US3409167A - Container with flexible bottom - Google Patents
Container with flexible bottom Download PDFInfo
- Publication number
- US3409167A US3409167A US625645A US62564567A US3409167A US 3409167 A US3409167 A US 3409167A US 625645 A US625645 A US 625645A US 62564567 A US62564567 A US 62564567A US 3409167 A US3409167 A US 3409167A
- Authority
- US
- United States
- Prior art keywords
- container
- sidewall
- base
- bead
- flexure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D79/00—Kinds or details of packages, not otherwise provided for
- B65D79/005—Packages having deformable parts for indicating or neutralizing internal pressure-variations by other means than venting
- B65D79/008—Packages having deformable parts for indicating or neutralizing internal pressure-variations by other means than venting the deformable part being located in a rigid or semi-rigid container, e.g. in bottles or jars
- B65D79/0081—Packages having deformable parts for indicating or neutralizing internal pressure-variations by other means than venting the deformable part being located in a rigid or semi-rigid container, e.g. in bottles or jars in the bottom part thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24628—Nonplanar uniform thickness material
- Y10T428/24669—Aligned or parallel nonplanarities
- Y10T428/24686—Pleats or otherwise parallel adjacent folds
Definitions
- This deformation or paneling of the sidewall of the container results from a reduction of the pressure within the interior of the container.
- a small amount of air generally remains trapped Within the container.
- the contents of the container may chemically react with constituents of the residual air. Such chemical reactions cause the total pressure within the container to drop, and as a result the sidewall of the container will flexinward or panel in order to compensate for this internal pressure drop.
- the container assumes an undesirable appearance, and will not adequately support another container that may have been stacked on top of it.
- the container may be filled vvith a heated product which reduces in volume upon subsequent cooling and which thereby tends to reduce the internal pressure in the sealed container. Since the reduction in internal pressure cannot always be practically avoided, the present invention provides a novel container construction wherein the container base flexes in preference to the container walls.
- flexure means are provided at the outer circumferential portion of the bottom Wall, such flexure means including an annular head at the juncture between the sidewall and the bottom wall.
- the container sidewall is thicker than the flexure means whereby upon a limited reduced pressure in the container, for example, when the oxygen of the air therein is consumed upon reacting chemically with the contents, t-heflexure means are operable to allow the bottom wall to distend inwardly, in preference to the sidewall, to effect a maximum volumetric inward displace-, ment as the bottom vvall flexes at said flexure means starting at said outer annular bead.
- FIGURE 3 is a partial cross-sectional view taken along the line 3-3 in FIGURE 1 showing the construction of the base of the container when in an unflexed condition;
- FIGURE 4 is a partial cros-sectional view taken along line 44 in FIGURE 2 showing the container base when in a partially flexed condition due to a reduction in pressure within the container;
- FIGURE 5 is a partial cross-sectional view of another embodiment showing the base of a container when in an unflexed condition
- FIGURE 6 is a partial cross-sectional view of the container base of FIGURE 5 when in a partially flexed condition due to a reduction in pressure within the container;
- FIGURE 7 is a partial cross-sectional view of a further embodiment showing the base of a container when in an unflexed condition
- FIGURE 8 is a partial cross-sectional view taken of the container base of FIGURE 7 when in a partially flexed condition due to a reduction in pressure within the coutainer.
- a container 10 is filled with a fluid, for example, motor oil. After the container has been filled, the fluid attains the level 14 just below the top rim 16 of the container.
- the container is sealed by an end closure 17 which may be affixed in any suitable manner, for example, by a doubleseam, spin weld, or heat seal.
- FIGURE 2 After the container has been filled and sealed with the end closure 17, it appears as shown in FIGURE 2. An air space exists between the surface 14 of the fluid and the internal surface of the end closure 17. This air space results from the condition that it is not practical or economically feasible to fill the container completely with fluid to eliminate all residual air spaces or voids. Since such containers are [generally filled on production lines through filling and processing machinery, complex and intricate mechanisms would be required to assure that each container is filled to the extent that no space 'within the container is left vacant of fluid.
- the atmosphere or surrounding environment acts upon the container to cause the sidewall of the container to buckle or panel.
- various problems arise with respect to the storage of the containers. For example, it is not possible to stack any significant number of containers on top of one another in order to conserve storage space. This is so because when the sidewall 20 panels or becomes deformed, as a result of a reduction of the internal pressure, the top and bottom planes of the container are generally no longer parallel, thereby resulting in instability in the container stack.
- Another problem resulting from the deformed condition of the container is that it gives the container an undesirable appearance. Such deformed appearances of the containers often render the latter unmarketable, even though the contents of the container are 3 entirely usable and unaffected by the deformation of the sidewau.”
- FIGURE 3 shows one embodiment of the invention wherein the base or bottom wall 18 includes a flexure means 19 comprising an outer bead or convex portion 22 located at the juncture between the sidewall and the base 18.
- the fiexure means 19 further comprises a second bead or convexportion 24 along with the-indentation or concave portion 21 disposed therebetween. Adjacent to the head 24 is an indentation or concave portion 26 which runs into a central bottom portion 30.
- FIGURE 3 shows the natural condition of the con tainer while FIGURE 4 shows the container base 18 after the container has been filled and the contents have chemically reacted or other action has taken place to initially reduce the pressure within the container.
- FIGURE 4 shows the container base 18 after the container has been filled and the contents have chemically reacted or other action has taken place to initially reduce the pressure within the container.
- the irregular flexure means 19 is thinner than the sidewall 20 of the container, the numeral 31 indicating the transition from the thicker sidewall 20 to the thinner base 18.
- the outer bead 22 tends to roll or hinge inwardly, allowing the entire base 18 to be displaced toward the inside of the container to elfect a maximum volumetric, inward displacement when partial or limited vacuum is present therein.
- the degree of flexure of the various parts of the flexure means 19 will depend on the particular configuration, the thickness, and the type of material used. Since the central bottom portion is displaced rather than flexed, its thickness may be selected as found most desirable to obtain best results. It may, for example, be the same thickness or thicker than the flexure means 19.
- the height H of the outer bead 22 is the maximum allowable for its supporting function and is determined by the degree of thinning adjacent the bead 22, i.e., the ratio between the base thickness t and sidewall thickness T. Greater bead heights H allow more flex but render the bead 22 too soft (i.e., not of suflicient rigidity) for its supporting function.
- the angle K is preferably less than 60 degrees. The smaller that angle K is, the easier the base 18 can flex inwardly, however, opposing this is the fact that too small an angle K will offer less total displacement or inward distention for higher degrees of vacuum. Consequently, it is preferable that angle K be the maximum at which the base 18, due to its geometry, will effect a preferential flex inwardly prior to paneling of the sidewall.
- Angle I may be within the range of 20-90 degrees. The larger angle keeps the radial distance from indentation 21 to indentation 26 to a minimum. This allows less material thickness between these portions and allows more flex due to a thinner section.
- the outer bead 22 being of relatively weaker construction over a controlled height H, is that the height setting of the doubleseaming head for affixing the end closure 17 becomes less critical because the outer bead 22 acts as a cushion that flexes prior to buckling of the sidewall 20. If the bead 22 is relatively sturdy and too much pressure is applied on the container during doubleseaming, the sidewall 20 might collapse sufficieutly to Cause problems in obtaining satisfactory 4 doubleseaming and sealing of the end closure'20-to the container. As previously indicated, to facilitate the deformation 0 the base 18 of the container in preference to the sidewall 20 thereof, the material'thickness of the flexure means 19 is less than that of the sidewall 20. The base 18 is joined to the relatively heavier sidewall 20 through the transition indicated generally at 31. Thus, the container.
- base 18 is designed so as to be deformable in preference to the sidewall 20; In this manner, any compensation for.
- the design of the container base is such -that.-it may flex inward through a range of positions. If the internal container pressure drops further than that corresponding,v to' the position shown in FIGURE-'4, the bottom wall 18,
- the base 18 of the'container flexes inward to-compensate for this.
- FIGURE 5 shows another embodiment for the design and construction of a flexible base for the container 10.
- the flexure' means 29 in base 33 comprises an outer head or annular portion 32 joined to the sidewall 20, the head 32 joining an inner head 34 which, in turn, leads to an indentation 36. The latter terminates in the generally flat central portion 38.
- the container Prior to' being filled and when the container is in the undeformed' state, the container is supported on the inner bead 34 and, depending on the thickness and configuration, it might also be supported on the central portion 38.
- the base 33 flexes; in an inward direction, to the position shown in FIG- URE 6'.
- the thickness 1 of the flexure means 29, including the outer bead 32 is less than the sidewall 20 thickness T of the container.
- the outer bead 32 allows the entire base 33 to be displaced toward the'inside of the container when the aforesaid initial partial vacuum is present therein, thereby to provide maximum volumetric displacement, with flexure occurring at the beads 32 and 34 as the portion therebetween tends to rotate about bead 32.
- the material thickness of the flexure means 29 for the embodiment ,of FIGURE 5 preferably would reside within the range of 0.012 to 0.035 inch.
- the internal diameter of'the container for both of the embodiments of FIGURES 3 and 5 is nominally 4 inches, when associated with the preceding values.
- the base 41 is shaped intermediate between the two designs of FIGURES 3 and 5.
