US6888746B2 - Magnetoelectronic memory element with inductively coupled write wires - Google Patents
Magnetoelectronic memory element with inductively coupled write wires Download PDFInfo
- Publication number
- US6888746B2 US6888746B2 US10/853,791 US85379104A US6888746B2 US 6888746 B2 US6888746 B2 US 6888746B2 US 85379104 A US85379104 A US 85379104A US 6888746 B2 US6888746 B2 US 6888746B2
- Authority
- US
- United States
- Prior art keywords
- write
- signal
- ferromagnetic layer
- magnetization state
- magnetic memory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000015654 memory Effects 0.000 title claims description 67
- 230000005415 magnetization Effects 0.000 claims abstract description 38
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 29
- 230000005355 Hall effect Effects 0.000 claims description 40
- 230000005291 magnetic effect Effects 0.000 claims description 23
- 238000002955 isolation Methods 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 14
- 239000003302 ferromagnetic material Substances 0.000 claims description 12
- 239000004065 semiconductor Substances 0.000 claims description 10
- 238000010168 coupling process Methods 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 230000005669 field effect Effects 0.000 claims description 4
- 239000003990 capacitor Substances 0.000 claims description 2
- 230000004044 response Effects 0.000 claims 4
- 210000004027 cell Anatomy 0.000 description 93
- 238000000034 method Methods 0.000 description 16
- 239000010408 film Substances 0.000 description 13
- 239000010410 layer Substances 0.000 description 10
- 230000001976 improved effect Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000012856 packing Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 210000004754 hybrid cell Anatomy 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N52/00—Hall-effect devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/12—Measuring magnetic properties of articles or specimens of solids or fluids
- G01R33/1284—Spin resolved measurements; Influencing spins during measurements, e.g. in spintronics devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1653—Address circuits or decoders
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1673—Reading or sensing circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/18—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using Hall-effect devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
- G11C11/5607—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using magnetic storage elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66984—Devices using spin polarized carriers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/18—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using galvano-magnetic devices, e.g. Hall-effect devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
- H10B61/10—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
- H10B61/20—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
- H10B61/22—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/37—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using galvano-magnetic devices, e.g. Hall-effect devices using Hall or Hall-related effect, e.g. planar-Hall effect or pseudo-Hall effect
- G11B5/376—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using galvano-magnetic devices, e.g. Hall-effect devices using Hall or Hall-related effect, e.g. planar-Hall effect or pseudo-Hall effect in semi-conductors
- G11B5/378—Integrated structures
Definitions
- Ser. No. 08/806,028 is a continuation-in-part of Ser. No. 08/643,805, filed May 6, 1996 titled “Hybrid Hall Effect Device and Method of Operation,” (now U.S. Pat. No. 5,652,445), which in turn is a continuation-in-part of an application Ser. No. 08/493,815, filed Jun. 22, 1995 titled “Magnetic Spin Transistor Hybrid Circuit Element,” (now U.S. Pat. No. 5,565,695); and said Ser. No. 08/806,028 is also a continuation-in-part of an application Ser. No. 08/425,884, filed Apr.
- the invention relates generally to magneto-electronic devices which can be used for a variety of applications, including as memory elements in a random access memory array.
- the present invention is directed to a hybrid Hall Effect device which includes a ferromagnetic material magnetically coupled to a conventional Hall Effect plate.
- the hybrid device can be coupled directly to a bias source and combined with other semiconductor structures, such as transistor isolation elements.
- the resulting array architectures have improved cross-talk signal level and signal-to-noise performance characteristics.
- Hybrid Hall Effect devices are described in my earlier application (4) above.
- the present invention is directed to specific embodiments of such devices, as well as preferred arrangements of the same which result in improved memory elements and performance of memory arrays.
- FIG. 1 A schematic figure that can be used to represent the novel Hybrid Hall Effect Device 10 is illustrated in FIG. 1.
- a standard representation for a classic four-terminal Hall plate 12 is a cross centered in a square. Two opposing terminals are used for current bias (or voltage bias), for example terminals 14 and 16 , and the other two terminals 18 and 20 are used for sensing a bipolar Hall voltage.
- One embodiment of the hybrid Hall Effect device described in my earlier application (4) incorporates a ferromagnetic film F 22 fabricated to be electrically isolated from the Hall plate but covering a portion of the area of the Hall plate such that an edge 26 of the film is over a central region of the plate.
- Local, fringe magnetic fields from the edge of the ferromagnetic film are perpendicular to the plane of the plate, may point “up” or “down” depending on the orientation of the magnetization in F, and have an average value B av in the active region of the device.
- the magnetization ⁇ M 24 of F is typically in the plane of F and lies along an axis parallel with that of the bias current. Other orientations can be used however, such as magnetizations that are perpendicular to the plane instead.
- the magnetization can be configured to have two stable states along this axis, with the two states corresponding to “up” or “down” fringe fields near the edge of F, positive or negative Hall voltage, and thus representing a binary bit of information “1” or “0”.
- the magnetization state can be set (written) to be positive or negative by using the magnetic field associated with a positive or negative current pulse transmitted down an integrated write wire that is contiguous with F, discussed in detail in application (4) above, as well as below. It follows that such a device can be used as the nonvolatile storage element in an array of elements comprising a nonvolatile random access memory (NRAM).
- FIG. 1 depicts the first embodiment of the Hybrid Hall Effect device, generally referred to hereafter as a “modified hall plate.” Again, while application (4) describes one preferred physical embodiment of the modified hall plate, it will be understood by those skilled in the art that a variety of layer materials, layer structures and layer arrangements are possible.
- a linear row of elements can be constructed with such devices, so that the positive current bias terminal of one element (e.g. terminal 14 in FIG. 1 ) is connected in series with the negative current bias terminal of another (e.g. terminal 16 ).
- a number n i of elements is combined in one row and biased by a single current (or voltage) supply source, I B or V B .
- I B or V B current (or voltage) supply source
- Each element of that row can then be sensed by a unique sense amplifier devoted to that element.
- a single amplifier can be used for all elements in the row if a selection and isolation device is used to isolate each element from all of the other elements.
- a field effect transistor (FET) used in this manner can be referred to as a “select transistor.”
- An object of the present invention therefore is to provide an improved architecture for a hybrid Hall Effect device to be used as a memory cell in a memory array.
- a further object of the present invention is to provide an improved architecture for a random access memory array of hybrid Hall Effect memory cells which permits a bias voltage (or current) to be provided to each such cell, thus resulting in improved signal level and signal-to-noise ratio characteristics for such array.
- Another object of the present invention is to provide an improved memory cell for application in a memory array environment, which affords improved cell isolation and reduced cross talk between cells in the array.
- an array of modified Hall Effect plate memory elements with improved performance is formed by providing the bias source I B or (V B ) directly to each cell in the array to increase the SNR.
- the outputs of the Hall Effect plate memory elements can be coupled to a select transistor which acts as an isolation element to reduce cross-talk between cells in the array. In this way, the magnetization state of the ferromagnetic layer and the output of the Hall Effect plate for each hybrid memory cell is retained and isolated from other hybrid memory cells.
- the bias source and ground for the cells are provided by additional individual levels of lithography, and this choice increases the number of fabrication steps (and levels) by comparison with the simpler array described earlier.
- the hybrid Hall Effect device requires far fewer levels than conventional dynamic random access memories (DRAM) and this economy of fabrication is only marginally diminished by the addition of a few levels.
- one selection transistor is fabricated within each cell.
- the Hall voltage developed by that cell is the only voltage transmitted to the input line of a sense amplifier that is common to a column of cells.
- the signal to noise ratio (SNR) can be adjusted to any desired value and there is minimal (or zero) signal leakage between neighboring cells.
- the preferred cell architecture is comprised of a single modified hall plate and an accompanying single select FET that can be fabricated with a small cell area and a high packing density.
- select transistors with relatively poor operating parameters, or other high impedance elements such as resistors or diodes can be used.
- Such transistors and high impedance elements can be made by thin film processing, and this would permit the fabrication of multiple layers of cells, further increasing density.
- Data can be written to and stored in the hybrid Hall Effect memory element by transmitting a suitable current pulse to alter the magnetization state of the ferromagnetic layer.
- write circuitry can be included in a memory array of the present invention if it is desirable that the data (magnetization state) be modifiable at a later time.
- the stored data is non-volatile and will not be affected by loss of power to the memory cell array.
- FIG. 1 is a schematic representation of a typical hybrid Hall Effect device of the present invention
- FIG. 2 depicts one embodiment of the present invention consisting of an array of hybrid Hall Effect memory cells optimized for high SNR and minimal cross-talk.
- FIG. 3 depicts another embodiment of the present invention consisting of an array of hybrid Hall Effect memory cells that has a higher packing density than that of FIG. 2 but which has lower SNR.
- FIG. 4 illustrates a typical write circuit that may be employed in the present invention for writing data to the hybrid Hall Effect memory cells.
- the hybrid Hall Effect device of the present invention consists basically of a ferromagnetic material coupled magnetically to a conventional Hall Effect plate.
- Hall Effect plate is a typical term in the art, and as used herein is intended in its broadest sense to include any device or structure that can be used to generate a Hall effect signal.
- Hall Effect plates typically include a single layer of semiconductor material and four associated terminals of some kind. It will be understood by those skilled in the art, however, that a variety of structures, materials and arrangements may be employed to create a device or structure that can generate a Hall Effect.
- the conductive layer and terminals of the plate can be fabricated in a semiconductor material using a variety of conventional processing techniques. The teachings of the previous and present invention can be applied generally, therefore, to any such Hall Effect devices or structures irrespective of their form.
- Hall Effect plate 12 includes a conductive layer that is capable of carrying a current when a bias voltage is applied to terminals 14 and 16 .
- the ferromagnetic material 22 When the ferromagnetic material 22 is set to a particular magnetization state, this state is magnetically coupled to a portion of conductive layer 12 , and results in a hall effect voltage between terminals 18 and 20 .
- ferromagnetic film 22 overlies approximately 12 of the area of plate 12 , and a magnetic field emanating from an edge portion of such film is located and coupled substantially perpendicular to an axis extending from terminals 18 and 20 .
- terminal 18 is set to a ground reference, it can be seen that a signal is output at terminal 20 by the Hall Effect plate that is representative of the magnetization state of the ferromagnetic material.
- This magnetization state can have different values corresponding to different values for a data item to be stored in the memory element.
- the magnetization state of the ferromagnetic material is configurable and can be set and reset with an accompanying write circuit shown generally in FIG. 4 .
- a write circuit is not necessary. It can be further observed that once the magnetization state of the ferromagnetic material 22 is set, it is non-volatile and thus stores the value for such data item permanently at such memory location until such time as it is desired to retrieve and read such item.
- FIG. 2 An improved array of hybrid Hall Effect devices that can be used as memory cells in an NRAM is depicted schematically in FIG. 2 and permits an analysis of the process by which data can be read from such cells.
- a bias voltage is supplied directly to each cell.
- the bias voltage is applied across terminals 110 and 112 .
- the supply voltage may be bipolar (V+ to V ⁇ as drawn) or may have a single polarity and a ground.
- the reference ground for sensing the Hall voltage generated by the memory cell is attached to a third terminal in each cell, e.g. terminal 114 in cell 100 . Again, it is understood by those skilled in the art that the reference ground may be, in some applications, electrically equivalent with the bias voltage ground.
- each memory cell e.g. terminal 116
- the fourth terminal of each memory cell provides the Hall voltage as a readout signal of magnitude V r .
- this hall signal output “terminal” 116 may take on a variety of forms, and be fabricated and coupled to the modified Hall plate in a variety of ways using conventional semiconductor processing techniques.
- the output signal of terminal 116 is connected to one terminal of a select transistor 120 , which, in a preferred embodiment, is fabricated as part of memory cell 100 using conventional semiconductor processing techniques to increase the packing density of the array. It is further well known in the art that the output signal (readout voltage) from the Hall Effect device in memory cell 100 may be bipolar or, if a suitable geometric offset is lithographically employed during fabrication, such readout may have two values such as zero and positive or zero and negative.
- the other terminal of select transistor 120 is connected by line 122 to the input of a sense amplifier 124 . In the array of FIG. 2 , select transistor 120 (and all transistors that perform a selection (or address) function) are depicted as n-channel enhancement mode FETs.
- the channel between source and drain has high conductance and acts as a short circuit. With zero voltage applied to the gate the channel has high impedance and the source and drain terminals are electrically isolated by an open circuit. It is understood to those skilled in the art that a variety of transistor devices or similar switching devices could be used to accomplish this same function depending on the requirements of the particular application.
- the array is provided with conventional row select 130 and column select 132 logic such that any individual cell (i,j) can be uniquely addressed, and the data read out from the hybrid Hall Effect memory cell.
- the gates of all select FETs in such row are raised to a level V DD high enough to activate the FETs.
- a reference ground for terminal 114 (and for all cells in the first row) is connected to a global reference ground 146 .
- terminal 110 of cell 100 (and all such terminals for all cells in the first row) receives a positive bias through the connection to a common positive voltage supply 148 V+.
- row select transistor 144 is activated, the negative bias terminal 112 for cell 100 (and for all cells in the first row) is connected to a common negative voltage supply 150 V ⁇ .
- the state of the memory cell is represented by two separate measurable quantities, including both the magnetization state of the ferromagnetic material and the associated generated Hall Effect signal at terminal 116 .
- the electrical signal representing the value of the data stored in the memory cell in these embodiments is present and can be sensed immediately, thus increasing the speed of operation of memory arrays constructed in this fashion.
- a row selection signal is applied to select transistor 120 of cell 100 (and to each select transistor for the cells in the first row). This signal activates select transistor 120 and a Hall voltage generated by the modified Hall plate of each cell is transmitted to the sense amplifier for the column which includes that particular cell. For cell 100 therefore select transistor 120 is activated and the readout voltage is transmitted to sense amplifier 124 .
- Sense amplifier is a conventional circuit, and typically amplifies the readout voltage V r to a level appropriate for related logical circuitry (CMOS or TTL). The address and readout process is completed by choosing a particular column. To read out the contents of cell 100 , gate voltages of select transistors at the third column of the array are raised to a level V DD adequate to activate the FETs.
- Activating output FET 154 transmits the amplified readout voltage to a readout terminal 160 at an appropriate CMOS or TTL level such that it can be incorporated into other logical or processing operations.
- CMOS or TTL level such that it can be incorporated into other logical or processing operations.
- This is but one example of a typical sense amplifier and read out circuit that could be used with the present invention.
- a number of well-known address logic, sense amplifier and readout circuits can be used with the present invention depending on the requirements of a given application.
- an array of this kind permits a high degree of cell isolation and a high value of SNR.
- the supply voltage, bias ground and reference ground of each cell in a row are fixed to common values during readout, and are isolated from all other rows.
- the output readout voltage V r output of each cell is the only floating voltage in the cell and V r is isolated from other cells in the row. Furthermore, it is isolated from other cells in its column by the select transistor 120 , which acts as an isolation element. Thus, there is no “cross-talk” between cells.
- the cell utilized in the array of FIG. 2 requires a single select transistor and is comprised of only two elements, thereby permitting fabrication with a minimal area and promoting high packing density, there may be applications wherein a further reduction of cell area is desired.
- the select transistor within each cell can be eliminated with some degradation of performance.
- the array depicted in FIG. 3 is able to minimize the “cross-talk” between neighboring cells even when there is no select transistor for such cell.
- the array of FIG. 3 is identical with the array of FIG. 2 , but the fourth terminal of each cell, e.g. terminal 212 in cell 200 outputs a Hall voltage as a readout signal of magnitude V, and is connected through a high impedance element (such as a thin film resistor or diode) to a sense amplifier 214 used by all cells of that column.
- a high impedance element such as a thin film resistor or diode
- Write operations for the memory cells are typically performed with a write circuit consisting of an array of write wires coupled to the ferromagnetic layers of the hybrid Hall Effect devices. In some applications, it may be desirable to incorporate some of the wires from the read circuit into the write wire array. In other applications, as noted earlier, the use of write wires may be unnecessary if the data to be stored does not have to be changed.
- write wires are well-known in the art, and again, a variety of structures and coupling techniques may be employed to affect the writing of the data to be stored as magnetization states in the memory cells.
- the write wires can be made of thin film layers using conventional processing methods. A detailed explanation of the structure and operation of such write wires is unnecessary for consideration of the present invention, but may be found in the application described above as “Magnetic Spin Transistor, Logic Gate & Method of Operation.” The write process is the same as that described therein, and the concept is briefly reviewed in FIG. 4 .
- Each write wire of a particular row or a column is inductively coupled to the ferromagnetic film of each element in the same respective row or column.
- H w is slightly larger than the coercivity H c of F
- a positive or negative current (and field) pulse is sufficient to orient the magnetization vector M of F to be positive or negative along the chosen axis.
- the write wires in each row and column are given amplitude 1 ⁇ 2 so that the field produced by two write wires at a single element is adequate to orient the magnetization vector M of the ferromagnetic film, but the field produced by a single write wire at any other element is not sufficient to alter the magnetization state of the ferromagnetic film of that element.
- a 1 bit value for a data item bit is written to cell 420 of FIG. 4 in the following way.
- Row select logic 402 activates write wire 404 for row 1
- column select logic 406 activates write wire 408 for column 3.
- a variety of conventions for binary storage may be chosen, and for the example depicted in FIG. 4 the choice with magnetization along ⁇ x will correspond to the binary “1” and magnetization along + ⁇ X to “0.”
- Positive current pulses 410 and 412 of amplitude 1 ⁇ 2 are simultaneously transmitted down write wires 404 and 408 .
- the magnetic field associated with the current pulses at the position of the ferromagnetic film of cell 420 has magnitude H w >H c and direction ⁇ x, and the magnetization vector M of cell 420 becomes oriented along ⁇ x [for write wires fabricated on top of F], representing a “1.”
- the magnetic field associated with the current pulses at the position of the ferromagnetic film of any other cell has magnitude H w /2 ⁇ H c , and none of the magnetization states of the ferromagnetic films of the other cells is affected.
- transmitting negative current pulses of amplitude 1 ⁇ 2 simultaneously down write wires 404 and 408 causes the magnetization of the ferromagnetic film of cell ( 1 , 3 ) 420 to orient along + ⁇ x, representing a “0.”
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Computing Systems (AREA)
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
-
- (1) an application titled “Magnetic Spin Transistor, Logic Gate & Method of Operation,” (Ser. No. 08/425,884, filed Apr. 21, 1995);
- (2) an application titled “Magnetic Spin Transistor Hybrid Circuit Element,” (Ser. No. 08/493,815, issued Oct. 15, 1996 as U.S. Pat. No. 5,565,695);
- (3) an application titled “Magnetic Spin Injected Field Effect Transistor and Method of Operation,” (Ser. No. 08/643,804 filed May 6, 1996);
- (4) an application titled “Hybrid Hall Effect Device and Method of Operation,” (Ser. No. 08/643,805, filed May 6, 1996)
Claims (21)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/853,791 US6888746B2 (en) | 1995-04-21 | 2004-05-24 | Magnetoelectronic memory element with inductively coupled write wires |
US11/120,540 US7016223B2 (en) | 1995-04-21 | 2005-05-02 | Magnetoelectronic memory element with inductively coupled write wires |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/425,884 US5629549A (en) | 1995-04-21 | 1995-04-21 | Magnetic spin transistor device, logic gate & method of operation |
US08/493,815 US5565695A (en) | 1995-04-21 | 1995-06-22 | Magnetic spin transistor hybrid circuit element |
US08/643,805 US5652445A (en) | 1995-04-21 | 1996-05-06 | Hybrid hall effect device and method of operation |
US08/643,804 US5654566A (en) | 1995-04-21 | 1996-05-06 | Magnetic spin injected field effect transistor and method of operation |
US08/806,028 US6064083A (en) | 1995-04-21 | 1997-02-24 | Hybrid hall effect memory device and method of operation |
US09/532,706 US6388916B1 (en) | 1995-04-21 | 2000-03-22 | Magnetoelectronic memory element with isolation element |
US10/100,210 US6741494B2 (en) | 1995-04-21 | 2002-03-18 | Magnetoelectronic memory element with inductively coupled write wires |
US10/853,791 US6888746B2 (en) | 1995-04-21 | 2004-05-24 | Magnetoelectronic memory element with inductively coupled write wires |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/100,210 Continuation US6741494B2 (en) | 1995-04-21 | 2002-03-18 | Magnetoelectronic memory element with inductively coupled write wires |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/120,540 Continuation US7016223B2 (en) | 1995-04-21 | 2005-05-02 | Magnetoelectronic memory element with inductively coupled write wires |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040213041A1 US20040213041A1 (en) | 2004-10-28 |
US6888746B2 true US6888746B2 (en) | 2005-05-03 |
Family
ID=27559973
Family Applications (23)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/100,210 Expired - Fee Related US6741494B2 (en) | 1995-04-21 | 2002-03-18 | Magnetoelectronic memory element with inductively coupled write wires |
US10/776,987 Expired - Fee Related US6804146B2 (en) | 1995-04-21 | 2004-02-10 | Hybrid semiconductor—magnetic spin based memory |
US10/776,939 Expired - Fee Related US6807090B2 (en) | 1995-04-21 | 2004-02-10 | Method of making hybrid semiconductor—magnetic spin based memory |
US10/776,144 Expired - Fee Related US6870761B2 (en) | 1995-04-21 | 2004-02-10 | Stacked hybrid semiconductor-magnetic spin based memory |
US10/776,978 Expired - Fee Related US6809959B2 (en) | 1995-04-21 | 2004-02-10 | Hybrid semiconductor—magnetic spin based memory with low transmission barrier |
US10/853,545 Expired - Fee Related US6873545B2 (en) | 1995-04-21 | 2004-05-24 | Hybrid semiconductor-magnetic device and method of operation |
US10/853,791 Expired - Lifetime US6888746B2 (en) | 1995-04-21 | 2004-05-24 | Magnetoelectronic memory element with inductively coupled write wires |
US10/853,792 Expired - Lifetime US6958930B2 (en) | 1995-04-21 | 2004-05-24 | Magnetoelectronic device with variable magnetic write field |
US10/962,254 Expired - Lifetime US7068535B2 (en) | 1995-04-21 | 2004-10-08 | Magnetic spin based memory with semiconductor selector |
US10/962,253 Expired - Fee Related US7212433B2 (en) | 1995-04-21 | 2004-10-08 | Ferromagnetic layer compositions and structures for spin polarized memory devices, including memory devices |
US10/974,037 Expired - Fee Related US6975533B2 (en) | 1995-04-21 | 2004-10-25 | Hybrid semiconductor—magnetic spin based memory with low transmission barrier |
US11/086,603 Expired - Fee Related US7064976B2 (en) | 1995-04-21 | 2005-03-21 | Method of operating a stacked spin based memory |
US11/091,957 Expired - Lifetime US7020013B2 (en) | 1995-04-21 | 2005-03-28 | Magnetic field sensor using spin polarized current |
US11/120,540 Expired - Fee Related US7016223B2 (en) | 1995-04-21 | 2005-05-02 | Magnetoelectronic memory element with inductively coupled write wires |
US11/133,518 Expired - Lifetime US7009875B2 (en) | 1995-04-21 | 2005-05-19 | Magnetic memory device structure |
US11/138,989 Expired - Fee Related US7209381B2 (en) | 1995-04-21 | 2005-05-26 | Digital processing device with disparate magnetoelectronic gates |
US11/369,661 Expired - Fee Related US7193891B2 (en) | 1995-04-21 | 2006-03-06 | Spin based sensor device |
US11/373,667 Expired - Fee Related US7215570B2 (en) | 1995-04-21 | 2006-03-09 | Spin based device with low transmission barrier |
US11/375,854 Expired - Fee Related US7309888B2 (en) | 1995-04-21 | 2006-03-14 | Spin based electronic device |
US11/741,984 Expired - Fee Related US7307875B2 (en) | 1995-04-21 | 2007-04-30 | Spin based magnetic sensor |
US11/745,167 Expired - Fee Related US7339819B2 (en) | 1995-04-21 | 2007-05-07 | Spin based memory coupled to CMOS amplifier |
US11/929,495 Expired - Fee Related US7596018B2 (en) | 1995-04-21 | 2007-10-30 | Spin memory with write pulse |
US11/929,577 Expired - Fee Related US7570510B2 (en) | 1995-04-21 | 2007-10-30 | Multi-bit spin memory |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/100,210 Expired - Fee Related US6741494B2 (en) | 1995-04-21 | 2002-03-18 | Magnetoelectronic memory element with inductively coupled write wires |
US10/776,987 Expired - Fee Related US6804146B2 (en) | 1995-04-21 | 2004-02-10 | Hybrid semiconductor—magnetic spin based memory |
US10/776,939 Expired - Fee Related US6807090B2 (en) | 1995-04-21 | 2004-02-10 | Method of making hybrid semiconductor—magnetic spin based memory |
US10/776,144 Expired - Fee Related US6870761B2 (en) | 1995-04-21 | 2004-02-10 | Stacked hybrid semiconductor-magnetic spin based memory |
US10/776,978 Expired - Fee Related US6809959B2 (en) | 1995-04-21 | 2004-02-10 | Hybrid semiconductor—magnetic spin based memory with low transmission barrier |
US10/853,545 Expired - Fee Related US6873545B2 (en) | 1995-04-21 | 2004-05-24 | Hybrid semiconductor-magnetic device and method of operation |
Family Applications After (16)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/853,792 Expired - Lifetime US6958930B2 (en) | 1995-04-21 | 2004-05-24 | Magnetoelectronic device with variable magnetic write field |
US10/962,254 Expired - Lifetime US7068535B2 (en) | 1995-04-21 | 2004-10-08 | Magnetic spin based memory with semiconductor selector |
US10/962,253 Expired - Fee Related US7212433B2 (en) | 1995-04-21 | 2004-10-08 | Ferromagnetic layer compositions and structures for spin polarized memory devices, including memory devices |
US10/974,037 Expired - Fee Related US6975533B2 (en) | 1995-04-21 | 2004-10-25 | Hybrid semiconductor—magnetic spin based memory with low transmission barrier |
US11/086,603 Expired - Fee Related US7064976B2 (en) | 1995-04-21 | 2005-03-21 | Method of operating a stacked spin based memory |
US11/091,957 Expired - Lifetime US7020013B2 (en) | 1995-04-21 | 2005-03-28 | Magnetic field sensor using spin polarized current |
US11/120,540 Expired - Fee Related US7016223B2 (en) | 1995-04-21 | 2005-05-02 | Magnetoelectronic memory element with inductively coupled write wires |
US11/133,518 Expired - Lifetime US7009875B2 (en) | 1995-04-21 | 2005-05-19 | Magnetic memory device structure |
US11/138,989 Expired - Fee Related US7209381B2 (en) | 1995-04-21 | 2005-05-26 | Digital processing device with disparate magnetoelectronic gates |
US11/369,661 Expired - Fee Related US7193891B2 (en) | 1995-04-21 | 2006-03-06 | Spin based sensor device |
US11/373,667 Expired - Fee Related US7215570B2 (en) | 1995-04-21 | 2006-03-09 | Spin based device with low transmission barrier |
US11/375,854 Expired - Fee Related US7309888B2 (en) | 1995-04-21 | 2006-03-14 | Spin based electronic device |
US11/741,984 Expired - Fee Related US7307875B2 (en) | 1995-04-21 | 2007-04-30 | Spin based magnetic sensor |
US11/745,167 Expired - Fee Related US7339819B2 (en) | 1995-04-21 | 2007-05-07 | Spin based memory coupled to CMOS amplifier |
US11/929,495 Expired - Fee Related US7596018B2 (en) | 1995-04-21 | 2007-10-30 | Spin memory with write pulse |
US11/929,577 Expired - Fee Related US7570510B2 (en) | 1995-04-21 | 2007-10-30 | Multi-bit spin memory |
Country Status (1)
Country | Link |
---|---|
US (23) | US6741494B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050190593A1 (en) * | 1995-04-21 | 2005-09-01 | Johnson Mark B. | Magnetoelectronic memory element with inductively coupled write wires |
US20090201720A1 (en) * | 2004-05-21 | 2009-08-13 | Samsung Electronics Co., Ltd. | Multibit magnetic random access memory device |
Families Citing this family (142)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7050329B2 (en) * | 1995-04-21 | 2006-05-23 | Johnson Mark B | Magnetic spin based memory with inductive write lines |
US7023727B2 (en) * | 2000-06-15 | 2006-04-04 | Pageant Technologies, Inc. | Non-volatile ferromagnetic memory having sensor circuitry shared with its state change circuitry |
TW555681B (en) * | 2001-07-31 | 2003-10-01 | Inventio Ag | Lift installation with equipment for ascertaining the cage position |
JP3955195B2 (en) * | 2001-08-24 | 2007-08-08 | 株式会社日立グローバルストレージテクノロジーズ | Magnetic field sensor and magnetic head |
