[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US5078480A - Light modulating cell - Google Patents

Light modulating cell Download PDF

Info

Publication number
US5078480A
US5078480A US07/463,788 US46378890A US5078480A US 5078480 A US5078480 A US 5078480A US 46378890 A US46378890 A US 46378890A US 5078480 A US5078480 A US 5078480A
Authority
US
United States
Prior art keywords
electrode
layer
electrodes
light
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/463,788
Other languages
English (en)
Inventor
Bernard Warszawski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyvision Corp
Original Assignee
Alpine Polyvision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpine Polyvision Inc filed Critical Alpine Polyvision Inc
Application granted granted Critical
Publication of US5078480A publication Critical patent/US5078480A/en
Assigned to CONNECTICUT DEVELOPMENT AUTHORITY, CONNECTICUT INNOVATIONS, INCORPORATED reassignment CONNECTICUT DEVELOPMENT AUTHORITY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ALPINE POLYVISION, INC.
Assigned to FLEET NATIONAL BANK, AS AGENT reassignment FLEET NATIONAL BANK, AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: APV, INC., GREENSTEEL, INC., POLYVISION CORPORATION, POSTERLOID CORPORATION
Assigned to GREENSTEEL, INC. reassignment GREENSTEEL, INC. RELEASE OF SECURITY INTEREST Assignors: FLEET NATIONAL BANK
Assigned to POLYVISION CORPORATION reassignment POLYVISION CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CONNECTICUT DEVELOPMENT AUTHORITY, CONNECTICUT INNOVATIONS, INCORPORATED
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for

