 で示すように斜線分だけ増加するように補正する。
この補正は、 以下の式 ( 1 ) にしたがって行なう。
Evm= Evr+ (Δ 0 x GTH/ 4 ) x KEVNE · · ■ ( 1 ) ただし、 GTH: 点火時期加速補正ゲイン
K EVEN: 点火時期加速補正回転数係数
なお、 点火時期加速補正回転数係数 KEVENは、 F I G. 9に示す ように、 エンジン回転数 N eに対応した係数である。
ただし、 スロッ トル開度変化量 Δ 0がピーク値をとると、 この後 4行程間 ( 4点火時期間) だけ、 スロッ トル開度変化量 Δ 0のサン プル値としてこのピーク値をホールドする。 したがって、 この期間 は、 補正した体積効率 Evmもこのピーク値のものにホールドされる このようにスロッ トル開度変化量 Δ 0のサンプル値をホールドす るのは、 吸入空気量が全開となった直後の体積効率のオーバシュ一 卜を補正するためのものである。
また、 点火時期マップルッ クアップ用体積効率 Evmと点火時期と の関係は、 ェンジン回転数 N eを一定とすると F I G. 8に示すよ うになり、 一般的な加速時には体積効率が増加し、 点火時期は遅角 側の値となる。 ここで、 実体積効率 Evrのサンプリ ングの遅れを考 慮して、 この Evrに対して F I G. 7 (b ) に示されるように に応じた補正を加えると、 補正後の Evmは補正なしの場合に比べて 、 斜線で示される分だけ増大される。
この結果、 点火時期は、 F I G. 7 ( c ) に破線で示すようにな り斜線分だけ遅角側へ補正されるようになり、 過渡ノ ッキングが回 避されるのである。
ところで、 上述のような基本点火時期を決定するための点火時期 マップルックアツプ用体積効率の捕正を行なうと、 特殊な加速パタ ーン (つまり、 特殊なスロッ トル開度変化パターン) の時にリ タ一 ドが発生して、 加速不良を招く畏れがある。
例えば、 F I G. 1 0 ( a ) 〜 ( f ) はこのような特殊な加速パ ターンにおける体積効率補正状況を示すタイムチャー トであり、 F I G. 1 0 ( a ) は加速時のスロッ トル開度 0を示し、 F I G. 1 0 ( b ) はこれに対応した実体積効率 (実 Ev ) Evrを示し、 F I G. 1 0 ( c ) は対応したスロッ トル開度変化量 Δ のサンプル値 を示し、 F I G. 1 0 ( d ) は対応した点火時期マップルツ クアツ プ用体積効率 Evmを示し、 F I G. 1 0 ( e ) は対応した点火時期 の制御状態 (リタ一ド補正量) を示し、 F I G. 1 0 ( f ) は対応 したェンジンの行程を示している。
F I G. 1 0 ( a ) に示すようにスロッ トル開度 0が変化すると 、 スロッ トル開度変化量△ は F I G. 1 0 ( c ) に示されるよう に僅かな時問差で h 1 , h 2と 2つのピーク値をとることになる。 そして、 スロッ トル開度 0が第 1回目のピーク値をとつたところで 、 実体積効率 (実 Ev ) Evrが飽和状態に達していて、 この後、 ス ロッ トル開度 0が変化しても実体積効率 E V rはその値が変化しない ものとする。
一方、 スロッ トル開度変化量 Δ 0のサンプル値は、 スロッ トル開 度 0が P 1で示すように増加してはじめのピーク値 h 1をとつたと ころでホールドされ [F I G. 1 0 ( c ) 参照] 、 これに対応して 、 体積効率の補正量 [F I G. 1 0 (d) 中の斜線部参照] の値が ホールドされる。 そして、 この補正量が実体積効率 Evrに、 例えば 加算されて点火時期マップルックアツプ用体積効率 Evmが決定され る [ F I G. 1 0 (d) 中の符号 H I部参照] 。 スロッ トル開度変 化量 Δ 0のサンプル値の 1回目のホールド後に、 再びスロッ トル開 度 6>が P 2で示すように増加するような変化が起こることにより、 一旦 0に戻されたスロッ トル開度変化量 Δ 0のサンプル値が、 再び 適当な大きさの値にホールドされて [F I G. 1 0 ( c ) 中の符号 h 2部参照] 、 体積効率の補正量の値も再びホールドされる [F I G. 1 0 d ) 中の符号 H 2部参照] 。
この結果、 F I G. 1 0 ( e ) に示すように、 加速時の過渡ノ ッ キングを回避した (符号 R 1参照) 後に、 リター ド補正 (符号 R 2 参照) が不必要に繰り返されることになり、 このリタ一 ド量分だけ 、 エンジンの出力が低下し、 目的とするエンジンの加速がそれだけ 遅れてしまう という問題点がある。
本発明は、 このような問題点を解決しょう とするもので、 ェンジ ンの速やかな加速をできるだけ妨げないようにしながら、 加速時の ノ ッキングを確実に防止できるようにした、 エンジンの点火時期制 御装置を提供することを目的とする。 発明の開示 この発明の請求の,範囲第 1項にがかるエンジンの点火時期制御装 置は、 エンジンのスロッ トル開度をサンプリ ングし得られた値に基 づきスロッ トル開度変化量を演算するスロッ トル開度変化量サンプ リ ング手段と、 実吸入空気量及び実エンジン回転数に基づいて実体 積効率を算出する実体積効率算出手段 8 1 および上記スロッ トル開 度変化量に係る情報に基づいて上記実体積効率を補正する体積効率 補正手段を有し有効体積効率を算出する体積効率算出手段と、 上記 有効体積効率とエンジン回転数とに応じて点火時期を設定する点火 時期設定手段と、 上記点火時期設定手段により設定された点火時期 に基づき点火時期制御信号を出力する制御手段と、 上記点火時期制 御信号を受けて作動する点火手段と、 加速時に上記実体積効率 (E vr) が上記スロッ トルの全開値近傍に対応する所定の閾値を越えた 場合上記スロッ トル開度変化量サンプリ ング手段に対しサンプリ ン グ動作を禁止するサンプリ ング禁止手段とを備えていることを特徴 としている。
この請求の範囲第 1項にかかるエンジンの点火時期制御装置にお いて、 上記スロッ トル開度変化量サンプリ ング手段が上記スロッ ト ル開度変化量を所定周期毎に更新し記憶するように構成するととも に、 上記体積効率補正手段が上記スロッ トル開度変化量に係る情報 として上記スロッ トル開度変化量の記憶値を使用するように構成す ることが好ま しい。
この場合、 さらに、 上記スロッ トル開度変化量サンプリ ング手段 が、 サンプリ ング禁止手段によりサンプリ ングが禁止された時点の 上記記憶値を所定期間だけ保持するように構成することも好ましい さらに好ましく は、 上記スロッ トル開度変化量サンプリ ング手段 が上記記憶値の増加傾向が終了した時点から上記記憶値の状態変化 の無い期間が所定の記憶値保持期間以上のときに上記記憶値保持期 問だけ上記記憶値を保持し上記記憶値保持期間未満のときに上記経 過時間だけ上記記憶値を保持するように構成する。
さらに好ましくは、 サンプリ ングが禁止された時点からの記憶値 保待に係る上記所定期間を上記記憶値保持期間に設定する。
さらに好ましくは、 上記スロッ トル開度変化量サンプリ ング手段 が上記記憶値保持期間満了後に上記記憶をク リャするように構成す る o
