[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US5314439A - Host cornea marking device - Google Patents

Host cornea marking device Download PDF

Info

Publication number
US5314439A
US5314439A US07/968,592 US96859292A US5314439A US 5314439 A US5314439 A US 5314439A US 96859292 A US96859292 A US 96859292A US 5314439 A US5314439 A US 5314439A
Authority
US
United States
Prior art keywords
cornea
marking
outer tube
marking device
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/968,592
Inventor
Juntaro Sugita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Menicon Co Ltd
Original Assignee
Menicon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Menicon Co Ltd filed Critical Menicon Co Ltd
Assigned to MENICON CO., LTD. reassignment MENICON CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SUGITA, JUNTARO
Application granted granted Critical
Publication of US5314439A publication Critical patent/US5314439A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/013Instruments for compensation of ocular refraction ; Instruments for use in cornea removal, for reshaping or performing incisions in the cornea
    • A61F9/0136Mechanical markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3937Visible markers

Definitions

  • the present invention relates to a device for providing marks on a recipient cornea bed of a corneal transplant patient, for facilitating positioning of a donor cornea on the recipient cornea bed for keratoplasty.
  • a suitable size of a section of the cornea of a corneal transplant patient (referred to hereinafter as a host patient) is cut out or removed, while a donor cornea is trephined or punched out by a suitable cornea punching device, so that the size of the donor cornea conforms to that of the cutout section of the host cornea.
  • the thus obtained donor cornea is located on the cutout section of the host cornea and then sutured therein.
  • the cornea tends to be inadvertently distorted or displaced due to subtle differences in the manner of suturing from portion to portion, resulting in the incidence of post-transplant astigmatism due to such distortion of the cornea.
  • the inventor of the present invention proposed a cornea punching device as disclosed in co-pending U.S. patent application Ser. No. 07/682,695 now abandoned, for cutting or punching out a donor cornea into a desired shape, in preparation for keratoplasty.
  • the punching device disclosed therein is adapted to cut out or trephine a circular corneal section such that the corneal section (hereinafter referred to as "donor cornea") is provided with a plurality of suction traces which correspond to suction holes or slits formed through a base for supporting the donor cornea when the donor cornea is punched out.
  • these suction traces are left on at least a peripheral portion of the surface of the donor cornea such that the traces are equally spaced apart from each other in the circumferential direction of the donor cornea.
  • the thus formed suction traces can be used as a guide for positioning the donor cornea on a recipient cornea bed of a host patient, making it easy for an oculist to suture the graft with the cornea bed. It is thus possible to substantially avoid distortions of the cornea upon suturing, by advertently preventing inclination or displacement of the suction traces on the corneal graft.
  • the donor cornea is provided by the above-described punching device with the suction traces for the positioning purpose, however, the positioning accuracy is still unsatisfactory in the absence of marks on the side of the host cornea or recipient cornea bed, which marks accurately correspond to the suction traces on the donor cornea. Consequently, there still remains a possibility of post-transplant astigmatism due to subtle distortion of the cornea grafted on the host patient.
  • a host cornea marking device for providing marks on a recipient cornea bed of a corneal transplant patient, comprising: an outer tube having a plurality of marking blades at one of opposite axial ends thereof which is adapted to face the recipient cornea bed, the marking blades being spaced apart from each other in a circumferential direction of the outer tube; and an inner tube which is received in the outer tube, such that the inner tube is axially slidable relative to the outer tube between a first position in which the inner tube protrudes a predetermined distance from the one of opposite axial ends of the outer tube, and a second position in which the inner tube is entirely positioned within the outer tube, the inner tube including a contact portion at one of opposite axial ends thereof which is to face the recipient cornea bed, the contact portion being adapted to be in contact with the cornea bed so as to position the marking device with respect to a cutout section in the recipient cornea bed for receiving a donor cornea.
  • the inner tube is inserted into the cutout section formed in the recipient cornea bed of the host patient, so that the center of the marking device is accurately positioned on the center of the cornea cutout section.
  • the outer tube is pushed down so that the marking blades are lightly pressed against the recipient cornea bed, to thereby easily provide marks in the form of cuts in the host cornea. This permits extremely easy marking on the host cornea, while avoiding deviation of the center of the marking device, with the marks thus provide being accurately positioned relative to the periphery of the cutout section of the host cornea.
  • the marks and suction traces are advantageously used as a guide when the cornea is sutured, effectively preventing distortions of the cornea during the suturing operation, with a significantly lowered possibility of post-transplant astigmatism.
  • the suction traces and marks given onto the cornea remain clearly visible for about 20 minutes, and then disappear by degrees, without causing any problem in a patient's vision or eyesight.
  • the host cornea marking device may further include biasing means, disposed between the outer tube and the inner tube, for normally holding under its biasing force the inner tube in the above-indicated first position, i.e., the position where the inner tube protrudes a given distance ahead of the above-indicated one axial end of the outer tube which is to face the cornea bed.
  • biasing means disposed between the outer tube and the inner tube, for normally holding under its biasing force the inner tube in the above-indicated first position, i.e., the position where the inner tube protrudes a given distance ahead of the above-indicated one axial end of the outer tube which is to face the cornea bed.
  • FIG. 1 is a plan view showing one embodiment of a host cornea marking device of the present invention
  • FIG. 2 is a front elevational view of the host cornea marking device of FIG. 1;
  • FIG. 3 is a cross sectional view showing the host cornea marking device when used on a recipient cornea bed of a host patient;
  • FIG. 4 is a plan view of a recipient eye including the cornea bed which is provided with marks by the marking device of FIG. 1;
  • FIG. 5A and 5B are plan and front views showing a donor cornea with suction traces left on its surface, when the donor cornea is cut out by a cornea punching device;
  • FIG. 6 is a view showing the recipient eye of FIG. 4 along with the donor cornea of FIG. 5, when the donor cornea is sutured onto the cornea bed;
  • FIG. 7 is a cross sectional view showing another embodiment of the host cornea marking device of the present invention.
  • reference numeral 10 denotes an outer tube made of synthetic resin and having an outer diameter of 14 mm and a length of 19 mm.
  • an inner tube or centering tube 12 made of stainless steel and having an inner diameter of 7.5 mm and an outer diameter slightly smaller than the inner diameter of the outer tube 10.
  • the centering tube 12 is axially slidable relative to the outer tube 10. That is, the centering tube 12 can smoothly move within the outer tube 10 when it is lightly pushed.
  • the outer tube 10 is provided at one axial end (lower end in FIG. 2) which is to face a cornea bed of a recipient eye, with four marking blades 14 in the form of stainless-steel razor blades, which are equally spaced apart from each other along the circumference of the tube 10, so as to correspond to suction traces 28 which are left on a donor cornea 26 as shown in FIG. 5A and 5B when the cornea 26 is trephined.