Definitions

  • the invention relates to a light-modulating cell, particularly for variable reflection of light, variable transmission of light, display of signals and images such as alphanumerical, graphical and other optical information.
  • the invention applies in particular to various electro-optical devices, in particular, display panels, variable transparency windows, shop windows, screens, windscreens, spectacles, light valves, shutters, variable reflection mirrors, memories, and so forth.
  • the electrochromic processes use the reversible change of color and/or of optical density obtained by the electro-chemical oxidoreduction of a so-called electrochromic material whose oxidized form and whose reduced form have different colors and/or optical densities.
  • Electrochromic light-modulating processes have characteristics which are noteworthy for numerous applications: low control voltage (having a maximum of a few volts); low energy consumption; open circuit (nonvolatile) memory; and relatively uncritical distance requirements between electrode and counter-electrode. They also have other characteristics which are particularly advantageous for display devices: very high contrast even when viewed laterally at a high angle; excellent visibility by reflection under high-illumination conditions such as in bright sunshine; extended grey scale; and wide operating temperature range (often extending to low temperatures).
  • the low control voltage enables the use of low cost electronic control and addressing means. Furthermore, low energy consumption enables applications where independent operation (on batteries or accumulators) is required.
  • elementary cells of known electrochromic light modulating devices are sealed (individually or in combination with other cells) in a way which is strictly leaktight with respect to the external ambient atmosphere.
  • Known cells generally comprise (1) a transparent front electrode deposited on (2) a transparent plate of glass or plastic material, (3) an electrochromic material (often in the form of a thin layer deposited on the transparent electrode), (4) a gap, filled with electrolyte, (5) a counter-electrode (also transparent if the device functions by transmission), and (6) conductors for electrical connection of each electrode to an electronic control means external to the cell.
  • Known cells also most often comprise a specific separator intended to maintain between the electrode and the counter-electrode an electrolyte-filled gap of constant thickness.
  • Known cells also comprise structural means employing material and seals intended to maintain cohesion and permanence of internal physical and electrical contacts which are necessary for correct operation. At least the front electrode and/or the layer of electrochromic material are delimited in such a way as to define the shape required for the corresponding picture element (such as image point or image segment).
  • a strictly leak-tight sealing is necessary to prevent loss (particularly by leakage or evaporation) of constituents of the internal medium, particularly constituents of the electrolyte.
  • Leak-tight sealing is also necessary to prevent the entry into the cell of constituents of external ambient atmosphere (for example, oxygen, carbon dioxide, humidity, and various contaminating substances) which are often capable, even in traces, of altering or degrading the constituents of the internal medium, of introducing parasitic processes, of affecting the operation of the cell, and of reducing its lifetime.
  • the sealing problem is a significant problem at points where the cell must provide a sealed passage for the conductors connecting the front electrode and the counterelectrode to the external electronic means.
  • the seals which must be compatible with the various materials used, are subject to mechanical stresses resulting in particular from differences between the coefficients of expansion of these materials.
  • electrochromic solids must generally be used by depositing a thin layer on the transparent electrode by means of costly vacuum deposition techniques (evaporation under vacuum, cathodic sputtering in particular). Their change of color is generally from colorless or from a primary color to a second different color: colorless to blue for WO 3 and MoO 3 , yellow to green for V 2 O 5 , colorless to blue or blue-black for IrO x , green to red for diphthalocyanin of lutecium.
  • Electrodeposition of metals The reversible electrodeposition of metals from an electrolytic solution has been the subject of various works, particularly with liquid organic electrolytes, because of corrosion problems and parasitic reactions harmful to the stability and lifetime encountered with aqueous electrolytes.
  • Y. Duchene et al. describes a display cell which uses as an electrolyte, methanol or acetonitrile containing silver iodide and sodium iodide.
  • the silver ions reduce into a silver film having a high contrast.
  • the optical density depends on the current density used, and inhomogeneities appear on the deposited film after a certain number of deposition redissolution cycles.
  • the cell does not have a writing voltage threshold and is not therefore suitable for multiplexed matrix writing.
  • the zone of the transparent electrode corresponding to the display must be delimited inside the cell by means of an insulating layer engraved according to the design of the zone in question.
  • the use of a glass sealing technology is indicated as one of the conditions of reliability, confirming the importance of strictly leak-tight sealing.
  • a similar cell described by I. Camlibel et al. (Appl. Phys. Letters 33,9, Nov. 78, page 793) contains silver iodide and potassium iodide in dimethylsulphoxide, and produces a specular gilt or bright red deposit, depending on conditions.
  • Electro-active polymers relate to polymers such as polyaniline, polyacetylene, polyrrole, and polythiophene, in particular which, in thin layer on a transparent electrode, can change color (for example from red to blue for polythiophene) depending on their state of oxidation. These materials, which are generally rather unstable or easily alterable, have a short lifetime and do not enable a very large number of operating cycles.
  • electrochromic cells do not have a definite electrical voltage threshold (i.e., an electrical voltage below which a picture element is not written). Furthermore, although most of these cells have an open circuit (nonvolatile) memory (i.e., a persistence of the written state when the electrical writing voltage is disconnected), this memory partially discharges if a written cell is connected to an erased cell, such that the first cell partially erases while the second partially writes. In this event, the optical density of the cells tends to become uniform with time. The absence of a definite writing threshold and/or a persistent memory in a circuit coupled to another erased cell, prohibit the matrix writing of a system of picture elements placed at the intersections of two orthogonal arrays of parallel conductors.
  • aqueous electrolyte such as an aqueous solution of sulfuric acid (document FR 7,626,282), or an organic electrolyte such as a solution of lithium perchlorate in propylene carbonate (Yoshiro Mori article, cited above)
  • This electrolyte which cannot generally be common to several cells for electrical reasons, requires individual confinement in each cell which must comprise an electrolytic compartment which must not be distorted.
  • the particularly complex structure which is obtained, despite its cost, does not enable a high resolution display device (such as a computer screen).
  • the size of the cell does not enable reduction of the gap between adjacent image-points to a value which should be of the order of a few tens of microns at most.
  • gelled semisolid liquid electrolytes U.S. Pat. No. 3,708,220: gelled sulfuric acid
  • polymers with acidic functions U.S. Pat. No. 4,116,545
  • ion exchange membranes U.S. Pat. No. 4,128,315
  • the structure of the cells is actually simplified, and in certain cases has the additional advantage of surface adhesion properties (tackiness), simplified construction, and viscoelastic properties which improve the contacts.
  • inorganic solids have also been used which have ionic conductivity, such as for example beta alumina (M. Green et al., Solid State Ionics 3/4, 1981, pages 141 to 147, North-Holland), or polymers having ionic conduction such as, for example, solid solutions of lithium perchlorate in polyethylene oxide (document FR 8,309,886).
  • ionic conductivity such as for example beta alumina (M. Green et al., Solid State Ionics 3/4, 1981, pages 141 to 147, North-Holland)
  • polymers having ionic conduction such as, for example, solid solutions of lithium perchlorate in polyethylene oxide (document FR 8,309,886).
  • solid electrolytes at ambient or ordinary temperatures have only a generally very low ionic conductivity, considerably impeding the speed of writing and erasure which may require several seconds or even more.
  • a progressive degradation of the electrical contact between the inorganic solid electrolytes and the electrodes is often observed. This
  • the counter-electrode In known electrochromic devices, the counter-electrode is often of complex and expensive manufacture and structure because of the functions that it may have to simultaneously provide. The functions include the auxiliary redox function, maintaining a constant specified electrode potential, high charge capacity, reversibility, and so forth, while being capable of a high number of cycles without degradation.
  • a counter-electrode has been produced comprising a second layer of an electrochromic solid modified in such a way as to have a low electrochromicity and deposited on a transparent electrode (U.S. Pat. No. 4,278,329).
  • Another known counter electrode is a sheet of paper formed with acrylic fibers, a binder and carbon powder, in which there is also incorporated an electrochromic solid (U.S. Pat. No. 4,088,395).
  • Another counter-electrode whose electrode potential is adjustable comprises carbon powder, a binder and mixtures of depolarizers W 18 O 49 and V 6 O 13 in adjustable proportions (Yoshiro
  • a recording medium comprising at least an electrochromic material having at least one free surface constituted by a mixture of solid consistency of at least (a) a water-soluble salt or a water-soluble mixture of salts of at least one metal which can be cathodically deposited from an aqueous solution of one of its ions; and (b) an initially water-soluble film-forming polymer resin, preferably in the proportion of 1 part by weight to 0.5 to 50 parts of anhydrous salts; and (c) water;
  • the electrochromic material intend to obtain a mark (signal or image) which is essentially stable in time.
  • the present invention relates to a light-modulating cell, characterized in that it comprises, at least, in combination:
  • the zones are capable of enabling (on the one hand) application to the working electrode of an electrical voltage which is negative with respect to that of the counter-electrode, and (on the other hand) allowing flow between the electrodes of a current whose direction is opposite to that of the electrical current resulting from application of the previous voltage.
  • This cell enables writing at least one picture element, maintaining the written state of such an picture element, erasing such a picture element, and maintaining the erased state of this picture element.
  • the writing of an picture element is defined as an increase in the optical density in the interface region between the working electrode and the layer of material.
  • the erasure of an picture element is defined as the reduction or disappearance of the increase in optical density obtained during the writing.
  • this cell also has, optionally, alone or in combination, the following characteristics.
  • the counter-electrode is transparent or substantially transparent, such that the cell can function by transmission.
  • the counter-electrode is opaque, the cell functioning by reflection.
  • the cell may furthermore comprise a reflecting and/or masking and/or diffusing element placed between the electrode and the counter-electrode.
  • a working electrode and/or a courter-electrode has a self-supporting structure of is supported by a self-supporting substrate.
  • the substrate is transparent or substantially transparent when the electrode which is associated with it is itself transparent or substantially transparent.
  • the layer of electrolytic material has thickness, in particular, of between a few microns and a few tens of microns.
  • the layer of electrolytic material has adhesive properties, in particular, a tacky touch or a sticky contact.
  • the cell may comprise at least two or more layers of electrolytic material which are separate, combined and, in particular, superimposed and/or juxtaposed. Two materials constituting the two layers may be different. Each layer contains a different percentage of the total constituents of a same electrolytic material, the layers together containing them all.
  • the electrodes have an overall curvature or localized reliefs, the latter being applied to the cell itself.
  • a layer of electrolytic material is continuous.
  • a layer of at least one electrolytic material is of juxtaposed granules or particles held by themselves or by a binder.
  • the cell furthermore comprises specific supplementary means of isolation and protection of its constituent elements from the ambient atmosphere; and/or a specific spacer.
  • the layer of electrolytic material is substantially rigid and the cell has no specific spacer between the two electrodes.
  • the layer of electrolytic material has tacky touch or a sticky contact and (on the other hand) the cell has not specific supplementary means for maintaining its cohesion.
  • a layer of electrolytic material has permanent ionic conductivity, including when it is in contact with the external ambient atmosphere, and (on the other hand) the cell has no specific means ensuring its leak-tightness.
  • a picture element's shape, size and position is determined exclusively by intersection of orthogonal projections on a screen surface, of the areas of the working electrode, counter-electrode and layer of electrolytic material.
  • the shape, size and position of an area of one of the components is determined by intersection of orthogonal projections on a screen surface of the areas of the other two components.
  • the areas of two components are identical and superimposed, and their common orthogonal projection on the third component is included in the area of the latter.
  • An other object of the invention is to provide a process for manufacturing a light-modulating cell as described above.
  • the process comprises at least the steps of:
  • a layer on at least one electrode there is first formed a layer on at least one electrode.
  • This layer is then given its solid consistency, in particular by evaporation, heat treatment, cross-linking or vulcanization.
  • the process may comprise a step of forming at least one layer of electrolytic material on one of the two electrodes, and a subsequent step of applying this layer by its fee face to the other electrode.
  • the process may comprise a step of forming at least a first layer on one of the two electrodes, another step of forming at least a second layer on the other electrode, and another subsequent step of joining the first and second layers by their free faces.
  • a layer may be formed in one pass (simple layer) or in several successive or non-successive passes (composite layer) of formative compositions which may or may not be identical.
  • the electrolytic material and the electrode may be directly applied in contact with each other.
  • the electrolytic material may first be applied to a temporary, intermediate substrate (particularly one having a nonadhering surface), and the layer of electrolytic material is then transferred from the substrate to the electrode concerned.
  • the formative composition is applied in one or more layers, of total thickness preferably between a few microns and a few hundred microns depending on its water content. This is done in order to obtain a layer of electrolytic material of thickness preferably between a few microns and a few tens of microns.
  • the formative composition comprises at least the constituents of the electrolytic material and additional water, and possibly agents for maintaining stability and/or conservation and/or facilitating application in layers of the formative composition.
  • the viscosity of the fluid formative composition is adjusted to a suitable value for a particular method of formation and/or application in layers by evaporation of part of its water or by the addition of additional water.
  • the electrical connection zones are distributed in such a way as to obtain a current density which is as uniform as possible inside the picture element.
  • the invention enables, as described below, overcoming of the disadvantages of the known light-modulating techniques.
  • the invention also enables writing, erasing and maintaining a picture element, in a written or erased state, in a reversible and repetitive way, which is not foreseen in document FR 2,504,290.
  • FIGS. 1A, 1B, 2A, 2B, 3A, 3B, 4A, and 4B are four pairs of drawings showing for each pair a top plan view and a side
  • FIGS. 1A and 1B show the cell at rest.
  • FIGS. 2A and 2B show the cell during a write phase.
  • FIGS. 3A and 3B show the cell in a maintaining phase.
  • FIGS. 4A and 4B show the cell in an erase phase.
  • FIG. 5 is an elevation view showing the writing of picture elements by combined superimposed patterns of the electrode, counter-electrode and electrolytic material.
  • FIG. 6 is a cross-sectional view slowing one embodiment of the layer of the present electrolytic material.
  • FIG. 7A is a cross-sectional view showing a second embodiment of a cell.
  • FIG. 7B is a cross-sectional view showing a third embodiment of a cell.
  • FIG. 8A is a cross-sectional view showing a first embodiment of a modulating cell.
  • FIG. 8B is a cross-sectional view showing a second embodiment of a modulating cell.
  • FIG. 8C is a cross-sectional view showing a third embodiment of a modulating cell.
  • FIG. 8D is a cross-sectional view showing a fourth embodiment of a modulating cell.
  • FIG. 8E is a cross-sectional view showing a fifth embodiment of a modulating cell.
  • FIG. 8F is a cross-sectional view showing a sixth embodiment of a modulating cell.
  • FIG. 8G is a cross-sectional view showing a seventh embodiment of a modulating cell.
  • FIG. 8H is a cross-sectional view showing an eighth embodiment of a modulating cell.
  • FIG. 8I is a cross-sectional view showing a ninth embodiment of a modulating cell.
  • FIG. 9 is a top plan view of a tenth embodiment of a device constructed using strip material for the component parts.
  • FIG. 10 is a cross-sectional view corresponding to the embodiment of Example 1 (in the Detailed Description).
  • FIG. 11 is an elevation view corresponding to the embodiment of Example 4.
  • FIG. 12 is a cross-section view taken along the line XII--XII of FIG. 11.
  • FIG. 13 is a cross-section view corresponding to the embodiment of Example 6.
  • FIG. 14 is an elevation view corresponding to the embodiment of Example 7.
  • FIG. 15 is a cross-section view taken along the line XV--XV of FIG. 14.
  • FIGS. 16 is a front elevation view of a display panel with direct addressing corresponding to the embodiment of Example 11.
  • FIGS. 17 is a rear elevation view of a display panel 15 with direct addressing corresponding to the embodiment of Example 11.
  • FIGS. 18, 19 and 20 are partial cross-sectional views of the embodiment of FIGS. 16 and 17.
  • FIG. 21 is a detailed partial cross-section view of an alternative embodiment for electrical connection.
  • FIGS. 22 and 23 are front elevation views of a panel according to the embodiment of Example 12.
  • FIG. 24 is a front elevation of a panel according to the embodiment of Example 13.
  • FIG. 25 is a rear elevation of a panel according to the embodiment of Example 13.
  • FIG. 26 is a cross-sectional view taken along the line XXVI--XXVI of FIG. 24.
  • FIG. 27 is a cross-sectional view taken along the line XXVII--XXVII of FIG. 24.
  • Porture element (or “pixel)
  • image point and “image segment” all relate to a delimited zone or area having an optical density capable of being increased and conversely reduced to return to its original appearance.
  • the area will acquire, when viewed by reflection, a coloring or darkening.
  • the material used to form the area is transparent, the area will become partially or completely opaque, when viewed by transmission, upon having its optical density increased.
  • the optical density of such an area is reduced, the area assumes its original reflection characteristics and/or original transparent quality.
  • image point preferably refers to a small area, often of circular, square or slightly rectangular shape, repeated on the surface of a screen of a display device.
  • a display device contains a plurality of image points, each which may represent one node of a network which occupies regions or the totality of the area of the screen. Networks occupying regions of the screen may assume geometric shapes including a square, centered square, and compact hexagon.
  • image segment preferably refers to a relatively large display screen area.
  • Image segments may be associated, on the surface of a display device screen which contains a plurality of image segments, with other image segments of the same shape and/or of different shapes according to specific geometric arrangements.
  • One well-known geometric arrangement of image segments is the seven-segment arrangement employed in light-emitting-diode (LED) or liquid crystal display (LCD) devices enabling representation of numerals 0 to 9 by selective coloring or opacifying of appropriate combinations of these segments.
  • picture element means either an image point or an image segment.
  • Electrode modulation refers to selective illumination and darkening of a device under electrical control.
  • Elementary light-modulating cell or “elementary light-modulating device” (abbreviated as “elementary device” or “elementary cell”) refer to the complete structure necessary for electrical control and selective illumination of a picture element.
  • An elementary electrochromic modulation cell comprises the following components, suitably arranged and associated:
  • a second electrode or counter-electrode (which may be transparent or non-transparent, depending on whether the picture element is observed by direct transmission of light or by reflection);
  • (f) means of addressing (direct, multiplexed, and so forth) enabling its selective control (present if an elementary cell is part of a multiplicity of elementary cells in one same display device).
  • elementary device denotes a device comprising a single elementary cell and extrinsic components necessary for its functioning, combined with one or more other elementary devices in a composite device having a plurality of associated cells.
  • extrinsic constituents or components include electrical connections associated with the electrodes; means for masking the periphery of the cell; and a transparent substrate for the transparent electrode.
  • Independent light-modulating device refers to at least one elementary modulating device and other specific components enabling the device to be used as an independent unit, including:
  • connection connector(s) or zone(s) to which are connected by means of internal electrical connections, elementary devices of the independent device, enabling easy connection of the latter to the control and addressing electronics and to the associated electrical energy source;
  • a printed circuit board possibly able to serve, singly or in combination, as a mechanical support, connector or connector support, or support of part of the associated electronics.
  • Such an independent device can, for example, be a device commonly called a display device panel or screen, or may be any of various electro-optical devices.
  • “Screen area of a display device” refers to the area which comprises, surrounds and connects all of the picture elements of the device.
  • Photo element and elementary modulating cell also refers to any area which can be colored or increased in optical density and the corresponding elementary cell, whatever their shape and size may be.
  • Such light-modulating devices in some instances do not comprise actual information display devices, but instead permit variable transmission or variable reflection of light. In some such devices only one elementary cell is provided.
  • Such devices include windows, shop windows, screens, windscreens, and spectacles having variable transparency, light valves, shutters, variable reflection mirrors, and light amplification devices.
  • Solid consistency refers to a material having, in the absence of externally applied constraints, the appearance of a solid.
  • Solid consistency includes in a non-restrictive way the consistency of a pasty medium of very, high viscosity, the consistency of a thixotropic fluid in the rest state, the consistency of a gel or a gelled medium and the consistency of a plastified polymer film. All such materials, when viewed without disturbance, appear solid.
  • Frm-forming refers to forming a sheet of an existing mixture, which also includes other constituents.
  • Initially water-soluble refers to a material which is water-soluble before incorporation in electrolytic material or in a formative composition of electrolytic material. Once the electrolytic material is fabricated, the initial water-solubility of the resulting resin can be partially or totally, reversibly or irreversibly, lost. This loss of water-solubility may occur due to cross-linking by a cross-linking agent, for example.
  • Layer refers to a thin sheet or film of homogeneous, heterogeneous, or composite material having a large surface area with respect to its thickness and preferably having a substantially constant thickness. Such a layer can be simple or composite; a composite layer itself comprises several layers. Such a layer can be spread undivided, or the layer may be divided into portions.
  • “Small thickness” of a layer of electrolytic material refers to a thickness preferably between a few microns and a few tens of microns.
  • “Small thickness” of an electrode refers to a thickness preferably between a few hundred Angstroms and several hundred microns.
  • “Small thickness” of a modulating device refers preferably to between a few microns and a few hundred microns, including the thickness of a substrate.
  • Hemogeneous mixture refers to a mixture whose constituents, on the macroscopic scale, cannot be distinguished from each other, having a structure appearing to be continuous.
  • Alloy refers to the association or combination of several types of different metals, whether a solid solution, an intermetallic compound, a juxtaposition of crystallites of each metal, or any other form of association or combination obtained by co-deposition of several metals.
  • an elementary modulating cell 1 may be constructed by disposing a first electrode or working electrode 2 (which electrode 2 is electronically conductive, optically transparent) in contact with a face of at least one layer (or portion of a layer) of at least one electrolytic material 3.
  • the material 3 preferably has a thickness between the order of a few microns or a few tens of microns, produced by a homogeneous mixture of solid consistency comprising:
  • Such a cell further includes a second electrode or counter-electrode 4, in contact with the other face of the layer 3 electrolytic material.
  • Illuminating a picture element is accomplished by "writing” the element.
  • the "writing” process comprises increasing the optical density of the interface region between the working electrode 2 and the layer of electrolytic material 3. It is possible to write a picture element 5 by applying to the working electrode 2 a negative electrical voltage of between a fraction of a volt to a few volts with respect to the counter-electrode 4 for a time interval having a certain duration. This time interval is referred to as the write phase, and the state of a cell during the write phase is illustrated in FIGS. 2A and 2B.
  • Such erasure occurs during an "erase phase” and comprises reducing or eliminating the increase in optical density obtained during the previous write phase, by causing an electric current to flow between the electrodes 2, 4 in a direction opposite the direction of current flow applied in the write phase, as illustrated in FIGS. 4A and 4B.
  • the electrolytic material used in the elementary cell has the following further characteristics: ionic conductivity; plastic or viscoelastic deformability; and it can be conformed in a continuous layer of small thickness. Further, the electrolytic material not only participates in the writing or erasing of an image point or image segmment. It can also enable the flow of electrical current between the working electrode and the counter-electrode during the writing and during the erasure, accomplishing this in the following ways:
  • An electrochromic light-modulating process implemented by the cell and the material thus described comprises the following steps:
  • the process is repetitive and is able to comprise several pairs of write and erase steps.
  • the written picture element 5 is on the one hand an area delimited by a remarkably sharp contour, corresponding to the intersection of the orthogonal projections, on the screen area of the cell, the areas corresponding to the areas of the two electrodes 2, 4 and of the layer of electrolytic material 3 between them.
  • the picture element has a dark, matt and amorphous appearance, very different from that of a conventional metallic deposit. It appears clear, bright and crystalline, close to that of a metallic "black", and having the appearance of black printing ink, as described below.
  • the written picture element 5 exactly reproduces the shape of the counter-electrode 4, even though the written picture is formed at a certain distance from the counter-electrode. One does not observe any blurred or diffused contour, as could be expected.
  • the picture element 5, once written, does not diffuse beyond its contour and is not diluted by its undarkened surroundings.
  • This characteristic is illustrated diagrammatically in FIG. 5.
  • the obtaining, under such conditions, of a sharp contour of the written image point or image segment 5 is very important.
  • it is in fact possible with known electrochromic processes to obtain picture elements with a sharp contour by delimiting the transparent electrode or the electrochromic material in common cases in which the electrochromic material is a thin solid deposited layer on the transparent electrode, this delimitation, makes the manufacturing complex and expensive and reduces the resolution and the average contrast. This is true, particularly in the case of a so-called matrix display device which comprises a matrix of pixels placed at the intersections of a system of horizontal conductive rows and vertical conductive columns.
  • a delimitation of the contour of each picture element 5 which can be reduced to the intersection of the areas of a transparent electrode 2 and of a counter-electrode 4, both elongated and having directions generally perpendicular to each other, the electrolytic material 3 having an area covering at least this intersection.
  • This delimitation lends itself to extremely simple construction and enables obtaining of picture elements 5 very small in size, as well as minimizing gaps between adjacent picture elements.
  • This variant is represented diagrammatically in FIG. 9 in the particular case in which the electrolytic material 3 is in the form of strips which are coaxial with the counter-electrodes 4 and slightly and laterally overlapping the latter. This variant is intended for so called matrix display panels.
  • the optical density of the picture element 5 is uniform inside its contour up to large sizes of this picture element, on the order of several square centimeters, without special precautions. Beyond this size, because of the resistivity of the working electrode 2, an appropriate geometry of the electrical current supply zones or points (that is, electrical current lead zones 11 and 12, respectively, on the working electrode 2 and possibly on the counter-electrode 4) is necessary to ensure a sufficiently uniform current density in order to obtain a uniform optical density.
  • a mark obtained with a writing stylus is always very dense by reflection and opaque by transparency.
  • the fact of varying the electrical charge when the writing stylus forming a cathode is immobile during the writing of a point, or of varying the current density when the stylus is moving for writing a line, has the sole effect of varying the diameter of the point or the width of the line.
  • it does not affect its optical density as it does according to the present invention. It is possible to obtain, starting from the erased state, an increase in optical density with a duration of application of the electrical write phase voltage of only a few milliseconds, and a corresponding decrease with an erase phase duration of the same order of magnitude.
  • the writing process can be implemented in such a way as to exhibit a well-defined electrical voltage threshold of high value. That is, when applying an electrical write voltage less than this threshold to an elementary cell 1, the picture element 5 is not written.
  • Such an electrical writing voltage threshold is essential for the multiplexed addressing of a matrix display device.
  • the erasure of the written picture element 5 is obtained by causing to flow in the elementary cell 1 a current of opposite direction to that of the write phase current.
  • the erase phase current is generally obtained either by applying to the electrodes 2, 4 an electrical voltage of the opposite direction to that of the writing voltage; or, in the case in which the cell exhibits an electromotive force, by simple short circuiting.
  • the present modulation process enables, in a reversible and repetitive way, writing and erasing of image points or image segments, which is not foreseen in the document FR 2,504,290, referred to above.
  • a picture element 5 is written by cathodic reduction in the region of the interface between the working electrode 2 and the layer of electrolytic material 3.
  • the cathodic reduction involves metallic ions present in the layer of electrolytic material 3 being reduced into a metal or metallic alloy which electrocrystallizes according to a particular mode having remarkable characteristics of optical density, uniformity, sharpness of contour, grey scale and absence of diffusion or dilution, and so forth, as described above.
  • Picture element 5 is erased by anodic oxidation of the metal or metallic alloy plate formed as described above.
  • the electrolytic material is thus already characterized by enabling both the writing and erasure functions.
  • the metallic deposit formed in the interface region is capable of being redissolved by anodic oxidation, without a residual deposit remaining.