- An outer bead 40 of the fiexure means 43 is joined to the sidewall 20.
- the outer bead 40 does not provide support for the unfilled container (FIGURE 7).
- Th'e'outer head 40 connects with an inner head 42 which, in turn, leads to indentation 44, the latter being joined to the central flat portion 48.
- the filled container is supported by the outer bead 40 and, depending on the thickness and configuration, it may also be supported on the inner bead 42.
- the material thickness of the flexure means 43 in the embodiment of FIGURE 7 preferably would reside within the range of 0.012 to 0.035 inch.
- the internal diameter of the container is nominally 4 inches when associated with the preceding values.
- a container body of thermoplastic material or the like having a sidewall and a bottom wall, said bottom wall having fiexure means at the outer annular portion thereof comprising a first annular bead disposed at the juncture between the container sidewall and the bottom wall and a second annular bead disposed radially inwardly of the said first bead, said flexure means further comprising an annular concave portion joining said annular beads, said bottom wall having a central portion joined to said second annular bead by a second annular concave portion, said first annular bead being thinner than the adjacent sidewall with the transition in thickness occuring substantially at the juncture between the sidewall and said first annular bead, said central bottom wall portionbeing displaced inwardly, in preference to the sidewall, upon a relative reduction of pressure in the container, as the flexure means flexes from a position starting at the first annular bead and continuing through said first annular concave portion and said second annular bead.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
Description
Nov. 5, 1968 R. L- BLANCHARD CONTAINER WITH FLEXIBLE BOTTOM Filed March 24, 1967 2 Shets-Sheet 1 FIG.2
INVENTOR.
RICHARD LEWIS BLANCHAR D ATTORNEY Nov. 5, 1968 R. L. BLANCHARD 3,409,157
CONTAINER WITH FLEXIBLE BOTTOM I Filed March 24, 1967 2 sheets sheet 2 FIG.5
R CHARD uzwls BLA NCHAR 0 ATTORNEY INVENTOR.
United States Patent 3,409,167 CONTAINER WITH FLEXIBLE BOTTOM Richard Lewis Blanchard, Barrington, 11]., assignor to American Can Company, New York, N.Y., a corporafion of New Jersey Filed Mar. 24, 1967, Ser. No. 625,645 1 Claim. (Cl. 220-66) ABSTRACT OF THE DISCLOSURE Background of the invention After filling and sealing containers made of non-rigid materials ('eig," thermoplastic) with certain types of products (eig, motor oil), it'has been found that the sidewalls of the containers tend to panel or become deformed when the containers have been stored for a period of time. This deformation or paneling of the sidewall of the container results from a reduction of the pressure within the interior of the container. After the container has been filled and sealed, a small amount of air generally remains trapped Within the container. Upon being stored, the contents of the container may chemically react with constituents of the residual air. Such chemical reactions cause the total pressure within the container to drop, and as a result the sidewall of the container will flexinward or panel in order to compensate for this internal pressure drop. When this condition occurs, the container assumes an undesirable appearance, and will not adequately support another container that may have been stacked on top of it. In some cases, the container may be filled vvith a heated product which reduces in volume upon subsequent cooling and which thereby tends to reduce the internal pressure in the sealed container. Since the reduction in internal pressure cannot always be practically avoided, the present invention provides a novel container construction wherein the container base flexes in preference to the container walls.
Summary of the invention In a thermoplastic container having a sidewall and bottom wall, flexure means are provided at the outer circumferential portion of the bottom Wall, such flexure means including an annular head at the juncture between the sidewall and the bottom wall. The container sidewall is thicker than the flexure means whereby upon a limited reduced pressure in the container, for example, when the oxygen of the air therein is consumed upon reacting chemically with the contents, t-heflexure means are operable to allow the bottom wall to distend inwardly, in preference to the sidewall, to effect a maximum volumetric inward displace-, ment as the bottom vvall flexes at said flexure means starting at said outer annular bead.
Description of the drawings sealed 3,409,167 Patented Nov. 5, 1968 FIGURE 3 is a partial cross-sectional view taken along the line 3-3 in FIGURE 1 showing the construction of the base of the container when in an unflexed condition;
FIGURE 4 is a partial cros-sectional view taken along line 44 in FIGURE 2 showing the container base when in a partially flexed condition due to a reduction in pressure within the container;
FIGURE 5 is a partial cross-sectional view of another embodiment showing the base of a container when in an unflexed condition;
FIGURE 6 is a partial cross-sectional view of the container base of FIGURE 5 when in a partially flexed condition due to a reduction in pressure within the container;
FIGURE 7 is a partial cross-sectional view of a further embodiment showing the base of a container when in an unflexed condition;
FIGURE 8 is a partial cross-sectional view taken of the container base of FIGURE 7 when in a partially flexed condition due to a reduction in pressure within the coutainer.
Description of the prefered embodiments Referring to the drawings and in particular to FIGURE 1, a container 10 is filled with a fluid, for example, motor oil. After the container has been filled, the fluid attains the level 14 just below the top rim 16 of the container. The container is sealed by an end closure 17 which may be affixed in any suitable manner, for example, by a doubleseam, spin weld, or heat seal.
After the container has been filled and sealed with the end closure 17, it appears as shown in FIGURE 2. An air space exists between the surface 14 of the fluid and the internal surface of the end closure 17. This air space results from the condition that it is not practical or economically feasible to fill the container completely with fluid to eliminate all residual air spaces or voids. Since such containers are [generally filled on production lines through filling and processing machinery, complex and intricate mechanisms would be required to assure that each container is filled to the extent that no space 'within the container is left vacant of fluid.
In the normal course of storing the filled container, it has been found that certain constituents of the fluid may react chemically With the air within the container. Such chemical reactions of the fluid result in a reduction of internal pressure in thecontainer in that the reactions use up the oxygen from the residual air space, and the partial pressure, previously created by the oxygen, is no longer present and, consequently, the internal pressure in the container will be reduced. A similar result of reduced total internal pressure would prevail for chemical reactions between the fluid and any of the other constituents or gaseous components of the residual space. Further, if the container is initially filled with a heated product (e.g., heated oil to make it less viscous for filling), its subsequent coolin'g will tend to cause a reduction in the internal pressure.
With reduction of internal pressure, the atmosphere or surrounding environment acts upon the container to cause the sidewall of the container to buckle or panel. When the sidewall 20 of the container is thus deformed or paneled, various problems arise with respect to the storage of the containers. For example, it is not possible to stack any significant number of containers on top of one another in order to conserve storage space. This is so because when the sidewall 20 panels or becomes deformed, as a result of a reduction of the internal pressure, the top and bottom planes of the container are generally no longer parallel, thereby resulting in instability in the container stack. Another problem resulting from the deformed condition of the container is that it gives the container an undesirable appearance. Such deformed appearances of the containers often render the latter unmarketable, even though the contents of the container are 3 entirely usable and unaffected by the deformation of the sidewau."
The deformation or paneling of the sidewall of the container is prevented, in accordance with the present inven-' tion, through a novel construction of the bottom wall or base of the'container wherein flexure means in the bottom wall provide preferential flexure in the latter. FIGURE 3 shows one embodiment of the invention wherein the base or bottom wall 18 includes a flexure means 19 comprising an outer bead or convex portion 22 located at the juncture between the sidewall and the base 18. The fiexure means 19 further comprises a second bead or convexportion 24 along with the-indentation or concave portion 21 disposed therebetween. Adjacent to the head 24 is an indentation or concave portion 26 which runs into a central bottom portion 30. v
FIGURE 3 shows the natural condition of the con tainer while FIGURE 4 shows the container base 18 after the container has been filled and the contents have chemically reacted or other action has taken place to initially reduce the pressure within the container. Because of the irregular configuration of the flexure means 19 and the fact that the thickness t of the flexure means is less than the thickness T of the sidewall 20, such flexure means 19 will bend, in preference to the sidewall 20, to compensate for the pressure reduction. When this bending or flexure occurs, maximum volumetric displacement is effected as the bottom wall 18 flexes from a position starting at the outer annular bead 22. The flexure occurs at the beads 22 and 24, continuing through the intermediate indentation 21. The reason for this is that the irregular flexure means 19 is thinner than the sidewall 20 of the container, the numeral 31 indicating the transition from the thicker sidewall 20 to the thinner base 18. Thus, the outer bead 22 tends to roll or hinge inwardly, allowing the entire base 18 to be displaced toward the inside of the container to elfect a maximum volumetric, inward displacement when partial or limited vacuum is present therein. The degree of flexure of the various parts of the flexure means 19 will depend on the particular configuration, the thickness, and the type of material used. Since the central bottom portion is displaced rather than flexed, its thickness may be selected as found most desirable to obtain best results. It may, for example, be the same thickness or thicker than the flexure means 19.
Preferably, the height H of the outer bead 22 is the maximum allowable for its supporting function and is determined by the degree of thinning adjacent the bead 22, i.e., the ratio between the base thickness t and sidewall thickness T. Greater bead heights H allow more flex but render the bead 22 too soft (i.e., not of suflicient rigidity) for its supporting function. The angle K is preferably less than 60 degrees. The smaller that angle K is, the easier the base 18 can flex inwardly, however, opposing this is the fact that too small an angle K will offer less total displacement or inward distention for higher degrees of vacuum. Consequently, it is preferable that angle K be the maximum at which the base 18, due to its geometry, will effect a preferential flex inwardly prior to paneling of the sidewall.