  • These marking blades 14 are fixedly bonded to the outer tube 10 such that the blades 14 extend in radial directions of the outer tube 10.
  • the outer tube 10 is formed of polymethyl methacrylate, and its inner circumferential surface is coated with grease so as to enhance slidability of the centering tube 12 received in the inner bore of the tube 10.
  • the material for the outer tube 10 is not limited to polymethyl methacrylate (PMMA), but may be suitably selected from various plastics such as polycarbonate, polyacetal (POM) or fluororesin, or metals such as stainless steel.
  • the outer tube 10 may have a dual-layer structure which consists of an inner layer made of plastics such as POM or fluororesin, which permits easy sliding of the centering tube 12, and an outer layer made of plastics such as PMMA.
  • the dual-layer structure may also consist of an inner layer made of fluororesin or other plastics, and an outer layer made of a metal such as stainless steel.
  • the marking blades 14 indicated above may be fixed to the outer tube 10 by a suitable method other than bonding, such as welding or soldering, depending upon the material of the outer tube 10.
  • the marking blades 14 have respective cutting edges 15 each having an arcuate shape which corresponds to the curvature of the cornea of the recipient eye, so as to give marks of even clearness (or depth) on the recipient cornea bed.
  • the marking blades 14 are desirably attached to the outer tube 10 such that the blades 14 protrude at least 0.5 mm from the end face of the tube 10 toward the recipient cornea bed to be marked. In this embodiment, the marking blades 14 protrude about 1 mm from the outer tube 10.
  • the four marking blades 14, which correspond to the suction traces 28 of the donor cornea 26 as shown in FIG. 5A and 5B, are attached to the outer tube 10 such that the blades 14 are equally spaced apart from each other in the circumferential direction of the tube 10.
  • the number and positions of the marking blades 14 fixed to the outer tube 10 are determined so as to substantially correspond to those of the suction traces 28 of the donor corneal graft 26. While the number of the marking blades 14 is not particularly limited, it is preferably in a range of 2 to 12, more preferably, in a range of 3 to 8.
  • the marking blades 14 are disposed at the above-indicated one axial end of the outer tube 10 facing the recipient cornea bed, such that the blades 14 are substantially equally (equiangularly) spaced apart from each other in the circumferential direction. While the material and shape of the marking blades 14 are not particularly limited, stainless-steel razor blades as used in the instant embodiment are preferably used as the blades 14. It is also preferable that the marking blades 14 are fixed to the outer tube 10 so that the cutting edges 15 of the blades 14 extend in the radial directions of the tube 10.
  • the centering tube 12 has a tapered portion 18 at its axial end facing the recipient cornea bed, for contact with the periphery of a circular cutout section 20 formed in the cornea of the host patient.
  • the diameter of the tapered portion 18 is made substantially equal to that of the cutout section 20, as shown in FIG. 3. Accordingly, the tapered portion 18 of the centering tube 12 may be aligned with the cutout section 20 of the host cornea so as to achieve centering of the host cornea marking device during a marking operation. More specifically, the diameter of the tapered portion 18 is preferably held in a range of 5 ⁇ 11 mm.
  • centering tubes 12 having different diameters, for example, 7.0 mm, 7.5 mm and 8.0 mm, which are selectively used depending upon the diameter of the cutout section 20. While the material for the centering tube 12 is not particularly limited, stainless steel as used in the instant embodiment is preferably used.
  • keratoplasty methods which include surface transplant, interlayer transplant and whole-layer transplant.
  • the host cornea marking device constructed as described above may be used for the surface transplant or whole-layer transplant, to effect good marking on the host cornea.
  • the instant host cornea marking device is used in the following procedure:
  • the tapered portion 18 of the centering tube of the marking device is inserted into and held in place within the cutout section 20 formed by circularly cutting only the front layer of the host cornea 22, as shown in FIG. 3.
  • the positions of the four marking blades 14 are easily recognized if the blades 14 are located at the 12, 3, 6 and 9 o'clock positions on the host cornea 22. Even where the marking blades 14 are hidden by a hand, the positions of the blades 14 can be easily rccognized by the indicia 16 provided on the end face of the outer tube 10 remote from the marking blades 14.
  • the host cornea marking device is removed from the host cornea 22, on which there have been formed four marks 24 which extend in the respective 90°-spaced radial directions, as shown in FIG. 4.
  • the donor cornea 26 On the host cornea 22 provided with the marks 24 in the manner as described above, there is located the donor cornea 26 provided with the suction traces 28 which collectively form a cross as shown in FIG. 5A and 5B.
  • the donor corneal graft 26 and host cornea 22 are then sutured with thread 30, such that the suction traces 28 on the cornea 26 are aligned with the marks 24 on the host cornea 22, as shown in FIG. 6.
  • the donor cornea 26 may be cut out for use in this transplant, by means of a cornea punching device as disclosed in the above-identified U.S. patent application Ser. No. 07/682,695 now abandoned.
  • the use of the host cornea marking device as described above ensures that the host cornea 22 is provided with high reliability with the marks 24, which are accurately aligned with the suction traces 28 of the donor cornea 26, with extremely easy handling of the device.
  • the donor cornea 26 and host cornea 22 are sutured with their traces 28 and marks 24 aligned with each other, distortions of the cornea 26 which would otherwise occur upon suturing can be reduced to a minimum, with the least possibility of post-transplant corneal astigmatism.
  • the outer tube 10 has a dual-layer structure which consists of an outer layer 32 made of stainless steel, and an inner layer 34 made of fluororesin.
  • the centering tube 12 is received in the outer tube 10 such that it is slidable on the inner layer 34.
  • biasing means in the form of a spring 36, which serves to keep the centering tube 12 in a predetermined position at which the tapered portion 18 protrudes a suitable distance from the outer tube 10.
  • the spring 36 is mounted on the device such that one end of the spring 36 is fixedly wound around the axial end portion of the centering tube 12 remote from the tapered portion 18, and such that the other end thereof is secured to an annular spring seat 38 made of fluororesin, which is fixedly fitted in the axial end portion of the outer tube 10 remote from the marking blades 14.
  • the inner layer 34 of the outer tube 10 consists of a first section 40 for slidably receiving the centering tube 12, and a second section 42 for accommodating the spring 36.
  • the first section 40 corresponds to the axial end portion of the tube 10 facing the recipient cornea bed, over about one-third of the entire length of the tube 10, while the second section 42 constitutes the rest of the inner layer 34, and has a larger diameter than the first section 40.
  • the centering tube 12 is favorably prevented from rattling in the outer tube 10, while permitting free movement of the spring 36.
  • the outer tube 10 In operation of the thus constructed host cornea marking device, the outer tube 10 is pushed down to the host cornea 22, against a biasing force of the spring 36, to accomplish good marking on the host cornea 22. Then, the centering tube 12, which has been retracted into the outer tube 10 upon marking, resumes its original position, that is, returns to the above-indicated predetermined position where the centering tube 12 protrudes a suitable distance from the outer tube 10. Accordingly, the centering tube 12 need not be pulled out of the outer tube 10 by hand each time the device is used for marking the cornea. Further, since the outer layer 32 of the outer tube 10 of the instant marking device is made of stainless steel as described above, the marking blades 14 can be firmly secured to the outer layer 32 by soldering.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