  • the redissolution is also achieved without massive reinjection of metallic ions produced by this oxidation into the electrolytic material, thereby avoiding production of harmful or parasitic phenomena or processes (such as a flocculation or a local "salting out" of the film-forming polymer), as would have been expected.
  • the cathodic deposit of metal or alloy according to a particular mode of electrocrystallization observed, and its dissolution by anodic oxidation, is obtained with layers of electrolytic material containing (depending on the cases) a single metal or several metals chosen from most of the metals which can be cathodically deposited alone or co-deposited with several or which cannot be deposited alone but can be cojointly deposited with others, from an aqueous solution of their simple or complex ions or a combination of them.
  • the following metals are suitable: zinc, cadmium, lead, silver, copper, iron, cobalt, nickel, tin, indium, platinum, palladium, gold, bismuth, antimony, tellurium, manganese, thallium, selenium, gallium, arsenic, mercury, chromium, tungsten, molybdenum, associated with a large number of water soluble film forming polymer resins.
  • the actual crystalline structure of the developed metallic deposits which appears interspersed in the network of the polymer resin, could be that of a highly divided state with regard to appearance and optical density.
  • One of the hypotheses is that of a multi-dendritic growth along the molecular chains of the resin.
  • the invention is not tied to the hypotheses and assumptions thus mentioned.
  • the present electrolytic material can contain (without disadvantage for obtaining of the optical densification of the picture element with the characteristics mentioned above and without disadvantage for its erasure), in addition to the already mentioned electro-depositable cations, cations of metals which cannot be electro-deposited from an aqueous solution in substantial proportions. This characteristic produces a greater flexibility in the formulation of electrolytic materials better responding to various individual application requirements.
  • writing marks on the recording medium is inhibited and replaced by a metallic plate on the cathode comprising the writing electrode. And/or it is inhibited also by a release of hydrogen, when the layer of electrochromic material contains a considerable proportion of metal cations which cannot be electro-deposited from an aqueous solution, such as the alkali metals (with the exception of ammonium ion), the alkaline-earths in particular.
  • the presence of a considerable quantity of metal cations which cannot be electro-deposited has no inhibiting effect. This could be associated in particular with the fact that the voltages necessary for writing are a maximum of a few volts (while according to the document FR 2,504,290, the voltages used are generally within a range from about a few volts to a few tens of volts).
  • a layer of the present electrolytic material is generally a continuous layer. That is, it is generally non-granular, and is transparent or substantially transparent. Depending on the nature of the ions which it contains, it can be colorless or colored.
  • the layer of electrolytic material is left in this transparent form or in a form which is substantially transparent or as slightly colored as possible. This is true unless it also constitutes a colored filter, for example, for producing variable transmission colored apertures or color display devices.
  • a masking and/or contrasting pigment compatible with the other constituents of the electrolytic material.
  • Such a pigment has the effect of masking the counter-electrode if the latter does not constitute a background of satisfactory color and/or contrast, while attenuating a possible colored tint of the electrolytic material if such a coloring exists because of the composition and is not desirable, and of constituting a background providing the most desirable contrast with the black appearance of the written picture element.
  • a particular colored background which can be of particular interest for production of color display devices
  • the color of a colored pigment or of a dye present in the electrolytic material is progressively extinguished until it is practically black, without residual coloration, when the optical density of a picture element is progressively increased.
  • This remarkable feature enables the production of multi-color display devices by three-color additive synthesis using three electrolytic materials, each material colored according to one of the three primary colors.
  • the present electrolytic material can comprise, depending on the cases, the ions of a single metal or of several metals chosen among most of the metals which can be cathodically deposited alone or co-deposited with several. It is therefore possible, depending on the case, to change the conditions for obtaining the deposit of a single one of these metals and/or modify the write or erase features and/or modify the appearance of such a deposit, or obtain by cathodic reduction an alloy which can have an appearance and/or write or erase characteristics and/or features combining those of the individually deposited metals, but also have an appearance and/or characteristics and/or write and erase features which are completely new. This may be true, for example, with regard to "memory” (that is, nonvolatility of memory, the persistence of the coloring, densification or opacification of the picture element in the absence of electrical voltage applied to the elementary cell).
  • memory that is, nonvolatility of memory, the persistence of the coloring, densification or opacification of the picture element in the absence of electrical voltage applied to
  • the water-soluble metallic salt or water-soluble mixture of metallic salts is hygroscopic and preferably deliquescent in the presence of atmospheric humidity.
  • a layer or film of electrolytic material having a thickness of between a few microns and a few tens of microns not enclosed in a sealed enclosure permanently retains (down to a very low atmospheric humidity) a high ionic electrical conductivity which enables the elementary modulating cell to be operated with a minimum voltage of a few volts.
  • This high ionic electrical conductivity is due to the fact that, with hygroscopic salts, the layer of electrolytic material, although having the appearance and solid consistency of a dry layer, retains a certain quantity of water in equilibrium with atmospheric humidity.
  • the ionic conductivity varies with atmospheric humidity, but remains high down to its very lower levels of water content. It retains a conductivity value which depends on the degree of hygroscopicity or deliquescence of the chosen combination of salts.
  • composition of the electrolytic material it is possible to avoid sealing the light-modulating elementary cell in a strictly leak-tight way, unlike most known electrochromic display devices.
  • This avoidance of leak-tight sealing represents a considerable simplification in manufacture of the cell or of the device, and provides a reduction in cost.
  • the impedance like other factors contributing to the impedance of the cell, comprises multiple polarizations corresponding to various electrochemical processes occurring at each electrode (in particular electrochemical activation polarizations, concentration polarizations). In any case, it is possible to compensate for a substantial variation in the overall impedance of the cell by modifying the electrical writing voltage.
  • a protective insulation of the cell or of the device is desirable or even necessary when the light-modulating cell is operated in extreme and/or aggressive and/or corrosive atmospheric environments, for the purpose of limiting or preventing components of the cell or device from coming into contact with the external medium.
  • the effect on the structure, manufacture and cost is very different from that of having to provide each cell, group of cells or device with strictly leak-tight sealing o protection which is capable of providing and retaining a strictly leak-tight protective insulation despite the thermal or mechanical stresses to which the cell or device may be submitted.
  • a layer of the present electrolytic material which has a solid consistency in the absence of externally applied stresses, has, under the effect of such stresses, a plastic or viscoelastic behavior.
  • the electrolytic material's characteristics depend particularly on the nature of the polymer resin and the degree of cross-linking.
  • This plastic or viscoelastic behavior is very important. On the one hand, it enables the layer of electrolytic material to be shaped to compensate for defects in the flatness of one or both of the electrodes, and to compensate for defects in parallelism between the two electrodes. This behavior thus provides an excellent physical and electrical contact, despite these defects.
  • the electrolytic material remains connected at the interface between the working electrode or counter-electrode and the layer of electrolytic material. A good physical and electrical contact remains assured even if overall or local strain affects the cell or light-modulating device, due to compliance of the electrolytic material.
  • the above-mentioned physical properties of the electrolytic material enable a considerable simplification of the construction of a light-modulating cell or device, and a reduction in requirements relating to the constitutive materials and components.
  • the properties also enable production of very large display panels.
  • a layer of electrolytic material deposited by industrial application or known coating techniques generally suffices to constitute the spacer and to define a sufficiently accurate spacing.
  • the substrate of the transparent working electrodes can be, without disadvantage, for example, a plate of drawn glass.
  • Very large-area display panels comprising a multiplicity of elementary display cells
  • the strains mechanical, thermal, vibratory
  • to which large areas are likely to be subjected do not have a harmful effect on the physical integrity and functioning of these elementary display cells.
  • the present electrolytic material has adhesive properties. More specifically, the electrolytic material has a sticky touch (known by the expression “tack”) or contact adhesion (known by the expression “pressure-sensitive adhesion”).
  • Such resins can be (in particular nonlimiting examples) hydroxyethylcellulose, polyvinylpyrrolidone, polyvinyl alcohol, or equivalents.
  • the layer of electrolytic material advantageously comprises a composite with three superimposed layers. Two external layers of the three are formulated by means of an appropriate resin, and contain neither a cross-linking agent nor contrasting pigment, or sufficiently little not to affect the tack; the internal layer 7 is able to be deprived of this tack (FIG. 6).
  • tack or surface adhesion also enables simplification of the manufacture of light-modulating cells and devices.
  • the mechanical cohesion of each cell can be maintained solely by the pressure-sensitive adhesion properties of the layer of electrolytic material; the material adheres both to the working electrode and to the counter-electrode so that it is unnecessary to provide additional external mechanical means to support the cell.
  • the adhesion of the electrolytic material to the two electrodes provides an excellent physical and electrical contact of the electronic conductor and the ionic conductor at each interface. It is thus unnecessary to apply and maintain a pressure on the cell, or to provide mechanical means for this purpose.
  • the present electrolytic material already intrinsically contains at least a first auxiliary redox couple which is precisely the redox couple which is implemented at the working electrode: the metallic ion(s)-metal or alloy couple.
  • the same term of the couple is present at the working electrode and at the counter-electrode, while operation requires the presence of conjugated terms. It suffices, for example, to initially apply a sufficient voltage for a few seconds in order to create the necessary asymmetry for the cell to function correctly: everything functions as if the cell always contained a sufficient quantity of electroactive oxidizable species to enable such an asymmetry without damage.
  • An auxiliary redox couple of this type enables a satisfactory functioning by reflection if there is incorporated in the electrolytic material a masking pigment which conceals the counter-electrode. In functioning by transmission (with an electrolytic material and a counter-electrode which are kept transparent), erasure of the visible deposit on one of the electrodes is accompanied by the formation of a visible deposit on the other electrode, and the maximum transmission of the cell is reduced.
  • the present electrolytic material can also contain, intrinsically, a second auxiliary redox couple whose reduced form is on the one hand water-soluble in the presence of other water-soluble constituents of the material and, on the other hand, colorless or only slightly colored at the concentrations used.
  • An auxiliary redox pair of this type enables a satisfactory functioning both in transmission and in reflection, avoiding in transmission the disadvantage mentioned above.
  • This second auxiliary redox pair in the electrolytic material can have two origins.
  • a first origin is when a simple or complex metallic ion which is cathodically reducible to metal (introduced as such into the electrolytic material) can also reversibly change to a higher degree of oxidation. This is the case, among others, of lead, silver, copper, iron, mercury and tin in particular. For example, Cu(I), Fe(II), introduced to respectively create the electrochromic processes
  • a second origin or the intrinsic presence of a second auxiliary redox pair in the electrolytic material is when one of the anions of the water-soluble mixture of salts of the electrolytic material can reversibly switch to a higher degree of oxidation. This is particularly the case of the halide anions.
  • the presence of the chloride or bromide anion creates same time as the auxiliary redox couples such as
  • an auxiliary redox couple of the previous type It is also possible to introduce extrinsically into the present electrolytic material (if it does not contain it intrinsically) an auxiliary redox couple of the previous type. That is, an auxiliary redox couple whose reduced form is water-soluble in the presence of other water-soluble constituents of the material, and colorless or only slightly colored in the concentrations used.
  • auxiliary redox couple in the electrolytic material corresponds to a preferred composition of the electrolytic material which is particularly advantageous.
  • the counter-electrode it suffices for the counter-electrode to have simple electronic conduction properties (and optical transparency properties if the cell is intended to function by transmission), unlike the counter-electrodes of complex composition and structure of many known electrochromic devices. Numerous materials, particularly commercially available materials, can thus be directly suitable as counter-electrode materials.
  • the electrolytic material can be associated with a counter-electrode itself having redox properties.
  • a counter-electrode may be formed from a metal which can be anodically oxidizable in a reversible way.
  • a counter-electrode may be formed, covered with a layer of an oxide or solid compound capable of reversibly changing between two different degrees of oxidation.
  • the present electrolytic material may be a continuous material (that is, not granular), is transparent, can be made contrasting and opaque in its mass, is of solid consistency, has plastic or viscoelastic deformability, has permanent ionic conductivity which it is furthermore capable of retaining even if it is exposed to the atmosphere, and is also capable of exhibiting a pressure-sensitive adhesion.
  • the material when conformed in a layer or thin film, preferably has a thickness of from a few microns to a few tens of microns. The material is placed in contact with a first (or working) transparent electrode on one side, and with a second electrode (or counter-electrode) on the opposite side.
  • the material constitutes and comprises the following: the electrochromic material, the electrolyte, and an auxiliary redox couple of the light-modulating cell thus constituted, possibly a spacer, a means of cohesion for the cell, and a means for maintaining internal electrical contacts.
  • an electrochromic material it is capable of undergoing (at the interface with the transparent working electrodes) a reversible change of the degree of oxidation accompanied by a reversible change of coloring and/or optical density.
  • a metal or a metal alloy is formed at the interface, thus appearing as a darkening or opacification constituting a picture element having a remarkable set of characteristics.
  • anodic oxidation the metal or alloy is redissolved into metallic ions, thus restoring the initial appearance of the medium.
  • an electrolyte As an electrolyte, it has a high ionic conductivity due to its very concentrated aqueous solution nature, a conductivity which it retains permanently even without strictly leak-tight sealing in a preferred embodiment.
  • auxiliary redox couple As an auxiliary redox couple, it allows an electrochemical reaction to take place reversibly at the counter-electrode. This reaction is the conjugate of that which occurs at the same time at the working electrode.
  • Such an electrolytic material comprises a homogeneous mixture of solid consistency comprising:
  • the electrolytic material may additionally comprise, as necessary, the following items (to which the inventive material is not to be limited): at least one additional redox couple; cations which cannot be electrodeposited in aqueous solution; at least one solid in dispersed particulate form (in particular a contrasting and/or masking pigment); at least one coloring agent; at least one acid; at least one cross-linking agent; at least one complexing agent; at least one dissolved or dispersed additive capable of improving the properties and use of the electrolytic material; and at least one agent for the formation and/or application as a layer or film of the electrolytic material.
  • the layers (or films) of electrolytic material can be divided into at least two superimposed or interleaved layers, each containing a different percentage of each constituent.
  • a layer or film of composite material by superimposition or inter-leaving of at least two different electrolytic materials.
  • a composite layer comprising a non-adhesive film but mechanically very solid, comprising, for example, a resin such as sodium carboxymethylcellulose cross-linked in the film, and one or two external layers which are less mechanically solid but have pressure-sensitive adhesion, comprising, for example, polyvinyl polyvinylpyrrolidone or hydroxyethylcellulose.
  • the material comprises at least two electrolytic materials, each as previously defined.
  • the metallic salts which can be used are ionic compounds in which the metal is present in cationic form or incorporated in a cationic complex; the anions of these compounds, and other conditions (particularly the pH), are chosen such that the compounds are substantially completely soluble in an aqueous medium.
  • Appropriate anions could be found, for example, among the following: chloride, nitrate, sulphate, borate, fluoride, iodide, bromide, fluoroborate, fluorosilicate, fluorogallate, dihydrogenophosphate, chlorate, perchlorate, bromate, selente, thiosulfate, thiocyanate, formiate, acetate, butyrate, hexanoate, adipate, citrate, lactate, oleate, oxlate, propionate, salicylate, glycinate, glycocollate, glycerophosphate, tartrate, acetyl-acetonate, isopropylate, benzoate, malate, benzene sulphonate, 1-phenol-4-sulphonate, in particular.
  • the salts which can be used can also be ionic compounds in which the metal forms an outer orbital complex anion associated with a cation (such as, for example, the ammonium ion).
  • anionic complexes are the chloropalladate ion, the chloraurate ion, and the stannate ion, in particular.
  • the metals have some of their salts which are hygroscopic or deliquescent, most of them halides, nitrates, perchlorates, chlorates and thiocyanates, in particular.
  • a deliquescent mixture of salts is generally obtained from individually deliquescent salts, but mixtures can be deliquescent without their constituents being deliquescent themselves.
  • the mixture can more deliquescent (that is, crystallize at a lower relative humidity) than the most deliquescent of the constitutents.
  • halide anions chloride, bromide, iodide, fluoride
  • halide anions chloride, bromide, iodide, fluoride
  • new features include those regarding memory (that is, "nonvolatility,” or persistence of the written picture element after removal of the writing voltage), existence and value of a voltage threshold (that is, a minimum writing voltage), and more generally of various non-linear characteristics which are particularly advantageous for matrix addressing without loss of contrast nor cross-talk of display devices comprising a large number of picture elements.
  • Usable initially water-soluble film-forming polymer resins comprises resins capable of forming actual aqueous solutions. Also, resins capable of forming a colloidal dispersion in water are usable. It is possible to quote (by way of non-limitative and purely indicative examples) polymers such as polyoxyethylene, polyvinylpyrrolidone, polyvinyl alcohol, the cellulosic ethers such as, for example, hydroxyethylcellulose and carboxymethyl cellulose, sodium alginate, polyacrylic acid and its derivatives, gelatin, gum arabic, polystyrene sulfonic acid, polyacrylamide, in particular several resins which are compatible with each other (that is, which are not co-precipitant) which can be used in a mixture.
  • polymers such as polyoxyethylene, polyvinylpyrrolidone, polyvinyl alcohol, the cellulosic ethers such as, for example, hydroxyethylcellulose and carboxymethyl cellulose, sodium alginate, polyacryl
  • the molecular weight of the resins is between 10,000 and 10,000,000.
  • the mechanical qualities of the layer of electrolytic material can be improved, as far as desired, with a resin having a molecular weight located in the upper section of the indicated range (towards 10,000,000).
  • the polymer resin in addition to its functions in the layer of electrolytic material, provides the material or fluid formative composition with a viscosity which facilitates application in thin layers, a viscosity which can be adjusted in various ways.
  • polymer resins which provide the electrolytic material with pressure-sensitive adhesion properties such as (for example, in a non-limitative and purely indicative way) hydroxyethylcellulose, polyvinyl alcohol and polyvinylpyrrolidone, either for constituting a single layer or film, or for constituting at least one external layer of a composite film.
  • the quantity of water is such that, on the one hand, the electrolytic material retains its solid consistency in the absence of external stresses, and on the other hand its ratio to the water-soluble salts is as has been mentioned above.
  • the cations of metals which are not electro-depositable from an aqueous solution can be chosen (in a non-limiting and purely indicative way) from the alkali metals, the alkaline-earths, aluminum, beryllium, most of the rare earths and, in general, the cations of highly reducing metals which cannot be electro-deposited in aqueous solution. They also comprise the cations non-reducible into a metal such as, for example, the ammonium ion, the quaternary ammonium ions in particular.
  • the water soluble salts of these cations must be understood as water-soluble in the presence of other water-soluble salts of the material. That is, they may be chosen such that the mixture of all of the salts present in the material is water-soluble.
  • one or more solids could be homogeneously dispersed in the electrolytic material in particulate form for, in particular, improving or modifying mechanical properties, appearance of the written picture element, diffusion, and reflection of light.
  • a solid is a masking and/or a contrasting pigment having certain functions.
  • the functions include masking the counter-electrode if the counter-electrode does not constitute a background of satisfactory color and/or contrast, functioning as a background providing the most desirable contrast with the black appearance of the written picture element (for example, masking the black appearance of a counter-electrode containing carbon and substituting for it a contrasting background, most often white), attenuating a possible colored parasitic tint of the electrolytic material by swamping it.
  • Further functions include creating a particular colored contrasting background for producing colored light-modulating devices, especially for creating three-colored backgrounds, each according to the three primary colors of an additive three-color synthesis process for producing multi-color display devices.
  • Titanium dioxide principally in the rutile and anatase crystalline forms, is a white pigment which is remarkably stable in most of the present electrolytic media, as it has a very high hiding power and a high whiteness index.
  • This titanium dioxide pigment can be used in conjunction with a colored pigment, in a mixture, or by superimposition in a composite layer of electrolytic material, so as to enable modification of the saturation of the color and/or advantage to be taken of its high hiding power for a colored background.
  • Such colored pigments are, for example, zinc chromate, minium, cobalt blue, and chromium oxide.
  • the ratio of pigment dispersed in the electrolytic material can vary between wide limits, preferably between 0.1 and 50 parts by weight of pigment for one part of film-forming polymer resin.
  • the electrolytic material can comprise one or more dissolved or dispersed dyes, for the purpose of producing colored transmission filters of variable transparency.
  • This composition may be used for modulating devices such as colored transmission apertures, variable transparency apertures, and/or colored display devices. More particularly, it may be used for producing three filters, each colored according to one of the primary colors of the additive three-color synthesis system, for multi-color display devices. Numerous colorants, particularly of the type used for gouaches and water colors, can be used, provided they have no chemical interaction with the other constituents of the electrolytic material.
  • the electrolytic material can comprise, if necessary, one or two additional auxiliary redox couples whose reduced form is on the one hand water-soluble in the presence of the other water-soluble constituents of the material and, on the other hand, colorless or slightly colored at the concentrations used; the electrolytic material has the functions of modifying the writing voltage threshold, improving reversibility of the write-erase process, and increasing the number of write-erase cycles. It is possible, for example, to use metallic species having two degrees of oxidation, whose reduced form is soluble (or can be made soluble, for example, by complexing in an aqueous medium).
  • the electrolytic material can further comprise an acid in sufficient quantity for maintaining the pH at a suitable value, and preventing hydrolysis and/or precipitation of the metallic species present and/or gelling or syneresis or flocculation of the resin in the electrolytic material.
  • an acid in sufficient quantity for maintaining the pH at a suitable value, and preventing hydrolysis and/or precipitation of the metallic species present and/or gelling or syneresis or flocculation of the resin in the electrolytic material.
  • hydrochloric acid hydrobromic acid, acetic acid, perchloric acid, chloric acid, formic acid, nitric acid, or an equivalent.
  • the electrolytic material can further comprise a cross-linking agent for the polymer resin.
  • a cross-linking agent may be used for strengthening the electrolytic material's mechanical qualities, particularly hardness and cohesion.
  • polymer resins such as polyfunctional resins and compounds (for example, glyoxal, dimethylolurea, epoxy compounds, carbodiimide, isoxazole and dialdehyde starch in particular).
  • the cation weight can preferably vary between 0.01 and 0.5 parts per one part of resin.
  • a sufficiently weak concentration associated with the presence of a volatile acid prevents substantial cross-linking as long as the acid has not been eliminated by evaporation.
  • the cross-linking of the resin reduces contact adhesion capacity of the layer of electrolytic material.
  • a cross-linked layer, mechanically solid and coherent but non-adhesive is associated with one or two external layers which are less solid but adhesive and fabricated to comprise a suitable noncross-linked resin.
  • the electrolytic material can further comprise a complexing agent (such as, for example, tartaric acid, citric acid, the oxalate anion) which can assist in solubilizing of certain metallic salts and/or facilitating co-deposition of several ions into a metallic alloy.
  • a complexing agent such as, for example, tartaric acid, citric acid, the oxalate anion
  • the electrolytic material can further comprise one or more compounds, substances, dissolved or dispersed constituents which are capable of improving various characteristics.
  • the characteristics which can be improved thereby include stability of the electrolyte material and/or its optical, mechanical and electrical properties, and/or the appearance and/or other characteristics of picture elements, reversibility of the write-erase process, number of accessible cycles without degradation, writing and erase speeds, "memory"(or, nonvolatility of the writing), electrical writing threshold voltage and the electro-optical characteristics.
  • the electrolytic material can further comprise one or more agents for application in a layer of small thickness of the electrolytic material.
  • the agents may be, for example, surface-active agents, plastifying substances in particular.
  • the electrolytic material can possibly include residues of preparation, application or conservation agents belonging to a particular method of manufacture or application as a layer or film on the electrolytic material or of a formative composition of the electrolytic material.
  • a particular preferred process for the manufacture of the electrolytic material and its use as layers or films of small thickness in elementary light-modulating cells comprises the non-limiting steps of fabricating a fluid formative composition comprising at least the constituents of the electrolytic material and additional water (the latter in a quantity such that the fluid formative composition has an appropriate fluidity for the application or formation in a layer on at least one of the electrodes of an elementary light-modulating cell), and possibly processing (in particular drying, heat treatment) until a solid consistency is obtained.
  • Fluid formative composition is understood to mean a composition having the properties of a fluid material (either spontaneously, or under the effect of externally applied stresses such as those necessary for its application in a layer). It may be possible to fabricate the electrolytic material in its solid consistency spontaneously by interruption of the external stresses, by evaporation of an excess of water and/or of volatile substances, or by induction of a solid consistency by various means and processes.
  • the fluid formative composition also comprises the electrolytic material in its final composition as long as it remains deformable without rupture in a continuous way in the presence of externally applied stresses.
  • a fluid formative composition of the electrolytic material is obtained by dissolution of water-soluble constituents and dispersion of constituents which are not soluble in water. This dispersion and/or dissolution may possibly be followed by evaporation of part of this water (or by dilution by means of an adding water until the appropriate viscosity is obtained).
  • the formative composition can also contain substances intended to facilitate its application or formation in a layer, such as, for example, surface-active agents and plastifying substances. It can also contain substances intended to maintain stability of the formative composition and/or enable its continuous deformability (that is, without rupture).
  • the fluid formative composition in the presence of a cross-linking agent intended to cross-link the resin in the layer of electrolytic material, can contain cross-linking retarding agents, such as, in a nonlimiting example, complexing agents.
  • it can, for example, contain acids, in particular volatile acids.
  • Such substances can be partially or totally eliminated from the layer of electrolytic material, for example, by evaporation if they are volatile. Or, on the contrary, they may remain in the layer of the material.
  • a remarkable characteristic of this possible mode of manufacture of the electrolytic material is that it allows a convenient adjustment of the viscosity of the formative composition over a wide range, from that of a liquid similar to water to that of a solid paste in the absence of external stresses. It is also possible to adjust the viscosity to a convenient value for the chosen mode of application or formation in a layer of small thickness.
  • the mode of application or formation can be chosen from known techniques of application or formation in layers, such as silk screening, air gap, helical wire bar (known as "coating bar”), scraper, extrusion and immersion in particular, and, more generally, all of the so-called "thick film” techniques.
  • the formative composition is applied in a layer which is preferably between a few microns and a few hundreds of microns thick, depending in particular on its water content, in order to obtain a layer of electrolytic material.
  • the layer of electrolytic material is of a thickness preferably between a few microns and a few tens of microns, and is disposed over at least one of the electrodes of the elementary light-modulating cell. It is possibly dried (by hot air, infra-red, and exposure to the ambient atmosphere in particular) until a material of solid consistency is obtained in its final composition. It can also be subject, possibly, to additional processing. For example, a heat treatment may be applied in order to obtain or accelerate cross-linking of the resin.
  • the layer of electrolytic material can be used in elementary light-modulating cells by applying or forming this layer in contact with one of the electrodes, followed by applying the other electrode to the free face of the layer (FIG. 7A).
  • the cohesion of the cell is provided by simple adherence of the layer of electrolytic material to each of the two electrodes.
  • the direct formation of the material in a layer on a substrate can provide a natural adherence to this substrate.
