US3400176A - Propanepolyphosphonate compounds - Google Patents
Propanepolyphosphonate compounds Download PDFInfo
- Publication number
- US3400176A US3400176A US507662A US50766265A US3400176A US 3400176 A US3400176 A US 3400176A US 507662 A US507662 A US 507662A US 50766265 A US50766265 A US 50766265A US 3400176 A US3400176 A US 3400176A
- Authority
- US
- United States
- Prior art keywords
- propane
- sodium
- detergent
- compounds
- builder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 150000001875 compounds Chemical class 0.000 title claims description 80
- -1 HYDROGEN ATOMS Chemical group 0.000 claims description 88
- 150000003839 salts Chemical class 0.000 claims description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 41
- 229910001868 water Inorganic materials 0.000 claims description 40
- 150000002148 esters Chemical class 0.000 claims description 20
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 19
- MBKDYNNUVRNNRF-UHFFFAOYSA-N medronic acid Chemical compound OP(O)(=O)CP(O)(O)=O MBKDYNNUVRNNRF-UHFFFAOYSA-N 0.000 claims description 19
- 229910052783 alkali metal Inorganic materials 0.000 claims description 18
- OGTPNDHOHCFDTK-UHFFFAOYSA-N 1,2,3-triphosphonopropan-2-ylphosphonic acid Chemical compound OP(O)(=O)CC(P(O)(O)=O)(P(O)(O)=O)CP(O)(O)=O OGTPNDHOHCFDTK-UHFFFAOYSA-N 0.000 claims description 17
- YVPHSTVRTGSOSK-UHFFFAOYSA-N 1,3,3-triphosphonopropylphosphonic acid Chemical compound OP(O)(=O)C(P(O)(O)=O)CC(P(O)(O)=O)P(O)(O)=O YVPHSTVRTGSOSK-UHFFFAOYSA-N 0.000 claims description 17
- 229940102859 methylene diphosphonate Drugs 0.000 claims description 17
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 15
- 150000001340 alkali metals Chemical class 0.000 claims description 13
- 239000003960 organic solvent Substances 0.000 claims description 8
- XBRSMICTSWBNTP-UHFFFAOYSA-N 1,1,3-triphosphonopropan-2-ylphosphonic acid Chemical compound OP(O)(=O)CC(P(O)(O)=O)C(P(O)(O)=O)P(O)(O)=O XBRSMICTSWBNTP-UHFFFAOYSA-N 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000003599 detergent Substances 0.000 description 140
- 239000000203 mixture Substances 0.000 description 123
- 239000011734 sodium Substances 0.000 description 45
- 238000006243 chemical reaction Methods 0.000 description 42
- 229910052708 sodium Inorganic materials 0.000 description 42
- 235000015424 sodium Nutrition 0.000 description 42
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 39
- 238000004140 cleaning Methods 0.000 description 39
- 125000004432 carbon atom Chemical group C* 0.000 description 35
- 235000019832 sodium triphosphate Nutrition 0.000 description 34
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 30
- 239000000243 solution Substances 0.000 description 28
- 238000005406 washing Methods 0.000 description 26
- 239000002253 acid Substances 0.000 description 25
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 24
- 239000007788 liquid Substances 0.000 description 24
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical class OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 22
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 20
- 125000000217 alkyl group Chemical group 0.000 description 20
- 239000011591 potassium Substances 0.000 description 20
- 229910052700 potassium Inorganic materials 0.000 description 20
- 238000000034 method Methods 0.000 description 19
- 235000007686 potassium Nutrition 0.000 description 19
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 16
- 239000004744 fabric Substances 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 238000009472 formulation Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 239000000271 synthetic detergent Substances 0.000 description 12
- 239000004615 ingredient Substances 0.000 description 11
- 239000003760 tallow Substances 0.000 description 11
- 239000007795 chemical reaction product Substances 0.000 description 10
- 239000003240 coconut oil Substances 0.000 description 10
- 235000019864 coconut oil Nutrition 0.000 description 10
- 235000014113 dietary fatty acids Nutrition 0.000 description 10
- 239000000194 fatty acid Substances 0.000 description 10
- 229930195729 fatty acid Natural products 0.000 description 10
- 238000012423 maintenance Methods 0.000 description 10
- 239000002689 soil Substances 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 9
- 150000004665 fatty acids Chemical class 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- ODTQUKVFOLFLIQ-UHFFFAOYSA-N 2-[di(propan-2-yloxy)phosphorylmethyl-propan-2-yloxyphosphoryl]oxypropane Chemical compound CC(C)OP(=O)(OC(C)C)CP(=O)(OC(C)C)OC(C)C ODTQUKVFOLFLIQ-UHFFFAOYSA-N 0.000 description 8
- 125000000129 anionic group Chemical group 0.000 description 8
- 238000009835 boiling Methods 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 238000004900 laundering Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 239000001294 propane Substances 0.000 description 7
- 239000000376 reactant Substances 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 150000008051 alkyl sulfates Chemical class 0.000 description 6
- 150000003863 ammonium salts Chemical class 0.000 description 6
- ILRSCQWREDREME-UHFFFAOYSA-N dodecanamide Chemical compound CCCCCCCCCCCC(N)=O ILRSCQWREDREME-UHFFFAOYSA-N 0.000 description 6
- 230000002209 hydrophobic effect Effects 0.000 description 6
- 230000001976 improved effect Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 238000006386 neutralization reaction Methods 0.000 description 6
- 238000010992 reflux Methods 0.000 description 6
- 239000000344 soap Substances 0.000 description 6
- 235000011121 sodium hydroxide Nutrition 0.000 description 6
- 159000000000 sodium salts Chemical class 0.000 description 6
- JRZJOMJEPLMPRA-UHFFFAOYSA-N 1-nonene Chemical compound CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 5
- 239000004115 Sodium Silicate Substances 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 125000001931 aliphatic group Chemical group 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 239000007859 condensation product Substances 0.000 description 5
- 238000004851 dishwashing Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- JHJUUEHSAZXEEO-UHFFFAOYSA-M sodium;4-dodecylbenzenesulfonate Chemical compound [Na+].CCCCCCCCCCCCC1=CC=C(S([O-])(=O)=O)C=C1 JHJUUEHSAZXEEO-UHFFFAOYSA-M 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- NAMYKGVDVNBCFQ-UHFFFAOYSA-N 2-bromopropane Chemical compound CC(C)Br NAMYKGVDVNBCFQ-UHFFFAOYSA-N 0.000 description 4
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 4
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- 150000001721 carbon Chemical group 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 239000003752 hydrotrope Substances 0.000 description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 4
- 159000000001 potassium salts Chemical class 0.000 description 4
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 4
- 229910052911 sodium silicate Inorganic materials 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 235000011152 sodium sulphate Nutrition 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 4
- 238000005292 vacuum distillation Methods 0.000 description 4
- CYEJMVLDXAUOPN-UHFFFAOYSA-N 2-dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=CC=C1O CYEJMVLDXAUOPN-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 235000013162 Cocos nucifera Nutrition 0.000 description 3
- 244000060011 Cocos nucifera Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical group OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 125000005907 alkyl ester group Chemical group 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 229940077388 benzenesulfonate Drugs 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 235000011089 carbon dioxide Nutrition 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 229940096386 coconut alcohol Drugs 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- FJBFPHVGVWTDIP-UHFFFAOYSA-N dibromomethane Chemical compound BrCBr FJBFPHVGVWTDIP-UHFFFAOYSA-N 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- 229940116335 lauramide Drugs 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000003352 sequestering agent Substances 0.000 description 3
- 150000004760 silicates Chemical class 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- CJPDBKNETSCHCH-UHFFFAOYSA-N 1-methylsulfinyldodecane Chemical compound CCCCCCCCCCCCS(C)=O CJPDBKNETSCHCH-UHFFFAOYSA-N 0.000 description 2
- LBLYYCQCTBFVLH-UHFFFAOYSA-M 2-methylbenzenesulfonate Chemical class CC1=CC=CC=C1S([O-])(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-M 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OSVKJKWYFQVKMF-UHFFFAOYSA-F C(CC(P([O-])(=O)[O-])P([O-])(=O)[O-])(P([O-])(=O)[O-])P([O-])(=O)[O-].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+] Chemical compound C(CC(P([O-])(=O)[O-])P([O-])(=O)[O-])(P([O-])(=O)[O-])P([O-])(=O)[O-].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+] OSVKJKWYFQVKMF-UHFFFAOYSA-F 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229920000388 Polyphosphate Polymers 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000007824 aliphatic compounds Chemical class 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 2
- 239000012964 benzotriazole Substances 0.000 description 2
- 229910052794 bromium Chemical group 0.000 description 2
- JPOXNPPZZKNXOV-UHFFFAOYSA-N bromochloromethane Chemical compound ClCBr JPOXNPPZZKNXOV-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 2
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 2
- 235000011180 diphosphates Nutrition 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229940071106 ethylenediaminetetraacetate Drugs 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 2
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 150000004702 methyl esters Chemical class 0.000 description 2
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 2
- 229940043348 myristyl alcohol Drugs 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 2
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- 125000001476 phosphono group Chemical group [H]OP(*)(=O)O[H] 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000001205 polyphosphate Substances 0.000 description 2
- 235000011176 polyphosphates Nutrition 0.000 description 2
- 229940048084 pyrophosphate Drugs 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- RTVVXRKGQRRXFJ-UHFFFAOYSA-N sodium;2-sulfobutanedioic acid Chemical compound [Na].OC(=O)CC(C(O)=O)S(O)(=O)=O RTVVXRKGQRRXFJ-UHFFFAOYSA-N 0.000 description 2
- QUCDWLYKDRVKMI-UHFFFAOYSA-M sodium;3,4-dimethylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1C QUCDWLYKDRVKMI-UHFFFAOYSA-M 0.000 description 2
- IWMMSZLFZZPTJY-UHFFFAOYSA-M sodium;3-(dodecylamino)propane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCNCCCS([O-])(=O)=O IWMMSZLFZZPTJY-UHFFFAOYSA-M 0.000 description 2
- HWCHICTXVOMIIF-UHFFFAOYSA-M sodium;3-(dodecylamino)propanoate Chemical compound [Na+].CCCCCCCCCCCCNCCC([O-])=O HWCHICTXVOMIIF-UHFFFAOYSA-M 0.000 description 2
- 230000003381 solubilizing effect Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 2
- 150000003462 sulfoxides Chemical class 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical class [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 2
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 2
- NYIQECIYDUSNRC-UHFFFAOYSA-N 1,2,3,5-tetrapropylbenzene Chemical compound CCCC1=CC(CCC)=C(CCC)C(CCC)=C1 NYIQECIYDUSNRC-UHFFFAOYSA-N 0.000 description 1
- BZJTUOGZUKFLQT-UHFFFAOYSA-N 1,3,5,7-tetramethylcyclooctane Chemical group CC1CC(C)CC(C)CC(C)C1 BZJTUOGZUKFLQT-UHFFFAOYSA-N 0.000 description 1
- XFRVVPUIAFSTFO-UHFFFAOYSA-N 1-Tridecanol Chemical compound CCCCCCCCCCCCCO XFRVVPUIAFSTFO-UHFFFAOYSA-N 0.000 description 1
- ILBNYNANQXYKOG-UHFFFAOYSA-N 1-[butoxy(dibutoxyphosphorylmethyl)phosphoryl]oxybutane Chemical compound CCCCOP(=O)(OCCCC)CP(=O)(OCCCC)OCCCC ILBNYNANQXYKOG-UHFFFAOYSA-N 0.000 description 1
- JAXNXAGNWJBENQ-UHFFFAOYSA-N 1-dimethylphosphoryldodecan-2-ol Chemical compound CCCCCCCCCCC(O)CP(C)(C)=O JAXNXAGNWJBENQ-UHFFFAOYSA-N 0.000 description 1
- ZSGCBBCGHYYEGU-UHFFFAOYSA-N 1-dimethylphosphoryltetradecane Chemical compound CCCCCCCCCCCCCCP(C)(C)=O ZSGCBBCGHYYEGU-UHFFFAOYSA-N 0.000 description 1
- CLHYKAZPWIRRRD-UHFFFAOYSA-N 1-hydroxypropane-1-sulfonic acid Chemical compound CCC(O)S(O)(=O)=O CLHYKAZPWIRRRD-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- FNRRHKQTVNDRSJ-UHFFFAOYSA-N 2,3-bis(6-methylheptyl)phenol Chemical compound CC(C)CCCCCC1=CC=CC(O)=C1CCCCCC(C)C FNRRHKQTVNDRSJ-UHFFFAOYSA-N 0.000 description 1
- ZOJJJVRLKLQJNV-UHFFFAOYSA-N 2-(2,2-dimethoxyethoxy)-1,1-dimethoxyethane Chemical compound COC(OC)COCC(OC)OC ZOJJJVRLKLQJNV-UHFFFAOYSA-N 0.000 description 1
- RNAMYOYQYRYFQY-UHFFFAOYSA-N 2-(4,4-difluoropiperidin-1-yl)-6-methoxy-n-(1-propan-2-ylpiperidin-4-yl)-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-amine Chemical compound N1=C(N2CCC(F)(F)CC2)N=C2C=C(OCCCN3CCCC3)C(OC)=CC2=C1NC1CCN(C(C)C)CC1 RNAMYOYQYRYFQY-UHFFFAOYSA-N 0.000 description 1
- XCXJLWLQQPJVDR-UHFFFAOYSA-N 3-(azepan-2-yl)quinoline Chemical class C1CCCCNC1C1=CN=C(C=CC=C2)C2=C1 XCXJLWLQQPJVDR-UHFFFAOYSA-N 0.000 description 1
- OSPOJLWAJPWJTO-UHFFFAOYSA-N 3-[hexadecyl(dimethyl)azaniumyl]-2-hydroxypropane-1-sulfonate Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)CC(O)CS([O-])(=O)=O OSPOJLWAJPWJTO-UHFFFAOYSA-N 0.000 description 1
- MVWWAOKSFLQEDC-UHFFFAOYSA-N 4-[methyl(tetradecyl)sulfonio]butanoate Chemical compound CCCCCCCCCCCCCC[S+](C)CCCC([O-])=O MVWWAOKSFLQEDC-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ADKBCVLVQBCHLY-UHFFFAOYSA-N C(CCCCCCCCCCC)[PH2]=O Chemical compound C(CCCCCCCCCCC)[PH2]=O ADKBCVLVQBCHLY-UHFFFAOYSA-N 0.000 description 1
- VCCWZAQTNBYODU-UHFFFAOYSA-N CC(=C)CC(C)CCC(C)=C Chemical group CC(=C)CC(C)CCC(C)=C VCCWZAQTNBYODU-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 241000283153 Cetacea Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- PDQAZBWRQCGBEV-UHFFFAOYSA-N Ethylenethiourea Chemical compound S=C1NCCN1 PDQAZBWRQCGBEV-UHFFFAOYSA-N 0.000 description 1
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical class OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- IZNPSCZPGDKYDU-UHFFFAOYSA-L N(CC(=O)[O-])CC(=O)OCCCCCCCCCCCCCCCCCC.[Na+].[Na+].C(CCCCCCCCCCCCCCCCC)OC(CNCC(=O)[O-])=O Chemical compound N(CC(=O)[O-])CC(=O)OCCCCCCCCCCCCCCCCCC.[Na+].[Na+].C(CCCCCCCCCCCCCCCCC)OC(CNCC(=O)[O-])=O IZNPSCZPGDKYDU-UHFFFAOYSA-L 0.000 description 1
- 229910000574 NaK Inorganic materials 0.000 description 1
- WQWNXFRTFXFANS-UHFFFAOYSA-N P(O)(O)=O.P(O)(O)=O.P(O)(O)=O.P(O)(O)=O.CCC Chemical class P(O)(O)=O.P(O)(O)=O.P(O)(O)=O.P(O)(O)=O.CCC WQWNXFRTFXFANS-UHFFFAOYSA-N 0.000 description 1
- LPIOTYKMVIZVCX-UHFFFAOYSA-N P(OCC[N+](CCCCCCCCCCCC)(C)C)([O-])=O.[Na] Chemical compound P(OCC[N+](CCCCCCCCCCCC)(C)C)([O-])=O.[Na] LPIOTYKMVIZVCX-UHFFFAOYSA-N 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ZZXDRXVIRVJQBT-UHFFFAOYSA-M Xylenesulfonate Chemical class CC1=CC=CC(S([O-])(=O)=O)=C1C ZZXDRXVIRVJQBT-UHFFFAOYSA-M 0.000 description 1
- FENRSEGZMITUEF-ATTCVCFYSA-E [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].OP(=O)([O-])O[C@@H]1[C@@H](OP(=O)([O-])[O-])[C@H](OP(=O)(O)[O-])[C@H](OP(=O)([O-])[O-])[C@H](OP(=O)(O)[O-])[C@H]1OP(=O)([O-])[O-] Chemical class [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].OP(=O)([O-])O[C@@H]1[C@@H](OP(=O)([O-])[O-])[C@H](OP(=O)(O)[O-])[C@H](OP(=O)([O-])[O-])[C@H](OP(=O)(O)[O-])[C@H]1OP(=O)([O-])[O-] FENRSEGZMITUEF-ATTCVCFYSA-E 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910001508 alkali metal halide Inorganic materials 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 150000003868 ammonium compounds Chemical class 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- MMCPOSDMTGQNKG-UHFFFAOYSA-N anilinium chloride Chemical compound Cl.NC1=CC=CC=C1 MMCPOSDMTGQNKG-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000000656 azaniumyl group Chemical group [H][N+]([H])([H])[*] 0.000 description 1
- 239000010480 babassu oil Substances 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical class [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical group BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- OYWFWDQOWQBTHK-UHFFFAOYSA-N bromomethylphosphonic acid Chemical compound OP(O)(=O)CBr OYWFWDQOWQBTHK-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- FIMJSWFMQJGVAM-UHFFFAOYSA-N chloroform;hydrate Chemical compound O.ClC(Cl)Cl FIMJSWFMQJGVAM-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- YOTZYFSGUCFUKA-UHFFFAOYSA-N dimethylphosphine Chemical compound CPC YOTZYFSGUCFUKA-UHFFFAOYSA-N 0.000 description 1
- XQRLCLUYWUNEEH-UHFFFAOYSA-L diphosphonate(2-) Chemical compound [O-]P(=O)OP([O-])=O XQRLCLUYWUNEEH-UHFFFAOYSA-L 0.000 description 1
- KTEJRTGJBINPRQ-UHFFFAOYSA-L disodium (1-phosphonato-3,3-diphosphonopropyl)phosphonic acid Chemical compound C(CC(P(O)(=O)O)P(O)(=O)O)(P([O-])(=O)[O-])P(O)(=O)O.[Na+].[Na+] KTEJRTGJBINPRQ-UHFFFAOYSA-L 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- GDNCXORZAMVMIW-UHFFFAOYSA-N dodecane Chemical compound [CH2]CCCCCCCCCCC GDNCXORZAMVMIW-UHFFFAOYSA-N 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- UTAKXKIFBMWPQS-UHFFFAOYSA-N dodecyl-[2-(trimethylazaniumyl)ethoxy]phosphinate Chemical compound CCCCCCCCCCCCP([O-])(=O)OCC[N+](C)(C)C UTAKXKIFBMWPQS-UHFFFAOYSA-N 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- ZJXZSIYSNXKHEA-UHFFFAOYSA-N ethyl dihydrogen phosphate Chemical compound CCOP(O)(O)=O ZJXZSIYSNXKHEA-UHFFFAOYSA-N 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229940013317 fish oils Drugs 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000003165 hydrotropic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical class OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-M octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC([O-])=O QIQXTHQIDYTFRH-UHFFFAOYSA-M 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- VSXGXPNADZQTGQ-UHFFFAOYSA-N oxirane;phenol Chemical compound C1CO1.OC1=CC=CC=C1 VSXGXPNADZQTGQ-UHFFFAOYSA-N 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 229940068041 phytic acid Drugs 0.000 description 1
- 235000002949 phytic acid Nutrition 0.000 description 1
- 239000000467 phytic acid Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 235000013966 potassium salts of fatty acid Nutrition 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- GHKGUEZUGFJUEJ-UHFFFAOYSA-M potassium;4-methylbenzenesulfonate Chemical compound [K+].CC1=CC=C(S([O-])(=O)=O)C=C1 GHKGUEZUGFJUEJ-UHFFFAOYSA-M 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- KCXFHTAICRTXLI-UHFFFAOYSA-M propane-1-sulfonate Chemical compound CCCS([O-])(=O)=O KCXFHTAICRTXLI-UHFFFAOYSA-M 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- UIIMBOGNXHQVGW-UHFFFAOYSA-M sodium bicarbonate Substances [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- DZCAZXAJPZCSCU-UHFFFAOYSA-K sodium nitrilotriacetate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CC([O-])=O DZCAZXAJPZCSCU-UHFFFAOYSA-K 0.000 description 1
- 229940083982 sodium phytate Drugs 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 235000013875 sodium salts of fatty acid Nutrition 0.000 description 1
- 235000018341 sodium sesquicarbonate Nutrition 0.000 description 1
- 229910000031 sodium sesquicarbonate Inorganic materials 0.000 description 1
- 235000019351 sodium silicates Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- AOVQVJXCILXRRU-UHFFFAOYSA-M sodium;2-(dodecylamino)ethyl sulfate Chemical compound [Na+].CCCCCCCCCCCCNCCOS([O-])(=O)=O AOVQVJXCILXRRU-UHFFFAOYSA-M 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- YNBRSWNUNPAQOF-UHFFFAOYSA-M sodium;phenylmethanesulfonate Chemical class [Na+].[O-]S(=O)(=O)CC1=CC=CC=C1 YNBRSWNUNPAQOF-UHFFFAOYSA-M 0.000 description 1
- 239000013042 solid detergent Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- JDVPQXZIJDEHAN-UHFFFAOYSA-M succinamate Chemical compound NC(=O)CCC([O-])=O JDVPQXZIJDEHAN-UHFFFAOYSA-M 0.000 description 1
- JDVPQXZIJDEHAN-UHFFFAOYSA-N succinamic acid Chemical class NC(=O)CCC(O)=O JDVPQXZIJDEHAN-UHFFFAOYSA-N 0.000 description 1
- 230000001180 sulfating effect Effects 0.000 description 1
- 150000003463 sulfur Chemical class 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- JZBRFIUYUGTUGG-UHFFFAOYSA-J tetrapotassium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [K+].[K+].[K+].[K+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O JZBRFIUYUGTUGG-UHFFFAOYSA-J 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- GHTMQNZCRVHCQP-UHFFFAOYSA-J tetrasodium;4-[1,2-dicarboxyethyl(octadecyl)amino]-4-oxo-2-sulfobutanoate Chemical compound [Na+].[Na+].[Na+].[Na+].CCCCCCCCCCCCCCCCCCN(C(CC(O)=O)C(O)=O)C(=O)CC(C([O-])=O)S(O)(=O)=O.CCCCCCCCCCCCCCCCCCN(C(CC(O)=O)C(O)=O)C(=O)CC(C([O-])=O)S(O)(=O)=O.CCCCCCCCCCCCCCCCCCN(C(CC(O)=O)C(O)=O)C(=O)CC(C([O-])=O)S(O)(=O)=O.CCCCCCCCCCCCCCCCCCN(C(CC(O)=O)C(O)=O)C(=O)CC(C([O-])=O)S(O)(=O)=O GHTMQNZCRVHCQP-UHFFFAOYSA-J 0.000 description 1
- KGEJIWAEGNHHQL-UHFFFAOYSA-J tetrasodium;hydroxy-[1,3,3-tris[hydroxy(oxido)phosphoryl]propyl]phosphinate Chemical compound [Na+].[Na+].[Na+].[Na+].OP(O)(=O)C(P(O)(O)=O)CC(P([O-])([O-])=O)P([O-])([O-])=O KGEJIWAEGNHHQL-UHFFFAOYSA-J 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-O triethanolammonium Chemical compound OCC[NH+](CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-O 0.000 description 1
- JEVFKQIDHQGBFB-UHFFFAOYSA-K tripotassium;2-[bis(carboxylatomethyl)amino]acetate Chemical class [K+].[K+].[K+].[O-]C(=O)CN(CC([O-])=O)CC([O-])=O JEVFKQIDHQGBFB-UHFFFAOYSA-K 0.000 description 1
- SJHCUXCOGGKFAI-UHFFFAOYSA-N tripropan-2-yl phosphite Chemical compound CC(C)OP(OC(C)C)OC(C)C SJHCUXCOGGKFAI-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- WCTAGTRAWPDFQO-UHFFFAOYSA-K trisodium;hydrogen carbonate;carbonate Chemical compound [Na+].[Na+].[Na+].OC([O-])=O.[O-]C([O-])=O WCTAGTRAWPDFQO-UHFFFAOYSA-K 0.000 description 1
- SOBHUZYZLFQYFK-UHFFFAOYSA-K trisodium;hydroxy-[[phosphonatomethyl(phosphonomethyl)amino]methyl]phosphinate Chemical compound [Na+].[Na+].[Na+].OP(O)(=O)CN(CP(O)([O-])=O)CP([O-])([O-])=O SOBHUZYZLFQYFK-UHFFFAOYSA-K 0.000 description 1
- 229940071104 xylenesulfonate Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/36—Organic compounds containing phosphorus
- C11D3/361—Phosphonates, phosphinates or phosphonites
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/38—Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/38—Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
- C07F9/3804—Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)] not used, see subgroups
- C07F9/3839—Polyphosphonic acids
Definitions
- This invention relates to a new class of propanepolyphosphonate compounds, a process for preparing such compounds and to detergent compositions containing them. More particularly, the present invention has as its primary object providing propanepolyphosphonic acids as well as water-soluble salts and esters thereof, processes for preparing same and detergent compositions containing such compounds.
- GENE RAL F0 RMULA in which Z can be hydrogen or a PO G group in which G represents hydrogen, a cation giving a water-soluble salt, or a lower alkyl group containing from 1 to about 6 carbon atoms, and in which at least four Zs are PO G
- propanepolyphosphonate as used in the description of the present invention, is intended to refer only to polyphosphonate compounds containing at least four phosphonate moieties per compound and expressly excludes mono-, di-, and tri-phosphonates.
- the cation giving a water-soluble salt can be an alkali metal, e.g., sodium, potassium, lithium, etc., ammonium, substituted ammonium such as monoand diethanol am monium, and the like.
- Illustrative and representative compounds are: monosodium propane-1,1,3,3-tetraphosphonate; disodium propane-1,1,3,3-tetraphosphonate; trisodium propane-1,1,3,3-tetraphosphonate; tetrasodium propane-1,1,3,3-tetraphosphonate; pentasodium propane- 1,1,3,3,-tetraphosphonate; hexasodium propane-1,1,3,3- tetraphosphonate; heptasodium propane-1,1,3,3-tetraphosphonate; octasodium propane-1,1,3,3-tetraphosphonate; and the corresponding potassium and lithium salts.
- Ammonium and substituted ammonium compounds can also be prepared such as mono-, di-, and triethanolammonium propane-1,1,3,3-tetraphosphonates. Similar water-soluble compounds can be prepared of each of the propane polyphosphonic acids depicted in Formulae I-VII.
- the lower alkyl group can be a straight chain or branched chain saturated aliphatic radical.
- examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, isopentyl, hexyl and isohexyl.
- Illustrative and representative examples are tri(isopropyl) propane-l,1,3,3-tetraphosphonate, tetra(isopropyl)propane l,l,2,3 tetraphosphonate, penta ('butyl) propane-1,2,2,3-tetraphosphonate.
- the corresponding mono-, di-, tri-, tetra-, penta-, hexa-, heptyl and octyl substituted compounds of the balance of the foregoing alkyl groups can also be made.
- the tetraphosphonic compounds represent the preferred embodiment of the present invention.
- the most preferred form of the tetraphosphonates are propane-1,1,2,3-tetraphosphonates (Formula I above); and propane-1,2,2,3-tetraphosphonates (Formula II above); and propane-l,1,3,3-tetraphosphonates (Formula III above).
- propane-1,1,3,3-tetraphosphonate compounds of the present invention are prepared by reacting an alkalimetal carbanion of a tetra lower alkyl methylenediphosphonate with at least a stoichiometric amount of a dihalomethane in the presence of an organic solvent having no active hydrogen atoms at a temperature in the range of from about 30 C. to about 125 C. for a time period of from about 10 hours to about hours. It is preferred to operate in a temperature range of from 40 C. to C. for from 25 to 75 hours.
- a preferred embodiment of the present invention calls for the use of an excess of the dihalomethane compound although the reaction proceeds even at stoichiometric amounts of the reactants.
- the methylenediphosphonate carbanion and the dihalomethane are mixed in a molar ratio of said carbanion to said dihalomethane of from about 1:0.55 to 1:10 and preferably from 1:0.75 to 1:5.
- the alkali metal carbanion of tetraalkyl methylenediphosphonate has a formula of MCH(PO R in which M represents an alkali metal such as sodium, potassium or lithium.
- the preferred alkali metals are sodium and potassium.
- the R in the formula represents a lower alkyl radical containing from about 1 to about 6 carbon atoms.
- the ethyl, propyl, isopropyl butyl and isobutyl alkyl groups are preferred.
- the methyl ester is considerably less soluble in the organic solvent which has been found essential for the present invention. For this reason, the methyl ester is less preferred than the others but it can nevertheless be used.
- the esters wherein the alkyls have five and six carbons are also less preferred because they react slower than the esters with 2-4 carbon atoms.
- methylenediphosphonate carbanions which can be used in practicing the present invention are sodium salts of tetraethyl methylenediphosphonate carbanion, tetraisopropyl methylenediphosphonate carbanion, and tetrabutyl methylenediphosphonate carbanion.
- the corresponding potassium and lithium salts can also be used as well as the other esters in which the lower alkyls have up to about 6 carbon atoms.
- the halogen X is preferably chlorine or bromine.
- the chloride is strongly the more preferred salt but the bromide can also be used. It is possible also to use a chlorobromide compound.
- Other halogens, on the other hand, such as fluorine and iodine require such extraordinary conditions and precautions that they are less preferred. Fluorine, for example, due to its lower reactive rate would require an autoclave and iodine presents a severe color problem in the reaction mixture.
- the preferred dihalomethanes are fairly low boiling liquids. Their boiling points to a considerable degree determine the reaction temperature. Dichloromethane has a boiling point of about 40 C., chlorobromomethane, about 69 C.; and dibromomethane, about 98 C.
- the tetraphosphonate ester is thereafter hydrolyzed as described hereinafter to yield the acid. Neutralization of the acid results in formation of desired salts.
- an oxidation reduction type of a reaction between a metallating agent such as sodium, potassium, lithium, the hydrides of these alkali metals, or a potassiumsodium alloy, and a tetraalkyl ester of methylenediphosphonic acid.
- the reaction is highly exothermic and it is essential that it be conducted at low temperatures, e.g., on the order of 0 C. to 35 C., preferably between 15 C. and 30 C.
- the reaction product is a carbanion derived by displacement of hydrogen from the active methylene grouping present in the parent methylenediphosphonate ester starting material using sodium as the metallating agent and with R being as defined above, the equation for this reaction is as follows:
- a specific tetraalkyl ester of methylenediphosphonic acid useful as a starting material for preparing the methylenediphosphonate carbanion can be prepared according to the following method.
- Tetraisopropyl methylenediphosphonate 624.7 gm. of triisopropyl phosphite (3 moles, 681 ml.) and 173.9 gm. of dibromomethane (1 mole, ml.) were combined in a reaction apparatus composed of a 1-liter, 3-neck flask fitted with a magnetic stirrer, a thermometer, and a fractionating column for separating the isopropyl bromide by-product from the refluxing mixture.
- the fractionating column was constructed from a 36-inch Liebig condenser that had been modified to accommodate A-inch glass helices as packing.
- a Barrett distilling receiver which had been modified .by the addition of a thermometer well and thermometer was connected to the top of the fractionating column; and to the top of the Barrett receiver was fitted a Dewar condenser cooled with Dry Ice and protected from atmospheric moisture by a drying tube.
- the temperature of the reaction mixture was quickly brought to reflux at 143 C.
- the temperature of the circulating water in the packed reflux condenser was maintained 'at 65 C. This temperature was suflicient to return unreacted starting material and allow the by-product isopropyl bromide to be distilled.
- the heat in-put to the reaction was such that vigorous refluxing continued as the temperature of the mixture slowly increased. After about two hours of heating the first distillate was observed, and after five hours a total of 33 gm. of isopropyl bromide had been collected.
- the temperature of the reaction mixture was allowed to increase to 185 C. over a twelve-hour period, and by means of an electronic temperature controller it was held there for the remainder of the reaction.
- the reaction mixture was transferred to a distilling flask and the low boiling materials (excess phosphite, etc.) were removed through a short one-piece still under a vacuum of 0.1 mm. of mercury and head temperatures up to 50 C. At this point, the contents of the flask weighed approximately 330 gm. and were 93% to 95% tetraisopropyl methylenediphosphonate. The purity of this material was sufficient to proceed in the synthesis of the novel compounds of this invention.
- a high capacity vacuum pump can be introduced into the system and the pressure reduced to 0.005 mm. of mercury.
- the material boiling between C. and 116 C. is collected and redistilled through an electrically heated 24-inch Vigreaux column.
- the reaction between the carbanion reactant and the dihalomethane requires the use of an organic solvent having no active hydrogen atoms in the molecule. If a solvent such as water or alcohol is used which contains a hydrogen atom which is fairly easily removed and which, in an ordinary chemical sense, represents a reactive hydrogen, the desired reaction becomes impossible.
- the principal purpose for having a solvent is to keep the tetraalkyl methylenediphosphonate carbanion compound in solution.
- the carbanions disclosed above yield highly viscous or gelatinous solutions, and may even precipitate out as a solid if insufiicient solvent is used. The amount of solvent which is used for the reaction is dependent upon the solubility characteristics of the particular carbanion being used.
- the organic solvents which can be used include hexane, toluene, benzene, ethyl ether, tetrahydrofuran, dimethoxyethyl ether, and the like. Of the aforementioned organic solvents, although all work fairly well, the preferred ones are toluene and benzene.
- the amount of sol vent employed can be readily determind to suit the particular solubility characteristics of the specific ester which is being used. Generally, on a volume basis it has been found that from about 100 ml. to a liter of solvent can be used for each mole of the tetraalky methylenediphosphonate carbanion which is used. Within this general range it is preferred to operate with from about 200 ml. to about 800 ml. per mole of said carbanion.
- the temperature of the reaction system is governed considerably by the boiling point of the specific dihalomethane used as a reactant.
- the reaction mixture comprising the tetraalkyl methylenediphosphonate carbanion alkali metal salt, dihalomethane and the organic solvent are mixed in any order and heated to reflux for the required amount of time. It is also possible to carry out the reaction under pressure, if desired.
- Any solvent still present at the completion of the reaction is removed by distilling it off. This can be done by following an ordinary distillation technique.
- Sodium chloride which is a by-product of the reaction, can readily be separated from the reaction product by an ordinary washing treatment such as with a chloroformwater mixture.
- the sodium chloride will be dissolved in the water and the propane-1,1,3,3-tetraphosphonate ester formed by the reaction will be dissolved in the chloroform layer.
- the sodium chloride-water solution can be decanted, and if desired, the sodium chloride can be recovered therefrom.
- the tetraalkyl ester of the propane-1,1,3,3-tetraphos phonic acid can be obtained at yields in excess of 80%. It can be purified by simple distillative means after removal of by-product salts. This can be done by vacuum distillation to strip out most of the volatile impurities.
- the ester product can be converted directly to the free phosphonic acid by methods known to those skilled in the art, namely by hydrolyzing with boiling concentrated hydrochloric acid in a temperature range of from about C. to C. for about 4 hours.
- a suitable base such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, diethanolammonium hydroxide results in the formation of the corresponding salts which are within the scope of the present invention.
- the fOllOWing example illustrates the foregoing description and a preferred mode of operation according to the present invention.
- the reaction apparatus consisted of a three-neck twoliter flask fitted with a magnetic stirrer, a thermometer, and a Y adapter leading to another thermometer (to measure vapor temperature) and to a Graham condenser. It may be noted that tap water cooling in the Graham condenser was sufiicient to collect all dichloromethane, CH Clproven by connecting a Dry Ice trap to the Graham condenser during the first eight hours of reaction. A vent to the atmosphere was provided through a drying tube filled with Drierite and Ascarite.
- the acidic solution was concentrated by vacuum distillation, then azeotroped three times to remove traces of HCl and H 0.
- the acid was decolorized by dissolving in 750 ml. of H and stirring with copious amounts of charcoal for one hour before filtering.
- the solution was diluted to two liter volume, and the acid converted to the aniline salt by adding aniline (in excess) to the solution, then removing the excess by ether extraction.
- the salt was purified by recrystallizing twice from 4:1:4 methanol/H O/acetone, obtaining a product melting at 179 C. This was in turn converted to the Na H salt by titrating to pH 9.2 with NaOH, and the aniline removed by ether extraction. The salt was recovered by simply concentrating the solution to dryness.
- corresponding lower alkyl esters can be prepared by starting with a different ester derivative in place of the isopropyl ester.
- the dichloromethane can be replaced by dibromomethane.
- potassium or lithium salts can be substituted; and the toluene solvent can be replaced by hexane or benzene.
- Final neutralization can be carried out to any desired sodium salt, or alternatively, any other previously disclosed water-soluble salt.
- Salts containing three sodiums or less are relatively acid, giving solutions of pH 3.5 or lower.
- the preparation of the propane-1,1,2,3-tetraphosphonate compounds and the propane-1,2,2,3-tetraphosphonate compounds employs a reaction system similar to that described above for the 1,1,3,3 isomeric tetraphosphonate.
- the reaction conditions are generally the same except that somewhat higher temperatures can be used in preparing the 1,1,2,3 and 1,2,2,3 isomers and, thus, the reaction proceeds more rapidly.
- the reaction for preparing propane-1,1,2,3- tetraphosphonate and propane-1,2,2,3 tetraphosphonate compounds involves a reaction between monobromomethanephosphonate (R O PCH Br, in which R has the same meaning as previously) and an alkali metal carbanion of tetraloweralkylmethylenediphosphonate in a solvent such as toluene and heating to about 110-120 C.
- R O PCH Br monobromomethanephosphonate
- Another of the surprising discoveries of the present invention is the remarkable detergency building property of the novel propanepolyphosphonate compounds of the present invention.
- the magnitude of the cleaning power relative to previously known standard organic and inorganic deterg'ency builder compounds was totally unexpected.
- one of the more important embodiments of the present invention is a detergent composition which contains a propanepolyphosphonate compound described herein as a builder component in the complete detergent formulation.
- Built detergent compositions ranging from lightly built to medium built to heavily built have been available for several years. These compositions most generally are in the form of solids and liquids and are used for light, medium, or heavy duty cleaning purposes.
- the meaning of the terms lightly built, medium built, and heavily built is derived from the relative amount of builder which is present in the total formulation; for instance, a product designed for laundering soiled fabrics.
- the concept behind built detergent compositions is based on the knowledge that when certain substances are added to the active component or components of detergent compositions, an increase in cleaning ability or whiteness maintenance, or both, is obtained, even though the washing solution used may contain less of the active detergent.
- Light duty detergent compositions are used for washing fine fabrics or lightly soiled fabrics. Milder conditions are generally used in light duty applications, such as, for instance, cool or warm water and only slight wringing or agitating. Dishwashing compositions can also be considered as light duty detergent compositions. Heavy duty laundering compositions, on the other hand, are those intended for washing heavily soiled fabrics such as are generally found in an ordinary household wash. Medium duty laundering compositons can alternatively be used for dishwashing, fine fabric launder+ ing, or for washing fairly heavily soiled fabrics.
- this embodiment of the present invention contemplates a detergent composition comprising an active detergent portion which can be any surface active compound having useful detergent properties and an effective amount of a builder comprised of the propanepolyphosphonate compounds described herein.
- a detergent composition contains an active detergent and a propanepolyphosphonate builder in a ratio, by weight, of from about :1 to about 1:10 and, preferably, in a weight ratio of detergent to builder of from 2:1 to about 1:6. It is customary to speak of the ingredients in detergent compositions as being by weight.
- a detergent composition prepared according to the present invention in which the active to builder ratio is about 5:1 or 1:1 on a weight basis is especially useful as a dishwashing composition or a fine fabric laundering composition.
- a detergent composition having a detergent to builder ratio of 1:15 or 1:2 has excellent performance characteristics for Washing lightly soiled items in an ordinary household r wash. Yet further by way of illustration, heavily soiled fabrics are best laundered with detergent compositions in which the active detergent to builder ratio is from about 1:2 to about 1:10.
- the active detergent ingredients can include anionic, nonionic, ampholytic and zwitterionic detergent compounds, or mixtures of compounds selected from these general classes of detergents. Each of these classes is illustrated at length as follows:
- Anionic soap and non-soap synthetic detergents includes ordinary alkali metal soaps such as the sodium, potassium, ammonium and alkylolammonium salts of higher fatty acids containing from about 8 to about 24 carbon atoms and preferably from about 10 to about 20 carbon atoms.
- Suitable fatty acids can be obtained from natural sources such as, for instance, from plant or animal esters (e.g., palm oil, coconut oil, babassu oil, soybean oil, castor oil, tallow, whale and fish oils, grease, lard, and mixtures thereof).
- the fatty acids also can be synthetically prepared (e.g., by the oxidation of petroleum, or by hydrogenation of carbon monoxide by the Fischer-Tropsch process).
- Resin acids are suitable such as rosin and those resin acids in tall oil. Napthenic acids are also suitable.
- Sodium and potassium soaps can be made by direct saponification of the fats and oils or by the neutralization of the free fatty acids which are prepared in a separate manufacturing process. Particularly useful are the sodium and potassium salts of the mixtures of fatty acids derived from coconut oil and tallow, i.e., sodium or potassium tallow and coconut soap.
- This class of detergents also includes water-soluble salts, particularly the alkali metal salts of organic sulfuric reaction products having in their molecular structure an alkyl radical containing from about 8 to about 22 carbon atoms and a sulfonic acid or sulfuric acid ester radical.
- alkyl is the alkyl portion of higher acyl radicals.
- this group of synthetic detergents which form a part of the preferred built detergent compositions of the present invention are the sodium or potassium alkyl sulfates, especially those obtained by sulfating the higher alcohols (C C carbon atoms) produced by reducing the glycerides of tallow or coconut oil; sodium or potassium alkyl benzene sulfonates, in which the alkyl group contains from about 9 to about 15 carbon atoms, in straight chain or branched chain configuration, especially those of the type described in United States Letters Patent No.
- sodium alkyl glyceryl ether sulfonates especially those ethers of higher alcohols derived from tallow and coconut oil; sodium coconut oil fatty acid monoglyceride sulfonates and sulfates; sodium or potassium salts of sulfuric acid esters of the reaction product of one mole of a higher fatty alcohol (e.g., tallow or coconut oil alcohols) and about 1 to 6 moles of ethylene oxide; sodium or potassium salts of alkyl phenol ethylene oxide ether sulfate with about 1 to about -10 units of ethylene oxide per molecule and in which the alkyl radicals contain about 8 to about 12 carbon atoms.
- a higher fatty alcohol e.g., tallow or coconut oil alcohols
- sodium or potassium salts of alkyl phenol ethylene oxide ether sulfate with about 1 to about -10 units of ethylene oxide per molecule and in which the alkyl radicals contain about 8 to about 12 carbon atoms.
- anionic non-soap synthetic detergents which come within the terms of the present invention are the reaction product of fatty acids esterified with isothionic acid and neutralized with sodium hydroxide where, for example, the fatty acids are derived from coconut oil; sodium or potassium salts of fatty acid amide of methyl tauride in which the fatty acids, for example, are derived from coconut oil.
- Other anionic synthetic detergents of this variety are set forth in United States Letters Patents 2,486,921; 2,486,922; and 2,396,278.
- succinamates include the class designated as succinamates.
- This class includes such surface active agents as disodium N-octadecylsulfo succinamate; tetrasodium N-(1,2-dicarboxyethyl)-N-octadecyl-sulfo-succinamate; diamyl ester of sodium sulfosuccinic acid; dihexyl ester of sodium sulfosuccinic acid; dioctyl ester of sodium sulfosuccinic acid.
- Anionic phosphate surfactants are also useful in the present invention. These are surface active materials having substantial detergent capability in which the anionic solubilizing group connecting hydrophobic moieties is an oxy acid of phosphorus.
- the more common solubilizing groups are -SO H, -SO H, and CO H.
- Alkyl phosphate esters such as (RO) PO H and ROPO H in which R represents an alkyl chain containing from about 8 to about 20 carbon atoms are useful.
- esters can be modified by including in the molecule from one to about 40 alkylene oxide units, e.g.,
- Formulae for these modified phosphate anionic detergents are in which R represents an alkyl group containing from about 8 to carbon atoms, or an alkylphenyl group in which the alkyl group contains from about 8 to 20 carbon atoms, and M represents a soluble cation such as hydrogen, sodium, potassium, ammonium or substituted ammonium, and in which n is an integer from 1 to about 40.
- a specific anionic detergent which has also been found excellent for use in the present invention is described more 24 carbon atoms, said mixture of positional isomers ineluding by weight about 10% to about of an alphabeta unsaturated isomer, about to about 70% of a beta-gamma unsaturated isomer, about 5% to about 25% of a gamma-delta unsaturated isomer, and about 5% to about 10% of a delta-epsilon unsaturated isomer;
- Said Component B is a mixture of water-soluble salts of bifunctionally-substituted sulfur-containing saturated aliphatic compounds containing from about 10 to about 24 carbon atoms, the functional units being hydroxy and sulfonate radicals with the sulfonate radical always a being on the terminal carbon and the hydroxy radical being attached to a carbon atom at least two carbon atoms removed from the terminal carbon atoms; and
- Said Component C is a mixture of water-soluble salts of highly polar saturated aliphatic compounds, each having two sulfur-containing moieties, one of which must be a sulfonate group attached to the terminal carbon atom and the other moiety selected from the group consisting of sulfonate and sulfate radicals attached to a carbon atom at least two carbon atoms removed from the terminal carbon atom, said compounds containing from about 10 to about 24 carbon atoms.
- Nonionic synthetic detergents may be broadly defined as compounds produced by the condensation of alkylene oxide groups (hydrophilic in nature) with an organic hydrophobic compound, which may be aliphatic or alkyl aromatic in nature.
- the length of the hydrophilic or polyoxyalkylene radical which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.
- Pluronic a well known class of nonionic synthetic detergents is made available on the market under the trade name of Pluronic. These compounds are formed by condensing ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol.
- the hydrophobic portion of the molecule which, of course, exhibits water insolubility, has a molecular weight of from about 1500 to 1800.
- the addition of polyoxyethylene radicals to this hydrophobic portion tends to increase the water solubility of the molecule as a whole and the liquid character of the product is retained up to the point where polyoxyethylene content 12 is about 50% of the total weight of the condensation product.
- nonionic synthetic detergents include:
- the polyethylene oxide condensates of alkyl phenols, e.g., the condensation products of alkyl phenols having an alkyl group containing from about 6 to 12 carbon atoms in either a straight chain or branched chain configuration, with ethylene oxide, the said ethylene oxide being present in amounts equal to 5 to 25 moles of ethylene oxide per mole of alkyl phenol.
- the alkyl substituent in such compounds may be derived from polymerized propylene, diisobutylene, octene, or nonene, for example.
- Nonionic detergents include nonyl phenol condensed with either about 10 or about 30 moles of ethylene oxide per mole of phenol and the condensation products of coconut alcohol with an average of either about 5.5 or about 15 moles of ethylene oxide per mole of alcohol and the condensation product of about 15 moles of ethylene oxide with one mole of tridecanol.
- v 1 dodecylphenol condensed with 12 moles of ethylene oxide per mole of phenol; dinonylhenol condensed with 15 moles of' ethylene oxide per mole of phenol; do
- a detergent having. the formula R R .R N O (amine oxide detergent) wherein R is an alkyl group containing from about 10 to about 28 carbon atoms, from 0 to about 2 hydroxy groups and from 0 to about 5 ether linkages, there being at least one moietyof R which is an alkyl group containing from about 10 to about 18 carbon atoms and 0 ether linkages, and each R and R are selected from the group consisting of alkyl radicals and hydroxyalkyl radicals containing from 1 to about 3 carbon atoms;
- R R P+O phosphine oxide detergent
- phosphine oxide detergents include:
- octadecyl methyl sulfoxide dodecyl methyl sulfoxide tetradecyl methyl sulfoxide 3-hyd-roxytridecyl methyl sulfoxide 3-methoxytridecyl methyl sulfoxide 3-hydroxy-4-dodecoxybutyl methyl sulfoxide octadecyl 2-hydroxyethyl sulfoxide d'odecylethyl sulfoxide C.
- Ampholytic synthetic detergents can be broadly described as derivatives of aliphatic or aliphatic derivatives of heterocyclic secondary and tertiary amines, in which the aliphatic radical may be straight chain or branched and wherein one of the aliphatic substituents contains from about 8 to 18 carbon atoms and at least one contains an anionic water-solubilizing group, e.g., carboxy, sulfo, sulfato, phosphato, or phosphono.
- an anionic water-solubilizing group e.g., carboxy, sulfo, sulfato, phosphato, or phosphono.
- Examples of compounds falling within this definition are sodium 3- (dodecylamino)-propionate i t C12 2sN-CHzCHzC ONa sodium 3-(dodecylamino)propane-l-sulfonate t C 2H25NCHzCH2CH2SO3Na sodium 2-(dodecylamino)ethyl sulfate i C12H2aNCH2CHzOSOaNa sodium Z-(dimethylamino)octadecanoate 0 CIBHZKCHCHD ONa H: C --NC Ha disodium 3- (N-carboxymethyl-dodecylamino propane- 1- sulfonate CHzCHgCHzSOaNa C 12H25N 0 o Hiii ONa disodium 2- (oleylamino) ethyl phosphate H o C Hs5I ICHzCHzO1 (ON8)2 disodium 3 (N -methyl
- Zwitterionic synethetic detergents can be broadly described as derivatives of aliphatic quaternary ammonium and phosphonium or tertiary sulfoniu-m compounds, in which the cationic atom may be part of a heterocyclic ring, and in which the aliphatic radical may be straight chain or branched, and wherein one of the aliphatic su'bstituents contains from about 8 to 18 carbon atoms, and at least one aliphatic su'bstituent contains an ainonic water-solubilizing group, e.g., carboxy, sulfo, sulfato, phosph-ato, or phosphono.
- ainonic water-solubilizing group e.g., carboxy, sulfo, sulfato, phosph-ato, or phosphono.
- a detergent composition prepared according to the present invention contains as essential ingredients (a) a detergent ingredient and (b) a builder ingredient.
- a composition can contain a single detergent compound and a single builder compound.
- the active detergent portion consists of mixtures of detergent compounds selected from the foregoing classes.
- the active ingredient can consist of a mixture of two or more anionic detergents; or a mixture of an anionic detergent and a nonionic detergent; or, by way of another example, the active detergent can be a ternary mixture of two anionic detergents and a zwitterionic detergent.
- the part of the complete formulation that functions as a builder can likewise be composed of a mixture of builder compounds.
- the propanepolyphosphonate compounds described herein e.g., propane-1,1,3, 3-tetraphosphonate; propane 1,l,2,3-tetraphosphonate; and propane-1,2,2,3-tetraphosphonate, can be used in admixture with each other or in admixture with other watersoluble organic or inorganic builder salts.
- the propanepolyphosphonates can be mixed with sodium tripolyphosphate or potassium pyrophosphates.
- a binary builder mixture can consist of a propanepolyphosphonate compound and a water-soluble organic builders salt such as water-soluble salts of nitrilotriacetic acid, ethylenediaminetetraacetic acid, ethane-1- hydroxy-l,l-diphosphonic acid.
- the builder component of a complete formulation can consist of ternary mixtures of these several types of builder compounds on an equal molar or weight basis.
- Water-soluble inorganic alkaline builder salts which can be used in this invention in combination with the novel propanepolyphosphonate compounds described herein are alkali metal carbonates, borates, phosphates, condensed polyphosphates, bicarbonates and silicates. Ammonium and substituted ammonium salts of these materials can also be used. Specific examples of suitable salts are sodium tripolyphosphate (mentioned above), sodium carbonate, sodium tetraborate, sodium and potassium pyrophosphate, sodium and ammonium bicarbonate, potassium tripolyphosphate, sodium hexametaphosphate, sodium sesquicarbonate, sodium orthophosphate and potassium bicarbonate.
- Examples of water-soluble organic alkaline sequestrant builder salts which can be used in admixture with the propanepolyphosphonate compounds of this invention are alkali metal (sodium, potassium, lithium), ammonium or substituted ammonium, aminopolycarboxylates, e.g., the above-mentioned sodium and potassium ethylenediaminetetraacetate, sodium and potassium N-(2-hydroxyethyl)- ethylenediaminetriacetates, sodium and potassium nitrilotriacetates, sodium, potassium and triethanolammonium N-(Z-hydroxyethyl)-nitrilodiacetates, and the water-soluble salts of ethane-1-hydroxy-1,1,2-triphosphonic acid and ethane-2-hydroXy-l,1,2-triphosphonic acid.
- alkali metal sodium, potassium, lithium
- ammonium or substituted ammonium aminopolycarboxylates
- aminopolycarboxylates e.g.,
- alkali metal salts of phytic acid e.g., sodium phytate
- organic alkaline sequestrant builder salts Certain other organic builders which can be used in admixture with the propanepolyphosphonates described herein are water-soluble salts of ethylene-l,l-diphosphonic acid, methylene diphosphonic acid, and the like.
- the specific action of the builder mixtures of this invention will vary to some extent depending upon the ratio of active detergent to builder mixture in any given detergent composition. There will be considerable variation in the strengths of the washing solutions employed by different housewives, i.e., some housewives may tend to use less or more of the detergent compositions than will others. Moreover, there will be variations in temperature and in soil loads as between washing operations. Further, the degree of hardness of the water used to make up the washing solutions will also bring about apparent differences in the cleaning power and whiteness maintenance results. Finally, different fabrics will respond in somewhat different ways to different detergent compositions. The best type of detergent composition for household use is a composition which accomplishes an excellent cleaning and whiteness maintenance effect under the most diverse cleaning conditions. The built detergent compositions of this invention are especially valuable in this respect.
- the builder compounds taught herein are very efiicient. In general, they permit the attainment of excellent washing results with a relatively smaller total quantity of builder in relation to the total quantity of active detergent ingredient than is used in commercially available sodium tripolyphosphate-built detergent compositions.
- the built detergent compositions of the present invention can be formulated and prepared into any of the several commercially desirable solid and liquid forms including, for example, granules, flakes, tablets, and waterbased and alcohol-based liquid detergents, and the like.
- solid detergent compositions are prepared containing an active detergent (sole active or a mixture of detergents) and a builder (single compound or a mixture) in a by weight ratio (detergent to builder) of about :1 to about 1:10, and preferably from about 2:1 to about 1:6.
- a special embodiment of this invention is a liquid detergent composition containing an active detergent and a builder in a by weight ratio (detergent to builder) of 3:1 to about 1:10; preferably 2:1 to about 3:1.
- the potassium salts of the propane-polyphosphonates are especially useful in liquid formulations.
- Liquid detergent compositions generally present special problems to the formulator in view of the peculiarities inherent in liquid systems and the special requirements of solubility of the ingredients, and more especially, their physical and chemical stability in such mediums. It is Well known, for instance, that sodium tripolyphosphate, which is used commonly in granular compositions, is generally regarded as being unsatisfactory as a sole builder for liquid detergents. It has a marked propensity to hydrolyze to the lower forms of phosphate compounds which are less desirable builders.
- a phosphate builder i.e., pyrophosphate
- propane-1,1,3,3-tetraphosphonate compounds of this invention especially solve this particular formulating problem because they are much better builders than tripolyphosphates and, at the same time, are hydrolytically stable.
- a sample built liquid detergent composition of this invention can consist essentially of a detergent ingredient (a single detergent or a mixture of detergents) and a propane-1,1,3,B-tetraphosphonate-containing builder ingredient (either as a single builder or in admixture with other builders), with the balance of the composition being a liquid vehicle such as water or a water alcohol mixture, and the like.
- the propanetetraphosphonate compounds of the present invention such as the 1,1,3,3; 1, 2, 2, 3; and the 1,1,2,3 isomers described above, have a valuable property which can be of special advantage in the preparation of built liquid detergent compositions.
- the propanetetraphosphonates Upon being added to an aqueous solution, even in very small amounts, the propanetetraphosphonates almost immediately form a cloudy precipitate with the hardness minerals in the solution, especially the calcium therein. This precipitate effectively inactivates or removes the calcium from the solution while at the same time provides a solution thatis cloudy and somewhat milky in appearance.
- the detergent compositions of the present invention perform at their maximum level in a washing solution which has a pH in the range of from about 8 to about 11.5. Within this broad range, it is preferred to operate at a pH of from about 9.5 to 11.
- the detergent and the builder can be neutralized to a degree sufficient to insure that this pH prevails in any washing solution. If desired, other alkaline materials can be added to the complete formulation to provide for any necessary pH adjustments.
- a preferred embodiment is to have the detergent composition, whether in solid or liquid form, to provide a pH in the aforementioned ranges at the usual recommended usage levels.
- a water-soluble sodium carboxymethyl cellulose can be added in minor amounts to inhibit soil redeposition or for other reasons.
- Tarnish inhibitors such as benzotriazole or ethylenethiourea can also be added in amounts up to about 3%.
- Fluorescers, and brighteners, perfumes, coloring agents, while not per se essential in the compositions of this invention, can be added in minor amounts.
- an alkaline material or alkaline such as sodium of potassium hydroxide can be added as supplementary pH adjusters.
- Other usual additives include sodium sulfate, sodium carbonate, Water, and the like.
- Corrosion inhibitors are also frequently used.
- Watersoluble silicates are highly effective corrosion inhibitors and can be added if desired at levels of from about 3% to about 8% by weight of the total composition.
- Alkali metal, preferably potassium and sodium silicates, are preferred having a weight ratio of SiO :M O of from about 1.0:1 to 2.8: 1. (M refers to sodium or potassium.)
- Sodium silicate having a ratio of SiO :Na O of from about 1.6:1 to 2.45 :1 is especially preferred.
- a hydrotropic agent may be found desirable.
- Suitable hydrotropes are water-soluble alkali metal salts of toluenesulfonate, benzenesulfonate, and xylene sulfonate. referred hydrotropes are potassium or sodium toluenesulfonates.
- the hydrotrope may be added, if desired, at levels of from 0% up to about 12%. While a hydrotrope will not ordinarily be found necessary, it can be added, if so desired, for any reason such as to function as a solubilizing agent and to produce a product which retains its homogeneity at a low temperature.
- compositions in which the percentages are by weight, will serve to illustrate, but not limit, the invention.
- Each of the compositions in the following examples give in solution a pH within the desired range of from about 8 to about 12.
- EXAMPLE A An excellent granular built detergent composition according to this invention has the following formulation:
- the straight chain dodecyl benzene sodium sulfonate in the preceding composition can be replaced on an equal weight basis by either branched chain dodecyl benzene sodium sulfonate, sodium tallow alkyl sulfate, sodium coconut oil alkyl sulfate, sodium olefin sulfonate as described in the specification derived from alpha olefines having an average of 1018 carbon atoms in the molecule, or a mixture of straight chain dodecyl benzene sodium sulfonate and sodium tallow alkyl sulfate on an equal weight. basis.
- the octasodium prpane-1,l,3,3- tetraphosphonate builder can be replaced by other sodium salts of this same builder such as the hexasodium dihydrogen salt or the pentasodium trihydrogen salt. It can also be replaced by a 1:1 mixture of sodium tripolyphosphate and hexasodium propane-l,1,3,3-tetraphosphonate; or a 1:1:1 ternary mixture of sodium tripolyphosphate, sodium nitrilotriacetate and hexasodium dihydrogen propane-1 1,3 ,3-tetraphosphonate.
- EXAMPLE B Another granular detergent composition having outstanding cleaning properties has the following formulation:
- the 2% dodecyl methyl sulfoxide nonionic detergent can be replaced either by an equal weight basis of an alkylphenol ethylene oxide condensate formed by a condensation reaction between dodecyl phenol and moles of ethylene oxide per mole of dodecyl phenol, or by 3-(dodecyldimethylammonio)-2-hydroxy propane-l-sulfonate.
- the tetrasodium salt of the tetraphosphonate builder can be added as the salt or it can be present as the free acid neutralized in situ to correspond to the desired salt form.
- EXAMPLE C This is also an example of a granular detergent composition of outstanding efliciency.
- This detergent compound is also referred to as linear dodecyl benzene sodium sulfonate.
- the anionic detergent can be replaced on an equal weight percentage with an olefin sodium sulfonate as described above in which the olefin sulfonate consists of a mixture of chain lengths ranging from 10 to about 1.8 carbon atoms, or a branched chain alkyl benzene sulfonate in which the alkyl is derived from tetrapropylene.
- EXAMPLE D The following formulation is for a granular detergent composition that is an outstanding detergent composition:
- the nonionic detergent can be replaced by tetradecyl dimethyl phosphine oxide, sodium-3- dodecylaminopropionate, sodium-3-dodecylaminopropanesulfonate, 3 (N,N-dimethyl N hexadecylammonio)-propane-l-sulfonate or 3 (N,N dimethyl N dodecylammonio) 2 hydroxypropane-l-sulfonate. Twenty percent of the builder can be replaced with an equal weight replacement of trisodium ethane-l-hydroxy-l,l-diphosphonate.
- EXAMPLE E A liquid detergent which is especially effective in cool water as a heavy-duty detergent and has the following composition:
- This composition is especially suited for dishwashing and fine fabric washing situations.
- cleaning identifies the ability of a built detergent composition to remove soil from soiled fabrics. In part, this applies to the removal of deeply embedded soil deposits such as occurs, for instance, at the collars and cuffs of shirts and blouses.
- whiteness is a more general term which identifies or represents a measurement of the ability of a built detergent composition to whiten areas which are only slightly or moderately soiled.
- Whiteness maintenance is a term which is used to identify the ability of a detergent formulation to prevent the soil which has been removed during a normal washing cycle from being redeposited upon the fabrics during the remainder of the laundering process, e.g., washing and rinsing, etc.
- the surprising building ability of the propanepolyphosphonate compounds of the present invention was discovered by washing naturally soiled white dress shirts with detergent compositions built with different builder materials. Shirts with detachable collars and cuffs were worn by male subjects under ordinary conditions for a certain period of time. The collars and cuffs were then detached and washed in an ordinary agitator type washing machine using solutions of the built detergent compositions being evaluated.
- the washed and dried collars and cuffs were graded by means of a visual comparison with other collars and cuffs which had been similarly worn and soiled but which were washed with a standard built detergent composition.
- the visual comparisons were made by a trained panel of five people who were unfamiliar with any specific details and objectives of the tests. Their judgments were made independently.
- hexasodium dihydrogen propane-1,1,3,3-tetraphosphonate (abbreviated as PTEP in Table I) was used as a representative builder compound coming within the scope of the present invention. Results obtained with this representative material are presented along with results obtained with STP and EDTA in Table I.
- washing solutions containing seven grains per gallon hardness were adjusted with NaOH to a pH of 10 or 11 as indicated in the table.
- the temperatures of the washing solutions Were F. or 140 F., also as indicated.
- the duration of the washing cycle was 10 minutes.
- a difference in the cleaning grading scale of 1 unit represents a significant difference. By this is meant that an average housewife could readily and consistently see a significant cleaning difference between any two fabrics which have scores separated by a magnitude of at least 1 unit.
- the representative builder compound of the present invention not only scored above STP on the grading scale, but it also demonstrated remarkable efficiency in maintaining superior cleaning grades even with lower concentrations, e.g., .02 grams/100 ml., .03 grams/100 ml. Water and .04 grams/100 ml. water.
- Hexa sodium dihydrogen propane-1,1,3,3-tetraphosphonate surprisingly demonstrated this unexpected degree of efficiency which, as can be seen from Table I, resulted in cleaning grades of 4, 7, 6.4, 7.2, and 7.0. Its cleaning superiority over STP at the .06 gram usage level is of a totally unexpected magnitude. The fact that this superiority actually increases at lower usage levels is singularly significant.
- the cleaning grade is more than two cleaning units higher than the cleaning grade obtained with STP at double the concentration, i.e., .06% concentration (compare evaluations No. 2 and No. 7).
- a comparison between evaluations N0. 2, No. 5, and No. 8 shows that at equal concentrations (.03 g./100 ml.) of PTEP, STP, and EDTA, the PTEP provides about 5-fold improvement over STP and about an 18-fold improvement over EDTA.
- These cleaning grades testify to the outstanding efficiency of the PTEP builder compounds of the present invention over such well recognized builders as STP and EDTA. It is noteworthy also that even as low a concentration of .02 grams/100 ml. of PTEP provides a cleaning level not significantly different from STP and EDTA at a Concentration of .06 grams/100 ml. of water.
- Evaluations 20-24 in which a zwitterionic detergentwas used as well as evaluations 2831 wherein a nonionic de-' tergent was used likewise demonstrate the outstanding and efficient cleaning results made possible by the builder compounds of the present invention.
- Evaluations 25, 26, and 27 demonstrate that at an equal builder concentration of .06 gram/ml, the PTEP is on a parity with STP and EDTA with another zwitterionic detergent, 3-(coconutalkyldirnethylarnmonio)-2- hydroxy-propane-l-sulfonate.
- the whiteness measurements were made on the backs of the cuffs with a commercially available photoelectric reflectometer, i.e., a Hunter Color and Color Difference meter manufactured by Henry A. Gardner Laboratory, Inc.
- a commercially available photoelectric reflectometer i.e., a Hunter Color and Color Difference meter manufactured by Henry A. Gardner Laboratory, Inc.
- This instrument is designed to distinguish color differcnces and operates on the tristimulus colorimeter principle. According to this principle, a 45-degree diffuse reflectance of an incident light beam on a test specimen is measured through a combination of green, blue and 33111- ber filters.
- the electrical circuitry of the instrument is so designed that lightness and chromaticity values for the test specimen are read directly.
- the departure from white (TiO being taken as a standard white) of the test specimen is calculated by introducing the lightness and chromaticity values so obtained into a complex formula supplied by the manufacturer.
- the clear performance and efiiciency advantages of the propane-1,1,3,3-tetraphosphonate compounds discussed above in connection with cleaning were likewise apparent in these whiteness measurements.
- the propane-1,13,3- tetraphosphonate of the present invention offered excellent whiteness results, e.g., always on a parity with STP or significantly superior thereto.
- the evaluation of whiteness maintenance capability of the respective builders was performed by the following method. Unsoiled swatches of cotton terry cloth were washed with the wash solutions obtained from the cleaning testsJIn other words, the uusoiled swatches are added to the dirty wash water from the cleaning tests. The swatches are dried and then the whiteness thereof is measured by a Hunter Color and Color-Difference Meter following the same procedure described above.
- the soil adhering to the swatches is a relative measure of soil which has been adsorbed from the washing solutions containing the aforementioned representative builders. Factors are involved here other than the antiredeposition characteristics of the built detergent composition. It is, however, one way of demonstrating this property; and for showing relative performance, the test is valuable.
- the propane-1,1,3,3-tetraphosphonate builder compounds of the present invention have very valuable whiteness maintenance properties.
- the hexasodium dihydrogen propane-l,1,3,3-tetraphosphonate provided superior whiteness maintenance results over STP and EDTA, or at least on a parity therewith. It should be appreciated that those instances where the whiteness maintenance results were comparable are actually examples of the increased efficiency of the PT EP builder compounds. This is true because the amount of soil which is available to be redeposited in fabrics is proportionately greater in those cases where more soil was removed during the washing cycle.
- the cleaning results tabulated in Table I show the improved cleaning results over STP or EDTA and establish that there is that much more soil to keep from redepositing.
- This aspect of the present invention is based on the discovery of the outstanding sequestering properties of the novel polyphosphonate compounds described herein.
- propanetetraphosphonates and especially propane-l, 1,3,3-tetraphosphonate, propane-1,2,3,3-tetraphosphonate and propane-1,2,2,3-tetraphosphonate, it should be noted that the pentaphosphonates and the hexaphosphonates offer equally good performance results when employed as builders in detergent compositions.
- a compound of claim 1 wherein the water soluble salt is selected from the group consisting of alkali metal salts, ammonium salts and substituted ammonium salts.
- a compound of claim 1 wherein the lower alkyl esters are selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, isopentyl, hexyl and isohexyl esters.
- a process for preparing an ester of propane-1,1,3,3- tetraphosphonic acid which comprises reacting an alkali metal carbanion of a tetraloweralkyl methylenediphosphonate with dihalomethane in the presence of an organic solvent having no active hydrogen atoms selected from the group consisting of toluene and benzene where- 26 in said carbanion and said dihalomethane are employed respectively in a molar ratio of from about 12055 to about 1:10 at a temperature in the range of from about 30 C. to about 125 C. for a time period of from about 10 hours to about 100 hours.
- reaction temperature is in the range of from C. to 110 C. and the time period is from 25 to hours.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Detergent Compositions (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US507662A US3400176A (en) | 1965-11-15 | 1965-11-15 | Propanepolyphosphonate compounds |
DE19661593274 DE1593274A1 (de) | 1965-11-15 | 1966-11-12 | Verfahren zur Herstellung von Propanpolyphosphonatverbindungen |
GB51172/66A GB1136619A (en) | 1965-11-15 | 1966-11-15 | Propanetetraphosphonic compounds |
FR1550064D FR1550064A (xx) | 1965-11-15 | 1966-11-15 | |
NL6802116A NL6802116A (xx) | 1965-11-15 | 1968-02-14 | |
BE712773D BE712773A (xx) | 1965-11-15 | 1968-03-26 | |
US736908*A US3502585A (en) | 1965-11-15 | 1968-05-13 | Detergent compositions containing propanepolyphosphonate compounds |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US507662A US3400176A (en) | 1965-11-15 | 1965-11-15 | Propanepolyphosphonate compounds |
FR83727 | 1966-11-15 | ||
NL6802116A NL6802116A (xx) | 1965-11-15 | 1968-02-14 | |
US73690868A | 1968-05-13 | 1968-05-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3400176A true US3400176A (en) | 1968-09-03 |
Family
ID=27444741
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US507662A Expired - Lifetime US3400176A (en) | 1965-11-15 | 1965-11-15 | Propanepolyphosphonate compounds |
US736908*A Expired - Lifetime US3502585A (en) | 1965-11-15 | 1968-05-13 | Detergent compositions containing propanepolyphosphonate compounds |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US736908*A Expired - Lifetime US3502585A (en) | 1965-11-15 | 1968-05-13 | Detergent compositions containing propanepolyphosphonate compounds |
Country Status (6)
Country | Link |
---|---|
US (2) | US3400176A (xx) |
BE (1) | BE712773A (xx) |
DE (1) | DE1593274A1 (xx) |
FR (1) | FR1550064A (xx) |
GB (1) | GB1136619A (xx) |
NL (1) | NL6802116A (xx) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3488419A (en) * | 1965-12-08 | 1970-01-06 | Procter & Gamble | Oral compositions for calculus retardation |
US3502585A (en) * | 1965-11-15 | 1970-03-24 | Procter & Gamble | Detergent compositions containing propanepolyphosphonate compounds |
US3678154A (en) * | 1968-07-01 | 1972-07-18 | Procter & Gamble | Oral compositions for calculus retardation |
US3853770A (en) * | 1969-07-31 | 1974-12-10 | Du Pont | Fabric softener compositions |
US3933673A (en) * | 1970-01-08 | 1976-01-20 | Lever Brothers Company | Detergent compositions containing polymeric builders |
US3962100A (en) * | 1975-08-18 | 1976-06-08 | The Procter & Gamble Company | Fabric softening agents |
USRE29182E (en) * | 1965-12-08 | 1977-04-12 | The Procter & Gamble Company | Oral composition for calculus retardation |
US4025444A (en) * | 1975-08-18 | 1977-05-24 | The Procter & Gamble Company | Fabric softening agents |
US4246103A (en) * | 1976-05-14 | 1981-01-20 | Bayer Aktiengesellschaft | Propane-1,3-diphosphonic acids for conditioning water |
EP0150532A1 (en) | 1983-12-22 | 1985-08-07 | The Procter & Gamble Company | Peroxygen bleach activators and bleaching compositions |
US4803068A (en) * | 1983-01-24 | 1989-02-07 | Henkel Kommanditgesellschaft Auf Aktien | Hair-treatment preparation for improved wet combability |
US5591378A (en) * | 1994-07-06 | 1997-01-07 | The Clorox Company | Substituted benzonitriles and compositions useful for bleaching |
EP0753557A1 (en) | 1995-07-13 | 1997-01-15 | The Procter & Gamble Company | Packaged foaming composition |
EP0753559A1 (en) | 1995-07-13 | 1997-01-15 | The Procter & Gamble Company | Method of cleaning textile fabrics |
EP0763594A1 (en) | 1995-09-18 | 1997-03-19 | The Procter & Gamble Company | Process for making granular detergents |
US6617300B2 (en) | 2000-08-30 | 2003-09-09 | Procter & Gamble Company | Granular bleach activators having improved solubility profiles |
EP1698357A1 (en) | 2000-11-20 | 2006-09-06 | Universite De Geneve | Polyphosphonic acids and derivatives thereof |
US20070191246A1 (en) * | 2006-01-23 | 2007-08-16 | Sivik Mark R | Laundry care compositions with thiazolium dye |
US20080194454A1 (en) * | 2007-02-09 | 2008-08-14 | George Kavin Morgan | Perfume systems |
WO2008109384A2 (en) | 2007-03-05 | 2008-09-12 | Celanese Acetate Llc | Method of making a bale of cellulose acetate tow |
US20100197545A1 (en) * | 2009-01-30 | 2010-08-05 | Ecolab USA | High alkaline detergent composition with enhanced scale control |
WO2011100405A1 (en) | 2010-02-12 | 2011-08-18 | The Procter & Gamble Company | Benefit compositions comprising crosslinked polyglycerol esters |
WO2011100500A1 (en) | 2010-02-12 | 2011-08-18 | The Procter & Gamble Company | Benefit compositions comprising polyglycerol esters |
WO2011100420A1 (en) | 2010-02-12 | 2011-08-18 | The Procter & Gamble Company | Benefit compositions comprising crosslinked polyglycerol esters |
WO2011100411A1 (en) | 2010-02-12 | 2011-08-18 | The Procter & Gamble Company | Benefit compositions comprising polyglycerol esters |
WO2012040171A1 (en) | 2010-09-20 | 2012-03-29 | The Procter & Gamble Company | Non-fluoropolymer surface protection composition |
WO2012040131A2 (en) | 2010-09-20 | 2012-03-29 | The Procter & Gamble Company | Fabric care formulations and methods |
WO2012040130A1 (en) | 2010-09-20 | 2012-03-29 | The Procter & Gamble Company | Non-fluoropolymer surface protection composition |
US9464261B2 (en) | 2010-05-14 | 2016-10-11 | The Sun Products Corporation | Polymer-containing cleaning compositions and methods of production and use thereof |
US9796952B2 (en) | 2012-09-25 | 2017-10-24 | The Procter & Gamble Company | Laundry care compositions with thiazolium dye |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230050807A (ko) | 2021-10-08 | 2023-04-17 | 삼성전자주식회사 | 전자 장치 및 이의 제어 방법 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2297578A (en) * | 1940-08-02 | 1942-09-29 | Internat Smelting & Refining C | Automatic constant current controller |
GB940138A (en) * | 1961-07-03 | 1963-10-23 | Henkel & Cie Gmbh | Improvements in or relating to phosphonic acid |
US3159581A (en) * | 1962-04-13 | 1964-12-01 | Procter & Gamble | Detergency composition |
CA701850A (en) * | 1965-01-12 | Germscheid Hans-Gunther | Process for the manufacture of acylation products of phosphorous acid | |
GB981252A (en) * | 1961-07-03 | 1965-01-20 | Henkel & Cie Gmbh | Process for the preparation of acylation products of phosphorous acid |
DE1194852B (de) * | 1963-11-02 | 1965-06-16 | Henkel & Cie Gmbh | Verfahren zur Herstellung von Phosphonsaeuren oder deren Salzen mit mindestens zwei Phosphoratomen im Molekuel |
FR1408414A (fr) * | 1963-07-24 | 1965-08-13 | Henkel & Cie Gmbh | Tablettes d'agents de lavage ou d'agents auxiliaires de lavage et leur procédé de préparation |
US3202579A (en) * | 1963-03-02 | 1965-08-24 | Therachemie Chem Therapeut | Phosphinic acid derivatives for protection of hair from damage in bleaching and dyeing the same |
US3214454A (en) * | 1958-09-06 | 1965-10-26 | Henkel & Compagnie G M B H | Process of forming metal ion complexes |
DE1206264B (de) * | 1962-08-30 | 1965-12-02 | Henkel & Cie Gmbh | Wasserloesliches, alkalisches Mittel zum Beizen von Aluminium oder Aluminiumlegierungen |
US3299123A (en) * | 1963-04-09 | 1967-01-17 | Monsanto Co | Substituted methylene diphosphonic acids and salts and esters thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3400176A (en) * | 1965-11-15 | 1968-09-03 | Procter & Gamble | Propanepolyphosphonate compounds |
-
1965
- 1965-11-15 US US507662A patent/US3400176A/en not_active Expired - Lifetime
-
1966
- 1966-11-12 DE DE19661593274 patent/DE1593274A1/de active Pending
- 1966-11-15 FR FR1550064D patent/FR1550064A/fr not_active Expired
- 1966-11-15 GB GB51172/66A patent/GB1136619A/en not_active Expired
-
1968
- 1968-02-14 NL NL6802116A patent/NL6802116A/xx unknown
- 1968-03-26 BE BE712773D patent/BE712773A/xx unknown
- 1968-05-13 US US736908*A patent/US3502585A/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA701850A (en) * | 1965-01-12 | Germscheid Hans-Gunther | Process for the manufacture of acylation products of phosphorous acid | |
US2297578A (en) * | 1940-08-02 | 1942-09-29 | Internat Smelting & Refining C | Automatic constant current controller |
US3214454A (en) * | 1958-09-06 | 1965-10-26 | Henkel & Compagnie G M B H | Process of forming metal ion complexes |
GB940138A (en) * | 1961-07-03 | 1963-10-23 | Henkel & Cie Gmbh | Improvements in or relating to phosphonic acid |
GB981252A (en) * | 1961-07-03 | 1965-01-20 | Henkel & Cie Gmbh | Process for the preparation of acylation products of phosphorous acid |
US3159581A (en) * | 1962-04-13 | 1964-12-01 | Procter & Gamble | Detergency composition |
DE1206264B (de) * | 1962-08-30 | 1965-12-02 | Henkel & Cie Gmbh | Wasserloesliches, alkalisches Mittel zum Beizen von Aluminium oder Aluminiumlegierungen |
US3202579A (en) * | 1963-03-02 | 1965-08-24 | Therachemie Chem Therapeut | Phosphinic acid derivatives for protection of hair from damage in bleaching and dyeing the same |
US3299123A (en) * | 1963-04-09 | 1967-01-17 | Monsanto Co | Substituted methylene diphosphonic acids and salts and esters thereof |
FR1408414A (fr) * | 1963-07-24 | 1965-08-13 | Henkel & Cie Gmbh | Tablettes d'agents de lavage ou d'agents auxiliaires de lavage et leur procédé de préparation |
DE1194852B (de) * | 1963-11-02 | 1965-06-16 | Henkel & Cie Gmbh | Verfahren zur Herstellung von Phosphonsaeuren oder deren Salzen mit mindestens zwei Phosphoratomen im Molekuel |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3502585A (en) * | 1965-11-15 | 1970-03-24 | Procter & Gamble | Detergent compositions containing propanepolyphosphonate compounds |
USRE29182E (en) * | 1965-12-08 | 1977-04-12 | The Procter & Gamble Company | Oral composition for calculus retardation |
US3488419A (en) * | 1965-12-08 | 1970-01-06 | Procter & Gamble | Oral compositions for calculus retardation |
US3678154A (en) * | 1968-07-01 | 1972-07-18 | Procter & Gamble | Oral compositions for calculus retardation |
US3853770A (en) * | 1969-07-31 | 1974-12-10 | Du Pont | Fabric softener compositions |
US3933673A (en) * | 1970-01-08 | 1976-01-20 | Lever Brothers Company | Detergent compositions containing polymeric builders |
US3962100A (en) * | 1975-08-18 | 1976-06-08 | The Procter & Gamble Company | Fabric softening agents |
US4025444A (en) * | 1975-08-18 | 1977-05-24 | The Procter & Gamble Company | Fabric softening agents |
US4246103A (en) * | 1976-05-14 | 1981-01-20 | Bayer Aktiengesellschaft | Propane-1,3-diphosphonic acids for conditioning water |
US4803068A (en) * | 1983-01-24 | 1989-02-07 | Henkel Kommanditgesellschaft Auf Aktien | Hair-treatment preparation for improved wet combability |
EP0150532A1 (en) | 1983-12-22 | 1985-08-07 | The Procter & Gamble Company | Peroxygen bleach activators and bleaching compositions |
US5591378A (en) * | 1994-07-06 | 1997-01-07 | The Clorox Company | Substituted benzonitriles and compositions useful for bleaching |
US5707542A (en) * | 1994-07-06 | 1998-01-13 | The Clorox Company | Substituted benzonitriles and compositions useful for bleaching |
EP0753557A1 (en) | 1995-07-13 | 1997-01-15 | The Procter & Gamble Company | Packaged foaming composition |
EP0753559A1 (en) | 1995-07-13 | 1997-01-15 | The Procter & Gamble Company | Method of cleaning textile fabrics |
EP0763594A1 (en) | 1995-09-18 | 1997-03-19 | The Procter & Gamble Company | Process for making granular detergents |
US6617300B2 (en) | 2000-08-30 | 2003-09-09 | Procter & Gamble Company | Granular bleach activators having improved solubility profiles |
JP2014223545A (ja) * | 2000-11-20 | 2014-12-04 | ユニヴェルシテ・ドゥ・ジュネーブUniversite De Geneve | 骨内インプラント |
US9730795B2 (en) | 2000-11-20 | 2017-08-15 | Universite De Geneve | Endosseous implant |
EP1698357A1 (en) | 2000-11-20 | 2006-09-06 | Universite De Geneve | Polyphosphonic acids and derivatives thereof |
JP2009172365A (ja) * | 2000-11-20 | 2009-08-06 | Univ De Geneve | 骨内インプラント |
US8216601B2 (en) | 2000-11-20 | 2012-07-10 | Universite De Geneve | Endosseous implant |
US8802123B2 (en) | 2000-11-20 | 2014-08-12 | Universite De Geneve | Endosseous implant |
US20100234900A1 (en) * | 2000-11-20 | 2010-09-16 | Pierre Descouts | Endosseous implant |
US20070191246A1 (en) * | 2006-01-23 | 2007-08-16 | Sivik Mark R | Laundry care compositions with thiazolium dye |
US20100325814A1 (en) * | 2006-01-23 | 2010-12-30 | Mark Robert Sivik | Laundry care compositions with thiazolium dye |
US8299010B2 (en) | 2006-01-23 | 2012-10-30 | The Procter & Gamble Company | Laundry care compositions with thiazolium dye |
US20100087357A1 (en) * | 2007-02-09 | 2010-04-08 | Morgan Iii George Kavin | Perfume systems |
US20080194454A1 (en) * | 2007-02-09 | 2008-08-14 | George Kavin Morgan | Perfume systems |
WO2008109384A2 (en) | 2007-03-05 | 2008-09-12 | Celanese Acetate Llc | Method of making a bale of cellulose acetate tow |
US8809249B2 (en) | 2009-01-30 | 2014-08-19 | Ecolab Usa Inc. | High alkaline detergent composition with enhanced scale control |
US20110071065A1 (en) * | 2009-01-30 | 2011-03-24 | Ecolab USA | High alkaline detergent composition with enhanced scale control |
US20100197545A1 (en) * | 2009-01-30 | 2010-08-05 | Ecolab USA | High alkaline detergent composition with enhanced scale control |
US8481473B2 (en) | 2009-01-30 | 2013-07-09 | Ecolab Usa Inc. | High alkaline detergent composition with enhanced scale control |
WO2011100500A1 (en) | 2010-02-12 | 2011-08-18 | The Procter & Gamble Company | Benefit compositions comprising polyglycerol esters |
WO2011100405A1 (en) | 2010-02-12 | 2011-08-18 | The Procter & Gamble Company | Benefit compositions comprising crosslinked polyglycerol esters |
WO2011100411A1 (en) | 2010-02-12 | 2011-08-18 | The Procter & Gamble Company | Benefit compositions comprising polyglycerol esters |
WO2011100420A1 (en) | 2010-02-12 | 2011-08-18 | The Procter & Gamble Company | Benefit compositions comprising crosslinked polyglycerol esters |
US9464261B2 (en) | 2010-05-14 | 2016-10-11 | The Sun Products Corporation | Polymer-containing cleaning compositions and methods of production and use thereof |
WO2012040130A1 (en) | 2010-09-20 | 2012-03-29 | The Procter & Gamble Company | Non-fluoropolymer surface protection composition |
US8633146B2 (en) | 2010-09-20 | 2014-01-21 | The Procter & Gamble Company | Non-fluoropolymer surface protection composition comprising a polyorganosiloxane-silicone resin mixture |
US8637442B2 (en) | 2010-09-20 | 2014-01-28 | The Procter & Gamble Company | Non-fluoropolymer surface protection composition comprising a polyorganosiloxane-silicone resin mixture |
WO2012040131A2 (en) | 2010-09-20 | 2012-03-29 | The Procter & Gamble Company | Fabric care formulations and methods |
WO2012040171A1 (en) | 2010-09-20 | 2012-03-29 | The Procter & Gamble Company | Non-fluoropolymer surface protection composition |
US9796952B2 (en) | 2012-09-25 | 2017-10-24 | The Procter & Gamble Company | Laundry care compositions with thiazolium dye |
Also Published As
Publication number | Publication date |
---|---|
GB1136619A (en) | 1968-12-11 |
BE712773A (xx) | 1968-09-26 |
NL6802116A (xx) | 1969-08-18 |
DE1593274A1 (de) | 1970-07-23 |
US3502585A (en) | 1970-03-24 |
FR1550064A (xx) | 1968-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3400176A (en) | Propanepolyphosphonate compounds | |
US3526592A (en) | New compounds and detergent compositions containing them | |
US3451937A (en) | Phosphonate compounds | |
US3422021A (en) | Detergent composition | |
US3213030A (en) | Cleansing and laundering compositions | |
JP2557832B2 (ja) | 新規なエーテルポリカルボキシレート | |
US3304330A (en) | Tertiary phosphine oxide compounds | |
US3344077A (en) | Organic phosphorus compounds | |
JPS5859299A (ja) | 洗濯組成物とその製法 | |
US3725290A (en) | Oxyacetic acid compounds as builders for detergent compositions | |
US3697453A (en) | Iminodisuccinic acid salts as detergent builders | |
US3336233A (en) | Built detergent compositions containing 3-hydroxyalkyl alkyl sulfoxides | |
US3560393A (en) | Detergent compositions containing reversed zwitterionicc phosphorus compounds | |
US3562169A (en) | Detergent compositions containing oligomeric ester chain condensates of ethane-1-hydroxy-1,1-diphosphonic acid as builders | |
US3551339A (en) | Built detergent compositions | |
US3743688A (en) | Process for preparing propane triphosphonic lower alkyl esters | |
US3392121A (en) | Built detergent compositions | |
US3234139A (en) | Diamine dioxide detergent compositions | |
US3686124A (en) | Carboxymethylated derivatives of diand tri-saccharide compounds and detergent compositions containing them | |
US3711577A (en) | Nitrilo(ethylenephosphonic acid esters) | |
US3609090A (en) | Built detergent compositions containing hydroxy ether sulfonates | |
CA1040962A (en) | Monionic detergent composition | |
US3562166A (en) | Built detergent compositions | |
US3584035A (en) | Aliphatic vicinal polyphosphonic acids,lower alkyl esters,water soluble salts thereof and process for preparing same | |
US3471406A (en) | Detergent compositions containing methane tri and tetra phosphonic acid compounds |