さらに好ましくは、 上記サンプリ ング禁止手段の閾値を上記スロ ッ トルの全開値に対応する体積効率のほぼ 9 5 %に設定する。
一方、 上述の請求の範囲第 1項にかかるエンジンの点火時期制御 装置において、 上記スロッ トル開度変化量サンプリ ング手段が上記 スロ ッ トル開度変化量を所定周期毎に更新し記憶するように構成す るとともに、 上記体積効率補正手段がスロッ トル開度変化量に係る 情報として上記スロッ トル開度変化量の記億値を使用するように構 成して、 上記スロッ トル開度変化量サンプリ ング手段を、 サンプリ ング禁止手段によりサンプリ ングが禁止された時点で上記記憶値を ク リャするように構成することも好ましい。
この場合、 好ましくは、 上記スロッ トル開度変化量サンプリ ング 手段が上記記憶値の増加傾向が終了した時点から上記記憶値の状態 変化の無い期間が所定の記憶保持期間以上のときに上記記憶値保持 期間だけ上記記憶値を保持し上記記憶値保持期間未満のときに上記 経過時間だけ上記記憶値を保持するように構成する。
さらに好ましくは、 上記スロッ トル開度変化量サンプリ ング手段 が上記記憶値保持期間満了後に上記記憶をク リャするように構成す さらに好ましくは、 上記サンプリ ング禁止手段の閾値を上記スロ ッ トルの全開値に対応する体積効率のほぼ 9 5 %に設定する。
また、 上述の請求の範囲第 1項にかかるエンジンの点火時期制御 装置において、 上記スロッ トル開度変化量サンプリ ング手段が上記 スロ ッ トル開度変化量を所定周期毎に更新し記憶するとともに、 上 記体積効率補正手段がスロッ トル開度変化量に係る情報として上記 スロ ッ トル開度変化量の記憶値を使用するように構成した上で、 ェ ンジンの冷却水温に応じて点火時期を制御するように構成すること も好ましい。
この場合、 好ましく は、 上記冷却水温が高いほど上記点火時期の 進角値を小さ く設定するように構成する。
また、 上述の請求の範囲第 1項にかかるェンジンの点火時期制御 装置において、 上記スロッ トル開度変化量サンプリ ング手段が上記 スロ ッ トル開度変化量を所定周期毎に更新し記憶するとともに、 上 記体積効率補正手段がスロ ッ トル開度変化量に係る情報として上記 スロ ッ トル開度変化量の記憶値を使用するように構成した上で、 ェ ンジンの吸気温度に応じて点火時期を制御するように構成すること も好ましい。
この場合、 好ましく は、 上記吸気温度が低い領域と高い領域とで は点火時期を遅角させ、 それ以外の領域では進角および遅角を行な わないように設定する。
また、 上述の請求の範囲第 1 項にかかるエンジンの点火時期制御 装置において、 上記スロ ッ トル開度変化量サンプリ ング手段が上記 スロッ トル開度変化量を所定周期毎に更新し記憶するとともに、 上 記体積効率補正手段がスロッ トル開度変化量に係る情報として上記 スロッ トル開度変化量の記憶値を使用するように構成した上で、 ェ ンジンのアイ ドル運転時にエンジン回転速度に係る情報に基づき点 火時期を制御するように構成することも好ましい。
この場合、 好ま しく は、 上記エンジン回転速度に係る情報がェン ジン回転速度そのものであり該エンジン回転速度がアイ ドル運転状 態情報に応じて設定された目標回転速度を越えた場合に点火時期を 遅角させ上記ェンジン回転速度が上記目標回転速度を下回つた場合 に点火時期を進角させるように構成構成する。
さらに、 好ましく は、 上記エンジン回転速度に係る情報をェンジ ン回転速度の変化量として、 該エンジン回転速度が上昇傾向にある 場合に点火時期を遅角させ上記ェンジン回転速度が下降傾向にある 場合に点火時期を進角させるように構成する。
そして、 この発明のエンジンの点火時期制御装置 (請求の範囲第 1項記載の装置) では、 スロッ トル開度変化量サンプリ ング手段で 、 エンジンのスロッ トル開度をサンプリ ングし得られた値に基づき スロッ トル開度変化量を演算して、 体積効率算出手段において、 実 体積効率算出手段で、 実吸入空気量及び実エンジン回転数に基づい て実体積効率を算出し、 体積効率補正手段で、 上記スロ ッ トル開度 変化量に係る情報に基づいて上記実体積効率を補正することで、 有 効体積効率を算出する。 そして、 点火時期設定手段で、 上記有効体 積効率とエンジン回転数とに応じて点火時期を設定して、 制御手段 力 上記点火時期設定手段により設定された点火時期に基づき点火 時期制御信号を出力し、 この点火時期制御信号を受けて点火手段が 作動する。 特に、 加速時に上記実体積効率が上記スロ ッ トルの全開 値近傍に対応する所定の閾値を越えた場合には、 サンプリ ング禁止 手段が、 上記スロッ トル開度変化量サンプリ ング手段に対しサンプ リ ング動作を禁止する。 図面の簡単な説明
F I G. 1〜F I G. 6は本発明の一実施例としてのエンジンの 点火時期制御装置を示すもので、 F I G. 1はその制御ブロック図 . F I G. 2は本装置を有するエンジンシステムを示す全体構成図 . F I G. 3は上記エンジンシステムの制御ブロ ッ ク図、 F I G. 4 (a) 〜F I G. 4 ( c) はそれぞれこの装置による制御の内容 を示すフローチヤ一ト、 F I G. 4 (d) は上記 F I G. 4 ( a ) の基本点火時期の設定制御の変形例に係る制御のフローチヤ一ト、 F I G. 5はスロッ トル開度変化量のサンプリ ング禁止の体積効率 領域を決定するサンプリ ング禁止領域判定マップ、 F I G. 6は体 積幼率補正 のスひツ トル開度 , 実体積効率 Evr, スロッ トル開 度変化量 Δ 0, 点火時期マツブルックアップ用体積効率 Evm, 点火 時期のリタ一ド補正量及びェンジンの行程を示すタイムチヤ一トで あり、 F I G. 7〜F I G. 1 0は本装置の案出の過程で考えたェ ンジンの点火時期制御装置について示すもので、 F I G. 7はその 点火時期マップルッ クアツプ用体積効率 E vmの補正を説明するため のタイムチャー ト、 F I G. 8はその点火時期マップルッ クアップ 用体積効率 Evmと点火時期との関係を示す図、 F I G. 9は点火時 期加速補正回転数係数の特性を示す図、 F I G. 1 0はその問題点 の生じる加速パターンでの補正を示すタイムチヤー トである。 発明を実施するための最良の形態
以下、 図面により本発明の一実施例としてのエンジンの点火時期 制御装置について説明する。
さて、 本装置は自動車に搭載されるガソ リ ンエンジンシステムを 制御するもので、 かかる車載用ガソリ ンエンジンシステムは、 F I
G. 2のように構成される。
つまり、 F I G. 2に示すように、 ガソ リ ンエンジン E (以下、 単にエンジン Eという) はその燃焼室 1 に通じる吸気通路 2および 排気通路 3を有しており、 吸気通路 2と燃焼室 1 とは吸気弁 4によ つて連通状態を制御されるとともに、 排気通路 3と燃焼室 1 とは排 気弁 5によって連通状態を制御されるようになつている。
また、 吸気通路 2には、 上流側から順にエアク リーナ 6, スロッ トル弁 7およびエンジンの動作に影響を与える第 1のエンジン調整 要素を構成する電磁式燃料噴射弁 (インジ クタ) 8が設けられて おり、 排気通路 3には、 その上流側から順に排ガス浄化用の触媒コ ンバ一夕 (三元触媒) 9および図示しないマフラ( 消音器) が設け られている。