A host cornea marking device for providing marks on a recipient cornea bed of a corneal transplant patient is disclosed. The present marking device includes: an outer tube having a plurality of marking blades at one of opposite axial ends thereof which is adapted to face the recipient cornea bed, the marking blades being spaced apart from each other in a circumferential direction of said outer tube; and an inner tube which is received in the outer tube, such that the inner tube is axially slidable relative to the outer tube. The inner tube includes a contact portion at one of opposite axial ends thereof which is adapted to be in contact with the cornea bed so as to position the marking device with respect to a cutout section in the recipient cornea bed for receiving a donor cornea. A spring between the inner and outer tubes may be used to hold the inner tube in a first position.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a device for providing marks on a recipient cornea bed of a corneal transplant patient, for facilitating positioning of a donor cornea on the recipient cornea bed for keratoplasty.
2. Discussion of the Related Art
According to a known keratoplasty method, a suitable size of a section of the cornea of a corneal transplant patient (referred to hereinafter as a host patient) is cut out or removed, while a donor cornea is trephined or punched out by a suitable cornea punching device, so that the size of the donor cornea conforms to that of the cutout section of the host cornea. The thus obtained donor cornea is located on the cutout section of the host cornea and then sutured therein. Upon suturing, however, the cornea tends to be inadvertently distorted or displaced due to subtle differences in the manner of suturing from portion to portion, resulting in the incidence of post-transplant astigmatism due to such distortion of the cornea.
In view of the above situation, the inventor of the present invention proposed a cornea punching device as disclosed in co-pending U.S. patent application Ser. No. 07/682,695 now abandoned, for cutting or punching out a donor cornea into a desired shape, in preparation for keratoplasty. The punching device disclosed therein is adapted to cut out or trephine a circular corneal section such that the corneal section (hereinafter referred to as "donor cornea") is provided with a plurality of suction traces which correspond to suction holes or slits formed through a base for supporting the donor cornea when the donor cornea is punched out. More specifically, these suction traces are left on at least a peripheral portion of the surface of the donor cornea such that the traces are equally spaced apart from each other in the circumferential direction of the donor cornea. The thus formed suction traces can be used as a guide for positioning the donor cornea on a recipient cornea bed of a host patient, making it easy for an oculist to suture the graft with the cornea bed. It is thus possible to substantially avoid distortions of the cornea upon suturing, by advertently preventing inclination or displacement of the suction traces on the corneal graft.
Even if the donor cornea is provided by the above-described punching device with the suction traces for the positioning purpose, however, the positioning accuracy is still unsatisfactory in the absence of marks on the side of the host cornea or recipient cornea bed, which marks accurately correspond to the suction traces on the donor cornea. Consequently, there still remains a possibility of post-transplant astigmatism due to subtle distortion of the cornea grafted on the host patient.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a marking device for providing marks on a host cornea or recipient cornea bed for keratoplasty, which marks accurately correspond to suction traces given on a donor cornea, and serve to effectively prevent distortions of the cornea upon suturing thereof, so as to avoid the incidence of post-operative astigmatism.
The above object may be attained according to the principle of the present invention, which provides a host cornea marking device for providing marks on a recipient cornea bed of a corneal transplant patient, comprising: an outer tube having a plurality of marking blades at one of opposite axial ends thereof which is adapted to face the recipient cornea bed, the marking blades being spaced apart from each other in a circumferential direction of the outer tube; and an inner tube which is received in the outer tube, such that the inner tube is axially slidable relative to the outer tube between a first position in which the inner tube protrudes a predetermined distance from the one of opposite axial ends of the outer tube, and a second position in which the inner tube is entirely positioned within the outer tube, the inner tube including a contact portion at one of opposite axial ends thereof which is to face the recipient cornea bed, the contact portion being adapted to be in contact with the cornea bed so as to position the marking device with respect to a cutout section in the recipient cornea bed for receiving a donor cornea.
In operation of the host cornea marking device constructed as described above, the inner tube is inserted into the cutout section formed in the recipient cornea bed of the host patient, so that the center of the marking device is accurately positioned on the center of the cornea cutout section. In this condition, the outer tube is pushed down so that the marking blades are lightly pressed against the recipient cornea bed, to thereby easily provide marks in the form of cuts in the host cornea. This permits extremely easy marking on the host cornea, while avoiding deviation of the center of the marking device, with the marks thus provide being accurately positioned relative to the periphery of the cutout section of the host cornea. If the spacing between the adjacent marking blades of the outer tube is determined so that the marks given by the blades are accurately aligned with corresponding suction traces which are left on the donor corneal graft, the marks and suction traces are advantageously used as a guide when the cornea is sutured, effectively preventing distortions of the cornea during the suturing operation, with a significantly lowered possibility of post-transplant astigmatism. Generally, the suction traces and marks given onto the cornea remain clearly visible for about 20 minutes, and then disappear by degrees, without causing any problem in a patient's vision or eyesight.
According to one feature of the invention, the host cornea marking device may further include biasing means, disposed between the outer tube and the inner tube, for normally holding under its biasing force the inner tube in the above-indicated first position, i.e., the position where the inner tube protrudes a given distance ahead of the above-indicated one axial end of the outer tube which is to face the cornea bed. In this arrangement, the inner tube, which has been retracted into the outer tube after the marking device is used, need not be moved out of the outer tube for subsequent use, assuring improved efficiency in the marking procedure.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and optional objects, features and advantages of the present invention will be better understood by reading the following detailed description of presently preferred embodiments with the accompanying drawings, in which:
FIG. 1 is a plan view showing one embodiment of a host cornea marking device of the present invention;
FIG. 2 is a front elevational view of the host cornea marking device of FIG. 1;
FIG. 3 is a cross sectional view showing the host cornea marking device when used on a recipient cornea bed of a host patient;
FIG. 4 is a plan view of a recipient eye including the cornea bed which is provided with marks by the marking device of FIG. 1;
FIG. 5A and 5B are plan and front views showing a donor cornea with suction traces left on its surface, when the donor cornea is cut out by a cornea punching device;
FIG. 6 is a view showing the recipient eye of FIG. 4 along with the donor cornea of FIG. 5, when the donor cornea is sutured onto the cornea bed; and
FIG. 7 is a cross sectional view showing another embodiment of the host cornea marking device of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring first to FIGS. 1 and 2, there is illustrated one embodiment of a host cornea marking device of the present invention. In these figures, reference numeral 10 denotes an outer tube made of synthetic resin and having an outer diameter of 14 mm and a length of 19 mm. Within an inner bore of the outer tube 10, there is received an inner tube or centering tube 12 made of stainless steel and having an inner diameter of 7.5 mm and an outer diameter slightly smaller than the inner diameter of the outer tube 10. The centering tube 12 is axially slidable relative to the outer tube 10. That is, the centering tube 12 can smoothly move within the outer tube 10 when it is lightly pushed.
The outer tube 10 is provided at one axial end (lower end in FIG. 2) which is to face a cornea bed of a recipient eye, with four marking blades 14 in the form of stainless-steel razor blades, which are equally spaced apart from each other along the circumference of the tube 10, so as to correspond to suction traces 28 which are left on a donor cornea 26 as shown in FIG. 5A and 5B when the cornea 26 is trephined. These marking blades 14 are fixedly bonded to the outer tube 10 such that the blades 14 extend in radial directions of the outer tube 10. On the other axial end face of the outer tube 10 remote from the marking blades 14, there are provided four indicia 16 which are aligned with the marking blades 14, as shown in FIG. 1, for facilitating recognition of the positions of the blades 14.
