[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

USRE41921E1 - Electrosurgery system and method - Google Patents

Electrosurgery system and method Download PDF

Info

Publication number
USRE41921E1
USRE41921E1 US11/436,186 US43618606A USRE41921E US RE41921 E1 USRE41921 E1 US RE41921E1 US 43618606 A US43618606 A US 43618606A US RE41921 E USRE41921 E US RE41921E
Authority
US
United States
Prior art keywords
electrode
peak
generator
signal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11/436,186
Inventor
Colin Charles Owen Goble
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gyrus Medical Ltd
Original Assignee
Gyrus Medical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gyrus Medical Ltd filed Critical Gyrus Medical Ltd
Priority to US11/436,186 priority Critical patent/USRE41921E1/en
Application granted granted Critical
Publication of USRE41921E1 publication Critical patent/USRE41921E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor

Definitions

  • This invention relates to an electrosurgery system, an electrosurgical generator, and methods of operating the system and performing electrosurgery.
  • the cutting or removal of tissue electrosurgically using an instrument having a tip with one or more active electrodes supplied with a radio frequency (r.f.) voltage usually involves cell rupture as a result of arcs between the active electrode and the tissue being treated or, in the case of underwater electrosurgery, between the active electrode or electrodes and a conductive liquid such as saline overlying the tissue to be treated.
  • r.f. radio frequency
  • electrode destruction can occur if sufficient radio frequency power is supplied to an electrode to cause burning or melting of the electrode material, and this can be avoided by sensing peak electrode voltage and applying feedback to reduce the applied power so as to set a maximum peak voltage.
  • the temperature of the electrode depends on the rate at which heat can be dissipated which, in turn, depends on such variables as the degree of tissue engagement, electrode structure, and fluid flow around the electrode. Consequently, to avoid electrode destruction the peak voltage limit must be set at a sufficiently low level to prevent damage in the worst case dissipation situations, i.e. when there is an absence of cooling fluid and/or the electrode is surrounded by tissue.
  • the temperature of the electrode follows an asymptotic curve as shown in FIG. 1 .
  • the saline absorbs power until the point of vaporisation is reached at time ‘t 1 ’.
  • the active tip temperature rises more rapidly until, at time ‘t 2 ’.
  • active electrode destruction occurs at a temperature of 1600° C. (melting point of platinum). This destruction temperature is indicated by temperature ‘T D ’ in FIG. 1 .
  • T D melting point of platinum
  • Limitation of peak voltage is used, as described above, to control the applied r.f. power so as to prevent the electrode temperature reaching T D under all normal operating conditions. It will be appreciated that this limits the rate at which tissue can be removed.
  • an electrosurgical generator comprises a source of radio frequency (r.f.) energy, an active output terminal, a return output terminal, a d.c. isolation capacitance between the source and the active output terminal, and a pulsing circuit for the source, wherein the source and the pulsing circuit are arranged to generate a pulsed r.f. output signal at the output terminals, which signal has a peak-to-peak voltage of at least 1250V, a pulse mark-to-space ratio 1:1 or less, and a pulse length of 100 ⁇ s or less.
  • the pulse repetition rate is preferably between 5 Hz and 15 kHz or, more preferably, below 2 kHz.
  • the mark-to-space ratio of the modulation is dynamically variable in response to a temperature signal from a temperature sensing arrangement, the signal being representative of the temperature of an electrode when coupled to the active output terminal.
  • the preferred generator includes a pulse modulator arranged to modulate the r.f. energy so as to produce a pulsed signal having alternate ‘off’ and ‘on’ periods during which the peak-to-peak output voltage of the generator is substantially zero and at least 1250V respectively, the duration of the ‘on’ periods being controlled in response to the temperature signal reaching a predetermined threshold value.
  • the peak current is at least 3 A.
  • a temperature sensing arrangement having a response time which is less than the modulation period.
  • Such an arrangement is one which is responsive to thermionic emission from the electrode, detected by monitoring the d.c. offset voltage on the output terminal coupled to the treatment electrode resulting from the thermionic effect.
  • an electrosurgical generator comprises a source of r.f. energy, a pair of output terminals coupled to the source, and a pulsing circuit for the source, wherein the pulsing circuit and the source are arranged, in a pulsed mode of operation, to deliver to the output terminals a peak current of at least 3 A into a 50 ohm load and a peak-to-peak voltage of at least 1250V into a 1 kilohm load.
  • an electrosurgery system comprises a generator having a source of radio frequency (r.f.) energy and, coupled to the generator, an bipolar electrosurgical instrument having an electrode assembly with at least a pair of electrodes for operating in a wet field, wherein the generator is adapted to deliver r.f. energy to the electrode assembly as a pulse modulated r.f. signal which, in use with the pair of electrodes immersed in liquid, has a peak current of at least 3 A and a peak-to-peak voltage of at least 1250V.
  • r.f. radio frequency
  • an electrosurgery system comprising a generator including a source of radio frequency (r.f.) energy and, coupled to the generator, an electrosurgical instrument having a treatment electrode, wherein the system includes an electrode temperature sensing arrangement and the generator is adapted to supply the r.f. energy to the electrode as a pulse modulated r.f. signal, the mark-to-space ratio of the modulation being dynamically variable in response to a temperature signal from the temperature sensing arrangement representative of the electrode temperature.
  • r.f. radio frequency
  • the generator and system disclosed in this specification make of the property that the tissue removal rate increases disproportionate with the applied peak voltage. Accordingly, by pulsing the output signal and increasing the peak voltage beyond that which would normally create destructive conditions for the electrode, it is possible to increase the tissue removal rate without a corresponding increase in the applied power.
  • the way in which the tissue removal rate varies is best understood by considering some examples. For instance, an electrode using a peak-to-peak voltage of 1250V yields approximately twice the tissue removal rate of an electrode operating at 1000V. Thus if an electrode is driven at a voltage of 1250V peak-to-peak with a 50% duty cycle, the removal rate is approximately equivalent to that achieved with continuous application of a voltage of 1000V peak-to-peak. However, it is possible to use higher voltages still.
  • An electrode normally limited to 1000V peak-to-peak can be operated at up to 1500V peak-to-peak and the removal rate can be doubled again.
  • an electrode powered at a 50% duty cycle at a voltage of 1500V peak-to-peak will have approximately twice the removal rate of an electrode operating continuously with 1000V peak-to-peak.
  • the mark-to-space ratio (the duty cycle) of the pulse-modulated r.f. signal is reduced when the temperature signal reaches a predetermined level corresponding to an electrode temperature approaching the temperature at which destruction occurs (usually the melting point of the electrode material).
  • the temperature signal may be derived from the d.c. offset voltage produced at the relevant generator terminal due to thermionic emission at the treatment electrode.
  • tissue removal rates can be achieved with a duty cycle as low as 5% and peak-to-peak voltages in the region of 3 kV or 4 kV. Indeed, it is possible to achieve rapid tissue removal with instantaneous power levels of up to 10 kW peak currents 20 A (i.e. both within ‘on’ bursts) and a pulse repetition rate of 2 kHz or higher.
  • the pulse length i.e.
  • the duration of the ‘on’ bursts may be as short as 5 ms or even 1 ms. Such pulse lengths may be shorter than the thermal response time constant of the treatment electrode. Particular benefits can be achieved with high instantaneous power and short pulses when high liquid pumping rates are used since with high voltages vaporisation and tissue removal tends to occur very quickly, so that less of the incident energy is lost due to the flow of heated liquid away from the electrode.
  • control circuitry of the generator and the detector are operable to limit the d.c. offset to a predetermined d.c. voltage level in the region of from 50V to 100V.
  • the actual voltage level depends on electrode configuration and electrode material.
  • the voltage limit is set to that which occurs when the electrode voltage approaches 1600° C., the melting point of platinum.
  • the generator has an output terminal connectible to the treatment electrode and isolated from the r.f. source at d.c.
  • the detector has (i) a detection input which is connected to the output terminal and (ii) an isolation device connecting the detector to the control circuit.
  • the detector may be powered from the generator r.f. output energy by having a power supply circuit coupled to the generator output terminal and including a rectifier for rectifying the r.f. electrosurgery signal applied to the output terminal. This is permissible since the thermionic effect does not occur until the r.f. output voltage reaches a level consistent with arcing. The fact that the detector does not function at lower voltages is, as a result, no disadvantage.
  • the detector typically comprises an oscillator for generating an alternating measurement signal representative of the d.c. offset, and the isolation device comprises an opto-isolator coupled to receive the alternating measurement signal and to feed it to the control circuit.
  • the preferred detector also includes a reverse polarity d.c. offset detector as a fault condition indicator which can be used to disable the r.f. source when, for instance, in use of a bipolar electrode assembly in a conductive fluid field, a lack of fluid causes d.c. polarity reversal.
  • a method of operating an electrosurgery system including an electrosurgical r.f. generator and an electrode assembly having a treatment electrode coupled to the generator, wherein the method comprises applying to the electrode a pulse-modulated r.f. signal produced by the generator, generating a temperature signal indicative of the temperature of the electrode, and dynamically varying at least the mark-to-space ration of the pulse modulation of the r.f. signal in order to control the temperature of the electrode.
  • a method of performing electrosurgical tissue cutting or ablation comprises applying r.f. energy to an electrosurgical instrument so as to promote arcing at a treatment electrode of the instrument, wherein the energy is applied as a pulsed r.f. signal with a peak-to-peak voltage of at least 1250V and a pulse mark-to-space ratio of 1:1 or less.
  • the r.f. energy may be regulated by regulating the mark-to-space ratio dynamically to maximise the temperature of the electrode without substantial electrode damage, the d.c. voltage being limited to a threshold value of less than 100V.
  • FIG. 1 is a graph showing the thermal response of an electrosurgical electrode to which radio frequency power is applied in an unregulated manner, the electrode being immersed in a conductive liquid;
  • FIG. 2 is a diagram showing an electrosurgery system in accordance with the invention.
  • FIG. 3 is a fragmentary view of an electrode assembly for tissue ablation, shown in use immersed in a conductive liquid;
  • FIG. 4 is an electrical block diagram of the system shown in FIG. 2 ;
  • FIG. 5 is a graph showing the variation of electrode temperature with time using the same scales as FIG. 1 , but with the applied radio frequency power pulsed;
  • FIGS. 6A and 6B are, respectively, a generator output waveform and an electrode temperature graph showing the effect of varying the mark-to-space ratio according to electrode temperature;
  • FIGS. 7A and 7B are circuit diagrams of a d.c. offset detector.
  • the system comprises a generator 10 having an output socket 10 S which provides a radio frequency (r.f.) output for an electrosurgical instrument in the form of a handpiece 12 via a connection cord 14 .
  • Activation of the generator may be performed from the handpiece 12 via a control connection in cord 14 or by means of a foot switch unit 16 , as shown, connected separately to the rear of the generator 10 by a foot switch connection cord 18 .
  • the foot switch unit 16 has two foot switches 16 A and 16 B for selecting different generator modes such as a desiccation mode and a vaporisation mode.
  • the generator front panel has push buttons 20 and 22 for setting power levels, which are indicated in a display 24 . Push buttons 26 are provided as an alternative means for mode selection.
  • Handpiece 12 mounts a detachable electrode assembly 28 having a dual electrode structure, as shown in the fragmentary view of FIG. 3 .
  • FIG. 3 is an enlarged view of the distal end of the electrode assembly 28 .
  • the assembly has an active electrode 30 which, in this embodiment, is formed as a coiled wire connected to a central conductor 32 .
  • the coil wire may be made of platinum.
  • Proximally of the active electrode 30 and spaced from the latter by a longitudinally and radially extending ceramic insulator 34 is a return electrode 36 .
  • the return electrode 36 is arranged coaxially around the inner conductor 32 as a sleeve which extends as a tubular shaft 40 to the proximal end of the assembly 28 (see FIG. 1 ) where it is connected in the handpiece 12 to a conductor in the connection cord 14 .
  • the inner conductor 32 extends to the handpiece 12 and is connected to another conductor in cord 14 .
  • Insulation between the inner conductor 32 and the return electrode 36 is provided by the insulator 34 which is constructed as a sleeve extending inside the return electrode to insulate an inner extension (not shown) of the active electrode 30 from the return electrode 36 .
  • the surface area of the return electrode is considerably greater than that of the active electrode.
  • the diameter of the return electrode is typically in the region of from 1 mm to 3 mm, with the longitudinal extent of the exposed part of the return electrode being typically between 1 mm and 5 mm and the longitudinal spacing from the active electrode being between 1 mm and 5 mm.
  • the electrode assembly 28 has an insulating sheath 42 which covers shaft 40 and terminates proximally of the ceramic insulator 34 to leave the distal end of shaft 40 exposed as the return electrode 36 .
  • the electrode assembly 28 is applied as shown in FIG. 3 to the tissue 44 to be treated, the operation site being immersed in a normal saline (0.9% w/v) solution 46 immersing both the active electrode 30 and the return electrode 36 .
  • the electrode assembly is effectively bipolar, with only one of the electrodes (active electrode 30 ) axially extending to the distal end of the unit. This means that the return electrode, in normal circumstances in a wet field, remains spaced from the tissue being treated and a current path exists between the tissue and the return electrode via the conductive liquid in contact with the return electrode.
  • the conductive liquid 46 may be regarded, as far as the delivery of bipolar electrosurgical energy is concerned, as a low impedance extension of the tissue.
  • Vapour pocket 50 is sustained by discharges 52 across the vapour pocket between the active electrode 30 and the vapour-to-saline interface. The majority of power dissipation now occurs within this pocket with consequent heating of the active electrode, the amount of energy dissipated being a function of the delivered power.
  • This mode of operation can be maintained over a comparatively wide range of power levels, but increasing the delivered power beyond this range causes a rapid rise in electrode temperature as described above with reference to FIG. 1 , potentially damaging the electrode.
  • the point at which this occurs depends on the speed with which heat can be removed from the electrode which, as will be appreciated, is affected by convection due to flow of the fluid 46 past the electrode 20 , the proximity of the electrode 30 to the tissue and, in the worst case, burying of the electrode 30 in the tissue. It follows that, while a peak voltage limit may be established to prevent a runaway temperature rise at the electrode, such limit, to be effective, has to be set at a level which will prevent such a rise in the worst case thermal dissipation conditions.
  • the thermal characteristics of the electrode referred to are those obtained with substantially continuous application of r.f. power.
  • the applicants have found that by applying pulse modulation so that an r.f. voltage is applied between the electrode as a pulsed signal in which the pulse is alternately at a predetermined non-zero level and substantially zero, higher levels of tissue ablation can be achieved without the electrode reaching the electrode destruction temperature T D (see FIG. 1 ).
  • an r.f. output stage 60 is coupled to a pulse modulator 61 so that a pulsed electrosurgical signal (typically having a carrier frequency in the range of from 100 kHz to 5 MHz) is fed via a series isolating capacitor 62 to an active output terminal 64 of the generator 10 .
  • a return terminal 66 of the generator is also coupled to the r.f. stage, likewise via an isolation capacitor 68 .
  • the pulse modulator 61 is actuated by a processor 70 which, in turn, receives mode signals from the front panel of the generator or the foot switches (see FIG. 1 ). Accordingly, the generator may have a vaporisation mode in which the r.f. power stage 60 is modulated by the pulse modulator 61 with a mark-to-space ratio of 1:1 or less (i.e. successive “on” limes representing a 50% duty cycle or less). The frequency of the modulation is typically 300 Hz.
  • the processor 70 also controls the peak voltage of the r.f. output stage 60 according to mode.
  • the processor has a temperature signal input 74 allowing control of the pulse modulator 61 in response to electrode temperature, as will be described in detail below.
  • FIG. 5 A representation of the variation of the electrode temperature with time when r.f. power is applied at a relatively high peak-to-peak voltage with 100% pulse modulation depth is shown in FIG. 5 .
  • the mark-to-space ratio is 1:1. In other words, power is only applied for 50% of the time. This yields two potential benefits.
  • application of pulsed power at 1000V peak-to-peak results in a reduction in the average delivered power by as much as 25%. Since the peak delivered power is higher (i.e. during the r.f. burst when the pulse modulation is at logic level 1 , the electrode is less susceptible to quenching effects caused by high flow rates of saline passed the electrode.
  • the saline at the surface of the active electrode The ability to vaporise this saline is defined by the power it absorbs before leaving the electrode surface.
  • the saline refresh rate is high and, therefore, the power absorbed by per unit volume of saline at the electrode surface is smaller. If the waveform crest factor is increased by the use of modulation, as described above, but with similar average power levels, then the power absorbed per unit volume of saline during each power burst is higher.
  • the pulsing of the electrosurgical power is performed in conjunction with temperature monitoring, as provided for by the temperature signal input 74 to the process 70 in FIG. 4 .
  • the temperature signal applied to the input 74 is produced by an electrode temperature sensing arrangement, which may take a number of forms, for instance, a circuit for measuring a d.c. offset voltage across terminals 74 and 66 due to the thermionic effect occurring when the active electrode becomes very hot.
  • Processor 70 acts in such a way as to modify the mark-to-space ratio of the pulse modulation generated by pulse modulator 61 according to the level of the electrode temperature signal applies on input 54 .
  • a characteristic of the electrode temperature signal applied to the input 74 is compared with a threshold value which is a function of the maximum allowed temperature, so that the pulse modulator applied an “on” signal to the r.f. output stage 60 until the temperature signal reaches the predetermined threshold value, whereupon the r.f. output stage is switched off for a predetermined period.
  • each “on” burst is controlled according to the rate at which the electrode is cooled during the “off” periods, e.g. by allowing the burst to continue until a control temperature T C being a predetermined threshold temperature below the destruction temperature T D . It will be understood that during the period “A” shown in FIG. 6B , the conditions at the electrode reduce the rate of heat dissipation from the electrode, whilst in the period “B” dissipation is increased.
  • the modulation rate is primarily dependent upon the time taken for the vapour pocket around the active electrode to collapse, so that the electrode can be cooled. Ideally, power is reapplied as soon as the quenching occurs, in order that the resulting saline is not lost by either convection or flow.
  • the burst length is preferably sufficiently long that re-establishing the vapour pocket occurs at least within the first half of the “on” burst. Modulation rates of 5 Hz to 2 kHz are appropriate.
  • temperature sensing is done indirectly by monitoring the thermionic effect, as will now be described with reference to FIGS. 7A and 7B .
  • the preferred system in accordance with the invention includes an r.f. output stage in the form of a source 60 delivering an electrosurgical voltage via coupling capacitors 62 , 63 between first and second output terminals 64 , 66 to which the active and return electrodes of the electrode assembly 28 are respectively connected.
  • a source 60 delivering an electrosurgical voltage via coupling capacitors 62 , 63 between first and second output terminals 64 , 66 to which the active and return electrodes of the electrode assembly 28 are respectively connected.
  • the combination of the heated active electrode 30 , the tissue, the conductive fluid 46 , and the return electrode 36 together act as a rectifier, the conductive solution behaving as the anode and the active electrode as the cathode of the rectifier respectively.
  • the hotter the active electrode the greater is the rectification and the greater the d.c. offset voltage on the output terminal 64 of the generator.
  • the temperature-dependent positive potential (the d.c. offset voltage) is monitored using a detector connected as a shunt input across the generator output, on the output terminal side of the isolation capacitance.
  • the detector has an input circuit with a series r.f. choke 78 coupled to the output terminal 64 , and a smoothing capacitor 80 coupled to the common rail 81 which is connected to the return terminal 66 . Therefore, d.c. component of the voltage at the active output terminal 64 accumulates at the junction of the choke 78 and the smoothing capacitor 80 where it is applied to a potential divider 82 , 84 which present an input resistance of at least 2 M ⁇ , and typically between 50 and 100 M ⁇ .
  • the output of the potential divider 82 , 84 is applied to a high impedance buffer 86 the output of which provides a driving signal to a voltage controlled oscillator (VCO) 88 .
  • VCO voltage controlled oscillator
  • Providing an input impedance in the region of 50 to 100 M ⁇ yields a detection current in the region of 1 ⁇ A for d.c. offsets in the region of 50 to 100V. Maintaining a low detection current has the advantage that nerve stimulation due to a direct current between the target tissue and the return electrode is avoided.
  • Conversion of the d.c. offset voltage to an alternating signal in the VCO 88 allows the signal to be transmitted to an isolated control circuit (not shown in FIG. 7A ) connected to the output 90 of the detector via an opto-isolator 92 , for controlling the r.f. energy applied to the generator output terminals so as, for example to limit the offset voltage.
  • An indication of the d.c. offset is communicated in this way across the safety isolation barrier between the output terminals of the generator and the power generating and control circuit.
  • the alternating signal can be converted back to a d.c. level using a monostable and low pass filter, or may be counted by a gated counter and conveyed digitally.
  • control circuit is arranged to reduce the average output power of source 60 when the d.c. offset voltage reaches a predetermined value (typically within the range 50 to 100V), by altering the mark-to-space ratio of the pulse modulation as described above. Accordingly, by selecting a threshold d.c. offset voltage related to the maximum safe operating temperature of the active electrode, the r.f. power delivered to the active electrode can be maximised in different thermal dissipation conditions.
  • the processor 70 of the generator see FIG.
  • a temperature signal which may be the direct output of the opto-isolator 82 , in which case the threshold value for pulse width control is a frequency value, or a frequency-to-voltage converter (not shown) may be interposed, in which case the threshold value is a preset voltage value.
  • the detector illustrated in FIG. 7A includes a reverse polarity detection circuit in the form of a comparator 94 bypassing the VCO 88 and having an output coupled to one input of, for instance, an OR-gate 96 the other input of which receives the alternating output from the VCO 88 .
  • the other input of the comparator 94 is coupled to a negative voltage reference.
  • the output of comparator 94 is low, which means that the alternating signal developed by the VCO passes through OR-gate 94 to the opto-isolator 92 .
  • the output of comparator 94 becomes high and OR-gate 96 blocks the alternating signal from the VCO 88 , and the lack of an alternating signal applied to the control circuit from the detector output 90 can be used as a fault indication to shut off the r.f. source 60 .
  • power for the buffer 86 , VCO 88 , comparator 94 , and OR-gate 96 is derived from the r.f. voltage itself delivered to the output terminals 64 and 66 of the generator, avoiding the need for a further isolation barrier.
  • a suitable power supply for this purpose is illustrated in FIG. 7B.
  • a step-down transformer 100 coupled between the output terminals 64 and 66 of the generator drives a bridge rectifier 102 to deliver a d.c. voltage at power supply output terminals 104 across a smoothing capacitor 106 .
  • connection of the secondary winding of the transformer 100 with a centre tap to the return output terminal 66 , and thus the common rail of the detector, allows the buffer 86 to be provided with a dual-polarity supply in order to accommodate positive and negative d.c. offset voltages.
  • the fact that deriving power from the r.f. output in this way results in the detector being inoperative at low voltages is no disadvantage since the thermionic effect relied upon as the control stimulus does not occur until the r.f. output voltage of the generator reaches a level consistent with arcing at the active electrode.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

An electrosurgical generator has output terminals for connection to active and return electrodes respectively of an electrosurgical instrument and, connected to the output terminals via at least one isolation capacitor, a radio frequency (r.f.) source which may be pulsed by a pulsing circuit. To permit tissue removal at a high rate, the source and the pulsing circuit are arranged so as to generate a pulsed r.f. output signal having a peak-to-peak voltage of at least 1250V, a mark-to-space ratio not more than 1:1, and a pulse length not more than 100 μs.