  • This natural adherence can be much stronger than that of a layer of material which is first formed independently and then subsequently made to adhere.
  • the fluid formative composition can be spread or applied to an electrode in a single layer or in several consecutive layers with intermediate or simultaneous dryings.
  • the different layers can be identical to each other, but it is also possible to fabricate each layer with a different percentage of the tot al constituents, all of the layers containing them all.
  • a layer of electrolytic material having a composite structure is obtained.
  • a lower layer that is, directly applied to the substrate
  • a water-soluble resin which is easily crosslinked.
  • resins may be, for example, sodium carboxymethylcellulose (and a reticulation agent).
  • the upper layer with a resin providing a tack or a pressure-sensitive adhesion (such as, for example, hydroxyethylcellulose, polyvinylpyrrolidone, polyvinyl alcohol, and so forth).
  • the composite layer of electrolytic material thus formed adheres to the electrode on which it has been formed, has high solidity, and exhibits a pressure-sensitive adhesion which enables (in a possible mode of construction of the elementary modulating cell) construction of the cell by applying the second electrode to the free adhesive surface of the composite layer to which it adheres. It is also possible to apply a first layer (simple or composite) of electrolytic material to one of the electrodes, and to apply a second layer (simple or composite) to the second electrode, and to fabricate the elementary cell by joining of the two layers into a single composite layer by placing the two layers in contact with each other by their free faces. With at least one of the two layers formed according to the mode which provides a pressure-sensitive adhesion or tack, the cohesion of the cell is ensured solely by the adherence of the layers of materials to the electrodes and to each other.
  • the layer of electrolytic material can, in certain constructions, be common to all of the elementary cells and occupy the entire surface of the screen. In other constructions of the device, it can be distributed according to a surface pattern of portions of layer. That is, it may be divided into portions of a layer or layers of reduced area, the areas being independent and distributed over the screen, each belonging to an elementary cell or to a particular restricted group of elementary cells (for example, common to the cells of a same row or column in a matrix display device). Obtaining such patterns with high resolutions is particularly easy with the present method of manufacturing layers of electrolytic material, in particular because of the mask, stencil and silk screen techniques used in depositing processes known as "thick film" processes.
  • a light-modulating cell comprises at least, in combination:
  • a first "working" electrode which is transparent or substantially transparent and electronically conducting
  • electrical connection zones for leading electrical current to the working electrode and to the counter-electrode capable of enabling (on the one hand) application to the working electrode of a negative electrical voltage with respect to that of the counter-electrode, and (on the other hand) allowing passage between the electrodes of a current whose direction is opposite to that of the electrical current resulting from the application of the previous voltage.
  • An elementary light-modulating device comprises at least:
  • a first "working" electrode which is transparent or substantially transparent and electronically conductive, possibly supported by a transparent first substrate or front substrate;
  • a second "counter-electrode" or auxiliary electrode transversely separated from the working electrode and electronically conductive, transparent or substantially transparent if the elementary device is intended to function by transmission but without requiring transparency if the elementary device is intended only to function by reflection, possibly supported by a second transparent substrate if the elementary device is intended to function by transmission;
  • elements 1, 2, 3, 4 comprise a modulating cell
  • An elementary device can further comprise means of contrasting and/or masking the periphery of the optically densifiable zone (picture element), if these means are not already intrinsically created by the components of the elementary device.
  • An elementary device can also comprise means of insulating and protecting the components from ambient atmosphere, and/or means for maintaining the device's cohesion and/or of the permanence of its internal electrical contacts.
  • An independent light-modulating device comprises at least one such elementary device and, generally, may comprise a plurality of them (particularly in the case of a display device). Adding extensions or one or more connectors (or one or more electrical connection zones) to the elementary devices and adding mechanical supporting means provide the device with structural rigidity, the whole assembly enabling use of this device as an independent unit.
  • the complementary components of the independent device are in particular: mechanical supports or substrates, casing, encapsulation, internal connections, connector(s) or connection zone(s), and printed circuit boards, as already described.
  • the extrinsic components or constituents of the different elementary devices can be merged and/or combined.
  • Such an independent light-modulating device in particular a display device, comprises only solid materials as a consequence of the previously explained properties of the electrolytic material. It has a remarkable simplicity of structure and construction, with reduced requirements with regard to constituent materials and components, and a very wide tolerance with respect to external stresses. This enables simple and inexpensive construction of lightmodulating devices and, in particular, of various display devices with direct or matrix addressing, especially very large display panels (such as, for example, for stadiums, airports, and so forth).
  • a protective insulation of the device is generally desirable or even necessary in the case of functioning in extreme atmospheric environments which are corrosive or aggressive, in order to limit or prevent the contaminants and possible corrosive agents present in the external medium from gaining access to the components of the device, including those external to the cells (such as, for example, the connecting conductors). But, generally, this may be accomplished without having to go up to the constraints of a leak-tight sealing of each cell.
  • the combination of properties of plastic or viscoelastic deformability, of pressure-sensitive adhesion of the electrolytic material, and the absence of the necessity of strictly leak-tight sealing, enables large panels not to be affected in their integrity or functioning by the abovementioned thermal and mechanical stresses.
  • the working electrode comprises a material having properties of electronic conduction and substantial optical transparency. It may be, for example, a thin layer, generally of a few tens to a few thousand Angstroms thickness, of gold, tin oxide ("TO"), indium oxide, mixed oxide of tin and indium (“ITO”), or equivalent. This list is not to be construed as limiting, and its entries are solely indicative.
  • TO tin oxide
  • ITO mixed oxide of tin and indium
  • Such a layer is generally deposited on a transparent substrate such as a glass plate or a sheet of plastic material which can then constitute a front substrate of the elementary device. It can even constitute a single front substrate for all the individual working electrodes of an independent device when it comprises a multiplicity of picture elements.
  • the individual working electrodes comprise a pattern of portions of thin transparent conductive layer deposited on such a single front substrate or are patterned by selective etching of a single layer.
  • the "NESA" glass produced by PPG INDUSTRIES comprising a thin layer of tin oxide deposited on a glass plate, is an example of a transparent electrode and a substrate which can be used.
  • the counter-electrode is fabricated like the working electrode from a conductive and transparent material if the light-modulating device is intended to function by transmission or by transparency. If it is a thin layer deposited on a transparent substrate of glass or plastic material, the latter can constitute a single back substrate of all of the counter-electrodes of a modulating device when the latter comprises a multiplicity of picture elements. In this case, in the same way as the individual working electrodes, the individual counter-electrodes comprise a pattern of portions of thin transparent conductive layer deposited on such a single back substrate, or are patterned by selective etching of a single layer.
  • the modulating device already comprises a single front-substrate capable of forming a mechanical support for the device, it can be advantageous (particularly in order not to introduce possible additional rigidity) to have counter-electrodes mechanically independent from each other (and consequently, not to constitute a single back substrate).
  • the counter-electrode does not need to be transparent if the light-modulating device is intended to function by reflection. It is then sufficient for it to have electronic conduction properties. A very large number of homogeneous or composite materials having electronic conduction are suitable. It is advantageous to use counter-electrode materials in the form of sheets and layers of small thickness, and preferably having, in this form, a certain flexibility or deformability.
  • Counter-electrode material is understood to mean a homogeneous or composite material from which it is possible to fabricate a surface pattern of counter-electrodes.
  • a material can be, for example, a flexible sheet of pyrolytic graphite, a plastic material filled with carbon particles or metal particles, a conductive paste for silk screening, or a sheet of plastic or glass material of which one face is covered with a thin layer of a transparent semiconductor oxide.
  • composite conductor materials such as sheets of plastic or elastomer materials (polyvinyl chloride, polyolefins, silicones, and so forth) filled with particles, fibers or flakes of substances having electronic conductivity, for example, metals: copper, silver and nickel in particular (such as the "Conmax” by Tecknit filled with nickel in particular), semiconductors: tin oxide, indium oxide in particular, graphite or carbon (such as "Condulon” sheets by Pervel Industries, “Cabelec” by Cabot, “Abbey 100" by Abbey Plastics Corporation in particular).
  • metals copper, silver and nickel in particular (such as the "Conmax” by Tecknit filled with nickel in particular)
  • semiconductors tin oxide, indium oxide in particular, graphite or carbon (such as "Condulon” sheets by Pervel Industries, “Cabelec” by Cabot, “Abbey 100" by Abbey Plastics Corporation in particular).
  • This list is also not to be construed as limiting the invention, and
  • an originally fluid conductive composition generally composed of a resin and a particulate electronic conductive filler and possibly a solvent, deposited on a substrate and then dried or polymerized, for example, an ink or a conductive paste which can be silk-screened (such as the graphite-based "Electrodag 423 55" by Acheson, the copper-based "ACP-020J” and the graphite based "TU-40S” by Asahi Chemical, and so forth), or, for example, a conductive varnish or conductive paint (such as the copper-based "Copalex 100" by Showa Denko, the nickel based "Electrodag 440AS” and the graphite-based "Electrodag 5513" by Acheson, the silver-based "Acrylic-I” and the carbon-based "Latex 1000" by Tecknit, and so forth) deposited in a thin layer by known techniques of silkscreening, gun spraying, coating by
  • This single insulating back substrate can be permanent (that is, constitute a definitive component of the display device). It can also, by an appropriate choice as a sheet of non-adhesive plastic material and/or of a sheet covered with a layer of coating release material, be present only temporarily, to subsequently be removed once the device is completed. In this case, it only constitutes a convenient intermediate means of manufacture, enabling advantageous production of the pattern of counter-electrodes.
  • a counter-electrode of a device it is also possible, in another embodiment of a counter-electrode of a device, to deposit an originally fluid conductive composition using thick film techniques directly on the layer of electrolytic material, which is itself possibly already previously applied to the working electrode.
  • a display device comprising a multiplicity of picture elements
  • the above portions of the layer or layers of reduced area forming a counter-electrode are portions of layers which are independent from each other and which can, depending on the case, each belong to an elementary cell or can each be common to a particular restricted group of elementary cells. For example, they may be common to the cells of a same row or a same column.
  • the layer of electrolytic material can be used in the light-modulating device by application or formation of a layer 3 in contact with one of the two electrodes according to one of the described processes, followed by the application of the other electrode in contact with the free face of the layer of material.
  • the preferred method of producing the electrolytic material which provides it with a tack or a pressure-sensitive adhesion or superficial adhesion, it is not essential to provide specific mechanical means for maintaining the cohesion of the elementary cell thus fabricated.
  • the latter can also be implemented by application or formation of a first layer in contact with one of the two electrodes, and a second layer in contact with the other electrode, followed by the joining the two layers into a single composite layer by placing in contact and adhesion with each other the free faces of the two layers.
  • the layer of electrolytic material can be common to all elementary display cells, and can occupy the entire surface of the screen. It can also be distributed according to a surface pattern (that is, divided into portions of layer or layers of reduced area which are independent and distributed over the screen, each belonging to an elementary cell or each common only to a restricted number of elementary cells, for example, common to the cells of a same row or a same column in a matrix display device). Obtaining such surface patterns is particularly easy with the described electrolytic material due to the techniques of masks, stencils, screens, and so forth, used in the "thick film" depositing processes.
  • the means of electrical connection inside the independent device can be chosen from among all of the electrical linking or connection processes which can be used.
  • Electrical connection material means a material which is homogeneous or composite from which it is possible to fabricate one or more surface patterns of electrical connections connecting the elementary cells to the connector(s) or connection zone(s) to which the power supply and electronic control and addressing circuits must be connected.
  • a material can, for example, be a silver or copper paste for silk screening, a conductive lacquer, a selfadhesive copper strip or a printed circuit conductor in particular, the list not intended to limit the invention, its elements being solely indicative.
  • conductive inks, pastes or lacquers particularly based on particulate silver (such as, for example, “Electrodag 1415” and “Electrodag 427 SS” by Acheson, “CON/RTV-I” by Tecknit, “LS-400” by Asahi Chemical, “L 2003” and “L 2030” by Demetron, and so forth) which, implemented by thick film techniques, conveniently enable the establishment of electrical contact of very good quality with both the working electrode and the counter-electrode.
  • particulate silver such as, for example, “Electrodag 1415" and “Electrodag 427 SS” by Acheson, “CON/RTV-I” by Tecknit, "LS-400” by Asahi Chemical, “L 2003” and “L 2030” by Demetron, and so forth
  • an electrical bond or "weld” that is, a means for electrical connection
  • an internal connecting conductor such as a metal wire, copper strip, printed circuit board conductor, or conductive ink or paste.
  • the latter more specifically enable the construction of a connecting conductor which can be conformed to any relief and path whatsoever (such as those imposed by the back surface of a display device comprising a multiplicity of picture elements to which it is advantageous to apply). It furthermore enables it, by an appropriate choice of ink, to be deformable without rupture.
  • Such connecting conductors enable each electrode to be connected in a very practical way to a metallic conductor or to a rigid assembly of metallic conductors (such as a printed circuit board distant from the electrodes to be connected), or to connect each electrode to a conductor or connection zone of the device (for example, at one edge, from which it can be more convenient to connect the device electrically to the addressing and control electronics).
  • Means for masking the periphery of the picture element can be necessary for concealing the internal connecting conductors and all other elements of the structure of the display device which could be visible. It can also be necessary, as simultaneous means of contrast, for contributing to the contrast of the written picture elements with respect to the remaining part of the screen, this remaining part comprising the non-written picture elements and this interstitial space.
  • the picture element appears black when it is written and white (because of, for example, a contrasting white pigment present in the electrolytic material) when it is erased (that is, not written).
  • a first method of display (which can be briefly summarized as the display of black images on a white background) that the means for masking the periphery of the image picture element should have a white appearance which is as close as possible to the white of the non-written picture elements, which contributes to emphasizing the black of the written picture elements in comparison with their environment comprising all the non-written picture elements and the peripheral interstitial space, thus maximizing contrast.
  • a second method of display which can be briefly summarized as the display of white images on a black background, it is conversely desirable that the means for masking the periphery should have a black appearance as close as possible to the black of the written picture elements. This contributes to emphasizing the white of the non-written picture elements in comparison with their environment comprising all the written picture elements and by the peripheral interstitial space, here again maximizing contrast.
  • the means of masking and contrast of the periphery of the picture element are already intrinsically created when the layer of electrolytic material is given to the whole extent of the screen surface: the masking and contrasting pigment present in the layer of electrolytic material applies its action over the entire screen surface.
  • Such masking and contrasting means can comprise, for example, application to this periphery (prior to the positioning of the means of connection and all of the components to be masked) a layer of masking and contrasting material such as a layer of paint, ink, varnish, polymer or elastomer containing pigments and/or colorants in quantities such that a layer of sufficient thickness constitutes an opaque mask exhibiting the desired color.
  • a layer of masking and contrasting material such as a layer of paint, ink, varnish, polymer or elastomer containing pigments and/or colorants in quantities such that a layer of sufficient thickness constitutes an opaque mask exhibiting the desired color.
  • Very numerous materials in these categories can be suitable, particularly those capable of drying or hardening or cross-linking at ordinary or slightly raised temperatures.
  • Suitable materials with these characteristics include, for example, paints, lacquers or cellulose, vinyl, acrylic varnishes, and in particular colored inks and pastes for silk screening, singlecomponent pigmented silicone elastomers reticulating at ambient temperature (such as the "Rhodorsil CAF" by RhonePoulenc, in particular), pigmented two-component resin-hardener or resin-catalyst mixtures (epoxy, silicones in particular) polymerizing or vulcanizing at ambient temperature or at a temperature close to ambient temperature in particular.
  • Such materials are commercially available in the form of suspensions and/or solutions in an appropriate solvent or in the form of a not cross-linked monomer fluid as a single component or as two components to be mixed shortly before use.
  • Means of insulation and protection of the components of the device from the external environment are generally desirable or even necessary to prevent contact between these contaminant components and/or corrosive agents present in the external atmospheric environment, and possibly to protect them from rain, fog, and various accidental projections, and possibly from shocks. In extreme cases it may be considered necessary to give these means of insulation and protection a strict degree of imperviousness to liquids, gases, or any other substances whose penetration into or exit from the device is not desired.
  • Such means of insulation or protection can, for example, comprise an additional layer of paint, varnish or resin, particularly such as described previously as masking and contrasting means applied using the above-mentioned techniques over the entire rear face of the device if such a layer has a sufficient imperviousness to liquids and gases.
  • Such means can, more generally, comprise the coating, potting or impregnation of the device to be protected and, in particular, of the rear face by means of a polymer or an elastomer available in the form of a fluid monomer with an added hardener or reticulation catalyst, a suspension or solution of resin in a liquid or appropriate solvent, able (not necessarily) to contain a filler.
  • a potting or sealing resin of the type used for potting printed circuits for example, resins which are adhering and preferably flexible after cross-linking, such as silicone elastomers (for example, "RTV” by General Electric, and so forth).
  • a polymer is preferably colorless and transparent if the device is intended to function by transmission (for example, the "RTV 615" silicone rubber by General Electric).
  • Such a resin which is transparent and has good optical properties may also serve for totally potting such a device, whether it functions by transmission or by reflection, providing it with maximum protection.
  • a picture element is determined in shape, size and position by the intersection of orthogonal projections, on the screen surface, of the areas of the first electrode, the counter-electrode and the layer of electrolytic material of each elementary display cell.
  • the possibility of defining a picture element simply by such an intersection results from the above revelation that (in the described light-modulating process, and with components having the indicated thicknesses) the picture element is the area corresponding to such an intersection.
  • the area is delimited by a remarkably sharp contour, even though it is formed at a distance from the counter-electrode equal to the thickness of the layer of electrolytic material. While it could have been expected to have a blurred or diffused contour, at least for the portion of the contour determined by the counter-electrode, the increase in optical density, once formed, neither diffuses nor is diluted at the periphery of the picture element.
  • each of the elementary display cells is mainly described as the superposition of three layers or films (electrode, layer of electrolytic material, counter-electrode).
  • Each of these three principal components is able to serve to define a portion or the totality of the contour of each picture element, without it being necessary to make use of other means and/or other components.
  • Each component of such an elementary cell only functions or operates within the contour of the picture element. Any extension of this component beyond this contour can, if necessary, be used in another adjacent elementary cell without it being necessary to provide a substantial gap between the two zones of the component other than that corresponding to the relative geometry of these two adjacent image points.
  • Each picture element can be as small as the application or patterning techniques of the films or layers constituting the components allow.
  • a "surface pattern of picture elements” is understood to mean the surface geometric pattern of the individually addressable picture elements desired, such that the optical densification (that is, the darkening or opacification of selective combinations of these picture elements) can represent alphanumerical characters, images and other graphical arrangements which are to be displayed.
  • a surface pattern of picture elements of a display device corresponds to a spatial distribution in the device of elementary display cells whose components are (in the described display devices) superimposed layers or films of defined shape and area.
  • the shapes' orthogonal projection on the screen area includes at least the picture elements.
  • Each elementary cell can comprise its own individualized components. But it is possible that similar components of a given type are separate zones of a single component which is common to some or all of the elementary cells.
  • the transparent electrodes of a same column of pixels can be part of a single transparent conductive electrode in the shape of a strip, common to all of the elementary cells of the column.
  • surface pattern of components of the same type is understood to mean the geometric pattern formed by all of the components of the elementary display cells belonging to this same type of component, each of such components being able to belong to one cell or to be common to a group of cells.
  • Intersection of several superimposed surface pattern is understood to mean the geometric pattern formed by common areas of the orthogonal projections on the screen area of the various surface patterns concerned.
  • Coordinated (or conjugated) surface patterns of components of a display device is understood to mean superimposed surface patterns of components of each type, such that the association of the components determines as many complete elementary display cells as the number of picture elements the display device must comprise, and such that the spatial distribution and size of these elementary cells are compatible with the desired locations and dimensions of the picture elements on the screen of the device.
  • a display device comprising a multiplicity of picture elements, there is associated by superimposing (without using other means for assisting in the delimitation or separation of the picture elements) three surface patterns of components patterned and coordinated in such a way that their intersection defines the desired surface pattern of individually addressable picture elements.
  • the surface patterns comprise one surface pattern of transparent working electrodes, one surface pattern of portions of layer of electrolytic material, and one surface pattern of counter-electrodes, in this order.
  • pattern has been reserved in the rest of the description to all possible cases, with the exception of those in which the component concerns is single and common to all of the elementary cells of the device, in which case the qualifying expression “single and common to the entire screen” applied to the component concerned, is used.
  • a display device comprising a multiplicity of picture elements
  • Each component of different type can be used for defining a portion or the entire contour of picture element as described above. It is possible to choose, for a given display device, the most advantageous combination of patterns from the point of view of simplicity of manufacture of the elementary cells and internal electrical connections of the device.
  • the types of components chosen for distribution over the screen according to a surface pattern and those chosen to retain as a single component common to all of the elementary cells of the screen there are, in particular, the following combinations:
  • Working electrodes 2 alone are distributed according to a surface pattern, counter-electrode 4 and layer of electrolytic material 3 being single and common to the entire screen. This is an arrangement which can be used in particular for direct addressed devices (FIG. 8A).
  • Counter-electrodes 4 alone are distributed according to a surface pattern, working electrode 2 and layer of electrolytic material 3 being single and common to the entire screen. This is an arrangement which can be used in particular for direct addressed devices (FIG. 8B).
  • Counter-electrodes 4 and portions of layer of electrolytic material 3 are distributed according to coordinated surface patterns, working electrode 2 being single and common to the entire screen. This is an arrangement which can be used in particular for direct addressed devices (FIG. 8D).
  • Working electrodes 2 and counter-electrodes 4 are distributed according to coordinated surface patterns, layer of electrolytic material 3 being single and common to the entire screen. This is an arrangement which can be used in particular for direct addressed devices or for matrix addressed devices (FIG. 8E).
  • Working electrode 2 Counter-electrodes 4 and portions of layer of electrolytic material 3 are distributed according to three coordinated surface patterns. This is an arrangement which can be used in particular for direct addressed devices or for matrix addressed devices (FIG. 8F).
  • surface patterns of two types of components can advantageously be identical or substantially identical, (that is, they may be merged or substantially merged, in numerous cases where this merging is likely to constitute an advantage, for example, from the point of view of manufacture).
  • Sub-variant of the third variant Merged patterns of working electrodes 2 and portions of layer of electrolytic material 3, counter-electrode 4 single and common to the entire screen.
  • Sub-variant of the fourth variant Merged patterns of counter-electrodes 4 and portions of layer of electrolytic material 3, working electrode 2 single and common to the entire screen.
  • Sub-variant of the fifth variant Merged patterns of working electrodes 2 and counter-electrodes 4, layer of electrolytic material 3 common to the entire screen.
  • First sub-variant of the sixth variant Merged patterns of counter-electrodes and portions of a layer of electrolytic material 3, different coordinated (conjugated) patterns of working electrodes (FIG. 8G).
  • Second sub-variant of the sixth variant Merged patterns of working electrodes 2 and of layers of electrolytic material 3, different coordinated patterns of counter-electrodes 4 (FIG. 8H).
  • Associated pattern of a material, component or constituent is understood to mean an appropriate geometric and suitably associated pattern, connected or combined with components of elementary cells of a light-modulating device comprising a plurality of cells, of a material, component or peripheral constituent, extrinsic or specific, necessary for the functioning of the elementary cells and/or enabling the use of the device as an independent unit.
  • a first possible method for manufacturing a light-modulating device comprising a multiplicity of picture elements comprises applying (using known "thick film” techniques such as the silk screening techniques) a layer of electrolytic material and a layer of counter-electrode material, each divided into portions of layer defined and distributed according to surface patterns coordinated with a surface pattern of transparent electrodes, in order, in particular, that the intersection of the areas defined by the three patterns determines the desired surface pattern of picture elements.
  • It also comprises possibly applying (using the same thick film techniques) associated patterns of connection and/or insulating materials capable of being implemented using the above-mentioned techniques, and forming the network of internal electrical connections of the device or at least part of the latter.
  • It also comprises possibly applying (using the same thick film techniques) associated patterns of masking and contrasting material, insulation, protection, impregnation or potting material, as well as any other material used in the construction of a light-modulating device and capable of being used by these techniques.
  • this first method of manufacture there is produced at least part of the display device by applying in superposition (using thick film techniques on a transparent substrate forming a mechanical support and comprising a surface pattern of transparent working electrodes) at least the following:
  • associated patterns of current leads, of connecting conductors and of insulating layers comprising at least part of the network of internal connections of the device connecting the working electrodes and the counter-electrodes of the elementary cells to a connection zone or zones or to a connector or connectors, these patterns being combined in such a way that the various conductors are insulated from each other and from the working electrodes and the counterelectrodes to which they do not have to be connected;
  • this first method of manufacture of a light-modulating device of small thickness there is produced at least part of the display device by applying in superposition (on a first substrate, using thick film techniques such as, in particular, the silk screening techniques):
  • At least one layer of counter-electrode material and one layer of electrolytic material each divided into portions or defined zones and distributed according to coordinated surface patterns, and possibly associated patterns of current leads, of connecting conductors and of insulating layers constituting at least part of the network of internal connections of the device, associated patterns of masking and contrasting material, of insulation, impregnation, protection or potting materials, as well as any other material likely to be used in the construction of the light-modulating device and capable of being implemented by the above-mentioned techniques, and by applying in a single movement or progressively by zones depending on the case this first substrate at least already coated with some of its layers to a second transparent and preferably rigid or substantially rigid substrate provided with a surface pattern of transparent electrodes coordinated with the two previous coordinated patterns, these three patterns being in particular such that their intersection determines the desired pattern of picture elements.
  • the application is made in such a way as to enable the maintaining by pressure, or by pressure-sensitive adhesion of at least the assembly of layers of the first substrate in contact with the second substrate.
  • first substrate is preferably chosen from a material having anti-adhering properties or coated with a coating release material
