[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20220340947A1 - Prokaryote-based cell-free system for the synthesis of glycoproteins - Google Patents

Prokaryote-based cell-free system for the synthesis of glycoproteins Download PDF

Info

Publication number
US20220340947A1
US20220340947A1 US17/543,614 US202117543614A US2022340947A1 US 20220340947 A1 US20220340947 A1 US 20220340947A1 US 202117543614 A US202117543614 A US 202117543614A US 2022340947 A1 US2022340947 A1 US 2022340947A1
Authority
US
United States
Prior art keywords
leu
ala
ile
ser
phe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/543,614
Inventor
Matthew DeLisa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cornell University
Original Assignee
Cornell University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cornell University filed Critical Cornell University
Priority to US17/543,614 priority Critical patent/US20220340947A1/en
Publication of US20220340947A1 publication Critical patent/US20220340947A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/005Glycopeptides, glycoproteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1081Glycosyltransferases (2.4) transferring other glycosyl groups (2.4.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/99Glycosyltransferases (2.4) transferring other glycosyl groups (2.4.99)

Definitions

  • the present invention relates to cell-free systems, kits, and methods for producing a glycosylated protein or peptide.
  • Cell-free protein-synthesizing systems are emerging as an attractive alternative to conventional expression systems that rely on living cells (Katzen et al., “The Past, Present and Future of Cell-Free Protein Synthesis,” Trends Biotechnol. 23:150-156 (2005)). This is because, over the past decade, cell-free protein synthesis reactions: (i) can be completed in less than a day; (ii) use reagents whose costs are down; (iii) fold complex proteins by routinely forming disulfide bonds; and (iv) can be scaled to 100 L.
  • CFEs cell-free extracts
  • EFEs cell-free extracts
  • reconstituted protein synthesis from purified components
  • Weimizu et al. “Cell-Free Translation Reconstituted With Purified Components,” Nat. Biotechnol. 19:751-755 (2001)
  • Jewett et al. “An Integrated Cell-Free Metabolic Platform for Protein Production and Synthetic Biology,” Mol. Syst. Biol.
  • rabbit reticulocyte and wheat germ CFE systems cannot perform this post-translational modification because they lack microsomes (Tarui et al., “A Novel Cell-Free Translation/Glycosylation System Prepared From Insect Cells,” J. Biosci. Bioeng. 90:508-514 (2000)).
  • This can be overcome by supplementing eukaryotic CFEs with microsomal vesicles (e.g., canine pancreas microsomes) (Lingappa et al., “Coupled Cell-Free Synthesis, Segregation, and Core Glycosylation of a Secretory Protein,” Proc. Nat'l. Acad. Sci. U.S.A.
  • the present invention is directed at overcoming these and other deficiencies in the art.
  • a first aspect of the present invention is directed to a cell-free system for producing a glycosylated protein.
  • This system comprises an isolated oligosaccharyltransferase (OST) capable of transferring a glycan from a lipid carrier molecule to a glycoprotein target; one or more isolated glycans, wherein each glycan is linked to a lipid carrier molecule; and a glycoprotein target comprising one or more glycan acceptor amino acid residues, or a nucleic acid molecule encoding said glycoprotein target.
  • OST isolated oligosaccharyltransferase
  • kits comprising an isolated oligosaccharyltransferase capable of transferring a glycan from a lipid carrier molecule to a glycoprotein target, and one or more isolated glycans, wherein each glycan is linked to a lipid carrier molecule.
  • Another aspect of the present invention relates to a method for producing a glycosylated protein in a cell-free system.
  • This method involves providing an isolated oligosaccharyltransferase capable of transferring a glycan from a lipid carrier molecule to a glycoprotein target, providing one or more isolated glycans, wherein each glycan is linked to a lipid carrier molecule, and providing a glycoprotein target comprising one or more glycan acceptor amino acid residues.
  • This method further involves combining the oligosaccharyltransferase, one or more isolated glycans, and glycoprotein target to form a cell-free glycosylation reaction mixture, and subjecting the cell-free glycosylation reaction mixture to conditions effective for the oligosaccharyltransferase to transfer the glycan from the lipid carrier molecule to the one or more glycan acceptor residues of the glycoprotein target to produce a glycosylated protein.
  • glycoCFE protein glycosylation locus
  • This gene cluster encodes an N-linked glycosylation system that is functionally similar to that of eukaryotes and archaea, involving an oligosaccharyltransferase that catalyzes the en bloc transfer of preassembled oligosaccharides from lipid carriers onto asparagine residues in a conserved motif [N-X 1 -S/T in eukaryotes and D/E-X 1 -N-X 2 -S/T (SEQ ID NO: 1) in bacteria (Kowarik et al., “Definition of the Bacterial N-Glycosylation Site Consensus Sequence,” EMBO J.
  • C. jejuni glycosylation machinery is ideally suited for use in a cell-free translation/glycosylation system for the following reasons.
  • E. coli transformed with the entire pgl gene cluster can perform N-linked protein glycosylation (Wacker et al., “N-Linked Glycosylation in Campylobacter jejuni and its Functional Transfer Into E. coli,” Science 298:1790-1793 (2002), which is hereby incorporated by reference in its entirety), thereby providing a convenient host for producing the necessary components in a pure and active form.
  • C. jejuni OST C. jejuni OST
  • PglB CjPglB
  • PglB X-ray Structure of a Bacterial Oligosaccharyltransferase
  • CjPglB can transfer sugars post-translationally to locally flexible structures in folded proteins (Kowarik et al., “N-Linked Glycosylation of Folded Proteins by the Bacterial Oligosaccharyltransferase,” Science 314:1148-1150 (2006), which is hereby incorporated by reference in its entirety), indicating that protein glycosylation can be achieved without supplementing a functional membrane system (e.g. microsomes).
  • FIGS. 1A-1B depict aspects of bacterial and eukaryotic N-linked glycosylation.
  • FIG. 1A shows the 17-kb pgl locus of C. jejuni encoding the N-linked glycosylation machinery that has been fully reconstituted in E. coli .
  • FIG. 1B shows a comparison of N-linked glycosylation in prokaryotes (left) and eukaryotes (right).
  • several glycosyltransferases synthesize the glycan by sequential addition of nucleotide-activated sugars on a lipid carrier on the cytoplasmic face of the inner membrane.
  • a flippase transfers the lipid-linked glycans (also referred to as lipid-linked oligosaccharides or LLOs) across the membrane where the oligosaccharyltransferase catalyzes the transfer to Asn residues of periplasmic or endoplasmic reticulum substrate proteins.
  • PglB is a single-subunit, integral membrane protein that is homologous to the catalytic subunit of the eukaryotic OST STT3 (note that PglB and STT3 complex are not drawn to scale).
  • PglB requires an extended motif that includes an Asp or Glu residue in the ⁇ 2 position (D/E-X 1 -N-X 2 -S/T (SEQ ID NO:1), where X 1 and X 2 can be any amino acid except Pro).
  • PglB can transfer sugars post-translationally to locally flexible structures in folded proteins.
  • FIGS. 2A-2B show the purification of bacterial OST.
  • CjPglB was expressed in E. coli C43(DE3) cells and purified to near homogeneity. Elution fractions (as indicated) from gel filtration columns were examined by SDS-PAGE, and the Coomassie Blue-stained gel images ( FIG. 2B ) are shown together with the elution profiles ( FIG. 2A ).
  • MW molecular weight standard.
  • FIGS. 3A-3C show reconstituted glycosylation with defined components.
  • the in vitro glycosylation assay was carried out using purified OST, extracted LLOs and purified acceptor proteins produced in E. coli .
  • the immunoblots of FIG. 3A show the detection of acceptor protein AcrA and scFv13-R4-GT (both anti-His) or glycans (anti-glycan). Reactions included 3 ⁇ g wild-type CjPglB, 5 (+) or 10 (++) ⁇ L of LLOs and 5 ⁇ g of acceptor protein.
  • FIG. 3B is the same assay as described in FIG. 3A but with purified PglB from Campylobacter lari (ClPglB).
  • FIG. 3C shows immunoblots detecting AcrA following in vitro glycosylation using 3-month-old freeze thawed components.
  • FIGS. 4A-4B demonstrate the cell-free translation/glycosylation of AcrA.
  • FIG. 4A is an immunoblot detecting different AcrA constructs (anti-AcrA) produced by in vitro translation using either E. coli CFEs or purified translation components (PURE). AcrA concentration was estimated by comparing band intensities to that of purified AcrA loaded in lane 1.
  • FIG. 4B is an immunoblot detecting ⁇ ssAcrA expression (anti-AcrA) and glycosylation (anti-glycan). ⁇ ssAcrAwas produced by cell-free translation/glycosylation using either the CFE or the PURE systems that were primed with pET24(AcrA-cyt). Controls included the omission of different components ( ⁇ ) or LLOs from SCM6 cells with empty pACYC (+/ ⁇ ).
  • FIGS. 5A-5B depict the cell-free translation/glycosylation of scFv 13-R4-GT.
  • FIG. 5A is an immunoblot detecting different scFv13-R4-GT (anti-FLAG) produced by in vitro translation using either E. coli cell-free extracts (CFE) or purified translation components (PURE). Estimates of the scFv13-R4-GT concentration were determined by comparison of band intensities to that of the purified scFv13-R4-GT sample loaded in lane 1.
  • FIG. 5B is an immunoblot detecting scFv13-R4-GT expression (anti-FLAG) and glycosylation (anti-glycan).
  • the scFv13-R4-GT protein was produced by cell-free translation/glycosylation using either the CFE or PURE systems that were primed with pET24-ssDsbAscFv13-R4-GT. Controls included omission of different components ( ⁇ ).
  • FIGS. 6A-6C show an amino acid sequence alignment of various Campylobacter PglB proteins that are suitable for use in the systems, kits, and methods of the present invention.
  • the PglB amino acid sequences are derived from C. jejuni (SEQ ID NO: 2), C. lari (SEQ ID NO:4), C. coli (SEQ ID NO: 6), and C. upsaliensis (SEQ ID NO: 8).
  • An (*) indicates positions which have a single, fully conserved residue; (:) indicates conservation between groups of strongly similar properties; and (.) indicates conservation between groups of weakly similar properties.
  • a PglB consensus sequence based on the alignment of Campylobacter PglB sequences is presented as SEQ ID NO: 10.
  • X Residues that are not fully conserved between the four Campylobacter sequences are depicted as X, where X can be any amino acid residue. Alternatively, X is selected from an amino acid residue at that corresponding position in one of the four depicted Campylobacter sequences.
  • FIGS. 7A-7E shows an amino acid sequence alignment of various Pyrococcus OST STT3 subunit proteins that are suitable for use in the systems, kits, and methods of the present invention.
  • the OST amino acid sequences are derived from P. furiosus (SEQ ID NO: 11), Pyrococcus sp. ST04 (SEQ ID NO: 13), Pyrococcus sp. (strain NA2) (SEQ ID NO: 14), P. horikoshii (SEQ ID NO:15), P. abyssi (SEQ ID NO: 16), and P. yayanosii (SEQ ID NO: 17).
  • An (*) indicates positions which have a single, fully conserved residue; (:) indicates conservation between groups of strongly similar properties; and (.) indicates conservation between groups of weakly similar properties.
  • a STT3 consensus sequence based on the alignment of Pyrococcus STT3 sequences is presented as SEQ ID NO: 18. Residues that are not fully conserved between the six Pyrococcus sequences are depicted as X, where X can be any amino acid residue. Alternatively, X is selected from an amino acid residue at the corresponding position in one of the six depicted Pyrococcus sequences.
  • FIGS. 8A-8D shows an amino acid sequence alignment of various Leishmania OST STT3 subunit related proteins that are suitable for use in the systems, kits, and methods of the present invention.
  • the OST amino acid sequences are derived from L. major (SEQ ID NO: 19), L. donovani (SEQ ID NO: 21), L. infantum (SEQ ID NO: 22), L. mexicana (SEQ ID NO: 23), and L. braziliensis (SEQ ID NO: 24).
  • An (*) indicates positions which have a single, fully conserved residue; (:) indicates conservation between groups of strongly similar properties; and (.) indicates conservation between groups of weakly similar properties.
  • STT3 consensus sequence based on the alignment of Leishmania STT3 sequences is presented as SEQ ID NO: 25. Residues that are not fully conserved between the five Leishmania sequences are depicted as X, where X can be any amino acid residue. Alternatively, X is selected from an amino acid residue at the corresponding position in one of the five depicted Leishmania sequences.
  • FIGS. 9A-9J contain a listing of eukaryotic STT3 oligosaccharyltransferases that are suitable for use in the methods, systems, and kits of the present invention.
  • the oligosaccharyltransferases are identified by UniProtKB Entry number (col. 1), which provides the amino acid sequence of the protein, UniProtKB Entry name (col. 2), protein name (col. 3), gene name (col. 4), organism (col. 5) and European Molecular Biology Laboratory (EMBL) database accession number (col. 6) which provides the encoding nucleotide sequence of the protein.
  • a first aspect of the present invention is directed to a cell-free system for producing a glycosylated protein.
  • This system comprises an isolated oligosaccharyltransferase capable of transferring a glycan from a lipid carrier molecule to a glycoprotein target; one or more isolated glycans, wherein each glycan is linked to a lipid carrier molecule; and a glycoprotein target comprising one or more glycan acceptor amino acid residue, or a nucleic acid molecule encoding said glycoprotein target.
  • oligosaccharyltransferase refers generally to a glycosylation enzyme or subunit of a glycosylation enzyme complex that is capable of transferring a glycan, i.e., an oligosaccharide or polysaccharide, from a donor substrate to a particular acceptor substrate.
  • the donor substrate is typically a lipid carrier molecule linked to the glycan, and the acceptor substrate is typically a particular amino acid residue of a target glycoprotein.
  • Suitable OSTs include those enzymes that transfer a glycan to an asparagine residue, i.e., an OST involved in N-linked glycosylation, and those enzymes that transfer a glycan or activated sugar moiety to a hydroxyl oxygen molecule of an amino acid residue, i.e., an OST involved in O-linked glycosylation.
  • An isolated OST of the present invention can be a single-subunit enzyme, a multi-subunit enzyme complex, or a single subunit derived from a multi-subunit enzyme complex. While a number of exemplary OST enzymes are described below, one of skill in the art readily appreciates that any oligosaccharyltransferase enzyme known in the art is suitable for use in the present invention.
  • the OST can be a prokaryotic OST.
  • PglB a single, integral membrane OST protein derived from Campylobacter jejuni is suitable for use in the present invention.
  • PglB attaches a heptasaccharide to an asparagine residue of a glycoprotein target (Kowarik et al., “Definition of the Bacterial N-glycosylation Site Consensus Sequence,” Embo J. 25:1957-66 (2006), which is hereby incorporated by reference in its entirety).
  • the amino acid sequence encoding C. jejuni PglB (UniProtKB Accession No. Q9S4V7) is shown below as SEQ ID NO: 2:
  • SEQ ID NO: 3 EBL Nucleotide Sequence Database No. AAD51383
  • amino acid and nucleotide sequences of SEQ ID NOs: 2 and 3, respectively, are representative C. jejuni PglB protein and nucleic acid sequences. It is appreciated by one of skill in the art that there are at least 70 subspecies of C. jejuni having a PglB protein that may vary in sequence identity from the amino acid sequence of SEQ ID NO: 2, but retain the same function. Accordingly, homologous PglB protein sequences from other subspecies and strains of C. jejuni that are characterized by an amino acid sequence identity of at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the C.
  • jejuni amino acid sequence of SEQ ID NO: 2 are also suitable for use in the present invention.
  • the amino acid sequences of related C. jejuni PglB proteins and nucleotide sequences encoding the same are known and readily available to one of skill in the art.
  • OSTs from other species of Campylobacter that share sequence identity to C. jejuni PglB and/or are capable of transferring an oligosaccharide moiety to a target glycoprotein are also suitable for use in this and all aspects of the present invention.
  • PglB from Campylobacter lari (ClPglB), which shares only 56% sequence identity to the amino acid sequence of C.
  • Amino acid sequences sharing at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the C. lari amino acid sequence of SEQ ID NO: 4 are also suitable for use in the present invention.
  • the nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 4 is provided below as SEQ ID NO: 5 (EMBL Nucleotide Sequence Database No. ACM64573.1):
  • PglB from C. Coli .
  • the amino acid sequence encoding PglB from C. coli (UniProtKB Accession No. H7W16), which is 81% identical to that of C. jejuni , is provided below as SEQ ID NO: 6
  • Amino acid sequences sharing at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the C. coli amino acid sequence of SEQ ID NO: 6 are also suitable for use in the present invention.
  • the nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 6 is provided below as SEQ ID NO: 7 (EMBL Nucleotide Sequence Database No. EIB14175):
  • PglB from C. upsaliensis Another Campylobacter OST that is suitable for use in this and all aspects of the present invention is PglB from C. upsaliensis .
  • the amino acid sequence encoding PglB from C. upsaliensis (UniProtKB Accession No. E6LAJ2), which is 57% identical to that of C. jejuni , is provided below as SEQ ID NO: 8:
  • Amino acid sequences sharing at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the C. upsaliensis amino acid sequence of SEQ ID NO: 8 are also suitable for use in the present invention.
  • the nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 8 is provided below as SEQ ID NO: 9 (EMBL Nucleotide Sequence Database No. EFU71695):
  • FIGS. 6A-6C An alignment of the Campylobacter PglB sequences is provided in FIGS. 6A-6C , and a PglB consensus sequence based on this alignment is presented as SEQ ID NO: 10 of FIG. 6 .
  • Residues that are not fully conserved between the four Campylobacter sequences are depicted as X, where X can be any amino acid residue. Alternatively, X is selected from one of the four depicted amino acid residue at the corresponding position in the depicted Campylobacter sequences.
  • the OST is an archaea oligosaccharyltransferase.
  • the OST STT3 subunit from Pyrococcus furiosus which is capable of transferring a glycan to an asparagine residue of a target glycoprotein is suitable for use in this and all aspects of the present invention.
  • the amino acid sequence of P. furiosus (UniProtKB Accession No. Q8U4D2) is provided below as SEQ ID NO: 11:
  • Amino acid sequences sharing at least about 70 percent more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the P. furiosus amino acid 50 sequence of SEQ ID NO: 11 are also suitable for use in the present invention.
  • the nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 11 is provided below as SEQ ID NO: 12 (EMBL Nucleotide Sequence Database No. AAL80280):
  • OSTs from other Pyrococcus species or strains that share sequence identity to P. furiosus OST STT3 subunit related protein and/or are capable of transferring a glycan moiety to a target glycoprotein are also suitable for use in the present invention.
  • homologous OSTs derived from Pyrococcus sp. ST04 SEQ ID NO: 13; UniProtKB No. I3RCF1
  • Pyrococcus sp. strain NA2
  • SEQ ID NO: 14 SEQ ID NO: 14; UniProtKB No. F4HM23
  • P. horikoshii SEQ ID NO: 15; UniProtKB No. 074088
  • P. abyssi SEQ ID NO: 16; UniProtKB No.
  • P. yayanosii (SEQ ID NO: 17; UniProtKB No. F8AIG3) each share greater than 70% sequence identity with the amino acid sequence of P. furiosus OST (see alignment of FIG. 7 ), and are suitable for use in this and all aspects of the present invention.
  • the nucleotide sequences encoding the aforementioned Pyrococcus OSTs are known and readily available in the art.
  • a STT3 consensus sequence based on the alignment of Pyrococcus STT3 sequences is presented as SEQ ID NO: 18 in FIG. 7 .
  • Residues that are not fully conserved between the six Pyrococcus sequences are depicted as X, where X can be any amino acid residue. Alternatively, X is selected from an amino acid residue at the corresponding position in one of the six depicted Pyrococcus sequences.
  • the OST is a eukaryotic oligosaccharyltransferase.
  • the OST STT3subunit from Leishmania major which is capable of transferring a glycan to an asparagine residue of a target glycoprotein is suitable for use in this and all aspects of the present invention.
  • the amino acid sequence of L. major (UniProtKB Accession No. Q9U5N8) is provided below as SEQ ID NO: 19.
  • Amino acid sequences sharing at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the L. major amino acid sequence of SEQ ID NO: 19 are also suitable for use in the present invention.
  • the nucleic acid 50 sequence encoding the amino acid sequence of SEQ ID NO: 19 ( L. major STT3) is provided below as SEQ ID NO: 20 (EMBL Nucleotide Sequence Database No. CAB61569):
  • OSTs from other Leishmania species or strains that share sequence identity to L. major OST STT3 subunit related protein and/or are capable of transferring a glycan moiety to a target glycoprotein are also suitable for use in the present invention.
  • homologous OSTs derived from L. donovani SEQ ID NO: 21; UniProtKB No. E9BRZ2
  • L. infantum SEQ ID NO: 22; UniProtKB No. A4IB10
  • L. mexicana SEQ ID NO: 23; UniProtKBKB No. E9B5Z4
  • L. braziliensis SEQ ID NO: 24; UniProtKB No.
  • A4HMD6 which each share greater than 70% sequence identity with the amino acid sequence of L. major OST (see alignment of FIG. 8 ), are also suitable for use in the this and all aspects of the present invention.
  • a STT3 consensus sequence based on the alignment of Leishmania STT3 sequences is presented as SEQ ID NO: 25 in FIG. 8 .
  • Residues that are not fully conserved between the five Leishmania sequences are depicted as X, where X can be any amino acid residue. Alternatively, X is selected from an amino acid residue at the corresponding position in one of the five depicted Leishmania sequences.
  • the eukaryotic oligosaccharyltransferase is STT3 from Saccharomyces cerevisiae .
  • the amino acid sequence of S. cerevisiae (UniProtKB Accession No. P39007) is provided below as SEQ ID NO: 26.
  • Amino acid sequences sharing at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the S. cerevisiae amino acid sequence of SEQ ID NO: 26 are also suitable for use in the present invention.
  • the nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 26 ( S. cerevisiae STT3) is provided below as SEQ ID NO: 27 (EMBL Nucleotide Sequence Database No. BAA06079).
  • the eukaryotic oligosaccharyltransferase is STT3 from Schizosaccharomyces pombe .
  • the amino acid sequence of S. pombe (UniProtKB Accession No. O94335) is provided below as SEQ ID NO: 28.
  • Amino acid sequences sharing at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the S. pombe amino acid sequence 55 of SEQ ID NO: 28 are also suitable for use in the present invention.
  • the nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 28 ( S. pombe STT3) is provided below as SEQ ID NO: 29 (EMBL Nucleotide Sequence Database No. BAA76479).
  • the eukaryotic oligosaccharyltransferase is STT3 from Dictyostelium discoideum.
  • the amino acid sequence of D. discoideum (UniProtKB Accession No. Q54NM9) is provided below as SEQ ID NO: 30.
  • Amino acid sequences sharing at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the D. discoideum amino acid sequence of SEQ ID NO: 30 are also suitable for use in the present invention.
  • the nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 30 ( D. discoideum STT3) is provided below as SEQ ID NO: 31 (EMBL Nucleotide Sequence Database No. EAL64892).
  • FIGS. 9A-9G Other eukaryotic oligosaccharyltransferases that can be utilized in this and all aspects of the present invention are listed in the table of FIGS. 9A-9G .
  • This table identifies each oligosaccharyltransferase by its UniProtKB entry number, which provides the amino acid sequence of the protein, and the EMBL database accession number, which provides the encoding nucleotide sequence.
  • the UniProtKB and EMBL accession numbers, along with the corresponding amino acid and nucleotide sequence information for each oligosaccharyltransferase listed in FIG. 9 is hereby incorporated by reference in its entirety.
  • the oligosaccharyltransferase is an O-linked oligosaccharyltransferase.
  • An exemplary O-linked OST is PilO from Pseudomonas aeruginosa .
  • PilO is responsible for the en bloc transfer of an oligosaccharide from a lipid-linked donor to an oxygen atom of serine and threonine residues (Faridmoayer et al., “Functional Characterization of Bacterial Oligosaccharyltransferases Involved in O-Linked Protein Glycosylation,” J. Bacteriol. 189(22): 8088-8098 (2007), which is hereby incorporated by reference in its entirety).
  • the amino acid sequence of P. aeruginosa (UniProtKB Accession No. Q51353) is provided below as SEQ ID NO: 32
  • Amino acid sequences sharing at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the P. aeruginosa amino acid sequence of SEQ ID NO: 32 are also suitable for use in the present invention.
  • the nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 33 ( P. aeruginosa PilO) is provided below as SEQ ID NO: 33 (EMBL Nucleotide Sequence Database No. AAA87404).
  • O-linked OST suitable for use in all aspects of the present invention is PglL from Neisseria meningitidis (Faridmoayer et al., “Functional Characterization of Bacterial Oligosaccharyltransferases Involved in O-Linked Protein Glycosylation,” J. Bacteriol. 189(22): 8088-8098 (2007), which is hereby incorporated by reference in its entirety).
  • the amino acid sequence of N. meningitidis (UniProtKB Accession No. GIFG65) is provided below as SEQ ID NO: 34:
  • Amino acid sequences sharing at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the N. menigitidis amino acid sequence of SEQ ID NO: 34 are also suitable for use in the present invention.
  • the nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 34 ( N. menigitidis PglL) is provided below as SEQ ID NO: 35 (EMBL Nucleotide Sequence Database No. AEK98518).
  • an “isolated” oligosaccharyltransferase refers to an oligosaccharyltransferase that is substantially pure or substantially separated from other cellular components that naturally accompany the native protein in its natural host cell.
  • the isolated oligosaccharyltransferase of the present invention is at about 80% pure, usually at least about 90% pure, and preferably at least about 95% pure. Purity can be assessed using any method known in the art, e.g., polyacrylamide gel electrophoresis, HPLC, etc.
  • the isolated oligosaccharyltransferase can be obtained from the organism from which it is derived directly, or it can be recombinantly produced and purified from a host cell as described in the Examples herein or using techniques readily known in the art as described below.
  • the use of recombinant expression systems to produce and isolate a protein of interest involves inserting a nucleic acid molecule encoding the amino acid sequence of the desired protein into an expression system to which the molecule is heterologous (i.e., not normally present).
  • One or more desired nucleic acid molecules encoding one or more proteins may be inserted into the vector.
  • the multiple nucleic acid molecules may encode the same or different enzymes.
  • the heterologous nucleic acid molecule is inserted into the expression system or vector in proper sense (5′ ⁇ 3′) orientation relative to the promoter and any other 5′ regulatory molecules, and correct reading frame.
  • nucleic acid constructs can be carried out using standard cloning procedures well known in the art as described by Joseph Sambrook et al., M OLECULAR C LONING : A L ABORATORY M ANUAL (Cold Springs Harbor 1989) and U.S. Pat. No. 4,237,224 to Cohen and Boyer, which are hereby incorporated by reference in its entirety. These recombinant plasmids are then introduced by means of transformation and replicated in a suitable host cell.
  • a variety of genetic signals and processing events that control many levels of gene expression can be incorporated into the nucleic acid construct to maximize enzyme production.
  • mRNA messenger RNA
  • any one of a number of suitable promoters may be used. For instance, when cloning in E.
  • promoters such as the 17 phage promoter, lac promoter, trp promoter, recA promoter, ribosomal RNA promoter, the P R and P L promoters of coliphage lambda and others, including but not limited, to lacUV5, ompF, bla, lpp, and the like, may be used to direct high levels of transcription of adjacent DNA segments. Additionally, a hybrid trp-lacUV5 (tac) promoter or other E. coli promoters produced by recombinant DNA or other synthetic DNA techniques may be used to provide for transcription of the inserted gene.
  • trp-lacUV5 (tac) promoter or other E. coli promoters produced by recombinant DNA or other synthetic DNA techniques may be used to provide for transcription of the inserted gene.
  • Common promoters suitable for directing expression in mammalian cells include, without limitation, SV40, MMTV, metallothionein-1, adenovirus Ela, CMV, immediate early, immunoglobulin heavy chain promoter and enhancer, and RSV-LTR.
  • initiation signals required for efficient gene transcription and translation in prokaryotic cells that can be included in the nucleic acid construct to maximize peptide production, e.g., the Shine-Dalgarno ribosome binding site.
  • any number of suitable transcription and/or translation elements including constitutive, inducible, and repressible promoters, as well as minimal 5′ promoter elements, enhancers or leader sequences may be used.
  • a nucleic acid molecule encoding an oligosaccharyltransferase or other protein component of the present invention e.g., glycoprotein target, enzymes involved in glycan production
  • a promoter molecule of choice including, without limitation, enhancers, and leader sequences
  • a suitable 3′ regulatory region to allow transcription in the host and any additional desired components, such as reporter or marker genes, are cloned into the vector of choice using standard cloning procedures in the art, such as described in Joseph Sambrook et al., M OLECULAR C LONING : A L ABORATORY M ANUAL (Cold Springs Harbor 1989); Frederick M. Ausubel, SHORT P ROTOCOLS IN M OLECULAR B IOLOGY (Wiley 1999), and U.S. Pat. No. 4,237,224 to Cohen and Boyer, which are hereby incorporated by reference in their entirety.
  • nucleic acid molecule encoding the protein or proteins Once the nucleic acid molecule encoding the protein or proteins has been cloned into an expression vector, it is ready to be incorporated into a host.
  • Recombinant molecules can be introduced into cells, without limitation, via transfection (if the host is a eukaryote), transduction, conjugation, mobilization, electroporation, lipofection, protoplast fusion, calcium chloride transformation, mobilization, transfection using bacteriophage, or particle bombardment, using standard cloning procedures known in the art, as described by J OSEPH S AMBROOK et al., M OLECULAR C LONING : A L ABORATORY M ANUAL (Cold Springs Harbor 1989), which is hereby incorporated by reference in its entirety.
  • Suitable host cells for recombinant protein production include both prokaryotic and eukaryotic cells.
  • Suitable prokaryotic host cells include, without limitation, E. coli and other Enterobacteriaceae, Escherichia sp., Campylobacter sp., Wolinella sp., Desulfovibrio sp. Vibrio sp., Pseudomonas sp.
  • Bacillus sp. Listeria sp., Staphylococcus sp., Streptococcus sp., Peptostreptococcus sp., Megasphaera sp., Pectinatus sp., Selenomonas sp., Zymophilus sp., Actinomyces sp., Arthrobacter sp., Frankia sp., Micromonospora sp., Nocardia sp., Propionibacterium sp., Streptomyces sp., Lactobacillus sp., Lactoocccus sp., Leuconostoc sp., Pediococcus sp., Acetobacterium sp., Eubacterium sp., Heliobacterium sp., Heliospirillum sp., Sporomusa sp., Spiroplasma sp.,
  • Enterococcus sp. Clostridium sp., Mycoplasma sp., Mycobacterium sp., Actinobacteria sp., Salmonella sp., Shigella sp., Moraxella sp., Helicobacter sp.
  • Stenotrophomonas sp. Micrococcus sp., Neisseria sp., Bdellovibrio sp., Hemophilus sp., Klebsiella sp., Proteus mirabilis, Enterobacter cloacae, Serratia sp., Citrobacter sp., Proteus sp., Serratia sp., Yersinia sp., Acinetobacter sp., Actinobacillus sp.
  • Bordetella sp. Brucella sp., Capnocytophaga sp., Cardiobacterium sp., Eikenella sp., Francisella sp., Haemophilus sp., Kingella sp., Pasteurella sp., Flavobacterium sp. Xanthomonas sp., Burkholderia sp., Aeromonas sp., Plesiomonas sp., Legionella sp.
  • alpha-proteobacteria such as Wolbachia sp., cyanobacteria, spirochaetes, green sulfur and green non-sulfur bacteria, Gram-negative cocci, Gram negative bacilli which are fastidious, Enterobacteriaceae-glucose-fermenting gram-negative bacilli, Gram negative bacilli-non-glucose fermenters, Gram negative bacilli-glucose fermenting, oxidase positive.
  • eukaryotic cells such as mammalian, insect, and yeast systems are also suitable host cells for transfection/transformation of the expression vector for recombinant protein production.
  • Mammalian cell lines available in the art for expression of a heterologous protein or polypeptide include Chinese hamster ovary cells, HeLa cells, baby hamster kidney cells, COS cells and many others.
  • Purified proteins may be obtained from the host cell by several methods readily known in the art, including ion exchange chromatography, hydrophobic interaction chromatography, affinity chromatography, gel filtration, and reverse phase chromatography.
  • the peptide is preferably produced in purified form (preferably at least about 70 to about 75% pure, or about 80% to 85% pure, more preferably at least about 90% or 95% pure) by conventional techniques.
  • purified form preferably at least about 70 to about 75% pure, or about 80% to 85% pure, more preferably at least about 90% or 95% pure
  • the protein can be isolated and purified by centrifugation (to separate cellular components from supernatant containing the secreted protein) followed by sequential ammonium sulfate precipitation of the supernatant.
  • the fraction containing the protein can be subjected to gel filtration in an appropriately sized dextran or polyacrylamide column to separate the protein from other cellular components and proteins. If necessary, the protein fraction may be further purified by HPLC.
  • the oligosaccharyltransferase catalyzes the transfer of a glycan from a lipid donor to an acceptor protein, peptide, or polypeptide.
  • the lipid donor or carrier molecule is a prokaryotic lipid donor, i.e., it is made in a prokaryote or native to the prokaryote.
  • prokaryotic lipid donors examples include an undecaprenyl-phosphate and an undecaprenyl phosphate-linked bacillosamine (Weerapana et al., “Investigating Bacterial N-Linked Glycosylation: Synthesis and Glycosyl Acceptor Activity of the Undecaprenyl Pyrophosphate-linked Bacillosamine,” J. Am. Chem. Soc. 127: 13766-67 (2005), which is hereby incorporated by reference in its entirety).
  • the lipid donor is a eukaryotic lipid donor, i.e., it is made in a eukaryotic cell or native to the eukaryotic cell.
  • An exemplary eukaryotic lipid donor is dolichylpyrophosphate
  • the glycan comprises an oligosaccharide or polysaccharide that is linked to a lipid donor molecule.
  • the composition of the glycan component varies in number and type of monosaccharide units that make up the oligosaccharide or polysaccharide chain.
  • the monosaccharide components of a glycan include, but are not limited to, one or more of glucose (Glc), galactose (Gal), mannose (Man), fucose (Fuc), N-acetylgalactosamine (GalNAc), N-acetylglucosamine (GlcNAc), glucorionic acid, xylose, sialic acid (e.g., N-acetyl-neuraminic acid (NeuAc), 6-deoxy-talose, and rhamnose monosaccharides.
  • glucose Glc
  • Gal galactose
  • Man mannose
  • Fuc fucose
  • GalNAc N-acetylgalactosamine
  • GlcNAc N-acetylglucosamine
  • glucorionic acid e.g., sialic acid (e.g., N-acetyl-neuraminic acid (NeuAc), 6-deoxy-t
  • the glycan can be a prokaryotic, archaea, or eukaryotic glycan.
  • the glycan may comprise a completely unnatural glycan composition.
  • the glycan is a prokaryotic glycan that is produced by one or more prokaryotic glycosyltransferases.
  • the prokaryotic glycan is produced using a combination of prokaryotic and eukaryotic glycosyltransferases, but has a monosaccharide composition that mimics a prokaryotic glycan structure.
  • the prokaryotic glycan is synthetically produced (Seeberger et al., Chemical and Enzymatic Synthesis of Glycans and Glycoconjugates , in E SSENTIALS OF G LYCOBIOLOGY (A. Varki et al. eds., 2009), which is hereby incorporated by reference in its entirety).
  • An exemplary prokaryotic glycan is a glycan produced by the glycosyltransferases of the C. jejuni , C. Coli, C. lari , or C. upsaliensis Pgl gene clusters or a modified C. jejuni , C. Coli, C. lari , or C. upsaliensis Pgl gene cluster.
  • Genes of the Pgl cluster include wlaA, galE, wlaB, pglH, pglI, pglJ, pglB, pglA, pglC, pglD, wlaJ, pglE, pglF, and pglG (Szymanski and Wren, “Protein Glycosylation in Bacterial Mucosal Pathogens,” Nature Microbiol. 3:225-237 (2005), which is hereby incorporated by reference in its entirety).
  • a prokaryotic glycan typically comprises the diacetamido-trideoxy-sugar, bacillosamine (Bac; 2,4-diacetamido-2,4,6-trideoxyglucose).
  • a suitable prokaryotic glycan of this and all aspects of the present invention is a heptasaccharide comprising glucose, N-acetylgalactosamine, and bacillosamine, i.e., GlcGalNAc 5 Bac.
  • the glycan of this and all aspects of the present invention can be recombinantly produced.
  • a modified or unmodified C. jejuni pgl gene cluster encoding the enzymes that carry out the biosynthesis of the GlcGalNac 5 Bac heptasaccharide and other glycan structures can be isolated and transferred to a suitable host cell for production of a lipid-linked glycan (see also Wacker et al., “N-Linked Glycosylation in Campylobacter jejuni and its Functional Transfer into E. coli,” Science 298(5599): 1790-93 (2002), which is hereby incorporated by reference in its entirety).
  • Pgl gene clusters from other Campylobacter species e.g., C. coli, C. lari , and C. upsaliensis
  • C. coli, C. lari , and C. upsaliensis are also suitable for recombinant production of glycans for use in all aspects of the present invention (Szymanski and Wren, “Protein Glycosylation in Bacterial Mucosal Pathogens,” Nature Microbiol. 3:225-237 (2005), which is hereby incorporated by reference in its entirety).
  • similar Pgl-like glycosylation gene loci have been identified in Wolinella succinogens, Desulfovibrio desulfuricans , and D.
  • the Pgl gene cluster may be modified to enhance lipid-linked glycan production, accumulation, and isolation in the host cell. For example, inactivation of the oligosaccharyltransferase component of the gene cluster (e.g., the pglB gene in the pgl gene cluster) is desirable to prevent transfer of the lipid-linked glycan to a glycoprotein target of the host cell. Additionally, in some embodiments of the present invention, it may be desirable to attenuate, disrupt, or delete competing glycan biosynthesis reactions of the host cell.
  • inactivation of host cell glycosyltransferase enzymes or other enzymes involved in the transfer or ligation of a glycan to acceptor moieties of the host cell may also be desirable.
  • host cell glycosyltransferase enzymes N-linked or O-linked reaction enzymes
  • other enzymes involved in the transfer or ligation of a glycan to acceptor moieties of the host cell may also be desirable.
  • deletion of the WaaL enzyme which transfers glycans from the undecaprenyl lipid carrier onto lipid A which in turn shuttles the oligosaccharides to the outer leaflet of the outer membrane, will ensure that the recombinantly produced lipid-linked glycans accumulate in the inner membrane.
  • coli host cell glycosylation related enzymes that may be deleted, disrupted, or modified include, without limitation, wecA, wbbL, glcT, glf, gafT, wzx, wzy, and enzymes of the O16 antigen biosynthesis pathway.
  • the glycan is a eukaryotic glycan, i.e., a glycan produced by one or more eukaryotic glycosyltransferases.
  • a eukaryotic glycan is produced by only eukaryotic glycosyltransferases.
  • the eukaryotic glycan is produced using a combination of both eukaryotic and prokaryotic glycosyltransferase enzymes, but mimics eukaryotic glycan structure.
  • the eukaryotic glycan is synthetically produced (Seeberger et al., Chemical and Enzymatic Synthesis of Glycans and Glycoconjugates , in E SSENTIALS OF G LYCOBIOLOGY (A. Varki et al. eds., 2009), which is hereby incorporated by reference in its entirety).
  • the eukaryotic glycan comprises a GlcNAc 2 core.
  • the GlcNac 2 core may further comprise at least one mannose residue.
  • Suitable eukaryotic glycan structures may comprise, but are not limited to, Man 1 GlcNAc 2 , Man 2 GlcNAc 2 , and Man 3 GlcNAc 2 .
  • the eukaryotic lipid-linked glycan can be recombinantly produced by introducing one or more eukaryotic glycosyltransferase enzymes in a suitable host cell.
  • a eukaryotic glycosyltransferase as used herein refers to an enzyme that catalyzes the transfer of a sugar reside from a donor substrate, e.g., from an activated nucleotide sugar, to an acceptor substrate, e.g., a growing lipid-linked oligosaccharide chain.
  • Suitable glycosyltransferase enzyme that can be utilized in host cells to facilitate the recombinant production of a eukaryotic lipid-linked glycan of the system include, without limitation, galactosyltransferases (e.g., ⁇ 1,4-galactosyltransferase, ⁇ 1,3-galactosyltransferase), fucosyltransferases, glucosyltransferases, N-acetylgalactosaminyltransferases (e.g., GalNAcT, GalNAc-T1, GalNAc-T2, GalNAc-T3), N-acetylglucosaminyltransferases (e.g., ⁇ -1,2-N-acetylglucosaminyltransferase I (GnTI-), GnT-II, GnT-III, GnT-IV, GnT-V, GnT-VI, and Gv
  • glycosyltransferase enzymes have been extensively studied in a variety of eukaryotic systems. Accordingly, the nucleic acid and amino acid sequences of these enzymes are known and readily available to one of skill in the art. Additionally, many of these enzymes are commercially available (e.g., Sigma-Aldrich, St. Louis, Mo.).
  • Suitable host cells for the production of a prokaryotic or eukaryotic lipid-linked glycan include both prokaryotic host cells and eukaryotic cells.
  • An exemplary list of suitable host cells is provided supra.
  • the nucleotide sequences of the eukaryotic glycosyltransferases can be codon optimized to overcome limitations associated with the codon usage bias between E. coli (and other bacteria) and higher organisms, such as yeast and mammalian cells. Codon usage bias refers to differences among organisms in the frequency of occurrence of codons in protein-coding DNA sequences (genes).
  • a codon is a series of three nucleotides (triplets) that encodes a specific amino acid residue in a polypeptide chain. Codon optimization can be achieved by making specific transversion nucleotide changes, i.e. a purine to pyrimidine or pyrimidine to purine nucleotide change, or transition nucleotide change, i.e. a purine to purine or pyrimidine to pyrimidine nucleotide change.
  • a “glycoprotein target” includes any peptide, polypeptide, or protein that comprise one or more glycan acceptor amino acid residues.
  • glycan acceptor residues comprise an asparagine (N or Asn) to form an N-linked glycoprotein, or hydroxyl oxygen on the side chain of hydroxylysine, hydroxyproline, serine, threonine, or tyrosine to form an O-linked glycoprotein.
  • glycoprotein targets include, without limitation, structural molecules (e.g., collagens), lubricant and protective agents (e.g., mucins), transport proteins (e.g., transferrin), immunological proteins (immunoglobulins, histocompatibility antigens), hormones, enzymes, cell attachment recognition sites, receptors, protein folding chaperones, developmentally regulated proteins, and proteins involved in hemostasis and thrombosis.
  • Therapeutic proteins, such as antibodies are important glycoprotein targets of the system of the present invention.
  • the one or more oligosaccharide acceptor residues of the glycoprotein target may be an asparagine (N or Asn) residue.
  • the asparagine residue is positioned within a glycosylation consensus sequence comprising N-X 1 -S/T (eukaryotic consensus sequence) or D/E-X 1 -N-X 2 -S/T (SEQ ID NO: 1) (prokaryotic consensus sequence) where D is aspartic acid, X 1 and X 2 are any amino acid other than proline, N is asparagine, and T is threonine.
  • the glycoprotein target according to this and all aspects of the present invention can be a purified protein, peptide, or polypeptide comprising the requisite glycan acceptor residues.
  • the glycoprotein target can be in the form of an isolated nucleic acid molecule encoding the glycoprotein target.
  • the system further includes reagents suitable for synthesizing the glycoprotein target from said nucleic acid molecule, i.e., translation reagents.
  • RNA molecules for synthesizing proteins from nucleic acid molecules in vitro (i.e., in a cell-free environment) are well known in the art. These reagents or systems typically consist of extracts from rabbit reticulocytes, wheat germ, and E. coli . The extracts contain all the macromolecule components necessary for translation of an exogenous RNA molecule, including, for example, ribosomes, tRNAs, aminoacyl-tRNA synthetases, initiation, elongation, and termination factors.
  • the other required components of the system include amino acids, energy sources (e.g., ATP, GTP), energy regenerating systems (creatine phosphate and creatine phosphokinase for eukaryote systems, and phosphoenol pyruvate and pyruvate kinase for prokaryote systems), and other cofactors (e.g., Mg 2+ , K + , etc.).
  • energy sources e.g., ATP, GTP
  • energy regenerating systems creatine phosphate and creatine phosphokinase for eukaryote systems, and phosphoenol pyruvate and pyruvate kinase for prokaryote systems
  • other cofactors e.g., Mg 2+ , K + , etc.
  • kits comprising an isolated oligosaccharyltransferase capable of transferring a glycan from a lipid carrier molecule to a glycoprotein target, and one or more isolated glycans, wherein each glycan is linked to a lipid carrier molecule.
  • the isolated oligosaccharyltransferase of the kit may be a purified protein or may be in the form of a nucleic acid encoding the oligosaccharyltransferase.
  • the nucleic acid molecule can be a DNA or RNA molecule, and it can be linearized (naked) or circularized (housed in an expression vector). Exemplary prokaryotic, archaea, and eukaryotic oligosaccharyltransferases are described supra.
  • the one or more glycans are linked to a lipid carrier molecule (e.g., an undecaprenol-pyrophosphate, an undecaprenyl pyrophosphate-linked bacillosamine, or a dolichylpyrophosphate).
  • the glycan may comprise a prokaryotic, archaea, eukaryotic, or completely unnatural synthetic glycan as also described supra.
  • Suitable prokaryotic core glycan structures comprise a heptasaccharide containing glucose, N-acetylgalactosamine, and optionally bacillosamine (e.g., GlcGalNAc 5 Bac).
  • Suitable eukaryotic glycan core structures comprises N-acetylglucosamine and mannose (e.g., Man 1 GlcNAc 2 , Man 2 GlcNAc 2 , and Man 3 GlcNAc 2 ).
  • the one or more isolated glycans linked to a lipid carrier molecule of the kit are in an assembled and purified form.
  • the kit of the present invention comprises one or more nucleic acid molecules encoding one or more eukaryotic and/or prokaryotic glycosyltransferase enzymes, and host cells (eukaryotic or prokaryotic) that contain a polyisoprenyl pyrophosphate glycan carrier and are capable of expressing the one or more nucleic acid molecules.
  • the kit may further contain instructions for recombinantly producing and isolating the lipid-linked glycan in the host cells prior to use with the other kit components.
  • the kit of the present invention may further include in vitro or cell-free transcription and/or translation reagents for synthesizing the oligosaccharyltransferase and/or a glycoprotein, peptide or polypeptide of choice.
  • Another aspect of the present invention relates to a method for producing a glycosylated protein in a cell-free system.
  • This method involves providing an isolated oligosaccharyltransferase capable of transferring a glycan from a lipid carrier molecule to a glycoprotein target, providing one or more isolated glycans, wherein each glycan is linked to a lipid carrier molecule, and providing a glycoprotein target comprising one or more glycan acceptor amino acid residues.
  • This method further involves combining the oligosaccharyltransferase, one or more isolated glycans, and glycoprotein target to form a cell-free glycosylation reaction mixture, and subjecting the cell-free glycosylation reaction mixture to conditions effective for the oligosaccharyltransferase to transfer the glycan from the lipid carrier molecule to the one or more glycan acceptor residues of the glycoprotein target to produce a glycosylated protein.
  • oligosaccharyltransferase isolated glycans linked to a lipid carrier molecule, and glycoprotein target are described in detail supra.
  • glycoprotein target translation may be coupled with glycosylation by providing reagents suitable for synthesizing a glycoprotein target from a nucleic acid molecule.
  • the nucleic acid molecule encoding the glycoprotein target, the translation reagents, oligosaccharyltransferase, isolated glycans are all combined to form a translation-glycosylation reaction mixture.
  • the glycoprotein target is then synthesized from the target nucleic acid molecule prior to or concurrent with the glycosylation reaction.
  • CjPglB E. coli strain C43(DE3) (Lucigen, Middleton, Wis.) was freshly transformed with plasmid pSN18 (Kowarik et al., “N-Linked Glycosylation of Folded Proteins by the Bacterial Oligosaccharyltransferase,” Science 314:1148-1150 (2006), which is hereby incorporated by reference in its entirety), a modified pBAD expression plasmid encoding C. jejuni pglB with a C-terminal decahistidine affinity tag. Cells were grown in 1.5 L of terrific Broth supplemented with 100 ⁇ g/mL of ampicillin at 37° C.
  • Membranes containing PglB were resuspended in 25 mM Tris-HCl, pH 8.0, 250 mM NaCl. 10% glycerol (v/v) and 1% DDM (w/v) (DDM, Anatrace, Affymetrix, Inc., Santa Clara, Calif.) and incubated for 2 h. The insoluble fraction was removed by ultracentrifugation at 100,000 ⁇ g for 1 h. All subsequent buffers contained DDM as the detergent.
  • the solubilized membranes were supplemented with 10 mM imidazole, loaded onto a Ni-NTA superflow affinity column (Qiagen, Valencia, Calif.) and washed with 60 mM imidazole before PglB was eluted with 200 mM imidazole.
  • the purified protein was then injected onto a SUPERDEX® 200 gel filtration column using AKTA-FPLC (GE Healthcare, Waukesha, Wis.). Eluate fractions were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and stained with Coomassie blue to identify the fractions containing PglB ( FIG. 2 ).
  • the protein was desalted with a PD10 desalting column (GE Healthcare) into 20 mM Tris, pH 7.5, 100 mM NaCl, 5% glycerol (w/v) and 0.05% DDM (w/v) and concentrated to 5-10 mg/mL in an Amicon centricon with a molecular mass cutoff of 100 kDa.
  • Expression and purification of the inactive CjPglB mutant was performed identically except C43(DE3) cells carrying plasmid pSN18.1, which encodes an inactive copy of pglB subcloned from pACYCpglmut (see below) were used.
  • ClPglB was purified from BL2-Gold(DE3) cells (Stratagene, La Jolla, Calif.) carrying plasmid pSF2 as described elsewhere (Lizak et al., “X-ray Structure of a Bacterial Oligosaccharyltransferase,” Nature 474:350-355 (2011), which is hereby incorporated by reference in its entirety).
  • BL2-Gold(DE3) cells Stratagene, La Jolla, Calif.
  • plasmid pSF2 as described elsewhere (Lizak et al., “X-ray Structure of a Bacterial Oligosaccharyltransferase,” Nature 474:350-355 (2011), which is hereby incorporated by reference in its entirety).
  • the glycerol content in PglB samples was increased to 10% (w/v).
  • Periplasmic extracts were prepared as described previously (Schwarz et al., “Relaxed Acceptor Site Specificity of Bacterial Oligosaccharyltransferase in Vivo,” Glycobiology 21:45-54 (2011), which is hereby incorporated by reference in its entirety), supplemented with imidazole to reach a final concentration of 10 mM, sterile filtered (0.22 ⁇ m), and purified by nickel affinity chromatography using Ni-NTA superflow affinity column (Qiagen, Valencia, Calif.).
  • Escherichia coli SCM6 cells transformed with pACYCpglmut (Wacker et al., “N-Linked Glycosylation in Campylobacter jejuni and its Functional Transfer Into E. coli,” Science 298:1790-1793 (2002), which is hereby incorporated by reference in its entirety), which codes for the biosynthesis of the C. jejuni LLO and an inactivated C. jejuni pglB gene (W458A and D459A), were grown in 1 L of Luria-Burtani supplemented with 25 ⁇ g/mL of chloramphenicol at 37° C.
  • the sample was dried under nitrogen gas at 37° C., dissolved in 10 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), pH 7.5, 1 mM MnCl2 and 0.1% DDM (w/v) and stored at ⁇ 20° C. An identical procedure was followed to extract lipids from SCM6 cells carrying empty pACYC.
  • a 50 ⁇ L reaction was prepared using the S30 T7 High-Yield Expression System (Promega, Fitchburg, Wis.) or PUREXPRESS® (New England Biolabs, Ipswich, Mass.) according to the manufacturer's instructions.
  • S30 T7 High-Yield Expression System Promega, Fitchburg, Wis.
  • PUREXPRESS® New England Biolabs, Ipswich, Mass.
  • lipid-linked oligosaccharide i.e., a lipid-linked glycan
  • acceptor protein carrying the D/E-X 1 -N-X 2 -S/T motif.
  • CjPglB was expressed in the membrane fraction of E. coli cells, solubilized with 1% N-dodecyl- ⁇ -D-maltopyranoside (DDM) and purified to near homogeneity by nickel affinity chromatography followed by gel filtration ( FIG. 2B ).
  • DDM N-dodecyl- ⁇ -D-maltopyranoside
  • jejuni pgl locus were used for producing the oligosaccharide donor.
  • This gene cluster encodes enzymes that carry out the biosynthesis of a GlcGalNAc5Bac heptasaccharide (where Bac is bacillosamine) and its transfer from membrane-anchored undecaprenylpyrophosphate (UndPP) to asparagine residues.
  • UndPP membrane-anchored undecaprenylpyrophosphate
  • a modified version of this cluster that carried an inactivated pglB gene was transferred to E.
  • SCM6 cells were chosen for several reasons. First, these cells lack the WaaL enzyme that naturally transfers oligosaccharides (e.g. O-antigens, glycans) from the lipid carrier undecaprenyl onto lipid A, which in turn shuttles the oligosaccharides to the outer leaflet of the outer membrane (Feldman et al., “Engineering N-Linked Protein Glycosylation With Diverse O Antigen Lipopolysaccharide Structures in Escherichia coli,” Proc. Nat'l. Acad. Sci. U.S.A. 102:3016-3021 (2005), which is hereby incorporated by reference in its entirety).
  • oligosaccharides e.g. O-antigens, glycans
  • lipid-linked oligosaccharide i.e., a lipid-linked glycan
  • acceptor protein carrying the D/E-X 1 -N-X 2 -S/T motif.
  • CjPglB was expressed in the membrane fraction of E. coli cells, solubilized with 1% N-dodecyl-s-D-maltopyranoside (DDM) and purified to near homogeneity by nickel affinity chromatography followed by gel filtration ( FIG. 2B ).
  • DDM N-dodecyl-s-D-maltopyranoside
  • jejuni pgl locus were used for producing the oligosaccharide donor.
  • This gene cluster encodes enzymes that carry out the biosynthesis of a GlcGalNAc5Bac heptasaccharide (where Bac is bacillosamine) and its transfer from membrane-anchored undecaprenylpyrophosphate (UndPP) to asparagine residues.
  • UndPP membrane-anchored undecaprenylpyrophosphate
  • a modified version of this cluster that carried an inactivated pglB gene was transferred to E.
  • SCM6 cells were chosen for several reasons. First, these cells lack the WaaL enzyme that naturally transfers oligosaccharides (e.g. O-antigens, glycans) from the lipid carrier undecaprenyl onto lipid A, which in turn shuttles the oligosaccharides to the outer leaflet of the outer membrane (Feldman et al., “Engineering N-Linked Protein Glycosylation With Diverse O Antigen Lipopolysaccharide Structures in Escherichia coli,” Proc. Nat'l. Acad. Sci. U.S.A. 102:3016-3021 (2005), which is hereby incorporated by reference in its entirety).
  • oligosaccharides e.g. O-antigens, glycans
  • scFv13-R4-GT glycoengineered single-chain variable fragment
  • GT C-terminal glycosylation tag
  • CjPgIB OST was combined with LLOs extracted from E. coli cells and purified AcrA. This reaction resulted in efficient glycosylation of both AcrA sites as evidenced by the mobility shift of nearly all of the AcrA from the unmodified (g0) to the fully glycosylated (g2) form ( FIG. 3A ). This activity was dependent on PglB and LLOs. Doubling the LLO concentration resulted in the appearance of the g0 and g1 forms of AcrA, in addition to g2, suggesting slightly less efficient glycosylation.
  • glycosylation activity was lost when lipid extracts from cells lacking the pgl cluster or an inactive CjPglB mutant was used ( FIG. 3A ). These results were corroborated by detecting glycosylated AcrA with serum specific for the C. jejuni N-glycan ( FIG. 3A ). Nearly identical results were observed when the glycoengineered scFv13-R4-GT protein was used as the oligosaccharide acceptor ( FIG. 3A ). It should be noted that g2, g3 and g4 were the predominant glycoforms detected here, with barely detectable levels of g1.
  • the purified glycosylation components must tolerate long-term storage and freeze-thaw cycles. To test this, the components were stored separately at ⁇ 20° C. for 3 months. No changes were made to the storage buffers except that the final concentration of glycerol in the PglB samples was increased to 10%. Each of the components was thawed and refrozen 5-10 times during this period, after which an in vitro reaction with ClPglB was performed. This reaction yielded the glycosylation of AcrA that appeared to be only slightly less efficient than the glycosylation observed with freshly purified components (compare FIGS. 3B and 3C ).
  • each AcrA variant was produced as a full-length polypeptide in 1 h ( FIG. 4A ).
  • AcrA carrying its native signal peptide accumulated to the highest level but also experienced the greatest amount of degradation.
  • AcrA carrying a PelB signal peptide in place of the native signal and AcrA lacking a signal peptide each accumulated to a slightly lower concentration but experienced no visible degradation.
  • the PURE system similarly produced all three AcrA variants as full-length polypeptides albeit at a slightly lower level ( ⁇ 100 ⁇ g/mL/h of each) than the CFE-based system ( FIG. 4A ).
  • glycoCFE and glycoPURE translation/glycosylation systems were constructed by combining the purified glycosylation components (minus the acceptor protein) with one of the ccll-free translation systems.
  • the plasmid pET24(AcrA-cyt) that encodes AcrA without an N-terminal signal peptide was chosen to evaluate these systems because it gave rise to significant amounts of target protein in both translation systems with no detectable degradation.
  • AcrA was produced primarily as the doubly glycosylated g2 glycoform with lesser amounts of g1 and virtually no detectable unmodified AcrA ( FIG.
  • glycoCFE and glycoPURE systems contain all the components essential for efficiently translating N-linked glycoproteins.
  • a major advantage of the open prokaryote-based translation/glycosylation systems developed here is that the supply of purified glycosylation components as well as their substrates and cofactors (Lizak et al., “X-ray Structure of a Bacterial Oligosaccharyltransferase,” Nature 474:350-355 (2011), which is hereby incorporated by reference in its entirety) can be provided at precise ratios. Likewise, the concentration of inhibitory substances such as proteases and glycosidases that catalyze the hydrolysis of glycosidic linkages can be reduced or eliminated entirely. Additionally, the in vitro systems permit the introduction of components that may be incompatible with in vivo systems such as certain LLOs that cannot be produced or flipped in vivo.
  • glycoCFE and glycoPURE systems should allow the examination of factors that interact with or stimulate the glycosylation machinery and promote increased acceptor site occupancy.
  • the bacterial OST can glycosylate locally flexible structures in folded proteins (Kowarik et al., “N-Linked Glycosylation of Folded Proteins by the Bacterial Oligosaccharyltransferase,” Science 314:1148-1150 (2006), which is hereby incorporated by reference in its entirety) and also structured domains of some proteins, these systems should help to decipher the influence of protein structure on glycosylation efficiency. Also, since bacterial and eukaryotic glycosylation mechanisms display significant similarities, these bacterial systems could provide a simplified model framework for understanding the more complex eukaryotic process. Third, it allows for further customization of the system by reconstituting additional or alternative steps (both natural and unnatural) in the glycosylation pathway.
  • the ability to extend beyond bacterial glycans can be achieved by supplementation with specific glycosyltransferases and the requisite activated sugars.
  • This approach can be used for making eukaryotic glycan mimetics (Schwarz et al., “A Combined Method for Producing Homogeneous Glycoproteins With Eukaryotic N-Glycosylation,” Nat. Chem. Biol. 6:264-266 (2010), which is hereby incorporated by reference in its entirety) and will allow finer control over the diversity of glycoforms that can be used for modifying target proteins in vitro.
  • glycosylation system founded on a noncanonical glycan code.
  • glycoCFE and glycoPURE systems are useful additions to the cell-free translation and glycobiology toolkits alike.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention is directed to a cell-free system for producing a glycosylated protein. This system comprises an isolated oligosaccharyltransferase capable of transferring a glycan from a lipid carrier molecule to a glycoprotein target, one or more isolated glycans, where each glycan is linked to a lipid carrier molecule, and a glycoprotein target comprising one or more glycan acceptor amino acid residues or a nucleic acid molecule encoding said glycoprotein target. The present invention further relates to kits and methods for producing a glycosylated protein in this cell-free system.