Description

More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,228,081. The other reissue application is Reissue application Ser. No. 10/323,004 filed Dec. 19, 2002. This application is a continuation reissue application of Reissue application Ser. No. 10/323,004 filed Dec. 19, 2002.
FIELD OF THE INVENTION
This invention relates to an electrosurgery system, an electrosurgical generator, and methods of operating the system and performing electrosurgery.
BACKGROUND OF THE INVENTION
The cutting or removal of tissue electrosurgically using an instrument having a tip with one or more active electrodes supplied with a radio frequency (r.f.) voltage usually involves cell rupture as a result of arcs between the active electrode and the tissue being treated or, in the case of underwater electrosurgery, between the active electrode or electrodes and a conductive liquid such as saline overlying the tissue to be treated. As described in EP-A-0754437, electrode destruction can occur if sufficient radio frequency power is supplied to an electrode to cause burning or melting of the electrode material, and this can be avoided by sensing peak electrode voltage and applying feedback to reduce the applied power so as to set a maximum peak voltage. It will be understood that for a given power setting, the temperature of the electrode depends on the rate at which heat can be dissipated which, in turn, depends on such variables as the degree of tissue engagement, electrode structure, and fluid flow around the electrode. Consequently, to avoid electrode destruction the peak voltage limit must be set at a sufficiently low level to prevent damage in the worst case dissipation situations, i.e. when there is an absence of cooling fluid and/or the electrode is surrounded by tissue.
In the absence of such control, the temperature of the electrode follows an asymptotic curve as shown in FIG. 1. The saline absorbs power until the point of vaporisation is reached at time ‘t1’. When the saline is vaporised, the active tip temperature rises more rapidly until, at time ‘t2’. active electrode destruction occurs at a temperature of 1600° C. (melting point of platinum). This destruction temperature is indicated by temperature ‘TD’ in FIG. 1. The time taken to reach this temperature after vaporisation occurs is dependent on both thermal capacity and thermal dissipation mechanisms. A low mass electrode heats up faster. The principal dissipation mechanism is infra-red emission and is, therefore, dependent on surface area.
Limitation of peak voltage is used, as described above, to control the applied r.f. power so as to prevent the electrode temperature reaching TD under all normal operating conditions. It will be appreciated that this limits the rate at which tissue can be removed.
It is an object of the present invention to provide a means of increasing the rate of tissue removal.
SUMMARY OF THE INVENTION
According to a first aspect of the present invention, an electrosurgical generator comprises a source of radio frequency (r.f.) energy, an active output terminal, a return output terminal, a d.c. isolation capacitance between the source and the active output terminal, and a pulsing circuit for the source, wherein the source and the pulsing circuit are arranged to generate a pulsed r.f. output signal at the output terminals, which signal has a peak-to-peak voltage of at least 1250V, a pulse mark-to-space ratio 1:1 or less, and a pulse length of 100 μs or less. The pulse repetition rate is preferably between 5 Hz and 15 kHz or, more preferably, below 2 kHz. Advantageously, the mark-to-space ratio of the modulation is dynamically variable in response to a temperature signal from a temperature sensing arrangement, the signal being representative of the temperature of an electrode when coupled to the active output terminal.
The preferred generator includes a pulse modulator arranged to modulate the r.f. energy so as to produce a pulsed signal having alternate ‘off’ and ‘on’ periods during which the peak-to-peak output voltage of the generator is substantially zero and at least 1250V respectively, the duration of the ‘on’ periods being controlled in response to the temperature signal reaching a predetermined threshold value. When the load impedance drops to 50 ohms the peak current is at least 3 A.
It is possible to control the mark-to-space ratio on a pulse-by-pulse basis by using a temperature sensing arrangement having a response time which is less than the modulation period. Such an arrangement is one which is responsive to thermionic emission from the electrode, detected by monitoring the d.c. offset voltage on the output terminal coupled to the treatment electrode resulting from the thermionic effect.
According to a second aspect of the invention, an electrosurgical generator comprises a source of r.f. energy, a pair of output terminals coupled to the source, and a pulsing circuit for the source, wherein the pulsing circuit and the source are arranged, in a pulsed mode of operation, to deliver to the output terminals a peak current of at least 3 A into a 50 ohm load and a peak-to-peak voltage of at least 1250V into a 1 kilohm load.
According to a third aspect of the invention, an electrosurgery system comprises a generator having a source of radio frequency (r.f.) energy and, coupled to the generator, an bipolar electrosurgical instrument having an electrode assembly with at least a pair of electrodes for operating in a wet field, wherein the generator is adapted to deliver r.f. energy to the electrode assembly as a pulse modulated r.f. signal which, in use with the pair of electrodes immersed in liquid, has a peak current of at least 3 A and a peak-to-peak voltage of at least 1250V.
According to a fourth aspect of the invention, there is provided an electrosurgery system comprising a generator including a source of radio frequency (r.f.) energy and, coupled to the generator, an electrosurgical instrument having a treatment electrode, wherein the system includes an electrode temperature sensing arrangement and the generator is adapted to supply the r.f. energy to the electrode as a pulse modulated r.f. signal, the mark-to-space ratio of the modulation being dynamically variable in response to a temperature signal from the temperature sensing arrangement representative of the electrode temperature.
The generator and system disclosed in this specification make of the property that the tissue removal rate increases disproportionate with the applied peak voltage. Accordingly, by pulsing the output signal and increasing the peak voltage beyond that which would normally create destructive conditions for the electrode, it is possible to increase the tissue removal rate without a corresponding increase in the applied power. The way in which the tissue removal rate varies is best understood by considering some examples. For instance, an electrode using a peak-to-peak voltage of 1250V yields approximately twice the tissue removal rate of an electrode operating at 1000V. Thus if an electrode is driven at a voltage of 1250V peak-to-peak with a 50% duty cycle, the removal rate is approximately equivalent to that achieved with continuous application of a voltage of 1000V peak-to-peak. However, it is possible to use higher voltages still. An electrode normally limited to 1000V peak-to-peak can be operated at up to 1500V peak-to-peak and the removal rate can be doubled again. Thus, an electrode powered at a 50% duty cycle at a voltage of 1500V peak-to-peak will have approximately twice the removal rate of an electrode operating continuously with 1000V peak-to-peak.
Higher-than-normal peak voltages cause higher temperatures when used in a continuous mode of operation. However, in the presence of liquid, the “off” period of a pulsed signal, allows quenching and cooling of the electrode by the liquid, which causes the electrode temperature to remain below the electrode destructive value TD shown in FIG. 1, despite the higher applied voltage. It follows that if, during treatment, the electrode is used in such a way as to prevent cooling by the quenching effect of the liquid, it is likely to be destroyed as a result of heat accumulation. Such a condition can arise when the electrode is buried in tissue. It is for this reason that it is beneficial to use electrode temperature sensing to limit the application of r.f. energy to the electrode when operating at high peak-to-peak voltages. Conveniently then, the mark-to-space ratio (the duty cycle) of the pulse-modulated r.f. signal is reduced when the temperature signal reaches a predetermined level corresponding to an electrode temperature approaching the temperature at which destruction occurs (usually the melting point of the electrode material). The temperature signal may be derived from the d.c. offset voltage produced at the relevant generator terminal due to thermionic emission at the treatment electrode.
In this way, it is possible to perform electrosurgical removal of tissue at a higher rate than previously, not only due to being able to operate at higher temperature in other than worst case dissipation conditions, but also due to the high removal rate associated with high instantaneous voltage.
It is possible, within the scope of the invention, to drive a treatment electrode at much lower pulse mark-to-space ratios, depending on the applied voltage, the average power delivered, the electrode configuration and the rate at which heat is dissipated from the electrode due to, for instance the rate of flow of fluid adjacent the electrode. Accordingly, advantageous tissue removal rates can be achieved with a duty cycle as low as 5% and peak-to-peak voltages in the region of 3 kV or 4 kV. Indeed, it is possible to achieve rapid tissue removal with instantaneous power levels of up to 10 kW peak currents 20 A (i.e. both within ‘on’ bursts) and a pulse repetition rate of 2 kHz or higher. The pulse length, i.e. the duration of the ‘on’ bursts may be as short as 5 ms or even 1 ms. Such pulse lengths may be shorter than the thermal response time constant of the treatment electrode. Particular benefits can be achieved with high instantaneous power and short pulses when high liquid pumping rates are used since with high voltages vaporisation and tissue removal tends to occur very quickly, so that less of the incident energy is lost due to the flow of heated liquid away from the electrode.
Typically, the control circuitry of the generator and the detector are operable to limit the d.c. offset to a predetermined d.c. voltage level in the region of from 50V to 100V. In practice, the actual voltage level depends on electrode configuration and electrode material. Thus, if a platinum electrode is used, the voltage limit is set to that which occurs when the electrode voltage approaches 1600° C., the melting point of platinum.
In a preferred embodiment of the invention, the generator has an output terminal connectible to the treatment electrode and isolated from the r.f. source at d.c., and the detector has (i) a detection input which is connected to the output terminal and (ii) an isolation device connecting the detector to the control circuit. The detector may be powered from the generator r.f. output energy by having a power supply circuit coupled to the generator output terminal and including a rectifier for rectifying the r.f. electrosurgery signal applied to the output terminal. This is permissible since the thermionic effect does not occur until the r.f. output voltage reaches a level consistent with arcing. The fact that the detector does not function at lower voltages is, as a result, no disadvantage. Typically, to achieve isolation at the output of the detector, it comprises an oscillator for generating an alternating measurement signal representative of the d.c. offset, and the isolation device comprises an opto-isolator coupled to receive the alternating measurement signal and to feed it to the control circuit. The preferred detector also includes a reverse polarity d.c. offset detector as a fault condition indicator which can be used to disable the r.f. source when, for instance, in use of a bipolar electrode assembly in a conductive fluid field, a lack of fluid causes d.c. polarity reversal.
According to a further aspect of the invention, there is provided a method of operating an electrosurgery system including an electrosurgical r.f. generator and an electrode assembly having a treatment electrode coupled to the generator, wherein the method comprises applying to the electrode a pulse-modulated r.f. signal produced by the generator, generating a temperature signal indicative of the temperature of the electrode, and dynamically varying at least the mark-to-space ration of the pulse modulation of the r.f. signal in order to control the temperature of the electrode.
According to yet a further aspect of the invention, a method of performing electrosurgical tissue cutting or ablation comprises applying r.f. energy to an electrosurgical instrument so as to promote arcing at a treatment electrode of the instrument, wherein the energy is applied as a pulsed r.f. signal with a peak-to-peak voltage of at least 1250V and a pulse mark-to-space ratio of 1:1 or less. The r.f. energy may be regulated by regulating the mark-to-space ratio dynamically to maximise the temperature of the electrode without substantial electrode damage, the d.c. voltage being limited to a threshold value of less than 100V.
The invention will be described below by way of example with reference to the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
in the drawings:
FIG. 1 is a graph showing the thermal response of an electrosurgical electrode to which radio frequency power is applied in an unregulated manner, the electrode being immersed in a conductive liquid;
FIG. 2 is a diagram showing an electrosurgery system in accordance with the invention;
FIG. 3 is a fragmentary view of an electrode assembly for tissue ablation, shown in use immersed in a conductive liquid;
FIG. 4 is an electrical block diagram of the system shown in FIG. 2;
FIG. 5 is a graph showing the variation of electrode temperature with time using the same scales as FIG. 1, but with the applied radio frequency power pulsed;
FIGS. 6A and 6B are, respectively, a generator output waveform and an electrode temperature graph showing the effect of varying the mark-to-space ratio according to electrode temperature; and
FIGS. 7A and 7B are circuit diagrams of a d.c. offset detector.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The present invention is applicable primarily but not exclusively to wet field electrosurgery. Referring to FIG. 2, the system comprises a generator 10 having an output socket 10S which provides a radio frequency (r.f.) output for an electrosurgical instrument in the form of a handpiece 12 via a connection cord 14. Activation of the generator may be performed from the handpiece 12 via a control connection in cord 14 or by means of a foot switch unit 16, as shown, connected separately to the rear of the generator 10 by a foot switch connection cord 18. In the illustrated embodiment, the foot switch unit 16 has two foot switches 16A and 16B for selecting different generator modes such as a desiccation mode and a vaporisation mode. The generator front panel has push buttons 20 and 22 for setting power levels, which are indicated in a display 24. Push buttons 26 are provided as an alternative means for mode selection.
Handpiece 12 mounts a detachable electrode assembly 28 having a dual electrode structure, as shown in the fragmentary view of FIG. 3.
FIG. 3 is an enlarged view of the distal end of the electrode assembly 28. At its extreme distal end the assembly has an active electrode 30 which, in this embodiment, is formed as a coiled wire connected to a central conductor 32. The coil wire may be made of platinum. Proximally of the active electrode 30 and spaced from the latter by a longitudinally and radially extending ceramic insulator 34 is a return electrode 36. The return electrode 36 is arranged coaxially around the inner conductor 32 as a sleeve which extends as a tubular shaft 40 to the proximal end of the assembly 28 (see FIG. 1) where it is connected in the handpiece 12 to a conductor in the connection cord 14. Similarly, the inner conductor 32 extends to the handpiece 12 and is connected to another conductor in cord 14. Insulation between the inner conductor 32 and the return electrode 36 is provided by the insulator 34 which is constructed as a sleeve extending inside the return electrode to insulate an inner extension (not shown) of the active electrode 30 from the return electrode 36. To promote greater power density at the active electrode than at the return electrode, the surface area of the return electrode is considerably greater than that of the active electrode. With regard to typical dimensions, at the distal end of the electrode assembly, the diameter of the return electrode is typically in the region of from 1 mm to 3 mm, with the longitudinal extent of the exposed part of the return electrode being typically between 1 mm and 5 mm and the longitudinal spacing from the active electrode being between 1 mm and 5 mm. The electrode assembly 28 has an insulating sheath 42 which covers shaft 40 and terminates proximally of the ceramic insulator 34 to leave the distal end of shaft 40 exposed as the return electrode 36.
In operation as an instrument for cutting or removing tissue in a conductive fluid field, the electrode assembly 28 is applied as shown in FIG. 3 to the tissue 44 to be treated, the operation site being immersed in a normal saline (0.9% w/v) solution 46 immersing both the active electrode 30 and the return electrode 36.
The electrode assembly is effectively bipolar, with only one of the electrodes (active electrode 30) axially extending to the distal end of the unit. This means that the return electrode, in normal circumstances in a wet field, remains spaced from the tissue being treated and a current path exists between the tissue and the return electrode via the conductive liquid in contact with the return electrode. The conductive liquid 46 may be regarded, as far as the delivery of bipolar electrosurgical energy is concerned, as a low impedance extension of the tissue.
When sufficient r.f. voltage is applied between the electrodes 30, 36, power dissipation in the conductive liquid 46 causes the liquid to vaporize, initially forming small vapour bubbles on the surface of the active electrode 30, which ultimately coalesce until the electrode is completely enveloped in a pocket of vapour 50. Vapour pocket 50 is sustained by discharges 52 across the vapour pocket between the active electrode 30 and the vapour-to-saline interface. The majority of power dissipation now occurs within this pocket with consequent heating of the active electrode, the amount of energy dissipated being a function of the delivered power. By holding the active electrode 30 adjacent the surface of the tissue 44, as shown in FIG. 3, so that the vapour pocket intercepts the tissue surface, tissue removal occurs by cell rupture due to the arcing occurring between the electrode and the tissue.
This mode of operation can be maintained over a comparatively wide range of power levels, but increasing the delivered power beyond this range causes a rapid rise in electrode temperature as described above with reference to FIG. 1, potentially damaging the electrode. The point at which this occurs depends on the speed with which heat can be removed from the electrode which, as will be appreciated, is affected by convection due to flow of the fluid 46 past the electrode 20, the proximity of the electrode 30 to the tissue and, in the worst case, burying of the electrode 30 in the tissue. It follows that, while a peak voltage limit may be established to prevent a runaway temperature rise at the electrode, such limit, to be effective, has to be set at a level which will prevent such a rise in the worst case thermal dissipation conditions.
In describing above the system with reference to FIGS. 1 to 3, the thermal characteristics of the electrode referred to are those obtained with substantially continuous application of r.f. power. The applicants have found that by applying pulse modulation so that an r.f. voltage is applied between the electrode as a pulsed signal in which the pulse is alternately at a predetermined non-zero level and substantially zero, higher levels of tissue ablation can be achieved without the electrode reaching the electrode destruction temperature TD (see FIG. 1). High power pulsing of the electrode with a peak voltage higher than that obtained when peak voltage is used to limit electrode temperature. This takes advantage of the fact that the tissue removal rate is disproportionate to voltage. For instance, operating the generator at a peak-to-peak voltage of 1250V yields approximately twice the tissue removal rate compared with operation at 1000V. If the generator is operated at 1250V peak-to-peak with a 50% duty cycle, the removal rate is approximately equivalent to that achieved of continuous application of a voltage of 1000V peak-to-peak. However, it is possible to use higher voltages still. A system with an electrode assembly normally limited to 1000V peak-to-peak can be operated up to 1500V peak-to-peak and the removal rate can be doubled again. Thus, an electrode used on a 50% duty cycle with 1500V peak-to-peak will have approximately twice the removal rate of an electrode operating with continuous r.f. power at 1000V peak-to-peak.
Referring to FIG. 4, in a system in which pulsed r.f. power can be applied from a generator 10 to an electrode assembly 28 as a pulsed signal, an r.f. output stage 60 is coupled to a pulse modulator 61 so that a pulsed electrosurgical signal (typically having a carrier frequency in the range of from 100 kHz to 5 MHz) is fed via a series isolating capacitor 62 to an active output terminal 64 of the generator 10. A return terminal 66 of the generator is also coupled to the r.f. stage, likewise via an isolation capacitor 68.
The pulse modulator 61 is actuated by a processor 70 which, in turn, receives mode signals from the front panel of the generator or the foot switches (see FIG. 1). Accordingly, the generator may have a vaporisation mode in which the r.f. power stage 60 is modulated by the pulse modulator 61 with a mark-to-space ratio of 1:1 or less (i.e. successive “on” limes representing a 50% duty cycle or less). The frequency of the modulation is typically 300 Hz. The processor 70 also controls the peak voltage of the r.f. output stage 60 according to mode. In addition, the processor has a temperature signal input 74 allowing control of the pulse modulator 61 in response to electrode temperature, as will be described in detail below.
A representation of the variation of the electrode temperature with time when r.f. power is applied at a relatively high peak-to-peak voltage with 100% pulse modulation depth is shown in FIG. 5. The mark-to-space ratio is 1:1. In other words, power is only applied for 50% of the time. This yields two potential benefits. Compared with continuous 1000V peak-to-peak operation, application of pulsed power at 1000V peak-to-peak results in a reduction in the average delivered power by as much as 25%. Since the peak delivered power is higher (i.e. during the r.f. burst when the pulse modulation is at logic level 1, the electrode is less susceptible to quenching effects caused by high flow rates of saline passed the electrode. This is explained by considering the saline at the surface of the active electrode. The ability to vaporise this saline is defined by the power it absorbs before leaving the electrode surface. When convection due to fluid flow is high, the saline refresh rate is high and, therefore, the power absorbed by per unit volume of saline at the electrode surface is smaller. If the waveform crest factor is increased by the use of modulation, as described above, but with similar average power levels, then the power absorbed per unit volume of saline during each power burst is higher.
The above described advantages are achieved because, during the “off” period of the modulation, the electrode is quenched and cooled. It is for this reason that the electrode temperature never reaches the steady state destructive value tD. If the electrode is used in such a manner that cooling by quenching is interrupted, there is a danger that the electrode will be destroyed by heat accumulation. This condition can arise when the electrode is buried in tissue. Accordingly, in accordance with the invention, the pulsing of the electrosurgical power is performed in conjunction with temperature monitoring, as provided for by the temperature signal input 74 to the process 70 in FIG. 4. The temperature signal applied to the input 74 is produced by an electrode temperature sensing arrangement, which may take a number of forms, for instance, a circuit for measuring a d.c. offset voltage across terminals 74 and 66 due to the thermionic effect occurring when the active electrode becomes very hot.
Processor 70 acts in such a way as to modify the mark-to-space ratio of the pulse modulation generated by pulse modulator 61 according to the level of the electrode temperature signal applies on input 54. Specifically, in this embodiment, a characteristic of the electrode temperature signal applied to the input 74 is compared with a threshold value which is a function of the maximum allowed temperature, so that the pulse modulator applied an “on” signal to the r.f. output stage 60 until the temperature signal reaches the predetermined threshold value, whereupon the r.f. output stage is switched off for a predetermined period.
This manner of operating is illustrated in FIGS. 6A and 6B. Since the electrode temperature can be monitored, the “on” burst can be sustained longer than would be possible without such monitoring so that the electrode reaches a higher temperature without fear of electrode burning. The length of each “on” burst is controlled according to the rate at which the electrode is cooled during the “off” periods, e.g. by allowing the burst to continue until a control temperature TC being a predetermined threshold temperature below the destruction temperature TD. It will be understood that during the period “A” shown in FIG. 6B, the conditions at the electrode reduce the rate of heat dissipation from the electrode, whilst in the period “B” dissipation is increased. Consequently, during period A, the “on” bursts are shorter whereas in period B, they are longer. As explained above, this combination of pulsed operation with temperature feedback allows the use of higher peak voltages without the electrode temperature reaching the destructive level, with a consequent improvement is tissue removal rate. In effect, the modulation is adaptive according to electrode temperature.
The modulation rate is primarily dependent upon the time taken for the vapour pocket around the active electrode to collapse, so that the electrode can be cooled. Ideally, power is reapplied as soon as the quenching occurs, in order that the resulting saline is not lost by either convection or flow. The burst length is preferably sufficiently long that re-establishing the vapour pocket occurs at least within the first half of the “on” burst. Modulation rates of 5 Hz to 2 kHz are appropriate.
As mentioned above, temperature sensing is done indirectly by monitoring the thermionic effect, as will now be described with reference to FIGS. 7A and 7B.
Referring to FIG. 7A, the preferred system in accordance with the invention includes an r.f. output stage in the form of a source 60 delivering an electrosurgical voltage via coupling capacitors 62, 63 between first and second output terminals 64, 66 to which the active and return electrodes of the electrode assembly 28 are respectively connected. When arcing occurs at the active electrode 30, as shown in FIG. 3, thermionic emission from the electrode occurs when the electrode is spaced from the tissue 44, dependent on the temperature of the electrode, leading to the build up of a positive potential on the active output terminal 64. In effect, the combination of the heated active electrode 30, the tissue, the conductive fluid 46, and the return electrode 36 together act as a rectifier, the conductive solution behaving as the anode and the active electrode as the cathode of the rectifier respectively. The hotter the active electrode, the greater is the rectification and the greater the d.c. offset voltage on the output terminal 64 of the generator.
The temperature-dependent positive potential (the d.c. offset voltage) is monitored using a detector connected as a shunt input across the generator output, on the output terminal side of the isolation capacitance. The detector has an input circuit with a series r.f. choke 78 coupled to the output terminal 64, and a smoothing capacitor 80 coupled to the common rail 81 which is connected to the return terminal 66. Therefore, d.c. component of the voltage at the active output terminal 64 accumulates at the junction of the choke 78 and the smoothing capacitor 80 where it is applied to a potential divider 82, 84 which present an input resistance of at least 2 MΩ, and typically between 50 and 100 MΩ. the output of the potential divider 82, 84 is applied to a high impedance buffer 86 the output of which provides a driving signal to a voltage controlled oscillator (VCO) 88. Providing an input impedance in the region of 50 to 100 MΩ yields a detection current in the region of 1 μA for d.c. offsets in the region of 50 to 100V. Maintaining a low detection current has the advantage that nerve stimulation due to a direct current between the target tissue and the return electrode is avoided.
Conversion of the d.c. offset voltage to an alternating signal in the VCO 88 allows the signal to be transmitted to an isolated control circuit (not shown in FIG. 7A) connected to the output 90 of the detector via an opto-isolator 92, for controlling the r.f. energy applied to the generator output terminals so as, for example to limit the offset voltage. An indication of the d.c. offset is communicated in this way across the safety isolation barrier between the output terminals of the generator and the power generating and control circuit. In the control circuitry, the alternating signal can be converted back to a d.c. level using a monostable and low pass filter, or may be counted by a gated counter and conveyed digitally. In either case, the control circuit is arranged to reduce the average output power of source 60 when the d.c. offset voltage reaches a predetermined value (typically within the range 50 to 100V), by altering the mark-to-space ratio of the pulse modulation as described above. Accordingly, by selecting a threshold d.c. offset voltage related to the maximum safe operating temperature of the active electrode, the r.f. power delivered to the active electrode can be maximised in different thermal dissipation conditions. The processor 70 of the generator (see FIG. 4) receives a temperature signal which may be the direct output of the opto-isolator 82, in which case the threshold value for pulse width control is a frequency value, or a frequency-to-voltage converter (not shown) may be interposed, in which case the threshold value is a preset voltage value.
When the bipolar electrode assembly shown in FIG. 3 is used incorrectly, for example when there is insufficient saline around the assembly, it is possible for arcing to occur at the return electrode 36. In such circumstances, the d.c. offset polarity reverses so that the active terminal 64 becomes negative with respect to the return. The detector illustrated in FIG. 7A includes a reverse polarity detection circuit in the form of a comparator 94 bypassing the VCO 88 and having an output coupled to one input of, for instance, an OR-gate 96 the other input of which receives the alternating output from the VCO 88. The other input of the comparator 94 is coupled to a negative voltage reference. Normally, the output of comparator 94 is low, which means that the alternating signal developed by the VCO passes through OR-gate 94 to the opto-isolator 92. However, when the d.c. offset voltage on output terminal 64 of the generator turns negative by more than an amount depending on the negative reference voltage applied to comparator 94, the output of comparator 94 becomes high and OR-gate 96 blocks the alternating signal from the VCO 88, and the lack of an alternating signal applied to the control circuit from the detector output 90 can be used as a fault indication to shut off the r.f. source 60.
In this embodiment, power for the buffer 86, VCO 88, comparator 94, and OR-gate 96 is derived from the r.f. voltage itself delivered to the output terminals 64 and 66 of the generator, avoiding the need for a further isolation barrier. A suitable power supply for this purpose is illustrated in FIG. 7B. A step-down transformer 100 coupled between the output terminals 64 and 66 of the generator drives a bridge rectifier 102 to deliver a d.c. voltage at power supply output terminals 104 across a smoothing capacitor 106. Connection of the secondary winding of the transformer 100 with a centre tap to the return output terminal 66, and thus the common rail of the detector, allows the buffer 86 to be provided with a dual-polarity supply in order to accommodate positive and negative d.c. offset voltages. The fact that deriving power from the r.f. output in this way results in the detector being inoperative at low voltages is no disadvantage since the thermionic effect relied upon as the control stimulus does not occur until the r.f. output voltage of the generator reaches a level consistent with arcing at the active electrode.
Use of the invention is not restricted to wet field (underwater) electrosurgery. Arcing also occurs with monopolar or bipolar electrosurgery instruments in dry field surgery and power can be controlled using the thermionic effect in the same way as described above.