なお、 インジ ク夕 8は吸気マ二ホルド部分に気筒数だけ設けら れて、 いわゆるマルチポィン トィンジヱクシヨ ン (M P I ) を構成 している。 したがって、 本実施例のエンジン Eが例えば直列 4気筒 エンジンであるとすると、' インジェクタ 8は 4個設けられているこ とになる。
また、 スロッ トル弁 7はワイヤケーブルを介してアクセルペダル に連結されており、 これによりアクセルペダルの踏込み量に応じて 開度が変わるようになっているが、 更にアイ ドルスピードコン ト口 ール用モータ ( I S Cモータ) 1 0によっても開閉駆動されるよう になっており、 これによりアイ ドリ ング時にァクセルペダルを踏ま なくても、 スロッ トル弁 7の開度を変えることができるようになつ ている。
さらに、 各気筒には、 その燃焼室 1へ向けて点火手段としての点 火プラグ 1 8 ( F I G . 2においては本来は燃焼室 1 の近傍に点火 プラグ 1 8を描くべきであるが、 紙面の都合で、 点火プラグ 1 8は 別の位置に描かれている) が設けられており、 各点火プラグ 1 8は ディス ト リ ビュー夕 5 0に接続されていて、 このディスト リ ビュー 夕 5 0は点火コイル 5 1 に接続されている。 そして、 点火コイル 5 1付きのパワートランジスタ 5 2のオフ動作によって点火コイル 5 1 に高い電圧が発生して、 ディス ト リ ビュータ 5 0につながってい る 4本の点火プラグ 1 8のいずれかがスパーク (点火) するように なっている。 なお、 パワー トランジスタ 5 2のオン動作によって点 火コイル 5 1 は充電を開始する。 そして、 これらの点火プラグ 1 8 , ディス ト リ ビュー夕 5 0, 点火コイル 5 1 , パワー トランジスタ 5 2で、 点火手段を構成する。
このような構成により、 スロッ トル弁 7の開度に応じエアク リー ナ 6を通じて吸入された空気が吸気マ二ホルド部分でィンジヱクタ 8からの燃料と適宜の空燃比となるように混合され、 燃焼室 1 内で 点火ブラグ 1 8を適宜のタイ ミ ングで点火させることにより、 燃焼 せしめられて、 エンジン トルクを発生させたのち、 混合気は、 排ガ スとして排気通路 3へ排出され、 触媒コンバ一夕 9で排ガス中の C 0, H C , N 0 X の 3つの有害成分を浄化されてから、 マフラで消 音されて大気側へ放出されるようになつている。
さらに、 このエンジン Eを制御するために、 種々のセンサが設け られている。 まず吸気通路 2側には、 そのエアク リーナ配設部分に 、 吸入空気量をカルマン渦情報から検出する体積流量計としてのェ アフロ一センサ 1 1, 吸入空気温度を検出する吸気温センサ 1 2お よび大気圧を検出する大気圧センサ 1 3が設けられており、 そのス 口ッ トル弁配設部分に、 スロッ トル弁 7の開度を検出するポテンシ ョ メ一夕式のスロッ トルセンサ 1 4 , アイ ドリ ング状態を検出する アイ ドルスィ ツチ 1 5および I S Cモータ 1 0の位置を検出するモ —夕ポジショ ンセンサ 1 6が設けられている。
また、 排気通路 3側には、 触媒コンバータ 9の上流側で燃焼室 1 に近い部分に、 排ガス中の酸素濃度 (0 2 濃度) を検出する酸素濃 度センサ (0 2 センサ) 1 7が設けられている。 ここで、 0 2 セン サ 1 7は固体電解質の酸素濃淡電池の原理を応用したもので、 その 出力電圧は理論空燃比付近で急激に変化する特性を持ち、 理論空燃 比よりも リーン側の電圧が低く、 理論空燃比より もリ ッチ側の電圧 が高い。
さらに、 その他のセンサとして、 エンジン冷却水温を検出する水 温センサ 1 9が設けられるほか、 クランク角度を検出するクランク 角センサ 2 1 (このクランク角センサ 2 1 はェンジン回転数 Nを検 出するエンジン回転数センサも兼ねているので、 以下、 必要に応じ 、 このクランク角センサ 2 1 をエンジン回転数センサと称すること がある) および第 1気筒( 基準気筒) の上死点を検出する T D Cセ ンサ 2 2がそれぞれディス ト リ ビュー夕 5 0に設けられている。 ところで、 上記のセンサ 1 1 〜 1 7 , 1 9 , 2 1 , 2 2からの検 出信号は、 電子制御ュニッ ト (E C U ) 2 3へ入力されるようにな つ —し レ、 O o なお、 E C U 2 3へは、 バッテリ 2 4 (F I G. 3参照) の電圧 を検出するバッテリセンサ 2 5からの電圧信号ゃィグニッシヨ ンス イ ッチ (キースィ ッチ) 2 6からの信号も入力されている。
また、 E C U 2 3のハー ドウェア構成は F I G. 3のようになる 力 この E C U 2 3はその主要部として C P U 2 7をそなえており 、 この C P U 2 7へは、 吸気温センサ 1 2, 大気圧センサ 1 3, ス ロッ トルセンサ 1 4 , 02 センサ 1 7 , 水温センサ 1 9およびバッ テリセンサ 2 5からの検出信号が入カイン夕フェイス 2 8および A ZDコンバータ 3 0を介して入力され、 アイ ドルセンサ 1 5および ィグニッ シヨ ンスィ ッチ 2 6からの検出信号が入カインタフヱイス 2 9を介して入力され、 エアフローセンサ 1 1, クランク角センサ 2 1 および TD Cセンサ 2 2からの検出信号が直接に入力ポー 卜へ 入力されるようになつている。
さらに、 C P U 2 7は、 バスラインを介して、 プログラムデータ や固定値データを記憶する R OM 3 1 , 更新して順次書き替えられ る R AM 3 2およびバッテリ 2 4によってバッテリ 2 4が接続され ている間はその記憶内容が保持されることによってバックアップさ れたバッテリバッ クアップ RAM ( B UR AM) 3 3 との間でデ一 夕の授受を行なうようになつている。
なお、 R A M 3 2内データはィグニッシヨ ンスィッチ 2 6をオフ すると消えてリセッ トされるようになつている。
また、 C P U 2 7からは点火時期制御信号が点火ドライバ 5 3を 介してパワー トランジスタ 5 2へ出力され、 更には点火コイル 5 1 からディス ト リ ビュー夕 5 0を介して例えば 4つの点火プラグ 1 8 を順次スパークさせてゆく ようになつている。
ところで、 点火時期制御のためのプロック図を更に詳細に示すと . F I G. 1 に示すようになる。 すなわち、 この点火時期制御装置 は、 F I G. 1 に示すごとく、 2次元の基本点火時期データ (進角 データ) θ。 を記憶する点火時期マップ MP 3をもった基本点火時 «0設定手段 (点火陈期設定手段) 5 8のほかに、 水温補正マップ M P 5をもった水温補正手段 5 9, 吸気温補正マップ M P 7をもった 吸気温補正手段 6 1, アイ ドル安定化補正マップ M P 8をもったァ ィ ドル安定化補正手段 6 2をそなえて構成されている。 なお、 ここ での基本点火時期は請求の範囲に記載した点火時期に相当する。 基本点火時期設定手段 5 8では、 点火時期マップ M P 3で、 A Z N (吸入空気量 Zエンジン回転数) したがって体積効率 E v と、 ェ ンジン回転数 N e とがわかれば、 マップ値から基本点火時期 Θ。 が 決まる (ルッ クアップできる) ようになつている。
