[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US3816097A - Powders of metal, silver and gold - Google Patents

Powders of metal, silver and gold Download PDF

Info

Publication number
US3816097A
US3816097A US00261079A US26107972A US3816097A US 3816097 A US3816097 A US 3816097A US 00261079 A US00261079 A US 00261079A US 26107972 A US26107972 A US 26107972A US 3816097 A US3816097 A US 3816097A
Authority
US
United States
Prior art keywords
silver
gold
metal
powder
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00261079A
Inventor
V Daiga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OI Glass Inc
Original Assignee
Owens Illinois Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Illinois Inc filed Critical Owens Illinois Inc
Priority to US00261079A priority Critical patent/US3816097A/en
Application granted granted Critical
Publication of US3816097A publication Critical patent/US3816097A/en
Assigned to OWENS-ILLINOIS GLASS CONTAINER INC. reassignment OWENS-ILLINOIS GLASS CONTAINER INC. ASSIGNS AS OF APRIL 15, 1987 THE ENTIRE INTEREST Assignors: OWENS-ILLINOIS, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

Definitions

  • ABSTRACT A substantially homogeneous, finely divided powder, substantially free of silver chloride or cyanide comprising at least one metal other than silver or gold, and silver and gold, and an anti-agglomerating agent substantially homogeneously dispersed throughout said powder.
  • the powders are particularly useful in the electronic arts.
  • this invention relates to processes for making metal-silver-gold powders and the powders resulting therefrom which are extremely homogeneous in nature and thus find .a wide variety of uses particularly in the electronic arts, such as those uses disclosed in concurrently filed, commonly owned copending application Ser. No. 140,988, filed May 6, 1971 in the name of Bernard Greenstein and entitled RESISTOR COMPOSITIONS AND METH- ODS.
  • metal oxides such as palladium oxide and the like as electronically active materials has long been known.
  • a resistive metal such as palladium may be admixed with a glass binder and an organic vehicle to form a printing paste.
  • the paste is then printed onto a dielectric substrate such as aluminum oxide or the like by the use of a screen or mask of the desired mesh and formed to provide the desired pattern.
  • the desired pattem is then fired in air to oxidize the palladium to palladium oxide and form an electronically active device (e.g. resistor).
  • TCR temperature coefficients of resistivity
  • certain metals such as silver or gold have been alloyed with the resistive metal.
  • these additive metals have also been found to dilute the system and thereby control resistivity and increase the stability of the resistor.
  • stability is well-understood in the art and is used herein in accordance with this well-known meaning. That is to say, stability defines that characteristic of an electronic system which enables it to maintain its resistivity value within tolerable limits over extended periods of time and use.
  • this aforementioned copending application obtained the necessary degree of homogeneity for nonsensitivity of the palladium (or other resistive metal) with the stabilizing metal systems, by initially forming an admixture of the resistive metals and stabilizer metals in the form of organometallic compounds and adding thereto an anti-agglomerating agent. Upon heating of the admixture of a sufficient temperature and for a sufficient period of time, the org'ano constituents are driven off and the admixture is concentrated to an extremely homogeneous powder. Such powders were found to be extremely useful when alloyed and employed with glass binders as resistor compositions for microelectronic circuitry.
  • this invention generally envisions two alternative techniques for forming homogeneous, finely divided powders of one or more metals in combination with silver and gold (or two other metals which give rise to similar problems of contaminated coprecipitation as silver and gold).
  • the first alternative technique of this invention generally comprises forming a soluble salt solution of a thereto.
  • a soluble salt solution of a thereto there are oniy 'a very limited number of inorganic media in which both silver and gold are soluble.
  • aqua regia e.g. 3 parts HCl to 1 part HNO3
  • the various inorganic cyanide solutions are, generally speaking, the onlyones which feasibly could be employed.
  • aqua regia may generally be safely employed, insoluble silver chloride is formed simultaneously with the silver and gold soluble salts, thus forming a contaminant in the ultimately precipitated metal alloy powder.
  • Silver cyanide is somewhat more soluble than silver chloride.
  • cyanide salt contamination often does occur to a limited extent and may become a material problem especially when a high degree of silver isv required to be present in the system
  • the use of cyanides is dangermetal other'than silver or gold, and silver and thereafter reducing the solution in accordance'with prior, art techniques similar to those described in the aforementioned patents.
  • Such a reduction reaction with agitation forms a metal-silver slurry.
  • gold inthe form of agold salt solution generally of the chloride type.
  • the slurry solution now containing gold is then contacted with a reducing agent either already present or additionally added, to precipitate the gold into the metal-silver slurry and thereby form the trimembered powder of metal, silver and gold.
  • cepts were carried out by dissolving gold, silver andmetal in, for example, an aqua regia medium which would serve as a medium for all three of these metals. This is because the initial reduction of the metal and silver into a powdered slurry renders the metal and silver less sensitive to chlorination.
  • the second alternative method contemplated by this invention provides for the total elimination of the formation of any insoluble silver chloride or cyanide in the system andjthus is preferred where noncontaminated powders are required to be used such as in the microelectronics art, particularly for making resistors and the like.
  • This second alternative method generally comprises initially forming a soluble salt solution of the metal or metals other than silver or gold, and silver in a manner similar to the first alternative method. To this silver-metal salt solution-there is then added a finely divided gold powder usually having a particle size less than about 5 microns, preferably less than about 2 microns, and most preferably substantially submicron in size.
  • the solution containing the gold powder, which is not soluble in the salt solution, is then thoroughly mixed as by agitation, to form a slurry of the gold and there is then added thereto a reducing agent for the metal and silver. While some small amount of homogeneity is sacrificed because the gold powder is not precipitated, precipitation of the metal and silver into the slurried gold powder effects a substantial amount of homogeneity to the extent that excellent products can be made therefrom for the purposes of microelectronic circuitry, particularly in the resistor area.
  • this invention for the first time provides the art with a unique powder also considered a part of this invention.
  • a powder generally comprises a substantially homogeneous admixture of at least one metal other than silver or gold, with silver and gold, which admixture is substantially free of silver chloride or cyanide.
  • the homogeneity achieved and contemplated is beyond that achievable by known mechanical comminution and/or alloying techniques and is usually to the point where the silver and other metal are actually alloyed together according to X-ray diffraction indications with the gold highly dispersed therethroughout.
  • the particle size of the powder, without comminution is generally less than about 5 microns and usually submicron in size and thus the powder is said to be finely divided.”
  • this invention relates generally to all systems wherein at least one finely divided metallic powder other than silver and gold must be formulated in admixture with both silver and gold.
  • silver and gold will be referred to hereinafter since they are the preferred combination with which this invention deals.
  • this invention contemplates other metal combinations which experience the difficulty of contamination by coprecipitation similar to that of silver and gold.
  • the metal used in admixture with the silver and gold must be capable of forming a soluble salt in a liquid reaction medium in which a silver salt is also soluble.
  • the soluble salt of the metal as well as that of the silver must be capable of being coprecipitated in metallic form by the addition of an appropriate reducing agent thereto.
  • the preferred metals for the purposes of this invention are the known resistive metals such as, for example, palladium, rhodium, iridium, ruthenium, indium, and mixtures thereof.
  • palladium is the most preferred for the preferred environmental use of microelectronic resistors because of its excellent resistive properties.
  • Other metals useful in combination with silver and gold include platinum, copper, nickel, and mixtures thereof.
  • the metal'or metals employed may be formed into any of their known salts which are soluble in a liquid medium in which a silver salt is also soluble. Therefore,
  • the formation of the metal salt and silver salt may be independent or simultaneous.
  • the metal and silver anion may be the same or different, the only criteria being that both salts are soluble in a common liquid medium and capable of being precipitated in metallic form from the medium by the addition of a reducing agent thereto, preferably without the formation of any insoluble salt occurring which cannot easily be removed from the powdered solution.
  • the liquid reaction medium employed is water;
  • at least one of the metals is palladium, and the soluble salts formed are, at least in part, the soluble nitrates of palladium and silver.
  • Nitrate salts, of palladium and silver are simply formed by reacting the silver and palladium with nitric acid.
  • the soluble salts of one or more of the metals and/or of the silver include: sulfates, sulfites, bromates, chlorites, fluorides, permanganates, nitrites, and the like.
  • Salts formed of the nitrate anion are generally soluble in water of room temperature or below as are some of the salts of the other exemplary anions listedabove.
  • the anion salt may be of limited solubility and thus the liquid medium may have to be heated or cooled in order to form and/or maintain a truly soluble solution prior to and during formation of the powders according to this invention if contamination with the anion or salt thereof is to be avoided or limited.
  • the reducing agents which cause the precipitation of metal and silver from their medium may be any of the well-known reducing agents or combinations thereof commonly employed in. the art.
  • reducing agents include hypophosphorous acid (HgPOg), a mixture of sodium formate and sodium borohydride, a mixture of hydroxylamine and sodium borohydride, a mixture of formic acid and hypophosphorous acid, a mixture or hydrazine sulfate and hypophosphorous acid, a mixture of formic acid and hydroquinone or a mixture of tartaric acid and hydroquinone, or sodium bisulfite.
  • H PO is preferred especially with silver and palladium since minimal side reactions and substantially no insoluble contaminating salts are formed when it is used.
  • the reducing agents addedto effect gold precipitation in the first alternative technique may be any of the well-known reducing agents for gold such as sodium sulfite, hydroquinone, hydrazine sulfate, sulfurous acid, zinc dust, ferrous sulfate, and the like.