More specifically, the outer tube 10 is formed of polymethyl methacrylate, and its inner circumferential surface is coated with grease so as to enhance slidability of the centering tube 12 received in the inner bore of the tube 10. The material for the outer tube 10 is not limited to polymethyl methacrylate (PMMA), but may be suitably selected from various plastics such as polycarbonate, polyacetal (POM) or fluororesin, or metals such as stainless steel. Alternatively, the outer tube 10 may have a dual-layer structure which consists of an inner layer made of plastics such as POM or fluororesin, which permits easy sliding of the centering tube 12, and an outer layer made of plastics such as PMMA. The dual-layer structure may also consist of an inner layer made of fluororesin or other plastics, and an outer layer made of a metal such as stainless steel. The marking blades 14 indicated above may be fixed to the outer tube 10 by a suitable method other than bonding, such as welding or soldering, depending upon the material of the outer tube 10.
The marking blades 14 have respective cutting edges 15 each having an arcuate shape which corresponds to the curvature of the cornea of the recipient eye, so as to give marks of even clearness (or depth) on the recipient cornea bed. The marking blades 14 are desirably attached to the outer tube 10 such that the blades 14 protrude at least 0.5 mm from the end face of the tube 10 toward the recipient cornea bed to be marked. In this embodiment, the marking blades 14 protrude about 1 mm from the outer tube 10.
In the instant embodiment, the four marking blades 14, which correspond to the suction traces 28 of the donor cornea 26 as shown in FIG. 5A and 5B, are attached to the outer tube 10 such that the blades 14 are equally spaced apart from each other in the circumferential direction of the tube 10. Thus, the number and positions of the marking blades 14 fixed to the outer tube 10 are determined so as to substantially correspond to those of the suction traces 28 of the donor corneal graft 26. While the number of the marking blades 14 is not particularly limited, it is preferably in a range of 2 to 12, more preferably, in a range of 3 to 8. It is also desirable that the marking blades 14 are disposed at the above-indicated one axial end of the outer tube 10 facing the recipient cornea bed, such that the blades 14 are substantially equally (equiangularly) spaced apart from each other in the circumferential direction. While the material and shape of the marking blades 14 are not particularly limited, stainless-steel razor blades as used in the instant embodiment are preferably used as the blades 14. It is also preferable that the marking blades 14 are fixed to the outer tube 10 so that the cutting edges 15 of the blades 14 extend in the radial directions of the tube 10.
The centering tube 12 has a tapered portion 18 at its axial end facing the recipient cornea bed, for contact with the periphery of a circular cutout section 20 formed in the cornea of the host patient. The diameter of the tapered portion 18 is made substantially equal to that of the cutout section 20, as shown in FIG. 3. Accordingly, the tapered portion 18 of the centering tube 12 may be aligned with the cutout section 20 of the host cornea so as to achieve centering of the host cornea marking device during a marking operation. More specifically, the diameter of the tapered portion 18 is preferably held in a range of 5˜11 mm. It is practically desirable to prepare several kinds of centering tubes 12 having different diameters, for example, 7.0 mm, 7.5 mm and 8.0 mm, which are selectively used depending upon the diameter of the cutout section 20. While the material for the centering tube 12 is not particularly limited, stainless steel as used in the instant embodiment is preferably used.
Various keratoplasty methods are generally known which include surface transplant, interlayer transplant and whole-layer transplant. The host cornea marking device constructed as described above may be used for the surface transplant or whole-layer transplant, to effect good marking on the host cornea.
In the surface transplant for transplanting only the front layer of the cornea, for example, the instant host cornea marking device is used in the following procedure:
(1) Initially, the centering tube 12 is pulled out of the outer tube 10, so that the tapered portion 18 protrudes ahead of the marking blades 14, as shown in FIG. 2.
(2) Then, the tapered portion 18 of the centering tube of the marking device is inserted into and held in place within the cutout section 20 formed by circularly cutting only the front layer of the host cornea 22, as shown in FIG. 3. At this point, the positions of the four marking blades 14 are easily recognized if the blades 14 are located at the 12, 3, 6 and 9 o'clock positions on the host cornea 22. Even where the marking blades 14 are hidden by a hand, the positions of the blades 14 can be easily rccognized by the indicia 16 provided on the end face of the outer tube 10 remote from the marking blades 14.
(3) With the marking device thus being centered by means of the centering tube 12, the operator holding the outer tube 10 pushes down the tube 10 toward the host cornea 22. As a result, the centering tube 12 slides back into the outer tube 10, and the marking blades 14 are brought into contact with the cornea 22. In this state, the outer tube 10 is held lightly pushed toward the cornea 22 for a few seconds, to effect marking as shown in FIG. 3.
(4) Thereafter, the host cornea marking device is removed from the host cornea 22, on which there have been formed four marks 24 which extend in the respective 90°-spaced radial directions, as shown in FIG. 4.
(5) On the host cornea 22 provided with the marks 24 in the manner as described above, there is located the donor cornea 26 provided with the suction traces 28 which collectively form a cross as shown in FIG. 5A and 5B. The donor corneal graft 26 and host cornea 22 are then sutured with thread 30, such that the suction traces 28 on the cornea 26 are aligned with the marks 24 on the host cornea 22, as shown in FIG. 6. In this connection, the donor cornea 26 may be cut out for use in this transplant, by means of a cornea punching device as disclosed in the above-identified U.S. patent application Ser. No. 07/682,695 now abandoned.
The use of the host cornea marking device as described above ensures that the host cornea 22 is provided with high reliability with the marks 24, which are accurately aligned with the suction traces 28 of the donor cornea 26, with extremely easy handling of the device. When the donor cornea 26 and host cornea 22 are sutured with their traces 28 and marks 24 aligned with each other, distortions of the cornea 26 which would otherwise occur upon suturing can be reduced to a minimum, with the least possibility of post-transplant corneal astigmatism.
Referring next to FIG. 7, there is illustrated another embodiment of the host cornea marking device of the present invention. In this embodiment, the outer tube 10 has a dual-layer structure which consists of an outer layer 32 made of stainless steel, and an inner layer 34 made of fluororesin. The centering tube 12 is received in the outer tube 10 such that it is slidable on the inner layer 34. Between the outer tube 10 and the centering tube 12, there is provided biasing means in the form of a spring 36, which serves to keep the centering tube 12 in a predetermined position at which the tapered portion 18 protrudes a suitable distance from the outer tube 10.
The spring 36 is mounted on the device such that one end of the spring 36 is fixedly wound around the axial end portion of the centering tube 12 remote from the tapered portion 18, and such that the other end thereof is secured to an annular spring seat 38 made of fluororesin, which is fixedly fitted in the axial end portion of the outer tube 10 remote from the marking blades 14. The inner layer 34 of the outer tube 10 consists of a first section 40 for slidably receiving the centering tube 12, and a second section 42 for accommodating the spring 36. The first section 40 corresponds to the axial end portion of the tube 10 facing the recipient cornea bed, over about one-third of the entire length of the tube 10, while the second section 42 constitutes the rest of the inner layer 34, and has a larger diameter than the first section 40. In this arrangement, the centering tube 12 is favorably prevented from rattling in the outer tube 10, while permitting free movement of the spring 36.
In operation of the thus constructed host cornea marking device, the outer tube 10 is pushed down to the host cornea 22, against a biasing force of the spring 36, to accomplish good marking on the host cornea 22. Then, the centering tube 12, which has been retracted into the outer tube 10 upon marking, resumes its original position, that is, returns to the above-indicated predetermined position where the centering tube 12 protrudes a suitable distance from the outer tube 10. Accordingly, the centering tube 12 need not be pulled out of the outer tube 10 by hand each time the device is used for marking the cornea. Further, since the outer layer 32 of the outer tube 10 of the instant marking device is made of stainless steel as described above, the marking blades 14 can be firmly secured to the outer layer 32 by soldering.
While the present invention has been described in detail in its presently preferred embodiments, for illustrative purpose only, it is to be understood that the invention is by no means limited to the details of the illustrated embodiments, but may be embodied with various other changes, modifications and improvements, which may occur to those skilled in the art, without departing from the scope of the invention defined in the appended claims.

Claims (6)

What is claimed is:
1. A host cornea marking device for providing marks on a recipient cornea bed of a corneal transplant patient, said cornea bed having a cutout section, said host cornea marking device comprising:
an outer tube having a plurality of marking blades at one of opposite axial ends thereof which is adapted to face the recipient cornea bed, said marking blades being spaced apart from each other in a circumferential direction of said outer tube;
an inner tube which is received in said outer tube, such that said inner tube is axially slidable relative to the outer tube during a marking operation between a first position in which the inner tube protrudes a predetermined distance from said one of opposite axial ends of the outer tube and axially past the marking blades, and a second position in which the inner tube is entirely positioned within the outer tube; and
positioning means for positioning the marking device with respect to the cutout section in the recipient cornea bed for receiving a donor cornea, said positioning means comprising a contact portion of one of opposite axial ends of the inner tube, said contact portion being adapted to fit within the cutout section and adapted to be in contact with the cornea bed so as to position the marking device.
2. A host cornea marking device according to claim 1, further comprising biasing means, disposed between said outer tube and said inner tube, for normally holding said inner tube in said first position under a biasing force thereof.
3. A host cornea marking device according to claim 1, wherein said contact portion of said inner tube is tapered such that a diameter of the contact portion decreases toward said one of opposite axial ends of the inner tube which is adopted to contact the recipient cornea bed.
4. A host cornea marking device according to claim 1, wherein said marking blades extend in radial directions of said outer tube.
5. A host cornea marking device according to claim 1, wherein said marking blades are equally spaced apart from each other in the circumferential direction of said outer tube.
6. A host cornea marking device according to claim 1, wherein said marking blades are made of stainless steel.
US07/968,592 1991-11-05 1992-10-29 Host cornea marking device Expired - Lifetime US5314439A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP099371U JPH0539527U (en) 1991-11-05 1991-11-05 Corneal host marker
JP3-099371[U] 1991-11-05