この体積効率 E v の値は、 体積効率算出手段 (E v算出手段) 8 0で算出されるが、 この体積効率算出手段 8 0は、 実体積効率算出 手段 8 1 と体積効率補正手段 8 3 とから構成されている。
実体積効率算出手段 8 1 は、 エアフローセンサ 1 1で検出された 実吸入空気量 Aとエンジン回転数センサ 2 1 で検出された実ェンジ ン回転数 N e とから実体積効率 E vrを算出する。
また、 体積効率補正手段 8 3は、 エンジンの加速時に過渡ノ ツキ ングを回避すベく行なう補正であり、 この体積効率捕正を通じて点 火時期を間接的にリ夕一ド補正するためのものである。 具体的には 、 加速判定手段 7 2でエンジンが加速状態にあることが判定され、 この際、 体積効率補正手段 8 3ではエンジンのスロッ トル開度変化 量 (増加量) Δ のサンプリ ングデータが送られると、 この Δ 0の 大きさに応じて体積効率 E Vが大きくなるように補正が行なわれる 。 また、 加速状態にあると判定されない場合には、 上記補正を行な わずに、 実体積効率算出手段 8 1 で算出された実体積効率 E vrを後 述する基本点火時期マップルッ クアップ用体積効率 (有効体積効率 :) E vmとして出力する。
なお、 加速判定手段 7 2による加速判定は、 例えば 1 0 ms ec ( 0 . 0 1秒) ごとにスロッ トル開度 0を取り込んで、 メモリ に記憶さ れた前回の開度 と現在の開度 0とから算出されるスロッ トル開 度変化量 ( = Θ - Μ Θ が正にあれば加速状態にあると判定さ れる。 また、 スロ ッ トル開度変化量 Δ 0はメモリ内に Μ Δ 0として 記憶されるが、 この記憶値 Μ Δ Θによって加速判定をすることもで きる。
ところで、 上述の体積効率補正は、 スロッ トル開度変化量 Δ 0の サンプリ ングの禁止時を除いて、 前述の F I G . 7に示すタイムチ ヤー 卜の如く行なわれる。
つまり、 体積効率補正は、 実体積効率 E vrに対し加速開始からス 口ッ トル開度変化量 Δ 0が増加している間 (スロッ トル開度変化量 Δ 0がピークに達するまでの間) だけサンプリ ング毎のスロッ トル 開度変化量 Δ Θに応じて行なわれ、 スロ ッ トル開度変化量 Δ 0がピ ークに達した後は、 所定の期間このピーク値 Δ 0 P をホールドして このホールドしたピーク値厶 P に応じて行なわれるようになって いる。 ここで、 このホールドは各気筒がそれぞれ 1回点火を行なう 間だけ行なうようにする。 例えば 4気筒エンジンの場合は 4行程間 ( 4点火間) だけホールドする。
このスロッ トル開度変化量 Δ 0がピークにあるかどうかの判定は 、 例えば現在のスロ ッ トル開度変化量厶 0とスロッ トル開度変化量 の記憶値 Μ Δ Θ との差 ( Δ 0— Μ Δ 0 ) を算出し、 この差が正から 負に変わったところで、 前回のスロッ トル開度変化量の記憶値 Μ Δ 0がピーク値であつたと判定する。
そして、 スロッ トル開度変化量 Δ 0は、 スロッ トル開度変化量サ ンプリ ング手段 8 4で、 スロッ トルセンサ 1 4からの検出情報に基 づいて算出されて、 データとして出力される。
このスロッ トル開度変化量サンプリ ング手段 8 4には、 サンプリ ング禁止手段 (図 1 中では禁止手段と示す) 8 5が付設されている o
このサンプリ ング禁止手段 8 5 は、 実体積効率 E vrがスロ ッ トル 全開値に対応した値に達する以前の該全開値の近傍の所定の段階で スロッ トル開度変化量のサンプリ ングを禁止するサンプリ ング禁止 信号を出力するもので、 ここでは、 実体積効率 E vrが該全開値の 9 5 %以上の領域をサンプリ ング禁止領域としており、 禁止領域判定 手段 (図 1 中では禁止判定と示す) 8 2によって、 F I G . 5に示 すようなサンプリ ング禁止領域判定マップに基づいて、 実体積効率 E vrからサンプリ ング禁止領域 (サンプリ ング禁止マップ値より も 大きい領域) であるかどうかが判定され、 この禁止領域判定手段 8 2でサンプリ ング禁止領域であることが判定されると、 サンプリ ン グ禁止手段 8 5を通じてサンプリ ング禁止信号がスロッ トル開度変 化量サンプリ ング手段 8 4へ出力されるようになっている。
そして、 サンプリ ング禁止手段 8 5によりサンプリ ングが禁止さ れると、 スロッ トル開度変化量サンプリ ング手段 8 4は、 このサン プリ ングが禁止された時点で記憶された記憶値 Μ Δ を所定期間だ け保持するように構成されている。
例えば、 記憶値 Μ Δ が増加してからほぼ一定で変化の無い状態 が続く と、 スロッ トル開度変化量サンプリ ング手段 8 4は、 記憶値 Μ Α Θがほぼ一定の状態が所定の期間以上であれば、 この所定の期 間 (記憶値保持期間) だけ記憶値 Μ Δ 0を保持し、 記憶値 が ほぼ一定の状態が記憶値保持期間未満のときにはこの経過時間だけ 記憶値 M厶 0を保持して、 いずれも、 この後は記憶値 Μ Δ 0をク リ ャするように構成されている。 上述のサンプリ ングが禁止された時 点からの記憶値 Μ Δ 6>の保持期間を、 記憶値保持期間とできる。
したがって、 実体積効率 E vrが全開値の 9 5 %以上の領域に達し たら、 スロッ トル開度変化量 Δ のデータは実質的に体積効率補正 手段 8 3へ送られなくなり、 体積効率補正手段 8 3では体積効率 E V の補正が停止されるようになつている。
このようにして、 体積効率補正手段 8 3で実体積効率 E vrに対し 適宜加速時補正が施されて得られた基本点火時期マップルッ クアツ プ用体積効率 E vmと、 エンジン回転数センサ 2 1 で検出された実ェ ンジン回転数 N e とに基づいて、 点火诗期マップ MP 3から基本点 火時期をルックア ツプすることができる。
水温補正マップ MP 5は、 冷却水温 WTと進角量 θ、ντとの関係を 記憶しており、 その関係は水温が高いほど、 進角値 Θ、ντが小さくな るようになっている。
吸気温補正マップ MP 7は、 吸気温 ATと遅角、 進角量 θΑΤとの 関係を記憶しており、 その関係は、 吸気温 ATが低いところと高い ところとで遅角させ、 吸気温 ATが中く らいのところでは 0 となつ てい。。
アイ ドル安定化補正マップ MP 8 としては、 例えば比例制御 (P 制御) 用と微分制御 (D制御) 用とがあるが、 P制御用は、 ェンジ ン回転数 N e と点火時期情報 Θ I DP との関係を記憶しており、 その 関係は、 ェンジン回転数 N eが I S C (アイ ドルスピー ドコ ン ト口 ール) 目標エンジン回転数設定手段 7 3で設定される I S C目標ェ ンジン回転数 N e。 よりも高いと、 遅角させ、 エンジン回転数 N e が I S C目標エンジン回転数 N e。 よりも低いと、 進角させるよう になっている。 また、 D制御用は、 エンジン回転数変化 ΔΝ e と点 火時期情報 01 DD との関係を記憶していて、 その関係は、 エンジン 回転が上がっている状態で、 遅角させ、 エンジン回転が下がってい る状態で、 進角させるようになつている。 なお、 いずれもハンチン グ防止のため、 不感帯が設けられている。
また、 基本点火時期設定手段 5 8からの基本点火時期データ θ。 と水温補正手段 5 9からの水温補正データ ©WTは加算手段 6 3で加 算され、 吸気温補正手段 6 1からの吸気温データ ΘΑΤは、 運転状態 補正手段 6 9によって、 エンジン運転状態によって適宜の補正を施 され、 この運転状態補正手段 6 9からのデータは、 加算手段 6 5に よって、 加算手段 6 3からのデータ (θ。 + θ«τ) に加算されるよ うになつている。
この加算手段 G 5からのデータは、 加算手段 6 6にて、 更にアイ ドル安定化補正手段, 6 2からのアイ ドル安定化データ Θ 1DP , Θ 1D D と足し合わせられて、 夕イ ミ ング制御部 (制御手段) 6 8へ送ら れるようになっている。
なお、 アイ ドル安定化補正手段 6 2と加算手段 6 6 との間には、 スィ ッチ 6 7が介装されており、 このスィ ッチ 6 7は、 アイ ドルス イ ッチ 1 5がエンジンアイ ドル時にオンになると閉じ、 それ以外で 開いている。
また、 夕イ ミ ング制御部 6 8は、 上記の基本点火時期データ θ0 に種々の補正データ Θ AT, Θ , D P , Θ , DD ) を加味したデ —夕から点火時期を決定して、 点火時期制御信号を出力するもので あ Q o
また、 F I G. 3に示すごとく、 C PU 2 7からは燃料噴射用制 御信号がインジヱクタ ドライバ 3 4を介して出力され、 例えば 4つ のインジェクタ 8を順次駆動させてゆく ようになつている。
本発明の一実施例としてのエンジンの点火時期制御装置は上述の ように構成されており、 以下に、 点火時期の設定過程を、 F I G. 4 ( a) 〜 ( c) の各フローチャー トに従って説明する。
F I G. 4 ( a) は点火時期の設定のメインルーチンであり、 F I G. 4 ( b ) はクランクパルスに応じて各気筒の下死点 9 0 ° 毎 に ( 1行程毎即ちクランク角 1 8 0 ° 毎) に行なわれるクランク割 込ルーチンであり、 F I G. 4 ( c ) は加速状態検出ルーチンであ つて、 例えば 1 0 ミ リ秒 (ms) 毎のタイマ割込で行なわれるタイマ 割込ルーチンである。
まず、 クランク割込ルーチンを説明すると、 F I G. 4 ( b ) に 示すように、 各気筒の点火前( 下死点から 9 0 ° の時点) 毎に、 設 定された最新点火時期 S A out を点火ドライバ 5 3にセッ 卜 し( ス テツプ b 1 ) 、 点火ドライバ 5 3をト リガする( ステップ b 2 ) 。 そして、 エアフローセンサ 1 1及びエンジン回転数センサからの検 出情報 A, N eに基づいて実体積効率算出手段 8 1で AZN (吸入 空気量 Zエンジン回転数) を算出する (ステップ b 3 ) とともに、 エンジン回転数センサからの検出情報 (エンジン回転数) N eを取 り込む (ステップ b 4 ) 。
そして、 ステップ b 5では、 スロッ トル開度変化量 Δ Θがピーク に達した時点、 もしく は実体積効率 Evrがサンプリ ング禁止判定の 為に設定された閾値 Evsを超えた時点でセッ 卜されるフラグ F L G が 1 にセッ トされているか否かが判定され、 YE Sの判定でステツ プ b 6に進みカウン ト値 C O UNTがインク リ メン トされステップ b 7に進む。 ここでは、 カウン ト値 C OUNTが N (ここでは、 N = 5 ) になっているかどうかを判定し、 カウン ト値 C O UNTが N になっていなければ、 そのまま リターンし、 カウン ト値 C O UNT が Nに達していればステツプ b 8へ進む。 ステップ b 8ではフラグ F L Gをク リャし、 次のステツプ b 9でスロッ トル変化量の記憶値 M厶 0がク リャされてその後リターンする。
—方、 ステップ b 5で、 NOと判定されると直ちにリターンする また、 例えば 1 0 ミ リ秒毎に行なわれる割込ルーチンである加速 状態検出ルーチンを説明すると、 F I G. 4 ( c ) に示すように、 スロ ッ トルセンサ 1 4で検出されたスロッ トル開度 0を読み込み ( ステップ c 1 ) 、 このスロッ トル開度 0 とメモリに記憶されている 前回のスロッ トル開度 とから、 スロッ トル開度変化量 Δ Θ (= θ - Δ Θ ) を算出する (ステップ c 2 ) 。
さらに、 スロッ トル開度変化量 Δ 0が 0近傍の加速不感帯 ( 0〜 Δ Θ S ) よりも大きいか (つまり、 A 0 > A 0 S) により、 加速状 態にあるかどうかを判定する。 加速状態にあれば、 ステップ c 4に 進んで、 現在のスロッ トル開度変化量 Δ 0がメモリに記憶されてい る前回のスロッ トル開度変化量 ΜΔ 0よりも大きいかどうかを判定 し、 Δ 0が ΜΔ 0より も大きければ、 スロッ トル開度変化量 Δ 0は まだ増加中であり ピークではないものとして、 ステップ c 5に進ん で、 フラグ F L Gが, 1 にセッ トされているか否かが判定され YE S ならステップ c 1 0に進み、 N〇なら次のステップ 6に進んで、 今 回のスロッ トル開度変化量 Δ Sを記憶値 ΜΔ Θとして記憶し、 ステ ップ c 7でカウン ト値 C OUNTを 0 とする。
また、 ステップ c 1 0に進んで今回のスロッ トル開度 Θを記憶値 M Sとして記憶して、 リターンする。 なお、 ステップ c 3で加速状 態にない場合には直ちにリ ターンする。 またステップ c 4でスロッ トル開度変化量 Δ 0が増加状態にない場合には、 ステップ c 8へ進 んでカウン ト値 C 0 UNTが 0か否かが判定され、 ここで Y E Sで あれば、 すなわち直前まで厶 が増加傾向にあったならばステップ c 9へ進みフラグ F L Gを 1 にセッ トし、 その後リターンする。 ス テツプ c 8で N 0であればすぐにリタ一ンする。
このような各サブルーチンが周期的に行なわれる中で、 F I G. 4 ( a ) のように、 基本点火時期の設定のメインルーチンが実行さ れるが、 このルーチンでは、 まず、 実体積効率算出手段 8 1 で AZ N (吸入空気量 エンジン回転数) から実体積効率 Evrを設定し ( ステップ a 1 ) 、 次に、 ステップ a 2でフラグ F L Gがセッ 卜され ているか否か、 すなわち Δ Sのホールド期間か否かが判定される。 ここで、 Y E Sならステップ a 6へ進む。
一方、 NOの判定ならばステップ a 3へ進んで、 実体積効率 Ev がサンプリ ング禁止用閾値 Evsを超えたか否かが判定され、 Y E S なら前述のようにフラグ F L Gをセッ トし (ステップ a 4 ) 、 N O ならステップ a 5へ進む。 このステップ a 3での判定は、 F I G. 5に示すようなサンプリ ング禁止領域判定マップによって実体積効 率 Evrとエンジン回転数 N e とから行なうことができる。