Description

  • This application is a continuation of U.S. patent application Ser. No. 14/356,258, filed May 5, 2014, which is a national stage application under 35 U.S.C. § 371 of International Application No. PCT/US2012/063590, filed Nov. 5, 2012, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/555,854, filed Nov. 4, 2011, which are hereby incorporated by reference in their entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to cell-free systems, kits, and methods for producing a glycosylated protein or peptide.
  • BACKGROUND OF THE INVENTION
  • Cell-free protein-synthesizing systems are emerging as an attractive alternative to conventional expression systems that rely on living cells (Katzen et al., “The Past, Present and Future of Cell-Free Protein Synthesis,” Trends Biotechnol. 23:150-156 (2005)). This is because, over the past decade, cell-free protein synthesis reactions: (i) can be completed in less than a day; (ii) use reagents whose costs are down; (iii) fold complex proteins by routinely forming disulfide bonds; and (iv) can be scaled to 100 L. Two main approaches have been used for in vitro transcription/translation: one is based on cell-free extracts (CFEs), often derived from Escherichia coli, rabbit reticulocytes or wheat germ, and the second is based on reconstituted protein synthesis from purified components (Shimizu et al., “Cell-Free Translation Reconstituted With Purified Components,” Nat. Biotechnol. 19:751-755 (2001)). Because of their ability to co-activate multiple biochemical networks in a single integrated platform (Jewett et al., “An Integrated Cell-Free Metabolic Platform for Protein Production and Synthetic Biology,” Mol. Syst. Biol. 4:220 (2008)), cell free systems are increasingly used in many important biotechnology and synthetic biology applications (Ryabova et al., “Functional Antibody Production Using Cell-Free Translation: Effects of Protein Disulfide Isomerase and Chaperones,” Nat. Biotechnol. 15:79-84 (1997); Noireaux et al., “Principles of Cell-Free Genetic Circuit Assembly,” Proc. Nat'l. Acad. Sci. U.S.A. 100:12672-12677 (2003); Yang et al., “Rapid Expression of Vaccine Proteins for B-Cell Lymphoma in a Cell-Free System,” Biotechnol. Bioeng. 89:503-511 (2005)).
  • The ability to accurately and efficiently glycosylate proteins in a cell-free system would have advantages for many areas of basic and applied research, especially given the importance of N-linked glycosylation in protein folding, quality control, sorting, degradation, secretion and activity (Helenius & Aebi, “Roles of N-Linked Glycans in the Endoplasmic Reticulum,” Annu. Rev. Biochem. 73:1019-1049 (2004)). Unfortunately, the best characterized and most widely used cell-free translation systems based on E. coli are incapable of making glycoproteins because E. coli lack glycosylation machinery. Likewise, rabbit reticulocyte and wheat germ CFE systems cannot perform this post-translational modification because they lack microsomes (Tarui et al., “A Novel Cell-Free Translation/Glycosylation System Prepared From Insect Cells,” J. Biosci. Bioeng. 90:508-514 (2000)). This can be overcome by supplementing eukaryotic CFEs with microsomal vesicles (e.g., canine pancreas microsomes) (Lingappa et al., “Coupled Cell-Free Synthesis, Segregation, and Core Glycosylation of a Secretory Protein,” Proc. Nat'l. Acad. Sci. U.S.A. 75:2338-2342 (1978); Rothblatt & Meyer, “Secretion in Yeast: Reconstitution of the Translocation and Glycosylation of Alpha-Factor and Invertase in a Homologous Cell-Free System,” Cell 44:619-628 (1986)), but the resulting systems do not always faithfully process the target protein due to poor compatibility between some CFEs and microsomal vesicles (Rothblatt & Meyer, “Secretion in Yeast: Reconstitution of the Translocation and Glycosylation of Alpha-Factor and Invertase in a Homologous Cell-Free System,” Cell 44:619-628 (1986); Moreno et al., “An mRNA-Dependent in Vitro Translation System from Trypanosoma brucei,” Mol. Biochem. Parasitol. 46:265-274(1991)). An alternative strategy for creating a cell-free translation system that can execute N-linked glycosylation is to prepare CFEs from specialized cells such as hybridomas (Mikami et al., “A Hybridoma-Based in Vitro Translation System That Efficiently Synthesizes Glycoproteins,” J. Biotechnol. 127:65-78 (2006)), trypanosomes (Moreno et al., “An mRNA-Dependent in Vitro Translation System from Trypanosoma brucei,” Mol. Biochem. Parasitol. 46:265-274 (1991)), insect cells (Tarui et al., “A Novel Cell-Free Translation/Glycosylation System Prepared From Insect Cells,” J. Biosci. Bioeng. 90:508-514 (2000)) or mammalian cells (Shibutani et al., “Preparation of a Cell-Free Translation System From PC12 Cell,” Neurochem. Res. 21:801-807 (1996)). However, these systems are technically difficult to prepare and typically result in inefficient glycosylation and low product yields. Moreover, in all the above systems, the glycosylation process is effectively a “black-box” and thus difficult to control.
  • The present invention is directed at overcoming these and other deficiencies in the art.
  • SUMMARY OF THE INVENTION
  • A first aspect of the present invention is directed to a cell-free system for producing a glycosylated protein. This system comprises an isolated oligosaccharyltransferase (OST) capable of transferring a glycan from a lipid carrier molecule to a glycoprotein target; one or more isolated glycans, wherein each glycan is linked to a lipid carrier molecule; and a glycoprotein target comprising one or more glycan acceptor amino acid residues, or a nucleic acid molecule encoding said glycoprotein target.
  • Another aspect of the present invention is directed to a kit comprising an isolated oligosaccharyltransferase capable of transferring a glycan from a lipid carrier molecule to a glycoprotein target, and one or more isolated glycans, wherein each glycan is linked to a lipid carrier molecule.
  • Another aspect of the present invention relates to a method for producing a glycosylated protein in a cell-free system. This method involves providing an isolated oligosaccharyltransferase capable of transferring a glycan from a lipid carrier molecule to a glycoprotein target, providing one or more isolated glycans, wherein each glycan is linked to a lipid carrier molecule, and providing a glycoprotein target comprising one or more glycan acceptor amino acid residues. This method further involves combining the oligosaccharyltransferase, one or more isolated glycans, and glycoprotein target to form a cell-free glycosylation reaction mixture, and subjecting the cell-free glycosylation reaction mixture to conditions effective for the oligosaccharyltransferase to transfer the glycan from the lipid carrier molecule to the one or more glycan acceptor residues of the glycoprotein target to produce a glycosylated protein.
  • To address the failure of other cell-free systems to accurately and efficiently glycosylate proteins, two novel cell-free translation/glycosylation systems—termed “glycoCFE” and “glycoPURE”—were created as described herein. These systems combine existing in vitro translation systems with a reconstituted N-linked glycosylation pathway. Purified glycosylation components were derived from the protein glycosylation locus (pgl) present in the genome of the Gram-negative bacterium Campylobacter jejuni (FIG. 1A). This gene cluster encodes an N-linked glycosylation system that is functionally similar to that of eukaryotes and archaea, involving an oligosaccharyltransferase that catalyzes the en bloc transfer of preassembled oligosaccharides from lipid carriers onto asparagine residues in a conserved motif [N-X1-S/T in eukaryotes and D/E-X1-N-X2-S/T (SEQ ID NO: 1) in bacteria (Kowarik et al., “Definition of the Bacterial N-Glycosylation Site Consensus Sequence,” EMBO J. 25:1957-1966 (2006), which is hereby incorporated by reference in its entirety), where X1 and X2 are any residues except proline] within polypeptides (FIG. 1B). C. jejuni glycosylation machinery is ideally suited for use in a cell-free translation/glycosylation system for the following reasons. First, E. coli transformed with the entire pgl gene cluster can perform N-linked protein glycosylation (Wacker et al., “N-Linked Glycosylation in Campylobacter jejuni and its Functional Transfer Into E. coli,” Science 298:1790-1793 (2002), which is hereby incorporated by reference in its entirety), thereby providing a convenient host for producing the necessary components in a pure and active form. Since E. coli lacks native glycosylation machinery, the potential for contamination from background N- or O-linked systems is eliminated. Second, C. jejuni OST, named PglB (CjPglB), is a single-subunit enzyme that is active when solubilized in detergent (Lizak et al., “X-ray Structure of a Bacterial Oligosaccharyltransferase,” Nature 474:350-355 (2011), which is hereby incorporated by reference in its entirety), and does not require any accessory components for its activity. Third, CjPglB can transfer sugars post-translationally to locally flexible structures in folded proteins (Kowarik et al., “N-Linked Glycosylation of Folded Proteins by the Bacterial Oligosaccharyltransferase,” Science 314:1148-1150 (2006), which is hereby incorporated by reference in its entirety), indicating that protein glycosylation can be achieved without supplementing a functional membrane system (e.g. microsomes).
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A-1B depict aspects of bacterial and eukaryotic N-linked glycosylation. FIG. 1A shows the 17-kb pgl locus of C. jejuni encoding the N-linked glycosylation machinery that has been fully reconstituted in E. coli. FIG. 1B shows a comparison of N-linked glycosylation in prokaryotes (left) and eukaryotes (right). In both systems, several glycosyltransferases synthesize the glycan by sequential addition of nucleotide-activated sugars on a lipid carrier on the cytoplasmic face of the inner membrane. Once assembled, a flippase transfers the lipid-linked glycans (also referred to as lipid-linked oligosaccharides or LLOs) across the membrane where the oligosaccharyltransferase catalyzes the transfer to Asn residues of periplasmic or endoplasmic reticulum substrate proteins. PglB is a single-subunit, integral membrane protein that is homologous to the catalytic subunit of the eukaryotic OST STT3 (note that PglB and STT3 complex are not drawn to scale). Whereas eukaryotes and archaea use an N-X-S/T acceptor sequence (where X is any amino acid but Pro), PglB requires an extended motif that includes an Asp or Glu residue in the −2 position (D/E-X1-N-X2-S/T (SEQ ID NO:1), where X1 and X2 can be any amino acid except Pro). PglB can transfer sugars post-translationally to locally flexible structures in folded proteins.
  • FIGS. 2A-2B show the purification of bacterial OST. CjPglB was expressed in E. coli C43(DE3) cells and purified to near homogeneity. Elution fractions (as indicated) from gel filtration columns were examined by SDS-PAGE, and the Coomassie Blue-stained gel images (FIG. 2B) are shown together with the elution profiles (FIG. 2A). MW, molecular weight standard.
  • FIGS. 3A-3C show reconstituted glycosylation with defined components. In FIG. 3A, the in vitro glycosylation assay was carried out using purified OST, extracted LLOs and purified acceptor proteins produced in E. coli. The immunoblots of FIG. 3A show the detection of acceptor protein AcrA and scFv13-R4-GT (both anti-His) or glycans (anti-glycan). Reactions included 3 μg wild-type CjPglB, 5 (+) or 10 (++) μL of LLOs and 5 μg of acceptor protein. Controls included the omission of different components (−), inactivated PglB (mut) and LLOs from SCM6 cells with empty pACYC (+/−). Glycosylation yields a mobility shift from the unmodified (g0) to the glycosylated forms (g1 and g2). FIG. 3B is the same assay as described in FIG. 3A but with purified PglB from Campylobacter lari (ClPglB).
  • FIG. 3C shows immunoblots detecting AcrA following in vitro glycosylation using 3-month-old freeze thawed components.
  • FIGS. 4A-4B demonstrate the cell-free translation/glycosylation of AcrA. FIG. 4A is an immunoblot detecting different AcrA constructs (anti-AcrA) produced by in vitro translation using either E. coli CFEs or purified translation components (PURE). AcrA concentration was estimated by comparing band intensities to that of purified AcrA loaded in lane 1. FIG. 4B is an immunoblot detecting ΔssAcrA expression (anti-AcrA) and glycosylation (anti-glycan). ΔssAcrAwas produced by cell-free translation/glycosylation using either the CFE or the PURE systems that were primed with pET24(AcrA-cyt). Controls included the omission of different components (−) or LLOs from SCM6 cells with empty pACYC (+/−).
  • FIGS. 5A-5B depict the cell-free translation/glycosylation of scFv 13-R4-GT. FIG. 5A is an immunoblot detecting different scFv13-R4-GT (anti-FLAG) produced by in vitro translation using either E. coli cell-free extracts (CFE) or purified translation components (PURE). Estimates of the scFv13-R4-GT concentration were determined by comparison of band intensities to that of the purified scFv13-R4-GT sample loaded in lane 1. FIG. 5B is an immunoblot detecting scFv13-R4-GT expression (anti-FLAG) and glycosylation (anti-glycan). The scFv13-R4-GT protein was produced by cell-free translation/glycosylation using either the CFE or PURE systems that were primed with pET24-ssDsbAscFv13-R4-GT. Controls included omission of different components (−).
  • FIGS. 6A-6C show an amino acid sequence alignment of various Campylobacter PglB proteins that are suitable for use in the systems, kits, and methods of the present invention. The PglB amino acid sequences are derived from C. jejuni (SEQ ID NO: 2), C. lari (SEQ ID NO:4), C. coli (SEQ ID NO: 6), and C. upsaliensis (SEQ ID NO: 8). An (*) indicates positions which have a single, fully conserved residue; (:) indicates conservation between groups of strongly similar properties; and (.) indicates conservation between groups of weakly similar properties. A PglB consensus sequence based on the alignment of Campylobacter PglB sequences is presented as SEQ ID NO: 10. Residues that are not fully conserved between the four Campylobacter sequences are depicted as X, where X can be any amino acid residue. Alternatively, X is selected from an amino acid residue at that corresponding position in one of the four depicted Campylobacter sequences.
  • FIGS. 7A-7E shows an amino acid sequence alignment of various Pyrococcus OST STT3 subunit proteins that are suitable for use in the systems, kits, and methods of the present invention. The OST amino acid sequences are derived from P. furiosus (SEQ ID NO: 11), Pyrococcus sp. ST04 (SEQ ID NO: 13), Pyrococcus sp. (strain NA2) (SEQ ID NO: 14), P. horikoshii (SEQ ID NO:15), P. abyssi (SEQ ID NO: 16), and P. yayanosii (SEQ ID NO: 17). An (*) indicates positions which have a single, fully conserved residue; (:) indicates conservation between groups of strongly similar properties; and (.) indicates conservation between groups of weakly similar properties. A STT3 consensus sequence based on the alignment of Pyrococcus STT3 sequences is presented as SEQ ID NO: 18. Residues that are not fully conserved between the six Pyrococcus sequences are depicted as X, where X can be any amino acid residue. Alternatively, X is selected from an amino acid residue at the corresponding position in one of the six depicted Pyrococcus sequences.
  • FIGS. 8A-8D shows an amino acid sequence alignment of various Leishmania OST STT3 subunit related proteins that are suitable for use in the systems, kits, and methods of the present invention. The OST amino acid sequences are derived from L. major (SEQ ID NO: 19), L. donovani (SEQ ID NO: 21), L. infantum (SEQ ID NO: 22), L. mexicana (SEQ ID NO: 23), and L. braziliensis (SEQ ID NO: 24). An (*) indicates positions which have a single, fully conserved residue; (:) indicates conservation between groups of strongly similar properties; and (.) indicates conservation between groups of weakly similar properties. A STT3 consensus sequence based on the alignment of Leishmania STT3 sequences is presented as SEQ ID NO: 25. Residues that are not fully conserved between the five Leishmania sequences are depicted as X, where X can be any amino acid residue. Alternatively, X is selected from an amino acid residue at the corresponding position in one of the five depicted Leishmania sequences.
  • FIGS. 9A-9J contain a listing of eukaryotic STT3 oligosaccharyltransferases that are suitable for use in the methods, systems, and kits of the present invention. The oligosaccharyltransferases are identified by UniProtKB Entry number (col. 1), which provides the amino acid sequence of the protein, UniProtKB Entry name (col. 2), protein name (col. 3), gene name (col. 4), organism (col. 5) and European Molecular Biology Laboratory (EMBL) database accession number (col. 6) which provides the encoding nucleotide sequence of the protein.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A first aspect of the present invention is directed to a cell-free system for producing a glycosylated protein. This system comprises an isolated oligosaccharyltransferase capable of transferring a glycan from a lipid carrier molecule to a glycoprotein target; one or more isolated glycans, wherein each glycan is linked to a lipid carrier molecule; and a glycoprotein target comprising one or more glycan acceptor amino acid residue, or a nucleic acid molecule encoding said glycoprotein target.
  • In accordance with this and all aspects of the present invention, “oligosaccharyltransferase” (“OST”) refers generally to a glycosylation enzyme or subunit of a glycosylation enzyme complex that is capable of transferring a glycan, i.e., an oligosaccharide or polysaccharide, from a donor substrate to a particular acceptor substrate. The donor substrate is typically a lipid carrier molecule linked to the glycan, and the acceptor substrate is typically a particular amino acid residue of a target glycoprotein. Suitable OSTs include those enzymes that transfer a glycan to an asparagine residue, i.e., an OST involved in N-linked glycosylation, and those enzymes that transfer a glycan or activated sugar moiety to a hydroxyl oxygen molecule of an amino acid residue, i.e., an OST involved in O-linked glycosylation. An isolated OST of the present invention can be a single-subunit enzyme, a multi-subunit enzyme complex, or a single subunit derived from a multi-subunit enzyme complex. While a number of exemplary OST enzymes are described below, one of skill in the art readily appreciates that any oligosaccharyltransferase enzyme known in the art is suitable for use in the present invention.
  • In accordance with this and all aspects of the present invention, the OST can be a prokaryotic OST. By way of example only, PglB, a single, integral membrane OST protein derived from Campylobacter jejuni is suitable for use in the present invention. PglB attaches a heptasaccharide to an asparagine residue of a glycoprotein target (Kowarik et al., “Definition of the Bacterial N-glycosylation Site Consensus Sequence,” Embo J. 25:1957-66 (2006), which is hereby incorporated by reference in its entirety). The amino acid sequence encoding C. jejuni PglB (UniProtKB Accession No. Q9S4V7) is shown below as SEQ ID NO: 2:
  • Ile Ile Ser Asn Asp Gly Tyr Ala Phe Ala Glu Gly Ala Arg Asp Met
    1               5                   10                  15
    Ile Ala Gly Phe His Gln Pro Asn Asp Leu Ser Tyr Tyr Gly Ser Ser
                20                  25                  30
    Leu Ser Thr Leu Thr Tyr Trp Leu Tyr Lys Ile Thr Pro Phe Ser Phe
            35                  40                  45
    Glu Ser Ile Ile Leu Tyr Met Ser Thr Phe Leu Ser Ser Leu Val Val
        50                  55                  60
    Ile Pro Ile Ile Leu Leu Ala Asn Glu Tyr Lys Arg Pro Leu Met Gly
    65                  70                  75                  80
    Phe Val Ala Ala Leu Leu Ala Ser Ile Ala Asn Ser Tyr Tyr Asn Arg
                    85                  90                  95
    Thr Met Ser Gly Tyr Tyr Asp Thr Asp Met Leu Val Ile Val Leu Pro
                100                 105                 110
    Met Phe Ile Leu Phe Phe Met Val Arg Met Ile Leu Lys Lys Asp Phe
            115                 120                 125
    Phe Ser Leu Ile Ala Leu Pro Leu Phe Ile Gly Ile Tyr Leu Trp Trp
        130                 135                 140
    Tyr Pro Ser Ser Tyr Thr Leu Asn Val Ala Leu Ile Gly Leu Phe Leu
    145                 150                 155                 160
    Ile Tyr Thr Leu Ile Phe His Arg Lys Glu Lys Ile Phe Tyr Ile Ala
                    165                 170                 175
    Val Ile Leu Ser Ser Leu Thr Leu Ser Asn Ile Ala Trp Phe Tyr Gln
                180                 185                 190
    Ser Thr Ile Ile Val Ile Leu Phe Ala Leu Phe Ala Leu Glu Gln Lys
            195                 200                 205
    Arg Leu Asn Phe Val Ile Ile Gly Ile Leu Ala Ser Val Thr Leu Ile
        210                 215                 220
    Phe Leu Ile Leu Ser Gly Gly Val Asp Pro Ile Leu Tyr Gln Leu Lys
    225                 230                 235                 240
    Phe Tyr Ile Phe Arg Ser Asp Glu Ser Ala Asn Leu Thr Gln Gly Phe
                    245                 250                 255
    Met Tyr Phe Asn Val Asn Gln Thr Ile Gln Glu Val Glu Asn Val Asp
                260                 265                 270
    Leu Ser Glu Phe Met Arg Arg Ile Ser Gly Ser Glu Ile Val Phe Leu
            275                 280                 285
    Phe Ser Leu Phe Gly Phe Val Trp Leu Leu Arg Lys His Lys Ser Met
        290                 295                 300
    Ile Met Ala Leu Pro Ile Leu Val Leu Gly Phe Leu Ala Leu Lys Gly
    305                 310                 315                 320
    Gly Leu Arg Phe Thr Ile Tyr Ser Val Pro Val Met Ala Leu Gly Phe
                    325                 330                 335
    Gly Phe Leu Leu Ser Glu Phe Lys Ala Ile Leu Val Lys Lys Tyr Ser
                340                 345                 350
    Gln Leu Thr Ser Asn Val Cys Ile Val Phe Ala Thr Ile Leu Thr Leu
            355                 360                 365
    Ala Pro Val Phe Ile His Ile Tyr Asn Tyr Lys Ala Pro Thr Val Phe
        370                 375                 380
    Ser Gln Asn Glu Ala Ser Leu Leu Asn Gln Leu Lys Asn Ile Ala Asn
    385                 390                 395                 400
    Arg Glu Asp Tyr Val Val Thr Trp Trp Asp Tyr Gly Tyr Pro Val Arg
                    405                 410                 415
    Tyr Tyr Ser Asp Val Lys Thr Leu Val Asp Gly Gly Lys His Leu Gly
                420                 425                 430
    Lys Asp Asn Phe Phe Pro Ser Phe Ala Leu Ser Lys Asp Glu Gln Ala
            435                 440                 445
    Ala Ala Asn Met Ala Arg Leu Ser Val Glu Tyr Thr Glu Lys Ser Phe
        450                 455                 460
    Tyr Ala Pro Gln Asn Asp Ile Leu Lys Thr Asp Ile Leu Gln Ala Met
    465                 470                 475                 480
    Met Lys Asp Tyr Asn Gln Ser Asn Val Asp Leu Phe Leu Ala Ser Leu
                    485                 490                 495
    Ser Lys Pro Asp Phe Lys Ile Asp Thr Pro Lys Thr Arg Asp Ile Tyr
                500                 505                 510
    Leu Tyr Met Pro Ala Arg Met Ser Leu Ile Phe Ser Thr Val Ala Ser
            515                 520                 525
    Phe Ser Phe Ile Asn Leu Asp Thr Gly Val Leu Asp Lys Pro Phe Thr
        530                 535                 540
    Phe Ser Thr Ala Tyr Pro Leu Asp Val Lys Asn Gly Glu Ile Tyr Leu
    545                 550                 555                 560
    Ser Asn Cly Val Val Leu Ser Asp Asp Phe Arg Ser Phe Lys Ile Gly
                    565                 570                 575
    Asp Asn Val Val Ser Val Asn Ser Ile Val Glu Ile Asn Ser Ile Lys
                580                 585                 590
    Gln Cly Glu Tyr Lys Ile Thr Pro Ile Asp Asp Lys Ala Gln Phe Tyr
            595                 600                 605
    Ile Phe Tyr Leu Lys Asp Ser Ala Ile Pro Tyr Ala Gln Phe Ile Leu
        610                 615                 620
    Met Asp Lys Thr Met Phe Asn Ser Ala Tyr Val Gln Met Phe Phe Leu
    625                 630                 635                 640
    Gly Asn Tyr Asp Lys Asn Leu Phe Asp Leu Val Ile Asn Ser Arg Asp
                    645                 650                 655
    Ala Lys Val Phe Lys Leu Lys Ile
                660
  • The nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 2 is provided below as SEQ ID NO: 3 (EMBL Nucleotide Sequence Database No. AAD51383):
  • atcatttcaa acgatggtta tgcttttgct gagggtgcaa gagatatgat agcaggtttt   60
    catcagccta atgatttgag ttattatgga tcttctttat ctacgcttac ttattggctt  120
    tataaaatca cacctttttc tttcgaaagt attattttat atatgagtac ttttttatct  180
    tctttggtgg tgattcctat tattttacta gctaatgaat acaaacgtcc tttaatgggc  240
    tttgtagctg ctcttttagc aagtatagca aacagttatt ataatcgcac tatgagtggg  300
    tattatgata cggatatgct ggtaattgtt ttacctatgt ttattttatt ttttatggta  360
    agaatgattt taaaaaaaga ctttttttca ttgattgcct taccgttatt tataggaatt  420
    tatctttggt ggtatccttc aagctatact ttaaatgtag ctttaattgg acttttttta  480
    atttatacac ttatttttca tagaaaagaa aagatttttt atatagctgt gattttgtct  540
    tctcttactc tttcaaatat agcatggttt tatcaaagta ctattatagt aatacttttt  600
    gctttatttg ctttagagca aaaacgctta aattttgtaa ttataggaat tttagctagt  660
    gtaactttga tatttttgat tttaagtgga ggggttgatc ctatacttta tcagcttaaa  720
    ttttatattt ttagaagtga tgaaagtgcg aatttaacgc agggttttat gtattttaat  780
    gtcaatcaaa ccatacaaga agttgaaaat gtagatctta gcgaatttat gcgaagaatt  840
    agtggtagtg aaattgtttt tttgttttct ttgtttggtt ttgtatggct tttgagaaaa  900
    cataaaagta tgattatggc tttacctata ttggtgcttg ggtttttagc cttaaaaggg  960
    gggcttagat ttaccattta ttctgtacct gtaatggcct taggatttgg ttttttattg 1020
    agcgagttta aggctatatt ggttaaaaaa tatagccaat taacttcaaa tgtttgtatt 1080
    gtttttgcaa ctattttgac tttagctcca gtatttatcc atatttacaa ctataaagca 1140
    ccaacagttt tttctcaaaa tgaagcatca ttattaaatc aattaaaaaa tatagccaat 1200
    agagaagatt atgtggtaac ttggtgggat tatggttatc ctgtgcgtta ttatagtgat 1260
    gtgaaaactt tagtagatgg tggaaagcat ttaggtaagg ataatttttt cccttctttt 1320
    gctttaagca aagatgaaca agctgcagct aatatggcaa gacttagtgt agaatataca 1380
    gaaaaaagct tttatgctcc gcaaaatgat attttaaaaa cagacatttt acaagccatg 1440
    atgaaagatt ataatcaaag caatgtggat ttgtttctag cttcattatc aaaacctgat 1500
    tttaaaatcg atacaccaaa aactcgtgat atttatcttt atatgcccgc tagaatgtct 1560
    ttgatttttt ctacggtggc tagtttttct tttattaatt tagatacagg agttttggat 1620
    aaacctttta cctttagcac agcttatcca cttgatgtta aaaatggaga aatttatctt 1680
    agcaacggag tggttttaag cgatgatttt agaagtttta aaataggtga taatgtggtt 1740
    tctgtaaata gtatcgtaga gattaattct attaaacaag gtgaatacaa aatcactcca 1800
    attgatgata aggctcagtt ttatattttt tatttaaagg atagtgctat tccttacgca 1860
    caatttattt taatggataa aaccatgttt aatagtgctt atgtgcaaat gtttttttta 1920
    ggaaattatg ataagaattt atttgacttg gtgattaatt ctagagatgc taaggttttt 1980
    aaacttaaaa tttaa                                                  1995
  • The amino acid and nucleotide sequences of SEQ ID NOs: 2 and 3, respectively, are representative C. jejuni PglB protein and nucleic acid sequences. It is appreciated by one of skill in the art that there are at least 70 subspecies of C. jejuni having a PglB protein that may vary in sequence identity from the amino acid sequence of SEQ ID NO: 2, but retain the same function. Accordingly, homologous PglB protein sequences from other subspecies and strains of C. jejuni that are characterized by an amino acid sequence identity of at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the C. jejuni amino acid sequence of SEQ ID NO: 2 are also suitable for use in the present invention. The amino acid sequences of related C. jejuni PglB proteins and nucleotide sequences encoding the same are known and readily available to one of skill in the art.
  • OSTs from other species of Campylobacter that share sequence identity to C. jejuni PglB and/or are capable of transferring an oligosaccharide moiety to a target glycoprotein are also suitable for use in this and all aspects of the present invention. For example, as demonstrated herein, PglB from Campylobacter lari (ClPglB), which shares only 56% sequence identity to the amino acid sequence of C. jejuni (Schwarz et al., “Relaxed Acceptor Site Specificity of Bacterial Oligosaccharyltransferase in Vivo,” Glycobiology 21:45-54 (2011), which is hereby incorporated by reference in its entirety), is capable of transferring a glycan to an acceptor amino acid residue (i.e., asparagine) of a target glycoprotein in the cell-free glycosylation system of the present invention. The amino acid sequence encoding C. lari PglB (UniProtKB Accession No. B9KDD4) is shown below as SEQ ID NO: 4:
  • Met Lys Leu Gln Gln Asn Phe Thr Asp Asn Asn Ser Ile Lys Tyr Thr
    1               5                   10                  15
    Cys Ile Leu Ile Leu Ile Ala Phe Ala Phe Ser Val Leu Cys Arg Leu
                20                  25                  30
    Tyr Trp Val Ala Trp Ala Ser Glu Phe Tyr Glu Phe Phe Phe Asn Asp
            35                  40                  45
    Gln Leu Met Ile Thr Thr Asn Asp Gly Tyr Ala Phe Ala Glu Gly Ala
        50                  55                  60
    Arg Asp Met Ile Ala Gly Phe His Gln Pro Asn Asp Leu Ser Tyr Phe
    65                  70                  75                   80
    Gly Ser Ser Leu Ser Thr Leu Thr Tyr Trp Leu Tyr Ser Ile Leu Pro
                    85                  90                  95
    Phe Ser Phe Glu Ser Ile Ile Leu Tyr Met Ser Ala Phe Phe Ala Ser
                100                 105                 110
    Leu Ile Val Val Pro Ile Ile Leu Ile Ala Arg Glu Tyr Lys Leu Thr
            115                 120                 125
    Thr Tyr Gly Phe Ile Ala Ala Leu Leu Gly Ser Ile Ala Asn Ser Tyr
        130                 135                 140
    Tyr Asn Arg Thr Met Ser Gly Tyr Tyr Asp Thr Asp Met Leu Val Leu
    145                 150                 155                 160
    Val Leu Pro Met Leu Ile Leu Leu Thr Phe Ile Arg Leu Thr Ile Asn
                    165                 170                 175
    Lys Asp Ile Phe Thr Leu Leu Leu Ser Pro Val Phe Ile Met Ile Tyr
                180                 185                 190
    Leu Trp Trp Tyr Pro Ser Ser Tyr Ser Leu Asn Phe Ala Met Ile Gly
            195                 200                 205
    Leu Phe Gly Leu Tyr Thr Leu Val Phe His Arg Lys Glu Lys Ile Phe
        210                 215                 220
    Tyr Leu Thr Ile Ala Leu Met Ile Ile Ala Leu Ser Met Leu Ala Trp
    225                 230                 235                 240
    Gln Tyr Lys Leu Ala Leu Ile Val Leu Leu Phe Ala Ile Phe Ala Phe
                    245                 250                 255
    Lys Glu Glu Lys Ile Asn Phe Tyr Met Ile Trp Ala Leu Ile Phe Ile
                260                 265                 270
    Ser Ile Leu Ile Leu His Leu Ser Gly Gly Leu Asp Pro Val Leu Tyr
            275                 280                 285
    Gln Leu Lys Phe Tyr Val Phe Lys Ala Ser Asp Val Gln Asn Leu Lys
        290                 295                 300
    Asp Ala Ala Phe Met Tyr Phe Asn Val Asn Glu Thr Ile Met Glu Val
    305                 310                 315                 320
    Asn Thr Ile Asp Pro Glu Val Phe Met Gln Arg Ile Ser Ser Ser Val
                    325                 330                335
    Leu Val Phe Ile Leu Ser Phe Ile Gly Phe Ile Leu Leu Cys Lys Asp
                340                 345                 350
    His Lys Ser Met Leu Leu Ala Leu Pro Met Leu Ala Leu Gly Phe Met
            355                 360                 365
    Ala Leu Arg Ala Gly Leu Arg Phe Thr Ile Tyr Ala Val Pro Val Met
        370                 375                 380
    Ala Leu Gly Phe Gly Tyr Phe Leu Tyr Ala Phe Phe Asn Phe Leu Glu
    385                 390                 395                 400
    Lys Lys Gln Ile Lys Leu Ser Leu Arg Asn Lys Asn Ile Leu Leu Ile
                    405                 410                 415
    Leu Ile Ala Phe Phe Ser Ile Ser Pro Ala Leu Met His Ile Tyr Tyr
                420                 425                 430
    Tyr Lys Ser Ser Thr Val Phe Thr Ser Tyr Glu Ala Ser Ile Leu Asn
            435                 440                 445
    Asp Leu Lys Asn Lys Ala Gln Arg Glu Asp Tyr Val Val Ala Trp Trp
        450                 455                 460
    Asp Tyr Gly Tyr Pro Ile Arg Tyr Tyr Ser Asp Val Lys Thr Leu Ile
    465                 470                 475                 480
    Asp Cly Gly Lys His Leu Gly Lys Asp Asn Phe Phe Ser Ser Phe Val
                    485                 490                 495
    Leu Ser Lys Glu Gln Ile Pro Ala Ala Asn Met Ala Arg Leu Ser Val
                500                 505                 510
    Glu Tyr Thr Glu Lys Ser Phe Lys Glu Asn Tyr Pro Asp Val Leu Lys
            515                 520                 525
    Ala Met Val Lys Asp Tyr Asn Lys Thr Ser Ala Lys Asp Phe Leu Glu
        530                 535                 540
    Ser Leu Asn Asp Lys Asp Phe Lys Phe Asp Thr Asn Lys Thr Arg Asp
    545                 550                 555                 560
    Val Tyr Ile Tyr Met Pro Tyr Arg Met Leu Arg Ile Met Pro Val Val
                    565                 570                 575
    Ala Gln Phe Ala Asn Thr Asn Pro Asp Asn Gly Glu Gln Glu Lys Ser
                580                 585                 590
    Leu Phe Phe Ser Gln Ala Asn Ala Ile Ala Gln Asp Lys Thr Thr Gly
            595                 600                 605
    Ser Val Met Leu Asp Asn Gly Val Glu Ile Ile Asn Asp Phe Arg Ala
        610                 615                620
    Leu Lys Val Glu Gly Ala Ser Ile Pro Leu Lys Ala Phe Val Asp Ile
    625                 630                 635                 640
    Glu Ser Ile Thr Asn Gly Lys Phe Tyr Tyr Asn Glu Ile Asp Ser Lys
                    645                 650                 655
    Ala Gln Ile Tyr Leu Leu Phe Leu Arg Glu Tyr Lys Ser Phe Val Ile
                660                 665                 670
    Leu Asp Glu Ser Leu Tyr Asn Ser Ser Tyr Ile Gln Met Phe Leu Leu
            675                 680                 685
    Asn Gln Tyr Asp Gln Asp Leu Phe Glu Gln Ile Thr Asn Asp Thr Arg
        690                 695                 700
    Ala Lys Ile Tyr Arg Leu Lys
    705                 710
  • Amino acid sequences sharing at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the C. lari amino acid sequence of SEQ ID NO: 4 are also suitable for use in the present invention. The nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 4 is provided below as SEQ ID NO: 5 (EMBL Nucleotide Sequence Database No. ACM64573.1):