Publications (1)

Publication Number Publication Date
US5314439A true US5314439A (en) 1994-05-24

Family

ID=14245685

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/968,592 Expired - Lifetime US5314439A (en) 1991-11-05 1992-10-29 Host cornea marking device

Country Status (3)

Country Link
US (1) US5314439A (en)
EP (1) EP0541316A1 (en)
JP (1) JPH0539527U (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5697945A (en) * 1995-07-27 1997-12-16 Black Hills Regional Eye Institute Corneal surface marker and marking method for reducing irregular astigmatism during lamellar (LASIK) corneal surgery
US5752967A (en) * 1995-07-27 1998-05-19 Kritzinger; Michiel S. Corneal surface marker and marking method for improving laser centration
US5755700A (en) * 1995-07-27 1998-05-26 Michiel S. Kritzinger Corneal irrigation cannula and method of using
US5800406A (en) * 1995-11-22 1998-09-01 Kritzinger; Michael S. Corneal irrigation cannula
WO1999007295A1 (en) * 1997-08-05 1999-02-18 Femrx, Inc. Disposable laparoscopic morcellator
US5934285A (en) * 1995-07-27 1999-08-10 Michiel S. Kritzinger Method for reducing irregular astigmatism and debris/epithelium in the interface during lamellar corneal flap/cap surgery
US5989272A (en) * 1998-10-05 1999-11-23 Barron Precision Instruments L.L.C. Keratome for performing eye surgery and method for using same
US6030398A (en) * 1997-05-30 2000-02-29 Summit Technology, Inc. Surgical microtomes
US6217596B1 (en) * 1999-09-01 2001-04-17 Samir G. Farah Corneal surface and pupillary cardinal axes marker
US6626924B1 (en) 1998-06-01 2003-09-30 Peter J. Klopotek Surgical microtomes
US20040167540A1 (en) * 2001-05-18 2004-08-26 Georg Gerten Marking instrument
US20050090895A1 (en) * 2001-11-09 2005-04-28 Peyman Gholman A. Method and apparatus for alignment of intracorneal inlay
US20070121067A1 (en) * 2005-11-26 2007-05-31 Davis Andrew P Intraocular pressure and biomechanical properties measurement device and method
US20080058841A1 (en) * 2006-09-05 2008-03-06 Kurtz Ronald M System and method for marking corneal tissue in a transplant procedure
US20080228210A1 (en) * 2007-03-12 2008-09-18 Andrew Peter Davis System, method and device for corneal marking
US20090021692A1 (en) * 1999-03-01 2009-01-22 Boston Innovative Optics, Inc. System and method for increasing the depth of focus of the human eye
US20090254108A1 (en) * 2008-04-02 2009-10-08 Andrew Davis System and method for corneal astigmatic axis marking
US20090287232A1 (en) * 2008-05-13 2009-11-19 Davis Andrew P Universal Limbal Relaxing Incision Guide
DE102010016135A1 (en) * 2010-03-25 2011-09-29 Thomas Lange Instrument i.e. rhexis marker, for applying mark on cornea of eye during e.g. refractive lens surgery, has marking portion comprising marking ring with marking edge that is decolored when edge is placed on cornea
US8079706B2 (en) 2003-06-17 2011-12-20 Acufocus, Inc. Method and apparatus for aligning a mask with the visual axis of an eye
US20130035705A1 (en) * 2010-01-27 2013-02-07 Geuder Ag Device for applying a marking to the human eye
US9005281B2 (en) 2009-08-13 2015-04-14 Acufocus, Inc. Masked intraocular implants and lenses
US9011470B2 (en) 2013-03-15 2015-04-21 Richard Jonathan Mackool Toric axis marker
US9138142B2 (en) 2003-05-28 2015-09-22 Acufocus, Inc. Masked intraocular devices
US9204962B2 (en) 2013-03-13 2015-12-08 Acufocus, Inc. In situ adjustable optical mask
US9427311B2 (en) 2009-08-13 2016-08-30 Acufocus, Inc. Corneal inlay with nutrient transport structures
US9427922B2 (en) 2013-03-14 2016-08-30 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask
US9545303B2 (en) 2011-12-02 2017-01-17 Acufocus, Inc. Ocular mask having selective spectral transmission
US9943403B2 (en) 2014-11-19 2018-04-17 Acufocus, Inc. Fracturable mask for treating presbyopia
US10004593B2 (en) 2009-08-13 2018-06-26 Acufocus, Inc. Intraocular lens with elastic mask
US10687935B2 (en) 2015-10-05 2020-06-23 Acufocus, Inc. Methods of molding intraocular lenses
US11364110B2 (en) 2018-05-09 2022-06-21 Acufocus, Inc. Intraocular implant with removable optic
US11464625B2 (en) 2015-11-24 2022-10-11 Acufocus, Inc. Toric small aperture intraocular lens with extended depth of focus
WO2024100092A1 (en) * 2022-11-10 2024-05-16 Moria Sa Punch for partitioning a corneal graft and corresponding blade holder

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003136A2 (en) * 1996-07-19 1998-01-29 Keravision, Inc. Opthamological instruments and methods of use
US6251118B1 (en) * 1997-04-14 2001-06-26 Keravision, Inc. Radial pocket forming and insert positioning instruments, corneal marker, and method for using same
ES2407457B1 (en) * 2013-05-07 2014-04-09 Francisco Javier FERNÁNDEZ CAMBRA Pre-operative toric axis corneal marker