  • Sodium sulfate I is preferred because it is readily available and causes the formation of an excellent particle of gold upon its precipitation.
  • an anti-agglomerating agent is preferably added to the salt solution prior to any coprecipitation so as to be a part of the ultimately formed
  • antiagglomerating agents are inert to the system and form I 7 a slurry-therein.
  • the anti-agglomerating agents usually employed are, of a fine particle size, i.e., less than about microns and usually submicron in size. Examples of these agents include ultra-fine alumina, an ultra-fine TiO and other ultra-fine refractories. Preferred for the purposes of this invention is ultra-fine silica (submicron in size) which is purchasable under the trademark CAB-O-SIL.
  • the percentages of the various ingredients employed will vary over a wide range depending upon the ultimate use to which the powder may be put. it is an aspect of this invention that the percentages attainable are quite flexible in nature. Thus, for example, homogeneous, finely divided powders are attainable which contain less-than 1% of any given metal and more than 99% of another metal.
  • the metal other than silver and gold is a resistive metal such as palladium or the like which may constitute from about 5-95% by weight of the powder.
  • the resistive metal constitutes l5-75% by weight of the powder, and most preferably -65% by weight thereof.
  • the remainder, i.e. 95-5% by weight, of the metal content is a combination of silver and gold in a weight ratio of 4:1 to 1:4 with respect to each other.
  • an antiagglomerating agent such usually need only be employed in amounts of about 0.5-l5% by weight of the total powder, preferably 2 l 0% by weight herein by reference.
  • ultra-fine silica usually about 5% by' weight.
  • concentrations employed for making the soluble salt solutions of the metal, silver and gold, and the amount of gold powder employed in' the second alternative technique are matters generally of convenience and mayvarywidely in order .to insure the requisite amounts of the various ingredients in the final powder and at the same time be workable in the manufacturing system devisedJGenerally speaking, the upper limit of concentration is the saturation point of the solution for the salt while the lower limit is a practical volume consideration. In this respect, concentrations of the salt solutions lower than about 10% are normally not employed. In the preferred instances where palladium and silver are first formed into a soluble nitrate solution by reaction with nitric acid, the solution containing the two salts may have a concentration on the order of about 2060% of the combined salts. Similar concentrations for the gold solutions in the first alternative technique may also be employed. The relative concentrations of each metal within these solutions are then,
  • the gold solutions employed in the first alternative technique may be any'well-known soluble-salt solution of gold.
  • soluble salt solutions include the various chloride and cyanide salts of gold.
  • a particularly preferred gold solution for the purposes of this invention is a solution of 'hydrochloroauric acid formed in a conventional manner by dissolving the'requisite amount of gold in aqua-regia (eQg. 3-4 parts HCl to 1 part HNO).
  • the gold powder employed in the second alternative technique may be any commercially available gold powder preferably having a particle size of less than about 5 microns.
  • a preferred gold powder because of I Generally speaking, this copending application discloses a method for forming a gold powder, usually having a bulk density greater than about 5.0 grns./cc and a particle size of lessthan about 5 microns, which comprises initially dissolving a gold-bearing material in a HCl-HNO acid.
  • a precipitating agent which precipitates gold powder from solution substantially free of contaminating chloride or other salts.
  • the so-formed gold particles are encapsulated with the emulsifier which is removed, usually by washing the powder in a solvent such as acetone or water and then drying the powder prior to using it in this invention.
  • the powder so formed is substantially pure, uncontaminated, gold powder of the indicated particle size.
  • a typical operating procedure for conducting the first alternative technique described hereinabove is to initially prepare a metal-soluble, salt solution by dissolving the metal in aninorganic acid.
  • palladium in commercial sponge, powder or other form may be dissolved ina 70% solution of l-lNO to form a solutionpreferably of about 300-400 gms/l. of Pd.
  • a separate silver nitrate solution may be prepared with nitric acid or commercially obtained.
  • silver sponge, powder, etc. may be added with the palladium in the requisite amounts to the 70% HNO solution.
  • the gold solution is prepared by dissolving a gold sponge, powder, etc. in aqua regia and removing excess l-lNO by heating the solution.
  • a typical concen- The nitrate solutions of silver and metal are then admixed if not simultaneously formed and an antiagglomerating agent is added thereto.
  • the solution is agitated to slurry the antiagglomerating agent and a reducing agent such as H PO or sodium bisulfite is added to precipitate the metal and silver in their metallic form.
  • a reducing agent such as H PO or sodium bisulfite
  • the hydrochloroauric acid solution To this slurried solution is then added the hydrochloroauric acid solution.
  • the reducing agent initially employed for the metal and silver is also a reducing agent for gold
  • gold precipitate will form upon mere addition of the gold solution to the s 9 slurry.
  • sufficient reducing agent is added initially to insure that substantially all of the gold is precipitated from solution.
  • a reducing agent is added with continued vigorous agitation until the precipitation of the gold is substantially complete.
  • the reduction reaction of gold does result in some reaction occurring between the slurried silver and the chloride ions in the decomposed hydrochloroauric acid.
  • a reduction in the amount of insoluble AgCl normally formed by commoncoprecipitation of gold and silver from a common aqua-regia solution is obtained.
  • the homogeneously dispersed finely divided powder of metal, silver, gold, anti-agglomerating agent, and reduced amounts of AgCl is now separated, as by filtration, from the liquid medium and dried.
  • the powder is of particles less than about microns and usually less than about 1 micron.
  • the homogeneity of dispersion of the individual ingredients is far beyond thatachievable by simple comminution and/or alloying.
  • the silver is alloyed with the metal.
  • the solutions of metal and silver preferably in nitrate form, are formed and admixed in a manner similarly as described in the first alternative technique.
  • Gold powder having a particle size of less than about 5 microns is then added to the common solution.
  • the gold powder is that as produced by my afore-cited copending application.
  • the anti-agglomerating agent is added either prior to, simultaneously with, or after the gold powder is added and the particles of this agent and gold are slurried in the solution with vigorous agitation.
  • a reducing agent in the before-described amounts is then added to precipitate the metal and silver and the homogeneous powder is obtained and processed similarly as described with respect to the first alternative technique.
  • the product of the second alternative tech- EXAMPLE 1 FIRST ALTERNATIVE TECHNIQUE A gold reactant solution (l-iAuCh) was prepared from' pure gold sponge. This was accomplished by reacting 20 gms. of Au in an aqua-regia solution and diluting the solution to T60 ml. with H O.
  • a palladium nitrate solution was prepared by dissolving 53.8 grams of the metal in 150 ml (70%) HNO
  • the resultant Pd (NO solution had a volume of 160 ml.
  • a silver nitrate solution wasformed by dissolving 1 15.3 grams of silver nitrate crystals in 150 ml. of distilled water. The total volume of the resultant solution was 175 ml.
  • the powder analyzed as containing on a metal basis by weight, 47.4% Ag, 14.55% Au, and 38.05% Pd. The powder also contained 13.02% by weight chloride salt, assuming all chlorides to be silver chloride.
  • EXAMPLE 2 a SECOND ALTERNATIVE TECHNIQUE 250 gms. of a powder consisting of by weight 52% Ag, 35% Pd, and 13% Au'were prepared by the following technique.
  • a Pd(l ⁇ l0 solution was prepared by adding 87.5
  • An AgNO solution was prepared by adding 204.3 grams of AgNO crystals to 500 ml. of distilled water with stirring.
  • the gold powder employed had a particle size of less than 5 microns and was produced in accordance with Example 1 of my aforementioned copending application. 32.5 grams of the powder were washed free of emulsifier in acetone and thoroughly-dried for use hereinafter.
  • the AgNO solution was charged into a reaction vessel which consisted of a 5 liter glass baffled flask with a propeller type agitator.
  • the reaction vessel was provided with a heating and cooling bath to regulate the temperature.
  • One liter of distilled water was added and the solution mixed rapidly by the propeller agitator.
  • 12.5 gms. of CAB-O-SIL ultrafine SiO anti-agglomerating agent was suspended in the reaction medium. Five minutes of vigorous stirring were then allowed to proceed.
  • the Pd(NO3)2 solution was added and the 32.5 gms. of gold powder suspended in the combined solution with continuing agitation. An additional 375 ml. of distilled water were also added to aid in the washing in of the gold powder.
  • the reduction reaction was initiated, with continued vigorous agitation, by adding to the reaction mass, dropwise, 390 gms. of a 50% hypophosphorous acid solution diluted in 400 ml. of distilled water.
  • the total time to add all of the H PO was about hour.
  • the resulting exothermic reaction was maintained at about 50 C by cooling water.
  • the reaction media was held at the reaction temperature with mixing for l hour'to insure completeness and optimum homogeneity of the metal slurry.
  • the metal slurry was filtered and washed with about two liters of distilled water and placed in a 1 C drying oven overnight.
  • the resulting dry powder was a microscopically homogeneous black mass having substantially no particles greater than about 5 microns. Analysis indicated the powder to consist on. a metal basis of, by weight, 52% Ag, 35% Pd, and 13% Au and further indicated that no contaminating salts were present therein. This powder, as evidenced by the examples in the aforementioned copending-Greenstein application, may be used as a valuable starting material for microelectronic resistor production.
  • a powder according to claim 1 wherein said at least one metal is selected from palladium, rhodium, iridium, ruthenium, indium, and'mixtures thereof.
  • a powder according to claim 1 wherein said at least one metal is the single metal palladium.
  • a powder according to claim 1 wherein said antiagglomerating agent is particulate silica submicron in size.
  • a powder according to claim 1 consisting essentially of about: 595% by weight palladium, 5-95% by weight of an admixture of gold and silver in a weight ratio of about 4:1 1:4, and about 0.5-1 5% by weight anti-agglomerating agentf 7.
  • a powder according to claim 1 which consists of about 20-65% by weight palladium, about -35% by weight of said silver, gold admixture, and about 5% of submicron particle size silica'as said anti-tagglomerating agent.
  • a powder according to claim 1 consisting of by weight about: 52% Ag, 35% Pd, and 13% Au on a metal basis, the total composition including about 5% by weight of said silica.
  • a powder according to claim 1 wherein said palladium is indicated as alloyed with said silver by X-ray diffraction techniques.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

A substantially homogeneous, finely divided powder, substantially free of silver chloride or cyanide comprising at least one metal other than silver or gold, and silver and gold, and an anti-agglomerating agent substantially homogeneously dispersed throughout said powder. The powders are particularly useful in the electronic arts.

Description

United States Patent [191 Daiga Related [15. Application Data [62] Division of Ser. No. 141,006, May 6, 1971, Pat. No.
[52] US. Cl 75/.5 A [51] Int. Cl B22f 9/00 [58] Field of Search 75/.5 B, .5 A, .5 R, 165, 75/172, 173 R [56]- References Cited UNITED STATES PATENTS 3/1919 Fahrenwald 75/165 June 11, 1974 2,189,640 2/1940 Powell 75/165 2,371,240 3/1945 Hensel et al. 75/173 R 3,141,761 7/1964 RBhm 75/.5 B 3,345,158 10/1967 Block et a1 75/.5 A 3,427,153 2/1969 Venkatesan et a1. 75/,5 A
Primary Examiner-W. W. Stallard Attorney, Agent, or FirmRichard B. Dence; E. J.
Holler 5 7] ABSTRACT A substantially homogeneous, finely divided powder, substantially free of silver chloride or cyanide comprising at least one metal other than silver or gold, and silver and gold, and an anti-agglomerating agent substantially homogeneously dispersed throughout said powder. The powders are particularly useful in the electronic arts.
9 Claims, No Drawings made therefrom. More particularly, this invention relates to processes for making metal-silver-gold powders and the powders resulting therefrom which are extremely homogeneous in nature and thus find .a wide variety of uses particularly in the electronic arts, such as those uses disclosed in concurrently filed, commonly owned copending application Ser. No. 140,988, filed May 6, 1971 in the name of Bernard Greenstein and entitled RESISTOR COMPOSITIONS AND METH- ODS.
a The value of metal oxides such as palladium oxide and the like as electronically active materials has long been known. For example, as set forth in the abovecited commonly owned copending application, it. is known, that in the microelectronic circuitry art, a resistive metal such as palladium may be admixed with a glass binder and an organic vehicle to form a printing paste. The paste is then printed onto a dielectric substrate such as aluminum oxide or the like by the use of a screen or mask of the desired mesh and formed to provide the desired pattern. The desired pattem is then fired in air to oxidize the palladium to palladium oxide and form an electronically active device (e.g. resistor).
Unfortunately, many resistive metal oxides (including palladium oxide) have relatively large and negative temperature coefficients of resistivity (hereinafter referred to as TCR) which must usually be adjusted if the resistor is to be operative for its intended purposes. In order to regulate this TCR, (and in effect to increase it to a tolerable'level somewhere about i ppm/C) certain metals such as silver or gold have been alloyed with the resistive metal. In addition to regulating TCR, these additive metals have also been found to dilute the system and thereby control resistivity and increase the stability of the resistor.
The term stability is well-understood in the art and is used herein in accordance with this well-known meaning. That is to say, stability defines that characteristic of an electronic system which enables it to maintain its resistivity value within tolerable limits over extended periods of time and use.
As further disclosed in the aforementioned copending application and as disclosed in commonly owned, copending application Ser. No. 58,740 filed July 26, 1970, now U.S. Pat. No. 3,681,261 one of the major problems attendant resistive metal systems 'is their great sensitivity to the firing process used to formulate the ultimate device from its printing paste. Slight fluctuations and/or variations in temperature during the firing cycle, for example, greatly'change the resistivity of the resulting product. Air flow and firing times are further variables to which the characteristics of the final product are extremely sensitive. Such sensitivity, of course, renders these oxide systems extremely difficult to reproduce. Not only is reproducibility low, but for some reason, not entirely understood, stability is also very low.
While the additive metals used in admixture with the resistive metal oxide generally provide commercially tolerable stability to the system, they are generally found to detrimentally increase TCR, usually far above the desirable i 0 ppm/C, when used in amounts sufficient to obtain tolerable stability. In this respect, and especially when silver is used as the stabilizing metal, stability must be sacrificed for acceptable TCR; while, on the other hand, TCR must be sacrificed for acceptable stability. ln almost all instances, reproducibility,
..regardless of the metal stabilizers used, is detrimentall low.
The aforementioned commonly owned, copending application, Ser. No. 58,740, filed July 27, 1970, discloses a unique and valuable solution to the abovedescribed problems attendant these resistive metal oxide systems, especially when these systems are used to form microelectronic resistors. The entire disclosure of this copending application is incorporated herein by reference.
In this copending application, the problems of stability, sensitivity, and reproducibility are eliminated by a unique process' which, when effected, produces extremely homogeneous alloys of palladium or other resistive metals with at least one stabilizing metal. By achieving high homogeneity, reproducibility is increased because sensitivity of the system to later processing such as firing and the. like is materially decreased. ln thisrespect, while one stabilizing metal alone can be employed, it was found to be preferred to use at least two of these metals together in amounts which were found to syner'gistically reduce their affect upon TCR. Thus, by using two metals in combination, excellent stability is attained without unduly increasing TCR. One of the most important of these combinations is a combination of silver and gold, usually in alloy form.
Generally speaking, this aforementioned copending application obtained the necessary degree of homogeneity for nonsensitivity of the palladium (or other resistive metal) with the stabilizing metal systems, by initially forming an admixture of the resistive metals and stabilizer metals in the form of organometallic compounds and adding thereto an anti-agglomerating agent. Upon heating of the admixture of a sufficient temperature and for a sufficient period of time, the org'ano constituents are driven off and the admixture is concentrated to an extremely homogeneous powder. Such powders were found to be extremely useful when alloyed and employed with glass binders as resistor compositions for microelectronic circuitry.
While the technique hereinabove described relative to this copending application is extremely valuable, it has a few drawbacks attendant with it which make the finding of an alternative method of forming an extremely homogeneous powder of a resistive metal with a silver and gold system most desirable.' Examples of such drawbacks include the relatively high expense of the organometallic compounds used as starting materials and the pollution and danger caused by the volatilization-of the organo constituents during heating to powder form. It has also been found that many of the commercially available organometallics useful in the practice of the invention'disclosed in the copending application contain chlorine-bearing solvents. During the concentration step, the chloride ions have a tendency to react with the silver metal and thereby form silver chloride precipitate which contaminates the resulting powder. As discussed more fully hereinafter, silver chloride cannot be tolerated in any substantial amounts in resistor compositions.
It is a purpose of this invention to provide the art with an alternative process for forming extremely homogeneous, finely divided powders of resistive metals in combination with silver and gold, which process does not employ organometallic compounds and thereby overcomes the above-described problems relative thereto. In this respect, it is a further purpose of this invention to provide the art with a starting material powder and a process for forming this starting material powder from which the unique resistors of the abovecited concurrently filed copending application Ser. No. 140,988, filed May 6, 1971 in the name of Bernard Greenstein entitled RESISTOR COMPOSITIONS AND METHODS, can beformed and the other teachinvention is to an extent greater than that achievable by mere mechanical comminution or comminution and metal alloying. Thus, the term homogeneous is used herein to define a dispersion of materials which goes beyond that achievable by these mechanical or partially mechanical techniques.
As'exemplified by us. Pat. Nos. 3,390,98l and 3,385,799 and British Pat. No. l,004,652,"the basic concept of coprecipitating two electronically active noble metals to thereby form a finely divided alloy of the two metals is known. 'Gnerally speaking, such a known process comprises dissolving each of the metals in a common inorganic solvent such as, for example, nitric acid, so as to form a solution of soluble salts (e.g. nitrates) of the two. metals. Thereafter, the solution is contacted with a reducing agent which simultaneously reduces the dissolved metal saltsand precipitates them as pure metal alloy powders.
The prior art coprecipitationtechniques, as represented by the patents cited above, have several serious drawbacks. Firstly, they never contemplate the use of a system having more than two metals therein. Se-
condly, although they do make mention of theuse of silver and gold as a coprecipitate, the application of the disclosed techniques to the formation of such a coprecipitate has many problems and detriments attached ous and to be avoided. In summary, then, the art, by its prior techniques is unable to safely form a noncontaminated coprecipitate of silver and gold.
The problem of contamination of coprecipitated powders, particularly of silver and gold, is an especially acute problem in many arts such as where the powder is to be used, for example, in microelectronic devices such as conductors, resistors and the like. In microelectronic resistors, for example, substantially no contaminating silver chloride or cyanide can be tolerated. Since, therefore, the prior art coprecipitation techniques cannot provide a safely formed, noncontaminated powder comprised of silver and gold, they are incapable of satisfying a specific but important need in the art. Therefore, in addition to the above-explained need relative to anew technique for forming homoge neous, finelydivided powders which do not employ organometallic compounds, there also exists adefinite need in the art for a new technique for forming homogeneous, finely divided metal powders which include both silver and gold in their composition makeup, whichis safe'to conduct and which eliminates or substantially reduces the contamination problem.
It is the purpose of this invention not only to. fulfill the first above-described need, but also to fulfill this latter need relative to a new technique wherein silver and gold may both be present in the powder composition but without the degree of metal salt contamination experienced when employing the prior art techniques.
In fulfilling the above-described needs, this invention generally envisions two alternative techniques for forming homogeneous, finely divided powders of one or more metals in combination with silver and gold (or two other metals which give rise to similar problems of contaminated coprecipitation as silver and gold).
The first alternative technique of this invention generally comprises forming a soluble salt solution of a thereto. For example, there are oniy 'a very limited number of inorganic media in which both silver and gold are soluble. Of these, aqua regia (e.g. 3 parts HCl to 1 part HNO3) and the various inorganic cyanide solutions are, generally speaking, the onlyones which feasibly could be employed. While aqua regia may generally be safely employed, insoluble silver chloride is formed simultaneously with the silver and gold soluble salts, thus forming a contaminant in the ultimately precipitated metal alloy powder. Silver cyanide is somewhat more soluble than silver chloride. However, cyanide salt contamination often does occur to a limited extent and may become a material problem especially when a high degree of silver isv required to be present in the system In addition, the use of cyanides is dangermetal other'than silver or gold, and silver and thereafter reducing the solution in accordance'with prior, art techniques similar to those described in the aforementioned patents. Such a reduction reaction with agitation forms a metal-silver slurry. To this metal-silver slurry is then added gold inthe form of agold salt solution generally of the chloride type. The slurry solution now containing gold is then contacted with a reducing agent either already present or additionally added, to precipitate the gold into the metal-silver slurry and thereby form the trimembered powder of metal, silver and gold.
cepts were carried out by dissolving gold, silver andmetal in, for example, an aqua regia medium which would serve as a medium for all three of these metals. This is because the initial reduction of the metal and silver into a powdered slurry renders the metal and silver less sensitive to chlorination.
The second alternative method contemplated by this invention provides for the total elimination of the formation of any insoluble silver chloride or cyanide in the system andjthus is preferred where noncontaminated powders are required to be used such as in the microelectronics art, particularly for making resistors and the like. This second alternative method generally comprises initially forming a soluble salt solution of the metal or metals other than silver or gold, and silver in a manner similar to the first alternative method. To this silver-metal salt solution-there is then added a finely divided gold powder usually having a particle size less than about 5 microns, preferably less than about 2 microns, and most preferably substantially submicron in size. The solution containing the gold powder, which is not soluble in the salt solution, is then thoroughly mixed as by agitation, to form a slurry of the gold and there is then added thereto a reducing agent for the metal and silver. While some small amount of homogeneity is sacrificed because the gold powder is not precipitated, precipitation of the metal and silver into the slurried gold powder effects a substantial amount of homogeneity to the extent that excellent products can be made therefrom for the purposes of microelectronic circuitry, particularly in the resistor area.
In view of this second alternative technique, this invention for the first time provides the art with a unique powder also considered a part of this invention. Such a powder generally comprises a substantially homogeneous admixture of at least one metal other than silver or gold, with silver and gold, which admixture is substantially free of silver chloride or cyanide. As stated above, the homogeneity achieved and contemplated is beyond that achievable by known mechanical comminution and/or alloying techniques and is usually to the point where the silver and other metal are actually alloyed together according to X-ray diffraction indications with the gold highly dispersed therethroughout. The particle size of the powder, without comminution is generally less than about 5 microns and usually submicron in size and thus the powder is said to be finely divided."
Regardless of which of the above two alternative methods is employed to make the finely divided homogeneous powders of this invention, this invention relates generally to all systems wherein at least one finely divided metallic powder other than silver and gold must be formulated in admixture with both silver and gold. In this respect silver and gold will be referred to hereinafter since they are the preferred combination with which this invention deals. However, it is understood, as stated, above that this invention, as an equivalent, contemplates other metal combinations which experience the difficulty of contamination by coprecipitation similar to that of silver and gold.
The metal used in admixture with the silver and gold must be capable of forming a soluble salt in a liquid reaction medium in which a silver salt is also soluble. In addition, the soluble salt of the metal as well as that of the silver must be capable of being coprecipitated in metallic form by the addition of an appropriate reducing agent thereto.
The preferred metals for the purposes of this invention are the known resistive metals such as, for example, palladium, rhodium, iridium, ruthenium, indium, and mixtures thereof. Of these, palladium is the most preferred for the preferred environmental use of microelectronic resistors because of its excellent resistive properties. Examples ofother metals useful in combination with silver and gold include platinum, copper, nickel, and mixtures thereof. i
The metal'or metals employed may be formed into any of their known salts which are soluble in a liquid medium in which a silver salt is also soluble. Therefore,
the formation of the metal salt and silver salt may be independent or simultaneous. In addition, the metal and silver anion may be the same or different, the only criteria being that both salts are soluble in a common liquid medium and capable of being precipitated in metallic form from the medium by the addition of a reducing agent thereto, preferably without the formation of any insoluble salt occurring which cannot easily be removed from the powdered solution. I
In the preferred embodiments of this invention, the liquid reaction medium employed is water; In still more preferred embodiments, at least one of the metals is palladium, and the soluble salts formed are, at least in part, the soluble nitrates of palladium and silver. Nitrate salts, of palladium and silver are simply formed by reacting the silver and palladium with nitric acid. In this respect, and because of the ready commercial availability of silver nitrate solutions, it is preferred to form the metal-silver nitrate salt solutions of this invention by separately forming a nitrate solution of the metal and thereafter add a commercially prepared silver nitrate solution thereto. 1
Examples of anions other than the nitrates which may be employedto form, in a known way, the soluble salts of one or more of the metals and/or of the silver include: sulfates, sulfites, bromates, chlorites, fluorides, permanganates, nitrites, and the like.
Salts formed of the nitrate anion are generally soluble in water of room temperature or below as are some of the salts of the other exemplary anions listedabove. In other instances, the anion salt may be of limited solubility and thus the liquid medium may have to be heated or cooled in order to form and/or maintain a truly soluble solution prior to and during formation of the powders according to this invention if contamination with the anion or salt thereof is to be avoided or limited.
, The reducing agents which cause the precipitation of metal and silver from their medium may be any of the well-known reducing agents or combinations thereof commonly employed in. the art. Examples of such reducing agents include hypophosphorous acid (HgPOg), a mixture of sodium formate and sodium borohydride, a mixture of hydroxylamine and sodium borohydride, a mixture of formic acid and hypophosphorous acid, a mixture or hydrazine sulfate and hypophosphorous acid, a mixture of formic acid and hydroquinone or a mixture of tartaric acid and hydroquinone, or sodium bisulfite. H PO is preferred especially with silver and palladium since minimal side reactions and substantially no insoluble contaminating salts are formed when it is used.
The reducing agents addedto effect gold precipitation in the first alternative technique may be any of the well-known reducing agents for gold such as sodium sulfite, hydroquinone, hydrazine sulfate, sulfurous acid, zinc dust, ferrous sulfate, and the like. Sodium sulfate I is preferred because it is readily available and causes the formation of an excellent particle of gold upon its precipitation.
In order to insure homogeneity and obtain powders in their best possible form, especially for use in the microelectronic circuitry art, an anti-agglomerating agent is preferably added to the salt solution prior to any coprecipitation so as to be a part of the ultimately formed,
homogeneous, finely divided powder, regardless of the alternative technique employed. Such antiagglomerating agents are inert to the system and form I 7 a slurry-therein. The anti-agglomerating agents usually employed are, of a fine particle size, i.e., less than about microns and usually submicron in size. Examples of these agents include ultra-fine alumina, an ultra-fine TiO and other ultra-fine refractories. Preferred for the purposes of this invention is ultra-fine silica (submicron in size) which is purchasable under the trademark CAB-O-SIL.
The percentages of the various ingredients employed will vary over a wide range depending upon the ultimate use to which the powder may be put. it is an aspect of this invention that the percentages attainable are quite flexible in nature. Thus, for example, homogeneous, finely divided powders are attainable which contain less-than 1% of any given metal and more than 99% of another metal. In the preferred uses, as disclosed inthe aforementioned copending Greenstein application, the metal other than silver and gold is a resistive metal such as palladium or the like which may constitute from about 5-95% by weight of the powder. Preferably the resistive metal constitutes l5-75% by weight of the powder, and most preferably -65% by weight thereof.
In preferred embodiments-the remainder, i.e. 95-5% by weight, of the metal content is a combination of silver and gold in a weight ratio of 4:1 to 1:4 with respect to each other. in those instances where an antiagglomerating agent is employed, such usually need only be employed in amounts of about 0.5-l5% by weight of the total powder, preferably 2 l 0% by weight herein by reference.
and as where ultra-fine silica is employed, usually about 5% by' weight.
The concentrations employed for making the soluble salt solutions of the metal, silver and gold, and the amount of gold powder employed in' the second alternative technique are matters generally of convenience and mayvarywidely in order .to insure the requisite amounts of the various ingredients in the final powder and at the same time be workable in the manufacturing system devisedJGenerally speaking, the upper limit of concentration is the saturation point of the solution for the salt while the lower limit is a practical volume consideration. In this respect, concentrations of the salt solutions lower than about 10% are normally not employed. In the preferred instances where palladium and silver are first formed into a soluble nitrate solution by reaction with nitric acid, the solution containing the two salts may have a concentration on the order of about 2060% of the combined salts. Similar concentrations for the gold solutions in the first alternative technique may also be employed. The relative concentrations of each metal within these solutions are then,
of course, adjusted in a known manner to achieve the desired powder upon reduction and precipitation.
The gold solutions employed in the first alternative technique may be any'well-known soluble-salt solution of gold. Generally speaking, such soluble salt solutions include the various chloride and cyanide salts of gold.
' A particularly preferred gold solution for the purposes of this invention is a solution of 'hydrochloroauric acid formed in a conventional manner by dissolving the'requisite amount of gold in aqua-regia (eQg. 3-4 parts HCl to 1 part HNO The gold powder employed in the second alternative technique may be any commercially available gold powder preferably having a particle size of less than about 5 microns. A preferred gold powder, because of I Generally speaking, this copending application discloses a method for forming a gold powder, usually having a bulk density greater than about 5.0 grns./cc and a particle size of lessthan about 5 microns, which comprises initially dissolving a gold-bearing material in a HCl-HNO acid. Thereafter, there is added to the solution an effective amount of an emulsifying agent capable of coating freshly formed gold particles and preventing coalescence and cold-welding thereof and keeping the particle size of said gold particlesless than about 5 microns. To this solution there is then added a precipitating agent, which precipitates gold powder from solution substantially free of contaminating chloride or other salts. The so-formed gold particles are encapsulated with the emulsifier which is removed, usually by washing the powder in a solvent such as acetone or water and then drying the powder prior to using it in this invention. The powder so formed is substantially pure, uncontaminated, gold powder of the indicated particle size.
A typical operating procedure for conducting the first alternative technique described hereinabove is to initially prepare a metal-soluble, salt solution by dissolving the metal in aninorganic acid. For example, palladium in commercial sponge, powder or other form may be dissolved ina 70% solution of l-lNO to form a solutionpreferably of about 300-400 gms/l. of Pd. A separate silver nitrate solution may be prepared with nitric acid or commercially obtained. Alternatively, silver sponge, powder, etc. may be added with the palladium in the requisite amounts to the 70% HNO solution. The gold solution is prepared by dissolving a gold sponge, powder, etc. in aqua regia and removing excess l-lNO by heating the solution. A typical concen- The nitrate solutions of silver and metal (e.g. palladium) are then admixed if not simultaneously formed and an antiagglomerating agent is added thereto. The solution is agitated to slurry the antiagglomerating agent and a reducing agent such as H PO or sodium bisulfite is added to precipitate the metal and silver in their metallic form. Generally speaking, it is desirable to precipitate substantially all metal and silver from the solution, the ratio of metal to silver being controlled by the concentrations and amounts of solutions formed. For this reason, at least a stoichiometric amount of reducing agent and preferably about 2 or 3 times in excess of this amount, is employed to insure substantially dium. To this slurried solution is then added the hydrochloroauric acid solution. In those instances where the reducing agent initially employed for the metal and silver is also a reducing agent for gold, gold precipitate will form upon mere addition of the gold solution to the s 9 slurry. In such an event, sufficient reducing agent is added initially to insure that substantially all of the gold is precipitated from solution. in those instances where a different reducing agent is employed .or the reducing agent initially added is insufficient to precipitate gold, a reducing agent is added with continued vigorous agitation until the precipitation of the gold is substantially complete. The reduction reaction of gold does result in some reaction occurring between the slurried silver and the chloride ions in the decomposed hydrochloroauric acid. However, as stated above, because the silver is previously precipitated, a reduction in the amount of insoluble AgCl normally formed by commoncoprecipitation of gold and silver from a common aqua-regia solution is obtained.
The homogeneously dispersed finely divided powder of metal, silver, gold, anti-agglomerating agent, and reduced amounts of AgCl is now separated, as by filtration, from the liquid medium and dried. As previously stated, the powder is of particles less than about microns and usually less than about 1 micron. in addition, the homogeneity of dispersion of the individual ingredients is far beyond thatachievable by simple comminution and/or alloying. Furthermore, it has been found that in most instances, as indicated by X-ray defraction techniques, the silver is alloyed with the metal.
. In a typical procedure for conducting the second alternative technique described hereinabove the solutions of metal and silver, preferably in nitrate form, are formed and admixed in a manner similarly as described in the first alternative technique. Gold powder having a particle size of less than about 5 microns is then added to the common solution. Preferably, as stated, the gold powder is that as produced by my afore-cited copending application. The anti-agglomerating agent is added either prior to, simultaneously with, or after the gold powder is added and the particles of this agent and gold are slurried in the solution with vigorous agitation.
A reducing agent in the before-described amounts is then added to precipitate the metal and silver and the homogeneous powder is obtained and processed similarly as described with respect to the first alternative technique. The product of the second alternative tech- EXAMPLE 1 FIRST ALTERNATIVE TECHNIQUE A gold reactant solution (l-iAuCh) was prepared from' pure gold sponge. This was accomplished by reacting 20 gms. of Au in an aqua-regia solution and diluting the solution to T60 ml. with H O. A palladium nitrate solution was prepared by dissolving 53.8 grams of the metal in 150 ml (70%) HNO The resultant Pd (NO solution had a volume of 160 ml. A silver nitrate solution wasformed by dissolving 1 15.3 grams of silver nitrate crystals in 150 ml. of distilled water. The total volume of the resultant solution was 175 ml.
To start the process 80 ml. of the Pd (N09 solution,
87 ml. of the AgNO solution, and 100 ml. of H 0 were tinued agitation the reduction reaction was carried out by adding 170 ml. of a solution containing grams of NaHSQ, to the reactor. The Nal-lSO addition took place over a 14 minute time interval and the reaction media was maintained at 38 C.
Agitation was continued to slurry the precipitated silver and palladium metals with the anti-agglomerant and the slurry was prepared for l-lAuCl, addition and reduction by the addition thereto of 15 grams of Na SO in 100 ml. of H 0. This was followed by rapid addition of ml. of the l-lAuCl, solution. An additional ml. of the Na SO solution was added to insure complete reduction of the gold. After 5 minutesof further mixing, the agitator was shut off.
. After permitting the reactants to settle out for 30 minutes, the solids were separated from the liquid by filtration. The solids were washed by slurrying in l-l O and filtering several times. The final wash was followed by drying at C overnight. A finely divided, homogeneouspowder was obtained. The powder analyzed as containing on a metal basis by weight, 47.4% Ag, 14.55% Au, and 38.05% Pd. The powder also contained 13.02% by weight chloride salt, assuming all chlorides to be silver chloride.
EXAMPLE 2 a SECOND ALTERNATIVE TECHNIQUE 250 gms. of a powder consisting of by weight 52% Ag, 35% Pd, and 13% Au'were prepared by the following technique.
A Pd(l\l0 solution was prepared by adding 87.5
grams of palladium metal to 245 ml. of a 70% HNO,
solution. The addition-of Pd to the acid was conducted slowly and the nitrous oxide gas formed was vented. An AgNO solution was prepared by adding 204.3 grams of AgNO crystals to 500 ml. of distilled water with stirring. The gold powder employed had a particle size of less than 5 microns and was produced in accordance with Example 1 of my aforementioned copending application. 32.5 grams of the powder were washed free of emulsifier in acetone and thoroughly-dried for use hereinafter.
The AgNO solution was charged into a reaction vessel which consisted of a 5 liter glass baffled flask with a propeller type agitator. The reaction vessel was provided with a heating and cooling bath to regulate the temperature. One liter of distilled water was added and the solution mixed rapidly by the propeller agitator. At this time, 12.5 gms. of CAB-O-SIL (ultrafine SiO anti-agglomerating agent was suspended in the reaction medium. Five minutes of vigorous stirring were then allowed to proceed.
Next, the Pd(NO3)2 solution was added and the 32.5 gms. of gold powder suspended in the combined solution with continuing agitation. An additional 375 ml. of distilled water were also added to aid in the washing in of the gold powder.
The reduction reaction was initiated, with continued vigorous agitation, by adding to the reaction mass, dropwise, 390 gms. of a 50% hypophosphorous acid solution diluted in 400 ml. of distilled water. The total time to add all of the H PO was about hour. During that time the resulting exothermic reaction was maintained at about 50 C by cooling water. After the reducing agent had been added the reaction media was held at the reaction temperature with mixing for l hour'to insure completeness and optimum homogeneity of the metal slurry.
Thereafter, the metal slurry was filtered and washed with about two liters of distilled water and placed in a 1 C drying oven overnight.
The resulting dry powder was a microscopically homogeneous black mass having substantially no particles greater than about 5 microns. Analysis indicated the powder to consist on. a metal basis of, by weight, 52% Ag, 35% Pd, and 13% Au and further indicated that no contaminating salts were present therein. This powder, as evidenced by the examples in the aforementioned copending-Greenstein application, may be used as a valuable starting material for microelectronic resistor production.
Once given the above disclosure many other features, modifications, andimprovements will become apparent to theskilled artisan. Such other features, modifications, and improvements are therefore considered to be a part of this invention, the scope of which is to be de terminedby the following claims.
I claim: t v
l. A substantially homogeneous, finely divided powder, substantially free of silver chloride or cyanaide comprising at least one metal other than silver or gold, and silver and gold, and an anti-agglomerating agent substantially homogeneously dispersed throughout said powder. I
2. A powder according to claim 1 wherein said powder has a particle size less than about 5 microns.
3. A powder according to claim 1 wherein said at least one metal is selected from palladium, rhodium, iridium, ruthenium, indium, and'mixtures thereof.
4. A powder according to claim 1 wherein said at least one metal is the single metal palladium.
5. A powder according to claim 1 wherein said antiagglomerating agent is particulate silica submicron in size.
6. A powder according to claim 1 consisting essentially of about: 595% by weight palladium, 5-95% by weight of an admixture of gold and silver in a weight ratio of about 4:1 1:4, and about 0.5-1 5% by weight anti-agglomerating agentf 7. A powder according to claim 1 which consists of about 20-65% by weight palladium, about -35% by weight of said silver, gold admixture, and about 5% of submicron particle size silica'as said anti-tagglomerating agent.
8. A powder according to claim 1 consisting of by weight about: 52% Ag, 35% Pd, and 13% Au on a metal basis, the total composition including about 5% by weight of said silica.
9. A powder according to claim 1 wherein said palladium is indicated as alloyed with said silver by X-ray diffraction techniques.

Claims (8)

  1. 2. A powder according to claim 1 wherein said powder has a particle size less than about 5 microns.
  2. 3. A powder according to claim 1 wherein said at least one metal is selected from palladium, rhodium, iridium, ruthenium, indium, and mixtures thereof.
  3. 4. A powder according to claim 1 wherein said at least one metal is the single metal palladium.
  4. 5. A powder according to claim 1 wherein said anti-agglomerating agent is particulate silica submicron in size.
  5. 6. A powder according to claim 1 consisting essentially of about: 5-95% by weight palladium, 5-95% by weight of an admixture of gold and silver in a weight ratio of about 4:1 - 1:4, and about 0.5-15% by weight anti-agglomerating agent.
  6. 7. A powder according to claim 1 which consists of about 20-65% by weight palladium, about 80-35% by weight of said silver, gold admixture, and about 5% of submicron particle size silica as said anti-agglomerating agent.
  7. 8. A powder according to claim 1 consisting of by weight about: 52% Ag, 35% Pd, and 13% Au on a metal basis, the total composition including about 5% by weight of said silica.
  8. 9. A powder according to claim 1 wherein said palladium is indicated as alloyed with said silver by X-ray diffraction techniques.
US00261079A 1971-05-06 1972-06-08 Powders of metal, silver and gold Expired - Lifetime US3816097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00261079A US3816097A (en) 1971-05-06 1972-06-08 Powders of metal, silver and gold

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14100671A 1971-05-06 1971-05-06
US00261079A US3816097A (en) 1971-05-06 1972-06-08 Powders of metal, silver and gold

Publications (1)

Publication Number Publication Date
US3816097A true US3816097A (en) 1974-06-11

Family

ID=26838700

Family Applications (1)

Application Number Title Priority Date Filing Date
US00261079A Expired - Lifetime US3816097A (en) 1971-05-06 1972-06-08 Powders of metal, silver and gold

Country Status (1)

Country Link
US (1) US3816097A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3869280A (en) * 1973-04-23 1975-03-04 Du Pont Process for gold precipitation
US3992197A (en) * 1975-03-18 1976-11-16 Wetzold Paul W Silver crystals and production thereof
US4319920A (en) * 1980-03-03 1982-03-16 Ercon, Inc. Novel electroconductive compositions and powder for use therein
WO1983002244A1 (en) * 1981-12-30 1983-07-07 Ercon Inc Noble metal flake powder composition and process
US5189284A (en) * 1988-02-29 1993-02-23 Fuji Xerox Co., Ltd. Resistor, process for producing the same, and thermal head using the same
US5188660A (en) * 1991-10-16 1993-02-23 E. I. Du Pont De Nemours And Company Process for making finely divided particles of silver metals
US6150262A (en) * 1996-03-27 2000-11-21 Texas Instruments Incorporated Silver-gold wire for wire bonding
US20030013606A1 (en) * 1998-02-24 2003-01-16 Hampden-Smith Mark J. Method for the production of electrocatalyst powders
WO2001093999A3 (en) * 2000-06-08 2003-01-23 Superior Micropowders Llc Electrocatalyst powders, methods for producing powders and devices fabricated from same
US20030049517A1 (en) * 1998-02-24 2003-03-13 Hampden-Smith Mark J. Metal-air battery components and methods for making same
US20030118884A1 (en) * 1998-02-24 2003-06-26 Hampden-Smith Mark J. Method for fabricating membrane eletrode assemblies
US6660680B1 (en) 1997-02-24 2003-12-09 Superior Micropowders, Llc Electrocatalyst powders, methods for producing powders and devices fabricated from same
EP1386708A2 (en) 1997-02-24 2004-02-04 Superior MicroPowders LLC Particulate products made by an aerosol method
US20040231758A1 (en) * 1997-02-24 2004-11-25 Hampden-Smith Mark J. Silver-containing particles, method and apparatus of manufacture, silver-containing devices made therefrom
US6830823B1 (en) 1997-02-24 2004-12-14 Superior Micropowders Llc Gold powders, methods for producing powders and devices fabricated from same
US20050100666A1 (en) * 1997-02-24 2005-05-12 Cabot Corporation Aerosol method and apparatus, coated particulate products, and electronic devices made therefrom
US20050097987A1 (en) * 1998-02-24 2005-05-12 Cabot Corporation Coated copper-containing powders, methods and apparatus for producing such powders, and copper-containing devices fabricated from same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1296938A (en) * 1916-07-13 1919-03-11 Rhotanium Company Composition of matter for platinum substitute.
US2189640A (en) * 1937-12-20 1940-02-06 Johnson Matthey Co Ltd Manufacture and production of hard solders
US2371240A (en) * 1945-03-13 Golg-s
US3141761A (en) * 1962-02-23 1964-07-21 Walter U Schmitt G M B H Fa Dr Pulverized silver alloys for use in producing dental amalgams
US3345158A (en) * 1964-08-10 1967-10-03 Ibm Electrical conductor material and method of making same
US3427153A (en) * 1964-06-11 1969-02-11 Leesona Corp Method of preparing alloy blacks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2371240A (en) * 1945-03-13 Golg-s
US1296938A (en) * 1916-07-13 1919-03-11 Rhotanium Company Composition of matter for platinum substitute.
US2189640A (en) * 1937-12-20 1940-02-06 Johnson Matthey Co Ltd Manufacture and production of hard solders
US3141761A (en) * 1962-02-23 1964-07-21 Walter U Schmitt G M B H Fa Dr Pulverized silver alloys for use in producing dental amalgams
US3427153A (en) * 1964-06-11 1969-02-11 Leesona Corp Method of preparing alloy blacks
US3345158A (en) * 1964-08-10 1967-10-03 Ibm Electrical conductor material and method of making same

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3869280A (en) * 1973-04-23 1975-03-04 Du Pont Process for gold precipitation
US3992197A (en) * 1975-03-18 1976-11-16 Wetzold Paul W Silver crystals and production thereof
US4319920A (en) * 1980-03-03 1982-03-16 Ercon, Inc. Novel electroconductive compositions and powder for use therein
WO1983002244A1 (en) * 1981-12-30 1983-07-07 Ercon Inc Noble metal flake powder composition and process
US5189284A (en) * 1988-02-29 1993-02-23 Fuji Xerox Co., Ltd. Resistor, process for producing the same, and thermal head using the same
US5188660A (en) * 1991-10-16 1993-02-23 E. I. Du Pont De Nemours And Company Process for making finely divided particles of silver metals
US6150262A (en) * 1996-03-27 2000-11-21 Texas Instruments Incorporated Silver-gold wire for wire bonding
US7354471B2 (en) 1997-02-24 2008-04-08 Cabot Corporation Coated silver-containing particles, method and apparatus of manufacture, and silver-containing devices made therefrom
EP1386708A2 (en) 1997-02-24 2004-02-04 Superior MicroPowders LLC Particulate products made by an aerosol method
US7384447B2 (en) 1997-02-24 2008-06-10 Cabot Corporation Coated nickel-containing powders, methods and apparatus for producing such powders and devices fabricated from same
US20050116369A1 (en) * 1997-02-24 2005-06-02 Cabot Corporation Aerosol method and apparatus, particulate products, and electronic devices made therefrom
US7087198B2 (en) 1997-02-24 2006-08-08 Cabot Corporation Aerosol method and apparatus, particulate products, and electronic devices made therefrom
US7083747B2 (en) 1997-02-24 2006-08-01 Cabot Corporation Aerosol method and apparatus, coated particulate products, and electronic devices made therefrom
US6660680B1 (en) 1997-02-24 2003-12-09 Superior Micropowders, Llc Electrocatalyst powders, methods for producing powders and devices fabricated from same
EP1386708A3 (en) * 1997-02-24 2008-06-04 Cabot Corporation Particulate products made by an aerosol method
US7004994B2 (en) 1997-02-24 2006-02-28 Cabot Corporation Method for making a film from silver-containing particles
US20040231758A1 (en) * 1997-02-24 2004-11-25 Hampden-Smith Mark J. Silver-containing particles, method and apparatus of manufacture, silver-containing devices made therefrom
US6830823B1 (en) 1997-02-24 2004-12-14 Superior Micropowders Llc Gold powders, methods for producing powders and devices fabricated from same
US20050061107A1 (en) * 1997-02-24 2005-03-24 Hampden-Smith Mark J. Coated silver-containing particles, method and apparatus of manufacture, and silver-containing devices made therefrom
US20050097988A1 (en) * 1997-02-24 2005-05-12 Cabot Corporation Coated nickel-containing powders, methods and apparatus for producing such powders and devices fabricated from same
US20050100666A1 (en) * 1997-02-24 2005-05-12 Cabot Corporation Aerosol method and apparatus, coated particulate products, and electronic devices made therefrom
US20030049517A1 (en) * 1998-02-24 2003-03-13 Hampden-Smith Mark J. Metal-air battery components and methods for making same
US20030144134A1 (en) * 1998-02-24 2003-07-31 Hampden-Smith Mark J. Method for the fabrication of an electrocatalyst layer
US6911412B2 (en) 1998-02-24 2005-06-28 Cabot Corporation Composite particles for electrocatalytic applications
US20030013606A1 (en) * 1998-02-24 2003-01-16 Hampden-Smith Mark J. Method for the production of electrocatalyst powders
US6991754B2 (en) 1998-02-24 2006-01-31 Cabot Corporation Method for making composite particles including a polymer phase
US6753108B1 (en) 1998-02-24 2004-06-22 Superior Micropowders, Llc Energy devices and methods for the fabrication of energy devices
US7066976B2 (en) 1998-02-24 2006-06-27 Cabot Corporation Method for the production of electrocatalyst powders
US20050097987A1 (en) * 1998-02-24 2005-05-12 Cabot Corporation Coated copper-containing powders, methods and apparatus for producing such powders, and copper-containing devices fabricated from same
US20030118884A1 (en) * 1998-02-24 2003-06-26 Hampden-Smith Mark J. Method for fabricating membrane eletrode assemblies
US7087341B2 (en) 1998-02-24 2006-08-08 Cabot Corporation Metal-air battery components and methods for making same
US7138354B2 (en) 1998-02-24 2006-11-21 Cabot Corporation Method for the fabrication of an electrocatalyst layer
US7211345B2 (en) 1998-02-24 2007-05-01 Cabot Corporation Membrane electrode assemblies for use in fuel cells
US20030054218A1 (en) * 1998-02-24 2003-03-20 Hampden-Smith Mark J. Method for making composite particles including a polymer phase
US6967183B2 (en) 1998-08-27 2005-11-22 Cabot Corporation Electrocatalyst powders, methods for producing powders and devices fabricated from same
WO2001093999A3 (en) * 2000-06-08 2003-01-23 Superior Micropowders Llc Electrocatalyst powders, methods for producing powders and devices fabricated from same

Similar Documents

Publication Publication Date Title
US3816097A (en) Powders of metal, silver and gold
EP0363552B1 (en) Process for preparing metal particles
US4023961A (en) Method of producing powdered materials
EP2026924B1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
US3390981A (en) Method for the production of finely divided metals
US4089676A (en) Method for producing nickel metal powder
DE3587333T2 (en) METHOD FOR PRODUCING SOLID SOLUTIONS.
US3717453A (en) Powders of metal silver and gold and processes for making same
JP3402214B2 (en) Method for producing metal fine particle dispersion
WO1993007980A1 (en) Process for making finely divided particles of silver metals
US3811906A (en) Gold powder
JPH0920903A (en) Production of monodisperse gold grain powder
US3725035A (en) Process for making gold powder
US3539114A (en) Milling process for preparing flake gold
JPH01139710A (en) Manufacture of fine granular alloy powder
US2776200A (en) Production of metal powder from carbonyl
US3768994A (en) Gold powder
US3717481A (en) Gold metallizing compositions
JP3820018B2 (en) Method for producing granular silver powder
JPH05221637A (en) Production of cuprous oxide powder and copper powder
JP3973236B2 (en) Method for producing monodisperse noble metal powder
US3869280A (en) Process for gold precipitation
JP2550586B2 (en) Method for producing fine silver alloy powder
JPS622003B2 (en)
JPH05311212A (en) Production of fine powder of ag-pd alloy powder

Legal Events

Date Code Title Description
AS Assignment

Owner name: OWENS-ILLINOIS GLASS CONTAINER INC., ONE SEAGATE,

Free format text: ASSIGNS AS OF APRIL 15, 1987 THE ENTIRE INTEREST;ASSIGNOR:OWENS-ILLINOIS, INC.;REEL/FRAME:004869/0922

Effective date: 19870323

Owner name: OWENS-ILLINOIS GLASS CONTAINER INC.,OHIO

Free format text: ASSIGNS AS OF APRIL 15, 1987 THE ENTIRE INTEREST;ASSIGNOR:OWENS-ILLINOIS, INC.;REEL/FRAME:004869/0922

Effective date: 19870323

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)