Claims (39)

1. An electrosurgical generator comprising a source of radio frequency (r.f.) energy, an active output terminal, a return output terminal, a d.c. isolation capacitance between the source and the active output terminal, and a pulsing circuit for the source, wherein the source and the pulsing circuit are arranged to generate a pulsed r.f. output signal at the output terminals, which signal has a peak-to-peak voltage of at least 1250V, a pulse mark-to-space ratio of no greater than 1:1, and a pulse length of no greater than 100 μs.
2. A generator according to claim 1, wherein the pulse repetition rate is between 5 Hz and 15 kHz.
3. A generator according to claim 1, including a d.c. voltage detector connected between the active and return output terminals, and wherein the pulsing circuit forms part of a control circuit configured to control the r.f. energy delivered from the output terminals in response to a d.c. voltage detected by the detector.
4. A generator according to claim 3, wherein the control circuit and the detector are operable to control the delivered r.f. energy so as to limit the d.c. voltage.
5. An electrosurgical generator comprising a source of r.f. energy, a pair of output terminals coupled to the source, and a pulsing circuit for the source, wherein the pulsing circuit and the source are arranged, in a pulsed mode of operation, to deliver to the output terminals a peak current of at least 3 A into a 50 ohm load and a peak-to-peak voltage of at least 1250V into 1 kilohm load.
6. A generator according to claim 5, wherein the pulse repetition rate in the pulsed mode being less than 12 kHz, and wherein the generator is capable of delivering a peak power of at least 200 W in the pulsed mode.
7. An electrosurgery system comprising a generator having a source of radio frequency (r.f.) energy and, coupled to the generator, an bipolar electrosurgical instrument having an electrode assembly with at least a pair of electrodes for operating in a wet field, wherein the generator is adapted to deliver r.f. energy to the electrode assembly as a pulse modulated r.f. signal which, in use with the pair of electrodes immersed in liquid has a peak current of at least 3 A and a peak-to-peak voltage of at least 1250V.
8. A system according to claim 7, wherein the ratio of peak power to average power is greater than 4:1.
9. A system according to claim 8, wherein the ratio of peak power of average power is greater than 20:1.
10. A system according to claim 7, wherein the generator is capable of delivering a peak power of 200 W in a pulsed made of operation, the ratio of peak power is average power being at least 4:1.
11. An electrosurgery system comprising a generator including a source of radio frequency (r.f.) energy and, coupled to the generator, an electrosurgical instrument having a treatment electrode, wherein the system includes an electrode temperature sensing arrangement and the generator is adapted to supply the r.f. energy to the electrode as a pulse modulated r.f. signal, the mark-to-space ratio of the modulation being dynamically variable in response to a temperature signal from the temperature sensing arrangement representative of the electrode temperature.
12. A system according to claim 11, wherein r.f. energy is delivered to the electrode as a pulsed signal having a pulse repetition rate between 5 Hz and 2 kHz and with a peak-to-peak voltage value of at least 1250V.
13. A system according to claim 12, wherein the generator includes a pulse modulator arranged to modulate the r.f. energy so as to produce a pulsed signal having alternate ‘off’ and ‘on’ periods during which the peak-to-peak output voltage of the generator us substantially zero and at least 1250V respectively, the duration of the ‘on’ periods being controlled in response to the temperature signal reaching a predetermined threshold value.
14. A system according to claim 11, wherein the temperature sensing arrangement has a response time which is less than the modulation period.
15. A system according to claim 11, wherein the temperature sensing arrangement is responsive to thermionic emission from the electrode.
16. A system according to claim 15, wherein the temperate sensing arrangement includes a d.c. voltage detector arranged to detect a d.c. offset on the treatment electrode.
17. A system according to claim 16, wherein the temperature sensing arrangement and the pulse modulator are adapted to control the modulation of the generator output signal so as to limit the d.c. offset to a predetermined d.c. voltage level.
18. A system according to claim 17, wherein the predetermined d.c. voltage level is in the region of from 50V to 100V.
19. A system according to claim 11, wherein the mark-to-space ratio is 1:1 or less during at least the majority of the time the generator is activated.
20. A system according to claim 19, wherein the peak-to-peak output voltage is greater than or equal to 1500V.
21. A method of operating an electrosurgery system including an electrosurgical r.f. generator and an electrode assembly having a treatment electrode coupled to the generator, wherein the method comprises applying to the electrode a pulse modulated r.f. signal produced by the generator, generating a temperature signal indicative of the temperature of the electrode, and dynamically varying at least the mark-to-space ratio of the pulse modulation of the r.f. signal in order to control the temperature of the electrode.
22. A method according to claim 21, wherein the pulse repetition rate of the r.f. signal is between 5 Hz and 2 kHz with a peak-to-peak voltage of at least 1250V.
23. A method according to claim 22, wherein the pulsed signal has alternate ‘on’ and ‘off’ periods during which the peak-to-peak output voltage of the generator is substantially zero and at last 1250V respectively, the duration of the ‘on’ periods being controlled in response to the temperature signal reaching a predetermined threshold value.
24. A method according to claim 21, wherein the temperature signal is responsive to changes in electrode temperature occurring within one pulse cycle.
25. A method according to claim 21, including detecting a d.c. offset voltage on the treatment electrode due to thermionic emission from the electrode and generating the temperature signal as a function of the offset voltage.
26. A method according to claim 21, wherein the mark-to-space ratio of the pulse modulation is 1:1 or less during at least the majority of the time the r.f. signal is applied to the electrode.
27. A method of performing electrosurgical tissue cutting or ablation in which r.f. energy is applied to an electrosurgical instrument so as to promote arcing at a treatment electrode of the instrument, wherein the energy is applied as a pulsed r.f. signal having a peak-to-peak voltage of at least 1250V, a pulse mark-to-space ratio of no greater than 1:1 and a pulse length of no greater than 100 μs.
28. A method according to claim 27, wherein the mark-to-space ratio is dynamically regulated to maximise the temperature of the electrode without substantial electrode burning.
29. A method according to claim 27, wherein the electrosurgical instrument has an electrode assembly with at least two electrodes, including an active electrode and a return electrode, wherein the tissue cutting or ablation is performed in the presence of a conducting liquid supplied to the site of the operation such that electrosurgical currents pass from the active electrode to the return electrode through said liquid, and wherein application of the pulsed r.f. signal causes a layer of vapour to form and collapse repeatedly at the active electrode, the layer being formed when the pulsed signal is ‘on’ and collapsing when the said signal is ‘off’.
30. A method according to claim 27, wherein the peak current is at least 3 A.
31. An electrosurgery system comprising a generator including a source of radio frequency (r.f.) energy and, coupled to the generator, an electrosurgical instrument having a treatment electrode, wherein the system includes an electrode temperature sensing arrangement and the generator is adapted to supply the r.f. energy to the electrode as a pulse modulated r.f. signal at at least a level capable of tissue cutting or ablation, the mark-to-space ratio of the modulation being dynamically variable in response to a temperature signal from the temperature sensing arrangement representative of the electrode temperature.
32. A system according to claim 31, wherein the generator includes a pulse modulator arranged to modulate the r.f. energy so as to produce a pulsed signal having alternate ‘off’ and ‘on’ periods during which the peak-to-peak output voltage of the generator is substantially zero and at least 1250V respectively, the duration of the ‘on’ periods being controlled in response to the temperature signal reaching a predetermined threshold value.
33. A system according to claim 31, wherein the temperature sensing arrangement has a response time which is less than the modulation period.
34. A system according to claim 31, wherein the temperature sensing arrangement is responsive to thermionic emission from the electrode.
35. A system according to claim 34, wherein the temperate sensing arrangement includes a d.c. voltage detector arranged to detect a d.c. offset on the treatment electrode.
36. A system according to claim 35, wherein the temperature sensing arrangement and the pulse modulator are adapted to control the modulation of the generator output signal so as to limit the d.c. offset to a predetermined d.c. voltage level.
37. A system according to claim 36, wherein the predetermined d.c. voltage level is in the region of from 50V to 100V.
38. A system according to claim 31, wherein the mark-to-space ratio is 1:1 or less during at least the majority of the time the generator is activated.
39. A system according to claim 38, wherein the peak-to-peak output voltage is greater than or equal to 1500V.
US11/436,186 1999-05-21 2006-05-18 Electrosurgery system and method Expired - Lifetime USRE41921E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/436,186 USRE41921E1 (en) 1999-05-21 2006-05-18 Electrosurgery system and method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GBGB9911956.2A GB9911956D0 (en) 1999-05-21 1999-05-21 Electrosurgery system and method
GB9911956 1999-05-21
US09/343,542 US6228081B1 (en) 1999-05-21 1999-06-30 Electrosurgery system and method
US10/323,004 USRE39358E1 (en) 1999-05-21 2002-12-19 Electrosurgery system and method
US11/436,186 USRE41921E1 (en) 1999-05-21 2006-05-18 Electrosurgery system and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/343,542 Reissue US6228081B1 (en) 1999-05-21 1999-06-30 Electrosurgery system and method

Publications (1)

Publication Number Publication Date
USRE41921E1 true USRE41921E1 (en) 2010-11-09

Family

ID=10853981

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/343,542 Ceased US6228081B1 (en) 1999-05-21 1999-06-30 Electrosurgery system and method
US10/323,004 Expired - Lifetime USRE39358E1 (en) 1999-05-21 2002-12-19 Electrosurgery system and method
US11/436,186 Expired - Lifetime USRE41921E1 (en) 1999-05-21 2006-05-18 Electrosurgery system and method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/343,542 Ceased US6228081B1 (en) 1999-05-21 1999-06-30 Electrosurgery system and method
US10/323,004 Expired - Lifetime USRE39358E1 (en) 1999-05-21 2002-12-19 Electrosurgery system and method

Country Status (6)

Country Link
US (3) US6228081B1 (en)
EP (1) EP1053720A1 (en)
JP (1) JP4262862B2 (en)
AU (1) AU779962B2 (en)
CA (1) CA2308881C (en)
GB (1) GB9911956D0 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10105174B2 (en) 2012-04-09 2018-10-23 Covidien Lp Method for employing single fault safe redundant signals