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU854383A1 (en) * 1979-05-03 1981-08-25 Республиканский Глазной Диспансер Министерства Здравоохранения Таджикской Сср Device for dissection of cornea
US4417579A (en) * 1982-04-16 1983-11-29 Moskovsky Nauchno-Issledovatelsky Institut Mikrokhirurgii Glaza Device for marking out the cornea in ophthalmosurgical operations
SU1016881A1 (en) * 1981-09-21 1983-12-23 Московский научно-исследовательский институт микрохирургии глаза Device for orphthalmologic operation
FR2530948A1 (en) * 1982-07-28 1984-02-03 Mo Nii Microchirurg DEVICE FOR MARKING THE OCULAR CORNEA
US4619259A (en) * 1980-05-09 1986-10-28 Graybill Walter R Ophthalmic surgery tool
FR2590795A1 (en) * 1985-11-29 1987-06-05 Aron Rosa Daniele Trephine for keratoplasty
US4796623A (en) * 1987-07-20 1989-01-10 The Cooper Companies, Inc. Corneal vacuum trephine system
WO1990014808A1 (en) * 1989-06-05 1990-12-13 Mount Sinai School Of Medicine Of The City University Of New York Apparatus and method for cornea marking

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU854383A1 (en) * 1979-05-03 1981-08-25 Республиканский Глазной Диспансер Министерства Здравоохранения Таджикской Сср Device for dissection of cornea
US4619259A (en) * 1980-05-09 1986-10-28 Graybill Walter R Ophthalmic surgery tool
SU1016881A1 (en) * 1981-09-21 1983-12-23 Московский научно-исследовательский институт микрохирургии глаза Device for orphthalmologic operation
US4417579A (en) * 1982-04-16 1983-11-29 Moskovsky Nauchno-Issledovatelsky Institut Mikrokhirurgii Glaza Device for marking out the cornea in ophthalmosurgical operations
FR2530948A1 (en) * 1982-07-28 1984-02-03 Mo Nii Microchirurg DEVICE FOR MARKING THE OCULAR CORNEA
US4515157A (en) * 1982-07-28 1985-05-07 Moskovsky Nauchno-Issledovatelsky Institut Mikrokhirurgii Glaza Corneal incision marker
FR2590795A1 (en) * 1985-11-29 1987-06-05 Aron Rosa Daniele Trephine for keratoplasty
US4796623A (en) * 1987-07-20 1989-01-10 The Cooper Companies, Inc. Corneal vacuum trephine system
WO1990014808A1 (en) * 1989-06-05 1990-12-13 Mount Sinai School Of Medicine Of The City University Of New York Apparatus and method for cornea marking

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Soviet Inventions Illustrated Section PQ, Week 8417, Derwent Publications Ltd., London, GB; Class P, AN 84 105529 & SU A 1 016 881 (MOSC. Eye Microsurger.), Jun. 6, 1984. *
Soviet Inventions Illustrated Section PQ, Week 8417, Derwent Publications Ltd., London, GB; Class P, AN 84-105529 & SU-A-1 016 881 (MOSC. Eye Microsurger.), Jun. 6, 1984.