  • atgaaactac aacaaaattt cacggataat aattctataa aatatacctg tattttaatc   60
    cttatagcct ttgcttttag tgttttgtgt agattatact gggtagcttg ggcaagtgag  120
    ttttatgagt ttttctttaa tgatcaactc atgattacta ctaatgatgg ctatgctttt  180
    gcagaaggtg caagagatat gatagcaggt tttcatcaac ctaatgactt atcttatttt  240
    ggaagctcac tttctacttt gacttattgg ctttatagta ttttgccttt tagctttgaa  300
    agtattattt tatatatgag tgcttttttt gcttctttga ttgttgtgcc tattatatta  360
    atcgcaagag agtataaact cactacctat ggctttatag cagctttact tggaagcatt  420
    gcaaatagtt attataaccg cactatgagt gggtattacg atacagatat gctagtgtta  480
    gttttaccaa tgcttatttt gcttaccttt atacgcttaa ctattaataa agacattttc  540
    accctacttt taagtccggt ttttatcatg atttatttgt ggtggtatcc atcaagttat  600
    tctttaaatt ttgctatgat aggacttttt ggactttata ctttagtatt tcatagaaaa  660
    gaaaagattt tttatctaac tattgctttg atgatcatag ctttaagtat gctagcatgg  720
    caatataagc ttgctttgat tgtattatta tttgctattt ttgcttttaa agaagaaaaa  780
    atcaattttt atatgatttg ggctttgatt tttattagca ttttgatatt gcatttaagt  840
    ggcggcttag atcctgtttt ataccaactt aaattttatg tatttaaagc ttctgatgtg  900
    caaaatttaa aagatgctgc ctttatgtat tttaatgtca atgaaaccat tatggaagta  960
    aatactatcg atcctgaagt atttatgcaa agaattagct ctagtgtttt agtatttatc 1020
    ctttctttta taggttttat cttactttgc aaagatcaca aaagcatgct tttggctcta 1080
    cctatgcttg cactaggttt tatggcttta agagctggac ttagatttac catttatgca 1140
    gttcctgtga tggctttggg ttttgggtat tttttatatg cattttttaa ttttttagaa 1200
    aaaaaacaaa tcaaacttag cctaagaaat aaaaatatct tacttatact cattgcattt 1260
    tttagtataa gccctgcttt gatgcatatt tattattata aatcctctac tgtttttact 1320
    tcttatgaag ctagtatttt aaatgattta aaaaataaag ctcaaagaga agattatgtt 1380
    gttgcttggt gggattatgg ttatccaata cgctattata gcgatgtaaa aaccttaatc 1440
    gatggtggaa aacacctagg aaaagataat tttttctcat cttttgtctt aagcaaagaa 1500
    caaattccag cagccaatat ggcaagactt agcgtagaat acactgaaaa atctttcaaa 1560
    gaaaactatc ctgatgtttt aaaagctatg gttaaagatt ataataaaac aagtgctaaa 1620
    gattttttag aaagtttaaa tgataaagat tttaaatttg ataccaataa aactagagat 1680
    gtatacattt atatgcctta tagaatgttg cgtatcatgc ctgtggtggc acaatttgca 1740
    aatacaaatc ctgataatgg agagcaagaa aaaagtttat ttttctccca agctaatgcc 1800
    atagctcaag ataaaaccac aggttctgtt atgcttgata atggagtaga aattattaat 1860
    gattttagag ccttaaaagt agaaggtgca agcatacctt taaaagcttt tgtggatata 1920
    gaatccatta ctaatggcaa attttattac aatgaaattg attcaaaagc tcaaatttat 1980
    ttgctctttt taagagaata taaaagcttt gtgattttag atgaaagtct ttataatagt 2040
    tcttatatac aaatgttttt gttaaatcaa tacgatcaag atttatttga acaaattact 2100
    aatgatacaa gagcaaaaat ttataggcta aaaagatga                        2139
  • Another N-linked OST from Campylobacter that is suitable for use in this and all aspects of the present invention is PglB from C. Coli. The amino acid sequence encoding PglB from C. coli (UniProtKB Accession No. H7W16), which is 81% identical to that of C. jejuni, is provided below as SEQ ID NO: 6
  • Met Leu Lys Lys Glu Tyr Phe Lys Asn Pro Thr Phe Ile Leu Leu Ala
    1               5                   10                  15
    Phe Ile Ile Leu Ala Tyr Val Phe Ser Val Leu Cys Arg Phe Tyr Trp
                20                  25                  30
    Ile Phe Trp Ala Ser Glu Phe Asn Glu Tyr Phe Phe Asn Asn Glu Leu
            35                  40                  45
    Met Ile Ile Ser Asn Asp Gly Tyr Ala Phe Ala Glu Gly Ala Arg Asp
        50                  55                  60
    Met Ile Ala Gly Phe His Gln Pro Asn Asp Leu Ser Tyr Tyr Gly Ser
    65                  70                  75                   80
    Ser Leu Ser Thr Leu Thr Tyr Trp Phe Tyr Lys Ile Thr Pro Phe Ser
                    85                  90                  95
    Leu Glu Ser Ile Phe Ile Tyr Ile Ser Thr Phe Leu Ser Ser Leu Val
                100                 105                 110
    Val Ile Pro Leu Ile Leu Ile Ala Asn Glu Tyr Lys Arg Pro Leu Met
            115                 120                 125
    Gly Phe Val Ala Ala Leu Leu Ala Ser Ile Ala Asn Ser Tyr Tyr Asn
        130                 135                 140
    Arg Thr Met Ser Gly Tyr Tyr Asp Thr Asp Met Leu Val Ile Val Leu
    145                 150                 155                 160
    Ala Met Met Ile Val Phe Phe Met Ile Arg Leu Ile Leu Lys Lys Asp
                    165                 170                 175
    Leu Leu Ser Leu Ile Thr Leu Pro Leu Phe Val Gly Ile Tyr Leu Trp
                180                 185                 190
    Trp Tyr Pro Ser Ser Tyr Thr Leu Asn Val Ala Leu Leu Gly Leu Phe
            195                 200                 205
    Phe Ile Tyr Thr Leu Val Phe His Ile Lys Glu Lys Thr Leu Tyr Met
        210                 215                 220
    Ala Ile Ile Leu Ala Ser Ile Thr Leu Ser Asn Ile Ala Trp Phe Tyr
    225                 230                 235                 240
    Gln Ser Ala Ile Ile Val Ile Leu Phe Ser Leu Phe Val Leu Gln Asn
                    245                 250                 255
    Lys Arg Phe Ser Phe Ala Leu Leu Gly Ile Leu Gly Leu Ala Thr Leu
                260                 265                 270
    Val Phe Leu Ile Leu Ser Gly Gly Ile Asp Pro Ile Leu Tyr Gln Leu
            275                 280                 285
    Lys Phe Tyr Ile Phe Arg Ser Asp Glu Ser Ala Asn Leu Ala Gln Gly
        290                 295                 300
    Phe Met Tyr Phe Asn Val Asn Gln Thr Ile Gln Glu Val Glu Ser Ile
    305                 310                 315                 320
    Asp Leu Ser Ile Phe Met Gln Arg Ile Ser Gly Ser Glu Leu Val Phe
                    325                 330                335
    Phe Val Ser Leu Ile Gly Phe Ile Phe Leu Val Arg Lys His Lys Ser
                340                 345                 350
    Met Ile Leu Ala Leu Pro Met Leu Ala Leu Gly Phe Leu Ala Leu Lys
            355                 360                 365
    Ser Gly Leu Arg Phe Thr Ile Tyr Ala Val Pro Val Leu Ala Leu Gly
        370                 375                 380
    Phe Gly Phe Leu Met Ser Leu Leu Gln Glu Arg Lys Gln Lys Asn Asn
    385                 390                 395                 400
    Asn Thr Tyr Trp Trp Ala Asn Ile Gly Val Phe Ile Phe Thr Phe Leu
                    405                 410                 415
    Ser Leu Ile Pro Met Phe Tyr His Ile Asn Asn Tyr Lys Ala Pro Thr
                420                 425                 430
    Val Phe Ser Gln Asn Glu Ala Thr Lys Leu Asp Glu Leu Lys Lys Ile
            435                 440                 445
    Ala Gln Arg Glu Asp Tyr Val Val Thr Trp Trp Asp Tyr Gly Tyr Pro
        450                 455                 460
    Ile Arg Tyr Tyr Ser Asp Val Lys Thr Leu Ala Asp Gly Gly Lys His
    465                 470                 475                 480
    Leu Gly Lys Asp Asn Phe Phe Pro Ser Phe Val Leu Ser Lys Asp Gln
                    485                 490                 495
    Val Ala Ala Ala Asn Met Ala Arg Leu Ser Val Glu Tyr Thr Glu Lys
                500                 505                 510
    Ser Phe Tyr Ala Pro Leu Asn Asp Ile Leu Lys Asn Asp Leu Leu Gln
            515                 520                 525
    Ala Met Met Lys Asp Tyr Asn Gln Asn Asn Val Asp Leu Phe Leu Ala
        530                 535                 540
    Ser Leu Ser Lys Pro Asp Phe Lys Ile Asn Thr Pro Lys Thr Arg Asp
    545                 550                 555                 560
    Val Tyr Ile Tyr Met Pro Ala Arg Met Ser Leu Ile Phe Ser Thr Val
                    565                 570                 575
    Ala Per Phe Ser Phe Val Asp Leu Glu Thr Gly Glu Ile Asn Lys Pro
                580                 585                 590
    Phe Thr Phe Ser Ala Ala Tyr Pro Leu Asp Val Lys Asn Gly Glu Ile
            595                 600                 605
    Tyr Leu Ser Asn Cly Ile Ala Leu Ser Asp Asp Phe Arg Ser Phe Lys
        610                 615                620
    Ile Asn Asn Ser Thr Ile Ser Val Asn Ser Ile Ile Glu Ile Asn Ser
    625                 630                 635                 640
    Ile Lys Gln Gly Glu Tyr Lys Ile Thr Pro Ile Asp Asp Met Ala Gln
                    645                 650                 655
    Phe Tyr Ile Phe Tyr Leu Lys Asp Ser Thr Ile Pro Tyr Ala Gln Phe
                660                 665                 670
    Ile Leu Met Asp Lys Thr Met Phe Asn Ser Ala Tyr Val Gln Met Phe
            675                 680                 685
    Phe Leu Gly Asn Tyr Asp Lys Asn Leu Tyr Asp Leu Val Ile Asn Ala
        690                 695                 700
    Arg Asp Ala Lys Val Phe Lys Leu Lys Ile
    705                 710
  • Amino acid sequences sharing at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the C. coli amino acid sequence of SEQ ID NO: 6 are also suitable for use in the present invention. The nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 6 is provided below as SEQ ID NO: 7 (EMBL Nucleotide Sequence Database No. EIB14175):
  • atgttaaaaa aagaatactt taaaaaccca acttttattt tattggcttt tataatttta   60
    gcgtatgtct ttagtgtttt atgtaggttt tattggattt tttgggcaag tgagtttaat  120
    gaatattttt tcaataacga gcttatgatt atctcaaatg atggatatgc ttttgcagag  180
    ggtgcaagag atatgatagc gggttttcat caacctaatg atttgagtta ttatggttct  240
    tcgctttcaa cgctcacata ttggttttat aaaataactc ctttttcttt agaaagcatt  300
    tttatatata tcagtacttt tttatcttct ttggtggtta tacctttgat tttgattgct  360
    aatgaataca aacgcccttt aatggggttt gttgcagcat tgctagccag tatagctaat  420
    agctattata atcgcacgat gagcggatat tatgatactg atatgcttgt tatagttctt  480
    gcaatgatga tagttttctt tatgataagg ctgattttga aaaaagattt attatcttta  540
    ataacactgc ctttgtttgt aggaatttat ctttggtggt atccatcaag ctatacttta  600
    aatgttgctt tactaggact tttctttatt tataccttgg tttttcatat aaaagaaaaa  660
    acgctttata tggctattat cctagcttct atcacacttt caaatatagc ttggttttat  720
    caaagcgcca tcattgtcat actttttagt ctttttgttt tgcaaaataa gcgttttagc  780
    tttgctttgc ttggaatttt aggtttggca actttggtat ttttgatact aagcggtgga  840
    attgatccta tactctatca acttaaattt tatattttta gaagtgatga gagtgcaaat  900
    ttggctcaag gttttatgta ttttaatgta aatcaaacca tacaagaggt agaaagtata  960
    gatttaagta tttttatgca aaggattagc ggaagcgagc ttgtattttt tgtatcttta  1020
    atcggcttta ttttccttgt tagaaaacat aaaagtatga ttttggcttt gccgatgtta  1080
    gctttaggat ttttagcact taagagtgga cttcgtttta ctatttatgc agtacctgtt  1140
    ttagcacttg gatttggttt tttaatgagt cttttgcaag aaagaaaaca aaaaaacaat  1200
    aatacctatt ggtgggccaa tataggcgtt tttattttta cttttttaag tttaattcct  1260
    atgttctatc atatcaacaa ttataaagca ccaactgttt tttctcaaaa tgaggctacg  1320
    aaattagatg agcttaaaaa aattgcacaa agagaagatt atgtagtaac ttggtgggat  1380
    tatggatatc ctattaggta ttacagcgat gttaaaactt tggctgatgg gggtaagcat  1440
    ttaggcaagg ataatttttt cccatotttt gttctaagta aagatcaagt ggctgctgca  1500
    aatatggcaa gacttagtgt agaatacaca gaaaaaagtt tttacgcccc tttaaatgat  1560
    attttaaaaa atgatctttt acaagccatg atgaaagatt ataatcaaaa taatgtggat  1620
    ttgtttttag cttcgctttc caagcctgat tttaaaatca atacgccaaa aacacgcgat  1680
    gtgtatatct atatgccagc tagaatgtct ttgatttttt caactgtggc tagtttttct  1740
    tttgtggatt tggagacagg tgagataaat aaacctttta cttttagtgc agcttatcca  1800
    cttgatgtta aaaatggaga aatttatctt agcaatggta ttgcattaag tgatgatttt  1860
    agaagtttta aaataaataa tagtactata tccgtaaata gtatcataga gattaattct  1920
    atcaaacaag gtgaatataa aatcactcct attgatgata tggctcaatt ttatattttt  1980
    tatcttaaag atagcaccat accttatgct cagtttattt taatggataa aactatgttt  2040
    aatagtgctt atgtgcaaat gtttttcctt ggaaattatg ataaaaattt gtatgattta  2100
    gtgattaatg ctagagatgc aaaagttttt aaactcaaaa tttaa                  2145
  • Another Campylobacter OST that is suitable for use in this and all aspects of the present invention is PglB from C. upsaliensis. The amino acid sequence encoding PglB from C. upsaliensis (UniProtKB Accession No. E6LAJ2), which is 57% identical to that of C. jejuni, is provided below as SEQ ID NO: 8:
  • Met Lys Asn Glu Ala Val Lys Asn Ala Asn Leu Arg Leu Val Phe Phe
    1               5                   10                  15
    Ile Leu Leu Ala Phe Gly Phe Ser Val Leu Cys Arg Phe Tyr Trp Ile
                20                  25                  30
    Tyr Trp Ala Ser Asp Phe Asn Glu Tyr Phe Phe Asn Asn Gln Leu Met
            35                  40                  45
    Ile Ser Ser Asn Asp Gly Tyr Thr Phe Ala Glu Gly Ala Arg Asp Lys
        50                  55                  60
    Ile Ala Gly Phe His Gln Glu Asn Asp Leu Ser Phe Ile Asn Ser Ser
    65                  70                  75                   80
    Leu Ser Ile Leu Thr Tyr Val Leu Tyr Lys Ile Thr Pro Phe Ser Phe
                    85                  90                  95
    Glu Ser Ile Ile Leu Tyr Met Ser Val Phe Phe Ser Ser Leu Ile Val
                100                 105                 110
    Val Pro Leu Ile Leu Ile Ala Asn Glu Leu Lys Arg Pro Leu Met Gly
            115                 120                 125
    Leu Phe Ala Ala Phe Leu Ala Ser Ile Ala Lys Ser Tyr Tyr Asn Arg
        130                 135                 140
    Thr Met Ala Gly Tyr Tyr Asp Thr Asp Met Leu Ala Ile Val Leu Pro
    145                 150                 155                 160
    Met Phe Ile Leu Tyr Phe Phe Ile Arg Leu Ile Leu Arg Lys Asp Asp
                    165                 170                 175
    Phe Ser Leu Leu Ala Leu Pro Phe Phe Met Gly Leu Tyr Leu Trp Trp
                180                 185                 190
    Tyr Pro Ser Ser Tyr Thr Leu Asn Val Ala Phe Ile Ala Leu Phe Thr
            195                 200                 205
    Leu Tyr Val Leu Ile Tyr His Arg Lys Glu Arg Ser Phe Tyr Met Ala
        210                 215                 220
    Ala Leu Leu Cys Ala Ile Thr Leu Ser Asn Ile Ala Trp Phe Tyr Gln
    225                 230                 235                 240
    Ser Ala Ile Ile Val Leu Leu Phe Ala Leu Phe Met Leu Lys Asn Ser
                    245                 250                 255
    Phe Phe Asn Phe Lys Phe Ile Ala Leu Leu Ala Leu Gly Val Leu Val
                260                 265                 270
    Phe Leu Ala Leu Ser Gly Gly Ile Asp Pro Ile Leu Tyr Gln Leu Lys
            275                 280                 285
    Phe Tyr Leu Leu Arg Ser Asp Glu Ser Ala Ser Leu Ala Arg Gly Phe
        290                 295                 300
    Ala Tyr Phe Asn Val Asn Leu Thr Ile Gln Glu Val Glu Ser Ile Asp
    305                 310                 315                 320
    Leu Ser Thr Phe Met Gln Arg Ile Ser Gly Ser Glu Leu Val Phe Leu
                    325                 330                335
    Leu Ser Leu Phe Gly Phe Leu Trp Leu Leu Lys Lys His Lys Val Met
                340                 345                 350
    Leu Leu Thr Leu Pro Met Leu Leu Leu Gly Phe Leu Ala Leu Arg Gly
            355                 360                 365
    Gly Leu Arg Phe Thr Ile Tyr Ala Val Pro Ile Met Ala Leu Gly Phe
        370                 375                 380
    Gly Phe Leu Ser Val Gln Ile Leu Ser Leu Ile Gln Lys Met Arg Pro
    385                 390                 395                 400
    Leu Lys Glu Thr Arg Lys Leu Arg Ile Phe Phe Tyr Gly Ile Phe Pro
                    405                 410                 415
    Leu Phe Val Leu Val Leu Gly Ala Tyr Phe Tyr Phe Ser Gln Ser Ala
                420                 425                 430
    Ile Tyr Glu Ser Met Gly Val Glu Phe Gln Lys Asn Phe Val Ser Phe
            435                 440                 445
    Phe Val Glu Asp Thr Leu Leu Phe Ser Leu Leu Ile Leu Ala Ile Phe
        450                 455                 460
    Thr Pro Leu Ile Phe Glu Leu Leu Trp Arg Lys Lys Asp Ile Arg Phe
    465                 470                 475                 480
    Val Cys Ser Phe Tyr Ile Val Gly Val Leu Leu Phe Ser Leu Trp Ala
                    485                 490                 495
    Asn Leu Ser His Ile Tyr Asn Tyr Arg Ala His Thr Val Phe Ser Tyr
                500                 505                 510
    Asn Glu Ala Ser Ile Leu Asp Asn Leu Lys Ala Asn Val Ser Arg Glu
            515                 520                 525
    Asp Tyr Ile Val Ala Trp Trp Asp Tyr Gly Tyr Pro Ile Arg Tyr Tyr
        530                 535                 540
    Ser Asp Val Lys Thr Leu Ala Asp Gly Gly Lys His Leu Gly Lys Asp
    545                 550                 555                 560
    Asn Phe Phe Pro Ser Phe Val Leu Ser Gln Asn Pro Arg Ala Ala Ala
                    565                 570                 575
    Asn Met Ala Arg Leu Ser Val Glu Tyr Thr Glu Lys Gly Phe Lys Thr
                580                 585                 590
    Pro Tyr Asn Asp Leu Leu Glu Ala Met Met Lys Asp Tyr Asn Tyr Ser
            595                 600                 605
    Asn Val Asn Leu Phe Leu Ala Ala Leu Ser Lys Glu Asp Phe Thr Leu
        610                 615                620
    Gln Thr Pro Lys Thr Arg Asp Ile Tyr Ile Tyr Met Pro Ser Arg Met
    625                 630                 635                 640
    Ala Ala Ile Phe Gly Thr Val Ala Ser Phe Ser Tyr Met Ser Leu Glu
                    645                 650                 655
    Thr Gly Glu Leu Glu Asn Pro Phe Val Tyr Ser Val Ala Tyr Tyr Leu
                660                 665                 670
    Gly Asn Glu Asp Gly Lys Leu Val Leu Ser Asn Asn Met Leu Leu His
    675 680 685
    Ser Asp Phe Arg Ser Phe Asp Leu Asn Gly Lys Asn Tyr Ala Ile Asn
        690                 695                 700
    Ser Leu Val Glu Phe Thr Ser Val Gln Gln Lys Tyr Tyr Ser Val Val
    705                 710                 715                 720
    Glu Ile Asp Lys Asn Ala Lys Tyr Tyr Leu Phe His Ile Lys Asp Ala
                    725                 730                 735
    Asn Ile Pro Asn Val Gln Phe Ile Leu Met Asp Lys Ala Met Tyr Glu
                740                 745                 750
    Ser Ala Phe Val Gln Met Phe Phe Phe Gly Lys Tyr Asp Glu Ser Leu
            755                 760                 765
    Tyr Glu Leu Ile Val Asp Ser Lys Glu Ala Lys Val Tyr Lys Leu Lys
        770                 775                 780
    Leu
    785
  • Amino acid sequences sharing at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the C. upsaliensis amino acid sequence of SEQ ID NO: 8 are also suitable for use in the present invention. The nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 8 is provided below as SEQ ID NO: 9 (EMBL Nucleotide Sequence Database No. EFU71695):
  • atgaaaaacg aggctgtgaa aaatgcgaat ttgaggctag tattttttat cttactagct   60
    tttggtttta gtgttttatg tcgcttttat tggatttatt gggcgagtga ttttaacgaa  120
    tattttttta ataatcagct tatgataagc tcaaatgacg gctacacttt tgcagagggt  180
    gctagagata agatagcggg ctttcatcag gaaaatgatt LaagcLLLaL taattcctct  240
    ctttctattt tgacttatgt gctttataaa atcacgcctt ttagttttga aagcattatt  300
    ttatatatga gtgtattttt ttcttcactt atagttgtgc cgcttatttt aattgcaaac  360
    gagcttaaac gccctttaat gggacttttt gcggcatttt tagcaagtat tgcaaaaagc  420
    tattataacc gcactatggc aggatattat gatacagata tgttagccat tgtgcttcct  480
    atgtttattt tatatttttt catcaggctt attttaagaa aagatgattt ttctttactt  540
    gccttgccgt tttttatggg actttatctt tggtggtatc catcaagcta tactctaaat  600
    gtcgctttta tcgcactttt taccctttat gttttgattt atcatagaaa agaaagatct  660
    ttttatatgg cagcactttt gtgtgccatt accctttcaa atattgcttg gttttatcaa  720
    agtgctatta ttgttttact ttttgctctt tttatgctta aaaattcgtt ttttaatttt  780
    aaatttatcg cacttttagc cttaggagtt ttagtttttt tggctttaag tggggggata  840
    gaccccatac tttatcagct taaattttat cttttaagaa gtgatgaaag tgcaagttta  900
    gcgcgtggtt ttgcgtattt taatgtaaat ttaaccatac aagaggttga aagtatcgat  960
    ttaagcactt ttatgcaaag aattagcgga agtgagcttg tgtttttact ttctcttttt 1020
    ggctttttat ggcttttaaa aaagcataag gtgatgcttt taaccctacc tatgcttttg 1080
    ctcggttttt tagcacttag aggtgggctt agatttacta tttatgctgt gcctattatg 1140
    gcgcttggct ttggcttttt aagcgttcaa attttaagct taatccaaaa aatgcgtccc 1200
    ttaaaagaaa ctcgaaaatt aagaatattt ttttatggaa tctttccgct ttttgtgctt 1260
    gttttggggg cttattttta ttttagtcaa agtgctattt atgagagtat gggagtggaa 1320
    tttcaaaaga actttgtgag cttttttgta gaagatactt tgcttttttc tttgctgatt 1380
    ttggctattt ttacgccttt aatttttgag cttttgtgga gaaaaaagga cattcgtttt 1440
    gtgtgtagct tttatattgt gggggttttg cttttttctt tatgggcaaa tttaagtcat 1500
    atttataatt atagagcaca caccgttttt agctacaatg aagcgagtat tttggataat 1560
    cttaaagcta atgtttctag ggaagattat attgtggctt ggtgggatta tggctatcct 1620
    attcgttatt atagcgatgt gaaaacctta gctgatgggg gtaagcattt gggtaaggat 1680
    aattttttcc cttcttttgt tttaagtcaa aatccacgcg cagcggcaaa tatggcaaga 1740
    cttagcgtag aatacacaga aaaaggcttt aaaacgcctt ataatgatct tttagaagcg 1800
    atgatgaagg attataatta tagcaatgta aatttatttt tagcggcact ttctaaggag 1860
    gattttactc ttcaaacgcc caaaactaga gatatttaca tctatatgcc ttctcgtatg 1920
    gcggcgattt ttggcacggt ggcaagtttt tcttatatga gcttagaaac gggtgagctt 1980
    gaaaatcctt ttgtttatag tgtggcgtat tatttgggaa atgaggacgg caaactcgtc 2040
    ttaagtaata atatgctcct tcatagcgac tttagaagct ttgaccttaa tggcaagaat 2100
    tatgctatta attctttggt tgaatttact tcggtgcagc aaaaatatta tagtgttgtg 2160
    gagattgata aaaacgctaa atattatctc tttcacatca aagacgctaa tatccctaat 2220
    gtgcaattta tcctaatgga taaggcgatg tatgagagtg ctttcgtgca aatgtttttc 2280
    tttggtaagt atgatgagag tttgtatgaa ttaattgtag atagtaaaga agcaaaggtg 2340
    tataaattaa aattatga                                               2358
  • An alignment of the Campylobacter PglB sequences is provided in FIGS. 6A-6C, and a PglB consensus sequence based on this alignment is presented as SEQ ID NO: 10 of FIG. 6. Residues that are not fully conserved between the four Campylobacter sequences are depicted as X, where X can be any amino acid residue. Alternatively, X is selected from one of the four depicted amino acid residue at the corresponding position in the depicted Campylobacter sequences.
  • In another embodiment of the present invention, the OST is an archaea oligosaccharyltransferase. For example, the OST STT3 subunit from Pyrococcus furiosus which is capable of transferring a glycan to an asparagine residue of a target glycoprotein is suitable for use in this and all aspects of the present invention. The amino acid sequence of P. furiosus (UniProtKB Accession No. Q8U4D2) is provided below as SEQ ID NO: 11:
  • Met Val Lys Thr Gln Ile Lys Glu Lys Lys Lys Asp Glu Lys Val Thr
    1               5                   10                  15
    Ile Pro Leu Pro Gly Lys Ile Lys Thr Val Leu Ala Phe Leu Val Val
                20                  25                  30
    Leu Ala Phe Ala Ala Tyr Gly Phe Tyr Ile Arg His Leu Thr Ala Gly
            35                  40                  45
    Lys Tyr Phe Ser Asp Pro Asp Thr Phe Tyr His Phe Glu Ile Tyr Lys
        50                  55                  60
    Leu Val Leu Lys Glu Gly Leu Pro Arg Tyr Tyr Pro Met Ala Asp Ala
    65                  70                  75                   80
    Pro Phe Gly Ser Leu Ile Gly Glu Pro Leu Gly Leu Tyr Ile Leu Pro
                    85                  90                  95
    Ala Ile Phe Tyr Lys Ile Ile Ser Ile She Gly Tyr Asn Glu Leu Glu
                100                 105                 110
    Ala Phe Leu Leu Trp Pro Pro She Val Gly Phe Leu Ser Val Ile Gly
            115                 120                 125
    Val Tyr Leu Leu Gly Arg Lys Val Leu Asn Glu Trp Ala Gly Met Trp
        130                 135                 140
    Gly Ala Ile Ile Leu Ser Val Leu Thr Ala Asn Phe Ser Arg Thr Phe
    145                 150                 155                 160
    Ser Gly Asn Ala Arg Gly Asp Gly Pro Phe Met Met Leu Phe Thr Phe
                    165                 170                 175
    Ser Ala Val Leu Met Leu Tyr Tyr Leu Thr Glu Clu Asn Lys Asn Lys
                180                 185                 190
    Lys Ile Ile Trp Gly Thr Leu Phe Val Leu Leu Ala Gly Ile Ser Thr
            195                 200                 205
    Ala Ala Trp Asn Gly Ser Pro Phe Gly Leu Met Val Leu Leu Gly Phe
        210                 215                 220
    Ala Ser Phe Gln Thr Ile Ile Leu Phe Ile Phe Gly Lys Ile Asn Glu
    225                 230                 235                 240
    Leu Arg Glu Phe Ile Lys Glu Tyr Tyr Pro Ala Tyr Leu Gly Ile Leu
                    245                 250                 255
    Ala Ile Ser Tyr Leu Leu Thr Ile Pro Gly Ile Gly Lys Ile Gly Gly
                260                 265                 270
    Phe Val Arg Phe Ala Phe Glu Val Phe Leu Gly Leu Val Phe Leu Ala
            275                 280                 285
    Ile Val Met Leu Tyr Gly Gly Lys Tyr Leu Asn Tyr Ser Asp Lys Lys
        290                 295                 300
    His Arg Phe Ala Val Val Ala Val Ile Val Ile Ala Gly Phe Ala Gly
    305                 310                 315                 320
    Ala Tyr Ile Tyr Val Gly Pro Lys Leu Phe Thr Leu Met Gly Gly Ala
                    325                 330                335
    Tyr Gln Ser Thr Gln Val Tyr Glu Thr Val Gln Glu Leu Ala Lys Thr
                340                 345                 350
    Asp Trp Gly Asp Val Lys Val Tyr Tyr Gly Val Glu Lys Pro Asn Gly
            355                 360                 365
    Ile Val Phe Phe Leu Gly Leu Val Gly Ala Met Ile Val Thr Ala Arg
        370                 375                 380
    Tyr Leu Tyr Lys Leu Phe Lys Asp Gly Arg Arg Pro His Glu Glu Leu
    385                 390                 395                 400
    Phe Ala Ile Thr Phe Tyr Val Met Ser Ile Tyr Leu Leu Trp Thr Ala
                    405                 410                 415
    Ala Arg Phe Lou Phe Leu Ala Ser Tyr Ala Ile Ala Leu Met Ser Gly
                420                 425                 430
    Val Phe Ala Gly Tyr Val Leu Glu Thr Val Glu Lys Met Lys Glu Ser
            435                 440                 445
    Ile Pro Ile Lys Ala Ala Leu Gly Gly Val Ile Ala Ile Met Leu Leu
        450                 455                 460
    Leu Ile Pro Leu Thr His Gly Pro Leu Leu Ala Gln Ser Ala Lys Ser
    465                 470                 475                 480
    Met Arg Thr Thr Glu Ile Glu Thr Ser Gly Trp Glu Asp Ala Leu Lys
                    485                 490                 495
    Trp Leu Arg Glu Asn Thr Pro Glu Tyr Ser Thr Ala Thr Ser Trp Trp
                500                 505                 510
    Asp Tyr Gly Tyr Trp Ile Glu Ser Ser Leu Leu Gly Gln Arg Arg Ala
            515                 520                 525
    Ser Ala Asp Gly Gly His Ala Arg Asp Arg Asp His Ile Leu Ala Leu
        530                 535                 540
    Phe Leu Ala Arg Asp Gly Asn Ile Ser Glu Val Asp Phe Glu Ser Trp
    545                 550                 555                 560
    Glu Leu Asn Tyr Phe Leu Val Tyr Leu Asn Asp Trp Ala Lys Phe Asn
                    565                 570                 575
    Ala Ile Ser Tyr Leu Gly Gly Ala Ile Thr Arg Arg Glu Tyr Asn Gly
                580                 585                 590
    Asp Glu Ser Gly Arg Gly Ala Val Thr Thr Leu Leu Pro Leu Pro Arg
            595                 600                 605
    Tyr Gly Glu Lys Tyr Val An Leu Tyr Ala Lys Val Ile Val Asp Val
        610                 615                620
    Ser Asn Ser Ser Val Lys Val Thr Val Gly Asp Arg Glu Cys Asp Pro
    625                 630                 635                 640
    Leu Met Val Thr Phe Thr Pro Ser Gly Lys Thr Ile Lys Gly Thr Gly
                    645                 650                 655
    Thr Cys Ser Asp Gly Asn Ala Phe Pro Tyr Val Leu His Leu Thr Pro
                660                 665                 670
    Thr Ile Gly Val Leu Ala Tyr Tyr Lys Val Ala Thr Ala Asn Phe Ile
            675                 680                 685
    Lys Leu Ala Phe Gly Val Pro Ala Ser Thr Ile Pro Gly Phe Ser Asp
        690                 695                 700
    Lys Leu Phe Ser Asn Phe Glu Pro Val Tyr Glu Ser Gly Asn Val Ile
    705                 710                 715                 720
    Val Tyr Arg Phe Thr Pro Phe Gly Ile Tyr Lys Ile Glu Glu Asn Ile
                    725                 730                 735
    Asn Gly Thr Trp Lys Gln Val Tyr Asn Leu Thr Pro Gly Lys His Glu
                740                 745                 750
    Leu Lys Leu Tyr Ile Ser Ala Phe Gly Arg Asp Ile Glu Asn Ala Thr
            755                 760                 765
    Leu Tyr Ile Tyr Ala Ile Asn Asn Glu Lys Ile Ile Glu Lys Ile Lys
        770                 775                 780
    Ile Ala Glu Ile Ser His Met Asp Tyr Leu Asn Glu Tyr Pro Ile Ala
    785                 790                 795                 800
    Val Asn Val Thr Leu Pro Asn Ala Thr Ser Tyr Arg Phe Val Leu Val
                    805                 810                 815
    Gln Lys Gly Pro Ile Gly Val Leu Leu Asp Ala Pro Lys Val Asn Gly
                820                 825                 830
    Glu Ile Arg Ser Pro Thr Asn Ile Leu Arg Glu Gly Glu Ser Gly Glu
            835                 840                 845
    Ile Glu Leu Lys Val Gly Val Asp Lys Asp Tyr Thr Ala Asp Leu Tyr
        850                 855                 860
    Leu Arg Ala Thr Phe Ile Tyr Leu Val Arg Lys Ser Gly Lys Asp Asn
    865                 870                 875                 880
    Glu Asp Tyr Asp Ala Ala Phe Glu Pro Gln Met Asp Val Phe Phe Ile
                    885                 890                 895
    Thr Lys Ile Gly Glu Asn Ile Gln Leu Lys Glu Gly Glu Asn Thr Val
                900                 905                 910
    Lys Val Arg Ala Glu Leu Pro Glu Gly Val Ile Ser Ser Tyr Lys Asp
            915                 920                 925
    Glu Leu Gln Arg Lys Tyr Gly Asp Lys Leu Ile Ile Arg Gly Ile Arg
        930                 935                 940
    Val Glu Pro Val Phe Ile Ala Glu Lys Glu Tyr Leu Met Leu Glu Val
    945                 950                 955                 960
    Ser Ala Ser Ala Pro His His
                    965
  • Amino acid sequences sharing at least about 70 percent more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the P. furiosus amino acid 50 sequence of SEQ ID NO: 11 are also suitable for use in the present invention. The nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 11 is provided below as SEQ ID NO: 12 (EMBL Nucleotide Sequence Database No. AAL80280):
  • atggtgaaaa cccaaataaa ggagaaaaag aaagatgaaa aagttactat tccacttcct   60
    gggaagataa aadctgtttt ggccttccta gtcgttttgg catttgccgc atatggattt  120
    tacattagac atttaacagc cggaaagtat ttctcagatc cagatacctt ctaccatttc  180
    gaaatttata agctagtcct caaagagggc cttcctaggt attacccaat ggcagatgct  240
    ccatttggaa gtctcatagg agaacctctt ggactataca tccttccagc aatattctac  300
    aaaatdatct cadtatttgg gtacaatgag ctagaggcat ttcttctttg gcccccattc  360
    gtaggatttc tcagtgttat aggtgtttac ttactcggaa gaaaagttct gaacgaatgg  420
    gcagggatgt ggggtgctat aattctctca gtcctcacgg caaacttttc aagaacattc  480
    tcaggcaacg caagaggcga cggcccattc atgatgttgt ttacgttttc agcagtccta  540
    atgctcLatt atctaaccga ggadaataaa aacadgaaaa taatctgggg aacactgttt  600
    gtactcttgg caggaatatc aactgcagca tggaacggtt caccatttgg actaatggtt  660
    ctccttggat tcgcatcgtt ccagacaata atcctcttta tttttggaaa gatcaatgag  720
    cttagagaat tcataaagga atactaccca gcatacctgg gaattttagc tataagctac  780
    cttctdacga toccaggaat tggdaaadta ggaggatttg taagatttgc atttgaggLt  840
    ttcttagggt tagttttctt agccatcgtc atgctctatg gaggaaaata cttgaactat  900
    tctgacaaga agcacaggtt cgcagtggtt gcagttatag ttattgcggg gttcgcagga  960
    gcttatattt acgttggtcc aaaactcttc actctaatgg gtggagctta tcagtcaacg 1020
    cdagtttatg aaacagtaca ggagctcgca aaaactgatt ggggagatgt aaaagtctat 1080
    tatggagtag aaaagccaaa cggaatagtc ttcttccttg gattagttgg agcaatgatt 1140
    gttacagcta ggtacctcta caaattattt aaagatggaa ggcgcccaca cgaagagtta 1200
    tttgcaataa ctttctatgt aatgtcaatt tacctcctct ggacagctgc tagattccta 1260
    ttcctagcga gttatgcgat agcdttgatg tcaggtgtct ttgcaggatd cgtcctagag 1320
    actgtagaaa agatgaaaga gagtatacca ataaaagcag cactaggagg agtaattgct 1380
    attatgcttc ttctaatacc cttaactcat ggcccactct tagctcaaag cgctaaaagt 1440
    atgagaacaa ccgagatcga gactagtgga tgggaagatg cgctcaaatg gctcagagaa 1500
    adcactccag aatattcgac cgcdacctct tggtgggact atggatattg gatagagtca 1560
    agcctcctag gacagagaag ggccagtgct gatggtggac atgcaagaga tagagatcat 1620
    atcttagccc tatttctagc cagagacggt aacattagtg aagtagactt tgagagttgg 1680
    gagcttaact acttcctagt ttaccttaat gattgggcaa agttcaatgc aatcagctat 1740
    ctaggcgggg ctataacgag gagagaatac aatggagatg aaagtggaag aggagccgta 1800
    actacgctac ttcctctccc aaggtatgga gagaaatacg tcaacctcta tgccaaagtt 1860
    atagttgatg tttcaaactc gagcgtaaag gttactgtag gagacagaga gtgtgatcca 1920
    ctaatggtta cgtttactcc aagtggaaag acgataaaag gaactggaac ctgtagtgat 1980
    ggcaacgcct tcccatatgt tttacactta actccaacaa ttggagtact tgcatactac 2040
    aaagtagcaa ctgcaaactt cattaagtta gccttcggtg ttccagcttc aacaattcca 2100
    ggattctctg ataagctatt ctcaaacttt gagccagtgt atgagtcagg aaacgtaata 2160
    gtatatcgct tcacaccatt tggaatatac aaaattgagg aaaacattaa cggaacttgg 2220
    aagcaagttt ataacctaac tcctggaaaa cacgagctca aactgtacat ttcagcattc 2280
    ggaagagaca tcgaaaatgc aacgctgtac atttacgcca taaacaacga gaagatcata 2340
    gagaaaatta agattgccga gatatcccac atggactatc tdaatgaata cccgatagca 2400
    gtgaacgtaa ccctaccaaa tgctacaagc tacaggtttg tactagttca aaaaggccca 2460
    ataggtgttc ttctagatgc accaaaagtc aatggtgaga taagaagtcc aaccaacata 2520
    ctaagggaag gagaaagtgg agaaatagag cttaaagttg gggttgataa agactacact 2580
    gccgatctat acttaagggc tacgttcata tatttagtca gaaaaagtgg aaaggataac 2640
    gaagattatg acgcagcgtt tgagccccaa atggatgttt tctttatcac aaagatcgga 2700
    gaaaacattc aacttaaaga aggagagaat acagtaaagg ttagggcgga gcttccagaa 2760
    ggagttatat ctagctacaa agatgaacta cagagaaaat acggagacaa gttgataatc 2820
    agaggaataa gagtagagcc agtgttcata gcagaaaaag agtacctaat gctcgaggtc 2880
    agtgcatcgg ctcctcatca ctaa                                        2904
  • OSTs from other Pyrococcus species or strains that share sequence identity to P. furiosus OST STT3 subunit related protein and/or are capable of transferring a glycan moiety to a target glycoprotein are also suitable for use in the present invention. For example, homologous OSTs derived from Pyrococcus sp. ST04 (SEQ ID NO: 13; UniProtKB No. I3RCF1), Pyrococcus sp. (strain NA2) (SEQ ID NO: 14; UniProtKB No. F4HM23). P. horikoshii (SEQ ID NO: 15; UniProtKB No. 074088), P. abyssi (SEQ ID NO: 16; UniProtKB No. Q9V250), and P. yayanosii (SEQ ID NO: 17; UniProtKB No. F8AIG3) each share greater than 70% sequence identity with the amino acid sequence of P. furiosus OST (see alignment of FIG. 7), and are suitable for use in this and all aspects of the present invention. The nucleotide sequences encoding the aforementioned Pyrococcus OSTs are known and readily available in the art. A STT3 consensus sequence based on the alignment of Pyrococcus STT3 sequences is presented as SEQ ID NO: 18 in FIG. 7. Residues that are not fully conserved between the six Pyrococcus sequences are depicted as X, where X can be any amino acid residue. Alternatively, X is selected from an amino acid residue at the corresponding position in one of the six depicted Pyrococcus sequences.