Families Citing this family (1374)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297145B2 (en) 1997-10-23 2007-11-20 Arthrocare Corporation Bipolar electrosurgical clamp for removing and modifying tissue
US6277112B1 (en) 1996-07-16 2001-08-21 Arthrocare Corporation Methods for electrosurgical spine surgery
US6102046A (en) 1995-11-22 2000-08-15 Arthrocare Corporation Systems and methods for electrosurgical tissue revascularization
US6159194A (en) 1992-01-07 2000-12-12 Arthrocare Corporation System and method for electrosurgical tissue contraction
US6024733A (en) * 1995-06-07 2000-02-15 Arthrocare Corporation System and method for epidermal tissue ablation
US6063079A (en) 1995-06-07 2000-05-16 Arthrocare Corporation Methods for electrosurgical treatment of turbinates
US6770071B2 (en) 1995-06-07 2004-08-03 Arthrocare Corporation Bladed electrosurgical probe
US5697882A (en) 1992-01-07 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
US6832996B2 (en) 1995-06-07 2004-12-21 Arthrocare Corporation Electrosurgical systems and methods for treating tissue
US6749604B1 (en) 1993-05-10 2004-06-15 Arthrocare Corporation Electrosurgical instrument with axially-spaced electrodes
US6772012B2 (en) 1995-06-07 2004-08-03 Arthrocare Corporation Methods for electrosurgical treatment of spinal tissue
US6149620A (en) 1995-11-22 2000-11-21 Arthrocare Corporation System and methods for electrosurgical tissue treatment in the presence of electrically conductive fluid
US6632193B1 (en) 1995-06-07 2003-10-14 Arthrocare Corporation Systems and methods for electrosurgical tissue treatment
US7186234B2 (en) 1995-11-22 2007-03-06 Arthrocare Corporation Electrosurgical apparatus and methods for treatment and removal of tissue
US7758537B1 (en) 1995-11-22 2010-07-20 Arthrocare Corporation Systems and methods for electrosurgical removal of the stratum corneum
US6805130B2 (en) * 1995-11-22 2004-10-19 Arthrocare Corporation Methods for electrosurgical tendon vascularization
US6726684B1 (en) 1996-07-16 2004-04-27 Arthrocare Corporation Methods for electrosurgical spine surgery
US7435249B2 (en) 1997-11-12 2008-10-14 Covidien Ag Electrosurgical instruments which reduces collateral damage to adjacent tissue
US6726686B2 (en) 1997-11-12 2004-04-27 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
US6228083B1 (en) 1997-11-14 2001-05-08 Sherwood Services Ag Laparoscopic bipolar electrosurgical instrument
GB9813042D0 (en) * 1998-06-17 1998-08-12 Nuvotek Ltd Electrosurgical cutting tool
US7276063B2 (en) 1998-08-11 2007-10-02 Arthrocare Corporation Instrument for electrosurgical tissue treatment
ES2241369T3 (en) 1998-10-23 2005-10-16 Sherwood Services Ag ENDOSCOPIC ELECTROCHIRURGICAL BIPOLAR FORCEPS.
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US7267677B2 (en) 1998-10-23 2007-09-11 Sherwood Services Ag Vessel sealing instrument
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US7118570B2 (en) 2001-04-06 2006-10-10 Sherwood Services Ag Vessel sealing forceps with disposable electrodes
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US7582087B2 (en) 1998-10-23 2009-09-01 Covidien Ag Vessel sealing instrument
US6692489B1 (en) * 1999-07-21 2004-02-17 Team Medical, Llc Electrosurgical mode conversion system
US7887535B2 (en) 1999-10-18 2011-02-15 Covidien Ag Vessel sealing wave jaw
US20030109875A1 (en) 1999-10-22 2003-06-12 Tetzlaff Philip M. Open vessel sealing forceps with disposable electrodes
US20040068307A1 (en) * 2000-02-08 2004-04-08 Gyrus Medical Limited Surgical instrument
US6758846B2 (en) * 2000-02-08 2004-07-06 Gyrus Medical Limited Electrosurgical instrument and an electrosurgery system including such an instrument
US20040181219A1 (en) * 2000-02-08 2004-09-16 Gyrus Medical Limited Electrosurgical instrument and an electrosugery system including such an instrument
EP1307154B1 (en) 2000-08-08 2005-02-23 Erbe Elektromedizin GmbH High-frequency generator for performing high-frequency surgery having adjustable power limitation
US6843789B2 (en) 2000-10-31 2005-01-18 Gyrus Medical Limited Electrosurgical system
US6893435B2 (en) 2000-10-31 2005-05-17 Gyrus Medical Limited Electrosurgical system
US8133218B2 (en) 2000-12-28 2012-03-13 Senorx, Inc. Electrosurgical medical system and method
US6620157B1 (en) 2000-12-28 2003-09-16 Senorx, Inc. High frequency power source
US20050004559A1 (en) 2003-06-03 2005-01-06 Senorx, Inc. Universal medical device control console
US7101371B2 (en) 2001-04-06 2006-09-05 Dycus Sean T Vessel sealer and divider
DE60121228T2 (en) 2001-04-06 2007-05-24 Sherwood Services Ag DAMAGE TO BENEFICIAL WEAVE REDUCING, ELECTRO-SURGICAL INSTRUMENT
DE60139815D1 (en) 2001-04-06 2009-10-15 Covidien Ag Device for sealing and dividing a vessel with non-conductive end stop
US10849681B2 (en) 2001-04-06 2020-12-01 Covidien Ag Vessel sealer and divider
US6929641B2 (en) 2001-08-27 2005-08-16 Gyrus Medical Limited Electrosurgical system
US20030088245A1 (en) * 2001-11-02 2003-05-08 Arthrocare Corporation Methods and apparatus for electrosurgical ventriculostomy
US6889090B2 (en) * 2001-11-20 2005-05-03 Syneron Medical Ltd. System and method for skin treatment using electrical current
AU2003218050A1 (en) 2002-02-11 2003-09-04 Arthrocare Corporation Electrosurgical apparatus and methods for laparoscopy
US6896675B2 (en) 2002-03-05 2005-05-24 Baylis Medical Company Inc. Intradiscal lesioning device
US8882755B2 (en) * 2002-03-05 2014-11-11 Kimberly-Clark Inc. Electrosurgical device for treatment of tissue
US8518036B2 (en) * 2002-03-05 2013-08-27 Kimberly-Clark Inc. Electrosurgical tissue treatment method
US8043287B2 (en) 2002-03-05 2011-10-25 Kimberly-Clark Inc. Method of treating biological tissue
US7197363B2 (en) 2002-04-16 2007-03-27 Vivant Medical, Inc. Microwave antenna having a curved configuration
US6780178B2 (en) * 2002-05-03 2004-08-24 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
US8043286B2 (en) * 2002-05-03 2011-10-25 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
ATE371413T1 (en) 2002-05-06 2007-09-15 Covidien Ag BLOOD DETECTOR FOR CHECKING AN ELECTROSURGICAL UNIT
US6852109B2 (en) * 2002-06-11 2005-02-08 Intraluminal Therapeutics, Inc. Radio frequency guide wire assembly with optical coherence reflectometry guidance
US7276068B2 (en) 2002-10-04 2007-10-02 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7931649B2 (en) 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
US7270664B2 (en) 2002-10-04 2007-09-18 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7799026B2 (en) 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
US7195627B2 (en) * 2003-01-09 2007-03-27 Gyrus Medical Limited Electrosurgical generator
AU2003290301B2 (en) * 2003-01-09 2009-01-08 Gyrus Medical Limited An electrosurgical generator
US7736361B2 (en) * 2003-02-14 2010-06-15 The Board Of Trustees Of The Leland Stamford Junior University Electrosurgical system with uniformly enhanced electric field and minimal collateral damage
AU2003223284C1 (en) 2003-03-13 2010-09-16 Covidien Ag Bipolar concentric electrode assembly for soft tissue fusion
WO2004098383A2 (en) 2003-05-01 2004-11-18 Sherwood Services Ag Electrosurgical instrument which reduces thermal damage to adjacent tissue
JP2006525096A (en) 2003-05-01 2006-11-09 シャーウッド・サービシーズ・アクチェンゲゼルシャフト Method and system for programming and controlling an electrosurgical generator system
US7160299B2 (en) 2003-05-01 2007-01-09 Sherwood Services Ag Method of fusing biomaterials with radiofrequency energy
US8128624B2 (en) 2003-05-01 2012-03-06 Covidien Ag Electrosurgical instrument that directs energy delivery and protects adjacent tissue
US7794456B2 (en) 2003-05-13 2010-09-14 Arthrocare Corporation Systems and methods for electrosurgical intervertebral disc replacement
USD496997S1 (en) 2003-05-15 2004-10-05 Sherwood Services Ag Vessel sealer and divider
USD499181S1 (en) 2003-05-15 2004-11-30 Sherwood Services Ag Handle for a vessel sealer and divider
US7491201B2 (en) 2003-05-15 2009-02-17 Covidien Ag Tissue sealer with non-conductive variable stop members and method of sealing tissue
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US7156846B2 (en) 2003-06-13 2007-01-02 Sherwood Services Ag Vessel sealer and divider for use with small trocars and cannulas
US7150749B2 (en) 2003-06-13 2006-12-19 Sherwood Services Ag Vessel sealer and divider having elongated knife stroke and safety cutting mechanism
US7857812B2 (en) 2003-06-13 2010-12-28 Covidien Ag Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism
USD956973S1 (en) 2003-06-13 2022-07-05 Covidien Ag Movable handle for endoscopic vessel sealer and divider
EP1651127B1 (en) 2003-07-16 2012-10-31 Arthrocare Corporation Rotary electrosurgical apparatus
DE202004021943U1 (en) 2003-09-12 2013-05-13 Vessix Vascular, Inc. Selectable eccentric remodeling and / or ablation of atherosclerotic material
US7708733B2 (en) 2003-10-20 2010-05-04 Arthrocare Corporation Electrosurgical method and apparatus for removing tissue within a bone body
US8808161B2 (en) 2003-10-23 2014-08-19 Covidien Ag Redundant temperature monitoring in electrosurgical systems for safety mitigation
US8104956B2 (en) 2003-10-23 2012-01-31 Covidien Ag Thermocouple measurement circuit
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7367976B2 (en) 2003-11-17 2008-05-06 Sherwood Services Ag Bipolar forceps having monopolar extension
US7811283B2 (en) 2003-11-19 2010-10-12 Covidien Ag Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US7500975B2 (en) 2003-11-19 2009-03-10 Covidien Ag Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US7131970B2 (en) 2003-11-19 2006-11-07 Sherwood Services Ag Open vessel sealing instrument with cutting mechanism
US7442193B2 (en) 2003-11-20 2008-10-28 Covidien Ag Electrically conductive/insulative over-shoe for tissue fusion
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7300435B2 (en) * 2003-11-21 2007-11-27 Sherwood Services Ag Automatic control system for an electrosurgical generator
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7704249B2 (en) 2004-05-07 2010-04-27 Arthrocare Corporation Apparatus and methods for electrosurgical ablation and resection of target tissue
US20050283149A1 (en) * 2004-06-08 2005-12-22 Thorne Jonathan O Electrosurgical cutting instrument
EP1773227B1 (en) 2004-06-24 2016-04-13 ArthroCare Corporation Electrosurgical device having planar vertical electrodes
US8357154B2 (en) * 2004-07-20 2013-01-22 Microline Surgical, Inc. Multielectrode electrosurgical instrument
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US8905977B2 (en) 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US11998198B2 (en) 2004-07-28 2024-06-04 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US7195631B2 (en) 2004-09-09 2007-03-27 Sherwood Services Ag Forceps with spring loaded end effector assembly
US8920414B2 (en) 2004-09-10 2014-12-30 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US7540872B2 (en) 2004-09-21 2009-06-02 Covidien Ag Articulating bipolar electrosurgical instrument
US7553309B2 (en) 2004-10-08 2009-06-30 Covidien Ag Electrosurgical system employing multiple electrodes and method thereof
US7955332B2 (en) 2004-10-08 2011-06-07 Covidien Ag Mechanism for dividing tissue in a hemostat-style instrument
US7776035B2 (en) 2004-10-08 2010-08-17 Covidien Ag Cool-tip combined electrode introducer
US7282049B2 (en) 2004-10-08 2007-10-16 Sherwood Services Ag Electrosurgical system employing multiple electrodes and method thereof
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US7686827B2 (en) 2004-10-21 2010-03-30 Covidien Ag Magnetic closure mechanism for hemostat
US8795195B2 (en) 2004-11-29 2014-08-05 Senorx, Inc. Graphical user interface for tissue biopsy system
US7686804B2 (en) 2005-01-14 2010-03-30 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US7909823B2 (en) 2005-01-14 2011-03-22 Covidien Ag Open vessel sealing instrument
GB0502384D0 (en) 2005-02-04 2005-03-16 Instrumedical Ltd Electro-surgical needle apparatus
ES2565342T3 (en) 2005-03-28 2016-04-04 Vessix Vascular, Inc. Intraluminal electrical characterization of tissue and regulated RF energy for selective treatment of atheroma and other target tissues
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US7491202B2 (en) 2005-03-31 2009-02-17 Covidien Ag Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
US8562603B2 (en) * 2005-06-30 2013-10-22 Microline Surgical, Inc. Method for conducting electrosurgery with increased crest factor
US20070005056A1 (en) * 2005-06-30 2007-01-04 Surginetics, Llc Electrosurgical Instrument With Blade Profile For Reduced Tissue Damage
US20070005057A1 (en) * 2005-06-30 2007-01-04 Surginetics, Llc Electrosurgical Blade With Profile For Minimizing Tissue Damage
US7867225B2 (en) * 2005-06-30 2011-01-11 Microline Surgical, Inc Electrosurgical instrument with needle electrode
US7867226B2 (en) * 2005-06-30 2011-01-11 Microline Surgical, Inc. Electrosurgical needle electrode
US7935113B2 (en) * 2005-06-30 2011-05-03 Microline Surgical, Inc. Electrosurgical blade
US7837685B2 (en) 2005-07-13 2010-11-23 Covidien Ag Switch mechanisms for safe activation of energy on an electrosurgical instrument
US7628791B2 (en) 2005-08-19 2009-12-08 Covidien Ag Single action tissue sealer
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US8317070B2 (en) 2005-08-31 2012-11-27 Ethicon Endo-Surgery, Inc. Surgical stapling devices that produce formed staples having different lengths
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7879035B2 (en) 2005-09-30 2011-02-01 Covidien Ag Insulating boot for electrosurgical forceps
US7789878B2 (en) 2005-09-30 2010-09-07 Covidien Ag In-line vessel sealer and divider
CA2561034C (en) 2005-09-30 2014-12-09 Sherwood Services Ag Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue
AU2006225175B2 (en) 2005-09-30 2012-08-30 Covidien Ag Insulating boot for electrosurgical forceps
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
US7922953B2 (en) 2005-09-30 2011-04-12 Covidien Ag Method for manufacturing an end effector assembly
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US7691101B2 (en) 2006-01-06 2010-04-06 Arthrocare Corporation Electrosurgical method and system for treating foot ulcer
US8876746B2 (en) 2006-01-06 2014-11-04 Arthrocare Corporation Electrosurgical system and method for treating chronic wound tissue
EP1810634B8 (en) 2006-01-24 2015-06-10 Covidien AG System for tissue sealing
US9186200B2 (en) 2006-01-24 2015-11-17 Covidien Ag System and method for tissue sealing
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US8734443B2 (en) 2006-01-24 2014-05-27 Covidien Lp Vessel sealer and divider for large tissue structures
US8882766B2 (en) 2006-01-24 2014-11-11 Covidien Ag Method and system for controlling delivery of energy to divide tissue
CA2574934C (en) 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US20070173802A1 (en) 2006-01-24 2007-07-26 Keppel David S Method and system for transmitting data across patient isolation barrier
US7766910B2 (en) 2006-01-24 2010-08-03 Tyco Healthcare Group Lp Vessel sealer and divider for large tissue structures
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US8298232B2 (en) 2006-01-24 2012-10-30 Tyco Healthcare Group Lp Endoscopic vessel sealer and divider for large tissue structures
US8241282B2 (en) 2006-01-24 2012-08-14 Tyco Healthcare Group Lp Vessel sealing cutting assemblies
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
CA2574935A1 (en) 2006-01-24 2007-07-24 Sherwood Services Ag A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
CA2639971A1 (en) 2006-01-25 2007-08-02 Team Medical, Llc Coating suitable for surgical instruments
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US7879034B2 (en) 2006-03-02 2011-02-01 Arthrocare Corporation Internally located return electrode electrosurgical apparatus, system and method
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
GB2436065A (en) * 2006-03-16 2007-09-19 Gyrus Medical Ltd Morcellating device with bipolar cutting electrodes applying pulsed voltage
US7648499B2 (en) 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US7846158B2 (en) 2006-05-05 2010-12-07 Covidien Ag Apparatus and method for electrode thermosurgery
US8753334B2 (en) 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
EP2020943B1 (en) 2006-05-30 2015-07-08 ArthroCare Corporation Hard tissue ablation system
WO2007145926A2 (en) 2006-06-05 2007-12-21 Senorx, Inc. Biopsy system with integrated ultrasonic imaging
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US7776037B2 (en) 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US7744615B2 (en) 2006-07-18 2010-06-29 Covidien Ag Apparatus and method for transecting tissue on a bipolar vessel sealing instrument
US7740159B2 (en) 2006-08-02 2010-06-22 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US8597297B2 (en) 2006-08-29 2013-12-03 Covidien Ag Vessel sealing instrument with multiple electrode configurations
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US20110087276A1 (en) 2009-10-09 2011-04-14 Ethicon Endo-Surgery, Inc. Method for forming a staple
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US20080078802A1 (en) 2006-09-29 2008-04-03 Hess Christopher J Surgical staples and stapling instruments
US8070746B2 (en) 2006-10-03 2011-12-06 Tyco Healthcare Group Lp Radiofrequency fusion of cardiac tissue
US11980366B2 (en) 2006-10-03 2024-05-14 Cilag Gmbh International Surgical instrument
US8475453B2 (en) 2006-10-06 2013-07-02 Covidien Lp Endoscopic vessel sealer and divider having a flexible articulating shaft
US7951149B2 (en) 2006-10-17 2011-05-31 Tyco Healthcare Group Lp Ablative material for use with tissue treatment device
AU2007310986B2 (en) 2006-10-18 2013-07-04 Boston Scientific Scimed, Inc. Inducing desirable temperature effects on body tissue
ES2407329T3 (en) 2006-10-18 2013-06-12 Vessix Vascular, Inc. System to induce desirable temperature effects on body tissue
WO2008057410A2 (en) 2006-11-02 2008-05-15 Peak Surgical, Inc. Electric plasma-mediated cutting and coagulation of tissue and surgical apparatus
EP2101668B1 (en) 2006-12-06 2012-09-05 Boston Scientific Limited Tissue ablation using pulse modulated radio frequency energy
US8192424B2 (en) 2007-01-05 2012-06-05 Arthrocare Corporation Electrosurgical system with suction control apparatus, system and method
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8840603B2 (en) 2007-01-10 2014-09-23 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US7951144B2 (en) 2007-01-19 2011-05-31 Mahajan Roop L Thermal and electrical conductivity probes and methods of making the same
US8211099B2 (en) 2007-01-31 2012-07-03 Tyco Healthcare Group Lp Thermal feedback systems and methods of using the same
USD649249S1 (en) 2007-02-15 2011-11-22 Tyco Healthcare Group Lp End effectors of an elongated dissecting and dividing instrument
US9265559B2 (en) * 2007-02-25 2016-02-23 Avent, Inc. Electrosurgical method
US20090001130A1 (en) 2007-03-15 2009-01-01 Hess Christopher J Surgical procedure using a cutting and stapling instrument having releasable staple-forming pockets
US7862560B2 (en) 2007-03-23 2011-01-04 Arthrocare Corporation Ablation apparatus having reduced nerve stimulation and related methods
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8267935B2 (en) 2007-04-04 2012-09-18 Tyco Healthcare Group Lp Electrosurgical instrument reducing current densities at an insulator conductor junction
US8496653B2 (en) 2007-04-23 2013-07-30 Boston Scientific Scimed, Inc. Thrombus removal
US7998139B2 (en) 2007-04-25 2011-08-16 Vivant Medical, Inc. Cooled helical antenna for microwave ablation
US8215182B2 (en) 2007-04-26 2012-07-10 Tyco Healthcare Group Lp Apparatus and method for measuring pressure between jaw members
US8777941B2 (en) 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
US8157145B2 (en) 2007-05-31 2012-04-17 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US7832408B2 (en) 2007-06-04 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7905380B2 (en) 2007-06-04 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US7777130B2 (en) 2007-06-18 2010-08-17 Vivant Medical, Inc. Microwave cable cooling
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
JP5336481B2 (en) 2007-06-29 2013-11-06 コヴィディエン リミテッド パートナーシップ Method and system for monitoring tissue during an electrosurgical procedure
EP2170198B1 (en) 2007-07-06 2015-04-15 Tsunami Medtech, LLC Medical system
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
US8152800B2 (en) 2007-07-30 2012-04-10 Vivant Medical, Inc. Electrosurgical systems and printed circuit boards for use therewith
EP2190373B1 (en) 2007-08-23 2013-01-09 Aegea Medical, Inc. Uterine therapy device
US8181995B2 (en) 2007-09-07 2012-05-22 Tyco Healthcare Group Lp Cool tip junction
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US7877852B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing an end effector assembly for sealing tissue
US7877853B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing end effector assembly for sealing tissue
US8512332B2 (en) 2007-09-21 2013-08-20 Covidien Lp Real-time arc control in electrosurgical generators
US8235993B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with exohinged structure
US8251996B2 (en) 2007-09-28 2012-08-28 Tyco Healthcare Group Lp Insulating sheath for electrosurgical forceps
US8267936B2 (en) 2007-09-28 2012-09-18 Tyco Healthcare Group Lp Insulating mechanically-interfaced adhesive for electrosurgical forceps
US8241283B2 (en) 2007-09-28 2012-08-14 Tyco Healthcare Group Lp Dual durometer insulating boot for electrosurgical forceps
US8221416B2 (en) 2007-09-28 2012-07-17 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with thermoplastic clevis
US9023043B2 (en) 2007-09-28 2015-05-05 Covidien Lp Insulating mechanically-interfaced boot and jaws for electrosurgical forceps
US8236025B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Silicone insulated electrosurgical forceps
US8235992B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot with mechanical reinforcement for electrosurgical forceps
US8396806B2 (en) 2007-10-30 2013-03-12 Red Hat, Inc. End user license agreements associated with messages
US9622813B2 (en) 2007-11-01 2017-04-18 Covidien Lp Method for volume determination and geometric reconstruction
US8280525B2 (en) 2007-11-16 2012-10-02 Vivant Medical, Inc. Dynamically matched microwave antenna for tissue ablation
US7713076B2 (en) 2007-11-27 2010-05-11 Vivant Medical, Inc. Floating connector for microwave surgical device
US8131339B2 (en) 2007-11-27 2012-03-06 Vivant Medical, Inc. System and method for field ablation prediction
US9057468B2 (en) 2007-11-27 2015-06-16 Covidien Lp Wedge coupling
US8292880B2 (en) 2007-11-27 2012-10-23 Vivant Medical, Inc. Targeted cooling of deployable microwave antenna
US8192444B2 (en) 2008-01-16 2012-06-05 Tyco Healthcare Group Lp Uterine sealer
US8945111B2 (en) 2008-01-23 2015-02-03 Covidien Lp Choked dielectric loaded tip dipole microwave antenna
US7642451B2 (en) 2008-01-23 2010-01-05 Vivant Medical, Inc. Thermally tuned coaxial cable for microwave antennas
US8435237B2 (en) 2008-01-29 2013-05-07 Covidien Lp Polyp encapsulation system and method
US8262703B2 (en) 2008-01-31 2012-09-11 Vivant Medical, Inc. Medical device including member that deploys in a spiral-like configuration and method
US8353902B2 (en) 2008-01-31 2013-01-15 Vivant Medical, Inc. Articulating ablation device and method
CA2713898C (en) 2008-01-31 2017-05-02 Tyco Healthcare Group, Lp Polyp removal device and method of use
US8764748B2 (en) 2008-02-06 2014-07-01 Covidien Lp End effector assembly for electrosurgical device and method for making the same
US8221418B2 (en) 2008-02-07 2012-07-17 Tyco Healthcare Group Lp Endoscopic instrument for tissue identification
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US7766209B2 (en) 2008-02-13 2010-08-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8453908B2 (en) 2008-02-13 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8382792B2 (en) 2008-02-14 2013-02-26 Covidien Lp End effector assembly for electrosurgical device
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US11986183B2 (en) 2008-02-14 2024-05-21 Cilag Gmbh International Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US9358063B2 (en) 2008-02-14 2016-06-07 Arthrocare Corporation Ablation performance indicator for electrosurgical devices
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US20090206126A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. Buttress material with alignment and retention features for use with surgical end effectors
US20090206131A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US10390823B2 (en) 2008-02-15 2019-08-27 Ethicon Llc End effector comprising an adjunct
US8623276B2 (en) 2008-02-15 2014-01-07 Covidien Lp Method and system for sterilizing an electrosurgical instrument
US8608044B2 (en) 2008-02-15 2013-12-17 Ethicon Endo-Surgery, Inc. Feedback and lockout mechanism for surgical instrument
US9192427B2 (en) 2008-03-11 2015-11-24 Covidien Lp Bipolar cutting end effector
US9949794B2 (en) 2008-03-27 2018-04-24 Covidien Lp Microwave ablation devices including expandable antennas and methods of use
EP4169464A1 (en) 2008-03-31 2023-04-26 Applied Medical Resources Corporation Electrosurgical system
US9198723B2 (en) 2008-03-31 2015-12-01 Covidien Lp Re-hydration antenna for ablation
US20090254077A1 (en) * 2008-04-08 2009-10-08 Tyco Healthcare Group Lp Arc Generation in a Fluid Medium
US8246614B2 (en) 2008-04-17 2012-08-21 Vivant Medical, Inc. High-strength microwave antenna coupling
US8357158B2 (en) 2008-04-22 2013-01-22 Covidien Lp Jaw closure detection system
US8059059B2 (en) 2008-05-29 2011-11-15 Vivant Medical, Inc. Slidable choke microwave antenna
US8721632B2 (en) 2008-09-09 2014-05-13 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US9271796B2 (en) 2008-06-09 2016-03-01 Covidien Lp Ablation needle guide
US8192427B2 (en) 2008-06-09 2012-06-05 Tyco Healthcare Group Lp Surface ablation process with electrode cooling methods
US8226639B2 (en) 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
US20090306642A1 (en) * 2008-06-10 2009-12-10 Vankov Alexander B Method for low temperature electrosugery and rf generator
US8343149B2 (en) 2008-06-26 2013-01-01 Vivant Medical, Inc. Deployable microwave antenna for treating tissue
US8469956B2 (en) 2008-07-21 2013-06-25 Covidien Lp Variable resistor jaw
US8834409B2 (en) 2008-07-29 2014-09-16 Covidien Lp Method for ablation volume determination and geometric reconstruction
US8747400B2 (en) 2008-08-13 2014-06-10 Arthrocare Corporation Systems and methods for screen electrode securement
US8257387B2 (en) 2008-08-15 2012-09-04 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US8162973B2 (en) 2008-08-15 2012-04-24 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US9603652B2 (en) 2008-08-21 2017-03-28 Covidien Lp Electrosurgical instrument including a sensor
US9173706B2 (en) 2008-08-25 2015-11-03 Covidien Lp Dual-band dipole microwave ablation antenna
US8211098B2 (en) 2008-08-25 2012-07-03 Vivant Medical, Inc. Microwave antenna assembly having a dielectric body portion with radial partitions of dielectric material
US8795274B2 (en) 2008-08-28 2014-08-05 Covidien Lp Tissue fusion jaw angle improvement
US8317787B2 (en) 2008-08-28 2012-11-27 Covidien Lp Tissue fusion jaw angle improvement
US8251987B2 (en) 2008-08-28 2012-08-28 Vivant Medical, Inc. Microwave antenna
US8784417B2 (en) 2008-08-28 2014-07-22 Covidien Lp Tissue fusion jaw angle improvement
US8403924B2 (en) 2008-09-03 2013-03-26 Vivant Medical, Inc. Shielding for an isolation apparatus used in a microwave generator
US8394086B2 (en) 2008-09-03 2013-03-12 Vivant Medical, Inc. Microwave shielding apparatus
US8303582B2 (en) 2008-09-15 2012-11-06 Tyco Healthcare Group Lp Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US20100069903A1 (en) 2008-09-18 2010-03-18 Tyco Healthcare Group Lp Vessel Sealing Instrument With Cutting Mechanism
US8083120B2 (en) 2008-09-18 2011-12-27 Ethicon Endo-Surgery, Inc. End effector for use with a surgical cutting and stapling instrument
PL3476312T3 (en) 2008-09-19 2024-03-11 Ethicon Llc Surgical stapler with apparatus for adjusting staple height
US7954686B2 (en) 2008-09-19 2011-06-07 Ethicon Endo-Surgery, Inc. Surgical stapler with apparatus for adjusting staple height
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9375254B2 (en) 2008-09-25 2016-06-28 Covidien Lp Seal and separate algorithm
US8535312B2 (en) 2008-09-25 2013-09-17 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8968314B2 (en) 2008-09-25 2015-03-03 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8142473B2 (en) 2008-10-03 2012-03-27 Tyco Healthcare Group Lp Method of transferring rotational motion in an articulating surgical instrument
US9561068B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US10064697B2 (en) 2008-10-06 2018-09-04 Santa Anna Tech Llc Vapor based ablation system for treating various indications
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US9700365B2 (en) 2008-10-06 2017-07-11 Santa Anna Tech Llc Method and apparatus for the ablation of gastrointestinal tissue
US9561066B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US8469957B2 (en) 2008-10-07 2013-06-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8016827B2 (en) 2008-10-09 2011-09-13 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8636761B2 (en) 2008-10-09 2014-01-28 Covidien Lp Apparatus, system, and method for performing an endoscopic electrosurgical procedure
US8734444B2 (en) * 2008-10-10 2014-05-27 Covidien Lp System and method for delivering high current to electrosurgical device
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8852179B2 (en) 2008-10-10 2014-10-07 Covidien Lp Apparatus, system and method for monitoring tissue during an electrosurgical procedure
US8512328B2 (en) 2008-10-13 2013-08-20 Covidien Lp Antenna assemblies for medical applications
US9375272B2 (en) 2008-10-13 2016-06-28 Covidien Lp Antenna assemblies for medical applications
US9113624B2 (en) 2008-10-15 2015-08-25 Covidien Lp System and method for perfusing biological organs
US9113924B2 (en) 2008-10-17 2015-08-25 Covidien Lp Choked dielectric loaded tip dipole microwave antenna
US8486107B2 (en) 2008-10-20 2013-07-16 Covidien Lp Method of sealing tissue using radiofrequency energy
KR20110104504A (en) 2008-11-17 2011-09-22 미노우 메디컬, 인코포레이티드 Selective accumulation of energy with or without knowledge of tissue topography
US8308721B2 (en) 2008-12-04 2012-11-13 Olympus Medical Systems Corp. Surgical system and surgical method
US8197479B2 (en) 2008-12-10 2012-06-12 Tyco Healthcare Group Lp Vessel sealer and divider
US8355799B2 (en) 2008-12-12 2013-01-15 Arthrocare Corporation Systems and methods for limiting joint temperature
US8137345B2 (en) 2009-01-05 2012-03-20 Peak Surgical, Inc. Electrosurgical devices for tonsillectomy and adenoidectomy
US8262652B2 (en) 2009-01-12 2012-09-11 Tyco Healthcare Group Lp Imaginary impedance process monitoring and intelligent shut-off
US8114122B2 (en) 2009-01-13 2012-02-14 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8282634B2 (en) 2009-01-14 2012-10-09 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8632564B2 (en) 2009-01-14 2014-01-21 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8632539B2 (en) 2009-01-14 2014-01-21 Covidien Lp Vessel sealer and divider
US11284931B2 (en) 2009-02-03 2022-03-29 Tsunami Medtech, Llc Medical systems and methods for ablating and absorbing tissue
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8485413B2 (en) 2009-02-05 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising an articulation joint
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
CN102341048A (en) 2009-02-06 2012-02-01 伊西康内外科公司 Driven surgical stapler improvements
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8197473B2 (en) 2009-02-20 2012-06-12 Vivant Medical, Inc. Leaky-wave antennas for medical applications
US8202270B2 (en) 2009-02-20 2012-06-19 Vivant Medical, Inc. Leaky-wave antennas for medical applications
US8574187B2 (en) 2009-03-09 2013-11-05 Arthrocare Corporation System and method of an electrosurgical controller with output RF energy control
US8118808B2 (en) 2009-03-10 2012-02-21 Vivant Medical, Inc. Cooled dielectrically buffered microwave dipole antenna
US8066167B2 (en) 2009-03-23 2011-11-29 Ethicon Endo-Surgery, Inc. Circular surgical stapling instrument with anvil locking system
US8226650B2 (en) 2009-03-26 2012-07-24 Tyco Healthcare Group Lp Apparatus, system, and method for performing an endoscopic electrosurgical procedure
US9277969B2 (en) 2009-04-01 2016-03-08 Covidien Lp Microwave ablation system with user-controlled ablation size and method of use
US8251994B2 (en) 2009-04-07 2012-08-28 Tyco Healthcare Group Lp Vessel sealer and divider with blade deployment alarm
US10045819B2 (en) 2009-04-14 2018-08-14 Covidien Lp Frequency identification for microwave ablation probes
US8216227B2 (en) 2009-05-06 2012-07-10 Vivant Medical, Inc. Power-stage antenna integrated system with junction member
US8353903B2 (en) 2009-05-06 2013-01-15 Vivant Medical, Inc. Power-stage antenna integrated system
US8463396B2 (en) 2009-05-06 2013-06-11 Covidien LLP Power-stage antenna integrated system with high-strength shaft
US8187273B2 (en) 2009-05-07 2012-05-29 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8551096B2 (en) 2009-05-13 2013-10-08 Boston Scientific Scimed, Inc. Directional delivery of energy and bioactives
US8246615B2 (en) 2009-05-19 2012-08-21 Vivant Medical, Inc. Tissue impedance measurement using a secondary frequency
US8292881B2 (en) 2009-05-27 2012-10-23 Vivant Medical, Inc. Narrow gauge high strength choked wet tip microwave ablation antenna
US8834460B2 (en) 2009-05-29 2014-09-16 Covidien Lp Microwave ablation safety pad, microwave safety pad system and method of use
US8235981B2 (en) 2009-06-02 2012-08-07 Vivant Medical, Inc. Electrosurgical devices with directional radiation pattern
US8257350B2 (en) 2009-06-17 2012-09-04 Arthrocare Corporation Method and system of an electrosurgical controller with wave-shaping
US8323275B2 (en) 2009-06-19 2012-12-04 Vivant Medical, Inc. Laparoscopic port with microwave rectifier
US8552915B2 (en) 2009-06-19 2013-10-08 Covidien Lp Microwave ablation antenna radiation detector
US8334812B2 (en) 2009-06-19 2012-12-18 Vivant Medical, Inc. Microwave ablation antenna radiation detector
US8246618B2 (en) 2009-07-08 2012-08-21 Tyco Healthcare Group Lp Electrosurgical jaws with offset knife
US8343150B2 (en) 2009-07-15 2013-01-01 Covidien Lp Mechanical cycling of seal pressure coupled with energy for tissue fusion
US7863984B1 (en) 2009-07-17 2011-01-04 Vivant Medical, Inc. High efficiency microwave amplifier
USD634010S1 (en) 2009-08-05 2011-03-08 Vivant Medical, Inc. Medical device indicator guide
US8968358B2 (en) 2009-08-05 2015-03-03 Covidien Lp Blunt tissue dissection surgical instrument jaw designs
US8328800B2 (en) 2009-08-05 2012-12-11 Vivant Medical, Inc. Directive window ablation antenna with dielectric loading
US8328799B2 (en) 2009-08-05 2012-12-11 Vivant Medical, Inc. Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure
USD613412S1 (en) 2009-08-06 2010-04-06 Vivant Medical, Inc. Vented microwave spacer
US9031668B2 (en) 2009-08-06 2015-05-12 Covidien Lp Vented positioner and spacer and method of use
US7956620B2 (en) * 2009-08-12 2011-06-07 Tyco Healthcare Group Lp System and method for augmented impedance sensing
US8328801B2 (en) 2009-08-17 2012-12-11 Vivant Medical, Inc. Surface ablation antenna with dielectric loading
US8679115B2 (en) 2009-08-19 2014-03-25 Covidien Lp Electrical cutting and vessel sealing jaw members
US10828100B2 (en) 2009-08-25 2020-11-10 Covidien Lp Microwave ablation with tissue temperature monitoring
US8287536B2 (en) 2009-08-26 2012-10-16 Tyco Healthcare Group Lp Cutting assembly for surgical instruments
US8430876B2 (en) 2009-08-27 2013-04-30 Tyco Healthcare Group Lp Vessel sealer and divider with knife lockout
US8357159B2 (en) 2009-09-03 2013-01-22 Covidien Lp Open vessel sealing instrument with pivot assembly
US8409187B2 (en) 2009-09-08 2013-04-02 Covidien Lp Microwave antenna probe with high-strength ceramic coupler
US8162965B2 (en) 2009-09-09 2012-04-24 Tyco Healthcare Group Lp Low profile cutting assembly with a return spring
US8069553B2 (en) 2009-09-09 2011-12-06 Vivant Medical, Inc. Method for constructing a dipole antenna
US9113925B2 (en) 2009-09-09 2015-08-25 Covidien Lp System and method for performing an ablation procedure
US8439911B2 (en) 2009-09-09 2013-05-14 Coviden Lp Compact jaw including through bore pivot pin
US8568412B2 (en) 2009-09-09 2013-10-29 Covidien Lp Apparatus and method of controlling cutting blade travel through the use of etched features
US8355803B2 (en) 2009-09-16 2013-01-15 Vivant Medical, Inc. Perfused core dielectrically loaded dipole microwave antenna probe
US9375273B2 (en) 2009-09-18 2016-06-28 Covidien Lp System and method for checking high power microwave ablation system status on startup
US8133254B2 (en) 2009-09-18 2012-03-13 Tyco Healthcare Group Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US9095359B2 (en) 2009-09-18 2015-08-04 Covidien Lp Tissue ablation system with energy distribution
US8394087B2 (en) 2009-09-24 2013-03-12 Vivant Medical, Inc. Optical detection of interrupted fluid flow to ablation probe
US8323279B2 (en) 2009-09-25 2012-12-04 Arthocare Corporation System, method and apparatus for electrosurgical instrument with movable fluid delivery sheath
US8317786B2 (en) 2009-09-25 2012-11-27 AthroCare Corporation System, method and apparatus for electrosurgical instrument with movable suction sheath
US8266783B2 (en) 2009-09-28 2012-09-18 Tyco Healthcare Group Lp Method and system for manufacturing electrosurgical seal plates
US8906007B2 (en) 2009-09-28 2014-12-09 Covidien Lp Electrosurgical devices, directional reflector assemblies coupleable thereto, and electrosurgical systems including same
US8343145B2 (en) 2009-09-28 2013-01-01 Vivant Medical, Inc. Microwave surface ablation using conical probe
US8112871B2 (en) 2009-09-28 2012-02-14 Tyco Healthcare Group Lp Method for manufacturing electrosurgical seal plates
US8282632B2 (en) 2009-09-28 2012-10-09 Vivant Medical, Inc. Feedpoint optimization for microwave ablation dipole antenna with integrated tip
US9024237B2 (en) 2009-09-29 2015-05-05 Covidien Lp Material fusing apparatus, system and method of use
US8556889B2 (en) 2009-09-29 2013-10-15 Covidien Lp Flow rate monitor for fluid cooled microwave ablation probe
US8323310B2 (en) 2009-09-29 2012-12-04 Covidien Lp Vessel sealing jaw with offset sealing surface
US8545493B2 (en) 2009-09-29 2013-10-01 Covidien Lp Flow rate monitor for fluid cooled microwave ablation probe
US9113926B2 (en) 2009-09-29 2015-08-25 Covidien Lp Management of voltage standing wave ratio at skin surface during microwave ablation
US8876814B2 (en) 2009-09-29 2014-11-04 Covidien Lp Fluid cooled choke dielectric and coaxial cable dielectric
US9820806B2 (en) 2009-09-29 2017-11-21 Covidien Lp Switch assembly for electrosurgical instrument
US8512371B2 (en) 2009-10-06 2013-08-20 Covidien Lp Jaw, blade and gap manufacturing for surgical instruments with small jaws
US8292886B2 (en) 2009-10-06 2012-10-23 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8343151B2 (en) 2009-10-09 2013-01-01 Covidien Lp Vessel sealer and divider with captured cutting element
US8038693B2 (en) 2009-10-21 2011-10-18 Tyco Healthcare Group Ip Methods for ultrasonic tissue sensing and feedback
US8568401B2 (en) 2009-10-27 2013-10-29 Covidien Lp System for monitoring ablation size
US8430871B2 (en) 2009-10-28 2013-04-30 Covidien Lp System and method for monitoring ablation size
US8388647B2 (en) 2009-10-28 2013-03-05 Covidien Lp Apparatus for tissue sealing
US8382750B2 (en) 2009-10-28 2013-02-26 Vivant Medical, Inc. System and method for monitoring ablation size
US8469953B2 (en) 2009-11-16 2013-06-25 Covidien Lp Twin sealing chamber hub
US9060798B2 (en) 2009-11-16 2015-06-23 Covidien Lp Surgical forceps capable of adjusting sealing pressure based on vessel size
US8394092B2 (en) 2009-11-17 2013-03-12 Vivant Medical, Inc. Electromagnetic energy delivery devices including an energy applicator array and electrosurgical systems including same
US8353439B2 (en) 2009-11-19 2013-01-15 Ethicon Endo-Surgery, Inc. Circular stapler introducer with radially-openable distal end portion
US8372067B2 (en) 2009-12-09 2013-02-12 Arthrocare Corporation Electrosurgery irrigation primer systems and methods
US8136712B2 (en) 2009-12-10 2012-03-20 Ethicon Endo-Surgery, Inc. Surgical stapler with discrete staple height adjustment and tactile feedback
US8882759B2 (en) 2009-12-18 2014-11-11 Covidien Lp Microwave ablation system with dielectric temperature probe
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8267300B2 (en) 2009-12-30 2012-09-18 Ethicon Endo-Surgery, Inc. Dampening device for endoscopic surgical stapler
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US8480671B2 (en) 2010-01-22 2013-07-09 Covidien Lp Compact jaw including split pivot pin
US8764744B2 (en) 2010-01-25 2014-07-01 Covidien Lp System for monitoring ablation size
US8858553B2 (en) 2010-01-29 2014-10-14 Covidien Lp Dielectric jaw insert for electrosurgical end effector
US8313486B2 (en) 2010-01-29 2012-11-20 Vivant Medical, Inc. System and method for performing an electrosurgical procedure using an ablation device with an integrated imaging device
US9113927B2 (en) 2010-01-29 2015-08-25 Covidien Lp Apparatus and methods of use for treating blood vessels
US8556929B2 (en) 2010-01-29 2013-10-15 Covidien Lp Surgical forceps capable of adjusting seal plate width based on vessel size
US9585709B2 (en) 2010-02-05 2017-03-07 Covidien Lp Square wave for vessel sealing
US8491579B2 (en) 2010-02-05 2013-07-23 Covidien Lp Electrosurgical devices with choke shorted to biological tissue
DE102010000396A1 (en) * 2010-02-12 2011-08-18 Erbe Elektromedizin GmbH, 72072 Electrosurgical unit
US8568404B2 (en) 2010-02-19 2013-10-29 Covidien Lp Bipolar electrode probe for ablation monitoring
US8968288B2 (en) 2010-02-19 2015-03-03 Covidien Lp Ablation devices with dual operating frequencies, systems including same, and methods of adjusting ablation volume using same
US8777939B2 (en) 2010-02-26 2014-07-15 Covidien Lp Self-tuning microwave ablation probe
US8617153B2 (en) 2010-02-26 2013-12-31 Covidien Lp Tunable microwave ablation probe
US20110213353A1 (en) 2010-02-26 2011-09-01 Lee Anthony C Tissue Ablation System With Internal And External Radiation Sources
US8808288B2 (en) 2010-03-08 2014-08-19 Covidien Lp Surgical forceps including belt blade reverser mechanism
US8728067B2 (en) 2010-03-08 2014-05-20 Covidien Lp Microwave antenna probe having a deployable ground plane
US8672923B2 (en) 2010-03-11 2014-03-18 Covidien Lp Automated probe placement device
US8740898B2 (en) 2010-03-22 2014-06-03 Covidien Lp Surgical forceps
US9028474B2 (en) 2010-03-25 2015-05-12 Covidien Lp Microwave surface coagulator with retractable blade
US8425511B2 (en) 2010-03-26 2013-04-23 Covidien Lp Clamp and scissor forceps
US10039601B2 (en) 2010-03-26 2018-08-07 Covidien Lp Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same
US8409188B2 (en) 2010-03-26 2013-04-02 Covidien Lp Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same
US8747399B2 (en) 2010-04-06 2014-06-10 Arthrocare Corporation Method and system of reduction of low frequency muscle stimulation during electrosurgical procedures
CA2795229A1 (en) 2010-04-09 2011-10-13 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US8961504B2 (en) 2010-04-09 2015-02-24 Covidien Lp Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue
US8597295B2 (en) 2010-04-12 2013-12-03 Covidien Lp Surgical instrument with non-contact electrical coupling
US8623018B2 (en) 2010-04-13 2014-01-07 Covidien Lp Sealing plate temperature control
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US8568397B2 (en) 2010-04-28 2013-10-29 Covidien Lp Induction sealing
US8439913B2 (en) 2010-04-29 2013-05-14 Covidien Lp Pressure sensing sealing plate
US20110270251A1 (en) 2010-04-29 2011-11-03 Tyco Healthcare Group Lp Insulated Sealing Plate
US8696659B2 (en) 2010-04-30 2014-04-15 Arthrocare Corporation Electrosurgical system and method having enhanced temperature measurement
US9867664B2 (en) 2010-05-03 2018-01-16 Covidien Lp System and method of deploying an antenna assembly
US8968359B2 (en) 2010-05-04 2015-03-03 Covidien Lp Surgical forceps
US10265118B2 (en) 2010-05-04 2019-04-23 Covidien Lp Pinion blade drive mechanism for a laparoscopic vessel dissector
US9561076B2 (en) 2010-05-11 2017-02-07 Covidien Lp Electrosurgical devices with balun structure for air exposure of antenna radiating section and method of directing energy to tissue using same
US8979838B2 (en) * 2010-05-24 2015-03-17 Arthrocare Corporation Symmetric switching electrode method and related system
US11278345B2 (en) 2010-05-25 2022-03-22 Covidien Lp Accurate jaw closure force in a catheter based instrument
US9192436B2 (en) 2010-05-25 2015-11-24 Covidien Lp Flow rate verification monitor for fluid-cooled microwave ablation probe
US8652127B2 (en) 2010-05-26 2014-02-18 Covidien Lp System and method for chemically cooling an ablation antenna
US8672939B2 (en) 2010-06-01 2014-03-18 Covidien Lp Surgical device for performing an electrosurgical procedure
US8540749B2 (en) 2010-06-02 2013-09-24 Covidien Lp Apparatus for performing an electrosurgical procedure
US8491625B2 (en) 2010-06-02 2013-07-23 Covidien Lp Apparatus for performing an electrosurgical procedure
US8469991B2 (en) 2010-06-02 2013-06-25 Covidien Lp Apparatus for performing an electrosurgical procedure
US8409246B2 (en) 2010-06-02 2013-04-02 Covidien Lp Apparatus for performing an electrosurgical procedure
US8409247B2 (en) 2010-06-02 2013-04-02 Covidien Lp Apparatus for performing an electrosurgical procedure
US8491624B2 (en) 2010-06-02 2013-07-23 Covidien Lp Apparatus for performing an electrosurgical procedure
US8469992B2 (en) 2010-06-02 2013-06-25 Covidien Lp Apparatus for performing an electrosurgical procedure
US8585736B2 (en) 2010-06-02 2013-11-19 Covidien Lp Apparatus for performing an electrosurgical procedure
US8430877B2 (en) 2010-06-02 2013-04-30 Covidien Lp Apparatus for performing an electrosurgical procedure
US8491626B2 (en) 2010-06-02 2013-07-23 Covidien Lp Apparatus for performing an electrosurgical procedure
US9468492B2 (en) 2010-06-03 2016-10-18 Covidien Lp Specific absorption rate measurement and energy-delivery device characterization using image analysis
US9377367B2 (en) 2010-06-03 2016-06-28 Covidien Lp Specific absorption rate measurement and energy-delivery device characterization using thermal phantom and image analysis
US8188435B2 (en) 2010-06-03 2012-05-29 Tyco Healthcare Group Lp Specific absorption rate measurement and energy-delivery device characterization using thermal phantom and image analysis
US9241762B2 (en) 2010-06-03 2016-01-26 Covidien Lp Specific absorption rate measurement and energy-delivery device characterization using image analysis
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US8647343B2 (en) 2010-06-23 2014-02-11 Covidien Lp Surgical forceps for sealing and dividing tissue
US9028495B2 (en) 2010-06-23 2015-05-12 Covidien Lp Surgical instrument with a separable coaxial joint
US8740893B2 (en) 2010-06-30 2014-06-03 Covidien Lp Adjustable tuning of a dielectrically loaded loop antenna
US8672933B2 (en) 2010-06-30 2014-03-18 Covidien Lp Microwave antenna having a reactively-loaded loop configuration
US8512336B2 (en) 2010-07-08 2013-08-20 Covidien Lp Optimal geometries for creating current densities in a bipolar electrode configuration
US8636730B2 (en) 2010-07-12 2014-01-28 Covidien Lp Polarity control of electrosurgical generator
US8974449B2 (en) 2010-07-16 2015-03-10 Covidien Lp Dual antenna assembly with user-controlled phase shifting
US10588684B2 (en) 2010-07-19 2020-03-17 Covidien Lp Hydraulic conductivity monitoring to initiate tissue division
US8641712B2 (en) 2010-07-28 2014-02-04 Covidien Lp Local optimization of electrode current densities
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US8801734B2 (en) 2010-07-30 2014-08-12 Ethicon Endo-Surgery, Inc. Circular stapling instruments with secondary cutting arrangements and methods of using same
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US8789740B2 (en) 2010-07-30 2014-07-29 Ethicon Endo-Surgery, Inc. Linear cutting and stapling device with selectively disengageable cutting member
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8888775B2 (en) 2010-08-10 2014-11-18 Covidien Lp Surgical forceps including shape memory cutter
US9943353B2 (en) 2013-03-15 2018-04-17 Tsunami Medtech, Llc Medical system and method of use
US8298233B2 (en) 2010-08-20 2012-10-30 Tyco Healthcare Group Lp Surgical instrument configured for use with interchangeable hand grips
US8814864B2 (en) 2010-08-23 2014-08-26 Covidien Lp Method of manufacturing tissue sealing electrodes
US8652135B2 (en) 2010-08-23 2014-02-18 Covidien Lp Surgical forceps
US8663222B2 (en) 2010-09-07 2014-03-04 Covidien Lp Dynamic and static bipolar electrical sealing and cutting device
US8734445B2 (en) 2010-09-07 2014-05-27 Covidien Lp Electrosurgical instrument with sealing and dissection modes and related methods of use
US9498278B2 (en) 2010-09-08 2016-11-22 Covidien Lp Asymmetrical electrodes for bipolar vessel sealing
USD673685S1 (en) 2010-09-08 2013-01-01 Vivant Medical, Inc. Microwave device spacer and positioner with arcuate slot
US8945144B2 (en) 2010-09-08 2015-02-03 Covidien Lp Microwave spacers and method of use
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US8632525B2 (en) 2010-09-17 2014-01-21 Ethicon Endo-Surgery, Inc. Power control arrangements for surgical instruments and batteries
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US9877720B2 (en) 2010-09-24 2018-01-30 Ethicon Llc Control features for articulating surgical device
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US20120080344A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Implantable fastener cartridge comprising a support retainer
US8657176B2 (en) 2010-09-30 2014-02-25 Ethicon Endo-Surgery, Inc. Tissue thickness compensator for a surgical stapler
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9005200B2 (en) 2010-09-30 2015-04-14 Covidien Lp Vessel sealing instrument
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9480476B2 (en) 2010-09-30 2016-11-01 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising resilient members
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
EP2621356B1 (en) 2010-09-30 2018-03-07 Ethicon LLC Fastener system comprising a retention matrix and an alignment matrix
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9017372B2 (en) 2010-10-01 2015-04-28 Covidien Lp Blade deployment mechanisms for surgical forceps
EP3991678A3 (en) 2010-10-01 2022-06-22 Applied Medical Resources Corporation Electrosurgical instruments and connections thereto
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
USD650074S1 (en) 2010-10-01 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical instrument
US9655672B2 (en) 2010-10-04 2017-05-23 Covidien Lp Vessel sealing instrument
US9345534B2 (en) 2010-10-04 2016-05-24 Covidien Lp Vessel sealing instrument
US8685018B2 (en) 2010-10-15 2014-04-01 Arthrocare Corporation Electrosurgical wand and related method and system
USD658760S1 (en) 2010-10-15 2012-05-01 Arthrocare Corporation Wound care electrosurgical wand
US8568405B2 (en) 2010-10-15 2013-10-29 Arthrocare Corporation Electrosurgical wand and related method and system
US8906018B2 (en) 2010-10-18 2014-12-09 Covidien Lp Surgical forceps
US10448992B2 (en) 2010-10-22 2019-10-22 Arthrocare Corporation Electrosurgical system with device specific operational parameters
US8968289B2 (en) 2010-10-22 2015-03-03 Covidien Lp Microwave spacers and methods of use
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US8840639B2 (en) 2010-10-29 2014-09-23 Covidien Lp Apparatus for performing an electrosurgical procedure
EP2637590B1 (en) 2010-11-09 2022-04-13 Aegea Medical, Inc. Positioning apparatus for delivering vapor to the uterus
US9119647B2 (en) 2010-11-12 2015-09-01 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9028484B2 (en) 2010-11-16 2015-05-12 Covidien Lp Fingertip electrosurgical instruments for use in hand-assisted surgery and systems including same
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US8932293B2 (en) 2010-11-17 2015-01-13 Covidien Lp Method and apparatus for vascular tissue sealing with reduced energy consumption
US8685021B2 (en) 2010-11-17 2014-04-01 Covidien Lp Method and apparatus for vascular tissue sealing with active cooling of jaws at the end of the sealing cycle
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9333002B2 (en) 2010-11-19 2016-05-10 Covidien Lp Apparatus for performing an electrosurgical procedure
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US8784418B2 (en) 2010-11-29 2014-07-22 Covidien Lp Endoscopic surgical forceps
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
US9044253B2 (en) 2010-12-23 2015-06-02 Covidien Lp Microwave field-detecting needle assemblies, methods of manufacturing same, methods of adjusting an ablation field radiating into tissue using same, and systems including same
US9486275B2 (en) 2010-12-30 2016-11-08 Avent, Inc. Electrosurgical apparatus having a sensor
US9011421B2 (en) 2011-01-05 2015-04-21 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US9770294B2 (en) 2011-01-05 2017-09-26 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US9017319B2 (en) 2011-01-05 2015-04-28 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US8932281B2 (en) 2011-01-05 2015-01-13 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US8945175B2 (en) 2011-01-14 2015-02-03 Covidien Lp Latch mechanism for surgical instruments
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US8603134B2 (en) 2011-01-14 2013-12-10 Covidien Lp Latch mechanism for surgical instruments
WO2012100095A1 (en) 2011-01-19 2012-07-26 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US8747401B2 (en) 2011-01-20 2014-06-10 Arthrocare Corporation Systems and methods for turbinate reduction
US9131597B2 (en) 2011-02-02 2015-09-08 Arthrocare Corporation Electrosurgical system and method for treating hard body tissue
US9028476B2 (en) 2011-02-03 2015-05-12 Covidien Lp Dual antenna microwave resection and ablation device, system and method of use
US8974450B2 (en) 2011-02-03 2015-03-10 Covidien Lp System and method for ablation procedure monitoring using electrodes
US9168082B2 (en) 2011-02-09 2015-10-27 Arthrocare Corporation Fine dissection electrosurgical device
US9271784B2 (en) 2011-02-09 2016-03-01 Arthrocare Corporation Fine dissection electrosurgical device
US9492190B2 (en) 2011-02-09 2016-11-15 Covidien Lp Tissue dissectors
US8317703B2 (en) 2011-02-17 2012-11-27 Vivant Medical, Inc. Energy-delivery device including ultrasound transducer array and phased antenna array, and methods of adjusting an ablation field radiating into tissue using same
US8376948B2 (en) 2011-02-17 2013-02-19 Vivant Medical, Inc. Energy-delivery device including ultrasound transducer array and phased antenna array
US9017370B2 (en) 2011-02-17 2015-04-28 Covidien Lp Vessel sealer and divider with captured cutting element
US8968316B2 (en) 2011-02-18 2015-03-03 Covidien Lp Apparatus with multiple channel selective cutting
US9011428B2 (en) 2011-03-02 2015-04-21 Arthrocare Corporation Electrosurgical device with internal digestor electrode
US10413349B2 (en) 2011-03-04 2019-09-17 Covidien Lp System and methods for identifying tissue and vessels
US10335230B2 (en) 2011-03-09 2019-07-02 Covidien Lp Systems for thermal-feedback-controlled rate of fluid flow to fluid-cooled antenna assembly and methods of directing energy to tissue using same
US8978955B2 (en) 2011-03-14 2015-03-17 Ethicon Endo-Surgery, Inc. Anvil assemblies with collapsible frames for circular staplers
US8540131B2 (en) 2011-03-15 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
US8926598B2 (en) 2011-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable and rotatable end effector
US9044229B2 (en) 2011-03-15 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical fastener instruments
US8800841B2 (en) 2011-03-15 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical staple cartridges
US8857693B2 (en) 2011-03-15 2014-10-14 Ethicon Endo-Surgery, Inc. Surgical instruments with lockable articulating end effector
US8968305B2 (en) 2011-03-28 2015-03-03 Covidien Lp Surgical forceps with external cutter
US9381059B2 (en) 2011-04-05 2016-07-05 Covidien Lp Electrically-insulative hinge for electrosurgical jaw assembly, bipolar forceps including same, and methods of jaw-assembly alignment using fastened electrically-insulative hinge
US9579150B2 (en) 2011-04-08 2017-02-28 Covidien Lp Microwave ablation instrument with interchangeable antenna probe
US9198724B2 (en) 2011-04-08 2015-12-01 Covidien Lp Microwave tissue dissection and coagulation
JP2014516616A (en) 2011-04-08 2014-07-17 コビディエン エルピー Flexible microwave catheter for innate or artificial lumen
US8568408B2 (en) 2011-04-21 2013-10-29 Covidien Lp Surgical forceps
EP2514380B1 (en) 2011-04-21 2013-10-02 Erbe Elektromedizin GmbH Electrical surgical device with improved cutting
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US8900232B2 (en) 2011-05-06 2014-12-02 Covidien Lp Bifurcated shaft for surgical instrument
US8939972B2 (en) 2011-05-06 2015-01-27 Covidien Lp Surgical forceps
US9113934B2 (en) 2011-05-16 2015-08-25 Covidien Lp Optical energy-based methods and apparatus for tissue sealing
US9113933B2 (en) 2011-05-16 2015-08-25 Covidien Lp Optical energy-based methods and apparatus for tissue sealing
US8685009B2 (en) 2011-05-16 2014-04-01 Covidien Lp Thread-like knife for tissue cutting
US10117705B2 (en) 2011-05-16 2018-11-06 Covidien Lp Optical recognition of tissue and vessels
US9456870B2 (en) 2011-05-16 2016-10-04 Covidien Lp Optical energy-based methods and apparatus for tissue sealing
US9265568B2 (en) 2011-05-16 2016-02-23 Coviden Lp Destruction of vessel walls for energy-based vessel sealing enhancement
US8852185B2 (en) 2011-05-19 2014-10-07 Covidien Lp Apparatus for performing an electrosurgical procedure
US8968283B2 (en) 2011-05-19 2015-03-03 Covidien Lp Ultrasound device for precise tissue sealing and blade-less cutting
US9161807B2 (en) 2011-05-23 2015-10-20 Covidien Lp Apparatus for performing an electrosurgical procedure
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US8992413B2 (en) 2011-05-31 2015-03-31 Covidien Lp Modified wet tip antenna design
US8702749B2 (en) 2011-06-09 2014-04-22 Covidien Lp Lever latch assemblies for vessel sealer and divider
WO2012170364A1 (en) 2011-06-10 2012-12-13 Medtronic, Inc. Wire electrode devices for tonsillectomy and adenoidectomy
US9615877B2 (en) 2011-06-17 2017-04-11 Covidien Lp Tissue sealing forceps
US9039704B2 (en) 2011-06-22 2015-05-26 Covidien Lp Forceps
US8628557B2 (en) 2011-07-11 2014-01-14 Covidien Lp Surgical forceps
US8745840B2 (en) 2011-07-11 2014-06-10 Covidien Lp Surgical forceps and method of manufacturing thereof
US9844384B2 (en) 2011-07-11 2017-12-19 Covidien Lp Stand alone energy-based tissue clips
US9039732B2 (en) 2011-07-11 2015-05-26 Covidien Lp Surgical forceps
US8888771B2 (en) 2011-07-15 2014-11-18 Covidien Lp Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same
US8968297B2 (en) 2011-07-19 2015-03-03 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US9192422B2 (en) 2011-07-19 2015-11-24 Covidien Lp System and method of matching impedances of an electrosurgical generator and/or a microwave generator
US9028482B2 (en) 2011-07-19 2015-05-12 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
EP2734259B1 (en) 2011-07-20 2016-11-23 Boston Scientific Scimed, Inc. Percutaneous device to visualize, target and ablate nerves
JP6106669B2 (en) 2011-07-22 2017-04-05 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. A neuromodulation system having a neuromodulation element that can be placed in a helical guide
US8852186B2 (en) 2011-08-09 2014-10-07 Covidien Lp Microwave sensing for tissue sealing
US8870860B2 (en) 2011-08-09 2014-10-28 Covidien Lp Microwave antenna having a coaxial cable with an adjustable outer conductor configuration
US8968306B2 (en) 2011-08-09 2015-03-03 Covidien Lp Surgical forceps
US9028492B2 (en) 2011-08-18 2015-05-12 Covidien Lp Surgical instruments with removable components
US8968307B2 (en) 2011-08-18 2015-03-03 Covidien Lp Surgical forceps
US8968317B2 (en) 2011-08-18 2015-03-03 Covidien Lp Surgical forceps
US9113909B2 (en) 2011-09-01 2015-08-25 Covidien Lp Surgical vessel sealer and divider
US9107663B2 (en) 2011-09-06 2015-08-18 Ethicon Endo-Surgery, Inc. Stapling instrument comprising resettable staple drivers
US9788882B2 (en) 2011-09-08 2017-10-17 Arthrocare Corporation Plasma bipolar forceps
US9113938B2 (en) 2011-09-09 2015-08-25 Covidien Lp Apparatus for performing electrosurgical procedures having a spring mechanism associated with the jaw members
US8679098B2 (en) 2011-09-13 2014-03-25 Covidien Lp Rotation knobs for surgical instruments
US8845636B2 (en) 2011-09-16 2014-09-30 Covidien Lp Seal plate with insulation displacement connection
US9636169B2 (en) 2011-09-19 2017-05-02 Covidien Lp Electrosurgical instrument
US8745846B2 (en) 2011-09-20 2014-06-10 Covidien Lp Method of manufacturing handheld medical devices including microwave amplifier unit
US9023025B2 (en) 2011-09-20 2015-05-05 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US9039692B2 (en) 2011-09-20 2015-05-26 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US9039693B2 (en) 2011-09-20 2015-05-26 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US9033970B2 (en) 2011-09-20 2015-05-19 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US8961515B2 (en) 2011-09-28 2015-02-24 Covidien Lp Electrosurgical instrument
US9486220B2 (en) 2011-09-28 2016-11-08 Covidien Lp Surgical tissue occluding device
US9668806B2 (en) 2011-09-29 2017-06-06 Covidien Lp Surgical forceps including a removable stop member
US8756785B2 (en) 2011-09-29 2014-06-24 Covidien Lp Surgical instrument shafts and methods of manufacturing shafts for surgical instruments
US9060780B2 (en) 2011-09-29 2015-06-23 Covidien Lp Methods of manufacturing shafts for surgical instruments
US8864795B2 (en) 2011-10-03 2014-10-21 Covidien Lp Surgical forceps
CN104135960B (en) 2011-10-07 2017-06-06 埃杰亚医疗公司 Uterine therapy device
WO2013055826A1 (en) 2011-10-10 2013-04-18 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
EP2765940B1 (en) 2011-10-11 2015-08-26 Boston Scientific Scimed, Inc. Off-wall electrode device for nerve modulation
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
EP2768568B1 (en) 2011-10-18 2020-05-06 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
US8968308B2 (en) 2011-10-20 2015-03-03 Covidien Lp Multi-circuit seal plates
US9492221B2 (en) 2011-10-20 2016-11-15 Covidien Lp Dissection scissors on surgical device
US9314295B2 (en) 2011-10-20 2016-04-19 Covidien Lp Dissection scissors on surgical device
CN108095821B (en) 2011-11-08 2021-05-25 波士顿科学西美德公司 Orifice renal nerve ablation
US8968309B2 (en) 2011-11-10 2015-03-03 Covidien Lp Surgical forceps
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9265565B2 (en) 2011-11-29 2016-02-23 Covidien Lp Open vessel sealing instrument and method of manufacturing the same
US9113899B2 (en) 2011-11-29 2015-08-25 Covidien Lp Coupling mechanisms for surgical instruments
US8968310B2 (en) 2011-11-30 2015-03-03 Covidien Lp Electrosurgical instrument with a knife blade lockout mechanism
US9259268B2 (en) 2011-12-06 2016-02-16 Covidien Lp Vessel sealing using microwave energy
US8864753B2 (en) 2011-12-13 2014-10-21 Covidien Lp Surgical Forceps Connected to Treatment Light Source
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
EP2793724B1 (en) 2011-12-23 2016-10-12 Vessix Vascular, Inc. Apparatuses for remodeling tissue of or adjacent to a body passage
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9113930B2 (en) 2012-01-05 2015-08-25 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9375274B2 (en) 2012-01-05 2016-06-28 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9023035B2 (en) 2012-01-06 2015-05-05 Covidien Lp Monopolar pencil with integrated bipolar/ligasure tweezers
US9113931B2 (en) 2012-01-06 2015-08-25 Covidien Lp System and method for treating tissue using an expandable antenna
US9119648B2 (en) 2012-01-06 2015-09-01 Covidien Lp System and method for treating tissue using an expandable antenna
US9113882B2 (en) 2012-01-23 2015-08-25 Covidien Lp Method of manufacturing an electrosurgical instrument
US9113897B2 (en) 2012-01-23 2015-08-25 Covidien Lp Partitioned surgical instrument
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
US8961513B2 (en) 2012-01-25 2015-02-24 Covidien Lp Surgical tissue sealer
US8968360B2 (en) 2012-01-25 2015-03-03 Covidien Lp Surgical instrument with resilient driving member and related methods of use
US9693816B2 (en) 2012-01-30 2017-07-04 Covidien Lp Electrosurgical apparatus with integrated energy sensing at tissue site
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US8747434B2 (en) 2012-02-20 2014-06-10 Covidien Lp Knife deployment mechanisms for surgical forceps
US8887373B2 (en) 2012-02-24 2014-11-18 Covidien Lp Vessel sealing instrument with reduced thermal spread and method of manufacture therefor
US9011435B2 (en) 2012-02-24 2015-04-21 Covidien Lp Method for manufacturing vessel sealing instrument with reduced thermal spread
US8752264B2 (en) 2012-03-06 2014-06-17 Covidien Lp Surgical tissue sealer
US8961514B2 (en) 2012-03-06 2015-02-24 Covidien Lp Articulating surgical apparatus
US8968298B2 (en) 2012-03-15 2015-03-03 Covidien Lp Electrosurgical instrument
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US9375282B2 (en) 2012-03-26 2016-06-28 Covidien Lp Light energy sealing, cutting and sensing surgical device
MX353040B (en) 2012-03-28 2017-12-18 Ethicon Endo Surgery Inc Retainer assembly including a tissue thickness compensator.
CN104321024B (en) 2012-03-28 2017-05-24 伊西康内外科公司 Tissue thickness compensator comprising a plurality of layers
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US9265569B2 (en) 2012-03-29 2016-02-23 Covidien Lp Method of manufacturing an electrosurgical forceps
US8945113B2 (en) 2012-04-05 2015-02-03 Covidien Lp Electrosurgical tissue ablation systems capable of detecting excessive bending of a probe and alerting a user
US10966780B2 (en) 2012-04-17 2021-04-06 Covidien Lp Electrosurgical instrument having a coated electrode
US10130416B2 (en) 2012-04-30 2018-11-20 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9713493B2 (en) 2012-04-30 2017-07-25 Covidien Lp Method of switching energy modality on a cordless RF device
US9943359B2 (en) 2012-04-30 2018-04-17 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9364278B2 (en) 2012-04-30 2016-06-14 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9034009B2 (en) 2012-05-01 2015-05-19 Covidien Lp Surgical forceps
US8920461B2 (en) 2012-05-01 2014-12-30 Covidien Lp Surgical forceps with bifurcated flanged jaw components
US9820765B2 (en) 2012-05-01 2017-11-21 Covidien Lp Surgical instrument with stamped double-flange jaws
US8968311B2 (en) 2012-05-01 2015-03-03 Covidien Lp Surgical instrument with stamped double-flag jaws and actuation mechanism
US9668807B2 (en) 2012-05-01 2017-06-06 Covidien Lp Simplified spring load mechanism for delivering shaft force of a surgical instrument
US8920410B2 (en) 2012-05-04 2014-12-30 Covidien Lp Peripheral switching device for microwave energy platforms
US9039731B2 (en) 2012-05-08 2015-05-26 Covidien Lp Surgical forceps including blade safety mechanism
US9375258B2 (en) 2012-05-08 2016-06-28 Covidien Lp Surgical forceps
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US9113901B2 (en) 2012-05-14 2015-08-25 Covidien Lp Modular surgical instrument with contained electrical or mechanical systems
US8906008B2 (en) 2012-05-22 2014-12-09 Covidien Lp Electrosurgical instrument
US9168178B2 (en) 2012-05-22 2015-10-27 Covidien Lp Energy-delivery system and method for controlling blood loss from wounds
US9192432B2 (en) 2012-05-29 2015-11-24 Covidien Lp Lever latch assemblies for surgical improvements
US8679140B2 (en) 2012-05-30 2014-03-25 Covidien Lp Surgical clamping device with ratcheting grip lock
US20130324910A1 (en) 2012-05-31 2013-12-05 Covidien Lp Ablation device with drug delivery component and biopsy tissue-sampling component
US8968313B2 (en) 2012-06-12 2015-03-03 Covidien Lp Electrosurgical instrument with a knife blade stop
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
PL2676624T3 (en) * 2012-06-18 2017-06-30 Erbe Elektromedizin Gmbh High frequency surgical device
JP6242884B2 (en) 2012-06-22 2017-12-06 コビディエン エルピー Microwave temperature measurement for microwave ablation system
US9066681B2 (en) 2012-06-26 2015-06-30 Covidien Lp Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US9770255B2 (en) 2012-06-26 2017-09-26 Covidien Lp One-piece handle assembly
US9332959B2 (en) 2012-06-26 2016-05-10 Covidien Lp Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US9011436B2 (en) 2012-06-26 2015-04-21 Covidien Lp Double-length jaw system for electrosurgical instrument
US9510891B2 (en) 2012-06-26 2016-12-06 Covidien Lp Surgical instruments with structures to provide access for cleaning
US9192426B2 (en) 2012-06-26 2015-11-24 Covidien Lp Ablation device having an expandable chamber for anchoring the ablation device to tissue
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
EP2866686A1 (en) 2012-06-28 2015-05-06 Ethicon Endo-Surgery, Inc. Empty clip cartridge lockout
US20140005678A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Rotary drive arrangements for surgical instruments
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9901398B2 (en) 2012-06-29 2018-02-27 Covidien Lp Microwave antenna probes
US9529025B2 (en) 2012-06-29 2016-12-27 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US9072524B2 (en) 2012-06-29 2015-07-07 Covidien Lp Surgical forceps
US9039691B2 (en) 2012-06-29 2015-05-26 Covidien Lp Surgical forceps
US9192439B2 (en) 2012-06-29 2015-11-24 Covidien Lp Method of manufacturing a surgical instrument
US9439712B2 (en) 2012-07-12 2016-09-13 Covidien Lp Heat-distribution indicators, thermal zone indicators, electrosurgical systems including same and methods of directing energy to tissue using same
US10368945B2 (en) 2012-07-17 2019-08-06 Covidien Lp Surgical instrument for energy-based tissue treatment
US8939975B2 (en) 2012-07-17 2015-01-27 Covidien Lp Gap control via overmold teeth and hard stops
US9833285B2 (en) 2012-07-17 2017-12-05 Covidien Lp Optical sealing device with cutting ability
US9301798B2 (en) 2012-07-19 2016-04-05 Covidien Lp Surgical forceps including reposable end effector assemblies
US9192421B2 (en) 2012-07-24 2015-11-24 Covidien Lp Blade lockout mechanism for surgical forceps
US9375252B2 (en) 2012-08-02 2016-06-28 Covidien Lp Adjustable length and/or exposure electrodes
US9247993B2 (en) 2012-08-07 2016-02-02 Covidien, LP Microwave ablation catheter and method of utilizing the same
US9636168B2 (en) 2012-08-09 2017-05-02 Covidien Lp Electrosurgical instrument including nested knife assembly
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
US9433461B2 (en) 2012-09-07 2016-09-06 Covidien Lp Instruments, systems, and methods for sealing tissue structures
EP2895095A2 (en) 2012-09-17 2015-07-22 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
WO2014047454A2 (en) 2012-09-21 2014-03-27 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US9662165B2 (en) 2012-10-02 2017-05-30 Covidien Lp Device and method for heat-sensitive agent application
US9668802B2 (en) 2012-10-02 2017-06-06 Covidien Lp Devices and methods for optical detection of tissue contact
US9743975B2 (en) 2012-10-02 2017-08-29 Covidien Lp Thermal ablation probe for a medical device
US9370392B2 (en) 2012-10-02 2016-06-21 Covidien Lp Heat-sensitive optical probes
US9687290B2 (en) 2012-10-02 2017-06-27 Covidien Lp Energy-based medical devices
US9993283B2 (en) 2012-10-02 2018-06-12 Covidien Lp Selectively deformable ablation device
US9522033B2 (en) 2012-10-02 2016-12-20 Covidien Lp Devices and methods for optical detection of tissue contact
US9439711B2 (en) 2012-10-02 2016-09-13 Covidien Lp Medical devices for thermally treating tissue
US9549749B2 (en) 2012-10-08 2017-01-24 Covidien Lp Surgical forceps
US9681908B2 (en) 2012-10-08 2017-06-20 Covidien Lp Jaw assemblies for electrosurgical instruments and methods of manufacturing jaw assemblies
US9526564B2 (en) 2012-10-08 2016-12-27 Covidien Lp Electric stapler device
EP2906135A2 (en) 2012-10-10 2015-08-19 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9375259B2 (en) 2012-10-24 2016-06-28 Covidien Lp Electrosurgical instrument including an adhesive applicator assembly
US9572529B2 (en) 2012-10-31 2017-02-21 Covidien Lp Surgical devices and methods utilizing optical coherence tomography (OCT) to monitor and control tissue sealing
US10206583B2 (en) 2012-10-31 2019-02-19 Covidien Lp Surgical devices and methods utilizing optical coherence tomography (OCT) to monitor and control tissue sealing
US10772674B2 (en) 2012-11-15 2020-09-15 Covidien Lp Deployment mechanisms for surgical instruments
US9375205B2 (en) 2012-11-15 2016-06-28 Covidien Lp Deployment mechanisms for surgical instruments
US9498281B2 (en) 2012-11-27 2016-11-22 Covidien Lp Surgical apparatus
US9901399B2 (en) 2012-12-17 2018-02-27 Covidien Lp Ablation probe with tissue sensing configuration
EP3964151A3 (en) 2013-01-17 2022-03-30 Virender K. Sharma Apparatus for tissue ablation
US9254166B2 (en) 2013-01-17 2016-02-09 Arthrocare Corporation Systems and methods for turbinate reduction
US9375256B2 (en) 2013-02-05 2016-06-28 Covidien Lp Electrosurgical forceps
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US10265119B2 (en) 2013-02-15 2019-04-23 Covidien Lp Electrosurgical forceps
US9713491B2 (en) 2013-02-19 2017-07-25 Covidien Lp Method for manufacturing an electrode assembly configured for use with an electrosurigcal instrument
US9375262B2 (en) 2013-02-27 2016-06-28 Covidien Lp Limited use medical devices
US10092292B2 (en) 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
US9468438B2 (en) 2013-03-01 2016-10-18 Eticon Endo-Surgery, LLC Sensor straightened end effector during removal through trocar
MX364729B (en) 2013-03-01 2019-05-06 Ethicon Endo Surgery Inc Surgical instrument with a soft stop.
BR112015021098B1 (en) 2013-03-01 2022-02-15 Ethicon Endo-Surgery, Inc COVERAGE FOR A JOINT JOINT AND SURGICAL INSTRUMENT
US9693818B2 (en) 2013-03-07 2017-07-04 Arthrocare Corporation Methods and systems related to electrosurgical wands
US9713489B2 (en) 2013-03-07 2017-07-25 Arthrocare Corporation Electrosurgical methods and systems
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9456863B2 (en) 2013-03-11 2016-10-04 Covidien Lp Surgical instrument with switch activation control
US9655673B2 (en) 2013-03-11 2017-05-23 Covidien Lp Surgical instrument
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US10070916B2 (en) 2013-03-11 2018-09-11 Covidien Lp Surgical instrument with system and method for springing open jaw members
US9877775B2 (en) 2013-03-12 2018-01-30 Covidien Lp Electrosurgical instrument with a knife blade stop
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9801678B2 (en) 2013-03-13 2017-10-31 Arthrocare Corporation Method and system of controlling conductive fluid flow during an electrosurgical procedure
US9351726B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Articulation control system for articulatable surgical instruments
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
EP2967734B1 (en) 2013-03-15 2019-05-15 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
EP2967725B1 (en) 2013-03-15 2019-12-11 Boston Scientific Scimed, Inc. Control unit for detecting electrical leakage between electrode pads and system comprising such a control unit
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9987087B2 (en) 2013-03-29 2018-06-05 Covidien Lp Step-down coaxial microwave ablation applicators and methods for manufacturing same
US9814460B2 (en) 2013-04-16 2017-11-14 Ethicon Llc Modular motor driven surgical instruments with status indication arrangements
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9468453B2 (en) 2013-05-03 2016-10-18 Covidien Lp Endoscopic surgical forceps
USD728786S1 (en) 2013-05-03 2015-05-05 Covidien Lp Vessel sealer with mechanical cutter and pistol-grip-style trigger
US9622810B2 (en) 2013-05-10 2017-04-18 Covidien Lp Surgical forceps
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9649151B2 (en) 2013-05-31 2017-05-16 Covidien Lp End effector assemblies and methods of manufacturing end effector assemblies for treating and/or cutting tissue
EP3003177B1 (en) 2013-05-31 2021-03-10 Covidien LP Surgical device with an end-effector assembly for monitoring of tissue during a surgical procedure
WO2014205399A1 (en) 2013-06-21 2014-12-24 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
WO2014205388A1 (en) 2013-06-21 2014-12-24 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
AU2014284558B2 (en) 2013-07-01 2017-08-17 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
US10413357B2 (en) 2013-07-11 2019-09-17 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
US9554845B2 (en) 2013-07-18 2017-01-31 Covidien Lp Surgical forceps for treating and cutting tissue
CN105682594B (en) 2013-07-19 2018-06-22 波士顿科学国际有限公司 Helical bipolar electrodes renal denervation dominates air bag
WO2015013301A1 (en) 2013-07-22 2015-01-29 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
WO2015013205A1 (en) 2013-07-22 2015-01-29 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US10646267B2 (en) 2013-08-07 2020-05-12 Covidien LLP Surgical forceps
CA2918484C (en) 2013-08-07 2020-08-25 Covidien Lp Bipolar surgical instrument
WO2015017995A1 (en) 2013-08-07 2015-02-12 Covidien Lp Bipolar surgical instrument with tissue stop
USD744644S1 (en) 2013-08-07 2015-12-01 Covidien Lp Disposable housing for open vessel sealer with mechanical cutter
WO2015017989A1 (en) 2013-08-07 2015-02-12 Covidien Lp Bipolar surgical instrument
USD726910S1 (en) 2013-08-07 2015-04-14 Covidien Lp Reusable forceps for open vessel sealer with mechanical cutter
USD736920S1 (en) 2013-08-07 2015-08-18 Covidien Lp Open vessel sealer with mechanical cutter
AU2013375909B2 (en) 2013-08-07 2015-07-30 Covidien Lp Bipolar surgical instrument
US9439717B2 (en) 2013-08-13 2016-09-13 Covidien Lp Surgical forceps including thermal spread control
US10405874B2 (en) 2013-08-13 2019-09-10 Covidien Lp Surgical instrument
CN105473093B (en) 2013-08-22 2019-02-05 波士顿科学国际有限公司 Flexible circuit with the improved adhesion strength to renal nerve modulation sacculus
JP6416260B2 (en) 2013-08-23 2018-10-31 エシコン エルエルシー Firing member retractor for a powered surgical instrument
US9283054B2 (en) 2013-08-23 2016-03-15 Ethicon Endo-Surgery, Llc Interactive displays
US9814844B2 (en) 2013-08-27 2017-11-14 Covidien Lp Drug-delivery cannula assembly
EP3041425B1 (en) 2013-09-04 2022-04-13 Boston Scientific Scimed, Inc. Radio frequency (rf) balloon catheter having flushing and cooling capability
US10201265B2 (en) 2013-09-06 2019-02-12 Covidien Lp Microwave ablation catheter, handle, and system
US9867665B2 (en) 2013-09-06 2018-01-16 Covidien Lp Microwave ablation catheter, handle, and system
US20140171986A1 (en) 2013-09-13 2014-06-19 Ethicon Endo-Surgery, Inc. Surgical Clip Having Comliant Portion
CN105530885B (en) 2013-09-13 2020-09-22 波士顿科学国际有限公司 Ablation balloon with vapor deposited covering
US9445865B2 (en) 2013-09-16 2016-09-20 Covidien Lp Electrosurgical instrument with end-effector assembly including electrically-conductive, tissue-engaging surfaces and switchable bipolar electrodes
US9943357B2 (en) 2013-09-16 2018-04-17 Covidien Lp Split electrode for use in a bipolar electrosurgical instrument
US9717548B2 (en) 2013-09-24 2017-08-01 Covidien Lp Electrode for use in a bipolar electrosurgical instrument
US10610289B2 (en) 2013-09-25 2020-04-07 Covidien Lp Devices, systems, and methods for grasping, treating, and dividing tissue
US10231772B2 (en) 2013-09-25 2019-03-19 Covidien Lp Wire retention unit for a surgical instrument
US9642671B2 (en) 2013-09-30 2017-05-09 Covidien Lp Limited-use medical device
US10631914B2 (en) 2013-09-30 2020-04-28 Covidien Lp Bipolar electrosurgical instrument with movable electrode and related systems and methods
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
US9687166B2 (en) 2013-10-14 2017-06-27 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
WO2015057584A1 (en) 2013-10-15 2015-04-23 Boston Scientific Scimed, Inc. Medical device balloon
US10945786B2 (en) 2013-10-18 2021-03-16 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
US10271898B2 (en) 2013-10-25 2019-04-30 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
US9974601B2 (en) 2013-11-19 2018-05-22 Covidien Lp Vessel sealing instrument with suction system
KR20160098251A (en) 2013-12-20 2016-08-18 아서로케어 코포레이션 Knotless all suture tissue repair
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9549735B2 (en) 2013-12-23 2017-01-24 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a firing member including fastener transfer surfaces
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
EP3091922B1 (en) 2014-01-06 2018-10-17 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
US10231776B2 (en) 2014-01-29 2019-03-19 Covidien Lp Tissue sealing instrument with tissue-dissecting electrode
US9907609B2 (en) 2014-02-04 2018-03-06 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
US11090109B2 (en) 2014-02-11 2021-08-17 Covidien Lp Temperature-sensing electrically-conductive tissue-contacting plate configured for use in an electrosurgical jaw member, electrosurgical system including same, and methods of controlling vessel sealing using same
US10130413B2 (en) 2014-02-11 2018-11-20 Covidien Lp Temperature-sensing electrically-conductive tissue-contacting plate and methods of manufacturing same
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US10420607B2 (en) 2014-02-14 2019-09-24 Arthrocare Corporation Methods and systems related to an electrosurgical controller
US9884456B2 (en) 2014-02-24 2018-02-06 Ethicon Llc Implantable layers and methods for altering one or more properties of implantable layers for use with fastening instruments
BR112016019387B1 (en) 2014-02-24 2022-11-29 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT SYSTEM AND FASTENER CARTRIDGE FOR USE WITH A SURGICAL FIXING INSTRUMENT
US9526556B2 (en) 2014-02-28 2016-12-27 Arthrocare Corporation Systems and methods systems related to electrosurgical wands with screen electrodes
US9750499B2 (en) 2014-03-26 2017-09-05 Ethicon Llc Surgical stapling instrument system
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US10278768B2 (en) 2014-04-02 2019-05-07 Covidien Lp Electrosurgical devices including transverse electrode configurations
US10058377B2 (en) 2014-04-02 2018-08-28 Covidien Lp Electrosurgical devices including transverse electrode configurations
US10010324B2 (en) 2014-04-16 2018-07-03 Ethicon Llc Fastener cartridge compromising fastener cavities including fastener control features
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US10426476B2 (en) 2014-09-26 2019-10-01 Ethicon Llc Circular fastener cartridges for applying radially expandable fastener lines
US20150297225A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
BR112016023698B1 (en) 2014-04-16 2022-07-26 Ethicon Endo-Surgery, Llc FASTENER CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US9687295B2 (en) 2014-04-17 2017-06-27 Covidien Lp Methods of manufacturing a pair of jaw members of an end-effector assembly for a surgical instrument
US20150324317A1 (en) 2014-05-07 2015-11-12 Covidien Lp Authentication and information system for reusable surgical instruments
CA2948855A1 (en) 2014-05-16 2015-11-19 Applied Medical Resources Corporation Electrosurgical system
WO2015179662A1 (en) 2014-05-22 2015-11-26 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
WO2015179666A1 (en) 2014-05-22 2015-11-26 Aegea Medical Inc. Systems and methods for performing endometrial ablation
WO2015184446A2 (en) 2014-05-30 2015-12-03 Applied Medical Resources Corporation Electrosurgical seal and dissection systems
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US20160038220A1 (en) 2014-08-11 2016-02-11 Covidien Lp Surgical instruments and methods for performing tonsillectomy and adenoidectomy procedures
US20160038224A1 (en) 2014-08-11 2016-02-11 Covidien Lp Surgical instruments and methods for performing tonsillectomy and adenoidectomy procedures
US10624697B2 (en) 2014-08-26 2020-04-21 Covidien Lp Microwave ablation system
US10660694B2 (en) 2014-08-27 2020-05-26 Covidien Lp Vessel sealing instrument and switch assemblies thereof
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US20160066913A1 (en) 2014-09-05 2016-03-10 Ethicon Endo-Surgery, Inc. Local display of tissue parameter stabilization
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10820939B2 (en) 2014-09-15 2020-11-03 Covidien Lp Vessel-sealing device including force-balance interface and electrosurgical system including same
US9918785B2 (en) 2014-09-17 2018-03-20 Covidien Lp Deployment mechanisms for surgical instruments
US10080605B2 (en) 2014-09-17 2018-09-25 Covidien Lp Deployment mechanisms for surgical instruments
US10080606B2 (en) 2014-09-17 2018-09-25 Covidien Lp Method of forming a member of an end effector
US10039592B2 (en) 2014-09-17 2018-08-07 Covidien Lp Deployment mechanisms for surgical instruments
US9877777B2 (en) 2014-09-17 2018-01-30 Covidien Lp Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly
US9987076B2 (en) 2014-09-17 2018-06-05 Covidien Lp Multi-function surgical instruments
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US10258360B2 (en) 2014-09-25 2019-04-16 Covidien Lp Surgical instruments
US10813685B2 (en) 2014-09-25 2020-10-27 Covidien Lp Single-handed operable surgical instrument including loop electrode with integrated pad electrode
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
CN107427300B (en) 2014-09-26 2020-12-04 伊西康有限责任公司 Surgical suture buttress and buttress material
US10813691B2 (en) 2014-10-01 2020-10-27 Covidien Lp Miniaturized microwave ablation assembly
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10363086B2 (en) 2014-10-31 2019-07-30 Medtronic Advanced Energy Llc Power monitoring circuitry and method for reducing leakage current in RF generators
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
CN107205735B (en) 2014-11-26 2022-02-22 Devicor医疗产业收购公司 Graphical user interface for biopsy device
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10463422B2 (en) 2014-12-18 2019-11-05 Covidien Lp Surgical instrument with stopper assembly
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
ES2768761T3 (en) 2014-12-23 2020-06-23 Applied Med Resources Sealer and bipolar electrosurgical divider
USD748259S1 (en) 2014-12-29 2016-01-26 Applied Medical Resources Corporation Electrosurgical instrument
US10172612B2 (en) 2015-01-21 2019-01-08 Covidien Lp Surgical instruments with force applier and methods of use
US10080600B2 (en) 2015-01-21 2018-09-25 Covidien Lp Monopolar electrode with suction ability for CABG surgery
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10653476B2 (en) 2015-03-12 2020-05-19 Covidien Lp Mapping vessels for resecting body tissue
US10206736B2 (en) 2015-03-13 2019-02-19 Covidien Lp Surgical forceps with scalpel functionality
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
WO2016169038A1 (en) 2015-04-24 2016-10-27 Covidien Lp Multifunctional vessel sealing and divider device
US10758257B2 (en) 2015-04-24 2020-09-01 Covidien Lp Vessel sealing device with fine dissection function
US10441340B2 (en) 2015-05-27 2019-10-15 Covidien Lp Surgical forceps
US9974602B2 (en) 2015-05-27 2018-05-22 Covidien Lp Surgical instruments and devices and methods facilitating the manufacture of the same
US9956022B2 (en) 2015-05-27 2018-05-01 Covidien Lp Surgical forceps and methods of manufacturing the same
US9848935B2 (en) 2015-05-27 2017-12-26 Covidien Lp Surgical instruments including components and features facilitating the assembly and manufacturing thereof
US10226269B2 (en) 2015-05-27 2019-03-12 Covidien Lp Surgical forceps
US10722293B2 (en) 2015-05-29 2020-07-28 Covidien Lp Surgical device with an end effector assembly and system for monitoring of tissue before and after a surgical procedure
US10182818B2 (en) 2015-06-18 2019-01-22 Ethicon Llc Surgical end effectors with positive jaw opening arrangements
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
BR112018003693B1 (en) 2015-08-26 2022-11-22 Ethicon Llc SURGICAL STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPPING INSTRUMENT
US10517599B2 (en) 2015-08-26 2019-12-31 Ethicon Llc Staple cartridge assembly comprising staple cavities for providing better staple guidance
MX2022009705A (en) 2015-08-26 2022-11-07 Ethicon Llc Surgical staples comprising hardness variations for improved fastening of tissue.
MX2022006189A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10314587B2 (en) 2015-09-02 2019-06-11 Ethicon Llc Surgical staple cartridge with improved staple driver configurations
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10307160B2 (en) 2015-09-30 2019-06-04 Ethicon Llc Compressible adjunct assemblies with attachment layers
US10213221B2 (en) 2015-10-28 2019-02-26 Covidien Lp Surgical instruments including cam surfaces
US10154877B2 (en) 2015-11-04 2018-12-18 Covidien Lp Endoscopic surgical instrument
US10213250B2 (en) 2015-11-05 2019-02-26 Covidien Lp Deployment and safety mechanisms for surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10172672B2 (en) 2016-01-11 2019-01-08 Covidien Lp Jaw force control for electrosurgical forceps
US10426543B2 (en) 2016-01-23 2019-10-01 Covidien Lp Knife trigger for vessel sealer
US10695123B2 (en) 2016-01-29 2020-06-30 Covidien Lp Surgical instrument with sensor
WO2017132970A1 (en) 2016-02-05 2017-08-10 Covidien Lp Articulation assemblies for use with endoscopic surgical instruments
JP6911054B2 (en) 2016-02-09 2021-07-28 エシコン エルエルシーEthicon LLC Surgical instruments with asymmetric joint composition
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
ES2929383T3 (en) 2016-02-19 2022-11-28 Aegea Medical Inc Methods and apparatus for determining the integrity of a body cavity
US10537381B2 (en) 2016-02-26 2020-01-21 Covidien Lp Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly
US10813692B2 (en) 2016-02-29 2020-10-27 Covidien Lp 90-degree interlocking geometry for introducer for facilitating deployment of microwave radiating catheter
USD828554S1 (en) 2016-03-09 2018-09-11 Covidien Lp Contoured blade trigger for an electrosurgical instrument
USD819815S1 (en) 2016-03-09 2018-06-05 Covidien Lp L-shaped blade trigger for an electrosurgical instrument
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10433849B2 (en) 2016-04-01 2019-10-08 Ethicon Llc Surgical stapling system comprising a display including a re-orientable display field
US10285705B2 (en) 2016-04-01 2019-05-14 Ethicon Llc Surgical stapling system comprising a grooved forming pocket
US10531874B2 (en) 2016-04-01 2020-01-14 Ethicon Llc Surgical cutting and stapling end effector with anvil concentric drive member
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
US10893863B2 (en) 2016-06-24 2021-01-19 Ethicon Llc Staple cartridge comprising offset longitudinal staple rows
JP6957532B2 (en) 2016-06-24 2021-11-02 エシコン エルエルシーEthicon LLC Staple cartridges including wire staples and punched staples
US10517665B2 (en) 2016-07-14 2019-12-31 Covidien Lp Devices and methods for tissue sealing and mechanical clipping
US11000332B2 (en) 2016-08-02 2021-05-11 Covidien Lp Ablation cable assemblies having a large diameter coaxial feed cable reduced to a small diameter at intended site
US10376309B2 (en) 2016-08-02 2019-08-13 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11065053B2 (en) 2016-08-02 2021-07-20 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US10682154B2 (en) 2016-08-02 2020-06-16 Covidien Lp Cutting mechanisms for surgical end effector assemblies, instruments, and systems
US11197715B2 (en) 2016-08-02 2021-12-14 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US10856933B2 (en) 2016-08-02 2020-12-08 Covidien Lp Surgical instrument housing incorporating a channel and methods of manufacturing the same
US10631887B2 (en) 2016-08-15 2020-04-28 Covidien Lp Electrosurgical forceps for video assisted thoracoscopic surgery and other surgical procedures
US10772642B2 (en) 2016-08-18 2020-09-15 Covidien Lp Surgical forceps
US10441305B2 (en) 2016-08-18 2019-10-15 Covidien Lp Surgical forceps
US11432870B2 (en) 2016-10-04 2022-09-06 Avent, Inc. Cooled RF probes
US10918407B2 (en) 2016-11-08 2021-02-16 Covidien Lp Surgical instrument for grasping, treating, and/or dividing tissue
US11207091B2 (en) 2016-11-08 2021-12-28 Covidien Lp Surgical instrument for grasping, treating, and/or dividing tissue
US10814128B2 (en) 2016-11-21 2020-10-27 Covidien Lp Electroporation catheter
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
US10835246B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10624635B2 (en) 2016-12-21 2020-04-21 Ethicon Llc Firing members with non-parallel jaw engagement features for surgical end effectors
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
CN110114014B (en) 2016-12-21 2022-08-09 爱惜康有限责任公司 Surgical instrument system including end effector and firing assembly lockout
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
US11160551B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Articulatable surgical stapling instruments
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US20180168579A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical end effector with two separate cooperating opening features for opening and closing end effector jaws
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US10898186B2 (en) 2016-12-21 2021-01-26 Ethicon Llc Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US20180168647A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments having end effectors with positive opening features
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
US10813695B2 (en) 2017-01-27 2020-10-27 Covidien Lp Reflectors for optical-based vessel sealing
US11229480B2 (en) 2017-02-02 2022-01-25 Covidien Lp Latching mechanism for in-line activated electrosurgical device
US10881445B2 (en) 2017-02-09 2021-01-05 Covidien Lp Adapters, systems incorporating the same, and methods for providing an electrosurgical forceps with clip-applying functionality
CN110418618A (en) 2017-03-13 2019-11-05 柯惠有限合伙公司 The electrosurgical unit of cutting function with trigger actuation
US10973567B2 (en) 2017-05-12 2021-04-13 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue
US11172980B2 (en) 2017-05-12 2021-11-16 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue
US11166759B2 (en) 2017-05-16 2021-11-09 Covidien Lp Surgical forceps
USD854149S1 (en) 2017-06-08 2019-07-16 Covidien Lp End effector for open vessel sealer
USD854684S1 (en) 2017-06-08 2019-07-23 Covidien Lp Open vessel sealer with mechanical cutter
US10512501B2 (en) 2017-06-08 2019-12-24 Covidien Lp Electrosurgical apparatus
USD843574S1 (en) 2017-06-08 2019-03-19 Covidien Lp Knife for open vessel sealer
USD859658S1 (en) 2017-06-16 2019-09-10 Covidien Lp Vessel sealer for tonsillectomy
US10716619B2 (en) 2017-06-19 2020-07-21 Covidien Lp Microwave and radiofrequency energy-transmitting tissue ablation systems
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11090049B2 (en) 2017-06-27 2021-08-17 Cilag Gmbh International Staple forming pocket arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
EP4070740A1 (en) 2017-06-28 2022-10-12 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11083455B2 (en) 2017-06-28 2021-08-10 Cilag Gmbh International Surgical instrument comprising an articulation system ratio
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11154348B2 (en) 2017-08-29 2021-10-26 Covidien Lp Surgical instruments and methods of assembling surgical instruments
US11272975B2 (en) * 2017-09-22 2022-03-15 Covidien Lp Systems and methods for controlled electrosurgical dissection
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US11147621B2 (en) 2017-11-02 2021-10-19 Covidien Lp Systems and methods for ablating tissue
US11123094B2 (en) 2017-12-13 2021-09-21 Covidien Lp Ultrasonic surgical instruments and methods for sealing and/or cutting tissue
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US10743868B2 (en) 2017-12-21 2020-08-18 Ethicon Llc Surgical instrument comprising a pivotable distal head
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11160600B2 (en) 2018-03-01 2021-11-02 Covidien Lp Monopolar return electrode grasper with return electrode monitoring
US11123132B2 (en) 2018-04-09 2021-09-21 Covidien Lp Multi-function surgical instruments and assemblies therefor
US10828756B2 (en) 2018-04-24 2020-11-10 Covidien Lp Disassembly methods facilitating reprocessing of multi-function surgical instruments
US10780544B2 (en) 2018-04-24 2020-09-22 Covidien Lp Systems and methods facilitating reprocessing of surgical instruments
US11033289B2 (en) 2018-05-02 2021-06-15 Covidien Lp Jaw guard for surgical forceps
WO2019232432A1 (en) 2018-06-01 2019-12-05 Santa Anna Tech Llc Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems
US11109930B2 (en) 2018-06-08 2021-09-07 Covidien Lp Enhanced haptic feedback system
US11896291B2 (en) 2018-07-02 2024-02-13 Covidien Lp Electrically-insulative shafts, methods of manufacturing electrically-insulative shafts, and energy-based surgical instruments incorporating electrically-insulative shafts
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
CA3111782A1 (en) * 2018-09-05 2020-03-12 Applied Medical Resources Corporation Electrosurgical generator verification system
US11864812B2 (en) 2018-09-05 2024-01-09 Applied Medical Resources Corporation Electrosurgical generator control system
US11612403B2 (en) 2018-10-03 2023-03-28 Covidien Lp Multi-function surgical transection instrument
US11376062B2 (en) 2018-10-12 2022-07-05 Covidien Lp Electrosurgical forceps
US11471211B2 (en) 2018-10-12 2022-10-18 Covidien Lp Electrosurgical forceps
US10881452B2 (en) 2018-10-16 2021-01-05 Covidien Lp Method of assembling an end effector for a surgical instrument
WO2020101954A1 (en) 2018-11-16 2020-05-22 Applied Medical Resources Corporation Electrosurgical system
US11350982B2 (en) 2018-12-05 2022-06-07 Covidien Lp Electrosurgical forceps
US11246648B2 (en) 2018-12-10 2022-02-15 Covidien Lp Surgical forceps with bilateral and unilateral jaw members
US11497540B2 (en) 2019-01-09 2022-11-15 Covidien Lp Electrosurgical fallopian tube sealing devices with suction and methods of use thereof
US11147613B2 (en) 2019-03-15 2021-10-19 Covidien Lp Surgical instrument with increased lever stroke
US11523861B2 (en) 2019-03-22 2022-12-13 Covidien Lp Methods for manufacturing a jaw assembly for an electrosurgical forceps
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11490917B2 (en) 2019-03-29 2022-11-08 Covidien Lp Drive rod and knife blade for an articulating surgical instrument
US11490916B2 (en) 2019-03-29 2022-11-08 Covidien Lp Engagement features and methods for attaching a drive rod to a knife blade in an articulating surgical instrument
US11576696B2 (en) 2019-03-29 2023-02-14 Covidien Lp Engagement features and methods for attaching a drive rod to a knife blade in an articulating surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
CN110152194A (en) * 2019-04-30 2019-08-23 浙江海洋大学 A kind of radio frequency heating ultrasound hyperthermia system and its control method
US11607267B2 (en) 2019-06-10 2023-03-21 Covidien Lp Electrosurgical forceps
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US12004740B2 (en) 2019-06-28 2024-06-11 Cilag Gmbh International Surgical stapling system having an information decryption protocol
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US12035913B2 (en) 2019-12-19 2024-07-16 Cilag Gmbh International Staple cartridge comprising a deployable knife
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11376030B2 (en) 2020-02-10 2022-07-05 Covidien Lp Devices and methods facilitating the manufacture of surgical instruments
US11617612B2 (en) 2020-03-16 2023-04-04 Covidien Lp Forceps with linear trigger mechanism
US11844562B2 (en) 2020-03-23 2023-12-19 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
US20220031320A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with flexible firing member actuator constraint arrangements
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US12053175B2 (en) 2020-10-29 2024-08-06 Cilag Gmbh International Surgical instrument comprising a stowed closure actuator stop
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11980362B2 (en) 2021-02-26 2024-05-14 Cilag Gmbh International Surgical instrument system comprising a power transfer coil
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US12108951B2 (en) 2021-02-26 2024-10-08 Cilag Gmbh International Staple cartridge comprising a sensing array and a temperature control system
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US12102323B2 (en) 2021-03-24 2024-10-01 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising a floatable component
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11980363B2 (en) 2021-10-18 2024-05-14 Cilag Gmbh International Row-to-row staple array variations
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US12089841B2 (en) 2021-10-28 2024-09-17 Cilag CmbH International Staple cartridge identification systems
WO2023204282A1 (en) * 2022-04-22 2023-10-26 株式会社トップ High-frequency treatment device