  • first substrate can appropriately be, for example, a thin flexible sheet having an anti-adherent surface which can, once coated (that is, coated with its patterns), be completely applied to the second substrate in a single movement or by unrolling it and then removed, progressively separating the assembly formed by the superimposed configurations starting from an edge or a corner.
  • This assembly is maintained in contact with the second substrate, preferably by means of the pressure-sensitive adhesion properties of its concerned face, in particular resulting from the pressure-sensitive adhesion of the electrolytic material in a preferred composition.
  • It can also, for example, be a rigid cylinder which transfers all of its coated or applied patterns to the second, generally flat substrate when it is made to roll on the latter.
  • a second sub-variant in which the first substrate is preferably a thin flexible insulating or insulated sheet without anti-adherent surface state) to allow (once this first substrate coated and applied to the second substrate) this first substrate to remain in position and then become a permanent component of the device.
  • a first appropriate substrate can be, for example, a thin flexible impervious sheet of plastic material.
  • a third sub-variant of the second variant of the first method of manufacture in which the first substrate is preferably a thin flexible sheet without anti-adherent surface state which has a certain porosity distributed or localized according to a distribution
  • the first substrate is preferably a thin flexible sheet without anti-adherent surface state which has a certain porosity distributed or localized according to a distribution
  • part of the coatings on the front side that is, on the face which must be applied to the second substrate
  • the electrical connections necessary between the layers located on either side of the first substrate being made through the porosity.
  • Such an appropriate first substrate can be, for example, a sheet or non-woven material of substrate fibers, a sheet of impermeable plastic material in which perforations have been made according to a particular distribution.
  • the layers which must be applied to the rear side of the first substrate, or at least some of them, can be applied before or after application of this first substrate already coated with front surface layers to the second substrate.
  • the layers which must be applied on the reverse side of the first substrate can be so applied after application of this first substrate, already coated with rear side layers to the second substrate.
  • This latter method is particularly advantageous when the device comprises a multiplicity of electrical current leads to the working electrodes, distributed over the surface of the second substrate. It is easily possible (by application, for example, of a single layer suitably distributed in appropriate portions forming an associated pattern of electrical connection material such as a conductive ink or paste or equivalent on the reverse side of the first substrate) to simultaneously fabricate the current leads in contact with the working electrodes through the porosity of this first substrate, and to electrically connect them to the network of internal electrical connections of the light-modulating device.
  • the two first variants are combined with each other. That is, there is applied part of the constitutive layers or coatings of the various patterns concerned according to the first variant, and another part according to the second variant.
  • the first substrate of the first variant then has to be considered as merged with the second substrate of the second variant.
  • the first method thus described implements the thick film techniques which are known to the man skilled in the art of these techniques. For this reason, these techniques are not described again here, the invention essentially consisting in applying these thick film techniques to the modulating cells and devices.
  • a second possible method of manufacture of a light-modulating device comprising a multiplicity of picture elements, in particular applicable to the preferred structure, which lends itself to industrial manufacture at low cost price.
  • the second method comprises applying (to a single transparent substrate comprising a surface pattern of transparent electrodes of a coordinated surface pattern of dots, segments or strips comprising, associated in a single composite film) at least one layer of the present electrolytic material and one counter-electrode (for example, pellicular).
  • This second method of manufacture of a light-modulating device comprises manufacturing (according to known techniques, in particular, of extrusion, rolling, calendaring, coating, or equivalent) a film, sheet or composite strip formed of at least one layer of electrolytic material applied to a counter-electrode in the form of a film, sheet, strip or equivalent and preferably flexible, and possibly a layer of electrical connection material applied to the outside face of the counter-electrode film. It also comprises cutting out from this film or composite sheet (using known techniques of punching, stamping and laser cutting in particular) of elements in the form of dots, segments or strips.
  • connection conductors and insulation layers constituting at least part of the network of internal connections of the device connecting the working electrodes and the counter-electrodes of the elementary cells to a connection zone or zones or to a connector or connectors.
  • the counter-electrode in the form of a sheet or film or thin equivalent can be any of the previously described counter-electrodes made from homogeneous material, composite material, of simple or complex structure, preferably flexible and deformable without damage, of thickness preferably between about ten microns and a few millimeters, more preferably between about ten and a few hundred microns.
  • the layer of electrical connection material possibly applied to the outer face can, if necessary, constitute an electrical current lead for the counter-electrode.
  • the layer of electrolytic material preferably has the pressure-sensitive adhesion obtained in a preferred composition, and thus enables cohesion of the elementary cells of the device to be obtained by simple application to the substrate of the dots, segments or strips cut from the composite film or sheet.
  • the second method thus described therefore implements the mentioned techniques of extrusion, rolling, calendaring, coating or equivalent, laser cutting, punching, stamping, techniques which are known to the man skilled in the art of these techniques. For this reason, these techniques are not described again here, the invention essentially consisting in applying these techniques to modulating devices and cells.
  • the second method enables production of composite films thus described which are in the form of a film, sheet or strip comprising at least one layer of electrolytic material applied to an electronically conductive film, sheet or strip, and, if necessary, a layer of electrical connection material applied to the outer face of the electronically conductive film, sheet or strip.
  • a fluid formative composition is prepared as follows:
  • the above fluid formative composition is prepared by dissolving the first five constituents in half of the total water. To this is added, while stirring, the hydroxyethylcellulose previously dissolved in the rest of the water.
  • This fluid formative composition whose pH is 1.6, has an appropriate viscosity for being coated with a coating bar.
  • a second transparent electrode 2 of tin dioxide adhering to a glass plate 13 (“NESA" glass by PPG INDUSTRIES)
  • several layers are successively applied, with intermediate dryings in hot air until solid consistency is obtained, until a layer of electrolytic material is obtained having a total thickness of twenty microns.
  • the extent of this layer which is transparent and practically colorless, is limited to a disk 3 of approximately 1 cm 2 .
  • a second transparent electrode 4 of tin dioxide itself also adhering to a glass plate 14 (a second plate of "NESA" glass), having dimensions larger than those of the disk of electrolytic material (FIG. 10).
  • the transmission light-modulation cell 1 thus obtained (whose cohesion is provided by the adhesive properties of the electrolytic material layer alone) has (in the zone defined by the disk 3 of electrolytic material) an optical transmission which is higher than in the peripheral zone which comprises only the two "NESA" glass plates 13, 14. This higher transmission is very certainly due to smaller losses by reflection at the interfaces of the electrode and electrolytic material, than at the interface between the electrode and the air.
  • variable light-transmission cell 1 functions as a grey filter of which the optical density can be varied continuously from the initial transmission or transparency by controlling the duration for which the current is made to flow.
  • the cell in a variant embodiment and constitution of the cell 1, there is applied a layer of electrolytic material on one of the transparent electrodes 2 supported by its glass substrate 13, and a second layer of electrolytic material on the second transparent electrode 4 supported by its glass substrate 14.
  • the cell is formed by joining the two half-cells by application of the two free faces of the electrolytic material to each other. The adherence of the two layers to each other suffices to provide the structural cohesion of the cell 1.
  • the transparent electrodes 2, 4 comprising a layer of mixed tin and indium oxide adhering to a glass plate ("ITO coated glass" by Donnelly) instead of the previous transparent electrodes is repeated.
  • ITO coated glass by Donnelly
  • the sodium carboxymethylcellulose is progressively cross-linked by the trivalent cation Al(III) and therefore becomes cross-linked in the constituted layer of electrolytic material.
  • This layer adheres to the surface on which it is formed, but its free surface does not exhibit pressure-sensitive adhesion.
  • Sub-variants 4.4.1, 4.4.2, 4.4.3 and 4.4.4 respectively identical to sub-variants 4.3.1, 4.3.2, 4.3.3 and 4.3.4, except that the flexible graphite sheet "Papyex” is replaced by a non-woven sheet of 30 micron thick polypropylene "Paratherm".
  • each of the counter-electrode disks On the rear side of each of the counter-electrode disks, opposite the electrolytic material, there is deposited a layer 17 of silver lacquer "200" by Demetron. These disks 4, 17 are then applied (with a space between them) to the layer of electrolytic material 3. Finally, the rear side of each disk 4, 17 is connected to an edge 18 of the glass plate 15 by means of a pressure-sensitive adhesive copper strip Bishop "EZ" 19 resting on a pressure-sensitive adhesive polyester strip which insulates it from the layer of electrolytic material 3 and from the transparent electrode 2. This copper strip 19, which can easily be connected from the edge 18 of the plate to an external voltage source, is electrically integrated with the counter-electrode 4 by means of a drop 21 of silver lacquer "200".
  • the disks 4, 17 thus applied have a certain adherence to the layer of electrolytic material 3. However, this adherence is variable from one disk to another, and irregular from one point to another of a same disk (which, in operation, results in heterogeneities of optical density). A pressure is therefore applied to each disk in order to obtain and maintain a satisfactory electrical contact.
  • a potential difference of 1.5 volts is then applied between each disk-shaped counter-electrode 4, 17 and the transparent electrode 2, the latter being negatively polarized with respect to the counter-electrode 4.
  • the optical density is uniform inside of each area, and it is possible to vary it according to a continuous grey scale by modulating the duration for which the electrical current is made to flow.
  • the created optical density is erased and the initial white appearance is restored. It is observed that it is possible to prolong the application of the erase voltage beyond the total erasure without visible disadvantage.
  • the density obtained for a same duration of application of the write voltage varies according to the counter-electrode, which indicates possible differences in impedance.
  • Example 4 The tests of Example 4 are repeated, but with application on the front side (that is, the face intended to be in contact with the electrolytic material) of each counter-electrode, before cutting the disks, a layer of about ten microns of electrolytic material of Example 1, according to the procedure of this Example 1.
  • the disks thus coated are then applied to the layer of electrolytic material of the Example 4 covering the transparent electrode on its glass substrate. This time, the disks remain stuck.
  • the cohesion of the cells is maintained without it being necessary to apply pressure. Similarly, without external applied pressure, the functioning of each cell is uniform.
  • Example 5 The tests of Example 5 are repeated with the following differences:
  • Example 4 2) on the front side of each counter-electrode 4 there is applied a layer of electrolytic material 3 of Example 4 in a thickness of about 100 microns (according to the application procedure described in Example 4);
  • each cell is comparable to that of the cells of Example 5.
  • the optical density is uniform inside the composite disk.
  • Example 4 There is applied a layer of electrolytic material 3 of Example 4 to a transparent electrode 2 supported by a glass substrate 24.
  • this layer 3 there is deposited by a silk screening, portions of a layer in the form of square dots 25 sides 3.5 mm in length, of "Elecrodag 423 SS” graphite based ink.
  • these square dots 25 after heat treatment, there is also deposited by silk screening portions of a layer in the form of square dots 26 sides 2.5 mm in length, of silver-based ink "429 SS" by Acheson for silk screen applications.
  • Acheson "432 SS” silk screening insulating varnish 27 covering the entire surface of the plate, except for the silver ink square dots and a strip 28 at the peripyhery of the transparent electrode 2.
  • each cell has appearance and characteristics similar to those in Examples 4 and 5.
  • the densification is uniform inside an area which is exactly delimited by the orthogonal projection of the square dot 25 of graphite ink.
  • Example 7 The procedure is as in Example 7, except that there is deposited on the transparent electrode (instead of a continuous layer of the electrolytic material concerned) portions of a layer of this material in the form of square dots with 3.7mm sides, by silk screening, the fluid formative composition of Example 4 having been brought, by evaporation of water, to an appropriate viscosity for this application. Furthermore, instead of the transparent insulating varnish of Example 7, there is applied according to the same geometry, making use of the same openings, a layer of a few hundred microns thick of white silicone elastomer "Rhodorsil CAF 730" by Rhone-Poulenc, which vulcanizes in air in a few hours.
  • the appearance obtained is the same as that of the cells of Example 7, with a slight difference of color between the white of the square dots of electrolytic material and that of the white silicone elastomer, a difference which does not exist in the devices of Example 7.
  • the darkening takes place in an area which is the orthogonal projection of the square dots of graphite ink (and not the area of the portions of electrolytic material).
  • the flexible composite sheet thus obtained is deposited by unrolling it on a glass plate comprising a transparent electrode ("MESA" glass) provided with a peripheral strip providing contact with the transparent electrode.
  • the composite sheet overlaps the glass plate in order to enable access to the ends of the silver ink strings.
  • the composite sheet adheres to the "NESA" glass due to pressure-sensitive adhesion of the electrolytic material, and structural cohesion of the display panel thus produced is provided without other means.
  • Each cell is individually addressable by applying a voltage between the transparent electrode and each silver ink string connecting each counter-electrode.
  • the darkening of each dot appears exactly delimited by the orthogonal projection of the area of the square of graphite ink.
  • the plastic sheet serving as a primary substrate is a sheet coated with an anti-adhesive layer having a very weak adherence to the layers deposited on it. After producing the panel, this sheet is withdrawn and has therefore served only as a convenient intermediary in the production of the display panel.
  • the composite sheet thus obtained is applied, by unrolling it, onto a glass plate covered with a transparent conductive layer of tin dioxide patterned as independent 3.5 mm parallel strips separated by a gap of 0.1 mm diameter.
  • the orientation of the composite sheet with respect to the plate is such that the strips or transparent electrode are perpendicular to the strips of the composite sheet.
  • the composite sheet overlaps the glass plate such that the ends of its strips are accessible for connection to the addressing and control electronics.
  • the composite sheet adheres to the glass plate coated with its transparent electrodes because of pressure-sensitive adhesion of the electrolytic material. Structural cohesion of the display panel thus produced is provided without other means.
  • the columns comprising strips of conductive electrodes are connected by their ends to addressing and control electronics to which are also connected ends of the strips of silver ink comprising the line conductors of the panel.
  • the writing of this matrix panel can be performed row after row.
  • a writing voltage is applied between, on the one hand, all of the selected columns and, on the other hand, a given row.
  • the selected pixels of the considered row are thus darkened without darkening the non-selected pixels of the same row, nor those of the previous and following rows. This results from the high value of the voltage threshold with respect to the writing voltage, as well as from the favorable memory characteristics.
  • the plastic sheet used as a primary substrate is a sheet coated with a layer of hydrophobic silicone resin having a low adherence to the layers deposited on it. After producing the panel, this sheet is removed, and has therefore served only as a convenient intermediary in the production of the display panel.
  • This example relates to a direct addressed display panel intended for a seven-segment alphanumerical character (FIGS. 16, 17, 18, 19 and 20).
  • Such a panel enables one of the ten FIGS. 0 to 9, respectively, to be produced from the seven linear juxtaposed segments 31A, 31B, 31C, 31D, 31E, 31F, and 31G.
  • This arrangement is known, and comprises four segments distributed in twos end to end along two longitudinal parallel lines, and three transverse segments respectively upper 31E, lower 31F and middle 31G.
  • This panel comprises a front section facing the reader at the rear section, a glass plate 32 and on the rear face of the latter, an electronically conductive and transparent layer or thin coating (for example, of tin oxide) forming the working electrode 2.
  • an electronically conductive and transparent layer or thin coating for example, of tin oxide
  • a layer of electrolytic material 3 such as that previously described
  • portions of a layer of counter-electrode 4 also such as previously described
  • the layer of electrolytic material 3 is in contact with the working electrode 2, while a counter-electrode 4 is in contact with the material 3.
  • the different segments 31A to 31G are separated from each other by spaces 33 which can be very small (for example, a separation of the order of 0.5 mm for a character of about 12 cm in height).
  • spaces 33 can be very small (for example, a separation of the order of 0.5 mm for a character of about 12 cm in height).
  • the layer of electrolytic material 3 occupies almost all of the surface of the conductive transparent layer of the working electrode 2 with the exception of a peripheral strip 34.
  • filiform conductors of electricity forming current leads to the transparent electrode 2 comprising a conductive ink or paste or equivalent as previously described. More precisely, and in the case of an alphanumerical character with seven segments 31A to 31G, there are provided three filiform or long thin conductors 35A, 35B, 35C surrounding the segments 31A to 31G, respectively outside and inside, as shown in FIG. 16. This arrangement enables supply and distribution of electrical energy which is as regular and satisfactory as possible for the different segments.
  • conductors of electricity are provided in the form of strips 36, each belonging to and applied in contact with a segment 31A to 31G and of similar form but of dimensions smaller than those of the segments 31A to 31G, comprising a conductive ink or paste or equivalent (also previously described), forming a current lead to the counter-electrodes 4 of the segments 31A to 316.
  • the area available for application of this conductive material to the counter-electrode 4 is larger than that which is possible on the electrode 2.
  • the strips 35 are not visible from the front face of the panel.
  • This masking material 37 is arranged in a layer, of course not hiding the filiform or long thin conductors 35A, 35B, 35C and the portions of layer of material 3.
  • Such a masking material 37 has also been described previously, and is not described again here.
  • the masking material covers the edges of the portions of layers of electrolytic material 3 and of the counter-electrodes 4 and partially the rear side of the latter, contributing to cohesion of the panel and providing insulation of the cells thus fabricated.
  • the means of electrical connection and of complementary mechanical support of the panel comprise a rear plate 38 which is parallel to the glass plate 32, and which is able to be associated with the latter particularly by its edges by a joining seal 39, particularly of silicone elastomer.
  • a joining seal 39 particularly of silicone elastomer.
  • Such a seal 39 has capacity to absorb differences of movement between the rear plate 38 and the glass plate 32.
  • the plate 38 is a printed circuit board. It comprises, at the right of a strip 36, a hole 40 in which can be engaged an electrically conductive jumper 41 which, by its inner end 42 comes into electronic contact with the band 36. By its external turned down edge 43, it is applied to the external face 44 of the plate 38 in contact with a flat conductor 45 of the plate 38 on which it can be maintained and electrically associated by means of a conductive ink or paste or equivalent 46.
  • the various conductors 45 (seven in this case) corresponding to the various segments 31A to 31G are electrically associated with a plug-in connector 47 located on an edge of the plate 38.
  • This plug-in connector 47 has eight positions, seven of which, 48, correspond to the seven counter-electrodes 4 of the segments 31A to 31G via the conductors 45 and the jumpers 41, and one, 49, which corresponds to the electrode 2 via other jumpers 50, passing through other holes 51 to the right of the filiform or long thin conductors 35A, 350, 35C.
  • the jumpers 50 are arranged on a conductor 52 of the plate 38, this conductor 52 comprising the rear electrically conductive surface of this plate, with the exception of the conductors 45.
  • the different conductors 45 and 52 are insulated from each other.
  • electrical connecting sleeves 53 extending the conductors 45 and 52 are provided in the holes 40 and 51.
  • electrical connecting material 54 such as a conductive ink or paste or equivalent
  • FIGS. 18 and 19 correspond to the third variant shown in the previously described FIG. 8C.
  • the panel can also be produced according to the first variant of FIG. 8A, also described (FIG. 20).
  • the electrolytic material forms a continuous layer 3 and no longer a divided layer into segments. This also enables the layer of material 3 to form a contrasting background for the image segments 31A to 31G.
  • the counter-electrodes 4 are produced as before, as are the current leads and electrical connections with regard to the counter-electrodes 4. In this case, the contour of the counter-electrodes 4 defines the shape of the picture elements 31A to 31G.
  • the current leads of the working electrode 2 are produced either by means of a filiform conductor surrounding the plate 32 on its inside face, at the periphery (that is, on the layer comprising the electrode 2 and outside the layer of electrolytic material 3, that is, in the peripheral strip 34), or by dots. These dots are distributed appropriately to ensure an appropriate distribution of the electrical energy.
  • a strip or wire 56 made from a second more conductive material for example, a copper strip or wire.
  • This second material 56 poorly resistive, is in electrical connection with the previous current leads 55 by overlapping or partial potting by means of an additional amount 57 of the first material.
  • FIG. 22 there is shown another variant embodiment of a display panel comprising several (in particular three on this occasion) characters 58A, 58B, 58C, each having seven segments, each as described before. These three characters 58A, 58B, 58C therefore enable display of a number between 000 and 999.
  • the three characters 58A, 58B, 58C are juxtaposed.
  • the panel is divided into three zones 59A, 59B and 59C, respectively, on each of which there are three characters 58A, 55B and 58C respectively.
  • the working electrode 2 and, in particular, the conductive layer on the glass plate 32 is itself distributed in three electrically distinct and juxtaposed portions.
  • the portions are separated from each other by a minimum space, such as 60, which can be as little as about ten micron wide.
  • the layer of electrolytic material 3, of white color is distributed in portions of layers having the shape, size and location of the segments constituting each character 58A, 58B, 58C.
  • the space 61 outside the segments is covered with a layer of white masking and contrasting material.
  • the counter-electrodes 4 of identical segments of the three characters 58A, 58B, 58C can be connected to each other in parallel. Furthermore, in this same first form of implementation, each of the portions of a layer, as regards the working electrode 2, is separately fed.
  • the panel thus fabricated comprises a plug-in connector 62 having ten outputs (namely seven outputs 63 for the seven counter-electrodes 4 of seven similar segments of the three characters 58A, 58B, 58C, and three outputs 64 for the three portions of transparent working electrodes 2).
  • each character can conform with that which has been previously described in the case of a single character in Example 11.
  • the electrical current lead relating to the electrode 2 can be made in the form of a plurality of dots such as 65 instead of filiform and long thin conductors such as those previously described in Example 11. These dots are distributed around the characters 58A, 58B, 58C in order to ensure an electrical energy distribution as appropriate as possible. Also, as a variant, the masking material is black instead of white and the points 65 are black.
  • the electrical distribution relating to the electrode 2 can be produced not by dotted current leads such as 65 as just described, but by longitudinal strips 66 arranged on the edges of the panel at a place where there is no electrolytic material 3.
  • This variant enables the various combinations of coordinated patterns which were previously described with reference to the diagrams of FIGS. 8.
  • the layer of electrolytic material 3 can be continuous, which enables the presence of a masking material to be avoided.
  • a second form of implementation (not shown) essentially differs from that which has just been described by the fact that, on the one hand, the transparent conductive working electrode is common to all of the characters (that is, common to all of the elementary cells of the device).
  • the working electrode and each counter-electrode are individually electrically connected either to one or several connection zones situated on the rear side of the panel comprising the glass substrate and the components of the device previously mentioned, or to a connector integral with a printed circuit board applied to the rear side of the panel, or to means of contacts situated to the right of the electrodes and supported by the frame of the device with which the display board is integrated.
  • electrical connection with the external supply and control electronics is produced by means of twenty-two independent conductors.
  • electrical connection between each current lead and the corresponding conductor of the plate can be produced as described in Example 11.
  • FIG. 24 to 27 Another exemplary embodiment is now described, relating to a matrix display panel (FIGS. 24 to 27) enabling the display, for example, of alphanumerical characters.
  • Such a panel comprises picture elements arranged at the intersections of several rows 67 and several columns 68, juxtaposed and identical to each other and thus comprising a matrix.
  • the matrix enables, depending on the control given, a writing of an alphanumerical character, sign or desired figure.
  • the panel comprises a front glass plate 69, on the rear face of which are produced transparent and electrically conductive strips 70 constituting electrodes 2, each common to all of the cells of a same column 68.
  • the strips 70 can be very close to each other, separated by the gaps just necessary for avoiding electrical contact between them, depending on the technique used.
  • the portions of layer of electrolytic material 3 and the counter-electrodes 4 are superimposed, of the same shape, and of the same dimensions. They are located at the position of each row 67 and column 6B node, in order to determine each of the pixels, whose largest dimension in the direction of the rows is slightly less than the width of the strips 70, being totally located to the right and inside of one of these strips 70.
  • a current lead is produced by means of a connection material already described for such leads.
  • an electrical conductor 71 (such as a copper strip) electrically connects the various counter-electrodes 4 of a same row 67 to each other on their rear side.
  • the association and the contact between this conductor 71 and the current leads of the counter-electrodes 4 is produced by means of an additional amount 72 of the same overlapping or cladding material as the lead itself.
  • An electrical insulator separates the conductor 71 from the other conductive components of the panel in the gaps between the picture elements.
  • the picture elements are of small size (for example, those of the pixels of a computer screen), it is generally sufficient to provide current leads for the working electrodes 2 only at the edges of the strip 70.
  • the generally modest conductivity of the working electrodes 2 can give rise to a non-uniform electrical feeding of the elementary cells.
  • a mode of distribution of electrical current to a strip 72 comprising current leads 73 arranged in sections of filiform lines parallel to the lines 67 and placed between the picture elements while being insulated from the electrolytic material and the counter-electrodes 4.
  • the leads can be distributed as dots.
  • the current leads 473 of a same strip 70 are connected to each other by means of a collector-conductor 74.
  • This may be, for example, a copper strip or string of silver lacquer arranged along the corresponding column 68 and connected to the leads 73 of this corresponding column by an additional amount 75 of this lead material producing the partial cladding or overlap.
  • An electrical insulator separates the collector conductor 74 from all of the other conductive components of the panel.
  • a masking material 76 in a layer covering the rear face of the glass plate 69 with the exception of the zones in which the electrolytic material is located, as well as the zones reserved for electrical connections to the electrodes.
  • This arrangement is such that the collector-conductors 74 are masked by the masking material 76 and can, without prejudice, be placed at any desired position, provided that the collector-conductor 74 of a column 68 is not in electrical contact with the current leads 73 of the adjacent column 68.
  • the length (in the direction of lines 67) of the leads 73 is sufficient without being excessive in order not to interfere with the collector-conductor 74 of the adjacent column 68.
  • the electrical conductors 71 cross the collector-conductors 74 without electrical contact (for example, by means of an intermediate insulator).
  • the collector-conductors 74 are sufficiently rigid copper strips, there is no electrical contact with the conductors 71 between each other, given that they are located in two distinct planes separated from each other by a gap equal to the thickness of the cell, the air forming an insulator.
  • the collector-conductors 74 are placed in the vicinity of the plane of the rear face of the plate 69, while the electrical conductors 71 are placed in another separated plane corresponding to the free rear surface of the counter-electrodes 4.
  • Such a panel can also be associated, towards the rear, with a printed circuit board 77 providing the electrical contacts with the conductors 71 of each row 67 and the collector-conductors 74 of each column 68.
  • the printed circuit panel 77 comprises ten conductors 78 insulated from each other which can be connected to a lateral plug-in connector 79 having ten positions as described in Example 11.
  • This embodiment can itself be the subject of numerous variants.
  • the very size of the picture elements can vary from very small (such as the pixels of a computer screen) to very large (for example, the picture elements having a size in the order of a centimeter or more), particularly in the case of a public information display panel.
  • the variants then concern the coordination of the constitutive patterns of the panel.
  • the working electrodes in the form of strip 70 are common to each column 68 and separated between the columns 68.
  • the portions of the layer of electrolytic material 3 and the counter-electrodes 4 are separate, each belonging to an elementary cell.
  • variants it is possible to design other combinations of pattern coordinations, as has been described with reference to FIGS. 8.
  • the variants can also relate to internal electrical connections of the display device, particularly in accordance with that which was mentioned in the previous examples.
  • variants can relate to the very method of manufacture of such a panel as previously described.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
US07/463,788 1987-07-24 1990-01-10 Light modulating cell Expired - Fee Related US5078480A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8710562 1987-07-24
FR8710562A FR2618566B1 (fr) 1987-07-24 1987-07-24 Cellule pour la modulation de la lumiere