ステップ a 5では、 ェンジン回転数 N eに応じて点火時期加速補 正回転数係数 K EVENを設定する。 N eの値と K E V E Nの値との間には
F I G. 9に示すような関係があり、 KEVENの設定を、 この F I G . 9に示すようなマップによって行なってもよい。 つぎに、 ステツプ' a 6で、 前述の式 ( 1 ) 、 つまり、 E vm= E vr + (ΜΔ 0 x G) x KEVENにしたがって、 実体積効率 Evrを補正し 点火時期マップルッ クアップ用体積効率 Evmを得る。 ただし、 上式 において、 G GTHZ4である。
そして、 ステップ a 7で、 このようにして得た体積効率 Evmとェ ンジン回転数 N eに関するマップ (点火時期マップ MP 3 ) から基 本点火時期デ一夕 S A。 を設定し、 次のステップ a 8で、 他の運転 パラメ一夕 (例えば、 Θ、νΤ, θ AT, Θ , DP , θ 1D) に基づいて点火 時期補正デ一夕 S A3 を設定する。
続くステップ a 9で、 これらの基本点火時期データ S A。 と点火 時期補正データ とから、 点火時期 S Aout = S A。
を算出する。 その後、 再びステップ a 1 に戻る。
このようにして設定された点火時期 S Aout が、 クランク割込ル
—チン [F I G. 4 (b ) ] で実行される点火ドライバのセッ 卜に 用いられる。
従って、 この加速時の補正時に、 スロッ トル開度変化量 Δ 0がピ —クに達すると、 加速状態検出ルーチンでカウン ト値 C OUNTが 0にリセッ トされなくなつて、 もしくは、 実体積効率 Evrが閾値 E vsを超えると、 いずれもフラグ F L Gがセッ トされ、 クランク割込 ルーチンでのカウン トが続行されるようになる。 そして、 スロッ ト ル開度変化量 がピークに達してから、 もしくは実体積効率 Evr が閾値 Evsを超えてから、 カウント値 C 0 U NTが 5になるまでの 4行程間 ( C 0 UN Tが 1から 4 までの間) は、 スロッ トル開度変 化量△ Θがピークに達した時もしくは実体積効率 Evrが閾値 Evsを 超えた時点にホールドされた Δ 0に基づく Evmに応じて設定された 点火時期 S Aout 力 クランク割込ルーチンで実行される点火ドラ ィバのセッ トに用いられる。
そして、 カウン ト値 C OUNTが 5になるとクランク割り込みル —チンのステップ b 9でスロッ トル開度変化量の記憶値 ΜΔ 0の値 として、 0を設定する。
そして、 この後は、 再びスロッ トル開度変化量 Δ 0にピークが発 生して、 加速状態検出ルーチンのステツプ c 4で加速が判定されて も、 実体積効率 Evrが全開値付近の幅をもった領域 (全開値の 9 5 以上の領域) にある所定期間は、 フラグ F L Gがセッ トされてお り、 ΜΔ 0の更新は行なわれず、 従って ΜΔ 0 = 0の状態でメイ ン ルーチンにおいてステップ a 2からステップ a 6へ進むので、 体積 効率 Ev の補正は行なわれず、 点火時期マップルッ クアップ用体積 効率 Evmとしてステップ a 1で設定された実体積効率 E vrが採用さ れる。
上述までの特殊な加速パターンは、 F I G. 6 (a) に示される スロ ッ トル操作に対応する。 この場合の体積効率補正状況を説明す ると、 F I G. 6 (a) 〜 ( f ) のタイムチャー ト [F I G. 6 ( a ) 〜 ( f ) はそれぞれ F I G. 1 0 ( a ) 〜 ( ί ) に対応する] に示すようになる。
つまり、 F I G. 6 (a) に示すようにスロッ トル開度 0が変化 すると、 スロッ トル開度変化量 Δ Sは僅かな時間差で h 1, h 2と 2つのピーク値をとることになり、 スロッ トル開度 0が第 1回目の ピーク値をとつたところで、 実体積効率 E vrがピーク値付近に達す るとして、 この後、 スロ ッ トル開度 0が P 1から P 2に変化しても 実体積効率 Evrはピーク値付近の値にホールドされているものとす
^> o
一方、 スロッ トル開度変化量 Δ 0のサンプル値は、 はじめのピ一 ク値 h 1をとつたところで点火の 4行程の間その値がホールドされ [F I G. 6 ( c ) 参照] 、 これに対応して、 点火時期マップルツ クァップ用体積効率 Evmの為の補正量の値がホールドされる [F I G. 6 (d) 中の斜線部参照] 力 この時点で、 実体積効率 Evrが 、 Δ サンプリ ング禁止 E V (N e ) すなわち、 前述の閾値 E vsよ り も大きいサンプリ ング禁止領域に入るので、 スロッ トル開度変化 量 Δ Sのサンプリ ングが禁止されそのサンプル値の更新が行なわれ な 'ヽなる。
このため、 スロッ トル開度 0の 1回目のピークを経過後に再びス ロッ トル開度 0がピーク値 P 2をとつても、 スロッ トル開度変化量 厶 Θのサンプル値が再び適当な大きさの値にホールドされるような こと [F I G. 6 ( c ) 中の符号 h 2部参照] が回避され、 点火時 期マップルッ クアツプ用体積効率 Evmの補正量の値のホールド [F I G. 6 ( d ) 中の符号 H 2部参照] も回避されるようになる。 この結果、 このような特殊な加速パターンであっても 加速時の 過渡ノ ッキングを回避した (符号 R 1参照) 後には、 リ クー ド補正 が不必要に繰り返されないようになり、 加速時の過渡ノ ッキングを 回避した後に、 速やかにェンジンの出力増加が行なえるようになり 、 目的とするェンジンの加速が全ての加速パターンで確実に行なえ るようになるのである。
また、 F I G. 4 ( d) は F I G. 4 ( a ) の一部を変更したも ので、 この F I G. 4 ( d ) に示される制御フローのごとく、 実体 積効率 Evrが閾値 Evsを超えたとき (つまり、 サンプリ ングが禁止 されたとき) には、 スロッ トル変化量の記憶値 ΜΔ Θをク リャ (ス テツプ a 4 ' ) するようにスロッ トル開度変化量サンプリ ング手段 8 4を構成していも良い。 この場合も、 これにかかる制御は上述の 実施例のもの [F I G. 4 (b) , F I G. 4 ( c ) 参照] を適用 できる。
なお、 実体積効率 Evrのサンプリ ング禁止領域は上述の実施例の ようなものに限られず、 全開値に近い適当な領域を設定しうるもの である。
また、 ピーク値のホールド期間は、 エンジンの気筒数にあわせて 、 各気筒が 1 回ずつ 火を行なう期間を設定するもので、 本実施例 のものに限られない。 産業上の利用可能性
このェンジン点火時期制御装置によれば、 種々の加速パターンで 、 適切な点火時期を設定でき、 エンジンの速やかな加速をできるだ け妨げないようにしながら、 加速時のノ ッキングを防止し、 滑らか な加速を実現できるようになるので、 特に自動車に搭載するェンジ ンの点火時期制御に用いるのに適している。