JP4146202B2 (en) * | 2002-09-24 | 2008-09-10 | 株式会社東芝 | Spin tunnel transistor, magnetic reproducing head, magnetic information reproducing system, and magnetic storage device |
US6856534B2 (en) * | 2002-09-30 | 2005-02-15 | Texas Instruments Incorporated | Ferroelectric memory with wide operating voltage and multi-bit storage per cell |
US7719071B1 (en) * | 2003-05-27 | 2010-05-18 | University Of Iowa Research Foundation | Bipolar spin transistors and the applications of the same |
US7029941B2 (en) * | 2003-08-25 | 2006-04-18 | Headway Technologies, Inc. | Magnetic random access memory designs with controlled magnetic switching mechanism |
KR100583114B1 (en) * | 2003-12-10 | 2006-05-23 | 주식회사 하이닉스반도체 | Hybrid switch cell and memory device using the same |
KR100662875B1 (en) * | 2004-04-16 | 2007-01-02 | 한국광기술원 | Arithmetic and Logic Unit using haff adder |
US7027324B2 (en) * | 2004-06-09 | 2006-04-11 | Headway Technologies, Inc. | Method and system for providing common read and write word lines for a segmented word line MRAM array |
US7372117B2 (en) | 2004-09-16 | 2008-05-13 | Industrial Technology Research Institute | Magneto-resistance transistor and method thereof |
US7196367B2 (en) | 2004-09-30 | 2007-03-27 | Intel Corporation | Spin polarization amplifying transistor |
EP1715356A1 (en) * | 2005-04-21 | 2006-10-25 | Interuniversitair Microelektronica Centrum ( Imec) | Spin detection device and methods for use thereof |
US7379321B2 (en) * | 2005-02-04 | 2008-05-27 | Hitachi Global Storage Technologies Netherlands B.V. | Memory cell and programmable logic having ferromagnetic structures exhibiting the extraordinary hall effect |
KR100647319B1 (en) * | 2005-02-05 | 2006-11-23 | 삼성전자주식회사 | Multi-bit magnetic memory device using spin-polarized current and methods of manufacturing and operating the same |
JP4528660B2 (en) * | 2005-03-31 | 2010-08-18 | 株式会社東芝 | Spin injection FET |
US7289350B2 (en) * | 2005-04-05 | 2007-10-30 | Infineon Technologies Ag | Electronic device with a memory cell |
US7292467B2 (en) * | 2005-04-22 | 2007-11-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Magnetic random access memory device |
US7071010B1 (en) | 2005-05-10 | 2006-07-04 | Hitachi Global Storage Technologies Netherlands B.V. | Methods of making a three terminal magnetic sensor having a collector region electrically isolated from a carrier substrate body |
US7719069B2 (en) * | 2005-05-10 | 2010-05-18 | Hitachi Global Storage Technologies Netherlands B.V. | Three terminal magnetic sensor having a collector region electrically isolated from a carrier substrate body |
US20060291271A1 (en) * | 2005-06-24 | 2006-12-28 | Nanochip, Inc. | High density data storage devices having servo indicia formed in a patterned media |
KR100647334B1 (en) * | 2005-09-01 | 2006-11-23 | 삼성전자주식회사 | Ferro-electric information storage device and method of information write and read |
US8486545B2 (en) | 2005-09-28 | 2013-07-16 | Southwest Research Institute | Systems and methods for flaw detection and monitoring at elevated temperatures with wireless communication using surface embedded, monolithically integrated, thin-film, magnetically actuated sensors, and methods for fabricating the sensors |
US7405599B2 (en) * | 2005-10-17 | 2008-07-29 | Northern Lights Semiconductor Corp. | Magnetic transistor with the OR/NOR/NAND/AND functions |
US7436218B2 (en) * | 2005-10-17 | 2008-10-14 | Northern Lights Semiconductor Corp. | Magnetic AND/NOR circuit |
US7403043B2 (en) * | 2005-10-17 | 2008-07-22 | Northern Lights Semiconductor Corp. | Magnetic Transistor Circuit Representing the Data ‘1’ and ‘0’ of the Binary System |
US7400176B2 (en) * | 2005-10-17 | 2008-07-15 | Northern Lights Semiconductor Corp. | Magnetic OR/NAND circuit |
JP4693634B2 (en) * | 2006-01-17 | 2011-06-01 | 株式会社東芝 | Spin FET |
US7411803B1 (en) * | 2006-02-27 | 2008-08-12 | Richard Lienau | Resistive coupled hall effect sensor |
FR2898414B1 (en) * | 2006-03-07 | 2008-06-06 | Commissariat Energie Atomique | MAGNETIC FIELD SENSITIVE COMPONENT COMPRISING A DILUTED MAGNETIC SEMICONDUCTOR, INCORPORATING DEVICES AND METHOD FOR CARRYING OUT THE SAME. |
GB2437551B (en) * | 2006-03-15 | 2008-10-15 | Toshiba Res Europ Ltd | Magnetic devices |
JP4444257B2 (en) * | 2006-09-08 | 2010-03-31 | 株式会社東芝 | Spin FET |
US7496481B2 (en) * | 2006-05-19 | 2009-02-24 | Watlow Electric Manufacturing Company | Sensor adaptors and methods |
US7496469B2 (en) * | 2006-05-19 | 2009-02-24 | Watlow Electric Manufacturing Company | Temperature sensor adaptors and methods |
US7716411B2 (en) | 2006-06-07 | 2010-05-11 | Microsoft Corporation | Hybrid memory device with single interface |
US20070121477A1 (en) * | 2006-06-15 | 2007-05-31 | Nanochip, Inc. | Cantilever with control of vertical and lateral position of contact probe tip |
US20070291623A1 (en) * | 2006-06-15 | 2007-12-20 | Nanochip, Inc. | Cantilever with control of vertical and lateral position of contact probe tip |
US8098515B2 (en) | 2006-07-07 | 2012-01-17 | The Regents Of The University Of California | Spin injection device having semiconductor-ferromagnetic-semiconductor structure and spin transistor |
US7719874B2 (en) * | 2006-07-31 | 2010-05-18 | Sandisk 3D Llc | Systems for controlled pulse operations in non-volatile memory |
JP5373607B2 (en) | 2006-08-01 | 2013-12-18 | ワシントン ユニヴァーシティー | Multifunctional nanoscopy for imaging cells |
JP4919738B2 (en) * | 2006-08-31 | 2012-04-18 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
US8308915B2 (en) | 2006-09-14 | 2012-11-13 | 4D-S Pty Ltd. | Systems and methods for magnetron deposition |
US20080074792A1 (en) * | 2006-09-21 | 2008-03-27 | Nanochip, Inc. | Control scheme for a memory device |
US20080074984A1 (en) * | 2006-09-21 | 2008-03-27 | Nanochip, Inc. | Architecture for a Memory Device |
US8670267B2 (en) * | 2006-11-14 | 2014-03-11 | Boise State University | Data storage methods and devices |
US7948783B2 (en) * | 2006-11-24 | 2011-05-24 | Nec Corporation | Mram |
KR100832583B1 (en) * | 2007-01-04 | 2008-05-27 | 한국과학기술연구원 | Spin transistor using stray field |
US20080174936A1 (en) * | 2007-01-19 | 2008-07-24 | Western Lights Semiconductor Corp. | Apparatus and Method to Store Electrical Energy |
US7539046B2 (en) * | 2007-01-31 | 2009-05-26 | Northern Lights Semiconductor Corp. | Integrated circuit with magnetic memory |
US20080232228A1 (en) * | 2007-03-20 | 2008-09-25 | Nanochip, Inc. | Systems and methods of writing and reading a ferro-electric media with a probe tip |
JP4742276B2 (en) * | 2007-03-26 | 2011-08-10 | 国立大学法人東京工業大学 | Method for forming ferromagnetic material, transistor and manufacturing method thereof |
US20080318086A1 (en) * | 2007-06-19 | 2008-12-25 | Nanochip, Inc. | Surface-treated ferroelectric media for use in systems for storing information |
US20080316897A1 (en) * | 2007-06-19 | 2008-12-25 | Nanochip, Inc. | Methods of treating a surface of a ferroelectric media |
KR100862183B1 (en) * | 2007-06-29 | 2008-10-09 | 고려대학교 산학협력단 | Magnetic memory device |
US7626846B2 (en) | 2007-07-16 | 2009-12-01 | Nanochip, Inc. | Method and media for improving ferroelectric domain stability in an information storage device |
JP2009064826A (en) * | 2007-09-04 | 2009-03-26 | Tdk Corp | Spin transistor and its manufacturing method |
KR100833327B1 (en) | 2007-12-11 | 2008-05-28 | 한양대학교 산학협력단 | Nonvolatile memory device and the writing method of the same |
JP4934582B2 (en) * | 2007-12-25 | 2012-05-16 | 株式会社日立製作所 | Magnetic sensor, magnetic head and magnetic memory using spin Hall effect element |
US8013406B2 (en) * | 2008-01-02 | 2011-09-06 | The Hong Kong University Of Science And Technology | Method and apparatus for generating giant spin-dependent chemical potential difference in non-magnetic materials |
US20090201015A1 (en) * | 2008-02-12 | 2009-08-13 | Nanochip, Inc. | Method and device for detecting ferroelectric polarization |
WO2009102577A1 (en) * | 2008-02-13 | 2009-08-20 | University Of Delaware | Electromagnetic wave detection methods and apparatus |
US20090213492A1 (en) * | 2008-02-22 | 2009-08-27 | Nanochip, Inc. | Method of improving stability of domain polarization in ferroelectric thin films |
US7978394B1 (en) | 2008-03-17 | 2011-07-12 | The United States Of America As Represented By The Secretary Of The Navy | Magnetic spin based photonic/plasmonic devices |
JP2009252878A (en) | 2008-04-03 | 2009-10-29 | Renesas Technology Corp | Magnetic memory device |
FR2930386B1 (en) * | 2008-04-16 | 2011-10-14 | Commissariat Energie Atomique | MAGNETIC DEVICE FOR REALIZING A "LOGIC FUNCTION". |
FR2930385B1 (en) * | 2008-04-16 | 2011-10-14 | Commissariat Energie Atomique | MAGNETIC DISSIVE FOR REALIZING A "LOGIC FUNCTION". |
US7791152B2 (en) * | 2008-05-12 | 2010-09-07 | International Business Machines Corporation | Magnetic tunnel junction transistor |
US7872812B2 (en) * | 2008-05-30 | 2011-01-18 | The Invention Science Fund I, Llc | Emitting and focusing apparatus, methods, and systems |
US20100002563A1 (en) * | 2008-07-01 | 2010-01-07 | Nanochip, Inc. | Media with tetragonally-strained recording layer having improved surface roughness |
JP4845937B2 (en) * | 2008-07-24 | 2011-12-28 | 株式会社東芝 | Spin MOSFET and reconfigurable logic circuit using the spin MOSFET |
US7715228B2 (en) * | 2008-08-25 | 2010-05-11 | Nve Corporation | Cross-point magnetoresistive memory |
US8756647B2 (en) * | 2008-09-15 | 2014-06-17 | Echostar Global B.V. | LNB control circuit that provides power and control commands |
US7876603B2 (en) * | 2008-09-30 | 2011-01-25 | Micron Technology, Inc. | Spin current generator for STT-MRAM or other spintronics applications |
US8310861B2 (en) * | 2008-09-30 | 2012-11-13 | Micron Technology, Inc. | STT-MRAM cell structure incorporating piezoelectric stress material |
US8102700B2 (en) | 2008-09-30 | 2012-01-24 | Micron Technology, Inc. | Unidirectional spin torque transfer magnetic memory cell structure |