  • In another embodiment of the present invention, the OST is a eukaryotic oligosaccharyltransferase. For example, the OST STT3subunit from Leishmania major, which is capable of transferring a glycan to an asparagine residue of a target glycoprotein is suitable for use in this and all aspects of the present invention. The amino acid sequence of L. major (UniProtKB Accession No. Q9U5N8) is provided below as SEQ ID NO: 19.
  • Met Ala Ala Ala Ser Asn Val Asn Ala Pro Glu Ser Asn Val Met Thr
    1               5                   10                  15
    Thr Arg Ser Ala Val Ala Pro Pro Ser Thr Ala Ala Pro Lys Glu Ala
                20                  25                  30
    Ser Ser Glu Thr Leu Leu Ile Gly Leu Tyr Lys Met Pro Ser Gln Thr
            35                  40                  45
    Arg Ser Leu Ile Tyr Ser Ser Cys Phe Ala Val Ala Met Ala Ile Ala
        50                  55                  60
    Leu Pro Ile Ala Tyr Asp Met Arg Val Arg Ser Ile Gly Val Tyr Gly
    65                  70                  75                   80
    Tyr Leu Phe His Ser Ser Asp Pro Trp Phe Asn Tyr Arg Ala Ala Glu
                    85                  90                  95
    Tyr Met Ser Thr His Gly Trp Ser Ala Phe Phe Ser Trp Phe Asp Tyr
                100                 105                 110
    Met Ser Trp Tyr Pro Leu Gly Arg Pro Val Gly Ser Thr Thr Tyr Pro
            115                 120                 125
    Gly Leu Gln Leu Thr Ala Val Ala Ile His Arg Ala Leu Ala Ala Ala
        130                 135                 140
    Gly Met Pro Met Ser Leu Asn Asn Val Cys Val Leu Met Pro Ala Trp
    145                 150                 155                 160
    Phe Ser Leu Val Ser Ser Ala Met Ala Ala Leu Leu Ala His Glu Met
                    165                 170                 175
    Ser Gly Asn Met Ala Val Ala Ser Ile Ser Ser Ile Leu Phe Ser Val
                180                 185                 190
    Val Pro Ala His Leu Met Arg Ser Met Ala Gly Glu Phe Asp Asn Glu
            195                 200                 205
    Cys Ile Ala Val Ala Ala Met Leu Leu Thr Phe Tyr Cys Trp Val Arg
        210                 215                 220
    Ser Leu Arg Thr Arg Ser Ser Trp Pro Ile Gly Val Leu Thr Gly Val
    225                 230                 235                 240
    Ala Tyr Gly Tyr Met Ala Ala Ala Trp Gly Gly Tyr Ile Phe Val Leu
                    245                 250                 255
    Asn Met Val Ala Met His Ala Gly Ile Ser Ser Met Val Asp Trp Ala
                260                 265                 270
    Arg Asn Thr Tyr Asn Pro Ser Leu Leu Arg Ala Tyr Thr Leu Phe Tyr
            275                 280                 285
    Val Val Gly Thr Ala Ile Ala Val Cys Val Pro Pro Val Gly Met Ser
        290                 295                 300
    Pro Phe Lys Ser Leu Glu Gln Leu Gly Ala Leu Leu Val Leu Val Phe
    305                 310                 315                 320
    Ile Phe Gly Gln Ser Val Cys Glu Ala Gln Arg Arg Arg Leu Gly Ile
                    325                 330                335
    Ala Arg Leu Ser Lys Glu Gly Val Ala Leu Leu Ile Arg Ile Asp Ala
                340                 345                 350
    Ala Phe Phe Val Gly Ile Val Ala Val Ala Thr Ile Ala Pro Ala Gly
            355                 360                 365
    Phe Phe Lys Pro Leu Ser Leu Gln Ala Asn Ala Ile Ile Thr Gly Val
        370                 375                 380
    Ser Arg Thr Gly Asn Thr Leu Val Asp Ile Leu Leu Ala Gln Asp Ala
    385                 390                 395                 400
    Ser Asn Leu Leu Met Val Trp Gln Leu Phe Leu Phe Pro Phe Leu Gly
                    405                 410                 415
    Trp Val Ala Gly Met Ser Ala Phe Leu Arg Glu Leu Ile Arg Asn Tyr
                420                 425                 430
    Thr Tyr Ala Lys Ser Phe Ile Leu Met Tyr Gly Val Val Gly Met Tyr
            435                 440                 445
    Phe Ala Ser Gln Ser Val Arg Met Met Val Met Met Ala Pro Val Ala
        450                 455                 460
    Cys Ile Phe Thr Ala Leu Leu Phe Arg Trp Ala Leu Asp Tyr Leu Leu
    465                 470                 475                 480
    Gly Ser Leu Phe Trp Ala Glu Met Pro Pro Ser Phe Asp Thr Asp Ala
                    485                 490                 495
    Gln Arg Gly Arg Gln Gln Gln Thr Ala Glu Glu Ser Glu Ala Glu Thr
                500                 505                 510
    Lys Arg Lys Glu Glu Glu Tyr Asn Thr Met Gln Val Lys Lys Met Ser
            515                 520                 525
    Val Arg Met Leu Pro Phe Met Leu Leu Leu Leu Leu Phe Arg Leu Ser
        530                 535                 540
    Gly Phe Ile Glu Asp Val Ala Ala Ile Ser Arg Lys Met Glu Ala Pro
    545                 550                 555                 560
    Gly Ile Val Phe Pro Ser Glu Gln Val Gln Gly Val Ser Glu Lys Lys
                    565                 570                 575
    Val Asp Asp Tyr Tyr Ala Gly Tyr Leu Tyr Leu Arg Asp Ser Thr Pro
                580                 585                 590
    Glu Asp Ala Arg Val Leu Ala Trp Trp Asp Tyr Gly Tyr Gln Ile Thr
            595                 600                 605
    Gly Ile Gly Asn Arg Thr Ser Leu Ala Asp Gly Asn Thr Trp Asn His
        610                 615                620
    Glu His Ile Ala Thr Ile Gly Lys Met Leu Thr Ser Pro Val Ala Glu
    625                 630                 635                 640
    Ala His Ser Leu Val Arg His Met Ala Asp Tyr Val Leu Ile Ser Ala
                    645                 650                 655
    Gly Asp Thr Tyr Phe Ser Asp Leu Asn Arg Ser Pro Met Met Ala Arg
                660                 665                 670
    Ile Gly Asn Ser Val Tyr His Asp Ile Cys Pro Asp Asp Pro Leu Cys
            675                 680                 685
    Ser Gln Phe Val Leu Gln Lys Arg Pro Lys Ala Ala Ala Ala Lys Arg
        690                 695                 700
    Ser Arg His Val Ser Val Asp Ala Leu Glu Glu Asp Asp Thr Ala Glu
    705                 710                 715                 720
    His Met Val Tyr Glu Pro Ser Ser Leu Ile Ala Lys Ser Leu Ile Tyr
                    725                 730                 735
    His Leu His Ser Thr Gly Val Val Thr Gly Val Thr Leu Asn Glu Thr
                740                 745                 750
    Leu Phe Gln His Val Phe Thr Ser Pro Gln Gly Leu Met Arg Ile Phe
            755                 760                 765
    Lys Val Met Asn Val Ser Thr Glu Ser Lys Lys Trp Val Ala Asp Ser
        770                 775                 780
    Ala Asn Arg Val Cys His Pro Pro Gly Ser Trp Ile Cys Pro Gly Gln
    785                 790                 795                 800
    Tyr Pro Pro Ala Lys Glu Ile Gln Glu Met Leu Ala His Gln His Thr
                    805                 810                 815
    Asn Phe Lys Asp Leu Leu Asp Pro Arg Thr Thr Trp Ser Gly Ser Arg
                820                 825                 830
    Arg
  • Amino acid sequences sharing at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the L. major amino acid sequence of SEQ ID NO: 19 are also suitable for use in the present invention. The nucleic acid 50 sequence encoding the amino acid sequence of SEQ ID NO: 19 (L. major STT3) is provided below as SEQ ID NO: 20 (EMBL Nucleotide Sequence Database No. CAB61569):
  • atggcggcag cgtcaaacgt gaatgccccc gaaagcaacg tgatgacaac gagaagtgcc 60
    gttgcaccac cgtcgacggc tgcacccaaa gaggcttcaa gtgaaacgct gctcattggc 120
    ctatacaaga tgccctcgca aactcgtagc ctcatctact cctcctgctt tgeggtggcc 180
    atggccattg ccctccctat cgcgtacgac atgcgtgtcc gctccatcgg cgtgtacggg 240
    tacctcttcc acagcagtga cccgtggttc aactaccgcg ctgccgagta catgtccacg 300
    cacggctggt ccgccttctt cagctggttc gactacatga gctggtaccc gctgggccgc 360
    cccgtcggct ccaccacgta cccgggcctg cagctcactg ccgtcgccat tcaccgcgca 420
    ctggcggctg ccggcatgcc gatgtctctc aacaacgtgt gcgtgctgat gccagcgtgg 480
    ttttcacttg tctcttcagc gatggcggca ctgctggcgc atgagatgag cggcaatatg 540
    gcggtagcca gcatctcgtc tatcttattc agtgtggttc cagcccacct gatgcggtcc 600
    atggcgggtg agttcgacaa cgagtgtatc gccgtcgcag ccatgctcct caccttctac 660
    tgctgggtgc gctcgctgcg cacgcggtcc tcgtggccca tcggtgtcct caccggtgtc 720
    gcctacggct acatggcggc ggcgtggggc ggctacattt tcgtgctcaa catggttgcc 780
    atgcatgccg gcatatcatc gatggtggac tgggcccgca acacgtacaa cccgtcgctg 840
    ctgcgtgcat acacgctgtt ctacgtcgtg ggcaccgcca tcgccgtgtg cgtgccgcca 900
    gtggggatgt cgcccttcaa gtcgctggag cagctgggtg cgctgctggt gcttgtcttc 960
    attttcggtc agtctgtgtg tgaggcccag cgcagacgat tgggaatcgc gcgcctttca 1020
    aaggagggcg tggcgctgct catccgcatc gacgcagcct tcttcgtcgg tatcgttgcc 1080
    gtggccacca ttgccccggc tggattcttc aagccgctct ccctgcaagc gaacgcgata 1140
    atcactggcg tatctcgtac cggaaacaca ctcgtagaca ttctgcttgc gcaagacgcg 1200
    tccaacctac tcatggtgtg gcagcttttt ctctttccct tcttaggttg ggtggcgggc 1260
    atgagcgcct tccttagaga gttgatccgg aactacacct acgcgaagag tttcatcctg 1320
    atgtacggcg tggtcggtat gtacttcgcc agccagtctg tccgaatgat ggtgatgatg 1380
    gcccccgtgg cgtgcatctt tactgccctc ttgttccgct gggcactgga ctacctcctc 1440
    gggtctttgt tttgggctga gatgccacct tcctttgaca ccgacgcaca gcgtgggcgg 1500
    cagcaacaga ccgccgagga gtcggaggca gagaccaagc gtaaggagga agagtacaac 1560
    accatgcagg tcaagaagat gtcggtgcgc atgttgccct tcatgctgtt gctcttactg 1620
    tttcgtcttt cggggttcat cgaagatgtg gcggcgatat cgcgcaagat ggaggcgccg 1680
    ggtatagttt ttcccagtga acaggtgcaa ggcgtgtcgg agaaaaaggt cgacgactac 1740
    tatgcggggt acctgtatct gcgcgacagc acgccagagg acgcgcgcgt tttggcctgg 1800
    tgggactacg gctaccagat cacaggcatc ggcaaccgca cctcgctggc cgatggcaac 1860
    acctggaacc acgagcacat cgccacgatc ggcaagatgc tgacgtcgcc cgtggcggag 1920
    gcgcactcgc tggtgcgcca catggccgac tatgttctga tttctgctgg agacacatat 1980
    ttttccgacc tgaatcgctc accgatgatg gcgcgcatcg gcaacagcgt gtaccacgac 2040
    atctgccccg acgacccact ttgtagtcag ttcgtgttgc agaaaagacc gaaagctgct 2100
    gcagcgaagc gcagtcggca cgtcagcgtt gacgcactag aggaggatga cactgcagag 2160
    catatggtat acgagccgtc atcactcata gccaagtcgc tcatatatca cctgcactcc 2220
    acaggggtgg tgacgggggt cacgctgaat gagacgctct tccagcacgt cttcacctca 2280
    ccgcagggtc tcatgcgcat cttcaaggtc atgaacgtga gcacggagag caaaaagtgg 2340
    gttgctgact cggcaaaccg cgtgtgccac ccgcctgggt cgtggatctg ccccgggcag 2400
    tacccgccgg cgaaggagat ccaggagatg ctggcacacc aacacaccaa cttcaaggac 2460
    cttcttgatc ccagaacgac ttggagcggg agcaggcgct ga 2502
  • OSTs from other Leishmania species or strains that share sequence identity to L. major OST STT3 subunit related protein and/or are capable of transferring a glycan moiety to a target glycoprotein are also suitable for use in the present invention. For example, homologous OSTs derived from L. donovani (SEQ ID NO: 21; UniProtKB No. E9BRZ2), L. infantum (SEQ ID NO: 22; UniProtKB No. A4IB10), L. mexicana (SEQ ID NO: 23; UniProtKBKB No. E9B5Z4), and L. braziliensis (SEQ ID NO: 24; UniProtKB No. A4HMD6), which each share greater than 70% sequence identity with the amino acid sequence of L. major OST (see alignment of FIG. 8), are also suitable for use in the this and all aspects of the present invention. A STT3 consensus sequence based on the alignment of Leishmania STT3 sequences is presented as SEQ ID NO: 25 in FIG. 8. Residues that are not fully conserved between the five Leishmania sequences are depicted as X, where X can be any amino acid residue. Alternatively, X is selected from an amino acid residue at the corresponding position in one of the five depicted Leishmania sequences.
  • In another embodiment of the present invention, the eukaryotic oligosaccharyltransferase is STT3 from Saccharomyces cerevisiae. The amino acid sequence of S. cerevisiae (UniProtKB Accession No. P39007) is provided below as SEQ ID NO: 26.
  • Met Gly Ser Asp Arg Ser Cys Val Leu Ser Val Phe Gln Thr Ile Leu
    1               5                   10                  15
    Lys Leu Val Ile Phe Val Ala Ile Phe Gly Ala Ala Ile Ser Ser Arg
                20                  25                  30
    Leu Phe Ala Val Ile Lys Phe Glu Ser Ile Ile His Glu Phe Asp Pro
            35                  40                  45
    Trp Phe Asn Tyr Arg Ala Thr Lys Tyr Leu Val Asn Asn Ser Phe Tyr
        50                  55                  60
    Lys Phe Leu Asn Trp Phe Asp Asp Arg Thr Trp Tyr Pro Leu Gly Arg
    65                  70                  75                  80
    Val Thr Gly Gly Thr Leu Tyr Pro Gly Leu Met Thr Thr Ser Ala Phe
                    85                  90                  95
    Ile Trp His Ala Leu Arg Asn Trp Leu Gly Leu Pro Ile Asp Ile Arg
                100                 105                 110
    Asn Val Cys Val Leu Phe Ala Pro Leu Phe Ser Gly Val Thr Ala Trp
            115                 120                 125
    Ala Thr Tyr Glu Phe Thr Lys Glu Ile Lys Asp Ala Ser Ala Gly Leu
        130                 135                 140
    Leu Ala Ala Gly Phe Ile Ala Ile Val Pro Gly Tyr Ile Ser Arg Ser
    145                 150                 155                 160
    Val Ala Gly Ser Tyr Asp Asn Glu Ala Ile Ala Ile Thr Leu Leu Met
                    165                 170                 175
    Val Thr Phe Met Phe Trp Ile Lys Ala Gln Lys Thr Gly Ser Ile Met
                180                 185                 190
    His Ala Thr Cys Ala Ala Leu Phe Tyr Phe Tyr Met Val Ser Ala Trp
            195                 200                 205
    Gly Gly Tyr Val Phe Ile Thr Asn Leu Ile Pro Leu His Val Phe Leu
        210                 215                 220
    Leu Ile Leu Met Gly Arg Tyr Ser Ser Lys Leu Tyr Ser Ala Tyr Thr
    225                 230                 235                 240
    Thr Trp Tyr Ala Ile Gly Thr Val Ala Ser Met Gln Ile Pro Phe Val
                    245                 250                 255
    Gly Phe Leu Pro Ile Arg Ser Asn Asp His Met Ala Ala Leu Gly Val
                260                 265                 270
    Phe Gly Leu Ile Gln Ile Val Ala Phe Gly Asp Phe Val Lys Gly Gln
            275                 280                 285
    Ile Ser Thr Ala Lys Phe Lys Val Ile Met Met Val Ser Leu Phe Leu
        290                 295                 300
    Ile Leu Val Leu Gly Val Val Gly Leu Ser Ala Leu Thr Tyr Met Gly
    305                 310                 315                 320
    Leu Ile Ala Pro Trp Thr Gly Arg Phe Tyr Ser Leu Trp Asp Thr Asn
                    325                 330                 335
    Tyr Ala Lys Ile His Ile Pro Ile Ile Ala Ser Val Ser Glu His Gln
                340                 345                 350
    Pro Val Ser Trp Pro Ala Phe Phe Phe Asp Thr His Phe Leu Ile Trp
            355                 360                 365
    Leu Phe Pro Ala Gly Val Phe Leu Leu Phe Leu Asp Leu Lys Asp Glu
        370                 375                 380
    His Val Phe Val Ile Ala Tyr Ser Val Leu Cys Ser Tyr Phe Ala Gly
    385                 390                 395                 400
    Val Met Val Arg Leu Met Leu Thr Leu Thr Pro Val Ile Cys Val Ser
                    405                 410                 415
    Ala Ala Val Ala Leu Ser Lys Ile Phe Asp Ile Tyr Leu Asp Phe Lys
                420                 425                 430
    Thr Ser Asp Arg Lys Tyr Ala Ile Lys Pro Ala Ala Leu Leu Ala Lys
            435                 440                 445
    Leu Ile Val Ser Gly Ser Phe Ile Phe Tyr Leu Tyr Leu Phe Val Phe
        450                 455                 460
    His Ser Thr Trp Val Thr Arg Thr Ala Tyr Ser Ser Pro Ser Val Val
    465                 470                 475                 480
    Leu Pro Ser Gln Thr Pro Asp Gly Lys Leu Ala Leu Ile Asp Asp Phe
                    485                 490                 495
    Arg Glu Ala Tyr Tyr Trp Leu Arg Met Asn Ser Asp Glu Asp Ser Lys
                500                 505                 510
    Val Ala Ala Trp Trp Asp Tyr Gly Tyr Gln Ile Gly Gly Met Ala Asp
            515                 520                 525
    Arg Thr Thr Leu Val Asp Asn Asn Thr Trp Asn Asn Thr His Ile Ala
        530                 535                 540
    Ile Val Gly Lys Ala Met Ala Ser Pro Glu Glu Lys Ser Tyr Glu Ile
    545                 550                 555                 560
    Leu Lys Glu His Asp Val Asp Tyr Val Leu Val Ile Phe Gly Gly Leu
                    565                 570                 575
    Ile Gly Phe Gly Gly Asp Asp Ile Asn Lys Phe Leu Trp Met Ile Arg
                580                 585                 590
    Ile Ser Glu Gly Ile Trp Pro Glu Glu Ile Lys Glu Arg Tyr Phe Tyr
            595                 600                 605
    Thr Ala Glu Gly Glu Tyr Arg Val Asp Ala Arg Ala Ser Glu Thr Met
        610                 615                 620
    Arg Asn Ser Leu Leu Tyr Lys Met Ser Tyr Lys Asp Phe Pro Gln Leu
    625                 630                 635                 640
    Phe Asn Gly Gly Gln Ala Thr Asp Arg Val Arg Gln Gln Met Ile Thr
                    645                 650                 655
    Pro Leu Asp Val Pro Pro Leu Asp Tyr Phe Asp Glu Val Phe Thr Ser
                660                 665                 670
    Glu Asn Trp Met Val Arg Ile Tyr Gln Leu Lys Lys Asp Asp Ala Gln
            675                 680                 685
    Gly Arg Thr Leu Arg Asp Val Gly Glu Leu Thr Arg Ser Ser Thr Lys
        690                 695                 700
    Thr Arg Arg Ser Ile Lys Arg Pro Glu Leu Gly Leu Arg Val
    705                 710                 715
  • Amino acid sequences sharing at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the S. cerevisiae amino acid sequence of SEQ ID NO: 26 are also suitable for use in the present invention. The nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 26 (S. cerevisiae STT3) is provided below as SEQ ID NO: 27 (EMBL Nucleotide Sequence Database No. BAA06079).
  • atgggatccg accggtcgtg tgttttgtct gtgtttcaga ccatcctcaa gctcgtcatc 60
    ttcgtggcga tttttggggc tgccatatca tcacgtttgt ttgcagtcat caaatttgag 120
    tctattatcc atgaattcga cccctggttc aattataggg ctaccaaata tctcgtcaac 180
    aattcgtttt acaagttttt gaactggttt gacgaccgta cctggtaccc cctcggaagg 240
    gttactggag ggactttata tcctggtttg atgacgacta gtgcgttcat ctggcacgcc 300
    ctgcgcaact ggtUgggctt gcccattgac atcagaaacg tttgtgtgct atttgcgcca 360
    ctattttctg gggtcaccgc ctgggcgact tacgaattta cgaaagagat taaagatgcc 420
    agcgctgggc ttttggctgc tggttttata gccattgtcc ccggttatat atctagatca 480
    gtggcggggt cctacgataa tgaggccatt gccattacac tattaatggt cactttcatg 540
    ttttggatta aggcccaaaa gactggctct atcatgcacg caacgtgtgc agctttattc 600
    tacttctaca tggtgtcggc ttggggtgga tacgtgttca tcaccaactt gatcccactc 660
    catgtctttt tgctgatttt gatgggcaga tattcgtcca aactgtattc tgcctacacc 720
    acttggtacg ctattggaac tgttgcatcc atgcagatcc catttgtcgg tttcctacct 780
    atcaggtcta acgaccacat ggccgcattg ggtgttttcg gtttgattca gattgtcgcc 840
    ttcggtgact tcgtgaaggg ccaaatcagc acagctaagt ttaaagtcat catgatggtt 900
    tctctgtttt tgatcttggt ccttggtgtg gtcggacttt ctgccttgac ctatatgggg 960
    ttgattgccc cttggactgg tagattttat tcgttatggg ataccaacta cgcaaagatc 1020
    cacattccta tcattgcctc cgtttccgaa catcaacccg tttcgtggcc cgctttcttc 1080
    tttgataccc actttttgat ctggctattc cccgccggtg tattcctact attcctcgac 1140
    ttgaaagacg agcacgtttt tgtcatcgct tactccgttc tgtgttcgta ctttgccggt 1200
    gttatggtta gattgatgtt gactttgaca ccagtcatct gtgtgtccgc cgccgtcgca 1260
    ttgtccaaga tatttgacat ctacctggat ttcaagacaa gtgaccgcaa aLacgccatc 1320
    aaacctgcgg cactactggc caaattgatt gtttccggat cattcatctt ttatttgtat 1380
    cttttcgtct tccattctac ttgggtaaca agaactgcat actcttctcc ttctgttgtt 1440
    ttgccatcac aaaccccaga tggtaaattg gcgttgatcg acgacttcag ggaagcgtac 1500
    tattggttaa gaatgaactc tgatgaggac agtaaggttg cagcgtggtg ggattacggt 1560
    taccaaattg gtggcatggc agacagaacc actttagtcg ataacaacac gtggaacaat 1620
    actcacatcg ccatcgttgg taaagccatg gcttcccctg aagagaaatc ttacgaaatt 1680
    ctaaaagagc atgatgtcga ttatgtcttg gtcatctttg gtggtctaat tgggtttggt 1740
    ggtgatgaca tcaacaaatt cttgtggatg atcagaatta gcgagggaat ctggccagaa 1800
    gagataaaag agcgttattt ctataccgca gagggagaat acagagtaga tgcaagggct 1860
    tctgagacca tgaggaactc gctactttac aagatgtcct acaaagattt cccacaatta 1920
    ttcaatggtg gccaagccac tgacagagtg cgtcaacaaa tgatcacacc attagacgtc 1980
    ccaccattag actacttcga cgaagttttt acttccgaaa actggatggt tagaatatat 2040
    caattgaaga aggatgatgc ccaaggtaga actttgaggg acgttggtga gttaaccagg 2100
    tcttctacga aaaccagaag gtccataaag agacctgaat taggcttgag agtctaa 2157
  • In another embodiment of the present invention, the eukaryotic oligosaccharyltransferase is STT3 from Schizosaccharomyces pombe. The amino acid sequence of S. pombe (UniProtKB Accession No. O94335) is provided below as SEQ ID NO: 28.
  • Met Ala Asn Ser Ala Thr Ile Thr Ser Lys Lys Gly Val Lys Ser His
    1               5                   10                  15
    Gln Lys Asp Trp Lys Ile Pro Leu Lys Val Leu Ile Leu Ile Cys Ile
                20                  25                  30
    Ala Val Ala Ser Val Ser Ser Arg Leu Phe Ser Val Ile Arg Tyr Glu
            35                  40                  45
    Ser Ile Ile His Glu Phe Asp Pro Trp Phe Asn Phe Arg Ala Ser Lys
        50                  55                  60
    Ile Leu Val Glu Gln Gly Phe Tyr Asn Phe Leu Asn Trp Phe Asp Glu
    65                  70                  75                  80
    Arg Ser Trp Tyr Pro Leu Gly Arg Val Ala Gly Gly Thr Leu Tyr Pro
                    85                  90                  95
    Gly Leu Met Val Thr Ser Gly Ile Ile Phe Lys Val Leu His Leu Leu
                100                 105                 110
    Arg Ile Asn Val Asn Ile Arg Asp Val Cys Val Leu Leu Ala Pro Ala
            113                 120                 125
    Phe Ser Gly Ile Thr Ala Ile Ala Thr Tyr Tyr Leu Ala Arg Glu Leu
        130                 135                 140
    Lys Ser Asp Ala Cys Gly Leu Leu Ala Ala Ala Phe Met Gly Ile Ala
    145                 150                 155                 160
    Pro Gly Tyr Thr Ser Arg Ser Val Ala Gly Ser Tyr Asp Asn Glu Ala
                    165                 170                 175
    Ile Ala Ile Thr Leu Leu Met Ser Thr Phe Ala Leu Trp Ile Lys Ala
                180                 185                 190
    Val Lys Ser Gly Ser Ser Phe Trp Gly Ala Cys Thr Gly Leu Leu Tyr
            195                 200                 205
    Phe Tyr Met Val Thr Ala Trp Gly Gly Tyr Val Phe Ile Thr Asn Met
        210                 215                 220
    Ile Pro Leu His Val Phe Val Leu Leu Leu Met Gly Arg Tyr Thr Ser
    225                 230                 235                 240
    Lys Leu Tyr Ile Ala Tyr Thr Thr Tyr Tyr Val Ile Gly Thr Leu Ala
                    245                 250                 255
    Per Met Gln Val Pro Phe Val Gly Phe Gln Pro Val Ser Thr Ser Glu
                260                 265                 270
    His Met Ser Ala Leu Gly Val Phe Gly Leu Leu Gln Leu Phe Ala Phe
            275                 280                 285
    Tyr Asn Tyr Val Lys Gly Leu Val Ser Per Lys Gln Phe Gln Ile Leu
        290                 295                 300
    Ile Arg Phe Ala Leu Val Cys Leu Val Gly Leu Ala Thr Val Val Leu
    305                 310                 315                 320
    Phe Ala Leu Ser Ser Thr Gly Val Ile Ala Pro Trp Thr Gly Arg Phe
                    325                 330                 335
    Tyr Ser Leu Trp Asp Thr Asn Tyr Ala Lys Ile His Ile Pro Ile Ile
                340                 345                 350
    Ala Ser Val Ser Glu His Gln Pro Pro Thr Trp Ser Ser Leu Phe Phe
            355                 360                 365
    Asp Leu Gln Phe Leu Ile Trp Leu Leu Pro Val Gly Val Tyr Leu Cys
        370                 375                 380
    Phe Lys Glu Leu Arg Asn Glu His Val Phe Ile Ile Ile Tyr Pro Val
    385                 390                 395                 400
    Leu Gly Thr Tyr Phe Cys Gly Val Met Val Arg Leu Val Leu Thr Leu
                    405                 410                 415
    Thr Pro Cys Val Cys Ile Ala Ala Ala Val Ala Ile Ser Thr Leu Leu
                420                 425                 430
    Asp Thr Tyr Met Gly Pro Glu Val Glu Glu Asp Lys Val Ser Glu Glu
            435                 440                 445
    Ala Ala Ser Ala Lys Ser Lys Asn Lys Lys Gly Ile Per Ser Ile Leu
        450                 455                 460
    Ser Phe Phe Thr Ser Gly Ser Lys Asn Ile Gly Ile Tyr Ser Leu Leu
    465                 470                 475                 480
    Ser Arg Val Leu Val Ile Ser Ser Thr Ala Tyr Phe Leu Ile Met Phe
                    485                 490                 495
    Val Tyr His Ser Ser Trp Val Thr Ser Asn Ala Tyr Ser Ser Pro Thr
                500                 505                 510
    Val Val Leu Ser Thr Val Leu Asn Asp Gly Ser Leu Met Tyr Ile Asp
            515                 520                 525
    Asp Phe Arg Glu Ala Tyr Asp Trp Leu Arg Arg Asn Thr Pro Tyr Asp
        530                 535                 540
    Thr Lys Val Met Ser Trp Trp Asp Tyr Gly Tyr Gln Ile Ala Gly Met
    545                 550                 555                 560
    Ala Asp Arg Ile Thr Leu Val Asp Asn Asn Thr Trp Asn Asn Thr His
                    565                 570                 575
    Ile Ala Thr Val Gly Lys Ala Met Ser Ser Pro Glu Glu Lys Ala Tyr
                580                 585                 590
    Pro Ile Leu Arg Lys His Asp Val Asp Tyr Ile Leu Ile Ile Tyr Gly
            595                 600                 605
    Gly Thr Leu Gly Tyr Ser Ser Asp Asp Met Asn Lys Phe Leu Trp Met
        610                 615                 620
    Ile Arg Ile Ser Gln Gly Leu Trp Pro Asp Glu Ile Val Glu Arg Asn
    625                 630                 635                 640
    Phe Phe Thr Pro Asn Gly Glu Tyr Arg Thr Asp Asp Ala Ala Thr Pro
                    645                 650                 655
    Thr Met Arg Glu Ser Leu Leu Tyr Lys Met Ser Tyr His Gly Ala Trp
                660                 665                 670
    Lys Leu Phe Pro Pro Asn Gln Gly Tyr Asp Arg Ala Arg Asn Gln Lys
            675                 680                 685
    Leu Pro Ser Lys Asp Pro Gln Leu Phe Thr Ile Glu Glu Ala Phe Thr
        690                 695                 700
    Thr Val His His Leu Val Arg Leu Tyr Lys Val Lys Lys Pro Asp Thr
    705                 710                 715                 720
    Leu Gly Arg Asp Leu Lys Gln Val Thr Leu Phe Glu Glu Gly Lys Arg
                    725                 730                 735
    Lys Lys Ser Ala Val Leu Gln Lys Leu Thr Lys Phe Leu
                740                 745
  • Amino acid sequences sharing at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the S. pombe amino acid sequence 55 of SEQ ID NO: 28 are also suitable for use in the present invention. The nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 28 (S. pombe STT3) is provided below as SEQ ID NO: 29 (EMBL Nucleotide Sequence Database No. BAA76479).
  • atggctaatt ctgctacaat tacgagtaaa aaaggcgtga agtctcatca gaaggactgg 60
    aaaattccac ttaaagtgct cattcttata tgtattgctg tggcttctgt ctcttcgagg 120
    cttttttctg tcattcgtta cgagtccatt attcatgaat ttgatccttg gttcaatttc 180
    cgagcttcca aaatattggt ggaacaaggt ttttataact ttttaaattg gtttgatgaa 240
    agaagttggt acccgttggg tcgtgtagcg ggtggtactt tgtacccagg acttatggtc 300
    acgtctggta ttattttcaa agttttacat cttttaagaa ttaacgtgaa catccgtgat 360
    gtatgtgttt tacttgcccc tgctttctct ggaatcactg cgattgctac ctattatctg 420
    gctagagaat tgaaaagtga tgcatgtggc cttttagctg ccgcatttat gggtattgct 480
    cctggataca cctcccgttc cgtcgctggt tcttacgata atgaagcaat tgctattacc 540
    cttttgatgt caacgtttgc tttgtggatc aaggcagtga agtctggctc ctctttctgg 600
    ggtgcctgca caggattgct ctacttctat atggtaactg cgtggggtgg ttatgtattc 660
    atcacaaaca tgataccttt acacgtattt gttcttctac ttatgggtog ctatactagc 720
    aaattataca ttgcttacac aacatactat gttattggaa cgctggcttc tatgcaagtt 780
    ccgtttgttg gtttccaacc cgtgtcgact agtgagcata tgtccgcttt aggagtgttt 840
    ggcctgttac agctttttgc attctacaat tatgttaaag gtctagtttc atccaagcaa 900
    ttccaaatac ttattcgttt tgccttggtt tgcttagtgg gtctagcaac agtcgtcctt 960
    tttgctttat cttcaacagg tgttatcgct ccttggacag gacgtttcta ttctctttgg 1020
    gatacaaact acgccaagat tcatattcct atcattgctt cggtatcaga acatcagcct 1080
    cctacttgga gttcgttgtt ctttgatctt caatttttga tttggttatt gccagttggt 1140
    gtttacttgt gtttcaagga acttcgtaat gaacatgtct ttattattat atatcctgtc 1200
    ttaggaacat atttttgtgg tgtgatggtt cgtttggttt taaccttaac tccttgtgtt 1260
    tgcatagctg ctgctgtagc aatttccact cttttagaca catatatggg tcctgaagtt 1320
    gaagaggaca aagtgagcga agaagccgct tcagccaaat ctaagaacaa gaaaggtatt 1380
    tcctctattc ttagtttctt cacttctggc tcaaaaaata ttggaattta cagtttgctt 1440
    tccagagtat tagtcatttc ctctaccgca tatttcctaa taatgtttgt ttatcattcc 1500
    agttgggtga cttctaatgc ttactcttcc cctaccgtgg ttttgtctac cgtgttaaac 1560
    gatggtagtt taatgtatat tgatgacttc cgtgaagctt atgactggct tcgtagaaac 1620
    actccttatg acacaaaggt tatgaglAgg tgggattatg gttaccaaat tgctggtatg 1680
    gctgatcgta ttactttagt cgacaacaat acgtggaaca acacacatat tgccacagtt 1740
    ggaaaagcca tgtcttcacc tgaagaaaaa gcttacccta tcctccgtaa acacgatgtt 1800
    gattatattc ttattatata tggtggtact cttggataca gcagcgacga catgaacaag 1860
    ttcctttgga tgatccgaat ttctcaggga ttatggcccg atgaaatagt agagcgtaac 1920
    ttttttactc ctaatggaga atatcgaact gacgatgcgg ctactcccac tatgcgtgag 1980
    tctttattat ataagatgtc atatcacggt gcttggaaac ttttccctcc caatcaagga 2040
    tatgaccgtg ctcgcaatca aaaactacca tcgaaagatc ctcaactatt tactatcgaa 2100
    gaagcattca ctaccgttca tcatttagtt cgtttgtata aggttaagaa accggataca 2160
    cttggacgcg atttgaaaca agtgacatta tttgaagaag gcaaaagaaa gaagtccgcc 2220
    gtcctgcaaa aactaacgaa attcctttga 2250
  • In another embodiment of the present invention, the eukaryotic oligosaccharyltransferase is STT3 from Dictyostelium discoideum. The amino acid sequence of D. discoideum (UniProtKB Accession No. Q54NM9) is provided below as SEQ ID NO: 30.
  • Met Lys Arg Ser Glu Lys Ser Ser Thr Ser Val Val Ser Asn Asn Lys
    1               5                   10                  15
    Gln Gln Asp Val Asn Ile Ile Ser Ser Asn Glu Val Gly Val Lys Glu
                20                  25                  30
    Glu Asn Lys Gly His Gln Glu Phe Leu Leu Lys Val Leu Ile Leu Ser
            35                  40                  45
    Val Ile Tyr Val Leu Ala Phe Ser Thr Arg Leu Phe Ser Val Leu Arg
        50                  55                  60
    Tyr Glu Ser Val Ile His Glu Phe Asp Pro Tyr Phe Asn Tyr Arg Ser
    65                  70                  75                  80
    Thr Ile Tyr Leu Val Gln Glu Gly Phe Tyr Asn Phe Leu Asn Trp Phe
                    85                  90                  95
    Asp Glu Arg Ala Trp Tyr Pro Leu Gly Arg Ile Val Gly Gly Thr Ile
                100                 105                 110
    Tyr Pro Gly Leu Met Ala Thr Ala Ser Leu Val His Trp Ser Leu Asn
            115                 120                 125
    Ser Leu Asn Ile Thr Val Asn Ile Arg Asn Val Cys Val Leu Leu Ser
        130                 135                 140
    Pro Trp Phe Ala Ser Asn Thr Ala Met Val Thr Tyr Lys Phe Ala Lys
    145                 150                 155                 160
    Glu Val Lys Asp Thr Gln Thr Gly Leu Val Ala Ala Ala Met Ile Ala
                    165                 170                 175
    Ile Val Pro Gly Tyr Ile Ser Arg Ser Val Ala Gly Ser Phe Asp Asn
                180                 185                 190
    Glu Gly Ile Ala Ile Phe Ala Leu Ile Phe Thr Tyr Tyr Cys Trp Ile
            195                 200                 205
    Lys Ser Val Asn Thr Gly Ser Leu Met Trp Ala Ala Ile Cys Ser Leu
        210                 215                 220
    Ala Tyr Phe Tyr Met Ala Ser Ala Trp Gly Gly Tyr Val Phe Ile Ile
    225                 230                 235                 240
    Asn Leu Ile Pro Leu His Ala Phe Phe Leu Leu Leu Thr Gly Arg Tyr
                    245                 250                 255
    Ser His Arg Leu Tyr Ile Ala Tyr Ser Thr Met Phe Val Ile Gly Thr
                260                 265                 270
    Ile Leu Ser Met Gln Ile Thr Phe Ile Ser Phe Gln Pro Val Gln Ser
            275                 280                 285
    Ser Glu His Leu Ala Ala Ile Gly Ile Phe Gly Leu Leu Gln Leu Tyr
        290                 295                 300
    Ala Gly Leu Ser Trp Val Lys Ser His Leu Thr Asn Glu Ala Phe Lys
    305                 310                 315                 320
    Lys Leu Gln Arg Leu Thr Val Leu Phe Val Leu Ser Cys Ala Ala Ala
                    325                 330                 335
    Val Leu Val Val Gly Thr Leu Thr Gly Tyr Ile Ser Pro Phe Asn Gly
                340                 345                 350
    Arg Phe Tyr Ser Leu Leu Asp Pro Thr Tyr Ala Arg Asp His Ile Pro
            355                 360                 365
    Ile Ile Ala Ser Val Ser Glu His Gln Pro Thr Thr Trp Ala Ser Tyr
        370                 375                 380
    Phe Phe Asp Leu His Ile Leu Val Phe Leu Phe Pro Ala Gly Leu Tyr
    385                 390                 395                 400
    Phe Cys Phe Gln Lys Leu Thr Asp Ala Asn Ile Phe Leu Ile Leu Tyr
                    405                 410                 415
    Gly Val Thr Ser Ile Tyr Phe Ser Gly Val Met Val Arg Leu Met Leu
                420                 425                 430
    Val Leu Ala Pro Val Ala Cys Ile Leu Ala Ala Val Ala Val Ser Ala
            435                 440                 445
    Thr Leu Thr Thr Tyr Met Lys Lys Leu Lys Ala Pro Ser Ser Pro Ser
        450                 455                 460
    Asp Ala Asn Asn Ser Lys Glu Ser Gly Gly Val Met Val Ala Val Leu
    465                 470                 475                 480
    Thr Val Leu Leu Ile Leu Tyr Ala Phe His Cys Thr Trp Val Thr Ser
                    485                 490                 495
    Glu Ala Tyr Ser Ser Pro Ser Ile Val Leu Ser Ala Lys Gln Asn Asp
                500                 505                 510
    Gly Ser Arg Val Ile Phe Asp Asp Phe Arg Glu Ala Tyr Arg Trp Ile
            515                 520                 525