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5752967A (en) * 1995-07-27 1998-05-19 Kritzinger; Michiel S. Corneal surface marker and marking method for improving laser centration
US5755700A (en) * 1995-07-27 1998-05-26 Michiel S. Kritzinger Corneal irrigation cannula and method of using
US5697945A (en) * 1995-07-27 1997-12-16 Black Hills Regional Eye Institute Corneal surface marker and marking method for reducing irregular astigmatism during lamellar (LASIK) corneal surgery
US5934285A (en) * 1995-07-27 1999-08-10 Michiel S. Kritzinger Method for reducing irregular astigmatism and debris/epithelium in the interface during lamellar corneal flap/cap surgery
US5984913A (en) * 1995-07-27 1999-11-16 Michiel S. Kritzinger Corneal aspiration cannula and method of using
US5800406A (en) * 1995-11-22 1998-09-01 Kritzinger; Michael S. Corneal irrigation cannula
US6030398A (en) * 1997-05-30 2000-02-29 Summit Technology, Inc. Surgical microtomes
US6099541A (en) * 1997-05-30 2000-08-08 Summit Technology, Inc. Surgical microtomes
WO1999007295A1 (en) * 1997-08-05 1999-02-18 Femrx, Inc. Disposable laparoscopic morcellator
US6626924B1 (en) 1998-06-01 2003-09-30 Peter J. Klopotek Surgical microtomes
US5989272A (en) * 1998-10-05 1999-11-23 Barron Precision Instruments L.L.C. Keratome for performing eye surgery and method for using same
US8343215B2 (en) 1999-03-01 2013-01-01 Acufocus, Inc. System and method for increasing the depth of focus of the human eye
US20090021692A1 (en) * 1999-03-01 2009-01-22 Boston Innovative Optics, Inc. System and method for increasing the depth of focus of the human eye
US8752958B2 (en) 1999-03-01 2014-06-17 Boston Innovative Optics, Inc. System and method for increasing the depth of focus of the human eye
US6217596B1 (en) * 1999-09-01 2001-04-17 Samir G. Farah Corneal surface and pupillary cardinal axes marker
US20040167540A1 (en) * 2001-05-18 2004-08-26 Georg Gerten Marking instrument
US20050090895A1 (en) * 2001-11-09 2005-04-28 Peyman Gholman A. Method and apparatus for alignment of intracorneal inlay
US9138142B2 (en) 2003-05-28 2015-09-22 Acufocus, Inc. Masked intraocular devices
US10869752B2 (en) 2003-05-28 2020-12-22 Acufocus, Inc. Mask for increasing depth of focus
US8864824B2 (en) 2003-06-17 2014-10-21 Acufocus, Inc. Method and apparatus for aligning a mask with the visual axis of an eye
US8079706B2 (en) 2003-06-17 2011-12-20 Acufocus, Inc. Method and apparatus for aligning a mask with the visual axis of an eye
US20070121067A1 (en) * 2005-11-26 2007-05-31 Davis Andrew P Intraocular pressure and biomechanical properties measurement device and method
US20080058841A1 (en) * 2006-09-05 2008-03-06 Kurtz Ronald M System and method for marking corneal tissue in a transplant procedure
US20080228210A1 (en) * 2007-03-12 2008-09-18 Andrew Peter Davis System, method and device for corneal marking
US8491616B2 (en) 2008-04-02 2013-07-23 Andrew Davis System and method for corneal astigmatic axis marking
US20090254108A1 (en) * 2008-04-02 2009-10-08 Andrew Davis System and method for corneal astigmatic axis marking
US8231643B2 (en) 2008-05-13 2012-07-31 Andrew Davis Universal limbal relaxing incision guide
US20090287232A1 (en) * 2008-05-13 2009-11-19 Davis Andrew P Universal Limbal Relaxing Incision Guide
US9005281B2 (en) 2009-08-13 2015-04-14 Acufocus, Inc. Masked intraocular implants and lenses
US11357617B2 (en) 2009-08-13 2022-06-14 Acufocus, Inc. Method of implanting and forming masked intraocular implants and lenses
US10004593B2 (en) 2009-08-13 2018-06-26 Acufocus, Inc. Intraocular lens with elastic mask
US11311371B2 (en) 2009-08-13 2022-04-26 Acufocus, Inc. Intraocular lens with elastic mask
US10548717B2 (en) 2009-08-13 2020-02-04 Acufocus, Inc. Intraocular lens with elastic mask
US9427311B2 (en) 2009-08-13 2016-08-30 Acufocus, Inc. Corneal inlay with nutrient transport structures
US10449036B2 (en) 2009-08-13 2019-10-22 Acufocus, Inc. Masked intraocular implants and lenses
US9492272B2 (en) 2009-08-13 2016-11-15 Acufocus, Inc. Masked intraocular implants and lenses
US9149390B2 (en) * 2010-01-27 2015-10-06 Geuder Ag Device for applying a marking to the human eye
US20130035705A1 (en) * 2010-01-27 2013-02-07 Geuder Ag Device for applying a marking to the human eye
DE102010016135A1 (en) * 2010-03-25 2011-09-29 Thomas Lange Instrument i.e. rhexis marker, for applying mark on cornea of eye during e.g. refractive lens surgery, has marking portion comprising marking ring with marking edge that is decolored when edge is placed on cornea
US9848979B2 (en) 2011-12-02 2017-12-26 Acufocus, Inc. Ocular mask having selective spectral transmission
US9545303B2 (en) 2011-12-02 2017-01-17 Acufocus, Inc. Ocular mask having selective spectral transmission
US10342656B2 (en) 2011-12-02 2019-07-09 Acufocus, Inc. Ocular mask having selective spectral transmission
US10765508B2 (en) 2011-12-02 2020-09-08 AcFocus, Inc. Ocular mask having selective spectral transmission
US11771552B2 (en) 2013-03-13 2023-10-03 Acufocus, Inc. In situ adjustable optical mask
US9603704B2 (en) 2013-03-13 2017-03-28 Acufocus, Inc. In situ adjustable optical mask
US10939995B2 (en) 2013-03-13 2021-03-09 Acufocus, Inc. In situ adjustable optical mask
US10350058B2 (en) 2013-03-13 2019-07-16 Acufocus, Inc. In situ adjustable optical mask
US9204962B2 (en) 2013-03-13 2015-12-08 Acufocus, Inc. In situ adjustable optical mask
US9573328B2 (en) 2013-03-14 2017-02-21 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask
US10583619B2 (en) 2013-03-14 2020-03-10 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask
US9427922B2 (en) 2013-03-14 2016-08-30 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask
US10183453B2 (en) 2013-03-14 2019-01-22 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask
US9844919B2 (en) 2013-03-14 2017-12-19 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask
US9011470B2 (en) 2013-03-15 2015-04-21 Richard Jonathan Mackool Toric axis marker
US9943403B2 (en) 2014-11-19 2018-04-17 Acufocus, Inc. Fracturable mask for treating presbyopia
US10687935B2 (en) 2015-10-05 2020-06-23 Acufocus, Inc. Methods of molding intraocular lenses
US11690707B2 (en) 2015-10-05 2023-07-04 Acufocus, Inc. Methods of molding intraocular lenses
US11464625B2 (en) 2015-11-24 2022-10-11 Acufocus, Inc. Toric small aperture intraocular lens with extended depth of focus
US11364110B2 (en) 2018-05-09 2022-06-21 Acufocus, Inc. Intraocular implant with removable optic
WO2024100092A1 (en) * 2022-11-10 2024-05-16 Moria Sa Punch for partitioning a corneal graft and corresponding blade holder
FR3141852A1 (en) * 2022-11-10 2024-05-17 Moria Sa Punch for partitioned cutting of a corneal graft and corresponding blade holder

Also Published As

Publication number Publication date
EP0541316A1 (en) 1993-05-12
JPH0539527U (en) 1993-05-28

Similar Documents

Publication Publication Date Title
US5314439A (en) Host cornea marking device
US5108412A (en) Suction ring for surgical operations on the human eye
US10357274B2 (en) Surgical tool for coring precise holes and providing for retrieval of tissue
US4205682A (en) Contact lens corneal cutter
US5312428A (en) Corneal punch and method of use
US4750491A (en) Trephine and method
US4952215A (en) Valvulotome with leaflet disruption heads and fluid supply
US5352233A (en) Scalpel and technique for using scalpel
CA2312169C (en) Syringe for medical purposes
JPS61500712A (en) radial corneal cutting device
EP0327624A1 (en) Corneal vacuum trephine system
FR2660859A1 (en) KERATOTOME FOR MAKING ARCIFORMIC INCISIONS.
US5571124A (en) Apparatus and method for performing surgery on the cornea of an eye
JPH0780073A (en) Angle of skew applying method by laser for catheter
US6425902B1 (en) Surgical instrument for heart valve reconstruction
US4565396A (en) Pneumatic contact lens insertion device
US4357941A (en) Instrument for marking out the central optical zone of the cornea
KR890701061A (en) Holder for inserting corneal curvature adjustment ring
EP0839017B1 (en) Device for implanting an intralamellar ring in the correction of ametropias
EP0380121A2 (en) Device for opening film-like closure
CN111182864B (en) Method and apparatus for incision and insertion of ventilation tube
JP2001321439A (en) Piercing tool and indwelling needle assembly
JP2002136540A (en) Apparatus for transplanting cornea to eye of patient
JPH0245454B2 (en)
US5594981A (en) Apparatus for telescopically assembling a tubing segment on a length of tubing

Legal Events

Date Code Title Description
AS Assignment

Owner name: MENICON CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SUGITA, JUNTARO;REEL/FRAME:006317/0383

Effective date: 19921023

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12