Claims

請 求 の 範 囲
1 . エンジンのスロッ トル開度 ( ) をサンプリ ングし得られた値 に基づきスロッ トル開度変化量 (厶 0) を演算するスロッ トル開度 変化量サンプリ ング手段 ( 8 4 ) と、
実吸入空気量 (A) 及び実エンジン回転数 (N e ) に基づいて実 体積効率 (Evr) を算出する実体積効率算出手段 8 1 および上記ス ロッ トル開度変化量 に係る情報に基づいて上記実体積効率 (Evr) を補正する体積効率補正手段 ( 8 3 ) を有し有効体積効率 (Evm) を算出する体積効率算出手段 ( 8 2 ) と、
上記有効体積効率 (Evm) とエンジン回転数 (N e ) とに応じて 点火時期を設定する点火時期設定手段 ( 5 8 ) と、
上記点火時期設定手段 ( 5 8 ) により設定された点火時期に基づ き点火時期制御信号を出力する制御手段 ( 6 8 ) と、
上記点火時期制御信号を受けて作動する点火手段 ( 1 8 ) と、 加速時に上記実体積効率 (Evr) が上記スロッ トルの全開値近傍 に対応する所定の閾値を越えた場合上記スロッ トル開度変化量サン プリ ング手段 ( 8 4 ) に対しサンプリ ング動作を禁止するサンプリ ング禁止手段 ( 8 5 ) とを備えていることを特徵とする、 エンジン の点火時期制御装置。
2. 上記スロッ トル開度変化量サンプリ ング手段 ( 8 4 ) 、 上記 スロッ トル開度変化量 (Δ Θ) を所定周期毎に更新し記億するとと もに、
上記体積効率補正手段 ( 8 3 ) が、 スロッ トル開度変化量 (Δ Θ ) に係る情報として上記スロッ トル開度変化量 (Δ 0) の記憶値 ( ΜΔ Θ ) を使用するように構成されていることを特徴とする、 請求 項 1 に記載のエンジンの点火時期制御装置。
3. 上記スロッ トル開度変化量サンプリ ング手段 ( 8 4 ) 力、 サン プリ ング禁止手段 ( 8 5 ) によりサンプリ ングが禁止された時点の 上記記憶値 (MA S ) を所定期間だけ保持するように構成されてい ることを特徴とする、 請求項 2に記載のエンジンの点火時期制御装
4. 上記スロッ トル開度変化量サンプリ ング手段 ( 8 4 ) が、 上記 記憶値 (ΜΔ 6>) の増加傾向が終了した時点から上記記憶値 (ΜΔ Θ ) の状態変化の無い期間が所定の記憶値保持期間以上のときに上 記記憶値保持期間だけ上記記憶値を保持し上記記億値保持期間未満 のときに上記経過時間だけ上記記憶値 を保持するように 構成されていることを特徴とする、 請求項 3に記載のェンジンの点 火時期制御装置。
5. サンプリ ングが禁止された時点からの記憶値保持に係る上記所 定期問が、 上記記憶値保持期間に設定されていることを特徴とする 、 請求項 4に記載のエンジンの点火時期制御装置。
6. 上記スロッ トル開度変化量サンプリ ング手段 ( 8 4 ) 力、 上記 記憶値保持期間満了後に上記記憶をク リャするように構成されてい ることを特徴とする、 請求項 5に記載のエンジンの点火時期制御装
7. 上記サンプリ ング禁止手段 ( 8 5 ) の閾値が、 上記スロッ トル の全開値に対応する体積効率のほぼ 9 5 %に設定されていることを 特徴とする、 請求項 6に記載のエンジンの点火時期制御装置。
8. 上記スロッ トル開度変化量サンプリ ング手段 ( 8 4 ) 力、 サン プリ ング禁止手段 ( 8 5 ) によりサンプリ ングが禁止された時点で 上記記憶値 (ΜΔ 0) をク リャするように構成されていることを特 徴とする、 請求項 2に記載のエンジンの点火時期制御装置。
9. 上記スロッ トル開度変化量サンプリ ング手段 ( 8 4 ) 力 上記 記憶値 の増加傾向が終了した時点から上記記憶値 (ΜΔ Θ ) の状態変化の無い期間が所定の記憶保持期間以上のときに上記 記憶値保持期間だけ上記記憶値 (ΜΔ 0 ) を保持し上記記憶値保持 期間未満のときに上記経過時間だけ上記記憶値 (ΜΔ 0 ) を保持す るように構成されていることを特徴とする、 請求項 8に記載のェン ジンの点火時期制御装置。
1 0. 上記スロッ トル開度変化量サンプリ ング手段 ( 8 4 ) が、 上記 記憶値保持期間満了後に上記記憶をク リャするように構成されてい ることを特徴とする、 請求項 9に記載のエンジンの点火時期制御装
1 1 . 上記サンプリ ング禁止手段 ( 8 5 ) の閾値が、 上記スロッ トル の全開値に対応する体積効率のほぼ 9 5 %に設定されていることを 特徴とする、 請求項 1 0に記載のエンジンの点火時期制御装置。
12. エンジンの冷却水温に応じて点火時期を制御するように構成さ れていることを特徴とする、 請求項 2に記載のェンジンの点火時期 制御装置。
13. 上記冷却水温が高いほど上記点火時期の進角値を小さく設定す るように構成されていることを特徴とする、 請求項 1 2に記載のェ ンジンの点火時期制御装置。
14. エンジンの吸気温度に応じて点火時期を制御するように構成さ れていることを特徵とする、 請求項 2に記載のエンジンの点火時期 制御装置。
15. 上記吸気温度が低い領域と高い領域とでは点火時期を遅角させ 、 それ以外の領域では進角および遅角を行なわないように設定され ていることを特徵とする、 請求項 1 4に記載のエンジンの点火時期 制御装置。
1 6. エンジンのアイ ドル運転時にエンジン回転速度に係る情報に基 づき点火時期を制御するように構成されていることを特徴とする、 請求項 2に記載のエンジンの点火時期制御装置。
17. 上記ェンジン回転速度に係る情報がェンジン回転速度そのもの であり該ェンジン回転速度がアイ ドル運転状態情報に応じて設定さ れた目標回転速度を越えた場合に点火時期を遅角させ上記ェンジン 回転速度が上記目標回転速度を下回った場合に点火時期を進角させ 2 るように構成されていることを特徴とする、 請求項 1 6に記載のェ ンジンの点火時期制御装置。
18. 上記ェンジン回転速度に係る情報がェンジン回転速度の変化量 であり該ェンジン回転速度が上昇傾向にある場合に点火時期を遅角 させ上記エンジン回転速度が下降傾向にある場合に点火時期を進角 させるように構成されていることを特徴とする、 請求項 1 6に記載 のェンジンの点火時期制御装置。
PCT/JP1991/001141 1990-08-31 1991-08-28 Ignition timing control device in engine WO1992004541A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4192105A DE4192105C1 (de) 1990-08-31 1991-08-28 Anordnung für eine Steuerung der Zündverstellung bei einer Brennkraftmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP23157390 1990-08-31
JP2/231573 1990-08-31

Publications (1)

Publication Number Publication Date
WO1992004541A1 true WO1992004541A1 (en) 1992-03-19

Family

ID=16925635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001141 WO1992004541A1 (en) 1990-08-31 1991-08-28 Ignition timing control device in engine

Country Status (5)

Country Link
US (1) US5222470A (ja)
KR (1) KR970008666B1 (ja)
AU (1) AU637718B2 (ja)
DE (1) DE4192105C1 (ja)
WO (1) WO1992004541A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003204236B2 (en) * 2002-05-17 2004-09-16 Canon Kabushiki Kaisha Automatic Camera Trajectory Computation