    Gly Gln Asn Thr Ala Asp Asp Ala Arg Ile Met Ser Trp Trp Asp Tyr
        530                 535                 540
    Gly Tyr Gln Leu Ser Ala Met Ala Asn Arg Thr Val Leu Val Asp Asn
    545                 550                 555                 560
    Asn Thr Trp Asn Asn Ser His Ile Ala Gln Val Gly Lys Ala Phe Ala
                    565                 570                 575
    Ser Thr Glu Glu Asp Ala Tyr Ile Gln Met Lys Ala Leu Asp Val Asp
                580                 585                 590
    Tyr Val Leu Val Ile Phe Gly Gly Leu Thr Gly Tyr Ser Ser Asp Asp
            595                 600                 605
    Ile Asn Lys Phe Leu Trp Met Val Arg Ile Gly Gly Ser Cys Asp Pro
        610                 615                 620
    Asn Ile Lys Glu Gln Asp Tyr Leu Thr Asn Gly Gln Tyr Arg Ile Asp
    625                 630                 635                 640
    Lys Gly Ala Ser Pro Thr Met Leu Asn Ser Leu Met Tyr Lys Leu Ser
                    645                 650                 655
    Tyr Tyr Arg Phe Ser Glu Val His Thr Asp Tyr Gln Arg Pro Thr Gly
                660                 665                 670
    Phe Asp Arg Val Arg Asn Val Glu Ile Gly Asn Lys Asn Phe Asp Leu
            675                 680                 685
    Thr Tyr Leu Glu Glu Ala Phe Thr Ser Val His Trp Leu Val Arg Val
        690                 695                 700
    Tyr Lys Val Lys Asp Phe Asp Asn Arg Ala
    705                 710
  • Amino acid sequences sharing at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the D. discoideum amino acid sequence of SEQ ID NO: 30 are also suitable for use in the present invention. The nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 30 (D. discoideum STT3) is provided below as SEQ ID NO: 31 (EMBL Nucleotide Sequence Database No. EAL64892).
  • atgaaaagat cagaaaaatc aagtacatct gttgttagta ataacaaaca acaagatgta 60
    aatatcatca gttcaaatga agttggtgtt aaagaagaaa ataaaggaca tcaagaattc 120
    ttattaaaag ttttaattct atcagtcatt tatgttttag cattttcaac tcgtttattc 180
    tcagtattac gttatgaaag tgttattcat gaatttgatc catattttaa ttatagatca 240
    acaatatatc ttgttcaaga aggtttttat aattttttaa attggtttga tgaaagagca 300
    tggtatccat taggacgtat tgtaggtggt acaatttacc caggtttaat ggcaacagca 360
    agtttagttc attggtcatt gaattcattg aatattacag ttaatattag aaatgtatgt 420
    gtattgttat caccatggtt tgcatcaaat acagcaatgg taacctataa atttgccaaa 480
    gaagttaagg atacacaaac tggtttggtt gcagcagcca tgattgcaat tgttccaggt 540
    tatatttcac gttcagtagc aggttcattc gataatgaag gtattgcaat ctttgcattg 600
    attttcacat attattgttg gattaagtca gtaaacacag gctcattgat gtgggctgcc 660
    atctgttcat tggcctactt ttatatggca agtgcctggg gtggttatgt attcatcatt 720
    aatttaatcc cattgcatgc ctttttcttg cttttgacag gccgttattc acatcgtctc 780
    tacatagcct acagcacaat gtttgtcatt ggtacaatcc tctctatgca aattacattc 840
    attagtttcc aaccagttca atcatctgaa catttggctg ccattggtat ctttggtctc 900
    ctccaattgt acgctggttt gtcatgggta aagagtcacc tcaccaatga agccttcaag 960
    aaacttcaac gtttgacagt gttattcgtt ttatcttgtg ctgctgccgt acttgtcgtt 1020
    ggtacattaa ctggttacat ctcaccattc aatggtcgtt tctattcatt gttggatcca 1080
    acctatgctc gtgaccacat tccaatcatt gcatcagtat cagagcatca accaaccact 1140
    tgggcatcat actttttcga tctccatatc ttggtattcc ttttcccagc cggtttatac 1200
    ttttgtttcc aaaaattaac cgatgctaat attttcctca ttctctacgg tgtcacctcc 1260
    atttatttct ctggtgtaat ggtacgtctt atgttggttt tagcaccagt tgcatgtatt 1320
    ttagccgccg ttgccgtcag tgcaaccctc accacctata tgaagaagtt aaaggctcca 1380
    tcatcaccaa gtgatgctaa taattccaaa gagagtggtg gtgttatggt tgcagtctta 1440
    actgttcttt taattctcta cgctttccat tgtacttggg tcactagtga agcctactca 1500
    tctccatcca ttgtactctc tgccaaacaa aacgatggta gtcgtgtgat tttcgatgat 1560
    ttccgtgaag cctaccgttg gattggtcaa aatactgccg acgacgctcg tattatgtct 1620
    tggtgggatt atggttatca attatctgca atggccaatc gtaccgtatt ggttgataat 1680
    aacacttgga acaatagtca tatcgctcaa gttggtaaag catttgcatc cactgaagaa 1740
    gatgcttaca tacaaatgaa agcattggat gtcgattatg ttttagttat ttttggtggt 1800
    ttaactggtt acagttctga tgatatcaat aaattccttt ggatggttag aattggtggt 1860
    agttgtgatc caaatattaa agaacaagat tatctcacca atggtcaata tagaatagat 1920
    aaaggtgcct caccaacaat gttaaattct ctcatgtaca aacttagtta ctatcgtttc 1980
    tctgaagttc acactgacta tcaaagacca acaggtttcg atcgtgtaag aaatgttgaa 2040
    attggtaata aaaatttcga tttaacttat ttagaagaag ctttcacatc tgttcattgg 2100
    ttagttagag tttataaagt taaagatttt gataatagag cttaa 2145
  • Other eukaryotic oligosaccharyltransferases that can be utilized in this and all aspects of the present invention are listed in the table of FIGS. 9A-9G. This table identifies each oligosaccharyltransferase by its UniProtKB entry number, which provides the amino acid sequence of the protein, and the EMBL database accession number, which provides the encoding nucleotide sequence. The UniProtKB and EMBL accession numbers, along with the corresponding amino acid and nucleotide sequence information for each oligosaccharyltransferase listed in FIG. 9 is hereby incorporated by reference in its entirety.
  • In another embodiment of the present invention, the oligosaccharyltransferase is an O-linked oligosaccharyltransferase. An exemplary O-linked OST is PilO from Pseudomonas aeruginosa. PilO is responsible for the en bloc transfer of an oligosaccharide from a lipid-linked donor to an oxygen atom of serine and threonine residues (Faridmoayer et al., “Functional Characterization of Bacterial Oligosaccharyltransferases Involved in O-Linked Protein Glycosylation,” J. Bacteriol. 189(22): 8088-8098 (2007), which is hereby incorporated by reference in its entirety). The amino acid sequence of P. aeruginosa (UniProtKB Accession No. Q51353) is provided below as SEQ ID NO: 32
  • Met Ser Leu Ala Ser Ser Leu Glu Ser Leu Arg Lys Ile Asp Ile Asn
    1               5                   10                  15
    Asp Leu Asp Leu Asn Asn Ile Gly Ser Trp Pro Ala Ala Val Lys Val
                20                  25                  30 
    Ile Val Cys Val Leu Leu Thr Ala Ala Val Leu Ala Leu Gly Tyr Asn
            35                  40                  45 
    Phe His Leu Ser Asp Met Gln Ala Gln Leu Glu Gln Gln Ala Ala Glu
        50                  55                  60 
    Glu Glu Thr Leu Lys Gln Gln Phe Ser Thr Lys Ala Phe Gln Ala Ala
    65                  70                  75                  80
    Asn Leu Glu Ala Tyr Lys Ala Gln Met Lys Glu Met Glu Glu Ser Phe
                    85                  90                  95 
    Gly Ala Leu Leu Arg Gln Leu Pro Ser Asp Thr Glu Val Pro Gly Leu
                100                 105                 110 
    Leu Glu Asp Ile Thr Arg Thr Gly Leu Gly Ser Gly Leu Glu Phe Glu
            115                 120                 125 
    Glu Ile Lys Leu Leu Pro Glu Val Ala Gln Gln Phe Tyr Ile Glu Leu
        130                 135                 140 
    Pro Ile Gln Ile Ser Val Val Gly Gly Tyr His Asp Leu Ala Thr Val
    145                 150                 155                 160
    Ser Gly Val Ser Ser Leu Pro Arg Ile Val Thr Leu His Asp Phe Glu
                    165                 170                 175 
    Ile Lys Pro Val Ala Pro Gly Ser Thr Ser Lys Leu Arg Met Ser Ile
                180                 185                 190 
    Leu Ala Lys Thr Tyr Arg Tyr Asn Asp Lys Gly Leu Lys Lys
            195                 200                 205
  • Amino acid sequences sharing at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the P. aeruginosa amino acid sequence of SEQ ID NO: 32 are also suitable for use in the present invention. The nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 33 (P. aeruginosa PilO) is provided below as SEQ ID NO: 33 (EMBL Nucleotide Sequence Database No. AAA87404).
  • atgagtctgg ccagttccct ggaaagtctg cgcaagatcg atatcaacga tctcgacctg 60
    aacaacatcg gttcctggcc ggcggcggtc aaggtcatcg tctgcgtgct gctgaccgcg 120
    gcggtcctgg cgctgggcta caacttccat ctgagtgaca tgcaggctca gctcgaacag 180
    caggccgcgg aagaggagac gctcaagcag cagttctcca ccaaggcctt ccaggccgcg 240
    aacctggaag cctacaaggc acagatgaag gagatggaag agtcctttgg cgccttgctg 300
    cggcagttgc ccagcgacac cgaggtaccc gggctgctcg aggacatcac tcgtaccggc 360
    ctgggcagcg gcctggagtt cgaggaaatc aagctgcttc ccgaggttgc ccagcagttc 420
    tacatcgagc tgccgatcca gatcagcgtg gtcggcggct accacgactt ggcgaccttc 480
    gtcagcggcg tgtccagcct gccgcggatc gtcaccctgc atgacttcga gatcaagccg 540
    gtcgcgcccg gcagcacgtc caagctgcgc atgagcatcc tggccaagac ctatcgctac 600
    aacgacaagg ggctgaagaa atga 624
  • Another exemplary O-linked OST suitable for use in all aspects of the present invention is PglL from Neisseria meningitidis (Faridmoayer et al., “Functional Characterization of Bacterial Oligosaccharyltransferases Involved in O-Linked Protein Glycosylation,” J. Bacteriol. 189(22): 8088-8098 (2007), which is hereby incorporated by reference in its entirety). The amino acid sequence of N. meningitidis (UniProtKB Accession No. GIFG65) is provided below as SEQ ID NO: 34:
  • Met Pro Ala Glu Thr Thr Val Ser Gly Ala His Pro Ala Ala Lys Leu
    1               5                   10                  15
    Pro Ile Tyr Ile Leu Pro Cys Phe Leu Trp Ile Gly Ile Val Pro Phe
                20                  25                  30
    Thr Phe Ala Leu Lys Leu Lys Pro Ser Pro Asp Phe Tyr His Asp Ala
            35                  40                  45
    Ala Ala Ala Ala Gly Leu Ile Val Leu Leu Phe Leu Thr Ala Gly Lys
        50                  55                  60
    Lys Leu Phe Asp Val Lys Ile Pro Ala Ile Ser Phe Leu Leu Phe Ala
    65                  70                  75                  80
    Met Ala Ala Phe Trp Tyr Leu Gln Ala Arg Leu Met Asn Leu Ile Tyr
                    85                  90                  95
    Pro Gly Met Asn Asp Ile Val Ser Trp Ile Phe Ile Leu Leu Ala Val
                100                 105                 110
    Ser Ala Trp Ala Cys Arg Ser Leu Val Ala His Phe Gly Gln Glu Arg
            115                 120                 125
    Ile Val Thr Leu Phe Ala Trp Ser Leu Leu Ile Gly Ser Leu Leu Gln
        130                 135                 140
    Ser Cys Ile Val Val Ile Gln Phe Ala Gly Trp Glu Asp Thr Pro Leu
    145                 150                 155                 160
    Phe Gln Asn Ile Ile Val Tyr Ser Gly Gln Gly Val Ile Gly His Ile
                    165                 170                 175
    Gly Gln Arg Asn Asn Leu Gly His Tyr Leu Met Trp Gly Ile Leu Ala
                180                 185                 190
    Ala Ala Tyr Leu Asn Gly Gln Arg Lys Ile Pro Ala Ala Leu Gly Val
            195                 200                 205
    Ile Cys Leu Ile Met Gln Thr Ala Val Leu Gly Leu Val Asn Ser Arg
        210                 215                 220
    Thr Ile Leu Thr Tyr Ile Ala Ala Ile Ala Leu Ile Leu Pro Phe Trp
    225                 230                 235                 240
    Tyr Phe Arg Ser Asp Lys Ser Asn Arg Arg Thr Met Leu Gly Ile Ala
                    245                 250                 255
    Ala Ala Val Phe Leu Thr Ala Leu Phe Gln Phe Ser Met Asn Thr Ile
                260                 265                 270
    Leu Glu Thr Phe Thr Gly Ile Arg Tyr Glu Thr Ala Val Glu Arg Val
            275                 280                 285
    Ala Asn Gly Gly Phe Thr Asp Leu Pro Arg Gln Ile Glu Trp Asn Lys
        290                 295                 300
    Ala Leu Ala Ala Phe Gln Ser Ala Pro Ile Phe Gly His Gly Trp Asn
    305                 310                 315                 320
    Ser Phe Ala Gln Gln Thr Phe Leu Ile Asn Ala Glu Gln His Asn Ile
                    325                 330                 335
    Tyr Asp Asn Leu Leu Ser Asn Leu Phe Thr His Ser His Asn Ile Val
                340                 345                 350
    Leu Gln Leu Leu Ala Glu Met Gly Ile Ser Gly Thr Leu Leu Val Ala
            355                 360                 365
    Ala Thr Leu Leu Thr Gly Ile Ala Gly Leu Leu Lys Arg Pro Leu Thr
        370                 375                 380
    Pro Ala Ser Leu Phe Leu Ile Cys Thr Leu Ala Val Ser Met Cys His
    385                 390                 395                 400
    Ser Met Leu Glu Tyr Pro Leu Trp Tyr Val Tyr Phe Leu Ile Pro Phe
                    405                 410                     415
    Gly Leu Met Leu Phe Leu Ser Pro Ala Glu Ala Ser Asp Gly Ile Ala
                420                 425                     430
    Phe Lys Lys Ala Ala Asn Leu Gly Ile Leu Thr Ala Ser Ala Ala Ile
            435                 440                     445
    Phe Ala Gly Leu Leu His Leu Asp Trp Thr Tyr Thr Arg Leu Val Asn
        450                 455                     460
    Ala Phe Ser Pro Ala Thr Asp Asp Ser Ala Lys Thr Leu Asn Arg Lys
    465                 470                 475                 480
    Ile Asn Glu Leu Arg Tyr Ile Ser Ala Asn Ser Pro Met Leu Ser Phe
                    485                 490                 495
    Tyr Ala Asp Phe Ser Leu Val Asn Phe Ala Leu Pro Glu Tyr Pro Glu
                500                 505                 510
    Thr Gln Thr Trp Ala Glu Glu Ala Thr Leu Lys Ser Leu Lys Tyr Arg
            515                 520                 525
    Pro His Ser Ala Thr Tyr Arg Ile Ala Leu Tyr Leu Met Arg Gln Gly
        530                 535                 540
    Lys Val Ala Glu Ala Lys Gln Trp Met Arg Ala Thr Gln Ser Tyr Tyr
    545                 550                 555                 560
    Pro Tyr Leu Met Pro Arg Tyr Ala Asp Glu Ile Arg Lys Leu Pro Val
                    565                 570                 575
    Trp Ala Pro Leu Leu Pro Glu Leu Leu Lys Asp Cys Lys Ala Phe Ala
                580                 585                 590
    Ala Ala Pro Gly His Pro Glu Ala Lys Pro Cys Lys
            595                 600
  • Amino acid sequences sharing at least about 70 percent, more preferably at least about 75 percent or 80 percent, most preferably at least about 85 percent or 90 percent or 95 percent as compared to the N. menigitidis amino acid sequence of SEQ ID NO: 34 are also suitable for use in the present invention. The nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 34 (N. menigitidis PglL) is provided below as SEQ ID NO: 35 (EMBL Nucleotide Sequence Database No. AEK98518).
  • atgcccgctg aaacgaccgt atccggcgcg caccccgccg ccaaactgcc gatttacatc 60
    ctgccctgct tcctttggat aggcatcgtc ccctttacct tcgcgctcaa actgaaaccg 120
    tcgcccgact tttaccacga tgccgccgcc gcagccggcc tgattgtcct gttgttcctc 180
    acggcaggaa aaaaactgtt tgatgtcaaa atccccgcca tcagcttcct tctgtttgca 240
    atggcggcgt tttggtatct tcaggcacgc ctgatgaacc tgatttaccc cggtatgaac 300
    gacatcgtct cttggatttt catcttgctc gccgtcagcg cgtgggcctg ccggagcttg 360
    gtcgcacact tcggacaaga acgcatcgtg accctgtttg cctggtcgct gcttatcggc 420
    tccctgcttc aatcctgcat cgtcgtcatc cagtttgccg gctgggaaga cacccctctg 480
    tttcaaaaca tcatcgttta cagcgggcaa ggcgtaatcg gacacatcgg gcagcgcaac 540
    aacctcggac actacctcat gtggggcata ctcgccgccg cctacctcaa cggacaacga 600
    aaaatccccg ccgccctcgg cgtaatctgc ctgattatgc agaccgccgt tttaggtttg 660
    gtcaactcgc gcaccatctt gacctacata gccgccatcg ccctcatcct tcccttctgg 720
    tatttccgtt cggacaaatc caacaggcgg acgatgctcg gcatagccgc agccgtattc 780
    cttaccgcgc tgttccaatt ttccatgaac accattctgg aaacctttac tggcatccgc 840
    tacgaaactg ccgtcgaacg cgtcgccaac ggcggtttca cagacttgcc gcgccaaatc 900
    gaatggaata aagcccttgc cgccttccag tccgccccga tattcgggca cggctggaac 960
    agttttgccc aacaaacctt cctcatcaat gccgaacagc acaacatata cgacaacctc 1020
    ctcagcaact tgttcaccca ttcccacaac atcgtcctcc aactccttgc agagatggga 1080
    atcagcggca cgcttctggt tgccgcaacc ctgctgacgg gcattgccgg gctgcttaaa 1140
    cgccccctga cccccgcatc gcttttccta atctgcacgc ttgccgtcag tatgtgccac 1200
    agtatgctcg aatatccttt gtggtatgtc tatttcctca tccctttcgg actgatgctc 1260
    ttcctgtccc ccgcagaggc ttcagacggc atcgccttca aaaaagccgc caatctcggc 1320
    atactgaccg cctccgccgc catattcgca ggattgctgc acttggactg gacatacacc 1380
    cggctggtta acgccttttc ccccgccact gacgacagtg ccaaaaccct caaccggaaa 1440
    atcaacgagt tgcgctatat ttccgcaaac agtccgatgc tgtcctttta tgccgacttc 1500
    tccctcgtaa acttcgccct gccggaatac cccgaaaccc agacttgggc ggaagaagca 1560
    accctcaaat cactaaaata ccgcccccac tccgccacct accgcatcgc cctctacctg 1620
    atgoggcaag gcaaagttgc agaagcaaaa caatggatgc gggcgacaca gtcctattac 1680
    ccctacctga tgccccgata cgccgacgaa atccgcaaac tgcccgtatg ggcgccgctg 1740
    ctacccgaac tgctcaaaga ctgcaaagcc ttcgccgccg cgcccggtca tccggaagca 1800
    aaaccctgca aatga 1815
  • As used herein, an “isolated” oligosaccharyltransferase refers to an oligosaccharyltransferase that is substantially pure or substantially separated from other cellular components that naturally accompany the native protein in its natural host cell. Typically, the isolated oligosaccharyltransferase of the present invention is at about 80% pure, usually at least about 90% pure, and preferably at least about 95% pure. Purity can be assessed using any method known in the art, e.g., polyacrylamide gel electrophoresis, HPLC, etc. The isolated oligosaccharyltransferase can be obtained from the organism from which it is derived directly, or it can be recombinantly produced and purified from a host cell as described in the Examples herein or using techniques readily known in the art as described below.
  • Generally, the use of recombinant expression systems to produce and isolate a protein of interest involves inserting a nucleic acid molecule encoding the amino acid sequence of the desired protein into an expression system to which the molecule is heterologous (i.e., not normally present). One or more desired nucleic acid molecules encoding one or more proteins may be inserted into the vector. When multiple nucleic acid molecules are inserted, the multiple nucleic acid molecules may encode the same or different enzymes. The heterologous nucleic acid molecule is inserted into the expression system or vector in proper sense (5′→3′) orientation relative to the promoter and any other 5′ regulatory molecules, and correct reading frame.
  • The preparation of the nucleic acid constructs can be carried out using standard cloning procedures well known in the art as described by Joseph Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL (Cold Springs Harbor 1989) and U.S. Pat. No. 4,237,224 to Cohen and Boyer, which are hereby incorporated by reference in its entirety. These recombinant plasmids are then introduced by means of transformation and replicated in a suitable host cell.
  • A variety of genetic signals and processing events that control many levels of gene expression (e.g., DNA transcription and messenger RNA (“mRNA”) translation) can be incorporated into the nucleic acid construct to maximize enzyme production. For the purposes of expressing a cloned nucleic acid sequence encoding one or more desired enzymes, it is advantageous to use strong promoters to obtain a high level of transcription. Depending upon the host system utilized, any one of a number of suitable promoters may be used. For instance, when cloning in E. coli, its bacteriophages, or plasmids, promoters such as the 17 phage promoter, lac promoter, trp promoter, recA promoter, ribosomal RNA promoter, the PR and PL promoters of coliphage lambda and others, including but not limited, to lacUV5, ompF, bla, lpp, and the like, may be used to direct high levels of transcription of adjacent DNA segments. Additionally, a hybrid trp-lacUV5 (tac) promoter or other E. coli promoters produced by recombinant DNA or other synthetic DNA techniques may be used to provide for transcription of the inserted gene. Common promoters suitable for directing expression in mammalian cells include, without limitation, SV40, MMTV, metallothionein-1, adenovirus Ela, CMV, immediate early, immunoglobulin heavy chain promoter and enhancer, and RSV-LTR.
  • There are other specific initiation signals required for efficient gene transcription and translation in prokaryotic cells that can be included in the nucleic acid construct to maximize peptide production, e.g., the Shine-Dalgarno ribosome binding site. Depending on the vector system and host utilized, any number of suitable transcription and/or translation elements, including constitutive, inducible, and repressible promoters, as well as minimal 5′ promoter elements, enhancers or leader sequences may be used. For a review on maximizing gene expression see Roberts and Lauer, “Maximizing Gene Expression on a Plasmid Using Recombination In Vitro,” Methods in Enzymology 68:473-82 (1979), which is hereby incorporated by reference in its entirety.
  • A nucleic acid molecule encoding an oligosaccharyltransferase or other protein component of the present invention (e.g., glycoprotein target, enzymes involved in glycan production), a promoter molecule of choice, including, without limitation, enhancers, and leader sequences, a suitable 3′ regulatory region to allow transcription in the host, and any additional desired components, such as reporter or marker genes, are cloned into the vector of choice using standard cloning procedures in the art, such as described in Joseph Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL (Cold Springs Harbor 1989); Frederick M. Ausubel, SHORT PROTOCOLS IN MOLECULAR BIOLOGY (Wiley 1999), and U.S. Pat. No. 4,237,224 to Cohen and Boyer, which are hereby incorporated by reference in their entirety.
  • Once the nucleic acid molecule encoding the protein or proteins has been cloned into an expression vector, it is ready to be incorporated into a host. Recombinant molecules can be introduced into cells, without limitation, via transfection (if the host is a eukaryote), transduction, conjugation, mobilization, electroporation, lipofection, protoplast fusion, calcium chloride transformation, mobilization, transfection using bacteriophage, or particle bombardment, using standard cloning procedures known in the art, as described by JOSEPH SAMBROOK et al., MOLECULAR CLONING: A LABORATORY MANUAL (Cold Springs Harbor 1989), which is hereby incorporated by reference in its entirety.
  • Suitable host cells for recombinant protein production include both prokaryotic and eukaryotic cells. Suitable prokaryotic host cells include, without limitation, E. coli and other Enterobacteriaceae, Escherichia sp., Campylobacter sp., Wolinella sp., Desulfovibrio sp. Vibrio sp., Pseudomonas sp. Bacillus sp., Listeria sp., Staphylococcus sp., Streptococcus sp., Peptostreptococcus sp., Megasphaera sp., Pectinatus sp., Selenomonas sp., Zymophilus sp., Actinomyces sp., Arthrobacter sp., Frankia sp., Micromonospora sp., Nocardia sp., Propionibacterium sp., Streptomyces sp., Lactobacillus sp., Lactoocccus sp., Leuconostoc sp., Pediococcus sp., Acetobacterium sp., Eubacterium sp., Heliobacterium sp., Heliospirillum sp., Sporomusa sp., Spiroplasma sp., Ureaplasma sp., Erysipelothrix, sp., Corynebacterium sp. Enterococcus sp., Clostridium sp., Mycoplasma sp., Mycobacterium sp., Actinobacteria sp., Salmonella sp., Shigella sp., Moraxella sp., Helicobacter sp. Stenotrophomonas sp., Micrococcus sp., Neisseria sp., Bdellovibrio sp., Hemophilus sp., Klebsiella sp., Proteus mirabilis, Enterobacter cloacae, Serratia sp., Citrobacter sp., Proteus sp., Serratia sp., Yersinia sp., Acinetobacter sp., Actinobacillus sp. Bordetella sp., Brucella sp., Capnocytophaga sp., Cardiobacterium sp., Eikenella sp., Francisella sp., Haemophilus sp., Kingella sp., Pasteurella sp., Flavobacterium sp. Xanthomonas sp., Burkholderia sp., Aeromonas sp., Plesiomonas sp., Legionella sp. and alpha-proteobacteria such as Wolbachia sp., cyanobacteria, spirochaetes, green sulfur and green non-sulfur bacteria, Gram-negative cocci, Gram negative bacilli which are fastidious, Enterobacteriaceae-glucose-fermenting gram-negative bacilli, Gram negative bacilli-non-glucose fermenters, Gram negative bacilli-glucose fermenting, oxidase positive. In addition to bacteria cells, eukaryotic cells such as mammalian, insect, and yeast systems are also suitable host cells for transfection/transformation of the expression vector for recombinant protein production. Mammalian cell lines available in the art for expression of a heterologous protein or polypeptide include Chinese hamster ovary cells, HeLa cells, baby hamster kidney cells, COS cells and many others.
  • Purified proteins may be obtained from the host cell by several methods readily known in the art, including ion exchange chromatography, hydrophobic interaction chromatography, affinity chromatography, gel filtration, and reverse phase chromatography. The peptide is preferably produced in purified form (preferably at least about 70 to about 75% pure, or about 80% to 85% pure, more preferably at least about 90% or 95% pure) by conventional techniques. Depending on whether the recombinant host cell is made to secrete the protein into growth medium (see U.S. Pat. No. 6,596,509 to Bauer et al., which is hereby incorporated by reference in its entirety), the protein can be isolated and purified by centrifugation (to separate cellular components from supernatant containing the secreted protein) followed by sequential ammonium sulfate precipitation of the supernatant. The fraction containing the protein can be subjected to gel filtration in an appropriately sized dextran or polyacrylamide column to separate the protein from other cellular components and proteins. If necessary, the protein fraction may be further purified by HPLC.
  • The oligosaccharyltransferase catalyzes the transfer of a glycan from a lipid donor to an acceptor protein, peptide, or polypeptide. In one embodiment of the present invention, the lipid donor or carrier molecule is a prokaryotic lipid donor, i.e., it is made in a prokaryote or native to the prokaryote. Examples of prokaryotic lipid donors include an undecaprenyl-phosphate and an undecaprenyl phosphate-linked bacillosamine (Weerapana et al., “Investigating Bacterial N-Linked Glycosylation: Synthesis and Glycosyl Acceptor Activity of the Undecaprenyl Pyrophosphate-linked Bacillosamine,” J. Am. Chem. Soc. 127: 13766-67 (2005), which is hereby incorporated by reference in its entirety). In another embodiment of the present invention, the lipid donor is a eukaryotic lipid donor, i.e., it is made in a eukaryotic cell or native to the eukaryotic cell. An exemplary eukaryotic lipid donor is dolichylpyrophosphate
  • In accordance with this and all aspects of the present invention, the glycan comprises an oligosaccharide or polysaccharide that is linked to a lipid donor molecule. The composition of the glycan component varies in number and type of monosaccharide units that make up the oligosaccharide or polysaccharide chain. The monosaccharide components of a glycan include, but are not limited to, one or more of glucose (Glc), galactose (Gal), mannose (Man), fucose (Fuc), N-acetylgalactosamine (GalNAc), N-acetylglucosamine (GlcNAc), glucorionic acid, xylose, sialic acid (e.g., N-acetyl-neuraminic acid (NeuAc), 6-deoxy-talose, and rhamnose monosaccharides.
  • In accordance with this and all aspects of the present invention, the glycan can be a prokaryotic, archaea, or eukaryotic glycan. Alternatively, the glycan may comprise a completely unnatural glycan composition.
  • In one embodiment of the present invention, the glycan is a prokaryotic glycan that is produced by one or more prokaryotic glycosyltransferases. In another embodiment of the present invention, the prokaryotic glycan is produced using a combination of prokaryotic and eukaryotic glycosyltransferases, but has a monosaccharide composition that mimics a prokaryotic glycan structure. In another embodiment of the present invention, the prokaryotic glycan is synthetically produced (Seeberger et al., Chemical and Enzymatic Synthesis of Glycans and Glycoconjugates, in ESSENTIALS OF GLYCOBIOLOGY (A. Varki et al. eds., 2009), which is hereby incorporated by reference in its entirety).
  • An exemplary prokaryotic glycan is a glycan produced by the glycosyltransferases of the C. jejuni, C. Coli, C. lari, or C. upsaliensis Pgl gene clusters or a modified C. jejuni, C. Coli, C. lari, or C. upsaliensis Pgl gene cluster. Genes of the Pgl cluster include wlaA, galE, wlaB, pglH, pglI, pglJ, pglB, pglA, pglC, pglD, wlaJ, pglE, pglF, and pglG (Szymanski and Wren, “Protein Glycosylation in Bacterial Mucosal Pathogens,” Nature Microbiol. 3:225-237 (2005), which is hereby incorporated by reference in its entirety). A prokaryotic glycan typically comprises the diacetamido-trideoxy-sugar, bacillosamine (Bac; 2,4-diacetamido-2,4,6-trideoxyglucose). A suitable prokaryotic glycan of this and all aspects of the present invention is a heptasaccharide comprising glucose, N-acetylgalactosamine, and bacillosamine, i.e., GlcGalNAc5Bac.
  • As described in the Examples herein, the glycan of this and all aspects of the present invention can be recombinantly produced. For example, a modified or unmodified C. jejuni pgl gene cluster encoding the enzymes that carry out the biosynthesis of the GlcGalNac5Bac heptasaccharide and other glycan structures can be isolated and transferred to a suitable host cell for production of a lipid-linked glycan (see also Wacker et al., “N-Linked Glycosylation in Campylobacter jejuni and its Functional Transfer into E. coli,” Science 298(5599): 1790-93 (2002), which is hereby incorporated by reference in its entirety). Pgl gene clusters from other Campylobacter species, e.g., C. coli, C. lari, and C. upsaliensis, are also suitable for recombinant production of glycans for use in all aspects of the present invention (Szymanski and Wren, “Protein Glycosylation in Bacterial Mucosal Pathogens,” Nature Microbiol. 3:225-237 (2005), which is hereby incorporated by reference in its entirety). Additionally, similar Pgl-like glycosylation gene loci have been identified in Wolinella succinogens, Desulfovibrio desulfuricans, and D. vulgaris that are also suitable for recombinant production of glycans for the present invention (Baar et al., “Complete Genome Sequence and Analysis of Wolinella succinogenes,” Proc. Natl. Acad. Sci. USA 100: 11690-11695 (2003) and Szymanski and Wren, “Protein Glycosylation in Bacterial Mucosal Pathogens,” Nature Microbiol. 3:225-237 (2005), which are hereby incorporated by reference in their entirety).
  • The Pgl gene cluster may be modified to enhance lipid-linked glycan production, accumulation, and isolation in the host cell. For example, inactivation of the oligosaccharyltransferase component of the gene cluster (e.g., the pglB gene in the pgl gene cluster) is desirable to prevent transfer of the lipid-linked glycan to a glycoprotein target of the host cell. Additionally, in some embodiments of the present invention, it may be desirable to attenuate, disrupt, or delete competing glycan biosynthesis reactions of the host cell. In particular, inactivation of host cell glycosyltransferase enzymes (N-linked or O-linked reaction enzymes) or other enzymes involved in the transfer or ligation of a glycan to acceptor moieties of the host cell may also be desirable. For instance, when E. coli is utilized as the host cell, deletion of the WaaL enzyme which transfers glycans from the undecaprenyl lipid carrier onto lipid A, which in turn shuttles the oligosaccharides to the outer leaflet of the outer membrane, will ensure that the recombinantly produced lipid-linked glycans accumulate in the inner membrane. Other E. coli host cell glycosylation related enzymes that may be deleted, disrupted, or modified include, without limitation, wecA, wbbL, glcT, glf, gafT, wzx, wzy, and enzymes of the O16 antigen biosynthesis pathway.
  • In another embodiment of the present invention, the glycan is a eukaryotic glycan, i.e., a glycan produced by one or more eukaryotic glycosyltransferases. In one embodiment, of the present invention, a eukaryotic glycan is produced by only eukaryotic glycosyltransferases. In another embodiment of the present invention, the eukaryotic glycan is produced using a combination of both eukaryotic and prokaryotic glycosyltransferase enzymes, but mimics eukaryotic glycan structure. In another embodiment of the present invention, the eukaryotic glycan is synthetically produced (Seeberger et al., Chemical and Enzymatic Synthesis of Glycans and Glycoconjugates, in ESSENTIALS OF GLYCOBIOLOGY (A. Varki et al. eds., 2009), which is hereby incorporated by reference in its entirety).
  • In one embodiment, the eukaryotic glycan comprises a GlcNAc2 core. The GlcNac2 core may further comprise at least one mannose residue. Suitable eukaryotic glycan structures may comprise, but are not limited to, Man1GlcNAc2, Man2GlcNAc2, and Man3GlcNAc2.
  • As described above, the eukaryotic lipid-linked glycan can be recombinantly produced by introducing one or more eukaryotic glycosyltransferase enzymes in a suitable host cell. A eukaryotic glycosyltransferase as used herein refers to an enzyme that catalyzes the transfer of a sugar reside from a donor substrate, e.g., from an activated nucleotide sugar, to an acceptor substrate, e.g., a growing lipid-linked oligosaccharide chain. Suitable glycosyltransferase enzyme that can be utilized in host cells to facilitate the recombinant production of a eukaryotic lipid-linked glycan of the system include, without limitation, galactosyltransferases (e.g., β1,4-galactosyltransferase, β1,3-galactosyltransferase), fucosyltransferases, glucosyltransferases, N-acetylgalactosaminyltransferases (e.g., GalNAcT, GalNAc-T1, GalNAc-T2, GalNAc-T3), N-acetylglucosaminyltransferases (e.g., β-1,2-N-acetylglucosaminyltransferase I (GnTI-), GnT-II, GnT-III, GnT-IV, GnT-V, GnT-VI, and GvT-IVH), glucuronyltransferases, sialyltransferases (e.g., α(2,3)sialyltransferase, α-N-acetylgalactosaminide α-2,6-sialyltransferase I, Galβ1,3GalNAc α2,3-sialyltransferase, β galactoside-α-2,6-sialyltransferase, and α2,8-sialyltransferase), mannosyltransferases (e.g., α-1,6-mannosyltransferase, α-1,3-mannosyltransferase, β-1,4-mannosyltransferase), glucuronic acid transferases, galacturonic acid transferases, and the like. The aforementioned glycosyltransferase enzymes have been extensively studied in a variety of eukaryotic systems. Accordingly, the nucleic acid and amino acid sequences of these enzymes are known and readily available to one of skill in the art. Additionally, many of these enzymes are commercially available (e.g., Sigma-Aldrich, St. Louis, Mo.).
  • Suitable host cells for the production of a prokaryotic or eukaryotic lipid-linked glycan include both prokaryotic host cells and eukaryotic cells. An exemplary list of suitable host cells is provided supra. When utilizing eukaryotic glycosyltransferases in prokaryotic host cells, the nucleotide sequences of the eukaryotic glycosyltransferases can be codon optimized to overcome limitations associated with the codon usage bias between E. coli (and other bacteria) and higher organisms, such as yeast and mammalian cells. Codon usage bias refers to differences among organisms in the frequency of occurrence of codons in protein-coding DNA sequences (genes). A codon is a series of three nucleotides (triplets) that encodes a specific amino acid residue in a polypeptide chain. Codon optimization can be achieved by making specific transversion nucleotide changes, i.e. a purine to pyrimidine or pyrimidine to purine nucleotide change, or transition nucleotide change, i.e. a purine to purine or pyrimidine to pyrimidine nucleotide change.
