[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US9635281B2 - Imaging apparatus method for controlling imaging apparatus and storage medium - Google Patents

Imaging apparatus method for controlling imaging apparatus and storage medium Download PDF

Info

Publication number
US9635281B2
US9635281B2 US14/574,043 US201414574043A US9635281B2 US 9635281 B2 US9635281 B2 US 9635281B2 US 201414574043 A US201414574043 A US 201414574043A US 9635281 B2 US9635281 B2 US 9635281B2
Authority
US
United States
Prior art keywords
image
imaging unit
image captured
shooting mode
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/574,043
Other languages
English (en)
Other versions
US20150181134A1 (en
Inventor
Ryo Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Assigned to CANON KABUSHIKI KAISHA reassignment CANON KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAKAHASHI, RYO
Publication of US20150181134A1 publication Critical patent/US20150181134A1/en
Application granted granted Critical
Publication of US9635281B2 publication Critical patent/US9635281B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/2621Cameras specially adapted for the electronic generation of special effects during image pickup, e.g. digital cameras, camcorders, video cameras having integrated special effects capability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/633Control of cameras or camera modules by using electronic viewfinders for displaying additional information relating to control or operation of the camera
    • H04N23/635Region indicators; Field of view indicators
    • H04N5/2258
    • H04N5/23293

Definitions

  • aspects of the present invention generally relate to a method for operating an imaging apparatus including a plurality of image capture units, and a method for controlling the imaging apparatus.
  • Japanese Patent Application Laid-Open No. 2011-217121 discusses an imaging apparatus including two image capture units, as an imaging apparatus capable of capturing objects located in directions opposite to each other.
  • the two image capture units can simultaneously capture images according to capturing instructions.
  • aspects of the present invention have been made in consideration of the aforementioned, and realize improvements in usability for a user by, when displaying on an image captured by one image capture unit an image captured by another image capture unit, performing image display at a suitable position according to a shooting mode.
  • an imaging apparatus includes a first imaging unit, a second imaging unit, a control unit configured to perform control to display on a display unit an image obtained by combining an image captured by the second imaging unit with an image captured by the first imaging unit in such a manner that the image captured by the second imaging unit is superimposed on the image captured by the first imaging unit, and a mode setting unit configured to set a shooting mode, wherein the control unit controls a composition position of the image captured by the second imaging unit to the image captured by the first imaging unit, according to the shooting mode set by the mode setting unit.
  • FIG. 1 is a diagram illustrating an example of an external appearance of a digital camera.
  • FIG. 2 is a diagram illustrating an example of the hardware configuration of the digital camera.
  • FIG. 3 is a basic flow chart from start to end of the digital camera.
  • FIGS. 4A and 4B are diagrams each illustrating an example of displaying an image obtained by superimposing a sub image on a main image.
  • FIG. 5 is a flow chart illustrating a process in a digital camera shooting mode.
  • FIG. 6 is a flow chart illustrating a shooting mode process using a sub camera of the digital camera.
  • FIG. 7 is a flow chart illustrating a process in a digest mode of the digital camera.
  • FIG. 8 is a flow chart illustrating a process in a dual shot mode of the digital camera.
  • FIG. 9 is a flow chart illustrating a sub live image display position determination process.
  • FIGS. 10A, 10B, 10C, 10D, 10E, and 10F are diagrams each illustrating a display position of sub image displayed by superimposing a sub image on a main image.
  • FIG. 11 is a flow chart illustrating a sub live image display position determination process.
  • FIGS. 12A, 12B, 12C, and 12D are diagrams illustrating a moving image or a still image to be recorded in a digest mode and a dual shot mode of the digital camera.
  • FIG. 1 is a diagram illustrating an external view of a digital camera as an example of an imaging apparatus.
  • a display unit 28 is a display unit for displaying an image and various types of information.
  • a shutter button 64 is an operation unit for issuing a capturing instruction.
  • a mode switching dial 60 is an operation unit for switching various mode settings.
  • a connector 112 is a connector between a connection cable and a digital camera 100 .
  • An operation unit 70 is an operation unit including operation members, such as various switches and buttons for receiving various operations from a user.
  • a controller wheel 73 is an operation member included in the operation unit 70 and capable of being rotationally operated.
  • a power supply switch 72 is used to switch on and off a power supply.
  • a recording medium 200 is a recording medium, such as a memory card or a hard disk.
  • a recording medium slot 201 is a slot for storing the recording medium 200 .
  • the recording medium 200 stored in the recording medium slot 201 can communicate with the digital camera 100 .
  • a cover 202 is a cover for the recording medium slot 201 .
  • a sub camera 150 a camera module capable of capturing a side of a photographer who is capturing an object is provided.
  • FIG. 1 illustrates an external view of the back side of the digital camera 100 , on which the display unit 28 is provided.
  • an outer camera 104 is provided, which is a camera module for capturing an object side.
  • the optical axes (capturing directions) of the outer camera 104 and the sub camera 150 are approximately parallel to each other, and the optical axis (capturing direction) of the outer camera 104 is set in a direction opposite to that of the optical axis (capturing direction) of the sub camera 150 .
  • FIG. 2 is a block diagram illustrating an exemplary configuration of the digital camera 100 according to a first exemplary embodiment.
  • an imaging lens 103 is a lens group including a zoom lens and a focus lens.
  • a shutter 101 is a shutter having a diaphragm function.
  • An image capture unit is an image sensor including a charge-coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) device, which converts an optical image into an electric signal.
  • An analog-to-digital (A/D) converter 23 converts an analog signal into a digital signal.
  • a barrier 102 covers an imaging system of the digital camera 100 including the imaging lens 103 , thereby preventing stains on and breakage of the imaging system including the imaging lens 103 , the shutter 101 , and the image capture unit 22 .
  • the outer camera 104 includes the image capture unit 22 , the shutter 101 , the imaging lens 103 , and the barrier 102 .
  • an imaging lens 153 is a lens group including a zoom lens and a focus lens on the sub camera 150 side.
  • a shutter 151 is a shutter having a diaphragm function on the sub camera 150 side.
  • An image capture unit 154 is an image sensor including a CCD or a CMOS device, which converts an optical image into an electric signal on the sub camera 150 side (photographer side).
  • the A/D converter 23 converts an analog signal into a digital signal.
  • the A/D converter 23 is used not only to convert a signal output from the image capture unit 22 , but also to convert an analog signal output from the image capture unit 154 into a digital signal.
  • An image processing unit 24 performs a resizing process, such as predetermined pixel interpolation and reduction, and a color conversion process on data from the A/D converter 23 or data from a memory control unit 15 . Further, the image processing unit 24 performs a predetermined calculation process using captured image data. Then, a system control unit 50 performs exposure control and distance measurement control based on the obtained calculation result. Consequently, an autofocus (AF) process, an automatic exposure (AE) process, and a pre-flash (EF) process are performed by a through-the-lens (TTL) method. The image processing unit 24 also performs a predetermined calculation process using captured image data, and performs an automatic white balance (AWB) process by the TTL method based on the obtained calculation result.
  • AVB automatic white balance
  • Output data from the A/D converter 23 is directly written to a memory 32 via the image processing unit 24 and the memory control unit 15 or via the memory control unit 15 .
  • the memory 32 stores image data obtained by the image capture unit 22 and converted into digital data by the A/D converter 23 and image data to be displayed on the display unit 28 .
  • the memory 32 includes a sufficient storage capacity for storing a predetermined number of still images and a moving image and a sound of a predetermined length of time.
  • the memory 32 doubles as a memory for image display (video memory).
  • a digital-to-analog (D/A) converter 13 converts data for image display stored in the memory 32 into an analog signal and supplies the analog signal to the display unit 28 . Consequently, image data for display written in the memory 32 is displayed on the display unit 28 via the D/A converter 13 .
  • the display unit 28 performs display on a display device, such as a liquid crystal display (LCD), according to an analog signal from the D/A converter 13 .
  • Analog signals are once converted into digital signals by the A/D converter 23 , and the digital signals are accumulated in the memory 32 and converted into analog signals by the D/A converter 13 . Then, the analog signals are sequentially transferred to and displayed on the display unit 28 .
  • This enables the display unit 28 to function as an electronic viewfinder and perform live image display. According to the present exemplary embodiment, a description is given on the assumption that the aspect ratio of the display unit 28 is 4:3.
  • a non-volatile memory 56 is an electrically erasable and recordable memory and is, for example, an Electrically Erasable Programmable Read-Only Memory (EEPROM).
  • the non-volatile memory 56 stores a constant and a program for the operation of the system control unit 50 .
  • the term “program” refers to a program for performing processes of various flow charts described later in the present exemplary embodiment.
  • the system control unit 50 controls the entirety of the digital camera 100 .
  • the system control unit 50 executes the above program recorded in the non-volatile memory 56 , thereby achieving the processes described later in the present exemplary embodiment.
  • a system memory 52 is a random-access memory (RAM).
  • RAM random-access memory
  • a constant and a variable for the operation of the system control unit 50 and the program read from the non-volatile memory 56 are loaded into the system memory 52 .
  • the system control unit 50 also controls the memory 32 , the D/A converter 13 , and the display unit 28 , thereby performing display control.
  • a system timer 53 is a time measurement unit for measuring a time to be used for various types of control and a time of a built-in clock.
  • the mode switching dial 60 and the operation unit are used as operation units for inputting various operation instructions to the system control unit 50 .
  • the mode switching dial 60 is used to switch the operation mode of the system control unit 50 to any of a still image capturing mode, a moving image capturing mode, and a reproduction mode.
  • the still image capturing mode includes an automatic shooting mode, an automatic scene determination mode, a manual mode, a scene mode, a program AE mode, a custom mode, and a multi-camera simultaneous shooting mode, where both the outer camera 104 and the sub camera 150 can capture images.
  • the user can switch to any of the modes included in the still image capturing mode using the mode switching dial 60 , thereby changing the mode setting. Alternatively, the user may once switch to the still image capturing mode using the mode switching dial 60 and then switch to any of the modes included in the still image capturing mode using another operation member.
  • the use of the mode switching switch 60 also enables switching to a digest mode or a dual shot mode, which are included in the multi-camera simultaneous shooting mode, where both the outer camera 104 and the sub camera 150 can capture images.
  • the moving image capturing mode may also include a plurality of modes.
  • a first shutter switch is turned on in an intermediate state of a operation of the shutter button 64 provided in the digital camera 100 , by a so-called half press (capturing preparation instruction), and a first shutter switch signal SW 1 is generated.
  • the first shutter switch signal SW 1 By the first shutter switch signal SW 1 , the operations of an autofocus (AF) process, an automatic exposure (AE) process, an automatic white balance (AWB) process, and a pre-flash (EF) process (capturing preparation process) are started on the outer camera 104 side.
  • AF autofocus
  • AE automatic exposure
  • AVB automatic white balance
  • EF pre-flash
  • the position of the mode switching switch 60 corresponds to the multi-camera simultaneous shooting mode, and when the first shutter switch is turned on and the first shutter switch signal SW 1 is generated, the operations of an AF process and an AE process (capturing preparation process) are started also on the sub camera 150 side.
  • a second shutter switch is turned on by the completion of the operation of the shutter button 64 , by a so-called full press (capturing instruction), and a second shutter switch signal SW 2 is generated.
  • the system control unit 50 starts a series of operations of a capturing process from the reading of a signal from the image capture unit 22 to the writing of image data to the recording medium 200 .
  • a series of operations of a capturing process from the reading of a signal from the image capture unit 154 to the writing of image data to the recording medium 200 is performed simultaneously with the series of operations of the capturing process from the reading of a signal from the image capture unit 22 to the writing of image data to the recording medium 200 .
  • the operation members of the operation unit 70 are appropriately assigned functions for each scene by the operation of selecting various function icons displayed on the display unit 28 and act as various function buttons.
  • the function buttons include, for example, an end button, a return button, an image forward button, a jump button, a narrowing button, and a change-attributes button. For example, if a menu button is pressed, a menu screen where various settings can be made is displayed on the display unit 28 . The user can intuitively make various settings using the menu screen displayed on the display unit 28 , a directional button for four directions, namely up, down, left, and right directions, and a SET button.
  • the controller wheel 73 is an operation member included in the operation unit 70 and capable of being rotationally operated.
  • the controller wheel 73 is used together with the direction button to indicate a selection item. If the controller wheel 73 is rotationally operated, an electrical pulse signal is generated according to the amount of operation. Then, the system control unit 50 controls the components of the digital camera 100 based on the pulse signal.
  • the pulse signal enables determination of an angle of the rotational operation of the controller wheel 73 and the number of rotations of the controller wheel 73 .
  • the controller wheel 73 may be any operation member so long as the rotational operation of the operation member can be detected.
  • the controller wheel 73 may be a dial operation member, and the controller wheel 73 itself rotates to generate a pulse signal according to the rotational operation of the controller wheel 73 performed by the user.
  • the controller wheel 73 may be an operation member including a touch sensor, and the controller wheel 73 itself does not rotate, but detects the rotational action of the finger of the user on the controller wheel 73 (so-called touch wheel).
  • a power supply control unit 80 includes a battery detection circuit, a direct-current-to-direct-current (DC/DC) converter, and a switch circuit for switching blocks to which a current is applied.
  • the power supply control unit 80 detects the presence or absence of attachment of a battery, the type of the battery, and the remaining life of the battery. Further, the power supply control unit 80 controls the DC/DC converter based on these detection results and an instruction from the system control unit 50 and supplies a required voltage to the components including the recording medium 200 for a required period of time.
  • a power supply unit 30 includes a primary battery, such as an alkaline battery or a lithium battery, a secondary battery, such as a nickel-cadmium (NiCd) battery, a nickel-metal hydrate (NiMH) battery, or a lithium-ion (Li) battery, and an alternating current (AC) adapter.
  • a recording medium interface (I/F) 18 is an interface for the recording medium 200 , such as a memory card or a hard disk.
  • the recording medium 200 is a recording medium, such as a memory card, for recording a captured image and includes a semiconductor memory or a magnetic disk.
  • FIG. 3 is a flow chart illustrating a basic flow from start to end of the digital camera 100 .
  • step S 301 based on the position of the mode switching dial 60 , determination of whether a shooting mode is set is performed. If it is determined that the shooting mode is set (YES in step S 301 ), a shooting mode process is performed. If it is determined that the shooting mode is not set (NO in step S 301 ), the processing proceeds to step S 302 . The details of the shooting mode process will be described later.
  • step S 302 based on the position of the mode switching switch 60 , determination of whether the reproduction mode is set is performed. If it is determined that the reproduction mode is set (YES in step S 302 ), the processing proceeds to step S 303 .
  • step S 304 a reproduction mode process is performed.
  • the reproduction mode process includes processes for image viewing, enlargement display, erasing an image, and the like.
  • step S 304 other processes are performed. Other processes include a process in a clock display mode which is for merely displaying the current time.
  • step S 305 determination of whether the camera operation is to be shut down is performed. If it is determined that the camera operation is to be shut down (YES in step S 305 ), the camera operation ends. If it is determined that the camera operation is not to be shut down (NO in step S 305 ), the processing returns to step S 301 .
  • the digital camera 100 has the digest mode and the dual shot mode as the still image capturing mode where both the outer camera 104 and the sub camera 150 can capture images.
  • the digest mode is a mode for, when the outer camera 104 captures a still image, automatically recording in a background a moving image captured when the still image is captured.
  • the outer camera 104 captures a still image
  • the still image is recorded in the recording medium 200
  • a moving image captured by the outer camera 104 before the still image is captured is also recorded.
  • the capturing setting of the sub camera 150 is turned on, thereby enabling the recording of an image obtained by combining an image captured by the sub camera 150 with an image captured by the outer camera 104 so that the image captured by the sub camera 150 is superimposed on the image captured by the outer camera 104 .
  • the moving image to be recorded in the digest mode is, as illustrated in FIG. 12A , recorded by combining an image 1202 , which has been captured by the sub camera 150 , with an image 1201 , which has been captured by the outer camera 104 , in such a manner that the image 1202 is placed at the lower right of the image 1201 .
  • the sub camera image 1202 is not placed in contact with the ends of the outer camera image 1201 , but is placed at a position a predetermined number of pixels (10 pixels according to the present exemplary embodiment) away from the ends of the outer camera image 1201 .
  • the still image to be recorded in the digest mode is, as illustrated in FIG.
  • the recording size of the moving image to be recorded in the digest mode is fixed to 1280 ⁇ 720 pixels and an aspect ratio of 16:9.
  • the still image has 4000 ⁇ 3000 pixels and an aspect ratio of 4:3.
  • the moving image is recorded with an aspect ratio of 16:9 because the moving image may be viewed by displaying the moving image on a television or a display, which often has an aspect ratio of 16:9.
  • the recording size of the moving image is fixed because the moving image captured in the digest mode is recorded as a single moving image file by connecting moving images obtained by capturing a plurality of still images.
  • the still image is often used to be printed as a capture and therefore is recorded with an aspect ratio of 4:3 according to the size of a capture.
  • the recording size of the still image is also fixed.
  • the recording size of the still image may be configured to be changed by an operation performed by the user.
  • the capturing setting of the sub camera 150 is fixed to on and cannot be changed by the user. In this mode, the sub camera 150 always captures an image.
  • the outer camera 104 and the sub camera 150 capture images. Then, an image is obtained by, as illustrated in FIG. 12D , combining an image 1205 , which has been captured by the sub camera 150 , with an image 1204 , which has been captured by the outer camera 104 , in such a manner that the image 1205 is placed at the lower right of the image 1204 . Then, the obtained image is recorded as a still image in the recording medium 200 .
  • the sub camera image 1205 is not placed in contact with the ends of the outer camera image 1204 , but is placed at a position a predetermined number of pixels (10 pixels, according to the present exemplary embodiment) away from the ends of the outer camera image 1204 .
  • the recording size of the still image to be recorded in the dual shot mode is fixed to 2048 ⁇ 1536 pixels (an aspect ratio of 4:3), which cannot be changed by the user.
  • the recording size is fixed because the dual shot mode is a mode of making it easy for the user to capture a still image using the main camera 104 and the sub camera 150 .
  • FIG. 5 is a flow chart illustrating a flow of basic process in a shooting mode.
  • step S 501 determination of whether the capturing setting of the sub camera 150 is on, i.e., whether to cause the image capture unit 154 to operate is performed.
  • the dual shot mode is set, or if the capturing setting (or display setting) of the sub camera 150 is set to on in the digest mode, it is determined that the capturing setting of the sub camera 150 is on. If the capturing setting of the sub camera 150 is on (YES in step S 501 ), the image capture unit 154 is caused to operate, and the processing proceeds to step S 502 .
  • step S 502 a sub live image display position determination process is performed for determining the position where an image captured by the sub camera 150 (the image capture unit 154 ) is to be displayed.
  • step S 503 an image obtained by superimposing a sub live image, i.e., a live image captured by the image capture unit 154 , on a main live image, i.e., a live image captured by the image capture unit 22 is displayed.
  • the display unit 28 is caused to display an image obtained by combining the sub live image having a smaller size than that of the main live image with the main live image in a superimposed manner at the position, in the main live image, determined by the sub live image display position determination process.
  • step S 504 The relationship of the position and the size of the sub live image with the main live image of when the sub live image is displayed in a superimposed manner are set to be equivalent to the relationship of the position and the size of the sub image with the main image of when the sub image is recorded in a combined manner.
  • step S 504 the shooting mode process using the sub camera 150 is performed.
  • the shooting mode process using the sub camera 150 in step S 504 will be described later with reference to the flow chart illustrated in FIG. 6 .
  • step S 505 If, in step S 501 , the sub camera 150 is not on (NO in step S 501 ), the processing proceeds to step S 506 .
  • step S 506 only a main live image, i.e., a live image captured by the image capture unit 22 is displayed on the display unit 28 . Then, the processing proceeds to step S 507 .
  • step S 507 a normal shooting mode process not using the sub camera 150 is performed.
  • the normal shooting mode is a mode including displaying the main live image on the display unit 28 , according to the pressing of the shutter button 64 , performing a development process and a compression process on an image captured by the main camera 104 , and recording the resulting image in the recording medium 200 . Then, the processing proceeds to step S 505 .
  • step S 505 determination of whether the shooting mode is to be ended is performed. If the shooting mode is to be ended (YES in step S 505 ), the shooting mode is ended. If the shooting mode is not to be ended (NO in step S 505 ), the processing returns to step S 501 . In step S 501 , the mode remains in the shooting mode.
  • step S 601 determination of whether the currently selected shooting mode is the dual shot mode. If it is determined that the currently selected shooting mode is the dual shot mode (YES in step S 601 ), then in step S 602 , a dual shot mode capturing process is performed. The dual shot mode capturing process will be described later with reference to the flow chart illustrated in FIG. 7 . Then, the processing proceeds to step S 603 . If it is determined in step S 601 that the currently selected mode is not the dual shot mode (NO in step S 601 ), the processing proceeds to step S 604 . In step S 604 , determination of whether the currently selected shooting mode is the digest mode is performed.
  • step S 605 a digest mode capturing process is performed.
  • the digest mode capturing process will be described later with reference to the flow chart illustrated in FIG. 8 .
  • the processing proceeds to step S 603 .
  • step S 603 determination of whether the shooting mode using the sub camera 150 is to be ended is performed. If the shooting mode using the sub camera 150 is to be ended (YES in step S 603 ), the shooting mode process using the sub camera 150 ends. If the shooting mode using the sub camera 150 is not to be ended (NO in step S 603 ), the processing returns to step S 601 . In step S 601 , the mode remains in the shooting mode using the sub camera 150 .
  • the live image is displayed by superimposing a live image (a sub live image) captured by the sub camera 150 on a live image (a main live image) captured by the main camera 104 .
  • a sub image 402 is placed aside at the lower right of the main image 401 (in an end portion of the image). The photographer considers that the image displayed on the display unit 28 is to be recorded.
  • the image is displayed by combining the sub live image at a position equivalent to the position where the sub live image is combined when the image is recorded.
  • the moving image having an aspect ratio different from that of the still image is recorded in the background in a capturing standby state, where the live images are displayed. That is, areas 403 in FIG. 4B are areas not to be recorded as the moving image. This results in recording the moving image with a part of the sub image missing.
  • the digital camera 100 determines the display position of the sub image as follows.
  • FIG. 9 is a flow chart illustrating the sub live image display position determination process when the capturing setting of the sub camera 150 is on.
  • step S 901 determination of whether the shooting mode is the dual shot mode or the digest mode is performed. If it is determined that the shooting mode is the dual shot mode, the processing proceeds to step S 902 . If it is determined that the shooting mode is the digest mode, the processing proceeds to step S 903 .
  • step S 902 the placement position of a sub live image in the dual shot mode is determined.
  • a sub live image 1012 is determined to be displayed in an end portion of a screen (an area where a main live image 1011 is displayed).
  • the sub live image 1012 is placed in the end portion of the main live image 1011 , but is placed at a position a predetermined distance away from the ends of the main live image 1011 .
  • the sub live image 1012 may be placed not only at this display position, but also at a position where the sub live image 1012 is in contact with the ends of the main live image 1011 .
  • the sub live image 1012 is set as an area where the sub live image 1012 can be placed.
  • the sub live image 1012 can be placed in the area 1013 , normally, an object is often located in a center portion of the main image 1011 .
  • the sub live image 1012 is determined to be placed in such a manner that the sub live image 1012 is in contact with the ends of the area 1013 so as not to cover the object.
  • the area 1013 where the sub live image 1012 can be placed, is the entire area obtained by removing from the main image 1011 an area having a predetermined number of pixels from the ends of the main image 1011 .
  • an area obtained by removing a predetermined small number of pixels from the ends of the main image is set as an area where the sub image can be placed.
  • the entire main image 1011 may be set as an area where the sub live image 1012 can be placed.
  • step S 902 the display position of the sub live image is determined, and the processing of this flow chart ends.
  • step S 903 the placement position of a sub live image in the digest mode is determined.
  • the sub live image is placed in an end portion of the area where the main live image is displayed.
  • a sub live image 1022 is placed at a position away from an end portion of the area where a main live image 1021 is displayed.
  • the aspect ratio of the still image (4:3) to be recorded is different from the aspect ratio of the moving image (19:9) to be recorded. Therefore, as illustrated in FIG. 10D , in the main image 1021 , only an area 1024 is recorded as the moving image, and areas 1025 are not recorded as the moving image.
  • the sub live image 1022 is displayed by placing the sub live image 1022 in the area 1024 to avoid the areas 1025 . That is, the sub live image 1022 is determined to be placed at a position upwardly away from a lower end portion of the main live image 1021 in FIG. 10C by avoiding the area 1025 included in the lower end portion.
  • an area 1023 where the sub live image 1022 can be placed, is an area included in the area 1024 , which does not include the areas 1025 .
  • an area obtained by removing a predetermined small number of pixels from the ends of the area 1024 is set as an area where the sub live image 1022 can be placed.
  • the entire area 1024 may be set as an area where the sub live image 1022 can be placed.
  • the display position (the placement position) of the sub live image to be displayed in each of the dual shot mode and the digest mode is thus determined. Then, in step S 503 , an image obtained by superimposing the sub live image on the main live image at the determined display position is displayed.
  • the aspect ratio of the still image to be recorded in each of the dual shot mode and the digest mode is 4:3.
  • the aspect ratio of the main image 1011 to be displayed in the dual shot mode is 4:3, and the aspect ratio of the main image 1021 to be displayed in the digest mode is also 4:3.
  • the digital camera 100 displays an image obtained by placing the sub image in an end portion of the main image.
  • the digital camera 100 displays an image obtained by placing the sub image not in an end portion of the main image, but at a position where the moving image is recorded in the digest mode and which is a certain distance away in a predetermined direction from the end portion where the sub image is displayed in the dual shot mode.
  • the sub image 1022 is placed at a position a certain distance away from the ends of the main image 1021 to be displayed. This prevents the sub image 1021 from being cut halfway in the recorded moving image.
  • Such a display method is effective in a mode of recording a plurality of images having different aspect ratios.
  • the sub live image is to be placed in the lower right corner of the main live image.
  • the sub live image may be placed in the upper right corner. That is, the sub live image may be placed in any of the four corners of the area where the sub live image can be placed. Yet alternatively, the sub image may be placed not in a corner but in contact with a side of the area where the sub live image can be placed. Further, if the entire main image 1011 is set as an area where the sub live image 1012 can be placed, one of the corners of the main live image 1011 overlaps one of the corners of the sub live image 1012 , or the sub live image 1012 is placed in contact with one side of the main live image 1011 .
  • the display position of the sub live image is determined so that the sub live image is displayed at the position illustrated in FIG. 10A or 10C .
  • a default display position may be set to the position in FIG. 10A or 10C , and then, according to an operation performed by the user, the display position of the sub live image can be changed in the area 1013 or 1023 , where the sub live image can be placed.
  • the changed display position of the sub live image and the shooting mode are stored in the memory 32 . Then, when the sub live image display position determination process is performed next, the display position stored in the memory 32 is read, and the sub live image is displayed at the read display position.
  • the display position of the sub live image is adjusted.
  • the display position is adjusted by changing the display position so that the sub live image is displayed in, among end portion areas in the four corners of the area where the sub live image can be placed, the end portion area closest to the display position read from the memory 32 .
  • the dual shot mode has been changed to the digest mode
  • the display position of the sub live image moves in a direction away from an end portion of the main image.
  • the digest mode has been changed to the dual shot mode
  • the display position of the sub live image moves in a direction toward an end portion of the main image.
  • the aspect ratio of the still image is fixed to 4:3.
  • a still image is also increasingly captured for viewing on a television or a display, similarly to a moving image.
  • an aspect ratio of 16:9 may be allowed to be selected as the recording size.
  • step S 701 determination of whether a release switch, i.e., the shutter button 64 , has been fully pressed and the second shutter switch signal SW 2 has been input is performed. If it is determined that the release switch has been pressed (YES in step S 701 ), the processing proceeds to step S 702 . If the release switch has not been pressed (NO in step S 701 ), the processing proceeds to step S 705 . A description of the process performed when the shutter button 64 has been half pressed and the first shutter switch signal SW 1 has been input is not given here. In such a case, the capturing preparation process is performed as described above.
  • step S 702 the inner camera 150 and the outer camera 104 capture images, and a composition process and a development process is performed on the captured images. That is, the images captured by the inner camera 150 and the outer camera 104 are obtained and a raw image format (RAW) image is created using an image obtained by, as illustrated in FIG. 12D , combining the sub image captured by the sub camera 150 with the main image captured by the main camera 104 in a superimposed manner. Then, a development process is performed on the RAW image to generate a composite image (a still image).
  • the still image to be recorded in the dual shot mode has an aspect ratio of 4:3 as described above.
  • the sub image is combined with the main image in such a manner that the composition position has the same positional relationship as that between the main live image and the sub live image ( FIG. 10A ) displayed on the display unit 28 . That is, the composition position is determined using information about the display position determined in the sub live image display position determination process in step S 502 .
  • step S 703 a review after the capturing is displayed. In the dual shot mode, a still image is recorded that is equivalent to the live image of when the shutter button 64 has been fully pressed during a capturing standby state. Thus, the review to be displayed on the display unit 28 is displayed as illustrated in FIG. 10A . The user confirms this review display immediately after the capturing, and thereby can understand what still image has actually been captured.
  • step S 704 the system control unit 50 performs a recording process for saving the still image generated in step S 702 (the composite image obtained by combining the sub image with the main image) as a single still image file in the recording medium 200 .
  • the processes of steps S 701 to S 704 are thus performed, whereby it is possible to generate and record a composite image obtained by combining the sub image with the main image in the dual shot mode. If the composite image recording process ends, the processing returns to step S 701 . Then, the state is returned to the capturing standby state.
  • step S 705 determination of whether the shooting mode setting has been changed by an operation on the mode switching switch 60 and switched to a mode other than the dual shot mode is performed. If the shooting mode setting has been switched (YES in step S 705 ), then in step S 706 , a shooting mode change process is performed. Then, the processing proceeds to step S 501 illustrated in FIG. 5 and returns to an initial process in a shooting mode. If the shooting mode setting has not been switched (NO in step S 705 ), the mode remains in the dual shot mode, and the processing proceeds to step S 707 . In step S 707 , determination of whether a capturing setting value has been changed is performed.
  • capturing setting value refers to a setting, such as an exposure value, photometry, the International Organization for Standardization (ISO) sensitivity, or the on/off state of a self-timer.
  • a setting value has been changed (YES in step S 707 )
  • the processing proceeds to step S 708 .
  • step S 708 a setting value change process is performed, and the processing proceeds to step S 701 and the state is returned to the capturing standby state in the dual shot mode.
  • a setting value has not been changed (NO in step S 707 )
  • step S 709 determination of whether the dual shot mode is to be ended is performed.
  • step S 709 If the dual shot mode is to be ended (YES in step S 709 ), the dual shot mode is ended. If the dual shot mode is not to be ended (NO in step S 709 ), the processing returns to step S 701 and the state is returned to the capturing standby state in the dual shot mode.
  • step S 801 in the capturing standby state, an encoding process is performed on a composite moving image obtained by combining the sub image with the main image.
  • the digest mode if the state of the sub camera 150 is on as determined in step S 501 , a moving image captured for 4 seconds before the shutter button 64 has been pressed in the capturing standby state is recorded together with the still image.
  • the moving image to be recorded in the digest mode is a composite moving image obtained by combining the sub image with the main image.
  • the sub image is combined with the main image in such a manner that the composition position has the same positional relationship as that between the main live image and the sub live image ( FIG. 10C ) displayed on the display unit 28 .
  • the composition position is determined using information about the display position determined in the sub live image display position determination process in step S 502 .
  • the aspect ratio of the main image 1021 illustrated in FIG. 10C is 4:3, whereas the aspect ratio of the moving image to be recorded is 16:9.
  • an image of a partial area of the main image 1021 (an area corresponding to the area 1024 illustrated in FIG. 10D ) is extracted and the sub image 1022 is combined with the extracted image, thereby generating a composite moving image.
  • the generated composite moving image is encoded and a maximum of 4 seconds of the composite moving image is held in a ring buffer format in the memory 32 .
  • step S 802 determination of whether a release switch, i.e., the shutter button 64 , has been fully pressed is performed. If it is determined that the release switch has been pressed (YES in step S 802 ), the processing proceeds to step S 803 . If the release switch has not been pressed (NO in step S 802 ), the processing proceeds to step S 807 .
  • a release switch i.e., the shutter button 64
  • step S 803 the main camera 104 (the image capture unit 22 ) captures a still image, and a development process is performed on the captured still image.
  • the sub image captured by the inner camera 150 is not combined with the still image to be recorded in the digest mode.
  • the development process is only performed on the main image captured by the outer camera 104 .
  • the aspect ratio of the still image to be recorded in the digest mode is fixed to 4:3.
  • step S 804 a REC review display process is performed for displaying on the display unit 28 the still image generated by performing the development process in step S 803 .
  • step S 805 the process is performed for recording in the recording medium 200 the composite moving image of the main image and the sub image encoded and stored in the memory 32 in step S 801 . Then, the processing proceeds to step S 806 .
  • step S 806 a recording process is performed for recording the still image developed in step S 803 , as a single still image file in the recording medium 200 .
  • the composite moving image is recorded by adding the composite moving image to a moving image file for a moving image captured in the digest mode. That is, in the digest mode, each still image is recorded as a single still image file, whereas a moving image is recorded in such a manner that moving images obtained by being captured multiple times are recorded as a single moving image file.
  • steps S 801 to S 806 are thus performed, whereby it is possible to record a composite moving image as illustrated in FIG. 12A and a single still image as illustrated in FIG. 12B in the digest mode.
  • a description is not given of a case where the capturing setting of the sub camera 150 is off.
  • step S 801 a composite moving image is not stored but a moving image of the main image captured by the outer camera 104 is stored in the memory 32 .
  • step S 805 the moving image of the main image is recorded.
  • step S 806 When the process of step S 806 has ended, the processing returns to step S 801 and the state is returned to the capturing standby state.
  • step S 807 determination of whether the shooting mode setting has been changed by an operation on the mode switching switch 60 and switched to a mode other than the digest mode is performed. If the shooting mode setting has been switched (YES in step S 807 ), then in step S 808 , a shooting mode change process is performed. Then, the processing proceeds to step S 501 illustrated in FIG. 5 and returns to an initial process in a shooting mode. If the shooting mode setting has not been switched (NO in step S 807 ), the mode remains in the digest mode, and the processing proceeds to step S 809 .
  • step S 809 determination of whether a capturing setting value has been changed is performed. This process is similar to the process of step S 707 . However, capturing setting values that can be changed are different depending on the mode. For example, in the digest mode, a moving image is encoded in step S 801 as described above. Thus, it is convenient if an exposure value and a photometric value are fixed. Thus, it is not allowed to change the settings of the exposure value and the photometric value in step S 809 . If a setting value has been changed (YES in step S 809 ), the processing proceeds to step S 810 . In step S 810 , a setting value change process is performed, and the processing proceeds to step S 801 and the state is returned to the capturing standby state in the digest mode. If a setting value has not been changed (NO in step S 809 ), the processing proceeds to step S 811 .
  • step S 811 determination of whether the digest mode is to be ended is performed. If the digest mode is to be ended (YES in step S 811 ), the digest mode process ends. If the digest mode is not to be ended (NO in step S 811 ), the processing returns to step S 801 and the state is returned to the capturing standby state in the digest mode.
  • the basic configuration and processing of a second exemplary embodiment are similar to those of the first exemplary embodiment and therefore are not described here.
  • the second exemplary embodiment is different from the first exemplary embodiment in the sub live image display position determination process.
  • FIG. 11 the sub live image display position determination process is described.
  • the processing of the flow chart is achieved by the system control unit 50 performing a calculation process and controlling the components of the digital camera 100 based on the program read from the non-volatile memory 56 .
  • FIG. 11 is a flow chart illustrating the sub live image display position determination process when the capturing setting of the sub camera 150 is on.
  • step S 1101 determination of whether the shooting mode is the dual shot mode or the digest mode is performed. If it is determined that the shooting mode is the dual shot mode, the processing proceeds to step S 1102 . If it is determined that the shooting mode is the digest mode, the processing proceeds to step S 1105 .
  • step S 1102 determination of whether a setting for creating a special effect, particularly a setting for creating a special effect on end portions of the image, has been made is performed.
  • the setting for creating a special effect on end portions of the image is a setting for creating an effect (performing image processing) by reducing the amount of light in the four corners of the image in a toy camera manner. If it is determined that the special effect mode is set (YES in step S 1102 ), the processing proceeds to step S 1104 . If it is determined that the special effect mode is not set (NO in step S 1102 ), the processing proceeds to step S 1103 .
  • step S 1103 the display position of a sub live image in the dual shot mode where a special effect is not created, is determined in such a manner that the sub image is to be displayed in an end portion of the main image. This is a process similar to that of step S 902 and therefore is not described in detail here.
  • step S 1105 the display position of a sub live image in the digest mode is determined in such a manner that the sub image is to be displayed in an area which is away from an end portion of the main image and where both the still image and the moving image are recorded. This is a process similar to that of step S 903 and therefore is not described in detail here.
  • step S 1104 the placement position of a sub live image in the mode of creating a special effect is determined to be on end portions of the image.
  • a special effect is created on areas 1036 in the four corners of a main image 1031 .
  • the sub image is placed in any one of the four corners of the main image. This prevents the user from confirming the special effect created on the corner.
  • an area 1033 illustrated in FIG. 10F which does not include the areas 1036 , on which the special effect is created, is set as an area where the sub image can be placed.
  • the sub image is displayed in this area.
  • An area avoiding the areas 1036 , on which the special effect is created, is set as an area where the sub image can be placed.
  • the sub image is displayed at a position away from the end portions of the image and avoiding the areas 1036 .
  • the sub image is placed at a location a certain distance away from the ends of the main image, whereby it is possible to avoid the situation where an image captured by the sub camera 150 is placed in a portion on which an effect is created and which is entertaining, thereby preventing the user from confirming the effect. Consequently, it is possible to confirm the effect created on the end portions of the main image and also confirm the sub image on the display unit 28 .
  • exemplary embodiments have been described using as an imaging apparatus as example.
  • exemplary embodiments can be implemented in a camera-equipped mobile phone or a handheld game apparatus.
  • the functions of the above exemplary embodiments can be achieved using a plurality of apparatuses, for example, using a system where an imaging apparatus including a plurality of image capture units, a display apparatus including a display unit, and a control apparatus including a control unit are connected together. Parts of the above exemplary embodiments may be appropriately combined together.
  • Additional embodiments can also be realized by a computer of a system or apparatus that reads out and executes computer executable instructions recorded on a storage medium (e.g., computer-readable storage medium) to perform the functions of one or more of the above-described embodiment(s), and by a method performed by the computer of the system or apparatus by, for example, reading out and executing the computer executable instructions from the storage medium to perform the functions of one or more of the above-described embodiment(s).
  • the computer may comprise one or more of a central processing unit (CPU), micro processing unit (MPU), or other circuitry, and may include a network of separate computers or separate computer processors.
  • the computer executable instructions may be provided to the computer, for example, from a network or the storage medium.
  • the storage medium may include, for example, one or more of a hard disk, a random-access memory (RAM), a read only memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact disc (CD), digital versatile disc (DVD), or Blu-ray Disc (BD)TM), a flash memory device, a memory card, and the like.
  • RAM random-access memory
  • ROM read only memory
  • BD Blu-ray Disc

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Studio Devices (AREA)
  • Cameras In General (AREA)
  • Indication In Cameras, And Counting Of Exposures (AREA)
US14/574,043 2013-12-25 2014-12-17 Imaging apparatus method for controlling imaging apparatus and storage medium Active 2034-12-29 US9635281B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013267154A JP6312423B2 (ja) 2013-12-25 2013-12-25 撮像装置、撮像装置の制御方法、プログラム、及び、記憶媒体
JP2013-267154 2013-12-25

Publications (2)

Publication Number Publication Date
US20150181134A1 US20150181134A1 (en) 2015-06-25
US9635281B2 true US9635281B2 (en) 2017-04-25

Family

ID=53401514

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/574,043 Active 2034-12-29 US9635281B2 (en) 2013-12-25 2014-12-17 Imaging apparatus method for controlling imaging apparatus and storage medium

Country Status (2)

Country Link
US (1) US9635281B2 (ja)
JP (1) JP6312423B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170039867A1 (en) * 2013-03-15 2017-02-09 Study Social, Inc. Mobile video presentation, digital compositing, and streaming techniques implemented via a computer network

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6762723B2 (ja) 2016-01-18 2020-09-30 キヤノン株式会社 記録装置、記録装置の制御方法およびプログラム
US11196924B2 (en) * 2019-12-20 2021-12-07 Lenovo (Singapore) Pte. Ltd. Methods and devices for managing a dual camera mode based on image-related information

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050036044A1 (en) * 2003-08-14 2005-02-17 Fuji Photo Film Co., Ltd. Image pickup device and image synthesizing method
JP2011217121A (ja) 2010-03-31 2011-10-27 Ntt Docomo Inc 携帯端末

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363994A (ja) * 2003-06-05 2004-12-24 Casio Comput Co Ltd 撮像装置、撮像方法、及び撮像プログラム
JP4898284B2 (ja) * 2006-05-15 2012-03-14 オリンパスイメージング株式会社 カメラ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050036044A1 (en) * 2003-08-14 2005-02-17 Fuji Photo Film Co., Ltd. Image pickup device and image synthesizing method
JP2011217121A (ja) 2010-03-31 2011-10-27 Ntt Docomo Inc 携帯端末

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170039867A1 (en) * 2013-03-15 2017-02-09 Study Social, Inc. Mobile video presentation, digital compositing, and streaming techniques implemented via a computer network
US10515561B1 (en) * 2013-03-15 2019-12-24 Study Social, Inc. Video presentation, digital compositing, and streaming techniques implemented via a computer network
US11113983B1 (en) * 2013-03-15 2021-09-07 Study Social, Inc. Video presentation, digital compositing, and streaming techniques implemented via a computer network
US11151889B2 (en) 2013-03-15 2021-10-19 Study Social Inc. Video presentation, digital compositing, and streaming techniques implemented via a computer network

Also Published As

Publication number Publication date
JP2015126242A (ja) 2015-07-06
US20150181134A1 (en) 2015-06-25
JP6312423B2 (ja) 2018-04-18

Similar Documents

Publication Publication Date Title
US20150181135A1 (en) Image capturing apparatus and control method thereof
US10972674B2 (en) Electronic apparatus
JP2006323374A (ja) 撮像装置及びその制御方法
JP5988860B2 (ja) 撮像装置及び撮像装置の制御方法
US9635281B2 (en) Imaging apparatus method for controlling imaging apparatus and storage medium
JP7312012B2 (ja) 撮像装置、撮像装置の制御方法、プログラム、および記憶媒体
CN108132705B (zh) 电子设备、控制方法以及存储介质
US9986161B2 (en) Image capturing control apparatus and method for controlling the same
US10097763B2 (en) Electronic device and method of controlling the same
US11195558B2 (en) Imaging apparatus and display control method
US10530981B2 (en) Image capturing apparatus, control method, and storage medium for not producing a notification sound
JP2017195513A (ja) 撮影装置及びその制御方法
US11625948B2 (en) Imaging control apparatus capable of selecting detected subject and method for the same
JP2006039203A (ja) 撮像装置、及び制御方法
JP6257310B2 (ja) 撮影装置、撮影制御方法及びプログラム
JP5755035B2 (ja) 撮像装置及びその制御方法
US12003852B2 (en) Image capture apparatus and control method
US11115589B2 (en) Imaging control apparatus and method for controlling imaging control apparatus
JP2008060844A (ja) 画像処理装置及び画像処理方法
US10194082B2 (en) Image pickup apparatus that shoots moving image for predetermined time period at the time of shooting still image, control method for the image pickup apparatus, and storage medium
JP2007058208A (ja) 撮像装置及びその制御方法、コンピュータプログラム及び記憶媒体
JP5737967B2 (ja) 撮像装置、その制御方法、プログラム及び記録媒体
JP6270454B2 (ja) 撮像装置、その制御方法、およびプログラム、並びに記憶媒体
JP2022183847A (ja) 撮像装置、撮像装置の制御方法、プログラムおよび記録媒体
CN116158086A (zh) 电子设备及其控制方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: CANON KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAKAHASHI, RYO;REEL/FRAME:035836/0163

Effective date: 20141209

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4