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3034686B2 (ja) * 1992-02-28 2000-04-17 三信工業株式会社 エンジンの運転制御装置
US5327868A (en) * 1993-07-19 1994-07-12 Saturn Corporation Vehicle ignition system having adaptive knock retard with starting temperature correction
JPH1122607A (ja) * 1997-07-08 1999-01-26 Sanshin Ind Co Ltd 船外機用エンジンの点火時期制御方法及び装置
JP2000009007A (ja) * 1998-06-25 2000-01-11 Keihin Corp 内燃エンジンの点火時期制御装置
DE10043106B4 (de) * 2000-08-31 2006-03-09 Robert Bosch Gmbh Verfahren, Computergrogramm und Steuer- und/oder Regeleinrichtung zum Betreiben einer Brennkraftmaschine
US6968824B1 (en) * 2004-06-15 2005-11-29 General Motors Corporation Determining manifold pressure based on engine torque control
US7000589B2 (en) * 2004-06-15 2006-02-21 General Motors Corporation Determining manifold pressure based on engine torque control
JP4501760B2 (ja) * 2004-07-26 2010-07-14 株式会社デンソー 内燃機関の点火制御装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585471A (ja) * 1981-07-02 1983-01-12 Mazda Motor Corp エンジンの点火時期制御装置
JPS58176470A (ja) * 1982-04-08 1983-10-15 Toyota Motor Corp アイドリング時のエンジン回転数制御方法
JPS6123868A (ja) * 1984-07-11 1986-02-01 Nippon Denso Co Ltd 点火時期制御装置
JPS63198748A (ja) * 1987-09-10 1988-08-17 Nippon Denso Co Ltd エンジン回転速度制御方法
JPS63289263A (ja) * 1987-05-20 1988-11-25 Mitsubishi Motors Corp 内燃エンジンの加速時の点火時期制御方法
JPS6424168A (en) * 1987-07-20 1989-01-26 Japan Electronic Control Syst Ignition timing control device for internal combustion engine
JPS6463654A (en) * 1987-09-02 1989-03-09 Fuji Heavy Ind Ltd Ignition timing control device
JPS6446476U (ja) * 1987-09-16 1989-03-22

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2507917C2 (de) * 1975-02-24 1986-01-02 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zur Regelung des optimalen Betriebsverhaltens einer Brennkraftmaschine
JPS6060024B2 (ja) * 1977-10-19 1985-12-27 株式会社日立製作所 エンジン制御方法
US4485625A (en) * 1981-04-15 1984-12-04 Toyo Kogyo Co., Ltd. Control means for internal combustion engines
US4915076A (en) * 1983-12-29 1990-04-10 Nissan Motor Company, Limited Internal combustion engine output torque control system
DE3408215A1 (de) * 1984-02-01 1985-08-01 Robert Bosch Gmbh, 7000 Stuttgart Steuer- und regelverfahren fuer die betriebskenngroessen einer brennkraftmaschine
US4658787A (en) * 1984-02-01 1987-04-21 Nissan Motor Company, Limited Method and apparatus for engine control
DE3527856A1 (de) * 1984-08-03 1986-02-27 Nissan Motor Co., Ltd., Yokohama, Kanagawa Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
US4658789A (en) * 1985-01-31 1987-04-21 Nissan Motor Company, Limited Ignition timing control system and method for an internal combustion engine
DE3519476A1 (de) * 1985-05-31 1986-12-04 Daimler-Benz Ag, 7000 Stuttgart Vorrichtung zur steuerung des kraftstoff-luft-gemisches einer brennkraftmaschine
US4761994A (en) * 1986-05-06 1988-08-09 Fuji Jukogyo Kabushiki Kaisha System for measuring quantity of intake air in an engine
JPS6446476A (en) * 1987-08-14 1989-02-20 Terumo Corp Needle for guiding medical apparatus and its manufacturing process
JPH01237333A (ja) * 1987-10-27 1989-09-21 Japan Electron Control Syst Co Ltd 内燃機関の制御装置
DE58906454D1 (de) * 1989-05-23 1994-01-27 Siemens Ag Verfahren zur Klopfregelung von Brennkraftmaschinen.
JP2804109B2 (ja) * 1989-08-28 1998-09-24 三信工業株式会社 船舶推進機の点火装置
US4986243A (en) * 1990-01-19 1991-01-22 Siemens Automotive L.P. Mass air flow engine control system with mass air event integrator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585471A (ja) * 1981-07-02 1983-01-12 Mazda Motor Corp エンジンの点火時期制御装置
JPS58176470A (ja) * 1982-04-08 1983-10-15 Toyota Motor Corp アイドリング時のエンジン回転数制御方法
JPS6123868A (ja) * 1984-07-11 1986-02-01 Nippon Denso Co Ltd 点火時期制御装置
JPS63289263A (ja) * 1987-05-20 1988-11-25 Mitsubishi Motors Corp 内燃エンジンの加速時の点火時期制御方法
JPS6424168A (en) * 1987-07-20 1989-01-26 Japan Electronic Control Syst Ignition timing control device for internal combustion engine
JPS6463654A (en) * 1987-09-02 1989-03-09 Fuji Heavy Ind Ltd Ignition timing control device
JPS63198748A (ja) * 1987-09-10 1988-08-17 Nippon Denso Co Ltd エンジン回転速度制御方法
JPS6446476U (ja) * 1987-09-16 1989-03-22

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003204236B2 (en) * 2002-05-17 2004-09-16 Canon Kabushiki Kaisha Automatic Camera Trajectory Computation
AU2003204236B8 (en) * 2002-05-17 2005-02-17 Canon Kabushiki Kaisha Automatic Camera Trajectory Computation

Also Published As

Publication number Publication date
DE4192105C1 (de) 1996-09-19
KR970008666B1 (ko) 1997-05-28
US5222470A (en) 1993-06-29
AU8406091A (en) 1992-03-30
AU637718B2 (en) 1993-06-03
KR920004715A (ko) 1992-03-28

Similar Documents

Publication Publication Date Title
JP3323974B2 (ja) 内燃機関の制御装置
JPS60237142A (ja) 内燃機関の制御装置
KR940002957B1 (ko) 내연기관의 공연비제어방법 및 장치
WO1992004541A1 (en) Ignition timing control device in engine
EP0400529B1 (en) Air-fuel ratio control device for internal combustion engine
JPH0814271B2 (ja) 内燃機関の点火時期制御装置
JPH0442547B2 (ja)
JPH0370103B2 (ja)
JP2952879B2 (ja) 車両の加速スリップ制御装置
JPH0733793B2 (ja) 内燃機関の空燃比制御装置
JP2564993B2 (ja) エンジンの点火時期制御装置
JPH0637868B2 (ja) エンジンのノツキング抑制装置
JP2803085B2 (ja) オーバランカット回転数変更式燃料制御装置
JP2581033B2 (ja) 内燃機関の燃料噴射量制御方法
JP2545549B2 (ja) 内燃エンジンの加速時の燃料供給制御方法
JP4357388B2 (ja) 内燃機関の制御方法
JP2590956B2 (ja) 内燃機関の制御装置
JPH0861202A (ja) エンジンの点火時期制御装置
JPH10184514A (ja) 内燃機関の点火時期制御装置
JP2810411B2 (ja) エンジンの点火時期制御装置
JPH0759931B2 (ja) 内燃機関の点火時期制御装置
JPH01310146A (ja) 内燃機関の点火時期制御装置
JPH0323373A (ja) 火花点火式内燃機関の点火時期制御装置
JPH0759925B2 (ja) エンジンの点火時期制御装置
JPS63306285A (ja) アイドル点火時期制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU DE JP US