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07221541 Continuation 1988-07-19

Publications (1)

Publication Number Publication Date
US5078480A true US5078480A (en) 1992-01-07

Family

ID=9353555

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/463,788 Expired - Fee Related US5078480A (en) 1987-07-24 1990-01-10 Light modulating cell

Country Status (10)

Country Link
US (1) US5078480A (es)
EP (1) EP0300916B1 (es)
JP (1) JPS6444424A (es)
AT (1) ATE99429T1 (es)
AU (1) AU2127388A (es)
DE (1) DE3886609T2 (es)
DK (1) DK133389A (es)
ES (1) ES2049755T3 (es)
FR (1) FR2618566B1 (es)
WO (1) WO1989001177A1 (es)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500759A (en) * 1992-12-22 1996-03-19 Monsanto Company Electrochromic materials and displays
US5523776A (en) * 1995-01-10 1996-06-04 International Business Machines Corporation Photovoltaic array for computer display
US5672440A (en) * 1991-01-31 1997-09-30 Eveready Battery Company Cell tester device employing a cathodically depositable metal ion electrolyte solution
US5679283A (en) * 1994-07-22 1997-10-21 Gentex Corporation Electrochromic layer and devices comprising same
US5754329A (en) * 1992-12-22 1998-05-19 Monsanto Company Electrochromic display laminates
US5774255A (en) * 1996-09-23 1998-06-30 Mcdonnell Douglas Corporation Adaptive infrared modulator
US5825526A (en) * 1996-04-24 1998-10-20 Minnesota Mining And Manufacturing Company Tape for use in manufacturing electrochromic devices
US5847860A (en) * 1996-07-17 1998-12-08 International Business Machines Corporation High density electrochromic display
US5877888A (en) * 1997-06-10 1999-03-02 Monsanto Company Single and double sided electrochromic displays
US5876634A (en) * 1995-12-26 1999-03-02 Monsanto Company Electrochromic tin oxide
US5876633A (en) * 1995-12-26 1999-03-02 Monsanto Company Electrochromic metal oxides
US5891511A (en) * 1995-12-26 1999-04-06 Monsanto Company Addition of color to electrochromic displays
US5928572A (en) * 1996-03-15 1999-07-27 Gentex Corporation Electrochromic layer and devices comprising same
US6178034B1 (en) 1996-04-10 2001-01-23 Donnelly Corporation Electrochromic devices
US6294111B1 (en) 1996-10-01 2001-09-25 Steinbeis Ibl Gmbh Electrochromic inks
US6369792B1 (en) * 1996-09-19 2002-04-09 Lextron Systems, Inc. Low power high resolution electrochemical display
US6690500B2 (en) * 2000-06-30 2004-02-10 Pioneer Corporation Aberration correction apparatus and method
WO2004042457A3 (en) * 2002-11-05 2004-08-05 Donnelly Corp Electro-optic reflective element assembly
US20050195488A1 (en) * 2002-09-20 2005-09-08 Mccabe Ian A. Electro-optic mirror cell
US20060098289A1 (en) * 2002-09-20 2006-05-11 Mccabe Ian A Electro-optic reflective element assembly
US20060181772A1 (en) * 2005-01-19 2006-08-17 Byers Donald C Mirror assembly with heater element
US7274501B2 (en) 2002-09-20 2007-09-25 Donnelly Corporation Mirror reflective element assembly
US7310177B2 (en) 2002-09-20 2007-12-18 Donnelly Corporation Electro-optic reflective element assembly
US20080212189A1 (en) * 2005-05-16 2008-09-04 Donnelly Corporation Vehicle Mirror Assembly With Indicia At Reflective Element
US20090316422A1 (en) * 2001-01-23 2009-12-24 Donnelly Corporation Display device for exterior rearview mirror
US20100188193A1 (en) * 2002-09-20 2010-07-29 Donnelly Corporation Mirror assembly for vehicle
US20100220407A1 (en) * 2007-05-23 2010-09-02 Donnelly Corporation Exterior mirror element with wide angle portion
US7813023B2 (en) 2008-06-09 2010-10-12 Magna Mirrors Of America, Inc. Electro-optic mirror
US20110026152A1 (en) * 2002-06-06 2011-02-03 Donnelly Corporation Interior rearview mirror system
US20110035120A1 (en) * 2000-03-02 2011-02-10 Donnelly Corporation Vehicular wireless communication system
US7918570B2 (en) 2002-06-06 2011-04-05 Donnelly Corporation Vehicular interior rearview information mirror system
US7934843B2 (en) 2003-05-20 2011-05-03 Donnelly Corporation Exterior sideview mirror system
US20110109746A1 (en) * 2003-10-14 2011-05-12 Donnelly Corporation Vehicle information display
US20110141542A1 (en) * 2003-10-02 2011-06-16 Donnelly Corporation Rearview mirror assembly for vehicle
US20110140606A1 (en) * 1997-08-25 2011-06-16 Donnelly Corporation Interior rearview mirror system
US20110166785A1 (en) * 1998-04-08 2011-07-07 Donnelly Corporation Interior rearview mirror system
US20110176323A1 (en) * 1999-11-24 2011-07-21 Donnelly Corporation Interior rearview mirror assembly for vehicle
US7994471B2 (en) 1998-01-07 2011-08-09 Donnelly Corporation Interior rearview mirror system with forwardly-viewing camera
US20110221588A1 (en) * 2007-11-05 2011-09-15 Magna Mirrors Of America, Inc. Exterior mirror with indicator
US8049640B2 (en) 2003-05-19 2011-11-01 Donnelly Corporation Mirror assembly for vehicle
US8094002B2 (en) 1998-01-07 2012-01-10 Donnelly Corporation Interior rearview mirror system
US8100568B2 (en) 1997-08-25 2012-01-24 Donnelly Corporation Interior rearview mirror system for a vehicle
US8106347B2 (en) 2002-05-03 2012-01-31 Donnelly Corporation Vehicle rearview mirror system
US8164817B2 (en) 1994-05-05 2012-04-24 Donnelly Corporation Method of forming a mirrored bent cut glass shape for vehicular exterior rearview mirror assembly
US8242896B2 (en) 2006-10-24 2012-08-14 Donnelly Corporation Vehicle exterior rearview mirror system with a highly viewable display indicator for the driver
US8288711B2 (en) 1998-01-07 2012-10-16 Donnelly Corporation Interior rearview mirror system with forwardly-viewing camera and a control
US8427288B2 (en) 2000-03-02 2013-04-23 Donnelly Corporation Rear vision system for a vehicle
US8508383B2 (en) 2008-03-31 2013-08-13 Magna Mirrors of America, Inc Interior rearview mirror system
US8511841B2 (en) 1994-05-05 2013-08-20 Donnelly Corporation Vehicular blind spot indicator mirror
US8610992B2 (en) 1997-08-25 2013-12-17 Donnelly Corporation Variable transmission window
US8653959B2 (en) 2001-01-23 2014-02-18 Donnelly Corporation Video mirror system for a vehicle
US8736940B2 (en) 2011-09-30 2014-05-27 Magna Mirrors Of America, Inc. Exterior mirror with integral spotter mirror and method of making same
US8801245B2 (en) 2011-11-14 2014-08-12 Magna Mirrors Of America, Inc. Illumination module for vehicle
US8908039B2 (en) 2000-03-02 2014-12-09 Donnelly Corporation Vehicular video mirror system
US8988755B2 (en) 2011-05-13 2015-03-24 Magna Mirrors Of America, Inc. Mirror reflective element
US9019091B2 (en) 1999-11-24 2015-04-28 Donnelly Corporation Interior rearview mirror system
US9205780B2 (en) 2010-02-04 2015-12-08 Magna Mirrors Of America, Inc. Electro-optic rearview mirror assembly for vehicle
US9216691B2 (en) 2013-02-25 2015-12-22 Magna Mirrors Of America, Inc. Exterior mirror with spotter mirror
US9481304B2 (en) 2010-05-24 2016-11-01 Magna Mirrors Of America, Inc. Automotive exterior mirror heater control
US9659498B2 (en) 2015-09-28 2017-05-23 Magna Mirrors Of America, Inc. Exterior mirror assembly with blind zone indicator
US9761144B2 (en) 2014-09-11 2017-09-12 Magna Mirrors Of America, Inc. Exterior mirror with blind zone indicator
US9809171B2 (en) 2000-03-02 2017-11-07 Magna Electronics Inc. Vision system for vehicle
US11235699B2 (en) 2014-02-07 2022-02-01 Magna Mirrors Of America, Inc. Illumination module for vehicle
US11242009B2 (en) 2005-07-06 2022-02-08 Donnelly Corporation Vehicular exterior mirror system with blind spot indicator
US11498487B2 (en) 2005-07-06 2022-11-15 Magna Mirrors Of America, Inc. Vehicular exterior mirror system with blind spot indicator
US11890991B2 (en) 2006-10-24 2024-02-06 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind spot indicator element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19920942A1 (de) * 1999-05-07 2000-11-16 Daddy Technology Gmbh Großflächige Anzeigevorrichtung

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB909342A (en) * 1958-02-03 1962-10-31 Eastman Kodak Co Improvements in or relating to a device for controlling light transmission or reflection
FR2260167A1 (es) * 1974-01-31 1975-08-29 Ind Horlogere Management
FR2333266A1 (fr) * 1975-11-29 1977-06-24 Ebauches Sa Dispositif electro-optique
FR2334737A1 (fr) * 1975-12-08 1977-07-08 Ici Ltd Composition electrochrome
FR2348542A1 (fr) * 1976-04-12 1977-11-10 Timex Corp Organe d'affichage electrochroique fonctionnant en multiplexage
FR2351463A1 (fr) * 1976-05-10 1977-12-09 Philips Nv Cellule reproductrice d'images a effet de memoire
FR2352361A1 (fr) * 1976-05-19 1977-12-16 Commissariat Energie Atomique Dispositif d'affichage electrolytique a depot absorbant
FR2369585A1 (fr) * 1976-10-27 1978-05-26 American Cyanamid Co Electrolyte polymere pour appareils d'affichage electrochroiques
EP0006793A1 (fr) * 1978-06-19 1980-01-09 COMMISSARIAT A L'ENERGIE ATOMIQUE Etablissement de Caractère Scientifique Technique et Industriel Procédé de commande d'une cellule d'affichage électrolytique utilisant un courant de fuite pour l'effacement et circuit mettant en oeuvre ce procédé
US4188095A (en) * 1975-07-29 1980-02-12 Citizen Watch Co., Ltd. Liquid type display cells and method of manufacturing the same
GB1586104A (en) * 1976-07-12 1981-03-18 Matsushita Electric Ind Co Ltd Electrochromic display apparatus and method
EP0027755A1 (fr) * 1979-10-17 1981-04-29 COMMISSARIAT A L'ENERGIE ATOMIQUE Etablissement de Caractère Scientifique Technique et Industriel Cellule d'affichage électrolytique comprenant un électrolyte à deux sels métalliques qui augmentent la durée de mémorisation
US4285575A (en) * 1978-02-15 1981-08-25 Canon Kabushiki Kaisha Image display device
FR2504290A1 (fr) * 1981-04-21 1982-10-22 Hopkinson Associates Inc Procede et milieux electrosensibles pour l'enregistrement de signaux et images
FR2524678A1 (fr) * 1982-03-30 1983-10-07 Bosch Gmbh Robert Dispositif indicateur electrochrome avec un arriere-fond reflechissant
JPS59195629A (ja) * 1983-04-21 1984-11-06 Toppan Printing Co Ltd エレクトロクロミツク表示体
US4538158A (en) * 1982-04-21 1985-08-27 Bernard Warszawski Electrosensitive media and recording process
DE3514281A1 (de) * 1984-04-20 1985-10-31 Nippon Kogaku K.K., Tokio/Tokyo Elektrochrome vorrichtung
EP0167321A1 (en) * 1984-06-15 1986-01-08 Sumitomo Chemical Company, Limited Reversible electrochemical cell using conjugated polymer as electrode-active material
US4571029A (en) * 1983-12-29 1986-02-18 The United States Of America As Represented By The United States Department Of Energy Electro-optical switching and memory display device
US4573768A (en) * 1983-12-05 1986-03-04 The Signal Companies, Inc. Electrochromic devices
JPS61119527A (ja) * 1984-11-14 1986-06-06 Sumitomo Metal Ind Ltd 鋼管製品の運搬・保管方法
US4596722A (en) * 1982-04-21 1986-06-24 Hopkinson Associates Inc. Electrosensitive media and recording process
JPS61138238A (ja) * 1984-12-11 1986-06-25 Tokuyama Soda Co Ltd エレクトロクロミツクデイスプレイ素子
JPS61223724A (ja) * 1985-03-28 1986-10-04 Alps Electric Co Ltd エレクトロクロミツク表示素子
US4801195A (en) * 1985-01-29 1989-01-31 Nissan Motor Co., Ltd. Variable light transmittance glass board functional as electrochromic cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132197A (es) * 1974-09-12 1976-03-18 Canon Kk
JPS5461576U (es) * 1977-10-11 1979-04-28
US4246579A (en) * 1978-03-01 1981-01-20 Timex Corporation Electrochromic display switching and holding arrangement
JPS58207027A (ja) * 1982-05-27 1983-12-02 Nec Corp 全固体型エレクトロクロミツク表示装置
JPS5950486A (ja) * 1982-09-17 1984-03-23 株式会社東芝 電気発色表示素子
JPS5979226A (ja) * 1982-10-29 1984-05-08 Asahi Glass Co Ltd 調光体
JPS6098480A (ja) * 1983-11-02 1985-06-01 株式会社ニコン 透過型エレクトロクロミツク表示装置