US20100085863A1 (en) * | 2008-10-07 | 2010-04-08 | Nanochip, Inc. | Retuning of ferroelectric media built-in-bias |
US7944738B2 (en) * | 2008-11-05 | 2011-05-17 | Micron Technology, Inc. | Spin torque transfer cell structure utilizing field-induced antiferromagnetic or ferromagnetic coupling |
US8125011B2 (en) | 2008-11-19 | 2012-02-28 | The United States Of America As Represented By The Secretary Of The Navy | Vertical cell edge junction magnetoelectronic device family |
TW201027715A (en) * | 2008-12-23 | 2010-07-16 | Ibm | Memory element |
US8553449B2 (en) | 2009-01-09 | 2013-10-08 | Micron Technology, Inc. | STT-MRAM cell structures |
US7957182B2 (en) | 2009-01-12 | 2011-06-07 | Micron Technology, Inc. | Memory cell having nonmagnetic filament contact and methods of operating and fabricating the same |
US8159855B2 (en) * | 2009-01-30 | 2012-04-17 | International Business Machines Corporation | Switchable element |
JP4908540B2 (en) * | 2009-03-25 | 2012-04-04 | 株式会社東芝 | Spin MOSFET and reconfigurable logic circuit |
US8941379B2 (en) * | 2009-05-14 | 2015-01-27 | University Of Delaware | Electromagnetic wave detection systems and methods |
US9076527B2 (en) | 2009-07-16 | 2015-07-07 | Mikamonu Group Ltd. | Charge sharing in a TCAM array |
US8238173B2 (en) | 2009-07-16 | 2012-08-07 | Zikbit Ltd | Using storage cells to perform computation |
WO2011011007A1 (en) * | 2009-07-23 | 2011-01-27 | Hewlett-Packard Development, Company, L.P. | Non-volatile data-storage latch |
KR101016437B1 (en) * | 2009-08-21 | 2011-02-21 | 한국과학기술연구원 | Reconfigurable logic device using spin accumulation and diffusion |
US8469832B2 (en) * | 2009-11-03 | 2013-06-25 | Wonderland Nurserygoods Company Limited | Swing apparatus with detachable infant holding device |
US8331135B2 (en) * | 2009-12-22 | 2012-12-11 | Globalfoundries Inc. | Signal control elements in ferromagnetic logic |
CN102763229A (en) | 2010-01-08 | 2012-10-31 | 华盛顿大学 | Method and apparatus for high resolution photon detection based on extraordinary optoconductance (EOC) effects |
JP2011243716A (en) * | 2010-05-18 | 2011-12-01 | Toshiba Corp | Spin transistor and integrated circuit |
FR2961632B1 (en) * | 2010-06-18 | 2013-04-19 | Centre Nat Rech Scient | MAGNETOELECTRIC MEMORY |
US8400066B1 (en) | 2010-08-01 | 2013-03-19 | Lawrence T. Pileggi | Magnetic logic circuits and systems incorporating same |
JP2012064798A (en) * | 2010-09-16 | 2012-03-29 | Toshiba Corp | Integrated circuit |
JP2012069757A (en) * | 2010-09-24 | 2012-04-05 | Toshiba Corp | Integrated circuit |
US8358149B2 (en) | 2010-10-29 | 2013-01-22 | Honeywell International Inc. | Magnetic logic gate |
US8427199B2 (en) | 2010-10-29 | 2013-04-23 | Honeywell International Inc. | Magnetic logic gate |
US8374020B2 (en) | 2010-10-29 | 2013-02-12 | Honeywell International Inc. | Reduced switching-energy magnetic elements |
US8358154B2 (en) | 2010-10-29 | 2013-01-22 | Honeywell International Inc. | Magnetic logic gate |
US8930647B1 (en) | 2011-04-06 | 2015-01-06 | P4tents1, LLC | Multiple class memory systems |
US9164679B2 (en) | 2011-04-06 | 2015-10-20 | Patents1, Llc | System, method and computer program product for multi-thread operation involving first memory of a first memory class and second memory of a second memory class |
US9170744B1 (en) | 2011-04-06 | 2015-10-27 | P4tents1, LLC | Computer program product for controlling a flash/DRAM/embedded DRAM-equipped system |
US9158546B1 (en) | 2011-04-06 | 2015-10-13 | P4tents1, LLC | Computer program product for fetching from a first physical memory between an execution of a plurality of threads associated with a second physical memory |
US9176671B1 (en) | 2011-04-06 | 2015-11-03 | P4tents1, LLC | Fetching data between thread execution in a flash/DRAM/embedded DRAM-equipped system |
US8427197B2 (en) | 2011-06-15 | 2013-04-23 | Honeywell International Inc. | Configurable reference circuit for logic gates |
US9417754B2 (en) | 2011-08-05 | 2016-08-16 | P4tents1, LLC | User interface system, method, and computer program product |
KR101283934B1 (en) * | 2011-12-06 | 2013-07-16 | 한국과학기술연구원 | Complementary logic device using spin injection |
EP2610913A1 (en) * | 2011-12-30 | 2013-07-03 | Hitachi Ltd. | Spin-based device |
KR101753648B1 (en) | 2012-03-29 | 2017-07-04 | 인텔 코포레이션 | Magnetic state element and circuits |
US9393101B2 (en) * | 2012-04-12 | 2016-07-19 | Sanford Health | Visceral double-barreled main body stent graft and methods for use |
EP2688072B1 (en) * | 2012-07-19 | 2014-06-18 | Forschungsverbund Berlin e.V. | Spintronic circuit and method of operation therefore |
US8988109B2 (en) * | 2012-11-16 | 2015-03-24 | Intel Corporation | High speed precessionally switched magnetic logic |
CN103000608B (en) * | 2012-12-11 | 2014-11-05 | 矽力杰半导体技术(杭州)有限公司 | Chip packaging structure of a plurality of assemblies |
CN103021989B (en) * | 2012-12-11 | 2014-07-30 | 矽力杰半导体技术(杭州)有限公司 | Multiple-component chip packaging structure |
KR101435549B1 (en) * | 2013-03-14 | 2014-09-02 | 한국과학기술연구원 | Complementary spin device and method for operation |
US8812744B1 (en) | 2013-03-14 | 2014-08-19 | Microsoft Corporation | Assigning priorities to data for hybrid drives |
US9626126B2 (en) | 2013-04-24 | 2017-04-18 | Microsoft Technology Licensing, Llc | Power saving mode hybrid drive access management |
US9946495B2 (en) | 2013-04-25 | 2018-04-17 | Microsoft Technology Licensing, Llc | Dirty data management for hybrid drives |
KR20140134068A (en) * | 2013-05-13 | 2014-11-21 | 에스케이하이닉스 주식회사 | Spin transistor, and semiconductor device, memory device, microprocessor, processor, system, data storage system and memory system including the spin transistor |
JP2015061043A (en) * | 2013-09-20 | 2015-03-30 | 株式会社東芝 | Resistance change memory |
US9741918B2 (en) | 2013-10-07 | 2017-08-22 | Hypres, Inc. | Method for increasing the integration level of superconducting electronics circuits, and a resulting circuit |
US10056141B2 (en) * | 2014-07-30 | 2018-08-21 | Hewlett Packard Enterprise Development Lp | Current behavior of elements |
US9865660B2 (en) * | 2014-08-25 | 2018-01-09 | University Of Iowa Research Foundation | Organic magnetoelectroluminescence for transduction between magnetic and optical information |
WO2016079085A1 (en) * | 2014-11-17 | 2016-05-26 | Imec Vzw | A vcma multiple gate magnetic memory element and a method of operating such a memory element |
CN107004759B (en) * | 2014-12-18 | 2021-09-07 | 英特尔公司 | Magnetoelectronics device and interconnect |
US9576636B1 (en) * | 2015-04-03 | 2017-02-21 | Everspin Technologies, Inc. | Magnetic memory having ROM-like storage and method therefore |
US9478240B1 (en) | 2015-05-21 | 2016-10-25 | Seagate Technology Llc | Spin-signal enhancement in a lateral spin valve reader |
US9685178B1 (en) | 2015-06-15 | 2017-06-20 | Seagate Technology Llc | Lateral spin valve reader with large-area tunneling spin-injector |
US9978798B2 (en) * | 2015-08-03 | 2018-05-22 | Sony Corporation | Sensors with variable sensitivity to maximize data use |
US9704515B2 (en) | 2015-09-29 | 2017-07-11 | Seagate Technology Llc | Lateral spin valve reader with in-plane detector |
US9490297B1 (en) * | 2015-09-30 | 2016-11-08 | HGST Netherlands B.V. | Half select method and structure for gating rashba or spin hall MRAM |
US9934798B1 (en) | 2016-09-28 | 2018-04-03 | Seagate Technology Llc | Lateral spin valve reader with vertically-integrated two-dimensional semiconducting channel |
KR102519458B1 (en) * | 2016-11-01 | 2023-04-11 | 삼성전자주식회사 | Nonvolatile memory device and operating method thereof |
US11114144B2 (en) | 2016-12-23 | 2021-09-07 | Intel Corporation | Magnetoelectric spin orbit logic with paramagnets |
EP3563377A1 (en) | 2016-12-27 | 2019-11-06 | Everspin Technologies, Inc. | Data storage in synthetic antiferromagnets included in magnetic tunnel junctions |
WO2018132219A1 (en) | 2017-01-13 | 2018-07-19 | Everspin Technologies, Inc. | Preprogrammed data recovery |
CN110178143B (en) * | 2019-04-03 | 2021-02-23 | 深圳市汇顶科技股份有限公司 | Thin film semiconductor structure and operation method thereof and handheld device with fingerprint sensing function |
US12082512B2 (en) | 2019-10-24 | 2024-09-03 | Microsoft Technology Licensing, Llc | Semiconductor-superconductor hybrid device |
US20210126181A1 (en) * | 2019-10-24 | 2021-04-29 | Microsoft Technology Licensing, Llc | Semiconductor-superconductor hybrid device, its manufacture and uses |
US11282538B1 (en) | 2021-01-11 | 2022-03-22 | Seagate Technology Llc | Non-local spin valve sensor for high linear density |
Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3650581A (en) | 1969-06-30 | 1972-03-21 | Karl Boden Wilhelm Groth & Die | Bearing systems |
US4314349A (en) | 1979-12-31 | 1982-02-02 | Goodyear Aerospace Corporation | Processing element for parallel array processors |
US4360899A (en) | 1980-02-15 | 1982-11-23 | Texas Instruments Incorporated | Magnetic domain random access memory |
US4607271A (en) | 1982-11-22 | 1986-08-19 | IGZ Landis & Gyr Zug AG | Magnetic field sensor |
US4700211A (en) | 1982-07-26 | 1987-10-13 | Lgz Landis & Gyr Zug Ag | Sensitive magnetotransistor magnetic field sensor |
US4780848A (en) | 1986-06-03 | 1988-10-25 | Honeywell Inc. | Magnetoresistive memory with multi-layer storage cells having layers of limited thickness |
US4896296A (en) | 1985-03-04 | 1990-01-23 | Lattice Semiconductor Corporation | Programmable logic device configurable input/output cell |
US4905178A (en) | 1986-09-19 | 1990-02-27 | Performance Semiconductor Corporation | Fast shifter method and structure |
US5089991A (en) | 1990-01-18 | 1992-02-18 | Micro Unity Systems Engineering, Inc. | Non-volatile memory cell |
US5173873A (en) | 1990-06-28 | 1992-12-22 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | High speed magneto-resistive random access memory |
US5237529A (en) | 1991-02-01 | 1993-08-17 | Richard Spitzer | Microstructure array and activation system therefor |
US5239504A (en) | 1991-04-12 | 1993-08-24 | International Business Machines Corporation | Magnetostrictive/electrostrictive thin film memory |
US5245227A (en) | 1990-11-02 | 1993-09-14 | Atmel Corporation | Versatile programmable logic cell for use in configurable logic arrays |
US5245226A (en) | 1991-02-25 | 1993-09-14 | Lattice Semiconductor Corporation | Output logic macrocell |
US5251170A (en) | 1991-11-04 | 1993-10-05 | Nonvolatile Electronics, Incorporated | Offset magnetoresistive memory structures |
US5289410A (en) | 1992-06-29 | 1994-02-22 | California Institute Of Technology | Non-volatile magnetic random access memory |
US5329486A (en) | 1992-04-24 | 1994-07-12 | Motorola, Inc. | Ferromagnetic memory device |
US5329480A (en) | 1990-11-15 | 1994-07-12 | California Institute Of Technology | Nonvolatile random access memory |
US5396455A (en) | 1993-04-30 | 1995-03-07 | International Business Machines Corporation | Magnetic non-volatile random access memory |
US5420819A (en) | 1992-09-24 | 1995-05-30 | Nonvolatile Electronics, Incorporated | Method for sensing data in a magnetoresistive memory using large fractions of memory cell films for data storage |
US5432373A (en) | 1992-12-15 | 1995-07-11 | Bell Communications Research, Inc. | Magnetic spin transistor |
US5452163A (en) | 1993-12-23 | 1995-09-19 | International Business Machines Corporation | Multilayer magnetoresistive sensor |
US5475277A (en) | 1993-07-21 | 1995-12-12 | Fluidmaster, Inc. | Differential torque motor |
US5488250A (en) | 1994-06-01 | 1996-01-30 | Falke Hennig | Hall effect modulation of resistor values |
US5580814A (en) | 1991-05-29 | 1996-12-03 | Ramtron International Corporation | Method for making a ferroelectric memory cell with a ferroelectric capacitor overlying a memory transistor |
US5594366A (en) | 1994-05-04 | 1997-01-14 | Atmel Corporation | Programmable logic device with regional and universal signal routing |
US5621338A (en) | 1994-12-20 | 1997-04-15 | Cypress Semiconductor Corp. | High speed configuration independent programmable macrocell |
US5640343A (en) | 1996-03-18 | 1997-06-17 | International Business Machines Corporation | Magnetic memory array using magnetic tunnel junction devices in the memory cells |
US5652875A (en) | 1993-09-27 | 1997-07-29 | Giga Operations Corporation | Implementation of a selected instruction set CPU in programmable hardware |
US6064083A (en) | 1995-04-21 | 2000-05-16 | Johnson; Mark B. | Hybrid hall effect memory device and method of operation |
US6381170B1 (en) | 1993-10-01 | 2002-04-30 | Gary A. Prinz | Ultra high density, non-volatile ferromagnetic random access memory |
US6469927B2 (en) * | 2000-07-11 | 2002-10-22 | Integrated Magnetoelectronics | Magnetoresistive trimming of GMR circuits |
US6483740B2 (en) * | 2000-07-11 | 2002-11-19 | Integrated Magnetoelectronics Corporation | All metal giant magnetoresistive memory |
Family Cites Families (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US524227A (en) * | 1894-08-07 | steiner | ||
US630774A (en) * | 1899-03-17 | 1899-08-08 | Robert B Brown | Eraser attachment. |
US3418645A (en) * | 1964-07-30 | 1968-12-24 | Burroughs Corp | Magnetic data store with radio-frequency nondestructive readout |
US3525023A (en) * | 1965-08-05 | 1970-08-18 | Sperry Rand Corp | Multilayer thin film magnetic memory element |
US3525026A (en) * | 1968-08-05 | 1970-08-18 | Research Corp | Apparatus responsive to the slip of an electrical machine |
JPS4939302B1 (en) * | 1968-10-15 | 1974-10-24 | ||
US3696349A (en) | 1971-06-04 | 1972-10-03 | Sperry Rand Corp | Block organized random access memory |
US3860965A (en) * | 1973-10-04 | 1975-01-14 | Ibm | Magnetoresistive read head assembly having matched elements for common mode rejection |
DE2416157C2 (en) * | 1974-04-03 | 1982-08-12 | Gebrüder Heller GmbH Werkzeugfabrik, 2807 Achim | Drilling tool |
US4520300A (en) * | 1982-12-06 | 1985-05-28 | Fradella Richard B | Brushless ultra-efficient regenerative servomechanism |
US4558236A (en) * | 1983-10-17 | 1985-12-10 | Sanders Associates, Inc. | Universal logic circuit |
JPS60251682A (en) | 1984-05-29 | 1985-12-12 | Hitachi Ltd | Magnetoresistance effect type element |
US4587636A (en) * | 1985-02-08 | 1986-05-06 | Sperry Corporation | Y-domain magnetic memory system |
US4754219A (en) * | 1985-09-09 | 1988-06-28 | General Electric Company | Low cost self-contained transformerless solid state electronic watthour meter having thin film ferromagnetic current sensor |
US5019736A (en) * | 1986-11-07 | 1991-05-28 | Concurrent Logic, Inc. | Programmable logic cell and array |
US4811258A (en) * | 1987-03-06 | 1989-03-07 | University Of Iowa Research Foundation | Digital optical interaction gate |
US5115497A (en) * | 1987-10-01 | 1992-05-19 | California Institute Of Technology | Optically intraconnected computer employing dynamically reconfigurable holographic optical element |
GB2211955B (en) * | 1987-11-04 | 1991-09-11 | Stc Plc | Optical logic device |
JP2541248B2 (en) * | 1987-11-20 | 1996-10-09 | 三菱電機株式会社 | Programmable logic array |
US4823177A (en) * | 1988-06-30 | 1989-04-18 | United States Of America As Represented By The Secretary Of The Navy | Method and device for magnetizing thin films by the use of injected spin polarized current |
US4931670A (en) * | 1988-12-14 | 1990-06-05 | American Telephone And Telegraph Company | TTL and CMOS logic compatible GAAS logic family |
US4978842A (en) * | 1989-04-21 | 1990-12-18 | At&T Bell Laboratories | Programmable optical logic device with complementary inputs |
US5058034A (en) * | 1989-06-12 | 1991-10-15 | Westinghouse Electric Corp. | Digital neural network with discrete point rule space |
US5024499A (en) * | 1989-09-29 | 1991-06-18 | The Boeing Company | Optical and gate for use in a cross-bar arithmetic/logic unit |
JP2761067B2 (en) * | 1989-12-26 | 1998-06-04 | 富士通株式会社 | Superconducting device |
US4999687A (en) * | 1990-04-25 | 1991-03-12 | At&T Bell Laboratories | Logic element and article comprising the element |
EP0476159B1 (en) * | 1990-09-15 | 1996-12-11 | International Business Machines Corporation | Programmable neural logic device |
US5109156A (en) * | 1990-10-25 | 1992-04-28 | Radiant Technologies, Inc. | Light actuated optical logic device |
EP0490327B1 (en) | 1990-12-10 | 1994-12-28 | Hitachi, Ltd. | Multilayer which shows magnetoresistive effect and magnetoresistive element using the same |
US5206590A (en) * | 1990-12-11 | 1993-04-27 | International Business Machines Corporation | Magnetoresistive sensor based on the spin valve effect |
EP0507451B1 (en) * | 1991-03-06 | 1998-06-17 | Mitsubishi Denki Kabushiki Kaisha | Magnetic thin film memory device |
US5329846A (en) * | 1991-08-12 | 1994-07-19 | Bonutti Peter M | Tissue press and system |
US5453154A (en) * | 1991-10-21 | 1995-09-26 | National Semiconductor Corporation | Method of making an integrated circuit microwave interconnect and components |
US5304975A (en) * | 1991-10-23 | 1994-04-19 | Kabushiki Kaisha Toshiba | Magnetoresistance effect element and magnetoresistance effect sensor |
US5684980A (en) * | 1992-07-29 | 1997-11-04 | Virtual Computer Corporation | FPGA virtual computer for executing a sequence of program instructions by successively reconfiguring a group of FPGA in response to those instructions |
JP3295454B2 (en) * | 1992-08-05 | 2002-06-24 | パイオニア株式会社 | Signal processing method for GPS receiver |
US5448515A (en) * | 1992-09-02 | 1995-09-05 | Mitsubishi Denki Kabushiki Kaisha | Magnetic thin film memory and recording/reproduction method therefor |
JP3253696B2 (en) * | 1992-09-11 | 2002-02-04 | 株式会社東芝 | Magnetoresistance effect element |
US5361373A (en) * | 1992-12-11 | 1994-11-01 | Gilson Kent L | Integrated circuit computing device comprising a dynamically configurable gate array having a microprocessor and reconfigurable instruction execution means and method therefor |
US5327480A (en) * | 1993-02-22 | 1994-07-05 | Motorola, Inc. | Method and apparatus in a communication system for completing an inbound call |
US5493465A (en) * | 1993-03-15 | 1996-02-20 | Kabushiki Kaisha Toshiba | Magnetoresistance effect element and magnetic recording apparatus |
JPH08504303A (en) | 1993-10-06 | 1996-05-07 | フィリップス エレクトロニクス ネムローゼ フェン ノートシャップ | Magnetoresistive device and magnetic head using such device |
US5408377A (en) * | 1993-10-15 | 1995-04-18 | International Business Machines Corporation | Magnetoresistive sensor with improved ferromagnetic sensing layer and magnetic recording system using the sensor |
US5465185A (en) * | 1993-10-15 | 1995-11-07 | International Business Machines Corporation | Magnetoresistive spin valve sensor with improved pinned ferromagnetic layer and magnetic recording system using the sensor |
JP2692591B2 (en) * | 1994-06-30 | 1997-12-17 | 株式会社日立製作所 | Optical memory device and optical circuit using the same |
US5600845A (en) * | 1994-07-27 | 1997-02-04 | Metalithic Systems Incorporated | Integrated circuit computing device comprising a dynamically configurable gate array having a microprocessor and reconfigurable instruction execution means and method therefor |
US5529549A (en) * | 1994-09-21 | 1996-06-25 | Moyer; David F. | Hybrid internal combustion engine |
US6037774A (en) * | 1994-10-19 | 2000-03-14 | Mayo Foundation For Medical Education And Research | Inertial driver device for MR elastography |
US5623549A (en) * | 1995-01-30 | 1997-04-22 | Ritter; Terry F. | Cipher mechanisms with fencing and balanced block mixing |
US5543737A (en) * | 1995-02-10 | 1996-08-06 | Energy Conversion Devices, Inc. | Logical operation circuit employing two-terminal chalcogenide switches |
US5587943A (en) * | 1995-02-13 | 1996-12-24 | Integrated Microtransducer Electronics Corporation | Nonvolatile magnetoresistive memory with fully closed flux operation |
US5524092A (en) * | 1995-02-17 | 1996-06-04 | Park; Jea K. | Multilayered ferroelectric-semiconductor memory-device |
US5629922A (en) | 1995-02-22 | 1997-05-13 | Massachusetts Institute Of Technology | Electron tunneling device using ferromagnetic thin films |
US5608593A (en) * | 1995-03-09 | 1997-03-04 | Quantum Peripherals Colorado, Inc. | Shaped spin valve type magnetoresistive transducer and method for fabricating the same incorporating domain stabilization technique |
US5794062A (en) * | 1995-04-17 | 1998-08-11 | Ricoh Company Ltd. | System and method for dynamically reconfigurable computing using a processing unit having changeable internal hardware organization |
US5629549A (en) * | 1995-04-21 | 1997-05-13 | Johnson; Mark B. | Magnetic spin transistor device, logic gate & method of operation |
US5654566A (en) * | 1995-04-21 | 1997-08-05 | Johnson; Mark B. | Magnetic spin injected field effect transistor and method of operation |
US5565695A (en) * | 1995-04-21 | 1996-10-15 | Johnson; Mark B. | Magnetic spin transistor hybrid circuit element |
US6140838A (en) * | 1995-04-21 | 2000-10-31 | Johnson; Mark B. | High density and high speed magneto-electronic logic family |
US6741494B2 (en) * | 1995-04-21 | 2004-05-25 | Mark B. Johnson | Magnetoelectronic memory element with inductively coupled write wires |
US5652445A (en) * | 1995-04-21 | 1997-07-29 | Johnson; Mark B. | Hybrid hall effect device and method of operation |
US5929636A (en) * | 1996-05-02 | 1999-07-27 | Integrated Magnetoelectronics | All-metal giant magnetoresistive solid-state component |
US5757525A (en) * | 1996-06-05 | 1998-05-26 | University Of Massachusetts | All-optical devices |
US6342173B1 (en) * | 1996-07-11 | 2002-01-29 | Genpak, L.L.C. | Method for producing polymer foam using a blowing agent combination |
JPH1098220A (en) * | 1996-09-20 | 1998-04-14 | Sanyo Electric Co Ltd | Magnetoresistance effect device |
US5926414A (en) * | 1997-04-04 | 1999-07-20 | Magnetic Semiconductors | High-efficiency miniature magnetic integrated circuit structures |
US5939899A (en) * | 1997-04-23 | 1999-08-17 | Lucent Technologies Inc. | MOSFET substrate current logic |
US5825595A (en) * | 1997-05-13 | 1998-10-20 | International Business Machines Corporation | Spin valve sensor with two spun values separated by an insulated current conductor |
JPH1145076A (en) * | 1997-07-24 | 1999-02-16 | Semiconductor Energy Lab Co Ltd | Active matrix type display device |
US5936293A (en) * | 1998-01-23 | 1999-08-10 | International Business Machines Corporation | Hard/soft magnetic tunnel junction device with stable hard ferromagnetic layer |
JP3646508B2 (en) * | 1998-03-18 | 2005-05-11 | 株式会社日立製作所 | Tunnel magnetoresistive element, magnetic sensor and magnetic head using the same |
KR19990087860A (en) * | 1998-05-13 | 1999-12-27 | 이데이 노부유끼 | Element exploiting magnetic material and addressing method therefor |
US6034887A (en) * | 1998-08-05 | 2000-03-07 | International Business Machines Corporation | Non-volatile magnetic memory cell and devices |
US6172903B1 (en) * | 1998-09-22 | 2001-01-09 | Canon Kabushiki Kaisha | Hybrid device, memory apparatus using such hybrid devices and information reading method |
US6381171B1 (en) * | 1999-05-19 | 2002-04-30 | Kabushiki Kaisha Toshiba | Magnetic element, magnetic read head, magnetic storage device, magnetic memory device |
US6542000B1 (en) * | 1999-07-30 | 2003-04-01 | Iowa State University Research Foundation, Inc. | Nonvolatile programmable logic devices |
US6297987B1 (en) * | 1999-09-30 | 2001-10-02 | The United States Of America As Represented By The Secretary Of The Navy | Magnetoresistive spin-injection diode |
US6307774B1 (en) * | 2000-03-22 | 2001-10-23 | Mark B. Johnson | Magnetoelectronic memory array |
US6388912B1 (en) * | 2000-03-30 | 2002-05-14 | Intel Corporation | Quantum magnetic memory |
US6429640B1 (en) * | 2000-08-21 | 2002-08-06 | The United States Of America As Represented By The Secretary Of The Air Force | GMR high current, wide dynamic range sensor |
US6639832B2 (en) * | 2001-08-08 | 2003-10-28 | Intel Corporation | Quantum magnetic memory |
US6473337B1 (en) * | 2001-10-24 | 2002-10-29 | Hewlett-Packard Company | Memory device having memory cells with magnetic tunnel junction and tunnel junction in series |
US6829157B2 (en) * | 2001-12-05 | 2004-12-07 | Korea Institute Of Science And Technology | Method of controlling magnetization easy axis in ferromagnetic films using voltage, ultrahigh-density, low power, nonvolatile magnetic memory using the control method, and method of writing information on the magnetic memory |
US7190611B2 (en) * | 2003-01-07 | 2007-03-13 | Grandis, Inc. | Spin-transfer multilayer stack containing magnetic layers with resettable magnetization |
US6753562B1 (en) * | 2003-03-27 | 2004-06-22 | Sharp Laboratories Of America, Inc. | Spin transistor magnetic random access memory device |
-
2002
- 2002-03-18 US US10/100,210 patent/US6741494B2/en not_active Expired - Fee Related
-
2004
- 2004-02-10 US US10/776,987 patent/US6804146B2/en not_active Expired - Fee Related
- 2004-02-10 US US10/776,939 patent/US6807090B2/en not_active Expired - Fee Related
- 2004-02-10 US US10/776,144 patent/US6870761B2/en not_active Expired - Fee Related
- 2004-02-10 US US10/776,978 patent/US6809959B2/en not_active Expired - Fee Related
- 2004-05-24 US US10/853,545 patent/US6873545B2/en not_active Expired - Fee Related
- 2004-05-24 US US10/853,791 patent/US6888746B2/en not_active Expired - Lifetime
- 2004-05-24 US US10/853,792 patent/US6958930B2/en not_active Expired - Lifetime
- 2004-10-08 US US10/962,254 patent/US7068535B2/en not_active Expired - Lifetime
- 2004-10-08 US US10/962,253 patent/US7212433B2/en not_active Expired - Fee Related
- 2004-10-25 US US10/974,037 patent/US6975533B2/en not_active Expired - Fee Related
-
2005
- 2005-03-21 US US11/086,603 patent/US7064976B2/en not_active Expired - Fee Related
- 2005-03-28 US US11/091,957 patent/US7020013B2/en not_active Expired - Lifetime
- 2005-05-02 US US11/120,540 patent/US7016223B2/en not_active Expired - Fee Related
- 2005-05-19 US US11/133,518 patent/US7009875B2/en not_active Expired - Lifetime
- 2005-05-26 US US11/138,989 patent/US7209381B2/en not_active Expired - Fee Related
-
2006
- 2006-03-06 US US11/369,661 patent/US7193891B2/en not_active Expired - Fee Related
- 2006-03-09 US US11/373,667 patent/US7215570B2/en not_active Expired - Fee Related
- 2006-03-14 US US11/375,854 patent/US7309888B2/en not_active Expired - Fee Related
-
2007
- 2007-04-30 US US11/741,984 patent/US7307875B2/en not_active Expired - Fee Related
- 2007-05-07 US US11/745,167 patent/US7339819B2/en not_active Expired - Fee Related
- 2007-10-30 US US11/929,495 patent/US7596018B2/en not_active Expired - Fee Related
- 2007-10-30 US US11/929,577 patent/US7570510B2/en not_active Expired - Fee Related
Patent Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3650581A (en) | 1969-06-30 | 1972-03-21 | Karl Boden Wilhelm Groth & Die | Bearing systems |
US4314349A (en) | 1979-12-31 | 1982-02-02 | Goodyear Aerospace Corporation | Processing element for parallel array processors |
US4360899A (en) | 1980-02-15 | 1982-11-23 | Texas Instruments Incorporated | Magnetic domain random access memory |
US4700211A (en) | 1982-07-26 | 1987-10-13 | Lgz Landis & Gyr Zug Ag | Sensitive magnetotransistor magnetic field sensor |
US4607271A (en) | 1982-11-22 | 1986-08-19 | IGZ Landis & Gyr Zug AG | Magnetic field sensor |
US4896296A (en) | 1985-03-04 | 1990-01-23 | Lattice Semiconductor Corporation | Programmable logic device configurable input/output cell |
US4780848A (en) | 1986-06-03 | 1988-10-25 | Honeywell Inc. | Magnetoresistive memory with multi-layer storage cells having layers of limited thickness |
US4905178A (en) | 1986-09-19 | 1990-02-27 | Performance Semiconductor Corporation | Fast shifter method and structure |
US5089991A (en) | 1990-01-18 | 1992-02-18 | Micro Unity Systems Engineering, Inc. | Non-volatile memory cell |
US5173873A (en) | 1990-06-28 | 1992-12-22 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | High speed magneto-resistive random access memory |
US5245227A (en) | 1990-11-02 | 1993-09-14 | Atmel Corporation | Versatile programmable logic cell for use in configurable logic arrays |
US5329480A (en) | 1990-11-15 | 1994-07-12 | California Institute Of Technology | Nonvolatile random access memory |
US5237529A (en) | 1991-02-01 | 1993-08-17 | Richard Spitzer | Microstructure array and activation system therefor |
US5491338A (en) | 1991-02-01 | 1996-02-13 | Spitzer; Richard | High resolution imaging and measuring dynamic surface effects of substrate surfaces |
US5245226A (en) | 1991-02-25 | 1993-09-14 | Lattice Semiconductor Corporation | Output logic macrocell |
US5239504A (en) | 1991-04-12 | 1993-08-24 | International Business Machines Corporation | Magnetostrictive/electrostrictive thin film memory |
US5580814A (en) | 1991-05-29 | 1996-12-03 | Ramtron International Corporation | Method for making a ferroelectric memory cell with a ferroelectric capacitor overlying a memory transistor |
US5251170A (en) | 1991-11-04 | 1993-10-05 | Nonvolatile Electronics, Incorporated | Offset magnetoresistive memory structures |
US5424236A (en) | 1991-11-04 | 1995-06-13 | Nonvolatile Electronics, Incorporated | Method for forming offset magnetoresistive memory structures |
US5329486A (en) | 1992-04-24 | 1994-07-12 | Motorola, Inc. | Ferromagnetic memory device |
US5289410A (en) | 1992-06-29 | 1994-02-22 | California Institute Of Technology | Non-volatile magnetic random access memory |
US5420819A (en) | 1992-09-24 | 1995-05-30 | Nonvolatile Electronics, Incorporated | Method for sensing data in a magnetoresistive memory using large fractions of memory cell films for data storage |
US5432373A (en) | 1992-12-15 | 1995-07-11 | Bell Communications Research, Inc. | Magnetic spin transistor |
US5396455A (en) | 1993-04-30 | 1995-03-07 | International Business Machines Corporation | Magnetic non-volatile random access memory |
US5475277A (en) | 1993-07-21 | 1995-12-12 | Fluidmaster, Inc. | Differential torque motor |
US5652875A (en) | 1993-09-27 | 1997-07-29 | Giga Operations Corporation | Implementation of a selected instruction set CPU in programmable hardware |
US6381170B1 (en) | 1993-10-01 | 2002-04-30 | Gary A. Prinz | Ultra high density, non-volatile ferromagnetic random access memory |
US5452163A (en) | 1993-12-23 | 1995-09-19 | International Business Machines Corporation | Multilayer magnetoresistive sensor |
US5594366A (en) | 1994-05-04 | 1997-01-14 | Atmel Corporation | Programmable logic device with regional and universal signal routing |
US5488250A (en) | 1994-06-01 | 1996-01-30 | Falke Hennig | Hall effect modulation of resistor values |
US5621338A (en) | 1994-12-20 | 1997-04-15 | Cypress Semiconductor Corp. | High speed configuration independent programmable macrocell |
US6064083A (en) | 1995-04-21 | 2000-05-16 | Johnson; Mark B. | Hybrid hall effect memory device and method of operation |
US6342713B1 (en) | 1995-04-21 | 2002-01-29 | Mark B. Johnson | Method of operating a magnetoelectronic device |
US6388916B1 (en) | 1995-04-21 | 2002-05-14 | Mark B. Johnson | Magnetoelectronic memory element with isolation element |
US5640343A (en) | 1996-03-18 | 1997-06-17 | International Business Machines Corporation | Magnetic memory array using magnetic tunnel junction devices in the memory cells |
US6469927B2 (en) * | 2000-07-11 | 2002-10-22 | Integrated Magnetoelectronics | Magnetoresistive trimming of GMR circuits |
US6483740B2 (en) * | 2000-07-11 | 2002-11-19 | Integrated Magnetoelectronics Corporation | All metal giant magnetoresistive memory |
Non-Patent Citations (20)
Title |
---|
J. De Boeck, J. Harbison et al., Non-volatile Memory Characteristics of Submicrometer Hall Structures Fabricated in Epitaxial Ferromagnetic MnA1 Films on GaAs, Electronics Letters 29, 421 (1993). (3 pages). |
James Daughton, Magnetoresistive Memory Technology, Thin Solid Films 216, 162 (1992). (7 pages). |
Mark Johnson and H. Silsbee, Electron Spin Injection and Detection at a Ferromagnetic-Paramagnetic Interface, J. Appl. Phys. 63, 3934 (1988). (6 pages). |
Mark Johnson and R. H. Silsbee, A Thermodynamic Analysis of Interfacial Transport and of the Thermomagnetoelectric System, Phys. Rev. B 35, 4959 (1987). (14 pages). |
Mark Johnson and R. H. Silsbee, Coupling of Electronic Charge and Spin at a Ferromagnetic-Paramagnetic Interface, Phys. Rev. B 37, 5312 (1988). (14 pages). |
Mark Johnson and R. H. Silsbee, Ferromagnet-Nonferromagnet Interface Resistance, Phys. Rev. Lett. 60, 377 (1988). |
Mark Johnson and R. H. Silsbee, Interfacial Charge-Spin Coupling; Injection and Detection of Spin Magnetization in Metals, Phys. Rev. Lett. 55, 1790 (1985). (4 pages). |
Mark Johnson and R. H. Silsbee, The Spin Injection Experiment, Phys. Rev. B 37, 5326 (1988). (10 pages). |
Mark Johnson, Bilayer Embodiment of the Bipolar Spin Switch, Appl. Phys. Lett. 63, 1435 (1993). (3 pages). |
Mark Johnson, Bipolar Spin Switch, Science 260, 320 (1993). (4 pages). |
Mark Johnson, Spin Accumulation in Gold Films, Phys. Rev. Lett. 70, 2142 (1993). (4 pages). |
Mark Johnson, Spin Polarization of Gold Films via Transport, J. Appl. Phys. 75, 6714 (1994). (6 pages). |
Mark Johnson, Spin-Coupled Resistance Observed in Ferromagnet-Superconductor-Ferromagnet Trilayers, Appl. Phys. Lett., Sep. 12, 1994. |
Mark Johnson, The All-Metal Spin Transistor, I.E.E.E. Spectrum Magazine 31 No. 5, 47 (1994). (5 pages). |
Mark Johnson, The Bipolar Spin Transistor, I.E.E.E. Potentials 14, 26 (1995). |
P. C. van Son, H. van Kampen and P. Wyder, Phys. Rev. Lett. 58, 2271 (1987). (3 pages). |
P. C. van Son, H. van Kampen and P. Wyder, Phys. Rev. Lett. 60, 378 (1988). |
Paul Horowitz and Winfield Hill, The Art of Electronics, Cambridge Univ. Press, Cambridge U.K. (1980); see p. 328. |
R. S. Popovic, Hall-effect Devices, Sens. Actuators 17, 39 (1989). |
S. T. Chui and J. R. Cullen, Spin Transmission in Metallic Trilayers, Phys. Rev. Lett. 74, 2118 (1995). (4 pages). |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050190593A1 (en) * | 1995-04-21 | 2005-09-01 | Johnson Mark B. | Magnetoelectronic memory element with inductively coupled write wires |
US7016223B2 (en) * | 1995-04-21 | 2006-03-21 | Johnson Mark B | Magnetoelectronic memory element with inductively coupled write wires |
US20090201720A1 (en) * | 2004-05-21 | 2009-08-13 | Samsung Electronics Co., Ltd. | Multibit magnetic random access memory device |
US7881099B2 (en) * | 2004-05-21 | 2011-02-01 | Samsung Electronics Co., Ltd. | Multibit magnetic random access memory device |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6888746B2 (en) | Magnetoelectronic memory element with inductively coupled write wires | |
US6388916B1 (en) | Magnetoelectronic memory element with isolation element | |
US6445612B1 (en) | MRAM with midpoint generator reference and method for readout | |
US6614681B2 (en) | Thin film magnetic memory device with memory cells including a tunnel magnetic resistive element | |
US6839269B2 (en) | Magnetic random access memory | |
US5699293A (en) | Method of operating a random access memory device having a plurality of pairs of memory cells as the memory device | |
US7564729B2 (en) | Differential and hierarchical sensing for memory circuits | |
US5936882A (en) | Magnetoresistive random access memory device and method of manufacture | |
US20040062075A1 (en) | Memory array employing single three-terminal non-volatile storage elements | |
US20020039308A1 (en) | MRAM configuration | |
KR20030010459A (en) | Cross point memory array including shared devices for blocking sneak path currents | |
US20040141368A1 (en) | Magnetoresistive random access memory device | |
US7187579B2 (en) | Non-volatile ferromagnetic memory having sensor circuitry shared with its state change circuitry | |
US6822897B2 (en) | Thin film magnetic memory device selecting access to a memory cell by a transistor of a small gate capacitance | |
US7277319B2 (en) | System and method for reading a memory cell | |
US7577041B2 (en) | Semiconductor memory device and writing method thereof | |
JP2002334585A (en) | Semiconductor memory | |
US6330183B1 (en) | Dual conductor inductive sensor for a non-volatile random access ferromagnetic memory | |
US6842363B2 (en) | Magnetoresistive memory and method for reading a magnetoresistive memory | |
US6839270B2 (en) | System for and method of accessing a four-conductor magnetic random access memory | |
US6307774B1 (en) | Magnetoelectronic memory array | |
US6842389B2 (en) | System for and method of four-conductor magnetic random access memory cell and decoding scheme | |
US6975555B2 (en) | Magnetic random access memory using memory cells with rotated magnetic storage elements | |
WO2000052698A1 (en) | Dual conductor inductive sensor for a non-volatile random access ferromagnetic memory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SPINOP CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JOHNSON, MARK B.;REEL/FRAME:017696/0925 Effective date: 20050101 |
|
AS | Assignment |
Owner name: SEAGATE TECHNOLOGY INTERNATIONAL, CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SPINOP CORPORATION;REEL/FRAME:019204/0285 Effective date: 20070322 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT Free format text: SECURITY AGREEMENT;ASSIGNORS:MAXTOR CORPORATION;SEAGATE TECHNOLOGY LLC;SEAGATE TECHNOLOGY INTERNATIONAL;REEL/FRAME:022757/0017 Effective date: 20090507 Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATE Free format text: SECURITY AGREEMENT;ASSIGNORS:MAXTOR CORPORATION;SEAGATE TECHNOLOGY LLC;SEAGATE TECHNOLOGY INTERNATIONAL;REEL/FRAME:022757/0017 Effective date: 20090507 |
|
AS | Assignment |
Owner name: SEAGATE TECHNOLOGY HDD HOLDINGS, CALIFORNIA Free format text: RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:025662/0001 Effective date: 20110114 Owner name: MAXTOR CORPORATION, CALIFORNIA Free format text: RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:025662/0001 Effective date: 20110114 Owner name: SEAGATE TECHNOLOGY LLC, CALIFORNIA Free format text: RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:025662/0001 Effective date: 20110114 Owner name: SEAGATE TECHNOLOGY INTERNATIONAL, CALIFORNIA Free format text: RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:025662/0001 Effective date: 20110114 |
|
AS | Assignment |
Owner name: THE BANK OF NOVA SCOTIA, AS ADMINISTRATIVE AGENT, Free format text: SECURITY AGREEMENT;ASSIGNOR:SEAGATE TECHNOLOGY INTERNATIONAL;REEL/FRAME:026010/0871 Effective date: 20110118 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: SEAGATE TECHNOLOGY US HOLDINGS, INC., CALIFORNIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT AND SECOND PRIORITY REPRESENTATIVE;REEL/FRAME:030833/0001 Effective date: 20130312 Owner name: SEAGATE TECHNOLOGY INTERNATIONAL, CAYMAN ISLANDS Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT AND SECOND PRIORITY REPRESENTATIVE;REEL/FRAME:030833/0001 Effective date: 20130312 Owner name: SEAGATE TECHNOLOGY LLC, CALIFORNIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT AND SECOND PRIORITY REPRESENTATIVE;REEL/FRAME:030833/0001 Effective date: 20130312 Owner name: EVAULT INC. (F/K/A I365 INC.), CALIFORNIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT AND SECOND PRIORITY REPRESENTATIVE;REEL/FRAME:030833/0001 Effective date: 20130312 |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
REIN | Reinstatement after maintenance fee payment confirmed | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20170503 |
|
PRDP | Patent reinstated due to the acceptance of a late maintenance fee |
Effective date: 20170725 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
SULP | Surcharge for late payment |