[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US3780465A - Wear resistant gun barrel and method of making the same - Google Patents

Wear resistant gun barrel and method of making the same Download PDF

Info

Publication number
US3780465A
US3780465A US00258622A US3780465DA US3780465A US 3780465 A US3780465 A US 3780465A US 00258622 A US00258622 A US 00258622A US 3780465D A US3780465D A US 3780465DA US 3780465 A US3780465 A US 3780465A
Authority
US
United States
Prior art keywords
tube
zones
gun
barrel
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00258622A
Inventor
R Polcha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Application granted granted Critical
Publication of US3780465A publication Critical patent/US3780465A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41AFUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
    • F41A21/00Barrels; Gun tubes; Muzzle attachments; Barrel mounting means
    • F41A21/16Barrels or gun tubes characterised by the shape of the bore
    • F41A21/18Grooves-Rifling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41AFUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
    • F41A21/00Barrels; Gun tubes; Muzzle attachments; Barrel mounting means
    • F41A21/20Barrels or gun tubes characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41AFUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
    • F41A21/00Barrels; Gun tubes; Muzzle attachments; Barrel mounting means
    • F41A21/22Barrels which have undergone surface treatment, e.g. phosphating

Definitions

  • ABSTRACT A wear resistant gun barrel and method of producing it is disclosed.
  • the barrel has hardened zones or lands which penetrate into the barrel material between rifling grooves and which are highly resistant to wear from repeated projectile firings.
  • the hardened zones or lands are produced by heating a narrow zone on the outside of the gun barrel with a high intensity heat source, allowing any desired pattern to be melted into the steel.
  • the molten zones when cool, produce areas having increased hardness,
  • the final step is to machine the gun barrel to the proper inner diameter and engrave rifling grooves between the hardened zones.
  • the hardened zones are provided in an inner liner which is then shrunk fit into the outer cylinder before the machining step is performed.
  • the invention relates generally to gun barrels and more specifically to the design and manufacture of gun barrels which have hardened zones penetrating into the barrel material between rifling grooves and which are highly resistant to wear from repeated projectile firings as a result of said zones.
  • Gun barrels of all sizes exhibit wear after several firings. The greater the working pressures of the gun and the higher the muzzle velocity, the greater the wear will be for each projectile rifling. The complete wear phenomenon is not well understood, and many parameters enter into any attempt to characterize it.
  • One fact is clear, however, that in general the harder a surface is, the more it is resistant to wear. While there are certainly instances where making a surface harder may increase its wear rate (under impacts for instance) it is believed that in a gun barrel a harder inside surface is desirable.
  • chrome plating is an obvious solution.
  • harder materials such as chrome generally have a modulus of elasticity different than that of steel; therefore, as their surface is stressed, strain will occur. The stresses upon firing can become very high and the material may yield and flow plastically.
  • the instant invention not only provides a novel method of manufacture but also results in a barrel that is highly resistant to wear from repeated projectile firings.
  • a steel gun tube is mounted on a fixture which will allow a beam of a high energy heat source, such as an electron beam welder, to impinge upon its outer surface at an angle.
  • the fixture allows for simultaneous rotation and translation of the barrel to allow any desired pattern to be melted into the steel as the beam impinges upon it.
  • the heat causes molten zones to form along the barrel surface which from contact with cooler adjacent material results in the formation of a fusion zone.
  • the fusion zone has some iron carbide formation and is harder than the original material.
  • the inside of the barrel is then machined to final diameter size and grooves between the fusion zones are formed either mechanically or by a chemical milling process.
  • Gun barrels fabricated in this manner will have superior wear characteristics to barrels in which the lands are the same strength and hardness as the rest of the tube.
  • An object of the present invention is the provision of a gun barrel having rifling therein which has superior wear characteristics.
  • Another object is to provide a gun barrel which has rifling lands that are composed of a harder material than the remainder of the barrel.
  • a further object of the invention is the provision of a novel method for making such a gun barrel.
  • FIG. 1 illustrates a gun tube mounted on an indexing fixture of an electron beam welder
  • FIGS. 2, 3 and 4 show a cross-section of the gun tube at various stages during the process of manufacture
  • FIG. 5 shows an alternative use of the gun tube as a liner.
  • FIG. 1 there is shown a gun tube 10 mounted on an electron beam welding apparatus.
  • the electron beam welder is comprised of an indexing support fixture generally indicated at 14 and an electron beam gun 16.
  • the indexing support fixture 14 is comprised of a movable bed 13 and rotatable support 11.
  • the path, which the electron beam is to trace, is determined by moving the indexing support fixture.
  • the support fixture provides translational as well as rotational motion to trace a predetermined path by the electron beam gun 16.
  • the gun tube 10 is moved to achieve a molten zone depth of at least percent of the wall thickness. Upon removal of the beam the liquid zone solidifies becoming cooler as the adjoining regions become warmer. This immediate quenching results in the formation of iron carbide.
  • FIG. 2 A cross-section of the gun tube is shown in FIG. 2, after several passes of the heat source have been made.
  • the thickness of the gun tube 10 will depend upon the working pressure of the gun or, in the case of it being a liner, on the smallest thickness that can be worked with or two to three times the usual rifling tube depth, whichever is larger.
  • the zones deepest tip should be within a few percent of the thickness from the inside wall. The number of zones and the desired thickness after final machining depends on the nature of the projectile and its obturation technique.
  • the next step of the fabrication consists of machining the inside diameter of the gun tube to a value between 5 and 10 percent smaller than the final intended inner diameter of the barrel.
  • This step will result in a structure as shown in FIG. 3.
  • the gun tube may then be autofrettaged, i.e., pressurized internally until the inner surface yields somewhat and takes on a permanent set, relieved and then honed or ground between zones to achieve a configuration as shown in FIG. 4.
  • the tube is a liner it may be shrunk fit into the outer cylinder 22 as shown in FIG. 5. In either instance the gun tube will now have compressive stresses at its inner surface.
  • the last step is a final sizing by grinding, reaming, or firing some abrasive projectile through the completed barrel.
  • the gun tube material should be a high quality steel with a reasonable quantity of carbon to render heat treatment feasible and be easily forged, such as an AlSl 4130 class. Such material has a Rockwell C hardness of 20-30. The application of the instant process to such material produces lands having a Rockwell C hardness of 40-60. It is further pointed out that the internal milling, grinding, or machining would be most readily accomplished with a chemical-milling process to which iron carbide is less sensitive than the normal iron carbon mixture. Additionally, a laser might be substituted for the electron beam welder.
  • the fusion zones may have other new materials introduced into them while they are molten. Addition of such materials as molybdenum, cobalt or other materials can be easily added in a wire form. This process is accomplished by simply feeding the wire 17 off of a spool (not shown) and allowing it to touch the gun tube at the point where the high energy heat source is melting the tube. The heat source will melt both the new material and the gun tube and mixing will occur naturally, provided that the new material type and quantity is soluble in the steel. From one to three percent by volume molybdenum is soluble in pure gamma iron. Thus, the amount will vary depending upon the initial tube material alloy.
  • a method of producing a gun barrel having hardened zones penetrating into the barrel material between rifling grooves comprising:
  • step of applying heat further comprises feeding wire composed of a different material than said metal tube into said molten zone at the point where the high energy heat source is melting the tube.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

A wear resistant gun barrel and method of producing it is disclosed. The barrel has hardened zones or lands which penetrate into the barrel material between rifling grooves and which are highly resistant to wear from repeated projectile firings. The hardened zones or lands are produced by heating a narrow zone on the outside of the gun barrel with a high intensity heat source, allowing any desired pattern to be melted into the steel. The molten zones, when cool, produce areas having increased hardness. The final step is to machine the gun barrel to the proper inner diameter and engrave rifling grooves between the hardened zones. In the case of large caliber gun barrels the hardened zones are provided in an inner liner which is then shrunk fit into the outer cylinder before the machining step is performed.