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB909342A (en) * 1958-02-03 1962-10-31 Eastman Kodak Co Improvements in or relating to a device for controlling light transmission or reflection
FR2260167A1 (es) * 1974-01-31 1975-08-29 Ind Horlogere Management
US4188095A (en) * 1975-07-29 1980-02-12 Citizen Watch Co., Ltd. Liquid type display cells and method of manufacturing the same
FR2333266A1 (fr) * 1975-11-29 1977-06-24 Ebauches Sa Dispositif electro-optique
FR2334737A1 (fr) * 1975-12-08 1977-07-08 Ici Ltd Composition electrochrome
FR2348542A1 (fr) * 1976-04-12 1977-11-10 Timex Corp Organe d'affichage electrochroique fonctionnant en multiplexage
FR2351463A1 (fr) * 1976-05-10 1977-12-09 Philips Nv Cellule reproductrice d'images a effet de memoire
FR2352361A1 (fr) * 1976-05-19 1977-12-16 Commissariat Energie Atomique Dispositif d'affichage electrolytique a depot absorbant
GB1586104A (en) * 1976-07-12 1981-03-18 Matsushita Electric Ind Co Ltd Electrochromic display apparatus and method
FR2369585A1 (fr) * 1976-10-27 1978-05-26 American Cyanamid Co Electrolyte polymere pour appareils d'affichage electrochroiques
US4285575A (en) * 1978-02-15 1981-08-25 Canon Kabushiki Kaisha Image display device
EP0006793A1 (fr) * 1978-06-19 1980-01-09 COMMISSARIAT A L'ENERGIE ATOMIQUE Etablissement de Caractère Scientifique Technique et Industriel Procédé de commande d'une cellule d'affichage électrolytique utilisant un courant de fuite pour l'effacement et circuit mettant en oeuvre ce procédé
EP0027755A1 (fr) * 1979-10-17 1981-04-29 COMMISSARIAT A L'ENERGIE ATOMIQUE Etablissement de Caractère Scientifique Technique et Industriel Cellule d'affichage électrolytique comprenant un électrolyte à deux sels métalliques qui augmentent la durée de mémorisation
FR2504290A1 (fr) * 1981-04-21 1982-10-22 Hopkinson Associates Inc Procede et milieux electrosensibles pour l'enregistrement de signaux et images
FR2524678A1 (fr) * 1982-03-30 1983-10-07 Bosch Gmbh Robert Dispositif indicateur electrochrome avec un arriere-fond reflechissant
US4538158A (en) * 1982-04-21 1985-08-27 Bernard Warszawski Electrosensitive media and recording process
US4596722A (en) * 1982-04-21 1986-06-24 Hopkinson Associates Inc. Electrosensitive media and recording process
JPS59195629A (ja) * 1983-04-21 1984-11-06 Toppan Printing Co Ltd エレクトロクロミツク表示体
US4573768A (en) * 1983-12-05 1986-03-04 The Signal Companies, Inc. Electrochromic devices
US4571029A (en) * 1983-12-29 1986-02-18 The United States Of America As Represented By The United States Department Of Energy Electro-optical switching and memory display device
DE3514281A1 (de) * 1984-04-20 1985-10-31 Nippon Kogaku K.K., Tokio/Tokyo Elektrochrome vorrichtung
EP0167321A1 (en) * 1984-06-15 1986-01-08 Sumitomo Chemical Company, Limited Reversible electrochemical cell using conjugated polymer as electrode-active material
JPS61119527A (ja) * 1984-11-14 1986-06-06 Sumitomo Metal Ind Ltd 鋼管製品の運搬・保管方法
JPS61138238A (ja) * 1984-12-11 1986-06-25 Tokuyama Soda Co Ltd エレクトロクロミツクデイスプレイ素子
US4801195A (en) * 1985-01-29 1989-01-31 Nissan Motor Co., Ltd. Variable light transmittance glass board functional as electrochromic cell
JPS61223724A (ja) * 1985-03-28 1986-10-04 Alps Electric Co Ltd エレクトロクロミツク表示素子

Cited By (277)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672440A (en) * 1991-01-31 1997-09-30 Eveready Battery Company Cell tester device employing a cathodically depositable metal ion electrolyte solution
US5742424A (en) * 1992-12-22 1998-04-21 Monsanto Company Electrochromic materials and displays
US5754329A (en) * 1992-12-22 1998-05-19 Monsanto Company Electrochromic display laminates
US5500759A (en) * 1992-12-22 1996-03-19 Monsanto Company Electrochromic materials and displays
US5812300A (en) * 1992-12-22 1998-09-22 Monsanto Company Electrochromic materials and displays
US8164817B2 (en) 1994-05-05 2012-04-24 Donnelly Corporation Method of forming a mirrored bent cut glass shape for vehicular exterior rearview mirror assembly
US8511841B2 (en) 1994-05-05 2013-08-20 Donnelly Corporation Vehicular blind spot indicator mirror
US5888431A (en) * 1994-07-22 1999-03-30 Gentex Corporation Electrochromic layer and devices comprising same
US5679283A (en) * 1994-07-22 1997-10-21 Gentex Corporation Electrochromic layer and devices comprising same
US5523776A (en) * 1995-01-10 1996-06-04 International Business Machines Corporation Photovoltaic array for computer display
US8559093B2 (en) 1995-04-27 2013-10-15 Donnelly Corporation Electrochromic mirror reflective element for vehicular rearview mirror assembly
US5876634A (en) * 1995-12-26 1999-03-02 Monsanto Company Electrochromic tin oxide
US5876633A (en) * 1995-12-26 1999-03-02 Monsanto Company Electrochromic metal oxides
US5891511A (en) * 1995-12-26 1999-04-06 Monsanto Company Addition of color to electrochromic displays
US6084701A (en) * 1995-12-26 2000-07-04 Monsanto Company Electrochromic tin oxide
US6165388A (en) * 1995-12-26 2000-12-26 Monsanto Company Electrochromic metal oxides
US6248263B1 (en) 1996-03-15 2001-06-19 Gentex Corporation Electrochromic layer and devices comprising same
US5928572A (en) * 1996-03-15 1999-07-27 Gentex Corporation Electrochromic layer and devices comprising same
US6178034B1 (en) 1996-04-10 2001-01-23 Donnelly Corporation Electrochromic devices
US5825526A (en) * 1996-04-24 1998-10-20 Minnesota Mining And Manufacturing Company Tape for use in manufacturing electrochromic devices
US5847860A (en) * 1996-07-17 1998-12-08 International Business Machines Corporation High density electrochromic display
US6369792B1 (en) * 1996-09-19 2002-04-09 Lextron Systems, Inc. Low power high resolution electrochemical display
US5774255A (en) * 1996-09-23 1998-06-30 Mcdonnell Douglas Corporation Adaptive infrared modulator
US6294111B1 (en) 1996-10-01 2001-09-25 Steinbeis Ibl Gmbh Electrochromic inks
US5877888A (en) * 1997-06-10 1999-03-02 Monsanto Company Single and double sided electrochromic displays
US8610992B2 (en) 1997-08-25 2013-12-17 Donnelly Corporation Variable transmission window
US8063753B2 (en) 1997-08-25 2011-11-22 Donnelly Corporation Interior rearview mirror system
US8267559B2 (en) 1997-08-25 2012-09-18 Donnelly Corporation Interior rearview mirror assembly for a vehicle
US20110140606A1 (en) * 1997-08-25 2011-06-16 Donnelly Corporation Interior rearview mirror system
US8100568B2 (en) 1997-08-25 2012-01-24 Donnelly Corporation Interior rearview mirror system for a vehicle
US8779910B2 (en) 1997-08-25 2014-07-15 Donnelly Corporation Interior rearview mirror system
US8325028B2 (en) 1998-01-07 2012-12-04 Donnelly Corporation Interior rearview mirror system
US8134117B2 (en) 1998-01-07 2012-03-13 Donnelly Corporation Vehicular having a camera, a rain sensor and a single-ball interior electrochromic mirror assembly attached at an attachment element
US8094002B2 (en) 1998-01-07 2012-01-10 Donnelly Corporation Interior rearview mirror system
US8288711B2 (en) 1998-01-07 2012-10-16 Donnelly Corporation Interior rearview mirror system with forwardly-viewing camera and a control
US7994471B2 (en) 1998-01-07 2011-08-09 Donnelly Corporation Interior rearview mirror system with forwardly-viewing camera
US9481306B2 (en) 1998-04-08 2016-11-01 Donnelly Corporation Automotive communication system
US8884788B2 (en) 1998-04-08 2014-11-11 Donnelly Corporation Automotive communication system
US9221399B2 (en) 1998-04-08 2015-12-29 Magna Mirrors Of America, Inc. Automotive communication system
US8525703B2 (en) 1998-04-08 2013-09-03 Donnelly Corporation Interior rearview mirror system
US20110166785A1 (en) * 1998-04-08 2011-07-07 Donnelly Corporation Interior rearview mirror system
US20110176323A1 (en) * 1999-11-24 2011-07-21 Donnelly Corporation Interior rearview mirror assembly for vehicle
US9019091B2 (en) 1999-11-24 2015-04-28 Donnelly Corporation Interior rearview mirror system
US9278654B2 (en) 1999-11-24 2016-03-08 Donnelly Corporation Interior rearview mirror system for vehicle
US10144355B2 (en) 1999-11-24 2018-12-04 Donnelly Corporation Interior rearview mirror system for vehicle
US9376061B2 (en) 1999-11-24 2016-06-28 Donnelly Corporation Accessory system of a vehicle
US8162493B2 (en) 1999-11-24 2012-04-24 Donnelly Corporation Interior rearview mirror assembly for vehicle
US9809168B2 (en) 2000-03-02 2017-11-07 Magna Electronics Inc. Driver assist system for vehicle
US8676491B2 (en) 2000-03-02 2014-03-18 Magna Electronics Inc. Driver assist system for vehicle
US9014966B2 (en) 2000-03-02 2015-04-21 Magna Electronics Inc. Driver assist system for vehicle
US8427288B2 (en) 2000-03-02 2013-04-23 Donnelly Corporation Rear vision system for a vehicle
US8908039B2 (en) 2000-03-02 2014-12-09 Donnelly Corporation Vehicular video mirror system
US8543330B2 (en) 2000-03-02 2013-09-24 Donnelly Corporation Driver assist system for vehicle
US9809171B2 (en) 2000-03-02 2017-11-07 Magna Electronics Inc. Vision system for vehicle
US10131280B2 (en) 2000-03-02 2018-11-20 Donnelly Corporation Vehicular video mirror system
US10239457B2 (en) 2000-03-02 2019-03-26 Magna Electronics Inc. Vehicular vision system
US10053013B2 (en) 2000-03-02 2018-08-21 Magna Electronics Inc. Vision system for vehicle
US8271187B2 (en) 2000-03-02 2012-09-18 Donnelly Corporation Vehicular video mirror system
US10179545B2 (en) 2000-03-02 2019-01-15 Magna Electronics Inc. Park-aid system for vehicle
US9315151B2 (en) 2000-03-02 2016-04-19 Magna Electronics Inc. Driver assist system for vehicle
US8000894B2 (en) 2000-03-02 2011-08-16 Donnelly Corporation Vehicular wireless communication system
US20110035120A1 (en) * 2000-03-02 2011-02-10 Donnelly Corporation Vehicular wireless communication system
US8121787B2 (en) 2000-03-02 2012-02-21 Donnelly Corporation Vehicular video mirror system
US9783114B2 (en) 2000-03-02 2017-10-10 Donnelly Corporation Vehicular video mirror system
US6690500B2 (en) * 2000-06-30 2004-02-10 Pioneer Corporation Aberration correction apparatus and method
US9352623B2 (en) 2001-01-23 2016-05-31 Magna Electronics Inc. Trailer hitching aid system for vehicle
US8654433B2 (en) 2001-01-23 2014-02-18 Magna Mirrors Of America, Inc. Rearview mirror assembly for vehicle
US8653959B2 (en) 2001-01-23 2014-02-18 Donnelly Corporation Video mirror system for a vehicle
US9694749B2 (en) 2001-01-23 2017-07-04 Magna Electronics Inc. Trailer hitching aid system for vehicle
US8083386B2 (en) 2001-01-23 2011-12-27 Donnelly Corporation Interior rearview mirror assembly with display device
US20090316422A1 (en) * 2001-01-23 2009-12-24 Donnelly Corporation Display device for exterior rearview mirror
US10272839B2 (en) 2001-01-23 2019-04-30 Magna Electronics Inc. Rear seat occupant monitoring system for vehicle
US8106347B2 (en) 2002-05-03 2012-01-31 Donnelly Corporation Vehicle rearview mirror system
US8304711B2 (en) 2002-05-03 2012-11-06 Donnelly Corporation Vehicle rearview mirror system
US7918570B2 (en) 2002-06-06 2011-04-05 Donnelly Corporation Vehicular interior rearview information mirror system
US8047667B2 (en) 2002-06-06 2011-11-01 Donnelly Corporation Vehicular interior rearview mirror system
US8465163B2 (en) 2002-06-06 2013-06-18 Donnelly Corporation Interior rearview mirror system
US8465162B2 (en) 2002-06-06 2013-06-18 Donnelly Corporation Vehicular interior rearview mirror system
US8282226B2 (en) 2002-06-06 2012-10-09 Donnelly Corporation Interior rearview mirror system
US8608327B2 (en) 2002-06-06 2013-12-17 Donnelly Corporation Automatic compass system for vehicle
US20110181727A1 (en) * 2002-06-06 2011-07-28 Donnelly Corporation Vehicular interior rearview mirror system
US8177376B2 (en) 2002-06-06 2012-05-15 Donnelly Corporation Vehicular interior rearview mirror system
US20110026152A1 (en) * 2002-06-06 2011-02-03 Donnelly Corporation Interior rearview mirror system
US7274501B2 (en) 2002-09-20 2007-09-25 Donnelly Corporation Mirror reflective element assembly
US10029616B2 (en) 2002-09-20 2018-07-24 Donnelly Corporation Rearview mirror assembly for vehicle
US20090207514A1 (en) * 2002-09-20 2009-08-20 Donnelly Corporation Reflective mirror assembly
US20090116097A1 (en) * 2002-09-20 2009-05-07 Donnelly Corporation Interior rearview mirror system for a vehicle
US9090211B2 (en) 2002-09-20 2015-07-28 Donnelly Corporation Variable reflectance mirror reflective element for exterior mirror assembly
US7710631B2 (en) 2002-09-20 2010-05-04 Donnelly Corporation Reflective mirror assembly
US7586666B2 (en) 2002-09-20 2009-09-08 Donnelly Corp. Interior rearview mirror system for a vehicle
US20080225396A1 (en) * 2002-09-20 2008-09-18 Donnelly Corporation Electro-optic mirror cell
US20090237820A1 (en) * 2002-09-20 2009-09-24 Donnelly Corporation Vehicular interior electrochromic rearview mirror assembly
US8400704B2 (en) 2002-09-20 2013-03-19 Donnelly Corporation Interior rearview mirror system for a vehicle
US8529108B2 (en) 2002-09-20 2013-09-10 Donnelly Corporation Mirror assembly for vehicle
US7391563B2 (en) 2002-09-20 2008-06-24 Donnelly Corporation Electro-optic mirror cell
US10538202B2 (en) 2002-09-20 2020-01-21 Donnelly Corporation Method of manufacturing variable reflectance mirror reflective element for exterior mirror assembly
US10363875B2 (en) 2002-09-20 2019-07-30 Donnelly Corportion Vehicular exterior electrically variable reflectance mirror reflective element assembly
US9341914B2 (en) 2002-09-20 2016-05-17 Donnelly Corporation Variable reflectance mirror reflective element for exterior mirror assembly
US8797627B2 (en) 2002-09-20 2014-08-05 Donnelly Corporation Exterior rearview mirror assembly
US8506096B2 (en) 2002-09-20 2013-08-13 Donnelly Corporation Variable reflectance mirror reflective element for exterior mirror assembly
US20080013153A1 (en) * 2002-09-20 2008-01-17 Donnelly Corporation Mirror reflective element assembly
US7310177B2 (en) 2002-09-20 2007-12-18 Donnelly Corporation Electro-optic reflective element assembly
US20070279752A1 (en) * 2002-09-20 2007-12-06 Donnelly Corporation Electro-optic mirror cell
US7542193B2 (en) 2002-09-20 2009-06-02 Donnelly Corporation Electro-optic mirror cell
US8727547B2 (en) 2002-09-20 2014-05-20 Donnelly Corporation Variable reflectance mirror reflective element for exterior mirror assembly
US7864399B2 (en) 2002-09-20 2011-01-04 Donnelly Corporation Reflective mirror assembly
US9878670B2 (en) 2002-09-20 2018-01-30 Donnelly Corporation Variable reflectance mirror reflective element for exterior mirror assembly
US8228588B2 (en) 2002-09-20 2012-07-24 Donnelly Corporation Interior rearview mirror information display system for a vehicle
US7471438B2 (en) 2002-09-20 2008-12-30 Donnelly Corporation Mirror reflective element assembly
US7859737B2 (en) 2002-09-20 2010-12-28 Donnelly Corporation Interior rearview mirror system for a vehicle
US10661716B2 (en) 2002-09-20 2020-05-26 Donnelly Corporation Vehicular exterior electrically variable reflectance mirror reflective element assembly
US7255451B2 (en) 2002-09-20 2007-08-14 Donnelly Corporation Electro-optic mirror cell
US7826123B2 (en) 2002-09-20 2010-11-02 Donnelly Corporation Vehicular interior electrochromic rearview mirror assembly
US7525715B2 (en) 2002-09-20 2009-04-28 Donnelly Corporation Reflective mirror assembly
US7184190B2 (en) 2002-09-20 2007-02-27 Donnelly Corporation Electro-optic reflective element assembly
US8277059B2 (en) 2002-09-20 2012-10-02 Donnelly Corporation Vehicular electrochromic interior rearview mirror assembly
US9073491B2 (en) 2002-09-20 2015-07-07 Donnelly Corporation Exterior rearview mirror assembly
US9545883B2 (en) 2002-09-20 2017-01-17 Donnelly Corporation Exterior rearview mirror assembly
US20060098289A1 (en) * 2002-09-20 2006-05-11 Mccabe Ian A Electro-optic reflective element assembly
US20100188193A1 (en) * 2002-09-20 2010-07-29 Donnelly Corporation Mirror assembly for vehicle
US20100172008A1 (en) * 2002-09-20 2010-07-08 Donnelly Corporation Reflective mirror assembly
US20050195488A1 (en) * 2002-09-20 2005-09-08 Mccabe Ian A. Electro-optic mirror cell
US8335032B2 (en) 2002-09-20 2012-12-18 Donnelly Corporation Reflective mirror assembly
WO2004042457A3 (en) * 2002-11-05 2004-08-05 Donnelly Corp Electro-optic reflective element assembly
US8325055B2 (en) 2003-05-19 2012-12-04 Donnelly Corporation Mirror assembly for vehicle
US9783115B2 (en) 2003-05-19 2017-10-10 Donnelly Corporation Rearview mirror assembly for vehicle
US10166927B2 (en) 2003-05-19 2019-01-01 Donnelly Corporation Rearview mirror assembly for vehicle
US11433816B2 (en) 2003-05-19 2022-09-06 Magna Mirrors Of America, Inc. Vehicular interior rearview mirror assembly with cap portion
US10829052B2 (en) 2003-05-19 2020-11-10 Donnelly Corporation Rearview mirror assembly for vehicle
US8049640B2 (en) 2003-05-19 2011-11-01 Donnelly Corporation Mirror assembly for vehicle
US10449903B2 (en) 2003-05-19 2019-10-22 Donnelly Corporation Rearview mirror assembly for vehicle
US9557584B2 (en) 2003-05-19 2017-01-31 Donnelly Corporation Rearview mirror assembly for vehicle
US8508384B2 (en) 2003-05-19 2013-08-13 Donnelly Corporation Rearview mirror assembly for vehicle
US8783882B2 (en) 2003-05-20 2014-07-22 Donnelly Corporation Extended field of view exterior mirror element for vehicle
US8591047B2 (en) 2003-05-20 2013-11-26 Donnelly Corporation Exterior sideview mirror assembly
US9694750B2 (en) 2003-05-20 2017-07-04 Donnelly Corporation Extended field of view exterior mirror element for vehicle
US11628773B2 (en) 2003-05-20 2023-04-18 Donnelly Corporation Method for forming a reflective element for a vehicular interior rearview mirror assembly
US9340161B2 (en) 2003-05-20 2016-05-17 Donnelly Corporation Extended field of view exterior mirror element for vehicle
US8147077B2 (en) 2003-05-20 2012-04-03 Donnelly Corporation Exterior sideview mirror system
US8128243B2 (en) 2003-05-20 2012-03-06 Donnelly Corporation Exterior sideview mirror system
US7934843B2 (en) 2003-05-20 2011-05-03 Donnelly Corporation Exterior sideview mirror system
US8550642B2 (en) 2003-05-20 2013-10-08 Donnelly Corporation Exterior rearview mirror assembly
US8899762B2 (en) 2003-05-20 2014-12-02 Donnelly Corporation Vehicular exterior sideview mirror system with extended field of view
US20110170206A1 (en) * 2003-05-20 2011-07-14 Donnelly Corporation Exterior sideview mirror system
US8562157B2 (en) 2003-05-20 2013-10-22 Donnelly Corporation Extended field of view exterior mirror element for vehicle
US20110170207A1 (en) * 2003-05-20 2011-07-14 Donnelly Corporation Exterior sideview mirror system
US8128244B2 (en) 2003-05-20 2012-03-06 Donnelly Corporation Exterior sideview mirror system
US10688931B2 (en) 2003-05-20 2020-06-23 Donnelly Corporation Extended field of view exterior mirror element for vehicle
US8267534B2 (en) 2003-05-20 2012-09-18 Donnelly Corporation Exterior rearview mirror assembly
US20110141542A1 (en) * 2003-10-02 2011-06-16 Donnelly Corporation Rearview mirror assembly for vehicle
US8179586B2 (en) 2003-10-02 2012-05-15 Donnelly Corporation Rearview mirror assembly for vehicle
US8705161B2 (en) 2003-10-02 2014-04-22 Donnelly Corporation Method of manufacturing a reflective element for a vehicular rearview mirror assembly
US8379289B2 (en) 2003-10-02 2013-02-19 Donnelly Corporation Rearview mirror assembly for vehicle
US8577549B2 (en) 2003-10-14 2013-11-05 Donnelly Corporation Information display system for a vehicle
US20110109746A1 (en) * 2003-10-14 2011-05-12 Donnelly Corporation Vehicle information display
US8019505B2 (en) 2003-10-14 2011-09-13 Donnelly Corporation Vehicle information display
US8170748B1 (en) 2003-10-14 2012-05-01 Donnelly Corporation Vehicle information display system
US8095260B1 (en) 2003-10-14 2012-01-10 Donnelly Corporation Vehicle information display
US8355839B2 (en) 2003-10-14 2013-01-15 Donnelly Corporation Vehicle vision system with night vision function
US8282253B2 (en) 2004-11-22 2012-10-09 Donnelly Corporation Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle
US20110013280A1 (en) * 2005-01-19 2011-01-20 Donnelly Corporation Heater pad for a mirror reflective element
US8258433B2 (en) 2005-01-19 2012-09-04 Donnelly Corporation Interior rearview mirror assembly
US20060181772A1 (en) * 2005-01-19 2006-08-17 Byers Donald C Mirror assembly with heater element
US7400435B2 (en) 2005-01-19 2008-07-15 Donnelly Corporation Mirror assembly with heater element
US7605348B2 (en) 2005-01-19 2009-10-20 Donnelly Corp. Mirror assembly with heater element
US20100038352A1 (en) * 2005-01-19 2010-02-18 Donnelly Corporation Mirror assembly with heater element
US7800019B2 (en) 2005-01-19 2010-09-21 Donnelly Corporation Mirror assembly with heater element
US7910859B2 (en) 2005-01-19 2011-03-22 Donnelly Corporation Heater pad for a mirror reflective element
US8558141B2 (en) 2005-01-19 2013-10-15 Donnelly Corporation Mirror reflective element assembly for an exterior mirror assembly
US10124733B2 (en) 2005-05-16 2018-11-13 Donnelly Corporation Rearview mirror assembly for vehicle
US10766421B2 (en) 2005-05-16 2020-09-08 Donnelly Corporation Rearview mirror assembly for vehicle
US20080212189A1 (en) * 2005-05-16 2008-09-04 Donnelly Corporation Vehicle Mirror Assembly With Indicia At Reflective Element
US20090080055A1 (en) * 2005-05-16 2009-03-26 Donnelly Corporation Rearview mirror element assemblies and systems
US7626749B2 (en) 2005-05-16 2009-12-01 Donnelly Corporation Vehicle mirror assembly with indicia at reflective element
US8254011B2 (en) 2005-05-16 2012-08-28 Donnelly Corporation Driver attitude detection system
US8503062B2 (en) 2005-05-16 2013-08-06 Donnelly Corporation Rearview mirror element assembly for vehicle
US20100066519A1 (en) * 2005-05-16 2010-03-18 Donnelly Corporation Rearview mirror system
US9469252B2 (en) 2005-05-16 2016-10-18 Donnelly Corporation Rearview mirror assembly for vehicle
US7859738B2 (en) 2005-05-16 2010-12-28 Donnelly Corporation Rearview mirror system
US11554719B2 (en) 2005-05-16 2023-01-17 Magna Mirrors Of America, Inc. Vehicular rearview mirror assembly
US20110102167A1 (en) * 2005-05-16 2011-05-05 Donnelly Corporation Driver attitude detection system
US9035754B2 (en) 2005-07-06 2015-05-19 Donnelly Corporation Vehicle exterior rearview mirror system having an indicator at a back plate of an exterior rearview mirror assembly
US11498487B2 (en) 2005-07-06 2022-11-15 Magna Mirrors Of America, Inc. Vehicular exterior mirror system with blind spot indicator
US11242009B2 (en) 2005-07-06 2022-02-08 Donnelly Corporation Vehicular exterior mirror system with blind spot indicator
US9302624B2 (en) 2005-07-06 2016-04-05 Donnelly Corporation Vehicle exterior rearview mirror system having an indicator at a back plate of an exterior rearview mirror assembly
US11827155B2 (en) 2005-07-06 2023-11-28 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind spot indicator
US10589686B2 (en) 2005-07-06 2020-03-17 Donnelly Corporation Vehicle exterior rearview mirror system having an indicator
US10829053B2 (en) 2005-09-14 2020-11-10 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind spot indicator
US10150417B2 (en) 2005-09-14 2018-12-11 Magna Mirrors Of America, Inc. Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle
US9758102B1 (en) 2005-09-14 2017-09-12 Magna Mirrors Of America, Inc. Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle
US9045091B2 (en) 2005-09-14 2015-06-02 Donnelly Corporation Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle
US10308186B2 (en) 2005-09-14 2019-06-04 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind spot indicator
US11285879B2 (en) 2005-09-14 2022-03-29 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind spot indicator element
US8833987B2 (en) 2005-09-14 2014-09-16 Donnelly Corporation Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle
US9694753B2 (en) 2005-09-14 2017-07-04 Magna Mirrors Of America, Inc. Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle
US11072288B2 (en) 2005-09-14 2021-07-27 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind spot indicator element
US11970113B2 (en) 2005-11-01 2024-04-30 Magna Electronics Inc. Vehicular vision system
US11124121B2 (en) 2005-11-01 2021-09-21 Magna Electronics Inc. Vehicular vision system
US8525697B2 (en) 2006-10-24 2013-09-03 Magna Mirrors Of America, Inc. Exterior mirror reflective element sub-assembly with signal indicator
US9333909B2 (en) 2006-10-24 2016-05-10 Magna Mirrors Of America, Inc. Exterior mirror reflective element sub-assembly
US8779937B2 (en) 2006-10-24 2014-07-15 Magna Mirrors Of America, Inc. Exterior mirror reflective element sub-assembly
US10086765B2 (en) 2006-10-24 2018-10-02 Magna Mirrors Of America, Inc. Method for manufacturing a blind spot indicator for a vehicular exterior rearview mirror assembly
US11077801B2 (en) 2006-10-24 2021-08-03 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind spot indicator module
US11890991B2 (en) 2006-10-24 2024-02-06 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind spot indicator element
US9162624B2 (en) 2006-10-24 2015-10-20 Magna Mirrors Of America, Inc. Exterior mirror reflective element sub-assembly
US8466779B2 (en) 2006-10-24 2013-06-18 Donnelly Corporation Vehicle exterior rearview mirror system with a highly viewable display indicator for the driver
US9713986B2 (en) 2006-10-24 2017-07-25 Magna Mirrors Of America, Inc. Exterior mirror reflective element sub-assembly
US9013288B2 (en) 2006-10-24 2015-04-21 Magna Mirrors Of America, Inc. Exterior mirror reflective element sub-assembly
US9505350B2 (en) 2006-10-24 2016-11-29 Magna Mirrors Of America, Inc. Exterior mirror reflective element sub-assembly
US11623570B2 (en) 2006-10-24 2023-04-11 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind spot indicator module
US8242896B2 (en) 2006-10-24 2012-08-14 Donnelly Corporation Vehicle exterior rearview mirror system with a highly viewable display indicator for the driver
US10369932B2 (en) 2006-10-24 2019-08-06 Magna Mirrors Of America, Inc. Mirror reflective element sub-assembly for vehicular exterior rearview mirror assembly
US10640047B2 (en) 2007-03-15 2020-05-05 Magna Mirrors Of America, Inc. Mirror reflective element sub-assembly for vehicular exterior rearview mirror assembly
US20110085256A1 (en) * 2007-05-23 2011-04-14 Donnelly Corporation Exterior mirror element with wide angle portion
US9315155B2 (en) 2007-05-23 2016-04-19 Donnelly Corporation Method of forming an exterior mirror reflector sub-assembly with auxiliary reflector portion
US9855895B2 (en) 2007-05-23 2018-01-02 Donnelly Corporation Exterior mirror reflective element with auxiliary reflector
US20100220407A1 (en) * 2007-05-23 2010-09-02 Donnelly Corporation Exterior mirror element with wide angle portion
US10023122B2 (en) 2007-05-23 2018-07-17 Donnelly Corporation Exterior mirror reflective element with auxiliary reflector
US8777430B2 (en) 2007-05-23 2014-07-15 Donnelly Corporation Exterior mirror element with auxiliary reflector portion
US9701247B2 (en) 2007-05-23 2017-07-11 Donnelly Corporation Method of forming an exterior mirror reflector sub-assembly with auxiliary reflector portion
US7824045B2 (en) 2007-05-23 2010-11-02 Donnelly Corporation Exterior mirror element with wide angle portion
US20110013285A1 (en) * 2007-05-23 2011-01-20 Donnelly Corporation Exterior mirror element with wide angle portion
US9499102B2 (en) 2007-05-23 2016-11-22 Donnelly Corporation Method of forming an exterior mirror reflector sub-assembly with auxiliary reflector portion
US8608326B2 (en) 2007-05-23 2013-12-17 Donnelly Corporation Exterior mirror element with auxiliary reflector portion
US7887204B2 (en) 2007-05-23 2011-02-15 Donnelly Corporation Exterior mirror element with wide angle portion
US7934844B1 (en) 2007-05-23 2011-05-03 Donnelly Corporation Exterior mirror element with wide angle portion
US8939589B2 (en) 2007-05-23 2015-01-27 Donnelly Corporation Exterior mirror element with auxiliary reflector portion
US8459809B2 (en) 2007-05-23 2013-06-11 Donnelly Corporation Exterior mirror element with auxiliary reflector portion
US20110205614A1 (en) * 2007-05-23 2011-08-25 Donnelly Corporation Exterior mirror element with wide angle portion
US9102279B2 (en) 2007-05-23 2015-08-11 Donnelly Corporation Exterior mirror reflector sub-assembly with auxiliary reflector portion
US8021005B2 (en) 2007-05-23 2011-09-20 Donnelly Corporation Exterior mirror element with wide angle portion
US8061859B1 (en) 2007-05-23 2011-11-22 Donnelly Corporation Exterior mirror element with wide angle portion
US8267535B2 (en) 2007-05-23 2012-09-18 Donnelly Corporation Exterior mirror element with wide angle portion
US8102279B2 (en) 2007-11-05 2012-01-24 Magna Mirrors Of America, Inc. Exterior mirror with indicator
US8305235B2 (en) 2007-11-05 2012-11-06 Magna Mirrors Of America, Inc. Exterior mirror reflective element sub-assembly with signal indicator
US20110221588A1 (en) * 2007-11-05 2011-09-15 Magna Mirrors Of America, Inc. Exterior mirror with indicator
US10175477B2 (en) 2008-03-31 2019-01-08 Magna Mirrors Of America, Inc. Display system for vehicle
US8508383B2 (en) 2008-03-31 2013-08-13 Magna Mirrors of America, Inc Interior rearview mirror system
US8649082B2 (en) 2008-06-09 2014-02-11 Magna Mirrors Of America, Inc. Interior electrochromic mirror assembly
US20110026093A1 (en) * 2008-06-09 2011-02-03 Magna Mirrors Of America, Inc. Interior electrochromic mirror assembly
US7813023B2 (en) 2008-06-09 2010-10-12 Magna Mirrors Of America, Inc. Electro-optic mirror
US11312303B2 (en) 2010-02-04 2022-04-26 Magna Mirrors Of America, Inc. Vehicular interior rearview mirror assembly
US9205780B2 (en) 2010-02-04 2015-12-08 Magna Mirrors Of America, Inc. Electro-optic rearview mirror assembly for vehicle
US11851006B2 (en) 2010-02-04 2023-12-26 Magna Mirrors Of America, Inc. Multi-camera vehicular video display system
US10266119B2 (en) 2010-02-04 2019-04-23 Magna Mirrors Of America, Inc. Interior rearview mirror system for vehicle
US9481304B2 (en) 2010-05-24 2016-11-01 Magna Mirrors Of America, Inc. Automotive exterior mirror heater control
US8988755B2 (en) 2011-05-13 2015-03-24 Magna Mirrors Of America, Inc. Mirror reflective element
US9290127B2 (en) 2011-05-13 2016-03-22 Magna Mirrors Of America, Inc. Mirror reflective element
US10259392B2 (en) 2011-09-30 2019-04-16 Magna Mirrors Of America, Inc. Exterior mirror with spotter mirror
US8736940B2 (en) 2011-09-30 2014-05-27 Magna Mirrors Of America, Inc. Exterior mirror with integral spotter mirror and method of making same
US9333917B2 (en) 2011-09-30 2016-05-10 Magna Mirrors Of America, Inc. Exterior mirror with spotter mirror
US9290970B2 (en) 2011-11-14 2016-03-22 Magna Mirrors Of America, Inc. Door handle system for vehicle
US11840172B2 (en) 2011-11-14 2023-12-12 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly
US8801245B2 (en) 2011-11-14 2014-08-12 Magna Mirrors Of America, Inc. Illumination module for vehicle
US10266151B2 (en) 2011-11-14 2019-04-23 Magna Mirrors Of America, Inc. Method for unlocking a vehicle door for an authorized user
US9616808B2 (en) 2011-11-14 2017-04-11 Magna Mirrors Of America, Inc. Ground illumination system for vehicle
US11007978B2 (en) 2011-11-14 2021-05-18 Magna Mirrors Of America, Inc. Vehicular illumination system with reconfigurable display element
US10632968B2 (en) 2011-11-14 2020-04-28 Magna Mirrors Of America, Inc. Vehicular door handle assembly with illumination module
US11325564B2 (en) 2011-11-14 2022-05-10 Magna Mirrors Of America, Inc. Vehicular illumination system with reconfigurable display element
US9216691B2 (en) 2013-02-25 2015-12-22 Magna Mirrors Of America, Inc. Exterior mirror with spotter mirror
US11235699B2 (en) 2014-02-07 2022-02-01 Magna Mirrors Of America, Inc. Illumination module for vehicle
US11904762B2 (en) 2014-02-07 2024-02-20 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with illumination module
US11618372B2 (en) 2014-02-07 2023-04-04 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with illumination module
US10614719B2 (en) 2014-09-11 2020-04-07 Magna Mirrors Of America, Inc. Exterior mirror with blind zone indicator
US12112638B2 (en) 2014-09-11 2024-10-08 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind zone indicator
US9761144B2 (en) 2014-09-11 2017-09-12 Magna Mirrors Of America, Inc. Exterior mirror with blind zone indicator
US11631332B2 (en) 2014-09-11 2023-04-18 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind zone indicator
US11132903B2 (en) 2014-09-11 2021-09-28 Magna Mirrors Of America, Inc. Exterior mirror with blind zone indicator
US10943488B2 (en) 2015-09-28 2021-03-09 Magna Mirrors Of America, Inc. Exterior mirror assembly with blind zone indication module
US9659498B2 (en) 2015-09-28 2017-05-23 Magna Mirrors Of America, Inc. Exterior mirror assembly with blind zone indicator
US10170001B2 (en) 2015-09-28 2019-01-01 Magna Mirrors Of America, Inc. Blind zone indicator module for exterior rearview mirror assembly
US9847028B1 (en) 2015-09-28 2017-12-19 Magna Mirrors Of America, Inc. Method for manufacturing blind zone indicator module for exterior rearview mirror assembly
US9754489B1 (en) 2015-09-28 2017-09-05 Magna Mirrors Of America, Inc. Exterior mirror assembly with blind zone indicator
US11270590B2 (en) 2015-09-28 2022-03-08 Magna Mirrors Of America, Inc. Exterior mirror assembly with blind zone indication module
US10522042B2 (en) 2015-09-28 2019-12-31 Magna Mirrors Of America, Inc. Exterior mirror assembly with blind zone indication module
US10713953B2 (en) 2015-09-28 2020-07-14 Magna Mirrors Of America, Inc. Exterior mirror assembly with blind zone indication module
US12112637B2 (en) 2015-09-28 2024-10-08 Magna Mirrors Of America, Inc. Exterior mirror assembly with blind zone indication module

Also Published As

Publication number Publication date
FR2618566A1 (fr) 1989-01-27
DK133389D0 (da) 1989-03-17
AU2127388A (en) 1989-03-01
WO1989001177A1 (fr) 1989-02-09
DE3886609D1 (de) 1994-02-10
DE3886609T2 (de) 1994-07-21
EP0300916A1 (fr) 1989-01-25
ES2049755T3 (es) 1994-05-01
DK133389A (da) 1989-05-10
ATE99429T1 (de) 1994-01-15
JPS6444424A (en) 1989-02-16
FR2618566B1 (fr) 1992-04-17
EP0300916B1 (fr) 1993-12-29

Similar Documents

Publication Publication Date Title
US5078480A (en) Light modulating cell
US5056899A (en) Material for light modulation and manufacturing processes
US5082355A (en) Technique for manufacturing a light modulating device
US5080470A (en) Process for manufacturing a light modulating device
EP1376214B1 (en) Display unit and driving method therefor
US5054894A (en) Light modulating process
DE3887789T2 (de) Vorrichtung für die Lichtmodulation.
JP2003149687A (ja) 表示装置及びその駆動方法
FR2669121A1 (fr) Materiau ameliore et cellule pour la modulation de la lumiere et procede de fabrication.
JPH0128927B2 (es)
CA2108070A1 (fr) Materiaux, cellules, dispositifs, procede de fabrication pour un afficheur electrochimique en couleur

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONNECTICUT DEVELOPMENT AUTHORITY, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ALPINE POLYVISION, INC.;REEL/FRAME:006374/0523

Effective date: 19921209

Owner name: CONNECTICUT INNOVATIONS, INCORPORATED, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ALPINE POLYVISION, INC.;REEL/FRAME:006374/0523

Effective date: 19921209

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19960110

AS Assignment

Owner name: FLEET NATIONAL BANK, AS AGENT, MASSACHUSETTS

Free format text: SECURITY INTEREST;ASSIGNORS:POLYVISION CORPORATION;GREENSTEEL, INC.;POSTERLOID CORPORATION;AND OTHERS;REEL/FRAME:010078/0404

Effective date: 19981120

AS Assignment

Owner name: GREENSTEEL, INC., PENNSYLVANIA

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:FLEET NATIONAL BANK;REEL/FRAME:012177/0491

Effective date: 20011113

AS Assignment

Owner name: POLYVISION CORPORATION, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CONNECTICUT INNOVATIONS, INCORPORATED;CONNECTICUT DEVELOPMENT AUTHORITY;REEL/FRAME:012418/0398

Effective date: 20011029

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362