Angle I may be within the range of 20-90 degrees. The larger angle keeps the radial distance from indentation 21 to indentation 26 to a minimum. This allows less material thickness between these portions and allows more flex due to a thinner section.
Another advantage of the outer bead 22 being of relatively weaker construction over a controlled height H, is that the height setting of the doubleseaming head for affixing the end closure 17 becomes less critical because the outer bead 22 acts as a cushion that flexes prior to buckling of the sidewall 20. If the bead 22 is relatively sturdy and too much pressure is applied on the container during doubleseaming, the sidewall 20 might collapse sufficieutly to Cause problems in obtaining satisfactory 4 doubleseaming and sealing of the end closure'20-to the container. As previously indicated, to facilitate the deformation 0 the base 18 of the container in preference to the sidewall 20 thereof, the material'thickness of the flexure means 19 is less than that of the sidewall 20. The base 18 is joined to the relatively heavier sidewall 20 through the transition indicated generally at 31. Thus, the container.
the reduction in pressurewithin the containeris accomplished through deformation of the container base =18 rather than of the sidewall 20.
The design of the container base is such -that.-it may flex inward through a range of positions. If the internal container pressure drops further than that corresponding,v to' the position shown in FIGURE-'4, the bottom wall 18,
may move orflex further inwardly. Accordingly, as the pressure within the container continues to drop, the base 18 of the'container flexes inward to-compensate for this.
The following indicates parameters of the construction shown in FIGURE 3.
v I Range I Ideal Width (W) of head 22, inch 0. 18-0. 25 0.20 Height; of bead 22, inch 0. 085-0. 12 0. 10 Angle K, degrees 20-60 30-45 Angle J, degrees 20-90 70-83 Angle N, degrees 15-60 20-30 FIGURE 5 shows another embodiment for the design and construction of a flexible base for the container 10. In this design, the flexure' means 29 in base 33 comprises an outer head or annular portion 32 joined to the sidewall 20, the head 32 joining an inner head 34 which, in turn, leads to an indentation 36. The latter terminates in the generally flat central portion 38. Prior to' being filled and when the container is in the undeformed' state, the container is supported on the inner bead 34 and, depending on the thickness and configuration, it might also be supported on the central portion 38. When the internal container pressure is initially reduced, the base 33 flexes; in an inward direction, to the position shown in FIG- URE 6'.
As in the case of the embodiment of FIGURE 3, the thickness 1 of the flexure means 29, including the outer bead 32, is less than the sidewall 20 thickness T of the container. Thus, the outer bead 32 allows the entire base 33 to be displaced toward the'inside of the container when the aforesaid initial partial vacuum is present therein, thereby to provide maximum volumetric displacement, with flexure occurring at the beads 32 and 34 as the portion therebetween tends to rotate about bead 32.
Assuming that thethickness of the sidewall 20 is within the range specified for the first embodiment of FIGURE 3 (i.e'., 0.02 to 0.04 inch), the material thickness of the flexure means 29 for the embodiment ,of FIGURE 5 preferably would reside within the range of 0.012 to 0.035 inch. The internal diameter of'the container for both of the embodiments of FIGURES 3 and 5 is nominally 4 inches, when associated with the preceding values.
In the embodiment of FIGURE 7, the base 41 is shaped intermediate between the two designs of FIGURES 3 and 5. An outer bead 40 of the fiexure means 43 is joined to the sidewall 20. In contrast with the outer bead 22 'in FIGURE 3, the outer bead 40 does not provide support for the unfilled container (FIGURE 7). Th'e'outer head 40 connects with an inner head 42 which, in turn, leads to indentation 44, the latter being joined to the central flat portion 48. y
In the initial stage of flexure, the central portion 48 is construction,
displaced inward to the position shown in FIGURE 8. In this initial stage of fiexure, the filled container is supported by the outer bead 40 and, depending on the thickness and configuration, it may also be supported on the inner bead 42.
Assuming that the thickness of the sidewall 20 is within the range specified in the first embodiment in FIGURE 3 (i.e., 0.02 to 0.04 inch), the material thickness of the flexure means 43 in the embodiment of FIGURE 7 preferably would reside within the range of 0.012 to 0.035 inch. The internal diameter of the container is nominally 4 inches when associated with the preceding values.
It is thought that the invention and many of its attendant advantages will be understood from the foregoing descriptions and it will be apparent that various changes may be made in the form, construction, and arrangement of the parts without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the form hereinbefore described being merely a preferred embodiment thereof.
I claim:
1. A container body of thermoplastic material or the like having a sidewall and a bottom wall, said bottom wall having fiexure means at the outer annular portion thereof comprising a first annular bead disposed at the juncture between the container sidewall and the bottom wall and a second annular bead disposed radially inwardly of the said first bead, said flexure means further comprising an annular concave portion joining said annular beads, said bottom wall having a central portion joined to said second annular bead by a second annular concave portion, said first annular bead being thinner than the adjacent sidewall with the transition in thickness occuring substantially at the juncture between the sidewall and said first annular bead, said central bottom wall portionbeing displaced inwardly, in preference to the sidewall, upon a relative reduction of pressure in the container, as the flexure means flexes from a position starting at the first annular bead and continuing through said first annular concave portion and said second annular bead.
References Cited UNITED STATES PATENTS 2,982,440 5/ 1961 Harrison 220-66 3,105,765 10/1963 Creegan 220-66 X FOREIGN PATENTS 234,103 6/1961 Australia.
THERON E. CONDON, Primary Examiner. GEORGE E. LOWRANCE, Assistant Examiner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US625645A US3409167A (en) | 1967-03-24 | 1967-03-24 | Container with flexible bottom |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US625645A US3409167A (en) | 1967-03-24 | 1967-03-24 | Container with flexible bottom |
Publications (1)
Publication Number | Publication Date |
---|---|
US3409167A true US3409167A (en) | 1968-11-05 |
Family
ID=24506987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US625645A Expired - Lifetime US3409167A (en) | 1967-03-24 | 1967-03-24 | Container with flexible bottom |
Country Status (1)
Country | Link |
---|---|
US (1) | US3409167A (en) |
Cited By (116)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3889835A (en) * | 1974-05-10 | 1975-06-17 | Bernzomatic Corp | One-piece pressure container |
US3904069A (en) * | 1972-01-31 | 1975-09-09 | American Can Co | Container |
US3905507A (en) * | 1974-04-05 | 1975-09-16 | Nat Can Corp | Profiled bottom wall for containers |
JPS51519Y1 (en) * | 1970-09-18 | 1976-01-09 | ||
US3973693A (en) * | 1974-03-12 | 1976-08-10 | Plastona (John Waddington) Limited | Containers for containing carbonated beverages |
US3979009A (en) * | 1975-03-21 | 1976-09-07 | Kaiser Aluminum & Chemical Corporation | Container bottom structure |
US4037752A (en) * | 1975-11-13 | 1977-07-26 | Coors Container Company | Container with outwardly flexible bottom end wall having integral support means and method and apparatus for manufacturing thereof |
DE2728511A1 (en) * | 1976-07-07 | 1978-01-12 | Ball Corp | CONTAINER WITH SHAPED FEET |
JPS5312584U (en) * | 1976-07-13 | 1978-02-02 | ||
US4093102A (en) * | 1974-08-26 | 1978-06-06 | National Can Corporation | End panel for containers |
DE2801234A1 (en) * | 1977-02-04 | 1978-08-10 | Solvay | HOLLOW BODY MADE OF ORIENTED PLASTIC |
JPS53103449U (en) * | 1977-01-26 | 1978-08-21 | ||
DE2807185A1 (en) * | 1977-03-02 | 1978-09-07 | Solvay | HOLLOW BODY MADE OF THERMOPLASTIC PLASTIC |
US4125632A (en) * | 1976-11-22 | 1978-11-14 | American Can Company | Container |
US4134354A (en) * | 1976-02-06 | 1979-01-16 | Reynolds Metals Company | Method of making a container |
US4147271A (en) * | 1976-08-20 | 1979-04-03 | Daiwa Can Company, Limited | Drawn and ironed can body and filled drawn and ironed can for containing pressurized beverages |
FR2431960A1 (en) * | 1978-06-16 | 1980-02-22 | Schmalbach Lubeca | BOX, ESPECIALLY METAL BOX FOR VACUUM PACKAGED PRODUCTS |
US4199073A (en) * | 1978-08-04 | 1980-04-22 | Gombas Laszlo A | Can end configuration |
US4222494A (en) * | 1977-03-04 | 1980-09-16 | Reynolds Metals Company | Container |
US4331246A (en) * | 1979-05-11 | 1982-05-25 | Plm Ab | Container |
US4352461A (en) * | 1980-05-09 | 1982-10-05 | Orta Phillip N | Hand signals |
US4363404A (en) * | 1981-03-30 | 1982-12-14 | Boise Cascade Corporation | End closure for stackable frozen food containers |
EP0068718A1 (en) * | 1981-06-19 | 1983-01-05 | American Can Company | Hermetically sealable containers and method of sealing |
US4381061A (en) * | 1981-05-26 | 1983-04-26 | Ball Corporation | Non-paneling container |
US4402419A (en) * | 1978-06-26 | 1983-09-06 | The Continental Group, Inc. | Bottom wall for container |
USRE31762E (en) * | 1976-11-22 | 1984-12-11 | American Can Company | Container |
US4497855A (en) * | 1980-02-20 | 1985-02-05 | Monsanto Company | Collapse resistant polyester container for hot fill applications |
US4515284A (en) * | 1980-08-21 | 1985-05-07 | Reynolds Metals Company | Can body bottom configuration |
US4542029A (en) * | 1981-06-19 | 1985-09-17 | American Can Company | Hot filled container |
EP0168070A1 (en) * | 1984-06-08 | 1986-01-15 | Thomassen & Drijver-Verblifa N.V. | Method for manufacturing a container having a filling |
US4667454A (en) * | 1982-01-05 | 1987-05-26 | American Can Company | Method of obtaining acceptable configuration of a plastic container after thermal food sterilization process |
US4685273A (en) * | 1981-06-19 | 1987-08-11 | American Can Company | Method of forming a long shelf-life food package |
US4836398A (en) * | 1988-01-29 | 1989-06-06 | Aluminum Company Of America | Inwardly reformable endwall for a container |
US4880129A (en) * | 1983-01-05 | 1989-11-14 | American National Can Company | Method of obtaining acceptable configuration of a plastic container after thermal food sterilization process |
US4953738A (en) * | 1988-02-19 | 1990-09-04 | Stirbis James S | One piece can body with domed bottom |
US4967538A (en) * | 1988-01-29 | 1990-11-06 | Aluminum Company Of America | Inwardly reformable endwall for a container and a method of packaging a product in the container |
EP0468545A2 (en) * | 1986-10-13 | 1992-01-29 | MITSUI TOATSU CHEMICALS, Inc. | Package for agricultural products |
US5217737A (en) * | 1991-05-20 | 1993-06-08 | Abbott Laboratories | Plastic containers capable of surviving sterilization |
US5234126A (en) * | 1991-01-04 | 1993-08-10 | Abbott Laboratories | Plastic container |
WO1993024391A1 (en) * | 1992-06-02 | 1993-12-09 | Aci Operations Pty. Ltd. | Container |
WO1993024377A1 (en) * | 1992-06-02 | 1993-12-09 | The Procter & Gamble Company | Anti-bulging container |
WO1994003367A1 (en) * | 1992-07-30 | 1994-02-17 | Carnaudmetalbox Plc | Deformable end wall for a pressure-resistant container |
AU657228B2 (en) * | 1992-06-02 | 1995-03-02 | Aci Operations Pty. Limited | Foodstuff container accommodating pressure changes after sealing |
US5458252A (en) * | 1994-06-03 | 1995-10-17 | American Precision Plastics Corporation | Invertible, pressure-responsive sealing cap |
US5492245A (en) * | 1992-06-02 | 1996-02-20 | The Procter & Gamble Company | Anti-bulging container |
EP0778224A1 (en) * | 1995-12-05 | 1997-06-11 | Alusuisse Technology & Management AG | Gastight container |
US5730314A (en) * | 1995-05-26 | 1998-03-24 | Anheuser-Busch Incorporated | Controlled growth can with two configurations |
FR2753684A1 (en) * | 1996-09-25 | 1998-03-27 | Lorraine Laminage | Bottom of metal food can |
US6131761A (en) * | 1998-06-03 | 2000-10-17 | Crown Cork & Seal Technologies Corporation | Can bottom having improved strength and apparatus for making same |
US6439413B1 (en) | 2000-02-29 | 2002-08-27 | Graham Packaging Company, L.P. | Hot-fillable and retortable flat paneled jar |
US6612451B2 (en) | 2001-04-19 | 2003-09-02 | Graham Packaging Company, L.P. | Multi-functional base for a plastic, wide-mouth, blow-molded container |
US20030196926A1 (en) * | 2001-04-19 | 2003-10-23 | Tobias John W. | Multi-functional base for a plastic, wide-mouth, blow-molded container |
US20040149677A1 (en) * | 2003-01-30 | 2004-08-05 | Slat William A. | Hot fillable container with flexible base portion |
US20040173565A1 (en) * | 1999-12-01 | 2004-09-09 | Frank Semersky | Pasteurizable wide-mouth container |
US20040211746A1 (en) * | 2001-04-19 | 2004-10-28 | Graham Packaging Company, L.P. | Multi-functional base for a plastic, wide-mouth, blow-molded container |
US20040232103A1 (en) * | 2003-05-23 | 2004-11-25 | Lisch G. David | Container base structure responsive to vacuum related forces |
US20050082250A1 (en) * | 2002-01-31 | 2005-04-21 | Noriyuki Tanaka | Synthetic resin thin-walled bottle container |
EP1565381A1 (en) * | 2002-09-30 | 2005-08-24 | Co2 Pac Limited | Container structure for removal of vacuum pressure |
US20050196569A1 (en) * | 2003-05-23 | 2005-09-08 | Lisch G. D. | Container base structure responsive to vacuum related forces |
US20060006133A1 (en) * | 2003-05-23 | 2006-01-12 | Lisch G D | Container base structure responsive to vacuum related forces |
US20060113274A1 (en) * | 2004-12-01 | 2006-06-01 | Graham Packaging Company, L.P. | Vacuum panel base |
US20060243698A1 (en) * | 2000-08-31 | 2006-11-02 | Co2 Pac Limited | Semi-rigid collapsible container |
US20070125742A1 (en) * | 2005-11-14 | 2007-06-07 | Graham Packaging Company, L.P. | Plastic container base structure and method for hot filling a plastic container |
US20090090646A1 (en) * | 2005-02-05 | 2009-04-09 | Willem Leendert Pieter Van Dam | Stackable flat bottomed can |
US20090159556A1 (en) * | 2003-05-23 | 2009-06-25 | Amcor Limited | Container base structure responsive to vacuum related forces |
US7574846B2 (en) | 2004-03-11 | 2009-08-18 | Graham Packaging Company, L.P. | Process and device for conveying odd-shaped containers |
US20090242575A1 (en) * | 2008-03-27 | 2009-10-01 | Satya Kamineni | Container base having volume absorption panel |
US7726106B2 (en) | 2003-07-30 | 2010-06-01 | Graham Packaging Co | Container handling system |
US20100163513A1 (en) * | 2008-12-31 | 2010-07-01 | Plastipak Packaging, Inc. | Hot-fillable plastic container with flexible base feature |
US7799264B2 (en) | 2006-03-15 | 2010-09-21 | Graham Packaging Company, L.P. | Container and method for blowmolding a base in a partial vacuum pressure reduction setup |
US20110017700A1 (en) * | 2003-05-23 | 2011-01-27 | Patcheak Terry D | Hot-fill container |
US7900425B2 (en) | 2005-10-14 | 2011-03-08 | Graham Packaging Company, L.P. | Method for handling a hot-filled container having a moveable portion to reduce a portion of a vacuum created therein |
US7926243B2 (en) | 2009-01-06 | 2011-04-19 | Graham Packaging Company, L.P. | Method and system for handling containers |
US20110204058A1 (en) * | 2010-02-22 | 2011-08-25 | Jack Edward Maze | Specimen Container |
US8017065B2 (en) | 2006-04-07 | 2011-09-13 | Graham Packaging Company L.P. | System and method for forming a container having a grip region |
US8075833B2 (en) | 2005-04-15 | 2011-12-13 | Graham Packaging Company L.P. | Method and apparatus for manufacturing blow molded containers |
US20120012592A1 (en) * | 2010-07-16 | 2012-01-19 | George David Lisch | Controlled base flash forming a standing ring |
US20120037645A1 (en) * | 2009-02-12 | 2012-02-16 | Sidel Participations | Container in which the base is provided with a double-seated flexible arch |
US8127955B2 (en) * | 2000-08-31 | 2012-03-06 | John Denner | Container structure for removal of vacuum pressure |
US20120199611A1 (en) * | 2009-10-14 | 2012-08-09 | Marcos Antonio Quimenton | Arrangement for a dropper |
EP2490836A1 (en) * | 2009-10-21 | 2012-08-29 | Stolle Machinery Company, LLC | Container, and selectively formed cup, tooling and associated method for providing same |
US20120285953A1 (en) * | 2011-05-11 | 2012-11-15 | Werner Schick | Packaging container |
US8381940B2 (en) | 2002-09-30 | 2013-02-26 | Co2 Pac Limited | Pressure reinforced plastic container having a moveable pressure panel and related method of processing a plastic container |
US20130153529A1 (en) * | 2010-09-30 | 2013-06-20 | Yoshino Kogyosho Co., Ltd. | Bottle |
US20130213979A1 (en) * | 2008-12-31 | 2013-08-22 | Plastipak Packaging, Inc. | Plastic container with flexible base and rigid sidewall portion |
US8584879B2 (en) | 2000-08-31 | 2013-11-19 | Co2Pac Limited | Plastic container having a deep-set invertible base and related methods |
US20130312368A1 (en) * | 2000-08-31 | 2013-11-28 | John Denner | Plastic container having a deep-set invertible base and related methods |
WO2014004919A1 (en) * | 2012-06-28 | 2014-01-03 | Plastipak Packaging, Inc. | Plastic container with flexible base |
US8627944B2 (en) | 2008-07-23 | 2014-01-14 | Graham Packaging Company L.P. | System, apparatus, and method for conveying a plurality of containers |
US8636944B2 (en) | 2008-12-08 | 2014-01-28 | Graham Packaging Company L.P. | Method of making plastic container having a deep-inset base |
US8747727B2 (en) | 2006-04-07 | 2014-06-10 | Graham Packaging Company L.P. | Method of forming container |
US8919587B2 (en) | 2011-10-03 | 2014-12-30 | Graham Packaging Company, L.P. | Plastic container with angular vacuum panel and method of same |
US8962114B2 (en) | 2010-10-30 | 2015-02-24 | Graham Packaging Company, L.P. | Compression molded preform for forming invertible base hot-fill container, and systems and methods thereof |
US9022776B2 (en) | 2013-03-15 | 2015-05-05 | Graham Packaging Company, L.P. | Deep grip mechanism within blow mold hanger and related methods and bottles |
US9133006B2 (en) | 2010-10-31 | 2015-09-15 | Graham Packaging Company, L.P. | Systems, methods, and apparatuses for cooling hot-filled containers |
US9150320B2 (en) | 2011-08-15 | 2015-10-06 | Graham Packaging Company, L.P. | Plastic containers having base configurations with up-stand walls having a plurality of rings, and systems, methods, and base molds thereof |
WO2015153469A1 (en) * | 2014-03-31 | 2015-10-08 | Amcor Limited | Controlled release container |
US20160031593A1 (en) * | 2014-08-01 | 2016-02-04 | North America I.M.L. Containers | Anti-depression plastic container |
AU2013206495B2 (en) * | 2008-03-27 | 2016-07-07 | Plastipak Packaging, Inc. | Container base having volume absorption panel |
US9394072B2 (en) | 2003-05-23 | 2016-07-19 | Amcor Limited | Hot-fill container |
US20170081104A1 (en) * | 2014-05-07 | 2017-03-23 | Milacron Llc | Plastic Container with Flexible Base Portion |
US9707711B2 (en) | 2006-04-07 | 2017-07-18 | Graham Packaging Company, L.P. | Container having outwardly blown, invertible deep-set grips |
US9751679B2 (en) | 2003-05-23 | 2017-09-05 | Amcor Limited | Vacuum absorbing bases for hot-fill containers |
US20170267391A1 (en) * | 2014-08-21 | 2017-09-21 | Amcor Limited | Two-stage container base |
US20170369198A1 (en) * | 2016-06-22 | 2017-12-28 | Stupid Good Beverage Company, LLC | Container with product removal mechanism |
US20180029741A1 (en) * | 2015-03-31 | 2018-02-01 | Toyo Seikan Co., Ltd. | Can body |
US9969517B2 (en) | 2002-09-30 | 2018-05-15 | Co2Pac Limited | Systems and methods for handling plastic containers having a deep-set invertible base |
US9993959B2 (en) | 2013-03-15 | 2018-06-12 | Graham Packaging Company, L.P. | Deep grip mechanism for blow mold and related methods and bottles |
US9994378B2 (en) | 2011-08-15 | 2018-06-12 | Graham Packaging Company, L.P. | Plastic containers, base configurations for plastic containers, and systems, methods, and base molds thereof |
US10106306B2 (en) | 2014-05-30 | 2018-10-23 | Silgan Containers Llc | Can end for pressurized metal food can with shielded vent score |
US10246238B2 (en) | 2000-08-31 | 2019-04-02 | Co2Pac Limited | Plastic container having a deep-set invertible base and related methods |
US20190382181A1 (en) * | 2007-02-09 | 2019-12-19 | Co2Pac Limited | Method of handling a plastic container having a moveable base |
US10525519B2 (en) | 2009-10-21 | 2020-01-07 | Stolle Machinery Company, Llc | Container, and selectively formed cup, tooling and associated method for providing same |
US11565867B2 (en) | 2000-08-31 | 2023-01-31 | C02Pac Limited | Method of handling a plastic container having a moveable base |
US11731823B2 (en) | 2007-02-09 | 2023-08-22 | Co2Pac Limited | Method of handling a plastic container having a moveable base |
US11897656B2 (en) | 2007-02-09 | 2024-02-13 | Co2Pac Limited | Plastic container having a movable base |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2982440A (en) * | 1959-02-05 | 1961-05-02 | Crown Machine And Tool Company | Plastic container |
US3105765A (en) * | 1962-02-19 | 1963-10-01 | Gen Foods Corp | Evacuated coffee package |
-
1967
- 1967-03-24 US US625645A patent/US3409167A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2982440A (en) * | 1959-02-05 | 1961-05-02 | Crown Machine And Tool Company | Plastic container |
US3105765A (en) * | 1962-02-19 | 1963-10-01 | Gen Foods Corp | Evacuated coffee package |
Cited By (208)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51519Y1 (en) * | 1970-09-18 | 1976-01-09 | ||
US3904069A (en) * | 1972-01-31 | 1975-09-09 | American Can Co | Container |
US3973693A (en) * | 1974-03-12 | 1976-08-10 | Plastona (John Waddington) Limited | Containers for containing carbonated beverages |
US3905507A (en) * | 1974-04-05 | 1975-09-16 | Nat Can Corp | Profiled bottom wall for containers |
US3889835A (en) * | 1974-05-10 | 1975-06-17 | Bernzomatic Corp | One-piece pressure container |
US4093102A (en) * | 1974-08-26 | 1978-06-06 | National Can Corporation | End panel for containers |
US3979009A (en) * | 1975-03-21 | 1976-09-07 | Kaiser Aluminum & Chemical Corporation | Container bottom structure |
US4037752A (en) * | 1975-11-13 | 1977-07-26 | Coors Container Company | Container with outwardly flexible bottom end wall having integral support means and method and apparatus for manufacturing thereof |
US4134354A (en) * | 1976-02-06 | 1979-01-16 | Reynolds Metals Company | Method of making a container |
DE2728511A1 (en) * | 1976-07-07 | 1978-01-12 | Ball Corp | CONTAINER WITH SHAPED FEET |
JPS5312584U (en) * | 1976-07-13 | 1978-02-02 | ||
US4147271A (en) * | 1976-08-20 | 1979-04-03 | Daiwa Can Company, Limited | Drawn and ironed can body and filled drawn and ironed can for containing pressurized beverages |
US4125632A (en) * | 1976-11-22 | 1978-11-14 | American Can Company | Container |
USRE31762E (en) * | 1976-11-22 | 1984-12-11 | American Can Company | Container |
JPS53103449U (en) * | 1977-01-26 | 1978-08-21 | ||
JPS5833055Y2 (en) * | 1977-01-26 | 1983-07-23 | 東洋製缶株式会社 | Bottom of thin plate squeeze can |
DE2801234A1 (en) * | 1977-02-04 | 1978-08-10 | Solvay | HOLLOW BODY MADE OF ORIENTED PLASTIC |
DE2807185A1 (en) * | 1977-03-02 | 1978-09-07 | Solvay | HOLLOW BODY MADE OF THERMOPLASTIC PLASTIC |
US4249666A (en) * | 1977-03-02 | 1981-02-10 | Solvay & Cie | Hollow body of thermoplastic material |
US4222494A (en) * | 1977-03-04 | 1980-09-16 | Reynolds Metals Company | Container |
FR2431960A1 (en) * | 1978-06-16 | 1980-02-22 | Schmalbach Lubeca | BOX, ESPECIALLY METAL BOX FOR VACUUM PACKAGED PRODUCTS |
US4402419A (en) * | 1978-06-26 | 1983-09-06 | The Continental Group, Inc. | Bottom wall for container |
US4199073A (en) * | 1978-08-04 | 1980-04-22 | Gombas Laszlo A | Can end configuration |
US4331246A (en) * | 1979-05-11 | 1982-05-25 | Plm Ab | Container |
US4497855A (en) * | 1980-02-20 | 1985-02-05 | Monsanto Company | Collapse resistant polyester container for hot fill applications |
US4352461A (en) * | 1980-05-09 | 1982-10-05 | Orta Phillip N | Hand signals |
US4515284A (en) * | 1980-08-21 | 1985-05-07 | Reynolds Metals Company | Can body bottom configuration |
US4363404A (en) * | 1981-03-30 | 1982-12-14 | Boise Cascade Corporation | End closure for stackable frozen food containers |
US4381061A (en) * | 1981-05-26 | 1983-04-26 | Ball Corporation | Non-paneling container |
EP0068718A1 (en) * | 1981-06-19 | 1983-01-05 | American Can Company | Hermetically sealable containers and method of sealing |
US4542029A (en) * | 1981-06-19 | 1985-09-17 | American Can Company | Hot filled container |
US4685273A (en) * | 1981-06-19 | 1987-08-11 | American Can Company | Method of forming a long shelf-life food package |
US4667454A (en) * | 1982-01-05 | 1987-05-26 | American Can Company | Method of obtaining acceptable configuration of a plastic container after thermal food sterilization process |
US4880129A (en) * | 1983-01-05 | 1989-11-14 | American National Can Company | Method of obtaining acceptable configuration of a plastic container after thermal food sterilization process |
EP0168070A1 (en) * | 1984-06-08 | 1986-01-15 | Thomassen & Drijver-Verblifa N.V. | Method for manufacturing a container having a filling |
EP0468545A2 (en) * | 1986-10-13 | 1992-01-29 | MITSUI TOATSU CHEMICALS, Inc. | Package for agricultural products |
EP0468545A3 (en) * | 1986-10-13 | 1992-04-15 | Mitsui Toatsu Chemicals, Incorporated | Package for agricultural products |
US4836398A (en) * | 1988-01-29 | 1989-06-06 | Aluminum Company Of America | Inwardly reformable endwall for a container |
US4967538A (en) * | 1988-01-29 | 1990-11-06 | Aluminum Company Of America | Inwardly reformable endwall for a container and a method of packaging a product in the container |
US4953738A (en) * | 1988-02-19 | 1990-09-04 | Stirbis James S | One piece can body with domed bottom |
US5234126A (en) * | 1991-01-04 | 1993-08-10 | Abbott Laboratories | Plastic container |
US5217737A (en) * | 1991-05-20 | 1993-06-08 | Abbott Laboratories | Plastic containers capable of surviving sterilization |
WO1993024391A1 (en) * | 1992-06-02 | 1993-12-09 | Aci Operations Pty. Ltd. | Container |
WO1993024377A1 (en) * | 1992-06-02 | 1993-12-09 | The Procter & Gamble Company | Anti-bulging container |
AU657228B2 (en) * | 1992-06-02 | 1995-03-02 | Aci Operations Pty. Limited | Foodstuff container accommodating pressure changes after sealing |
US5492245A (en) * | 1992-06-02 | 1996-02-20 | The Procter & Gamble Company | Anti-bulging container |
WO1994003367A1 (en) * | 1992-07-30 | 1994-02-17 | Carnaudmetalbox Plc | Deformable end wall for a pressure-resistant container |
US5458252A (en) * | 1994-06-03 | 1995-10-17 | American Precision Plastics Corporation | Invertible, pressure-responsive sealing cap |
US5730314A (en) * | 1995-05-26 | 1998-03-24 | Anheuser-Busch Incorporated | Controlled growth can with two configurations |
US6077554A (en) * | 1995-05-26 | 2000-06-20 | Anheuser-Busch, Inc. | Controlled growth can with two configurations |
US5727710A (en) * | 1995-12-05 | 1998-03-17 | Alusuisse Technology & Management Ltd. | Gas-tight container |
EP0778224A1 (en) * | 1995-12-05 | 1997-06-11 | Alusuisse Technology & Management AG | Gastight container |
FR2753684A1 (en) * | 1996-09-25 | 1998-03-27 | Lorraine Laminage | Bottom of metal food can |
US6131761A (en) * | 1998-06-03 | 2000-10-17 | Crown Cork & Seal Technologies Corporation | Can bottom having improved strength and apparatus for making same |
US6220073B1 (en) | 1998-06-03 | 2001-04-24 | Crown Cork & Seal Technologies Corporation | Can bottom having improved strength and apparatus for making same |
US20040173565A1 (en) * | 1999-12-01 | 2004-09-09 | Frank Semersky | Pasteurizable wide-mouth container |
US6439413B1 (en) | 2000-02-29 | 2002-08-27 | Graham Packaging Company, L.P. | Hot-fillable and retortable flat paneled jar |
US11565866B2 (en) | 2000-08-31 | 2023-01-31 | C02Pac Limited | Plastic container having a deep-set invertible base and related methods |
US20060243698A1 (en) * | 2000-08-31 | 2006-11-02 | Co2 Pac Limited | Semi-rigid collapsible container |
US8047389B2 (en) * | 2000-08-31 | 2011-11-01 | Co2 Pac Limited | Semi-rigid collapsible container |
US8127955B2 (en) * | 2000-08-31 | 2012-03-06 | John Denner | Container structure for removal of vacuum pressure |
US7717282B2 (en) * | 2000-08-31 | 2010-05-18 | Co2 Pac Limited | Semi-rigid collapsible container |
US8584879B2 (en) | 2000-08-31 | 2013-11-19 | Co2Pac Limited | Plastic container having a deep-set invertible base and related methods |
US10246238B2 (en) | 2000-08-31 | 2019-04-02 | Co2Pac Limited | Plastic container having a deep-set invertible base and related methods |
US9731884B2 (en) * | 2000-08-31 | 2017-08-15 | Co2Pac Limited | Method for handling a hot-filled plastic bottle having a deep-set invertible base |
US9688427B2 (en) | 2000-08-31 | 2017-06-27 | Co2 Pac Limited | Method of hot-filling a plastic container having vertically folding vacuum panels |
US20130312368A1 (en) * | 2000-08-31 | 2013-11-28 | John Denner | Plastic container having a deep-set invertible base and related methods |
US9387971B2 (en) * | 2000-08-31 | 2016-07-12 | C02Pac Limited | Plastic container having a deep-set invertible base and related methods |
US9145223B2 (en) | 2000-08-31 | 2015-09-29 | Co2 Pac Limited | Container structure for removal of vacuum pressure |
US20140069937A1 (en) * | 2000-08-31 | 2014-03-13 | Co2Pac Limited | Plastic container having a deep-set invertible base and related methods |
US11565867B2 (en) | 2000-08-31 | 2023-01-31 | C02Pac Limited | Method of handling a plastic container having a moveable base |
US20060261031A1 (en) * | 2000-08-31 | 2006-11-23 | Co2 Pac Limited | Semi-rigid collapsible container |
US8839972B2 (en) | 2001-04-19 | 2014-09-23 | Graham Packaging Company, L.P. | Multi-functional base for a plastic, wide-mouth, blow-molded container |
US9522749B2 (en) | 2001-04-19 | 2016-12-20 | Graham Packaging Company, L.P. | Method of processing a plastic container including a multi-functional base |
US8529975B2 (en) | 2001-04-19 | 2013-09-10 | Graham Packaging Company, L.P. | Multi-functional base for a plastic, wide-mouth, blow-molded container |
US8381496B2 (en) | 2001-04-19 | 2013-02-26 | Graham Packaging Company Lp | Method of hot-filling a plastic, wide-mouth, blow-molded container having a multi-functional base |
US7543713B2 (en) | 2001-04-19 | 2009-06-09 | Graham Packaging Company L.P. | Multi-functional base for a plastic, wide-mouth, blow-molded container |
US6612451B2 (en) | 2001-04-19 | 2003-09-02 | Graham Packaging Company, L.P. | Multi-functional base for a plastic, wide-mouth, blow-molded container |
US20040211746A1 (en) * | 2001-04-19 | 2004-10-28 | Graham Packaging Company, L.P. | Multi-functional base for a plastic, wide-mouth, blow-molded container |
US20030196926A1 (en) * | 2001-04-19 | 2003-10-23 | Tobias John W. | Multi-functional base for a plastic, wide-mouth, blow-molded container |
US7980404B2 (en) | 2001-04-19 | 2011-07-19 | Graham Packaging Company, L.P. | Multi-functional base for a plastic, wide-mouth, blow-molded container |
US20050082250A1 (en) * | 2002-01-31 | 2005-04-21 | Noriyuki Tanaka | Synthetic resin thin-walled bottle container |
US7556164B2 (en) * | 2002-01-31 | 2009-07-07 | Yoshino Kogyosho Co., Ltd. | Synthetic resin thin-walled bottle container with bottom heel |
US8152010B2 (en) | 2002-09-30 | 2012-04-10 | Co2 Pac Limited | Container structure for removal of vacuum pressure |
US10315796B2 (en) | 2002-09-30 | 2019-06-11 | Co2 Pac Limited | Pressure reinforced deformable plastic container with hoop rings |
US9624018B2 (en) | 2002-09-30 | 2017-04-18 | Co2 Pac Limited | Container structure for removal of vacuum pressure |
JP2006501109A (en) * | 2002-09-30 | 2006-01-12 | シー・オー・2・パツク・リミテツド | Vessel structure for removal of vacuum pressure |
US9969517B2 (en) | 2002-09-30 | 2018-05-15 | Co2Pac Limited | Systems and methods for handling plastic containers having a deep-set invertible base |
US9211968B2 (en) * | 2002-09-30 | 2015-12-15 | Co2 Pac Limited | Container structure for removal of vacuum pressure |
KR101009434B1 (en) | 2002-09-30 | 2011-01-19 | 코2 팩 리미티드 | Container structure for removal of vacuum pressure |
US11377286B2 (en) | 2002-09-30 | 2022-07-05 | Co2 Pac Limited | Container structure for removal of vacuum pressure |
US9802730B2 (en) | 2002-09-30 | 2017-10-31 | Co2 Pac Limited | Methods of compensating for vacuum pressure changes within a plastic container |
US10351325B2 (en) | 2002-09-30 | 2019-07-16 | Co2 Pac Limited | Container structure for removal of vacuum pressure |
JP4673060B2 (en) * | 2002-09-30 | 2011-04-20 | シー・オー・2・パツク・リミテツド | Vessel structure for removal of vacuum pressure |
US8720163B2 (en) | 2002-09-30 | 2014-05-13 | Co2 Pac Limited | System for processing a pressure reinforced plastic container |
EP1565381A4 (en) * | 2002-09-30 | 2007-08-15 | Co2 Pac Ltd | Container structure for removal of vacuum pressure |
US10273072B2 (en) | 2002-09-30 | 2019-04-30 | Co2 Pac Limited | Container structure for removal of vacuum pressure |
EP1565381A1 (en) * | 2002-09-30 | 2005-08-24 | Co2 Pac Limited | Container structure for removal of vacuum pressure |
US9878816B2 (en) | 2002-09-30 | 2018-01-30 | Co2 Pac Ltd | Systems for compensating for vacuum pressure changes within a plastic container |
US20130068779A1 (en) * | 2002-09-30 | 2013-03-21 | David Murray Melrose | Container structure for removal of vacuum pressure |
US8381940B2 (en) | 2002-09-30 | 2013-02-26 | Co2 Pac Limited | Pressure reinforced plastic container having a moveable pressure panel and related method of processing a plastic container |
US6983858B2 (en) * | 2003-01-30 | 2006-01-10 | Plastipak Packaging, Inc. | Hot fillable container with flexible base portion |
US20040149677A1 (en) * | 2003-01-30 | 2004-08-05 | Slat William A. | Hot fillable container with flexible base portion |
US7451886B2 (en) | 2003-05-23 | 2008-11-18 | Amcor Limited | Container base structure responsive to vacuum related forces |
US20060006133A1 (en) * | 2003-05-23 | 2006-01-12 | Lisch G D | Container base structure responsive to vacuum related forces |
US20090159556A1 (en) * | 2003-05-23 | 2009-06-25 | Amcor Limited | Container base structure responsive to vacuum related forces |
US7150372B2 (en) | 2003-05-23 | 2006-12-19 | Amcor Limited | Container base structure responsive to vacuum related forces |
US9394072B2 (en) | 2003-05-23 | 2016-07-19 | Amcor Limited | Hot-fill container |
US8833579B2 (en) | 2003-05-23 | 2014-09-16 | Amcor Limited | Container base structure responsive to vacuum related forces |
US20040232103A1 (en) * | 2003-05-23 | 2004-11-25 | Lisch G. David | Container base structure responsive to vacuum related forces |
US8616395B2 (en) | 2003-05-23 | 2013-12-31 | Amcor Limited | Hot-fill container having vacuum accommodating base and cylindrical portions |
US8276774B2 (en) | 2003-05-23 | 2012-10-02 | Amcor Limited | Container base structure responsive to vacuum related forces |
US20110017700A1 (en) * | 2003-05-23 | 2011-01-27 | Patcheak Terry D | Hot-fill container |
US6942116B2 (en) * | 2003-05-23 | 2005-09-13 | Amcor Limited | Container base structure responsive to vacuum related forces |
US9751679B2 (en) | 2003-05-23 | 2017-09-05 | Amcor Limited | Vacuum absorbing bases for hot-fill containers |
US20050196569A1 (en) * | 2003-05-23 | 2005-09-08 | Lisch G. D. | Container base structure responsive to vacuum related forces |
US7726106B2 (en) | 2003-07-30 | 2010-06-01 | Graham Packaging Co | Container handling system |
US10501225B2 (en) | 2003-07-30 | 2019-12-10 | Graham Packaging Company, L.P. | Container handling system |
US8671653B2 (en) | 2003-07-30 | 2014-03-18 | Graham Packaging Company, L.P. | Container handling system |
US9090363B2 (en) | 2003-07-30 | 2015-07-28 | Graham Packaging Company, L.P. | Container handling system |
US7735304B2 (en) | 2003-07-30 | 2010-06-15 | Graham Packaging Co | Container handling system |
US10661939B2 (en) | 2003-07-30 | 2020-05-26 | Co2Pac Limited | Pressure reinforced plastic container and related method of processing a plastic container |
US8011166B2 (en) | 2004-03-11 | 2011-09-06 | Graham Packaging Company L.P. | System for conveying odd-shaped containers |
US7574846B2 (en) | 2004-03-11 | 2009-08-18 | Graham Packaging Company, L.P. | Process and device for conveying odd-shaped containers |
US20060113274A1 (en) * | 2004-12-01 | 2006-06-01 | Graham Packaging Company, L.P. | Vacuum panel base |
US20090090646A1 (en) * | 2005-02-05 | 2009-04-09 | Willem Leendert Pieter Van Dam | Stackable flat bottomed can |
US8075833B2 (en) | 2005-04-15 | 2011-12-13 | Graham Packaging Company L.P. | Method and apparatus for manufacturing blow molded containers |
US8235704B2 (en) | 2005-04-15 | 2012-08-07 | Graham Packaging Company, L.P. | Method and apparatus for manufacturing blow molded containers |
US9764873B2 (en) | 2005-10-14 | 2017-09-19 | Graham Packaging Company, L.P. | Repositionable base structure for a container |
US7900425B2 (en) | 2005-10-14 | 2011-03-08 | Graham Packaging Company, L.P. | Method for handling a hot-filled container having a moveable portion to reduce a portion of a vacuum created therein |
US8726616B2 (en) | 2005-10-14 | 2014-05-20 | Graham Packaging Company, L.P. | System and method for handling a container with a vacuum panel in the container body |
US7963088B2 (en) | 2005-11-14 | 2011-06-21 | Graham Packaging Company, L.P. | Plastic container base structure and method for hot filling a plastic container |
US7780025B2 (en) * | 2005-11-14 | 2010-08-24 | Graham Packaging Company, L.P. | Plastic container base structure and method for hot filling a plastic container |
US20070125742A1 (en) * | 2005-11-14 | 2007-06-07 | Graham Packaging Company, L.P. | Plastic container base structure and method for hot filling a plastic container |
US20090229704A1 (en) * | 2005-11-14 | 2009-09-17 | Graham Packaging Company, L.P. | Plastic Container Base Structure and Method For Hot Filling a Plastic Container |
US8794462B2 (en) | 2006-03-15 | 2014-08-05 | Graham Packaging Company, L.P. | Container and method for blowmolding a base in a partial vacuum pressure reduction setup |
US7799264B2 (en) | 2006-03-15 | 2010-09-21 | Graham Packaging Company, L.P. | Container and method for blowmolding a base in a partial vacuum pressure reduction setup |
US8017065B2 (en) | 2006-04-07 | 2011-09-13 | Graham Packaging Company L.P. | System and method for forming a container having a grip region |
US8747727B2 (en) | 2006-04-07 | 2014-06-10 | Graham Packaging Company L.P. | Method of forming container |
US8162655B2 (en) | 2006-04-07 | 2012-04-24 | Graham Packaging Company, L.P. | System and method for forming a container having a grip region |
US10118331B2 (en) | 2006-04-07 | 2018-11-06 | Graham Packaging Company, L.P. | System and method for forming a container having a grip region |
US8323555B2 (en) | 2006-04-07 | 2012-12-04 | Graham Packaging Company L.P. | System and method for forming a container having a grip region |
US9707711B2 (en) | 2006-04-07 | 2017-07-18 | Graham Packaging Company, L.P. | Container having outwardly blown, invertible deep-set grips |
US11897656B2 (en) | 2007-02-09 | 2024-02-13 | Co2Pac Limited | Plastic container having a movable base |
US11993443B2 (en) | 2007-02-09 | 2024-05-28 | Co2Pac Limited | Method of handling a plastic container having a moveable base |
US11377287B2 (en) | 2007-02-09 | 2022-07-05 | Co2Pac Limited | Method of handling a plastic container having a moveable base |
US11731823B2 (en) | 2007-02-09 | 2023-08-22 | Co2Pac Limited | Method of handling a plastic container having a moveable base |
US10836552B2 (en) * | 2007-02-09 | 2020-11-17 | Co2Pac Limited | Method of handling a plastic container having a moveable base |
US20190382181A1 (en) * | 2007-02-09 | 2019-12-19 | Co2Pac Limited | Method of handling a plastic container having a moveable base |
US20090242575A1 (en) * | 2008-03-27 | 2009-10-01 | Satya Kamineni | Container base having volume absorption panel |
US8590729B2 (en) | 2008-03-27 | 2013-11-26 | Constar International Llc | Container base having volume absorption panel |
AU2013206495B2 (en) * | 2008-03-27 | 2016-07-07 | Plastipak Packaging, Inc. | Container base having volume absorption panel |
US8627944B2 (en) | 2008-07-23 | 2014-01-14 | Graham Packaging Company L.P. | System, apparatus, and method for conveying a plurality of containers |
US8636944B2 (en) | 2008-12-08 | 2014-01-28 | Graham Packaging Company L.P. | Method of making plastic container having a deep-inset base |
US11345504B2 (en) | 2008-12-31 | 2022-05-31 | Plastipak Packaging, Inc. | Hot-fillable plastic container with flexible base feature |
US20100163513A1 (en) * | 2008-12-31 | 2010-07-01 | Plastipak Packaging, Inc. | Hot-fillable plastic container with flexible base feature |
US20130213979A1 (en) * | 2008-12-31 | 2013-08-22 | Plastipak Packaging, Inc. | Plastic container with flexible base and rigid sidewall portion |
US8171701B2 (en) | 2009-01-06 | 2012-05-08 | Graham Packaging Company, L.P. | Method and system for handling containers |
US7926243B2 (en) | 2009-01-06 | 2011-04-19 | Graham Packaging Company, L.P. | Method and system for handling containers |
US8096098B2 (en) | 2009-01-06 | 2012-01-17 | Graham Packaging Company, L.P. | Method and system for handling containers |
US10035690B2 (en) | 2009-01-06 | 2018-07-31 | Graham Packaging Company, L.P. | Deformable container with hoop rings |
US8429880B2 (en) | 2009-01-06 | 2013-04-30 | Graham Packaging Company L.P. | System for filling, capping, cooling and handling containers |
US8678213B2 (en) * | 2009-02-12 | 2014-03-25 | Sidel Participations | Container in which the base is provided with a double-seated flexible arch |
US20120037645A1 (en) * | 2009-02-12 | 2012-02-16 | Sidel Participations | Container in which the base is provided with a double-seated flexible arch |
US20120199611A1 (en) * | 2009-10-14 | 2012-08-09 | Marcos Antonio Quimenton | Arrangement for a dropper |
EP2490836A4 (en) * | 2009-10-21 | 2015-03-25 | Stolle Machinery Co Llc | Container, and selectively formed cup, tooling and associated method for providing same |
US11826809B2 (en) | 2009-10-21 | 2023-11-28 | Stolle Machinery Company, Llc | Container, and selectively formed cup, tooling and associated method for providing same |
US9481022B2 (en) | 2009-10-21 | 2016-11-01 | Stolle Machinery Company, Llc | Container, and selectively formed cup, tooling and associated method for providing same |
US10525519B2 (en) | 2009-10-21 | 2020-01-07 | Stolle Machinery Company, Llc | Container, and selectively formed cup, tooling and associated method for providing same |
EP2490836A1 (en) * | 2009-10-21 | 2012-08-29 | Stolle Machinery Company, LLC | Container, and selectively formed cup, tooling and associated method for providing same |
US20200147665A1 (en) | 2009-10-21 | 2020-05-14 | Stolle Machinery Company, Llc | Container, and selectively formed cup, tooling and assocaited method for providing same |
EP3636361A1 (en) * | 2009-10-21 | 2020-04-15 | Stolle Machinery Company, LLC | Container, and selectively formed cup, tooling and associated method for providing same |
US20110204058A1 (en) * | 2010-02-22 | 2011-08-25 | Jack Edward Maze | Specimen Container |
US9211969B2 (en) | 2010-02-22 | 2015-12-15 | Medline Industries, Inc | Specimen container |
US20120012592A1 (en) * | 2010-07-16 | 2012-01-19 | George David Lisch | Controlled base flash forming a standing ring |
US9254604B2 (en) | 2010-07-16 | 2016-02-09 | Amcor Limited | Controlled base flash forming a standing ring |
US20130153529A1 (en) * | 2010-09-30 | 2013-06-20 | Yoshino Kogyosho Co., Ltd. | Bottle |
US9463900B2 (en) * | 2010-09-30 | 2016-10-11 | Yoshino Kogyosho Co., Ltd. | Bottle made from synthetic resin material and formed in a cylindrical shape having a bottom portion |
US8962114B2 (en) | 2010-10-30 | 2015-02-24 | Graham Packaging Company, L.P. | Compression molded preform for forming invertible base hot-fill container, and systems and methods thereof |
US9133006B2 (en) | 2010-10-31 | 2015-09-15 | Graham Packaging Company, L.P. | Systems, methods, and apparatuses for cooling hot-filled containers |
US10214407B2 (en) | 2010-10-31 | 2019-02-26 | Graham Packaging Company, L.P. | Systems for cooling hot-filled containers |
US20120285953A1 (en) * | 2011-05-11 | 2012-11-15 | Werner Schick | Packaging container |
US8869985B2 (en) * | 2011-05-11 | 2014-10-28 | Pöppelmann Holding GmbH | Packaging container |
US9150320B2 (en) | 2011-08-15 | 2015-10-06 | Graham Packaging Company, L.P. | Plastic containers having base configurations with up-stand walls having a plurality of rings, and systems, methods, and base molds thereof |
US9994378B2 (en) | 2011-08-15 | 2018-06-12 | Graham Packaging Company, L.P. | Plastic containers, base configurations for plastic containers, and systems, methods, and base molds thereof |
US10189596B2 (en) | 2011-08-15 | 2019-01-29 | Graham Packaging Company, L.P. | Plastic containers having base configurations with up-stand walls having a plurality of rings, and systems, methods, and base molds thereof |
US8919587B2 (en) | 2011-10-03 | 2014-12-30 | Graham Packaging Company, L.P. | Plastic container with angular vacuum panel and method of same |
WO2014004919A1 (en) * | 2012-06-28 | 2014-01-03 | Plastipak Packaging, Inc. | Plastic container with flexible base |
US9993959B2 (en) | 2013-03-15 | 2018-06-12 | Graham Packaging Company, L.P. | Deep grip mechanism for blow mold and related methods and bottles |
US9022776B2 (en) | 2013-03-15 | 2015-05-05 | Graham Packaging Company, L.P. | Deep grip mechanism within blow mold hanger and related methods and bottles |
US9346212B2 (en) | 2013-03-15 | 2016-05-24 | Graham Packaging Company, L.P. | Deep grip mechanism within blow mold hanger and related methods and bottles |
US10543121B2 (en) | 2014-03-31 | 2020-01-28 | Amcor Rigid Plastics Usa, Llc | Controlled release container |
WO2015153469A1 (en) * | 2014-03-31 | 2015-10-08 | Amcor Limited | Controlled release container |
EP3125852B1 (en) * | 2014-03-31 | 2023-04-12 | Amcor Rigid Plastics USA, LLC | Controlled release container |
US10017314B2 (en) * | 2014-05-07 | 2018-07-10 | Milacron Llc | Plastic container with flexible base portion |
US10647492B2 (en) | 2014-05-07 | 2020-05-12 | Milacron Llc | Plastic container with flexible base portion |
US20170081104A1 (en) * | 2014-05-07 | 2017-03-23 | Milacron Llc | Plastic Container with Flexible Base Portion |
US10106306B2 (en) | 2014-05-30 | 2018-10-23 | Silgan Containers Llc | Can end for pressurized metal food can with shielded vent score |
US10843836B2 (en) * | 2014-08-01 | 2020-11-24 | North America I.M.L. Containers | Anti-depression plastic container |
US20160031593A1 (en) * | 2014-08-01 | 2016-02-04 | North America I.M.L. Containers | Anti-depression plastic container |
US20170267391A1 (en) * | 2014-08-21 | 2017-09-21 | Amcor Limited | Two-stage container base |
US10968006B2 (en) | 2014-08-21 | 2021-04-06 | Amcor Rigid Packaging Usa, Llc | Container base including hemispherical actuating diaphragm |
US10059482B2 (en) * | 2014-08-21 | 2018-08-28 | Amcor Limited | Two-stage container base |
US10518924B2 (en) | 2014-08-21 | 2019-12-31 | Amcor Rigid Plastics Usa, Llc | Container base including hemispherical actuating diaphragm |
US20180029741A1 (en) * | 2015-03-31 | 2018-02-01 | Toyo Seikan Co., Ltd. | Can body |
US10583952B2 (en) * | 2015-03-31 | 2020-03-10 | Toyo Seikan Co., Ltd. | Can body |
US20170369198A1 (en) * | 2016-06-22 | 2017-12-28 | Stupid Good Beverage Company, LLC | Container with product removal mechanism |
US10696432B2 (en) * | 2016-06-22 | 2020-06-30 | Stupid Good Beverage Company, LLC | Container with product removal mechanism |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3409167A (en) | Container with flexible bottom | |
US4458469A (en) | Container with vacuum accommodating end | |
US5092474A (en) | Plastic jar | |
US4381061A (en) | Non-paneling container | |
US3828977A (en) | Compartment bag assembly for dispensing containers | |
US4836398A (en) | Inwardly reformable endwall for a container | |
US3349941A (en) | Compartmented container package | |
US4557398A (en) | End closure structure for a container | |
US2685385A (en) | Liner for rigid containers having a nozzle for filling and emptying the same | |
US3880341A (en) | Bulk material container | |
US4967538A (en) | Inwardly reformable endwall for a container and a method of packaging a product in the container | |
US3700136A (en) | End unit and liner for aerosol containers | |
US3525455A (en) | Sheet metal container | |
US4680917A (en) | Process for providing filled containers | |
US3506459A (en) | Tamper-proof multiple compartment package | |
US3941301A (en) | Stackable packaging container | |
US3620420A (en) | Containers | |
US3662944A (en) | Composite container and package | |
US3325030A (en) | Bottle containing a fluent material under pressure | |
US3341059A (en) | Thermoplastic container body | |
US3580473A (en) | Paper board container with platform style bottom | |
SU1463131A3 (en) | Packing container from flexible material | |
EP0097391B1 (en) | A packing container for pressurized contents and a method for manufacturing the same | |
US2553559A (en) | Compartment container assembly | |
US4889261A (en) | Beverage container and dispenser |