Description

United States Patent [191 Polcha Dec. 25, 1973 WEAR RESISTANT GUN BARREL AND METHOD OF MAKING THE SAME [75] Inventor: Raymond J. Polcha, Fredericksburg,
[73] Assignee: The United States of America as represented by the Secretary of the Navy, Washington, DC.
[22] Filed: June 1, 1972 [21] Appl. No.: 258,622
[52] US. Cl. 42/76 A, 29/].1, 42/76 R, 42/78, 148/152 [51] Int. Cl. F4lc 21/02, B23p 13/00, C21d 1/06 [58] Field of Search 29/].1; 148/152; 42/76 R, 76 A, 78; 89/14 R, 16
[56] 5 References Cited UNITED STATES PATENTS 2,968,723 1/1961 Steigerwald 148/152 Primary Examiner-Benjamin A. Borchelt Assistant Examiner-C. T. Jordan Attorney-R. S. Sciascia et a1.
[ 57] ABSTRACT A wear resistant gun barrel and method of producing it is disclosed. The barrel has hardened zones or lands which penetrate into the barrel material between rifling grooves and which are highly resistant to wear from repeated projectile firings. The hardened zones or lands are produced by heating a narrow zone on the outside of the gun barrel with a high intensity heat source, allowing any desired pattern to be melted into the steel. The molten zones, when cool, produce areas having increased hardness, The final step is to machine the gun barrel to the proper inner diameter and engrave rifling grooves between the hardened zones. In the case of large caliber gun barrels the hardened zones are provided in an inner liner which is then shrunk fit into the outer cylinder before the machining step is performed.
8 Claims, 5 Drawing Figures BACKGROUND OF THE INVENTION The invention relates generally to gun barrels and more specifically to the design and manufacture of gun barrels which have hardened zones penetrating into the barrel material between rifling grooves and which are highly resistant to wear from repeated projectile firings as a result of said zones. Gun barrels of all sizes exhibit wear after several firings. The greater the working pressures of the gun and the higher the muzzle velocity, the greater the wear will be for each projectile rifling. The complete wear phenomenon is not well understood, and many parameters enter into any attempt to characterize it. One fact is clear, however, that in general the harder a surface is, the more it is resistant to wear. While there are certainly instances where making a surface harder may increase its wear rate (under impacts for instance) it is believed that in a gun barrel a harder inside surface is desirable.
To this end, chrome plating is an obvious solution. However, such a solution has disadvantages. Harder materials such as chrome generally have a modulus of elasticity different than that of steel; therefore, as their surface is stressed, strain will occur. The stresses upon firing can become very high and the material may yield and flow plastically.
In addition to chrome plating the prior art has employed both mechanical and electrolytic methods to form rifling in gun barrels. However, these methods of manufacture do not necessarily result in a barrel which has better wear characteristics but are directed generally at the problems associated with the actual methods of manufacture.
SUMMARY OF THE INVENTION The instant invention not only provides a novel method of manufacture but also results in a barrel that is highly resistant to wear from repeated projectile firings. In the method a steel gun tube is mounted on a fixture which will allow a beam of a high energy heat source, such as an electron beam welder, to impinge upon its outer surface at an angle. The fixture allows for simultaneous rotation and translation of the barrel to allow any desired pattern to be melted into the steel as the beam impinges upon it. The heat causes molten zones to form along the barrel surface which from contact with cooler adjacent material results in the formation of a fusion zone. The fusion zone has some iron carbide formation and is harder than the original material. The inside of the barrel is then machined to final diameter size and grooves between the fusion zones are formed either mechanically or by a chemical milling process. Gun barrels fabricated in this manner will have superior wear characteristics to barrels in which the lands are the same strength and hardness as the rest of the tube.
OBJECTS OF THE INVENTION An object of the present invention is the provision of a gun barrel having rifling therein which has superior wear characteristics.
Another object is to provide a gun barrel which has rifling lands that are composed of a harder material than the remainder of the barrel.
A further object of the invention is the provision of a novel method for making such a gun barrel.
Other objects, advantages, and novel features of the present invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates a gun tube mounted on an indexing fixture of an electron beam welder;
FIGS. 2, 3 and 4 show a cross-section of the gun tube at various stages during the process of manufacture; and
FIG. 5 shows an alternative use of the gun tube as a liner.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1 there is shown a gun tube 10 mounted on an electron beam welding apparatus. The electron beam welder is comprised of an indexing support fixture generally indicated at 14 and an electron beam gun 16. As the gun tube is bombarded with the electron beam energy the zone 12 beneath the beam becomes liquid. The indexing support fixture 14 is comprised of a movable bed 13 and rotatable support 11. The path, which the electron beam is to trace, is determined by moving the indexing support fixture. The support fixture provides translational as well as rotational motion to trace a predetermined path by the electron beam gun 16. The gun tube 10 is moved to achieve a molten zone depth of at least percent of the wall thickness. Upon removal of the beam the liquid zone solidifies becoming cooler as the adjoining regions become warmer. This immediate quenching results in the formation of iron carbide.
A cross-section of the gun tube is shown in FIG. 2, after several passes of the heat source have been made. In general, the thickness of the gun tube 10 will depend upon the working pressure of the gun or, in the case of it being a liner, on the smallest thickness that can be worked with or two to three times the usual rifling tube depth, whichever is larger. The zones deepest tip should be within a few percent of the thickness from the inside wall. The number of zones and the desired thickness after final machining depends on the nature of the projectile and its obturation technique.
The next step of the fabrication consists of machining the inside diameter of the gun tube to a value between 5 and 10 percent smaller than the final intended inner diameter of the barrel. This step will result in a structure as shown in FIG. 3. The gun tube may then be autofrettaged, i.e., pressurized internally until the inner surface yields somewhat and takes on a permanent set, relieved and then honed or ground between zones to achieve a configuration as shown in FIG. 4. Alternatively, if the tube is a liner it may be shrunk fit into the outer cylinder 22 as shown in FIG. 5. In either instance the gun tube will now have compressive stresses at its inner surface. The last step is a final sizing by grinding, reaming, or firing some abrasive projectile through the completed barrel.
It should be pointed out that when more than one or two zones are placed into a thin gun tube, the tube should be allowed to cool down to nearly ambient or room temperature between each successive zone induction. In other instances all zones may be applied simultaneously employing several sources.
The gun tube material should be a high quality steel with a reasonable quantity of carbon to render heat treatment feasible and be easily forged, such as an AlSl 4130 class. Such material has a Rockwell C hardness of 20-30. The application of the instant process to such material produces lands having a Rockwell C hardness of 40-60. It is further pointed out that the internal milling, grinding, or machining would be most readily accomplished with a chemical-milling process to which iron carbide is less sensitive than the normal iron carbon mixture. Additionally, a laser might be substituted for the electron beam welder.
Furthermore, the fusion zones may have other new materials introduced into them while they are molten. Addition of such materials as molybdenum, cobalt or other materials can be easily added in a wire form. This process is accomplished by simply feeding the wire 17 off of a spool (not shown) and allowing it to touch the gun tube at the point where the high energy heat source is melting the tube. The heat source will melt both the new material and the gun tube and mixing will occur naturally, provided that the new material type and quantity is soluble in the steel. From one to three percent by volume molybdenum is soluble in pure gamma iron. Thus, the amount will vary depending upon the initial tube material alloy.
Obviously many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
What is claimed is:
l. A method of producing a gun barrel having hardened zones penetrating into the barrel material between rifling grooves comprising:
applying heat with a high energy heat source to produce a predetermined narrow molten zone on a metal tube; allowing the molten zone to cool and form a fusion zone; and forming rifling grooves between fusion zones. 2. The method of claim 1 wherein the step of applying heat comprises:
attaching the metal tube to a movable indexing support fixture of an electron beam welder; and heating the metal tube with an electron beam gun along the path determined by the indexing support fixture. 3. The method of claim 2 further comprising: moving the metal tube at a speed sufiicient to achieve a molten zone depth of approximately percent of the wall thickness of the tube. 4. The method of claim 1 wherein the step of forming rifling grooves between fusion zones comprises:
machining the inside diameter of the tube to a value 5-10 percent smaller than the final desired inner diameter of the gun tube; pressurizing the tube internally until the inner surface yields and takes on a permanent set; and removing material between fusion zones. 5. The method of claim 4 wherein the step of removing material between fusion zones comprises:
chemically milling the material between fusion zones. 6. The method of claim 2 further comprising: shrink fitting said tube into an outer cylinder before forming said rifling grooves. 7. The method of claim 6 wherein the step of forming rifling grooves between said fusion zones compries:
machining the inside diameter of the tube and chemically milling out the material between fusion zones. 8. The method of claim 1 wherein the step of applying heat further comprises feeding wire composed of a different material than said metal tube into said molten zone at the point where the high energy heat source is melting the tube.

Claims (8)

1. A method of producing a gun barrel having hardened zones penetrating into the barrel material between rifling grooves comprising: applying heat with a high energy heat source to produce a predetermined narrow molten zone on a metal tube; allowing the molten zone to cool and form a fusion zone; and forming rifling grooves between fusion zones.
2. The method of claim 1 wherein the step of applying heat comprises: attaching the metal tube to a movable indexing support fixture of an electron beam welder; and heating the metal tube with an electron beam gun along the path determined by the indexing support fixture.
3. The method of claim 2 further comprising: moving the metal tube at a speed sufficient to achieve a molten zone depth of approximately 95 percent of the wall thickness of the tube.
4. The method of claim 1 wherein the step of forming rifling grooves between fusion zones comprises: machining the inside diameter of the tube to a value 5-10 percent smaller than the final desired inner diameter of the gun tube; pressurizing the tube internally until the inner surface yields and takes on a permanent set; and removing material between fusion zones.
5. The method of claim 4 wherein the step of removing material between fusion zones comprises: chemically milling the material between fusion zones.
6. The method of claim 2 further comprising: shrink fitting said tube into an outer cylinder before forming said rifling grooves.
7. The method of claim 6 wherein the step of forming rifling grooves between said fusion zones compries: machining the inside diameter of the tube and chemically milling out the material between fusion zones.
8. The method of claim 1 wherein the step of applying heat further comprises feeding wire composed of a different material than said metal tube into said molten zone at the point where the high energy heat source is melting the tube.
US00258622A 1972-06-01 1972-06-01 Wear resistant gun barrel and method of making the same Expired - Lifetime US3780465A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US25862272A 1972-06-01 1972-06-01

Publications (1)

Publication Number Publication Date
US3780465A true US3780465A (en) 1973-12-25

Family

ID=22981401

Family Applications (1)

Application Number Title Priority Date Filing Date
US00258622A Expired - Lifetime US3780465A (en) 1972-06-01 1972-06-01 Wear resistant gun barrel and method of making the same

Country Status (1)

Country Link
US (1) US3780465A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2386364A1 (en) * 1977-04-07 1978-11-03 Mannesmann Ag INTERNALLY COOLED TUBE ROLLING CHUCK
US4368589A (en) * 1979-08-28 1983-01-18 Costa Anthony A Hand gun and kit therefor
US4622080A (en) * 1983-01-05 1986-11-11 American Metal-Tech, Ltd. Gun barrel, mandrel and related processes
US5196637A (en) * 1991-10-11 1993-03-23 Petrovich Paul A Nonmetallic gun barrel
FR2738058A1 (en) * 1995-08-23 1997-02-28 Rheinmetall Ind Gmbh RAYWALL ARM TUBE AND METHOD OF MAKING A TUBE OF THIS TYPE
US6381893B2 (en) * 1998-07-30 2002-05-07 Rheinmetall W & M Gmbh Weapon barrel having a hard chromium inner layer
EP1239257A1 (en) * 2001-03-09 2002-09-11 Edelstahlwerke Buderus Ag Method for producing gun barrels
US20050066568A1 (en) * 2003-06-25 2005-03-31 Rheinmetall W & M Gmbh Method for removing coating damages and/or erosion damages
WO2009056848A1 (en) * 2007-11-02 2009-05-07 Transmission Systems Limited Projectile weapons
US8025003B1 (en) * 2009-10-14 2011-09-27 The United States Of America As Represented By The Secretary Of The Navy Fluted firearm barrel
US20110253270A1 (en) * 2010-04-06 2011-10-20 Boehler Edelstahl Gmbh & Co. Kg Gun barrel of firearms
RU2446904C1 (en) * 2010-08-16 2012-04-10 Открытое акционерное общество "Завод им. В.А. Дегтярева" Method of fabricating fire arm barrel
US20130239451A1 (en) * 2011-09-07 2013-09-19 Gaston Glock Marking of the barrel of a firearm
US20140150320A1 (en) * 2011-11-15 2014-06-05 Frederick J. Feddersen Gun barrel rifling
RU2526659C1 (en) * 2013-02-12 2014-08-27 Тимофей Иванович Кожокин Production of barrel
US20150007479A1 (en) * 2013-02-28 2015-01-08 Daniel Kunau Firearm Rifling
US10627179B1 (en) * 2019-03-19 2020-04-21 The United States Of America As Represented By The Secretary Of The Army M4A1 helically fluted barrel
US11262156B2 (en) * 2019-06-17 2022-03-01 Carl E Caudle Air gun for conventional metal-jacket bullets

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2968723A (en) * 1957-04-11 1961-01-17 Zeiss Carl Means for controlling crystal structure of materials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2968723A (en) * 1957-04-11 1961-01-17 Zeiss Carl Means for controlling crystal structure of materials

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2386364A1 (en) * 1977-04-07 1978-11-03 Mannesmann Ag INTERNALLY COOLED TUBE ROLLING CHUCK
US4368589A (en) * 1979-08-28 1983-01-18 Costa Anthony A Hand gun and kit therefor
US4622080A (en) * 1983-01-05 1986-11-11 American Metal-Tech, Ltd. Gun barrel, mandrel and related processes
US5196637A (en) * 1991-10-11 1993-03-23 Petrovich Paul A Nonmetallic gun barrel
FR2738058A1 (en) * 1995-08-23 1997-02-28 Rheinmetall Ind Gmbh RAYWALL ARM TUBE AND METHOD OF MAKING A TUBE OF THIS TYPE
US5664359A (en) * 1995-08-23 1997-09-09 Rheinmetall Industrie Gmbh Rifled weapon barrel and method of making the same
US6381893B2 (en) * 1998-07-30 2002-05-07 Rheinmetall W & M Gmbh Weapon barrel having a hard chromium inner layer
EP1239257A1 (en) * 2001-03-09 2002-09-11 Edelstahlwerke Buderus Ag Method for producing gun barrels
US6652680B2 (en) 2001-03-09 2003-11-25 Edelstahlwerke Buderus Ag Method for producing tubes for heavy guns
US20050066568A1 (en) * 2003-06-25 2005-03-31 Rheinmetall W & M Gmbh Method for removing coating damages and/or erosion damages
US7082708B2 (en) * 2003-06-25 2006-08-01 Rheinmetall W & M Gmbh Method for removing coating damages and/or erosion damages
WO2009056848A1 (en) * 2007-11-02 2009-05-07 Transmission Systems Limited Projectile weapons
US20100307045A1 (en) * 2007-11-02 2010-12-09 Transmission Systems Limited Projectile Weapons
US8291632B2 (en) 2007-11-02 2012-10-23 Transmission Systems Limited Projectile weapons
US8025003B1 (en) * 2009-10-14 2011-09-27 The United States Of America As Represented By The Secretary Of The Navy Fluted firearm barrel
US20110253270A1 (en) * 2010-04-06 2011-10-20 Boehler Edelstahl Gmbh & Co. Kg Gun barrel of firearms
US8372219B2 (en) * 2010-04-06 2013-02-12 Boehler Edelstahl Gmbh & Co. Kg Gun barrel of firearms
RU2446904C1 (en) * 2010-08-16 2012-04-10 Открытое акционерное общество "Завод им. В.А. Дегтярева" Method of fabricating fire arm barrel
US20130239451A1 (en) * 2011-09-07 2013-09-19 Gaston Glock Marking of the barrel of a firearm
US9068789B2 (en) * 2011-09-07 2015-06-30 Value Privatstiftung Marking of the barrel of a firearm
US20140150320A1 (en) * 2011-11-15 2014-06-05 Frederick J. Feddersen Gun barrel rifling
US9234716B2 (en) * 2011-11-15 2016-01-12 F. J. Feddersen, Inc. Gun barrel rifling
US9631887B2 (en) * 2011-11-15 2017-04-25 F.J. Feddersen, Inc. Gun barrel rifling
RU2526659C1 (en) * 2013-02-12 2014-08-27 Тимофей Иванович Кожокин Production of barrel
US20150007479A1 (en) * 2013-02-28 2015-01-08 Daniel Kunau Firearm Rifling
US9212860B2 (en) * 2013-02-28 2015-12-15 Daniel Kunau Firearm rifling
US10627179B1 (en) * 2019-03-19 2020-04-21 The United States Of America As Represented By The Secretary Of The Army M4A1 helically fluted barrel
US11262156B2 (en) * 2019-06-17 2022-03-01 Carl E Caudle Air gun for conventional metal-jacket bullets

Similar Documents

Publication Publication Date Title
US3780465A (en) Wear resistant gun barrel and method of making the same
US5069869A (en) Process for direct shaping and optimization of the mechanical characteristics of penetrating projectiles of high-density tungsten alloy
US2393648A (en) Projectile
DE19960180B4 (en) Method for producing an explosive projectile
US4669212A (en) Gun barrel for use at high temperature
US3696504A (en) Method of performing sequential non-mechanical and mechanical machining operations along a common centerline
SE430002C (en) SPLITTLE SHELTER FOR PROJECTILES, BATTLES AND FUNDS
US3706118A (en) Method for the manufacture of an aluminum cartridge case
UA58628C2 (en) Billet for barrel of fire-arms, method of its production and barrel of fire-arms
US5759641A (en) Method of applying strengthening coatings to metallic or metal-containing surfaces
US3364718A (en) Extrusion apparatus
EP0221239B1 (en) Method for applying a rotating band to a projectile wall with a reduced thickness, and projectile manufactured according to this method
US3783790A (en) Controlled fragmentation warhead
US2356966A (en) Method of making shot
US2373921A (en) Steel cartridge case
RU191061U1 (en) CARBON CORE FOR RUNNING WEAPONS
US4246844A (en) Method of forming high fragmentation mortar shells
US3376624A (en) Lined gun barrel and method of forming same
GB2281707A (en) Welding a drive band onto a projectile
US2331870A (en) Ammunition
US776056A (en) Process of producing small-caliber jacketed steel projectiles.
US2901814A (en) Method of manufacturing gun barrels
US3048060A (en) Method of making articles having internal surface of desired contour and articles produced thereby
RU202778U1 (en) CARBIDE CORE
SU1340843A1 (en) Mandrel for piercing mill