  • In accordance with this and all aspects of the present invention, a “glycoprotein target” includes any peptide, polypeptide, or protein that comprise one or more glycan acceptor amino acid residues. Typically glycan acceptor residues comprise an asparagine (N or Asn) to form an N-linked glycoprotein, or hydroxyl oxygen on the side chain of hydroxylysine, hydroxyproline, serine, threonine, or tyrosine to form an O-linked glycoprotein. A wide variety of glycoprotein targets exist including, without limitation, structural molecules (e.g., collagens), lubricant and protective agents (e.g., mucins), transport proteins (e.g., transferrin), immunological proteins (immunoglobulins, histocompatibility antigens), hormones, enzymes, cell attachment recognition sites, receptors, protein folding chaperones, developmentally regulated proteins, and proteins involved in hemostasis and thrombosis. Therapeutic proteins, such as antibodies are important glycoprotein targets of the system of the present invention.
  • According to this and all aspect of the present invention, the one or more oligosaccharide acceptor residues of the glycoprotein target may be an asparagine (N or Asn) residue. The asparagine residue is positioned within a glycosylation consensus sequence comprising N-X1-S/T (eukaryotic consensus sequence) or D/E-X1-N-X2-S/T (SEQ ID NO: 1) (prokaryotic consensus sequence) where D is aspartic acid, X1 and X2 are any amino acid other than proline, N is asparagine, and T is threonine.
  • The glycoprotein target according to this and all aspects of the present invention can be a purified protein, peptide, or polypeptide comprising the requisite glycan acceptor residues. Alternatively, the glycoprotein target can be in the form of an isolated nucleic acid molecule encoding the glycoprotein target. In accordance with this embodiment of the present invention, the system further includes reagents suitable for synthesizing the glycoprotein target from said nucleic acid molecule, i.e., translation reagents.
  • Reagents for synthesizing proteins from nucleic acid molecules in vitro (i.e., in a cell-free environment) are well known in the art. These reagents or systems typically consist of extracts from rabbit reticulocytes, wheat germ, and E. coli. The extracts contain all the macromolecule components necessary for translation of an exogenous RNA molecule, including, for example, ribosomes, tRNAs, aminoacyl-tRNA synthetases, initiation, elongation, and termination factors. The other required components of the system include amino acids, energy sources (e.g., ATP, GTP), energy regenerating systems (creatine phosphate and creatine phosphokinase for eukaryote systems, and phosphoenol pyruvate and pyruvate kinase for prokaryote systems), and other cofactors (e.g., Mg2+, K+, etc.). If the nucleic acid molecule encoding the glycoprotein target is a DNA molecule, the cell-free translation reaction is coupled or linked to an initial transcription reaction that utilizes a RNA polymerase.
  • Another aspect of the present invention is directed to a kit comprising an isolated oligosaccharyltransferase capable of transferring a glycan from a lipid carrier molecule to a glycoprotein target, and one or more isolated glycans, wherein each glycan is linked to a lipid carrier molecule.
  • In accordance with this aspect of the present invention, the isolated oligosaccharyltransferase of the kit may be a purified protein or may be in the form of a nucleic acid encoding the oligosaccharyltransferase. The nucleic acid molecule can be a DNA or RNA molecule, and it can be linearized (naked) or circularized (housed in an expression vector). Exemplary prokaryotic, archaea, and eukaryotic oligosaccharyltransferases are described supra.
  • As described supra, the one or more glycans are linked to a lipid carrier molecule (e.g., an undecaprenol-pyrophosphate, an undecaprenyl pyrophosphate-linked bacillosamine, or a dolichylpyrophosphate). The glycan may comprise a prokaryotic, archaea, eukaryotic, or completely unnatural synthetic glycan as also described supra. Suitable prokaryotic core glycan structures comprise a heptasaccharide containing glucose, N-acetylgalactosamine, and optionally bacillosamine (e.g., GlcGalNAc5Bac). Suitable eukaryotic glycan core structures comprises N-acetylglucosamine and mannose (e.g., Man1GlcNAc2, Man2GlcNAc2, and Man3GlcNAc2).
  • In one embodiment of this aspect of the present invention, the one or more isolated glycans linked to a lipid carrier molecule of the kit are in an assembled and purified form. Alternatively, the kit of the present invention comprises one or more nucleic acid molecules encoding one or more eukaryotic and/or prokaryotic glycosyltransferase enzymes, and host cells (eukaryotic or prokaryotic) that contain a polyisoprenyl pyrophosphate glycan carrier and are capable of expressing the one or more nucleic acid molecules. In accordance with this embodiment, the kit may further contain instructions for recombinantly producing and isolating the lipid-linked glycan in the host cells prior to use with the other kit components.
  • The kit of the present invention may further include in vitro or cell-free transcription and/or translation reagents for synthesizing the oligosaccharyltransferase and/or a glycoprotein, peptide or polypeptide of choice.
  • Another aspect of the present invention relates to a method for producing a glycosylated protein in a cell-free system. This method involves providing an isolated oligosaccharyltransferase capable of transferring a glycan from a lipid carrier molecule to a glycoprotein target, providing one or more isolated glycans, wherein each glycan is linked to a lipid carrier molecule, and providing a glycoprotein target comprising one or more glycan acceptor amino acid residues. This method further involves combining the oligosaccharyltransferase, one or more isolated glycans, and glycoprotein target to form a cell-free glycosylation reaction mixture, and subjecting the cell-free glycosylation reaction mixture to conditions effective for the oligosaccharyltransferase to transfer the glycan from the lipid carrier molecule to the one or more glycan acceptor residues of the glycoprotein target to produce a glycosylated protein.
  • The components of the method of the present invention. i.e., the oligosaccharyltransferase, isolated glycans linked to a lipid carrier molecule, and glycoprotein target are described in detail supra.
  • The method of the present invention may comprise one or more additional steps. For example, glycoprotein target translation may be coupled with glycosylation by providing reagents suitable for synthesizing a glycoprotein target from a nucleic acid molecule. In this embodiment of the present invention, the nucleic acid molecule encoding the glycoprotein target, the translation reagents, oligosaccharyltransferase, isolated glycans are all combined to form a translation-glycosylation reaction mixture. The glycoprotein target is then synthesized from the target nucleic acid molecule prior to or concurrent with the glycosylation reaction.
  • EXAMPLES Materials and Methods for Examples 1-4
  • Protein purification. For the purification of CjPglB, E. coli strain C43(DE3) (Lucigen, Middleton, Wis.) was freshly transformed with plasmid pSN18 (Kowarik et al., “N-Linked Glycosylation of Folded Proteins by the Bacterial Oligosaccharyltransferase,” Science 314:1148-1150 (2006), which is hereby incorporated by reference in its entirety), a modified pBAD expression plasmid encoding C. jejuni pglB with a C-terminal decahistidine affinity tag. Cells were grown in 1.5 L of terrific Broth supplemented with 100 μg/mL of ampicillin at 37° C. When the optical density (A600) of the culture reached ˜1.0, cells were induced by the addition of 0.02% arabinose (w/v) for 4.5 h at 30° C. All following steps were performed at 4° C. unless specified differently. Cells were harvested by centrifugation, resuspended in 25 mM Tris, pH 8.0, and 250 mM NaCl and lysed by three passages through a French press (SLM-Aminco; 10,000 PSI, SLM Instruments, Inc., Urbana, Ill.). Following the removal of cell debris by centrifugation, the membrane fraction was isolated by ultracentrifugation at 100,000×g for 1 h. Membranes containing PglB were resuspended in 25 mM Tris-HCl, pH 8.0, 250 mM NaCl. 10% glycerol (v/v) and 1% DDM (w/v) (DDM, Anatrace, Affymetrix, Inc., Santa Clara, Calif.) and incubated for 2 h. The insoluble fraction was removed by ultracentrifugation at 100,000×g for 1 h. All subsequent buffers contained DDM as the detergent. The solubilized membranes were supplemented with 10 mM imidazole, loaded onto a Ni-NTA superflow affinity column (Qiagen, Valencia, Calif.) and washed with 60 mM imidazole before PglB was eluted with 200 mM imidazole. The purified protein was then injected onto a SUPERDEX® 200 gel filtration column using AKTA-FPLC (GE Healthcare, Waukesha, Wis.). Eluate fractions were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and stained with Coomassie blue to identify the fractions containing PglB (FIG. 2). The protein was desalted with a PD10 desalting column (GE Healthcare) into 20 mM Tris, pH 7.5, 100 mM NaCl, 5% glycerol (w/v) and 0.05% DDM (w/v) and concentrated to 5-10 mg/mL in an Amicon centricon with a molecular mass cutoff of 100 kDa. Expression and purification of the inactive CjPglB mutant was performed identically except C43(DE3) cells carrying plasmid pSN18.1, which encodes an inactive copy of pglB subcloned from pACYCpglmut (see below) were used. ClPglB was purified from BL2-Gold(DE3) cells (Stratagene, La Jolla, Calif.) carrying plasmid pSF2 as described elsewhere (Lizak et al., “X-ray Structure of a Bacterial Oligosaccharyltransferase,” Nature 474:350-355 (2011), which is hereby incorporated by reference in its entirety). For long-term storage at −20° C., the glycerol content in PglB samples was increased to 10% (w/v). Purification of AcrA and scFv13-R4-GT was from periplasmic fractions isolated from BL21(DE3) cells carrying plasmid pET24(AcrA-per) (Nita-Lazar et al., “The N-X-S/T Consensus Sequence is Required but not Sufficient for Bacterial N-Linked Protein Glycosylation,” Glycobiology 15:361-367 (2005), which is hereby incorporated by reference in its entirety) or pET24-ssDsbAscFv13-R4-GT (see below). Periplasmic extracts were prepared as described previously (Schwarz et al., “Relaxed Acceptor Site Specificity of Bacterial Oligosaccharyltransferase in Vivo,” Glycobiology 21:45-54 (2011), which is hereby incorporated by reference in its entirety), supplemented with imidazole to reach a final concentration of 10 mM, sterile filtered (0.22 μm), and purified by nickel affinity chromatography using Ni-NTA superflow affinity column (Qiagen, Valencia, Calif.).
  • Isolation of Lipid-linked Glycans. Escherichia coli SCM6 cells transformed with pACYCpglmut (Wacker et al., “N-Linked Glycosylation in Campylobacter jejuni and its Functional Transfer Into E. coli,” Science 298:1790-1793 (2002), which is hereby incorporated by reference in its entirety), which codes for the biosynthesis of the C. jejuni LLO and an inactivated C. jejuni pglB gene (W458A and D459A), were grown in 1 L of Luria-Burtani supplemented with 25 μg/mL of chloramphenicol at 37° C. When the A600 reached−1.0, cells were harvested by centrifugation and the pellet was lyophilized to dryness for 20 h at −80° C. and 0.04 mbar. All subsequent steps were performed using glass tubes and glass pipettes. Homogenized pellets were extracted in 25 mL of 10:20:3 CHCl3:MeOH:H2O followed by centrifugation at 3000×g for 30 min. The supernatants were evaporated using a rotary evaporator (Büchi, Flawil, Sankt Gallen, Switzerland), after which the resulting pellet was resuspended in 1 mL of 10:20:3 CHCl3:MeOH:H2O and sonicated until homogenous. The sample was dried under nitrogen gas at 37° C., dissolved in 10 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), pH 7.5, 1 mM MnCl2 and 0.1% DDM (w/v) and stored at −20° C. An identical procedure was followed to extract lipids from SCM6 cells carrying empty pACYC.
  • Cell-Free Translation and Glycosylation. For in vitro glycosylation of purified acceptor proteins, a 50 μL solution containing 3 μg of purified PglB, 5-10 μL of extracted LLOs and 5 μg of purified AcrA or scFv13-R4-GT in 10 mM HEPES, pH 7.5, 1 mM MnCl2 and 0.1% DDM (w/v) was incubated for 12 h at 30° C. For in vitro translation of AcrA and scFv13-R4-GT in the absence of glycosylation, a 50 μL reaction was prepared using the S30 T7 High-Yield Expression System (Promega, Fitchburg, Wis.) or PUREXPRESS® (New England Biolabs, Ipswich, Mass.) according to the manufacturer's instructions. A total of 1 μg of the following plasmids were added to each reaction: pET24b (Novagen, Madison, Wis.); pET24-AcrA encoding full-length C. jejuni AcrA with a C-terminal hexahistidine tag (Nita-Lazar et al., “The N-X-S/T Consensus Sequence is Required but not Sufficient for Bacterial N-Linked Protein Glycosylation,” Glycobiology 15:361-367 (2005), which is hereby incorporated by reference in its entirety); pET24(AcrA-per) encoding a version of AcrA with an N-terminal PelB signal peptide in place of its native export signal (Nita-Lazar et al., “The N-X-S/T Consensus Sequence is Required but not Sufficient for Bacterial N-Linked Protein Glycosylation,” Glycobiology 15:361-367 (2005), which is hereby incorporated by reference in its entirety); pET24(AcrA-cyt) encoding a version of AcrA without an N-terminal export signal (ΔssAcrA) (Nita-Lazar et al., “The N-X-S/T Consensus Sequence is Required but not Sufficient for Bacterial N-Linked Protein Glycosylation,” Glycobiology 15:361-367 (2005), which is hereby incorporated by reference in its entirety), and pET24-ssDsbA-scFv13-R4-GT encoding the expression-optimized scFv13-R4 intrabody gene (Martineau et al., “Expression of an Antibody Fragment at High Levels in the Bacterial Cytoplasm,” J. Mol. Biol. 280:117-127 (1998), which is hereby incorporated by reference in its entirety) with an N-terminal signal peptide from E. coli DsbA for secretion and a C-terminal GT (Fisher et al., “Production of Secretory and Extracellular N-Linked Glycoproteins in Escherichia coli,” Appl. Environ. Microbiol. 77:871-881 (2011), which is hereby incorporated by reference in its entirety) followed by a FLAG and a hexahistidine epitope tag. For in vitro translation/glycosylation reactions, 50 μL of translation reactions was supplemented with 3 μg purified PglB, 5 μL extracted LLOs, 1 μg purified plasmid DNA, 1 mM MnCl2 and 0.1% DDM (w/v) and incubated for 12 h at 30° C. DDM was chosen for in vitro translation/glycosylation because it was previously observed to be well tolerated in an E. coli-derived CFE system (Klammt et al., “Evaluation of Detergents for the Soluble Expression of Alpha-Helical and Beta-Barrel-Type Integral Membrane Proteins by a Preparative Scale Individual Cell-Free Expression System,” Febs J. 272:6024-6038 (2005), which is hereby incorporated by reference in its entirety).
  • Western blot analysis. Expression and glycosylation of AcrA and scFv13-R4-GT was analyzed by immunoblot following SDS-PAGE. Immunodetection was performed with monoclonal anti-His antibody (Qiagen, Valencia, Calif.), monoclonal anti-FLAG antibody (Abcam, Cambridge, Mass.), polyclonal anti-AcrA serum (Wacker et al., “N-Linked Glycosylation in Campylobacter jejuni and its Functional Transfer Into E. coli,” Science 298:1790-1793 (2002), which is hereby incorporated by reference in its entirety) and polyclonal anti-glycan serum hR6. All in vitro translation samples were treated with RNase A (Roche Diagnostics GmbH, Mannheim, Germany) prior to SDS-PAGE to reduce the irregularity of gel electrophoresis due to excess RNA. All experiments were performed at least in triplicate, and representative samples are shown.
  • Example 1—Preparation of N-linked Glycosylation Components
  • To begin, functional reconstitution of bacterial N-linked glycosylation in vitro was attempted. Minimally, this required three components: an OST, a lipid-linked oligosaccharide (LLO) (i.e., a lipid-linked glycan) and an acceptor protein carrying the D/E-X1-N-X2-S/T motif. For the OST, CjPglB was expressed in the membrane fraction of E. coli cells, solubilized with 1% N-dodecyl-β-D-maltopyranoside (DDM) and purified to near homogeneity by nickel affinity chromatography followed by gel filtration (FIG. 2B). Separately, E. coli cells carrying the C. jejuni pgl locus were used for producing the oligosaccharide donor. This gene cluster encodes enzymes that carry out the biosynthesis of a GlcGalNAc5Bac heptasaccharide (where Bac is bacillosamine) and its transfer from membrane-anchored undecaprenylpyrophosphate (UndPP) to asparagine residues. Here, a modified version of this cluster that carried an inactivated pglB gene (Wacker et al., “N-Linked Glycosylation in Campylobacter jejuni and its Functional Transfer Into E. coli,” Science 298:1790-1793 (2002), which is hereby incorporated by reference in its entirety) was transferred to E. coli SCM6 cells and used to prepare LLOs. SCM6 cells were chosen for several reasons. First, these cells lack the WaaL enzyme that naturally transfers oligosaccharides (e.g. O-antigens, glycans) from the lipid carrier undecaprenyl onto lipid A, which in turn shuttles the oligosaccharides to the outer leaflet of the outer membrane (Feldman et al., “Engineering N-Linked Protein Glycosylation With Diverse O Antigen Lipopolysaccharide Structures in Escherichia coli,” Proc. Nat'l. Acad. Sci. U.S.A. 102:3016-3021 (2005), which is hereby incorporated by reference in its entirety). Thus, in the absence of WaaL, the desired lipid-linked glycans accumulate in the inner membrane. Second, the lipopolysaccharide and enterobacterial common antigen initiating GlcNAc transferase, WecA, is removed. Thus, this strain should only produce LLOs with GlcGalNAc5Bac at the reducing end. In support of this notion, previous mass spectrometry analysis of LLOs extracted from an E. coli strain similar to the one used here (i.e. ΔwaaL ΔwecA) revealed that only LLOs containing GlcGalNAc5Bac heptasaccharide were detected (Reid et al., “Affinity-Capture Tandem Mass Spectrometric Characterization of Polyprenyl-Linked Oligosaccharides: Tool to Study Protein N-Glycosylation Pathways,” Anal. Chem. 80:5468-5475 (2008), which is
  • Example 1—Preparation of N-linked Glycosylation Components
  • To begin, functional reconstitution of bacterial N-linked glycosylation in vitro was attempted. Minimally, this required three components: an OST, a lipid-linked oligosaccharide (LLO) (i.e., a lipid-linked glycan) and an acceptor protein carrying the D/E-X1-N-X2-S/T motif. For the OST. CjPglB was expressed in the membrane fraction of E. coli cells, solubilized with 1% N-dodecyl-s-D-maltopyranoside (DDM) and purified to near homogeneity by nickel affinity chromatography followed by gel filtration (FIG. 2B). Separately, E. coli cells carrying the C. jejuni pgl locus were used for producing the oligosaccharide donor. This gene cluster encodes enzymes that carry out the biosynthesis of a GlcGalNAc5Bac heptasaccharide (where Bac is bacillosamine) and its transfer from membrane-anchored undecaprenylpyrophosphate (UndPP) to asparagine residues. Here, a modified version of this cluster that carried an inactivated pglB gene (Wacker et al., “N-Linked Glycosylation in Campylobacter jejuni and its Functional Transfer Into E. coli,” Science 298:1790-1793 (2002), which is hereby incorporated by reference in its entirety) was transferred to E. coli SCM6 cells and used to prepare LLOs. SCM6 cells were chosen for several reasons. First, these cells lack the WaaL enzyme that naturally transfers oligosaccharides (e.g. O-antigens, glycans) from the lipid carrier undecaprenyl onto lipid A, which in turn shuttles the oligosaccharides to the outer leaflet of the outer membrane (Feldman et al., “Engineering N-Linked Protein Glycosylation With Diverse O Antigen Lipopolysaccharide Structures in Escherichia coli,” Proc. Nat'l. Acad. Sci. U.S.A. 102:3016-3021 (2005), which is hereby incorporated by reference in its entirety). Thus, in the absence of WaaL, the desired lipid-linked glycans accumulate in the inner membrane. Second, the lipopolysaccharide and enterobacterial common antigen initiating GlcNAc transferase, WecA, is removed. Thus, this strain should only produce LLOs with GlcGalNAc5Bac at the reducing end. In support of this notion, previous mass spectrometry analysis of LLOs extracted from an E. coli strain similar to the one used here (i.e. ΔwaaL ΔwecA) revealed that only LLOs containing GlcGalNAc5Bac heptasaccharide were detected (Reid et al., “Affinity-Capture Tandem Mass Spectrometric Characterization of Polyprenyl-Linked Oligosaccharides: Tool to Study Protein N-Glycosylation Pathways,” Anal. Chem. 80:5468-5475 (2008), which is hereby incorporated by reference in its entirety). For the oligosaccharide acceptor, the model glycoprotein AcrA from C. jejuni (Nita-Lazar et al., “The N-X-S/T Consensus Sequence is Required but not Sufficient for Bacterial N-Linked Protein Glycosylation,” Glycobiology 15:361-367 (2005), which is hereby incorporated by reference in its entirety) was purified from the periplasm. AcrA presents two consensus D/E-X1-N-X2-S/T sites that are glycosylated by CjPglB (Kowarik et al., “Definition of the Bacterial N-Glycosylation Site Consensus Sequence,” EMBO J. 25:1957-1966 (2006), which is hereby incorporated by reference in its entirety). Alternatively, a glycoengineered single-chain variable fragment (scFv) called scFv13-R4-GT, which carried a C-terminal glycosylation tag (GT) consisting of four consecutive DQNAT motifs separated from one another by consecutive glycine residues (Fisher et al., “Production of Secretory and Extracellular N-Linked Glycoproteins in Escherichia coli,” App. Environ. Microbiol. 77:871-881 (2011), which is hereby incorporated by reference in its entirety), was similarly purified.
  • Example 2—Functional Reconstitution In Vitro of the C. jejuni Protein Glycosylation Pathway
  • To evaluate the reconstituted glycosylation pathway, CjPgIB OST was combined with LLOs extracted from E. coli cells and purified AcrA. This reaction resulted in efficient glycosylation of both AcrA sites as evidenced by the mobility shift of nearly all of the AcrA from the unmodified (g0) to the fully glycosylated (g2) form (FIG. 3A). This activity was dependent on PglB and LLOs. Doubling the LLO concentration resulted in the appearance of the g0 and g1 forms of AcrA, in addition to g2, suggesting slightly less efficient glycosylation. Importantly, glycosylation activity was lost when lipid extracts from cells lacking the pgl cluster or an inactive CjPglB mutant was used (FIG. 3A). These results were corroborated by detecting glycosylated AcrA with serum specific for the C. jejuni N-glycan (FIG. 3A). Nearly identical results were observed when the glycoengineered scFv13-R4-GT protein was used as the oligosaccharide acceptor (FIG. 3A). It should be noted that g2, g3 and g4 were the predominant glycoforms detected here, with barely detectable levels of g1. To demonstrate that other OSTs could be used in this system, in vitro glycosylation of AcrA was also performed using Campylobacter lari PglB (ClPglB), which is 56% identical to that of C. jejuni (Schwarz et al., “Relaxed Acceptor Site Specificity of Bacterial Oligosaccharyltransferase in Vivo,” Glycobiology 21:45-54 (2011), which is hereby incorporated by reference in its entirety). This resulted in nearly equal amounts of the g0, g1 and g2 forms of AcrA under the conditions tested (FIG. 3B). To be useful for translation/glycosylation reactions, the purified glycosylation components must tolerate long-term storage and freeze-thaw cycles. To test this, the components were stored separately at −20° C. for 3 months. No changes were made to the storage buffers except that the final concentration of glycerol in the PglB samples was increased to 10%. Each of the components was thawed and refrozen 5-10 times during this period, after which an in vitro reaction with ClPglB was performed. This reaction yielded the glycosylation of AcrA that appeared to be only slightly less efficient than the glycosylation observed with freshly purified components (compare FIGS. 3B and 3C).
  • Example 3—Cell-Free Translation of Protein Targets
  • To determine whether existing cell-free translation systems could synthesize protein targets of interest, both an E. coli CFE-based protein synthesis system and the PURE (protein synthesis using recombinant elements) system that uses purified translation components and T7 RNA polymerase (Shimizu et al., “Cell-Free Translation Reconstituted With Purified Components,” Nat. Biotechnol. 19:751-755 (2001), which is hereby incorporated by reference in its entirety) were evaluated. This involved priming the CFE and PURE systems with three different AcrA DNA sequences cloned in a T7 promoter-driven pET vector. Using the CFE system, ˜150-250 μg/mL of each AcrA variant was produced as a full-length polypeptide in 1 h (FIG. 4A). AcrA carrying its native signal peptide accumulated to the highest level but also experienced the greatest amount of degradation. In contrast, AcrA carrying a PelB signal peptide in place of the native signal and AcrA lacking a signal peptide each accumulated to a slightly lower concentration but experienced no visible degradation. The PURE system similarly produced all three AcrA variants as full-length polypeptides albeit at a slightly lower level (˜100 μg/mL/h of each) than the CFE-based system (FIG. 4A). Both systems were also able to generate appreciable amounts of scFv13-R4-GT (FIG. 5A). It should be noted that this scFv was previously optimized for expression under nonoxidizing conditions (i.e., in the absence of disulfide bonds) (Martineau et al., “Expression of an Antibody Fragment at High Levels in the Bacterial Cytoplasm,” J. Mol. Biol. 280:117-127 (1998), which is hereby incorporated by reference in its entirety) and thus did not require special transcription/translation conditions.
  • Example 4—Cell-Free Translation and Glycosylation of Target Glycoproteins
  • Encouraged by these results, the glycoCFE and glycoPURE translation/glycosylation systems were constructed by combining the purified glycosylation components (minus the acceptor protein) with one of the ccll-free translation systems. The plasmid pET24(AcrA-cyt) that encodes AcrA without an N-terminal signal peptide was chosen to evaluate these systems because it gave rise to significant amounts of target protein in both translation systems with no detectable degradation. When either the CFE or the PURE system were primed with this plasmid along with CjPglB and LLOs, AcrA was produced primarily as the doubly glycosylated g2 glycoform with lesser amounts of g1 and virtually no detectable unmodified AcrA (FIG. 4B). It was estimated that ˜100-150 μg of glycosylated AcrA was produced in a 1 mL reaction volume after 12 h. Likewise, scFv13-R4-GT was efficiently produced by both the glycoCFE and glycoPURE systems, with ˜50% of the protein in the fully glycosylated g4 form and 50% in the g3 form (FIG. 5B). Both systems produced ˜50-100 μg/mL of glycosylated scFv13-R4-GT in 12 h. Thus, the glycoCFE and glycoPURE systems contain all the components essential for efficiently translating N-linked glycoproteins.
  • Discussion of Examples 1-4
  • A major advantage of the open prokaryote-based translation/glycosylation systems developed here is that the supply of purified glycosylation components as well as their substrates and cofactors (Lizak et al., “X-ray Structure of a Bacterial Oligosaccharyltransferase,” Nature 474:350-355 (2011), which is hereby incorporated by reference in its entirety) can be provided at precise ratios. Likewise, the concentration of inhibitory substances such as proteases and glycosidases that catalyze the hydrolysis of glycosidic linkages can be reduced or eliminated entirely. Additionally, the in vitro systems permit the introduction of components that may be incompatible with in vivo systems such as certain LLOs that cannot be produced or flipped in vivo. This level of controllability is unavailable in any previous translation/glycosylation system and is significant for several reasons. First, it helps to avoid glycoprotein heterogeneity, which is particularly bothersome in fundamental studies to assess the contribution of specific glycan structures or in pharmaceutical glycoprotein production. Along these lines, the glycoCFE and glycoPURE systems should allow the examination of factors that interact with or stimulate the glycosylation machinery and promote increased acceptor site occupancy. While the glycosylation efficiency observed here with CjPglB exceeded the level typically observed in vivo (Kowarik et al., “N-Linked Glycosylation of Folded Proteins by the Bacterial Oligosaccharyltransferase,” Science 314:1148-1150 (2006); Kowarik et al., “Definition of the Bacterial N-Glycosylation Site Consensus Sequence,” EMBO J. 25:1957-1966 (2006); Fisher et al., “Production of Secretory and Extracellular N-Linked Glycoproteins in Escherichia coli,” Appl. Environ. Microbiol. 77:871-881 (2011), which are hereby incorporated by reference in their entirety), it should be pointed out that further study of the reaction conditions should lead to increases in productivity and glycosylation efficiency. Second, it facilitates the integration/co-activation of multiple complex metabolic systems and pathways in vitro including transcription, translation, protein folding and glycosylation. Therefore, the glycoCFE and glycoPURE systems should provide a unique opportunity for studying the interplay of these important mechanisms under conditions where system complexity is reduced and structural barriers are removed. For instance, since the bacterial OST can glycosylate locally flexible structures in folded proteins (Kowarik et al., “N-Linked Glycosylation of Folded Proteins by the Bacterial Oligosaccharyltransferase,” Science 314:1148-1150 (2006), which is hereby incorporated by reference in its entirety) and also structured domains of some proteins, these systems should help to decipher the influence of protein structure on glycosylation efficiency. Also, since bacterial and eukaryotic glycosylation mechanisms display significant similarities, these bacterial systems could provide a simplified model framework for understanding the more complex eukaryotic process. Third, it allows for further customization of the system by reconstituting additional or alternative steps (both natural and unnatural) in the glycosylation pathway. For instance, the sequential activities of the glycosyltransferases in the pgl pathway have been reconstituted in vitro (Glover et al., “In Vitro Assembly of the Undecaprenylpyrophosphate-Linked Heptasaccharide for Prokaryotic N-Linked Glycosylation.” Proc. Nat'l. Acad. Sci. U.S.A. 102:14255-14259 (2005), which is hereby incorporated by reference in its entirety) and could easily be integrated with the translation/glycosylation reactions into a single integrated platform. While glycoengineered E. coli have the potential to provide a wide array of UndPP-linked glycans (Feldman et al., “Engineering N-Linked Protein Glycosylation With Diverse O Antigen Lipopolysaccharide Structures in Escherichia coli,” Proc. Nat'l. Acad. Sci. U.S.A. 102:3016-3021 (2005); Yavuz et al., “Glycomimicry: Display of Fucosylation on the Lipo-Oligosaccharide of Recombinant Escherichia coli K12.” Glycoconj. J. 28:39-47 (2011), which are hereby incorporated by reference in their entirety), the ability to extend beyond bacterial glycans can be achieved by supplementation with specific glycosyltransferases and the requisite activated sugars. This approach can be used for making eukaryotic glycan mimetics (Schwarz et al., “A Combined Method for Producing Homogeneous Glycoproteins With Eukaryotic N-Glycosylation,” Nat. Chem. Biol. 6:264-266 (2010), which is hereby incorporated by reference in its entirety) and will allow finer control over the diversity of glycoforms that can be used for modifying target proteins in vitro. Since CjPglB has relaxed specificity toward the glycan structure (Feldman et al., “Engineering N-Linked Protein Glycosylation With Diverse O Antigen Lipopolysaccharide Structures in Escherichia coli,” Proc. Nat'l. Acad. Sci. U.S.A. 102:3016-3021 (2005), which is hereby incorporated by reference in its entirety), all of these UndPP-linked glycans are likely to be suitable substrates. Even if CjPglB should prove insufficient, the demonstration here that two different OSTs could be used interchangeably suggests that virtually any single-subunit OST including those from other bacteria, archaea and even some eukaryotes (Nasab et al., “All in One: Leishmania Major STT3 Proteins Substitute for the Whole Oligosaccharyltransferase Complex in Saccharomyces cerevisiae,” Mol. Biol. Cell 19:3758-3768 (2008), which is hereby incorporated by reference in its entirety) could be used in these systems. In support of this notion, the Leishmania major and Pyrococcus furiosus single-subunit OSTs can be functionally expressed in E. coli membranes (Igura & Kohda, “Selective Control of Oligosaccharide Transfer Efficiency for the N-Glycosylation Sequon by a Point Mutation in Oligosaccharyltransferase,” J. Biol. Chem. 286:13255-13260 (2011), which is hereby incorporated by reference in its entirety). Finally, because one is not limited to natural glycans, the glycoCFE and glycoPURE systems should permit synthesis of hybrid natural/unnatural or even completely artificial glycans. For example, the addition of synthetic sugar-nucleotide donor substrates and/or mutant glycosyltransferases and OSTs having new specificities will enable the construction of a glycosylation system founded on a noncanonical glycan code. For all of these reasons, the glycoCFE and glycoPURE systems are useful additions to the cell-free translation and glycobiology toolkits alike.
  • Although preferred embodiments have been depicted and described in detail herein, it will be apparent to those skilled in the relevant art that various modifications, additions, substitutions, and the like can be made without departing from the spirit of the invention and these are therefore considered to be within the scope of the invention as defined in the claims which follow.