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1321364A (en) 1970-02-04 1973-06-27 Electro Medical Systems Inc Method and apparatus for high frequency electric surgery
US3885569A (en) 1972-11-21 1975-05-27 Birtcher Corp Electrosurgical unit
US4038984A (en) 1970-02-04 1977-08-02 Electro Medical Systems, Inc. Method and apparatus for high frequency electric surgery
GB1557083A (en) 1976-01-26 1979-12-05 Minnesota Mining & Mfg Electrosurgical unit
US4318409A (en) 1979-12-17 1982-03-09 Medical Research Associates, Ltd. #2 Electrosurgical generator
GB2132893A (en) 1982-12-27 1984-07-18 Hedin Gene R Apparatus for electrothermal treatment of cancerous or tumorous tissue
US4498475A (en) 1982-08-27 1985-02-12 Ipco Corporation Electrosurgical unit
US4727874A (en) 1984-09-10 1988-03-01 C. R. Bard, Inc. Electrosurgical generator with high-frequency pulse width modulated feedback power control
US4996495A (en) 1988-12-02 1991-02-26 Science Research Laboratory, Inc. Method and apparatus for generating pulsed RF power
US5395363A (en) 1993-06-29 1995-03-07 Utah Medical Products Diathermy coagulation and ablation apparatus and method
WO1995018576A2 (en) 1994-01-10 1995-07-13 Medtronic Cardiorhythm Radiofrequency ablation system
EP0754427A1 (en) 1995-07-21 1997-01-22 Correcta GmbH Bathtub support
DE19542418A1 (en) 1995-11-14 1997-05-15 Fastenmeier Karl High frequency generator for high frequency surgery
US5766153A (en) * 1993-05-10 1998-06-16 Arthrocare Corporation Methods and apparatus for surgical cutting
US5836943A (en) 1996-08-23 1998-11-17 Team Medical, L.L.C. Electrosurgical generator
US6004319A (en) 1995-06-23 1999-12-21 Gyrus Medical Limited Electrosurgical instrument
US6135998A (en) 1999-03-16 2000-10-24 Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for pulsed plasma-mediated electrosurgery in liquid media
US6246912B1 (en) 1996-06-27 2001-06-12 Sherwood Services Ag Modulated high frequency tissue modification
US6296636B1 (en) 1994-05-10 2001-10-02 Arthrocare Corporation Power supply and methods for limiting power in electrosurgery
US7137980B2 (en) * 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038984A (en) 1970-02-04 1977-08-02 Electro Medical Systems, Inc. Method and apparatus for high frequency electric surgery
GB1321364A (en) 1970-02-04 1973-06-27 Electro Medical Systems Inc Method and apparatus for high frequency electric surgery
US3885569A (en) 1972-11-21 1975-05-27 Birtcher Corp Electrosurgical unit
GB1557083A (en) 1976-01-26 1979-12-05 Minnesota Mining & Mfg Electrosurgical unit
US4318409A (en) 1979-12-17 1982-03-09 Medical Research Associates, Ltd. #2 Electrosurgical generator
US4498475A (en) 1982-08-27 1985-02-12 Ipco Corporation Electrosurgical unit
GB2132893A (en) 1982-12-27 1984-07-18 Hedin Gene R Apparatus for electrothermal treatment of cancerous or tumorous tissue
US4727874A (en) 1984-09-10 1988-03-01 C. R. Bard, Inc. Electrosurgical generator with high-frequency pulse width modulated feedback power control
US4996495A (en) 1988-12-02 1991-02-26 Science Research Laboratory, Inc. Method and apparatus for generating pulsed RF power
US5766153A (en) * 1993-05-10 1998-06-16 Arthrocare Corporation Methods and apparatus for surgical cutting
US5395363A (en) 1993-06-29 1995-03-07 Utah Medical Products Diathermy coagulation and ablation apparatus and method
WO1995018576A2 (en) 1994-01-10 1995-07-13 Medtronic Cardiorhythm Radiofrequency ablation system
US6296636B1 (en) 1994-05-10 2001-10-02 Arthrocare Corporation Power supply and methods for limiting power in electrosurgery
US6004319A (en) 1995-06-23 1999-12-21 Gyrus Medical Limited Electrosurgical instrument
EP0754427A1 (en) 1995-07-21 1997-01-22 Correcta GmbH Bathtub support
DE19542418A1 (en) 1995-11-14 1997-05-15 Fastenmeier Karl High frequency generator for high frequency surgery
US6246912B1 (en) 1996-06-27 2001-06-12 Sherwood Services Ag Modulated high frequency tissue modification
US5836943A (en) 1996-08-23 1998-11-17 Team Medical, L.L.C. Electrosurgical generator
US7137980B2 (en) * 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US6135998A (en) 1999-03-16 2000-10-24 Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for pulsed plasma-mediated electrosurgery in liquid media

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10105174B2 (en) 2012-04-09 2018-10-23 Covidien Lp Method for employing single fault safe redundant signals
US10799282B2 (en) 2012-04-09 2020-10-13 Covidien Lp Method for employing single fault safe redundant signals

Also Published As

Publication number Publication date
EP1053720A1 (en) 2000-11-22
JP4262862B2 (en) 2009-05-13
GB9911956D0 (en) 1999-07-21
US6228081B1 (en) 2001-05-08
AU3540700A (en) 2000-11-23
USRE39358E1 (en) 2006-10-17
CA2308881A1 (en) 2000-11-21
JP2000342599A (en) 2000-12-12
AU779962B2 (en) 2005-02-24
CA2308881C (en) 2012-07-24

Similar Documents

Publication Publication Date Title
USRE41921E1 (en) Electrosurgery system and method
US6547786B1 (en) Electrosurgery system and instrument
EP1053719A1 (en) Electrosurgery system and instrument
US6093186A (en) Electrosurgical generator and system
US7717910B2 (en) Electrosurgical generator
US4188927A (en) Multiple source electrosurgical generator
US7195627B2 (en) Electrosurgical generator
US4901720A (en) Power control for beam-type electrosurgical unit
US6923804B2 (en) Electrosurgical generator
EP1082944A1 (en) An electrosurgical generator and system
EP0754437A2 (en) An electrosurgical generator and system
WO2008053532A1 (en) High frequency cautery electric power source device
GB2543432A (en) Electrosurgical system and method having enhanced temperature measurement
WO1996010950A1 (en) Combined radiofrequency and high voltage pulse catheter ablation
US11696795B2 (en) Amplitude modulated waveform circuitry for electrosurgical devices and systems, and related methods
CN212490129U (en) Power adjusting device for electrosurgery, main machine and operation system
MXPA99005760A (en) Electrosurgical generator and system for underwater operation

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY