US6989229B2 - Non-resolving mask tiling method for flare reduction - Google Patents
Non-resolving mask tiling method for flare reduction Download PDFInfo
- Publication number
- US6989229B2 US6989229B2 US10/400,347 US40034703A US6989229B2 US 6989229 B2 US6989229 B2 US 6989229B2 US 40034703 A US40034703 A US 40034703A US 6989229 B2 US6989229 B2 US 6989229B2
- Authority
- US
- United States
- Prior art keywords
- mask
- pattern
- features
- flare
- absorbing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 238000000034 method Methods 0.000 title claims description 38
- 230000009467 reduction Effects 0.000 title description 7
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 31
- 230000005855 radiation Effects 0.000 claims description 49
- 230000003287 optical effect Effects 0.000 claims description 31
- 239000004065 semiconductor Substances 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 11
- 238000013461 design Methods 0.000 claims description 8
- 239000006096 absorbing agent Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000001459 lithography Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 238000010894 electron beam technology Methods 0.000 claims description 3
- 238000005286 illumination Methods 0.000 claims description 2
- 238000010884 ion-beam technique Methods 0.000 claims description 2
- 239000011358 absorbing material Substances 0.000 claims 1
- 230000002411 adverse Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 9
- 235000012431 wafers Nutrition 0.000 description 38
- 230000006872 improvement Effects 0.000 description 9
- 230000008901 benefit Effects 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001900 extreme ultraviolet lithography Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HWEYZGSCHQNNEH-UHFFFAOYSA-N silicon tantalum Chemical compound [Si].[Ta] HWEYZGSCHQNNEH-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70908—Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
- G03F7/70941—Stray fields and charges, e.g. stray light, scattered light, flare, transmission loss
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/36—Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/68—Preparation processes not covered by groups G03F1/20 - G03F1/50
- G03F1/70—Adapting basic layout or design of masks to lithographic process requirements, e.g., second iteration correction of mask patterns for imaging
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70425—Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
- G03F7/70433—Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
Definitions
- This application is related to:
- This invention relates generally to semiconductor circuits, and more specifically, to the manufacture of semiconductors.
- Integrated circuit manufacturing uses photolithography to transfer patterns from a master mask to a semiconductor substrate.
- feature dimensions used in integrated circuits have become sub-micron various problems are encountered.
- the small dimensions approach the physical capability of photolithography.
- the nonplanarity of surfaces, such as wafers have a significant affect on feature resolution on the wafer.
- a known compensation technique is the use of tiles which are additional features formed on the semiconductor substrate in areas that are not used for functional circuitry.
- Tiling is used to improve the planarity or flatness of the substrate surface after a conventional chemical/mechanical polish (CMP) step. Tiling can also be used to equalize the chemical concentration during an etch step and ensure that the concentration is uniform across a wafer.
- CMP chemical/mechanical polish
- Tiling can also be used to equalize the chemical concentration during an etch step and ensure that the concentration is uniform across a wafer.
- a major limitation with tiling is that tiling cannot be used in close proximity to functional circuitry because of negative effects on device characteristics.
- sub-resolution features Another known compensation technique to compensate light diffraction at submicron dimensions is referred to generally as sub-resolution features or scattering bars.
- This technique involves the placement of small features on the mask in close proximity to the small isolated desired design features. The scattering bars are placed within less than three times the minimum feature spacing. Scattering bars make isolated features pattern as if they are dense features in that they decrease the sensitivity to focus variations in a photolithographic system.
- Another known lithography problem is referred to as flare which is the existence of scattered background light in a lithographic system. Flare is dependent upon the pattern density of a mask. As flare varies, there is also variation in wafer feature dimensions. Scattering bars may offer some improvement in highly local flare reduction and pattern uniformity. However the scattering bars do not provide improvement for medium or long range pattern density or flare distortion.
- FIG. 1 illustrates in perspective form a semiconductor lithography system with a reflective mask, such as an extreme ultraviolet (EUV) system;
- EUV extreme ultraviolet
- FIG. 2 illustrates in perspective form a semiconductor lithography system with a transmitting mask, such as a deep ultraviolet (DUV) system;
- a transmitting mask such as a deep ultraviolet (DUV) system
- FIG. 3 illustrates a top view of a portion of a reflecting mask pattern transferred to a wafer with flare error
- FIG. 4 illustrates a top view of a portion of a reflecting mask pattern transferred to a wafer with reduced but undesired flare error
- FIG. 5 illustrates a top view of a portion of a reflecting mask pattern transferred to a wafer with reduced flare error in accordance with one form of the present invention
- FIG. 6 illustrates a top view of a reflecting mask pattern transferred to a wafer with reduced flare error in accordance with another form of the present invention
- FIG. 7 illustrates a perspective view of an integrated circuit pattern on a mask incorporating the previously discussed pattern portions
- FIG. 8 illustrates a perspective view of a reflecting mask having a plurality of integrated circuits and having flare compensation inside and beyond the reflecting mask
- FIG. 9 illustrates in cross-section form a reflecting mask with flare compensation.
- FIG. 1 illustrates an EUV lithography system or optical system 10 with an optical portion 11 .
- Optical system 10 has a radiation source 12 , a reflecting reticle or reflecting mask 18 , and optical reflecting elements 20 , 22 , 24 , 26 and 28 .
- the optical reflecting elements 20 , 22 , 24 , 26 and 28 are implemented with multiple layer mirrors.
- the radiation source 12 may be implemented in various forms such as a laser, a laser produced plasma, a gas discharge source or an electron beam source. In the illustrated form, light produced by the radiation source 12 is transferred from the radiation source 12 to the reflecting mask 18 . A predetermined pattern exists on the reflecting mask 18 .
- Portions of the predetermined pattern cause the radiation or light to reflect via the reflective mask by reflecting from reflecting mask 18 to an optical reflecting element 20 .
- the light is further reflected to optical reflecting elements 22 , 24 , 26 and 28 .
- From optical reflecting element 28 the light is reflected to a photoresist layer in the form of photoresist 16 on a surface of a wafer 14 for the formation of a semiconductor device. Where light contacts photoresist 16 , the photoresist 16 is rendered soluble by subsequent processing steps involving heating.
- optical system 10 is subject to non-specular reflection caused by roughness of the surfaces of reflecting mask 18 and each of the optical reflecting elements 20 , 22 , 24 , 26 and 28 .
- Roughness in the reflecting mask translate into focal errors at the wafer 14 .
- Roughness in the optical reflecting elements 20 , 22 , 24 , 26 and 28 translate into flare on wafer 14 that distorts the pattern intended to be transferred to wafer 14 .
- a DUV (deep ultraviolet) system or optical system 50 generally having a radiation source 52 , a transmission mask or a transmitting mask 56 , projection optics 54 and a semiconductor wafer 58 having overlying photoresist 60 .
- Transmitting mask 56 is an optically transmissive mask and has both transmissive portions and absorbing portions.
- the radiation source 52 is implemented with either a laser or a gas discharge source. Light from radiation source 52 is transferred to the transmitting mask 56 that has a predetermined mask pattern thereon. The light transfers through the transmissive portions of the transmitting mask 56 and is directed via projection optics 54 onto the photoresist 60 .
- Projection optics 54 may be implemented with a combination of refractive lenses and mirrors.
- the photoresist 60 is rendered soluble in those areas where light contacts the photoresist 60 by subsequent heating.
- error sources in transferring the patterning from transmitting mask 56 to wafer 58 including roughness on the optical surfaces of the projection optics 54 , inhomogeneities associated with the lens materials and undesired light reflections.
- FIG. 3 Illustrated in FIG. 3 is a top view of a portion of a reflecting mask pattern transferred to a wafer with flare error.
- a flare proximity region 70 of a mask such as reflecting mask 18 of FIG. 1 , contains a pattern that is desired to be printed onto wafer 14 .
- the flare proximity regions described herein may extend for several millimeters and include multiple sub-regions of varying pattern density. Flare effects are therefore imaging effects over both short and long ranges.
- transmitting mask 56 of FIG. 2 is analogous. Only a small portion of a complete pattern is illustrated for ease of explanation. It should be noted that the desired features have well defined edges such as a straight-edge and square corners.
- the resulting pattern on a wafer is significantly distorted within a flare proximity region 72 .
- the wafer features are smaller and are not well defined. Such feature distortions typically are unacceptable as the modified features change the electrical characteristics and functionality of the associated circuitry. It should be noted that for illustration purposes only that within each of flare proximity region 70 and flare proximity region 72 there is no other feature than the desired feature to be patterned.
- FIG. 4 Illustrated in FIG. 4 is a top view of a portion of a reflecting mask pattern transferred to a wafer with reduced but undesired flare error.
- a section of mask 18 contains multiple features within a flare proximity region 74 and an analogous section of wafer 14 contains the same multiple features within a flare proximity region 76 .
- flare proximity region 74 is comparable to flare proximity region 70 and that flare proximity region 76 is comparable to flare proximity region 72 .
- the flare error is reduced by the presence of other features within the flare proximity region 74 .
- a flare proximity region 78 of mask 18 generally has a plurality of features desired to be transferred and one or more tiles having a length and a width such as tiles 82 , 84 , 86 88 , 90 and 92 .
- the length of the tiles is longer than a length of a correlated pattern feature by at least one hundred percent (100%).
- the tiles 82 , 84 , 86 , 88 , 90 and 92 do not get transferred onto the target wafer 14 having a flare proximity region 80 .
- the reflecting mask has an absorbing portion made up of the feature patterns (not numbered) that reflect a portion of incident radiation while largely being absorbing.
- the tiles 82 , 84 , 86 , 88 , 90 and 92 reduce the pattern distortion from flare for a flare proximity region that does not have high pattern density.
- the width of each of tiles 82 , 84 , 86 , 88 , 90 and 92 is less than 0.3 multiplied by the magnification factor, and the wavelength of the radiation source, divided by the numerical aperture of the optical system 10 or 54 .
- the magnification factor is the size of the features on the mask 18 divided by the size of the features on the wafer 14 .
- the numerical aperture of the optical system 10 or 54 is the sine of the angle subtended by the exit pupil of the optical system at the plane of wafer 14 .
- the features within flare proximity region 78 that are to be transferred onto wafer 14 must be separated from each other by a predetermined minimum spacing.
- Tiles 82 , 84 , 86 , 88 , 90 and 92 should therefore be positioned relative to the transferred features at a minimum distance from the transferred features that is approximately four times or greater than the minimum spacing. While not all tiles necessarily have a minimum distance of four times or greater the minimum spacing, the majority of the tiles do, if not all.
- Tiles 82 , 84 , 86 , 88 , 90 and 92 are fully radiation absorbing and help significantly to reduce undesired reflected light.
- additional tiles in the form of diffraction bars 81 , 83 , 85 , 87 , 89 , 91 and 93 may optionally be positioned in very close proximity to the pattern features to be transferred to wafer 14 .
- Diffraction bars 81 , 83 , 85 , 87 , 89 , 91 and 93 are closer to the pattern features than anywhere from 0.8 to three times the minimum spacing between the transferred pattern features.
- Diffraction bars 81 , 83 , 85 , 87 , 89 , 91 and 93 function to provide sub-resolution assistance by changing the diffraction pattern of an isolated pattern feature to look like the diffraction pattern of a set of densely clustered pattern features. Therefore, while good pattern feature fidelity is provided by the use of tiles 82 , 84 , 86 , 88 , 90 and 92 , even better pattern fidelity is provided when diffraction bars 81 , 83 , 85 , 87 , 89 , 91 and 93 are also used.
- the use of tiles 82 , 84 , 86 , 88 , 90 and 92 also improves the control of the mask critical dimensions (CDs) due to reductions in mask manufacturing proximity effects.
- the mask manufacturing proximity effects have a similar proximity range as the flare proximity range and are therefore correctable by the same tiles 82 , 84 , 86 , 88 , 90 and 92 .
- These improvements in mask CD control create an improvement in control of the wafer feature CDs and therefore improve circuit electrical performance.
- FIG. 6 Illustrated in FIG. 6 is a top view of a reflecting mask pattern transferred to a wafer with reduced flare error.
- a flare proximity region 94 within mask 18 has the three previously illustrated features that are transferred to wafer 14 within a flare proximity region 96 .
- tiles 98 , 100 and 102 are positioned around the features.
- Tiles 98 , 100 and 102 have a significantly greater width and area than the tiles 82 , 84 , 86 , 88 , 90 and 92 of FIG. 5 .
- some of tiles 98 , 100 and 102 have an area that is larger than some or all of the pattern features of flare proximity region 94 .
- the tiles 98 , 100 and 102 are not fully absorbing, but rather are partially attenuating or partially absorbing.
- Tiles 98 , 100 and 102 absorb at least an additional 20% of the radiation incident on the tiles to that absorbed by the reflecting portion of pattern features of the mask. It should be noted that for additional fidelity, diffraction bars such as diffraction bars 81 , 83 , 85 , 87 , 89 , 91 and 93 of FIG. 5 may also be used in the embodiment of FIG. 6 . Tiles 98 , 100 and 102 are to be positioned with respect to the transferred features and within flare proximity region 94 using the same rules for spacing as described above for tiles 82 , 84 , 86 , 88 , 90 and 92 . Tiles 98 , 100 and 102 also reduce undesired reflection with their partial radiation absorbing characteristic.
- the tiles 98 , 100 and 102 may be made physically much larger than previous tiles that would transfer since such tiles were fully absorbing.
- the use of tiles 98 , 100 and 102 also improves the control of the mask CDs due to reductions in mask manufacturing proximity effects.
- the mask manufacturing proximity effects have a similar proximity range as the flare proximity range and are therefore correctable by the same tiles 98 , 100 and 102 .
- FIG. 7 Illustrated in FIG. 7 is a perspective view of an integrated circuit pattern 95 on a mask incorporating the previously discussed flare proximity regions 70 , 78 , 94 and 74 . Flare variation will differ for each of the flare proximity regions due to differences in the pattern density. Therefore, the pattern fidelity distortion associated with flare differs depending upon what portion of the integrated circuit pattern 95 is being processed.
- FIG. 8 Illustrated in FIG. 8 is a perspective view of mask 18 from previous figures in which multiple integrated circuit patterns are grouped together into one mask 18 . This permits the simultaneous production of multiple integrated circuits.
- integrated circuit patterns 110 , 112 , 114 , 116 , 118 and 120 are implemented in a joined array for a plurality of die.
- Each of integrated circuit patterns 110 , 112 , 114 , 116 , 118 and 120 may, in one form, represent the same pattern as integrated circuit pattern 95 of FIG. 7 .
- Peripheral to the integrated circuit patterns 110 , 112 , 114 , 116 , 118 and 120 is a perimeter region in the form of a radiation absorbing border 122 for absorbing radiation.
- radiation absorbing border 122 represents an abrupt change in pattern density from the integrated circuit patterns, it is desired to make the radiation absorbing border 122 become partially absorbing.
- radiation absorbing border 122 is implemented by chrome. By reducing the thickness of chrome used to implement radiation absorbing border 122 , the amount of absorption of radiation absorbing border 122 can be reduced. This reduction in absorption at the border makes the amount of flare distortion across the integrated circuit pattern more uniform. With a completely absorbing border, the amount of flare at the periphery of the integrated circuit pattern is significantly lower than the amount of flare in the center of the integrated circuit pattern. Therefore, by making the border partially absorbing, the amount of flare at the periphery is increased to more closely match the flare in the central portion of the integrated circuit pattern.
- Another technique that might be used to make the radiation absorbing border 122 be partially absorbing is to insert one or more sub-resolution slots, such as a slot 123 , in the radiation absorbing border 122 that will not be transferred to a wafer.
- a substrate 150 has an overlying multilayer or multiple layer structure 152 that functions to reflect incoming radiation from a radiation source.
- an absorber layer in the form of an absorbing film stack 151 that represents but one of a plurality in a pattern of absorbing features on a substrate 150 of reflecting mask 18 .
- the absorbing film stack 151 may have one or multiple layers.
- an absorbing layer or a first layer 160 and a second layer 158 are used.
- Typical materials include, for example, silicon dioxide, chrome, tantalum silicon nitride, tantalum nitride and molybdenum silicide.
- An upper or top portion of the multiple layer structure 152 includes a region 154 .
- region 154 Within region 154 is an area 156 where region 154 is changed to be partially absorbing.
- the amount of absorption may be implemented.
- the amount of change in absorption of area 156 is at least twenty percent greater than the other portions of region 154 outside of area 156 .
- a partially reflecting tile that absorbs at least an additional 20% of the radiation incident on the tile to that absorbed by the more reflecting portions of the mask. Typically this percentage will be greater, such as thirty percent or more, but may also be less than twenty percent.
- Absorbing film stack 151 may be made partially absorbing by thinning, reducing or even removing the thickness of one or more of the multiple layers, such as thinning at least second layer 158 .
- Another method to make reflecting mask 18 partially absorbing and create a desired reflectance is to convert, modify or ‘damage’ area 156 of region 154 such as by heating or annealing area 156 .
- the modifying is accomplished by applying an electron beam to the selected area 156 .
- Another method is to convert the selected area 156 by applying a laser beam to area 156 .
- Yet another method is to convert area 156 by applying an ion beam to area 156 .
- the anti-flare features described herein reduce flare diffraction effects on the order of greater than four times a wavelength of the illumination.
- the methods taught herein may be used to apply tiling for flare reduction to areas that are not able to accept a standard tile which resolves on the wafer.
- the partially transmissive/reflective tiles can be large enough in size to be easily patterned on a mask or reticle. Where size is more of a constraint, the tiles may be sized with a maximum width as taught above to reduce flare and also not resolve on the wafer.
- each of the tiles provided for anti-flare purposes forms an absorbing portion.
- the flare compensation method may be used for any value of radiation wavelength.
- the present invention is not limited to any particular type of semiconductor material or radiation source. Both transmitting and reflective masks and both positive and negative photoresist may be used herein.
- Various optical systems such as e-beam systems may be implemented. Improvements in critical dimension (CD) feature resolution is realized for short, medium and long range dimensions in a wafer. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of the present invention.
- plurality is defined as two or more than two.
- another is defined as at least a second or more.
- including and/or having, as used herein, are defined as comprising (i.e., open language).
- coupled is defined as connected, although not necessarily directly, and not necessarily mechanically.
Landscapes
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
-
- U.S. patent application Ser. No. 09/873,810, entitled “Method of Forming An Integrated Circuit Device Using Dummy Features and Structure Thereof,” filed Jun. 4, 2001, and assigned to the assignee hereof.
Claims (26)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/400,347 US6989229B2 (en) | 2003-03-27 | 2003-03-27 | Non-resolving mask tiling method for flare reduction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/400,347 US6989229B2 (en) | 2003-03-27 | 2003-03-27 | Non-resolving mask tiling method for flare reduction |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040188383A1 US20040188383A1 (en) | 2004-09-30 |
US6989229B2 true US6989229B2 (en) | 2006-01-24 |
Family
ID=32989214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/400,347 Expired - Fee Related US6989229B2 (en) | 2003-03-27 | 2003-03-27 | Non-resolving mask tiling method for flare reduction |
Country Status (1)
Country | Link |
---|---|
US (1) | US6989229B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050251771A1 (en) * | 2004-05-07 | 2005-11-10 | Mentor Graphics Corporation | Integrated circuit layout design methodology with process variation bands |
US20050278686A1 (en) * | 2004-02-25 | 2005-12-15 | James Word | Fragmentation point and simulation site adjustment for resolution enhancement techniques |
US20060292456A1 (en) * | 2005-06-24 | 2006-12-28 | Pary Baluswamy | Reticle constructions, and methods for photo-processing photo-imageable material |
US7234130B2 (en) | 2004-02-25 | 2007-06-19 | James Word | Long range corrections in integrated circuit layout designs |
US20080141195A1 (en) * | 2006-11-09 | 2008-06-12 | Juan Andres Torres Robles | Analysis optimizer |
US20080195996A1 (en) * | 2007-02-09 | 2008-08-14 | Juan Andres Torres Robles | Pre-bias optical proximity correction |
US20080193859A1 (en) * | 2007-02-09 | 2008-08-14 | Ayman Yehia Hamouda | Dual metric opc |
US7422829B1 (en) * | 2004-06-02 | 2008-09-09 | Advanced Micro Devices, Inc. | Optical proximity correction (OPC) technique to compensate for flare |
US20090297988A1 (en) * | 2008-05-29 | 2009-12-03 | Renesas Technology Corp. | Manufacturing method of semiconductor integrated circuit device |
US8627245B1 (en) * | 2012-08-28 | 2014-01-07 | International Business Machines Corporation | Density balancing in multiple patterning lithography using integrated circuit layout fill |
US8647893B1 (en) | 2012-08-28 | 2014-02-11 | International Business Machines Corporation | Method for post decomposition density balancing in integrated circuit layouts, related system and program product |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004133427A (en) * | 2002-07-26 | 2004-04-30 | Asml Masktools Bv | Alignment dependent shield used with dipole illumination technology |
DE10301291B3 (en) * | 2003-01-15 | 2004-08-26 | Infineon Technologies Ag | Inserting structures into a substrate used in VLSI technology comprises applying a photo-sensitive layer on an uppermost layer, forming structures on the photo-sensitive layer |
US20060199087A1 (en) * | 2005-03-03 | 2006-09-07 | Lucas Kevin D | Method of making an integrated circuit by modifying a design layout by accounting for a parameter that varies based on a location within an exposure field |
FR2884965B1 (en) * | 2005-04-26 | 2007-06-08 | Commissariat Energie Atomique | ADJUSTABLE MASK WHITE STRUCTURE FOR EUV MASK WITH PHASE SHIFT |
US7713665B2 (en) * | 2006-03-29 | 2010-05-11 | Asml Netherlands B.V. | Lithographic apparatus and patterning device |
JP5295553B2 (en) * | 2007-12-07 | 2013-09-18 | 株式会社東芝 | Reflective mask |
US7844938B2 (en) * | 2008-04-25 | 2010-11-30 | International Business Machines Corporation | Data correcting hierarchical integrated circuit layout accommodating compensate for long range critical dimension variation |
JP5136647B2 (en) * | 2008-09-05 | 2013-02-06 | 旭硝子株式会社 | Reflective mask blank for EUV lithography and manufacturing method thereof |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5242770A (en) | 1992-01-16 | 1993-09-07 | Microunity Systems Engineering, Inc. | Mask for photolithography |
US5446521A (en) | 1993-06-30 | 1995-08-29 | Intel Corporation | Phase-shifted opaquing ring |
WO1996015552A1 (en) | 1994-11-10 | 1996-05-23 | Intel Corporation | Forming a planar surface over a substrate by modifying the topography of the substrate |
JPH09107028A (en) | 1995-08-31 | 1997-04-22 | Samsung Electron Co Ltd | Element isolation method for semiconductor device |
US5636002A (en) * | 1994-04-29 | 1997-06-03 | Lucent Technologies Inc. | Auxiliary mask features for enhancing the resolution of photolithography |
US5652465A (en) | 1994-12-26 | 1997-07-29 | Fujitsu Limited | Semiconductor device having dummy patterns and an upper insulating layer having cavities |
EP0933811A2 (en) | 1998-01-15 | 1999-08-04 | International Business Machines Corporation | Dummy patterns for aluminium chemical polishing (CMP) |
US5948573A (en) | 1997-02-21 | 1999-09-07 | Sony Corporation | Method of designing mask pattern to be formed in mask and method of manufacturing integrated circuit |
US5970238A (en) | 1996-03-14 | 1999-10-19 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for generating planarizing pattern and semiconductor integrated circuit device |
JP2000124305A (en) | 1998-10-15 | 2000-04-28 | Mitsubishi Electric Corp | Semiconductor device |
WO2001001469A2 (en) | 1999-06-29 | 2001-01-04 | Motorola Inc. | Process for designing a mask |
US6232161B1 (en) | 1998-12-15 | 2001-05-15 | United Microelectronics Corp. | Method for forming a dummy active pattern |
US6281049B1 (en) | 1998-01-14 | 2001-08-28 | Hyundai Electronics Industries Co., Ltd. | Semiconductor device mask and method for forming the same |
US6410193B1 (en) * | 1999-12-30 | 2002-06-25 | Intel Corporation | Method and apparatus for a reflective mask that is inspected at a first wavelength and exposed during semiconductor manufacturing at a second wavelength |
US6486006B2 (en) | 1997-10-02 | 2002-11-26 | Matsushita Electric Industrial Co., Ltd. | Semiconductor chip bonded to a thermal conductive sheet having a filled through hole for electrical connection |
US6625802B2 (en) * | 2002-02-01 | 2003-09-23 | Intel Corporation | Method for modifying a chip layout to minimize within-die CD variations caused by flare variations in EUV lithography |
US20040111693A1 (en) * | 2002-12-10 | 2004-06-10 | Numerical Technologies, Inc. | Identifying phantom images generated by side-lobes |
-
2003
- 2003-03-27 US US10/400,347 patent/US6989229B2/en not_active Expired - Fee Related
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5242770A (en) | 1992-01-16 | 1993-09-07 | Microunity Systems Engineering, Inc. | Mask for photolithography |
US5446521A (en) | 1993-06-30 | 1995-08-29 | Intel Corporation | Phase-shifted opaquing ring |
US5636002A (en) * | 1994-04-29 | 1997-06-03 | Lucent Technologies Inc. | Auxiliary mask features for enhancing the resolution of photolithography |
WO1996015552A1 (en) | 1994-11-10 | 1996-05-23 | Intel Corporation | Forming a planar surface over a substrate by modifying the topography of the substrate |
US5652465A (en) | 1994-12-26 | 1997-07-29 | Fujitsu Limited | Semiconductor device having dummy patterns and an upper insulating layer having cavities |
JPH09107028A (en) | 1995-08-31 | 1997-04-22 | Samsung Electron Co Ltd | Element isolation method for semiconductor device |
US5970238A (en) | 1996-03-14 | 1999-10-19 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for generating planarizing pattern and semiconductor integrated circuit device |
US5948573A (en) | 1997-02-21 | 1999-09-07 | Sony Corporation | Method of designing mask pattern to be formed in mask and method of manufacturing integrated circuit |
US6486006B2 (en) | 1997-10-02 | 2002-11-26 | Matsushita Electric Industrial Co., Ltd. | Semiconductor chip bonded to a thermal conductive sheet having a filled through hole for electrical connection |
US6281049B1 (en) | 1998-01-14 | 2001-08-28 | Hyundai Electronics Industries Co., Ltd. | Semiconductor device mask and method for forming the same |
EP0933811A2 (en) | 1998-01-15 | 1999-08-04 | International Business Machines Corporation | Dummy patterns for aluminium chemical polishing (CMP) |
JP2000124305A (en) | 1998-10-15 | 2000-04-28 | Mitsubishi Electric Corp | Semiconductor device |
US6448630B1 (en) | 1998-10-15 | 2002-09-10 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device comprising a polish preventing pattern |
US6232161B1 (en) | 1998-12-15 | 2001-05-15 | United Microelectronics Corp. | Method for forming a dummy active pattern |
WO2001001469A2 (en) | 1999-06-29 | 2001-01-04 | Motorola Inc. | Process for designing a mask |
US6410193B1 (en) * | 1999-12-30 | 2002-06-25 | Intel Corporation | Method and apparatus for a reflective mask that is inspected at a first wavelength and exposed during semiconductor manufacturing at a second wavelength |
US6625802B2 (en) * | 2002-02-01 | 2003-09-23 | Intel Corporation | Method for modifying a chip layout to minimize within-die CD variations caused by flare variations in EUV lithography |
US20040111693A1 (en) * | 2002-12-10 | 2004-06-10 | Numerical Technologies, Inc. | Identifying phantom images generated by side-lobes |
Non-Patent Citations (3)
Title |
---|
Krautschik et al., "Impact of EUV Light Scatter on CD Control as a Result of Mask Density Changes," SPIE, vol. 4688-34, 2002, pp. 1-13. |
Reiger et al., "Using Behavior Modelling for Proximity Correction," Optical/Laser Microlithography VII, SPIE-International Society for Optical Engineering Proceedings, Timothy A. Brunner-Chair/Editor, Mar. 2-4, 1994, San Jose, California, vol. 2197, pp. 371-376. |
Travis et al., U.S. Appl. No. 09/873,810 entitled "Method of Forming an Integrated Circuit Device Using Dummy Features and Structure Thereof," filed Jun. 4, 2001. |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7861207B2 (en) | 2004-02-25 | 2010-12-28 | Mentor Graphics Corporation | Fragmentation point and simulation site adjustment for resolution enhancement techniques |
US20050278686A1 (en) * | 2004-02-25 | 2005-12-15 | James Word | Fragmentation point and simulation site adjustment for resolution enhancement techniques |
US9361422B2 (en) | 2004-02-25 | 2016-06-07 | Mentor Graphics Corporation | Fragmentation point and simulation site adjustment for resolution enhancement techniques |
US8566753B2 (en) | 2004-02-25 | 2013-10-22 | Mentor Graphics Corporation | Fragmentation point and simulation site adjustment for resolution enhancement techniques |
US10354044B2 (en) | 2004-02-25 | 2019-07-16 | Mentor Graphics Corporation | Fragmentation point and simulation site adjustment for resolution enhancement techniques |
US9703922B2 (en) | 2004-02-25 | 2017-07-11 | Mentor Graphics Corporation | Fragmentation point and simulation site adjustment for resolution enhancement techniques |
US20110161894A1 (en) * | 2004-02-25 | 2011-06-30 | Mentor Graphics Corporation | Fragmentation point and simulation site adjustment for resolution enhancement techniques |
US7234130B2 (en) | 2004-02-25 | 2007-06-19 | James Word | Long range corrections in integrated circuit layout designs |
US9361424B2 (en) | 2004-05-07 | 2016-06-07 | Mentor Graphics Corporation | Integrated circuit layout design methodology with process variation bands |
US9977856B2 (en) | 2004-05-07 | 2018-05-22 | Mentor Graphics Corporation | Integrated circuit layout design methodology with process variation bands |
US20050251771A1 (en) * | 2004-05-07 | 2005-11-10 | Mentor Graphics Corporation | Integrated circuit layout design methodology with process variation bands |
US8799830B2 (en) | 2004-05-07 | 2014-08-05 | Mentor Graphics Corporation | Integrated circuit layout design methodology with process variation bands |
US7422829B1 (en) * | 2004-06-02 | 2008-09-09 | Advanced Micro Devices, Inc. | Optical proximity correction (OPC) technique to compensate for flare |
US7862964B2 (en) | 2005-06-24 | 2011-01-04 | Micron Technology, Inc. | Methods for photo-processing photo-imageable material |
US20100261107A1 (en) * | 2005-06-24 | 2010-10-14 | Micron Technology, Inc. | Methods For Photo-Processing Photo-Imageable Material |
US20060292456A1 (en) * | 2005-06-24 | 2006-12-28 | Pary Baluswamy | Reticle constructions, and methods for photo-processing photo-imageable material |
US7767363B2 (en) * | 2005-06-24 | 2010-08-03 | Micron Technology, Inc. | Methods for photo-processing photo-imageable material |
US8832609B2 (en) | 2006-11-09 | 2014-09-09 | Mentor Graphics Corporation | Analysis optimizer |
US8504959B2 (en) | 2006-11-09 | 2013-08-06 | Mentor Graphics Corporation | Analysis optimizer |
US20080141195A1 (en) * | 2006-11-09 | 2008-06-12 | Juan Andres Torres Robles | Analysis optimizer |
US8056022B2 (en) | 2006-11-09 | 2011-11-08 | Mentor Graphics Corporation | Analysis optimizer |
US20090178018A1 (en) * | 2007-02-09 | 2009-07-09 | Juan Andres Torres Robles | Pre-bias optical proximity correction |
US8185847B2 (en) | 2007-02-09 | 2012-05-22 | Mentor Graphics Corporation | Pre-bias optical proximity correction |
US8084169B2 (en) | 2007-02-09 | 2011-12-27 | Mentor Graphics Corporation | Dual metric OPC |
US20100313173A1 (en) * | 2007-02-09 | 2010-12-09 | Ayman Yehia Hamouda | Dual Metric OPC |
US7799487B2 (en) | 2007-02-09 | 2010-09-21 | Ayman Yehia Hamouda | Dual metric OPC |
US7739650B2 (en) | 2007-02-09 | 2010-06-15 | Juan Andres Torres Robles | Pre-bias optical proximity correction |
US20080193859A1 (en) * | 2007-02-09 | 2008-08-14 | Ayman Yehia Hamouda | Dual metric opc |
US20080195996A1 (en) * | 2007-02-09 | 2008-08-14 | Juan Andres Torres Robles | Pre-bias optical proximity correction |
US8206889B2 (en) * | 2008-05-29 | 2012-06-26 | Renesas Electronics Corporation | Manufacturing method of semiconductor integrated circuit device |
US20090297988A1 (en) * | 2008-05-29 | 2009-12-03 | Renesas Technology Corp. | Manufacturing method of semiconductor integrated circuit device |
US8627245B1 (en) * | 2012-08-28 | 2014-01-07 | International Business Machines Corporation | Density balancing in multiple patterning lithography using integrated circuit layout fill |
US8647893B1 (en) | 2012-08-28 | 2014-02-11 | International Business Machines Corporation | Method for post decomposition density balancing in integrated circuit layouts, related system and program product |
Also Published As
Publication number | Publication date |
---|---|
US20040188383A1 (en) | 2004-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6989229B2 (en) | Non-resolving mask tiling method for flare reduction | |
CN111948897B (en) | Auxiliary component for lithography process | |
KR100877639B1 (en) | Multilayer mirror, evaluation method, exposure apparatus, and device manufacturing method | |
US6986974B2 (en) | Attenuated phase shift mask for extreme ultraviolet lithography and method therefore | |
US10353285B2 (en) | Pellicle structures and methods of fabricating thereof | |
US10691017B2 (en) | Pellicle for advanced lithography | |
KR20180057813A (en) | Phase shift mask for extreme ultraviolet lithography | |
US20230360914A1 (en) | Reflection mode photomask | |
US6797439B1 (en) | Photomask with back-side anti-reflective layer and method of manufacture | |
US20090219496A1 (en) | Methods of Double Patterning, Photo Sensitive Layer Stack for Double Patterning and System for Double Patterning | |
US9244366B2 (en) | Extreme ultraviolet lithography process and mask | |
KR101713382B1 (en) | An extreme ultraviolet lithography process and mask | |
US8323859B2 (en) | Optical compensation devices, systems, and methods | |
US20080090157A1 (en) | Photo mask with improved contrast and method of fabricating the same | |
US20230367205A1 (en) | Pellicle design for mask application | |
US6555274B1 (en) | Pupil filtering for a lithographic tool | |
KR102467277B1 (en) | Mask for extreme ultraviolet photolithography | |
US20070148558A1 (en) | Double metal collimated photo masks, diffraction gratings, optics system, and method related thereto | |
US8673521B2 (en) | Blank substrates for extreme ultra violet photo masks and methods of fabricating an extreme ultra violet photo mask using the same | |
KR100966980B1 (en) | Method for compensating semiconductor CD | |
JP2004172339A (en) | Mask for exposure using extreme ultraviolet light | |
JPH02248949A (en) | Photomask | |
KR20020054636A (en) | Extreme ultraviolet mask | |
JPH03254110A (en) | Pattern formation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MOTOROLA, INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LUCAS, KEVIN D.;COBB, JONATHAN L.;WILKINSON, WILLIAM L.;REEL/FRAME:013926/0250 Effective date: 20030326 |
|
AS | Assignment |
Owner name: FREESCALE SEMICONDUCTOR, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOTOROLA, INC;REEL/FRAME:015360/0718 Effective date: 20040404 Owner name: FREESCALE SEMICONDUCTOR, INC.,TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOTOROLA, INC;REEL/FRAME:015360/0718 Effective date: 20040404 |
|
AS | Assignment |
Owner name: CITIBANK, N.A. AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNORS:FREESCALE SEMICONDUCTOR, INC.;FREESCALE ACQUISITION CORPORATION;FREESCALE ACQUISITION HOLDINGS CORP.;AND OTHERS;REEL/FRAME:018855/0129 Effective date: 20061201 Owner name: CITIBANK, N.A. AS COLLATERAL AGENT,NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNORS:FREESCALE SEMICONDUCTOR, INC.;FREESCALE ACQUISITION CORPORATION;FREESCALE ACQUISITION HOLDINGS CORP.;AND OTHERS;REEL/FRAME:018855/0129 Effective date: 20061201 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: CITIBANK, N.A., AS COLLATERAL AGENT,NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:024397/0001 Effective date: 20100413 Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:024397/0001 Effective date: 20100413 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: CITIBANK, N.A., AS NOTES COLLATERAL AGENT, NEW YOR Free format text: SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:030633/0424 Effective date: 20130521 |
|
AS | Assignment |
Owner name: CITIBANK, N.A., AS NOTES COLLATERAL AGENT, NEW YOR Free format text: SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:031591/0266 Effective date: 20131101 |
|
AS | Assignment |
Owner name: FREESCALE SEMICONDUCTOR, INC., TEXAS Free format text: PATENT RELEASE;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:037354/0225 Effective date: 20151207 Owner name: FREESCALE SEMICONDUCTOR, INC., TEXAS Free format text: PATENT RELEASE;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:037356/0143 Effective date: 20151207 Owner name: FREESCALE SEMICONDUCTOR, INC., TEXAS Free format text: PATENT RELEASE;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:037356/0553 Effective date: 20151207 |
|
AS | Assignment |
Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND Free format text: ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:037486/0517 Effective date: 20151207 |
|
AS | Assignment |
Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND Free format text: ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:037518/0292 Effective date: 20151207 |
|
AS | Assignment |
Owner name: NORTH STAR INNOVATIONS INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:037694/0264 Effective date: 20151002 |
|
AS | Assignment |
Owner name: NXP, B.V., F/K/A FREESCALE SEMICONDUCTOR, INC., NETHERLANDS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:040925/0001 Effective date: 20160912 Owner name: NXP, B.V., F/K/A FREESCALE SEMICONDUCTOR, INC., NE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:040925/0001 Effective date: 20160912 |
|
AS | Assignment |
Owner name: NXP B.V., NETHERLANDS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:040928/0001 Effective date: 20160622 |
|
AS | Assignment |
Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE PATENTS 8108266 AND 8062324 AND REPLACE THEM WITH 6108266 AND 8060324 PREVIOUSLY RECORDED ON REEL 037518 FRAME 0292. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:041703/0536 Effective date: 20151207 |
|
AS | Assignment |
Owner name: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., TAIW Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTH STAR INNOVATIONS INC.;REEL/FRAME:041717/0736 Effective date: 20161006 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.) |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.) |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20180124 |
|
AS | Assignment |
Owner name: SHENZHEN XINGUODU TECHNOLOGY CO., LTD., CHINA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE TO CORRECT THE APPLICATION NO. FROM 13,883,290 TO 13,833,290 PREVIOUSLY RECORDED ON REEL 041703 FRAME 0536. ASSIGNOR(S) HEREBY CONFIRMS THE THE ASSIGNMENT AND ASSUMPTION OF SECURITYINTEREST IN PATENTS.;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:048734/0001 Effective date: 20190217 |
|
AS | Assignment |
Owner name: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., TAIWAN Free format text: 323.01(C) ASSIGNMENT OR CHANGE OF NAME IMPROPERLY FILED AND RECORDED BY ANOTHER PERSON AGAINST OWNER'S PATENT;ASSIGNOR:TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.;REEL/FRAME:052459/0656 Effective date: 20190924 |
|
AS | Assignment |
Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION11759915 AND REPLACE IT WITH APPLICATION 11759935 PREVIOUSLY RECORDED ON REEL 037486 FRAME 0517. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT AND ASSUMPTION OF SECURITYINTEREST IN PATENTS;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:053547/0421 Effective date: 20151207 |
|
AS | Assignment |
Owner name: NXP B.V., NETHERLANDS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVEAPPLICATION 11759915 AND REPLACE IT WITH APPLICATION11759935 PREVIOUSLY RECORDED ON REEL 040928 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITYINTEREST;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:052915/0001 Effective date: 20160622 |
|
AS | Assignment |
Owner name: NXP, B.V. F/K/A FREESCALE SEMICONDUCTOR, INC., NETHERLANDS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVEAPPLICATION 11759915 AND REPLACE IT WITH APPLICATION11759935 PREVIOUSLY RECORDED ON REEL 040925 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITYINTEREST;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:052917/0001 Effective date: 20160912 |