Claims (34)

What is claimed is:
1. A cell-free system for producing a glycosylated protein comprising:
an isolated oligosaccharyltransferase capable of transferring a glycan from a lipid carrier molecule to a glycoprotein target;
one or more isolated glycans, wherein each glycan is linked to a lipid carrier molecule; and
a glycoprotein target comprising one or more glycan acceptor amino acid residue, or a nucleic acid molecule encoding said glycoprotein target.
2. The system of claim 1, wherein the oligosaccharyltransferase is a prokaryotic oligosaccharyltransferase.
3. The system of claim 2, wherein the prokaryotic oligosaccharyltransferase is derived from Campylobacter.
4. The system of claim 1, wherein the oligosaccharyltransferase is an archaea oligosaccharyltransferase.
5. The system of claim 1, wherein the oligosaccharyltransferase is a eukaryotic oligosaccharyltransferase.
6. The system of claim 1, wherein the lipid carrier molecule comprises undecaprenyl-phosphate.
7. The system of claim 1, wherein the one or more isolated glycans comprise a prokaryotic glycan.
8. The system of claim 1, wherein the prokaryotic glycan comprises GlcGalNAc5Bac.
9. The system of claim 1, wherein the one or more isolated glycans comprise a eukaryotic glycan.
10. The system of claim 9, wherein the eukaryotic glycan comprises GlcNAc2.
11. The system of claim 10, wherein the eukaryotic glycan further comprises at least one mannose residue.
12. The system of claim 9, wherein the eukaryotic glycan comprises a composition selected from Man1GlcNAc2, Man2GlcNAc2, and Man3GlcNAc2.
13. The system of claim 1, wherein the one or more glycan acceptor amino acid residues of the glycoprotein target is an asparagine residue.
14. The system of claim 13, wherein glycoprotein target further comprising an N-X1-S/T or a D/E-X1-N-X2-S/T (SEQ ID NO: 1) glycan acceptor amino acid sequence motif wherein D is aspartic acid, X1 and X2 are any amino acid other than proline, N is asparagine, and T is threonine.
15. The system of claim 1 further comprising:
reagents suitable for synthesizing the glycoprotein target from said nucleic acid molecule.
16. The system of claim 1, wherein the glycoprotein target comprises an antibody.
17. A kit comprising:
an isolated oligosaccharyltransferase capable of transferring a glycan from a lipid carrier molecule to a glycoprotein target and
one or more isolated glycans, wherein each glycan is linked to a lipid carrier molecule.
18. The kit of claim 17 further comprising:
reagents suitable for synthesizing a glycoprotein target from a nucleic acid molecule encoding said glycoprotein target.
19. A method for producing a glycosylated protein in a cell-free system comprising:
providing an isolated oligosaccharyltransferase capable of transferring a glycan from a lipid carrier molecule to a glycoprotein target;
providing one or more isolated glycans, wherein each glycan is linked to a lipid carrier molecule;
providing a glycoprotein target comprising one or more glycan acceptor amino acid residues;
combining the oligosaccharyltransferase, one or more isolated glycans and glycoprotein target to form a cell-free glycosylation reaction mixture; and
subjecting the cell-free glycosylation reaction mixture to conditions effective for the oligosaccharyltransferase to transfer the glycan from the lipid carrier molecule to the one or more glycan acceptor residues of the glycoprotein target to produce a glycosylated protein.
20. The method of claim 19, wherein the oligosaccharyltransferase is a prokaryotic oligosaccharyltransferase.
21. The method of claim 20, wherein the prokaryotic oligosaccharyltransferase is derived from Campylobacter.
22. The method of claim 19, wherein the oligosaccharyltransferase is an archaea oligosaccharyltransferase.
23. The method of claim 19, wherein the oligosaccharyltransferase is a eukaryotic oligosaccharyltransferase.
24. The method of claim 19, wherein the lipid carrier molecule comprises undecaprenyl phosphate.
25. The method of claim 19, wherein the one or more isolated glycans comprise a prokaryotic glycan.
26. The method of claim 25, wherein the one or more prokaryotic glycans comprise GlcGalNAc5Bac.
27. The method of claim 19, wherein one or more isolated glycans comprise a eukaryotic glycan.
28. The method of claim 27, wherein the one or more eukaryotic glycans comprise GlcNAc2.
29. The method of claim 28, wherein the one or more eukaryotic glycans further comprise at least one mannose residue.
30. The method of claim 28, wherein the one or more eukaryotic glycans comprise a composition selected from Man1GlcNAc2, Man2GlcNAc2, and Man3GlcNAc2.
31. The method of claim 19, wherein said providing a glycoprotein target comprises providing a nucleic acid molecule encoding the glycoprotein, said method further comprising:
providing reagents suitable for synthesizing a glycoprotein target from said nucleic acid molecule and
blending the reagents with the glycosylation reaction under conditions effective to synthesize the glycoprotein target from the nucleic acid molecule prior to, or concurrent with, said subjecting.
32. The method of claim 19, wherein the one or more glycan acceptor amino acid residues of the glycoprotein target is an asparagine residue.
33. The method of claim 32, wherein the glycoprotein target further comprising an N-X1-S/T or a D/E-X1-N-X2-S/T (SEQ ID NO: 1) glycan acceptor amino acid sequence motif wherein D is aspartic acid, X1 and X2 are any amino acid other than proline, N is asparagine, and T is threonine.
34. The method of claim 19, wherein the protein comprises an antibody.
US17/543,614 2011-11-04 2021-12-06 Prokaryote-based cell-free system for the synthesis of glycoproteins Pending US20220340947A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/543,614 US20220340947A1 (en) 2011-11-04 2021-12-06 Prokaryote-based cell-free system for the synthesis of glycoproteins

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161555854P 2011-11-04 2011-11-04
PCT/US2012/063590 WO2013067523A1 (en) 2011-11-04 2012-11-05 A prokaryote-based cell-free system for the synthesis of glycoproteins
US201414356258A 2014-05-05 2014-05-05
US17/543,614 US20220340947A1 (en) 2011-11-04 2021-12-06 Prokaryote-based cell-free system for the synthesis of glycoproteins

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2012/063590 Continuation WO2013067523A1 (en) 2011-11-04 2012-11-05 A prokaryote-based cell-free system for the synthesis of glycoproteins
US14/356,258 Continuation US11193154B2 (en) 2011-11-04 2012-11-05 Prokaryote-based cell-free system for the synthesis of glycoproteins

Publications (1)

Publication Number Publication Date
US20220340947A1 true US20220340947A1 (en) 2022-10-27

Family

ID=48192910

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/356,258 Active US11193154B2 (en) 2011-11-04 2012-11-05 Prokaryote-based cell-free system for the synthesis of glycoproteins
US17/543,614 Pending US20220340947A1 (en) 2011-11-04 2021-12-06 Prokaryote-based cell-free system for the synthesis of glycoproteins

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/356,258 Active US11193154B2 (en) 2011-11-04 2012-11-05 Prokaryote-based cell-free system for the synthesis of glycoproteins

Country Status (5)

Country Link
US (2) US11193154B2 (en)
CN (2) CN104080921A (en)
HK (1) HK1202896A1 (en)
IN (1) IN2014CN04076A (en)
WO (1) WO2013067523A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2906671A1 (en) * 2013-03-14 2014-09-25 Glycobia, Inc. Oligosaccharide compositions, glycoproteins and methods to produce the same in prokaryotes
CN106232832B (en) 2013-12-06 2022-04-05 哈佛大学校长及研究员协会 Paper-based synthetic gene networks
CN106574288A (en) * 2014-07-08 2017-04-19 泰克年研究发展基金会公司 Methods and kits for cell-free transcription and translation
CA2971653C (en) * 2014-12-30 2024-06-11 Glaxosmithkline Biologicals S.A. Compositions and methods for protein glycosylation
WO2016134485A1 (en) 2015-02-26 2016-09-01 Vaxalta Inc. Acinetobacter o-oligosaccharyltransferases and uses thereof
CN106478773B (en) * 2015-08-25 2021-09-14 三生国健药业(上海)股份有限公司 Novel artificially synthesized signal peptide
WO2017117539A1 (en) * 2015-12-30 2017-07-06 Northwestern University Cell-free glycoprotein synthesis (cfgps) in prokaryotic cell lysates enriched with components for glycosylation
US10829795B2 (en) * 2016-07-14 2020-11-10 Northwestern University Method for rapid in vitro synthesis of glycoproteins via recombinant production of N-glycosylated proteins in prokaryotic cell lysates
WO2019035916A1 (en) 2017-08-15 2019-02-21 Northwestern University Design of protein glycosylation sites by rapid expression and characterization of n-glycosyltransferases
US11530432B2 (en) 2018-03-19 2022-12-20 Northwestern University Compositions and methods for rapid in vitro synthesis of bioconjugate vaccines in vitro via production and N-glycosylation of protein carriers in detoxified prokaryotic cell lysates
US11725224B2 (en) 2018-04-16 2023-08-15 Northwestern University Methods for co-activating in vitro non-standard amino acid (nsAA) incorporation and glycosylation in crude cell lysates
AU2019287659A1 (en) 2018-06-16 2021-01-07 Vaxnewmo Llc Glycosylated ComP pilin variants, methods of making and uses thereof
US20220403347A1 (en) 2019-08-09 2022-12-22 Glaxosmithkline Biologicals S.A. Mutated pglb oligosaccharyltransferase enzymes
CA3155758A1 (en) * 2019-10-25 2021-04-29 Michael C. Jewett Cell-free extract preparation protocol for enrichment of membrane vesicles and increased glycoprotein yields
CN115181752B (en) * 2022-07-12 2024-12-24 大连大学 A method for optimizing sugar chain plasmids to improve protein modification efficiency and protein expression

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4061043B2 (en) * 2000-12-28 2008-03-12 株式会社ポストゲノム研究所 Method for producing peptide etc. by in vitro transcription / translation system
IL163806A0 (en) * 2002-03-07 2005-12-18 Eidgenoess Tech Hochschule System and method for the production of recombinant glycosylated proteins in a prokaryotic host
JP4590249B2 (en) * 2004-11-17 2010-12-01 独立行政法人理化学研究所 Cell-free protein synthesis system for glycoprotein synthesis
KR101589554B1 (en) * 2008-01-03 2016-02-01 코넬 리서치 파운데이션 인코포레이티드 Glycosylated protein expression in prokaryotes
US20100286067A1 (en) * 2008-01-08 2010-11-11 Biogenerix Ag Glycoconjugation of polypeptides using oligosaccharyltransferases

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Steiner et al. "Recombinant glycans on an S‐layer self‐assembly protein: a new dimension for nanopatterned biomaterials." Small 4.10 (2008): 1728-1740. (Year: 2008) *

Also Published As

Publication number Publication date
US20140255987A1 (en) 2014-09-11
CN104080921A (en) 2014-10-01
CN112980907A (en) 2021-06-18
WO2013067523A1 (en) 2013-05-10
US11193154B2 (en) 2021-12-07
HK1202896A1 (en) 2015-10-09
IN2014CN04076A (en) 2015-10-23

Similar Documents

Publication Publication Date Title
US20220340947A1 (en) Prokaryote-based cell-free system for the synthesis of glycoproteins
US20230399670A1 (en) In vivo synthesis of sialylated compounds
Zhou et al. Expression of heparan sulfate sulfotransferases in Kluyveromyces lactis and preparation of 3′-phosphoadenosine-5′-phosphosulfate
CA2908407A1 (en) Quantitative control of sialylation
EP2909318A1 (en) A thermostable sucrose and sucrose-6'-phosphate phosphorylase
US20160102298A1 (en) N-terminally truncated glycosyltransferases
JP6728417B2 (en) CMP-dependent sialidase activity
EP3017057B1 (en) Process for the mono- and bi-sialylation of glycoproteins employing n-terminally truncated beta-galactoside alpha-2,6-sialyltransferase mutants
Deng et al. Heparosan oligosaccharide synthesis using engineered single-function glycosyltransferases
Gandini et al. A transmembrane crenarchaeal mannosyltransferase is involved in N-glycan biosynthesis and displays an unexpected minimal cellulose-synthase-like fold
US20170204381A1 (en) Pmst1 mutants for chemoenzymatic synthesis of sialyl lewis x compounds
US9783838B2 (en) PmST3 enzyme for chemoenzymatic synthesis of alpha-2-3-sialosides
US20230140642A1 (en) Mutated sulfotransferases and uses thereof
JPWO2010143713A1 (en) Novel protein and gene encoding it
Elharar et al. Assembling glycan-charged dolichol phosphates: chemoenzymatic synthesis of a Haloferax volcanii N-glycosylation pathway intermediate
WO2012014980A1 (en) Novel enzyme protein, process for production of the enzyme protein, and gene encoding the enzyme protein
Shamsi Kazem Abadi et al. Directed evolution of a remarkably efficient Kdnase from a bacterial neuraminidase
EP4265730A1 (en) Cell-free enzymatic method for preparation of n-glycans
US20230130811A1 (en) Uses and methods for sulfating a substrate with a mutated arylsulfotransferase
US9102967B2 (en) PmST2 enzyme for chemoenzymatic synthesis of α-2-3-sialylglycolipids
JP2011223885A (en) New cytidine 5'-monophosphosialic acid synthetase, gene encoding the same and method for producing the synthetase
Ferrero et al. Purification and characterization of GlcNAc-6-P 2-epimerase from Escherichia coli K92
WO2023202991A2 (en) Cell-free enzymatic method for preparation of n-glycans
Gua Structure-functional relationship study of glycosyltransferases

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED