[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20190193448A1 - Inkjet printing - Google Patents

Inkjet printing Download PDF

Info

Publication number
US20190193448A1
US20190193448A1 US16/331,359 US201716331359A US2019193448A1 US 20190193448 A1 US20190193448 A1 US 20190193448A1 US 201716331359 A US201716331359 A US 201716331359A US 2019193448 A1 US2019193448 A1 US 2019193448A1
Authority
US
United States
Prior art keywords
polyurethane
inkjet ink
overcoat
containing group
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/331,359
Inventor
Zhang-Lin Zhou
Gregg A. Lane
Qianhan Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Assigned to HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. reassignment HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YANG, Qianhan, LANE, GREGG A., ZHOU, ZHANG-LIN
Publication of US20190193448A1 publication Critical patent/US20190193448A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/0045After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using protective coatings or film forming compositions cured by mechanical wave energy, e.g. ultrasonics, cured by electromagnetic radiation or waves, e.g. ultraviolet radiation, electron beams, or cured by magnetic or electric fields, e.g. electric discharge, plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/0081After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using electromagnetic radiation or waves, e.g. ultraviolet radiation, electron beams
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/40Ink-sets specially adapted for multi-colour inkjet printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/54Inks based on two liquids, one liquid being the ink, the other liquid being a reaction solution, a fixer or a treatment solution for the ink
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes

Definitions

  • Inkjet printing is a printing method that utilizes electronic signals to control and direct droplets or a stream of ink onto print media. Inkjet printing may involve forcing ink drops through small nozzles by thermal ejection, piezoelectric pressure or oscillation onto the surface of the media. This technology can be used to record images on various media surfaces (e.g. paper).
  • curable polymer binders may be added to inkjet inks to improve the durability of the resulting print.
  • Such binders may be cured, for example, by exposure to radiation e.g. UV radiation.
  • FIG. 1 is a schematic diagram illustrating, by way of example, an example of a printing process of the present disclosure.
  • overcoat in the context of the present disclosure refers to a composition that is applied to a print substrate as an under layer to the inkjet ink composition.
  • the overcoat composition may be substantially colourless, clear or transparent. Accordingly, the overcoat composition may be substantially free from pigment or other colorants, and may have no substantive effect on the colour of an underlying coloured image printed from inkjet ink.
  • acidity refers to the mass of potassium hydroxide (KOH) in milligrams that neutralizes one gram of a substance.
  • KOH potassium hydroxide
  • the acidity of a polymer can be measured according to standard techniques, for example as described in ASTM D1386. If the acidity of a particular polymer is specified, unless otherwise stated, it is the acidity for that polymer alone, in the absence of any of the other components of the overcoat or inkjet ink composition.
  • the term “transparent” is used to describe a composition that allows light to pass therethrough.
  • the term “transparent” may mean that the composition allows light to pass through it such that, when the overcoat composition is applied over a printed image of at a thickness of 3 microns or less, for instance, 1.5 to 2 microns (e.g. 1.5 microns), the printed image may be clearly visible to the naked eye.
  • the overcoat composition may be transparent, whereby, when the overcoat composition is printed over a printed image of at a thickness of 1.5 microns, the colours in the image are substantially the same as the colours in the uncoated image.
  • the difference in the colour(s) of the coated and uncoated image are small, Reference is made to ASTM D1729-96 (Reapproved 2009, which specifies the equipment and procedures for visual appraisal of colours and colour differences of opaque materials that are diffusely illuminated.
  • the delta E (determined according to CIE94) between the colours of the coated and un-coated image may be 3 or less, for example, 2 or less. In some examples, the delta E (determined according to CIE94) may be 1.5 or less, for example, 1 or less.
  • Optical density or absorbance is a quantitative measure expressed as a logarithmic ratio between the radiation falling upon a material and the radiation transmitted through a material.
  • a ⁇ is the absorbance at a certain wavelength of light ( ⁇ )
  • is the intensity of the radiation (light) that has passed through the material (transmitted radiation)
  • I 0 is the intensity of the radiation before it passes through the material (incident radiation).
  • the incident radiation may be any suitable white light, for example, day light or artificial white light.
  • the optical density or delta E of an image may be determined using methods that are well-known in the art. For example, optical density and/or delta E may be determined using a spectrophotometer. Suitable spectrophotometers are available under the trademark X-rite.
  • the term “about” is used to provide flexibility to a numerical range endpoint by providing that a given value may be a little above or a little below the endpoint to allow for variation in test methods or apparatus.
  • the degree of flexibility of this term can be dictated by the particular variable and would be within the knowledge of those skilled in the art to determine based on experience and the associated description in this disclosure.
  • the term “food compatible” is used to describe a material that is suitable for indirect or direct contact with food.
  • the material is suitable for indirect food contact.
  • Such materials may be sufficiently inert to prevent the transfer of substances to food in quantities large enough to endanger human health, and/or prevent unacceptable changes to the composition of the food and how it looks, tastes or smells.
  • Materials that are food compatible may be used as or to manufacture food packaging, including self-adhesive labels applied to food packaging.
  • food compatible materials may comply with the Frame regulation EC 1935/2004.
  • food compatible materials may meet the requirements of Regulation EU 10/2011.
  • food compatible materials may comply with the food contact provisions of the FDA.
  • the present disclosure relates to an inkjet printing process comprising inkjet printing an inkjet ink composition onto a substrate to form a printed inkjet ink layer.
  • the inkjet ink composition comprises a colorant, a curable polyurethane dispersion and water.
  • the amount of curable polyurethane dispersed in the inkjet ink composition is 0.1 to 30 weight %.
  • a curable overcoat composition is applied over the printed inkjet ink layer as an overcoat layer.
  • the printed inkjet ink layer is then cured on the substrate by exposing both the overcoat layer and inkjet ink layer on the substrate to radiation.
  • the present disclosure also relates to a printed substrate comprising an ink layer comprising a colorant disposed over the substrate and an overcoat layer disposed over the ink layer, wherein the printed substrate comprises a crosslinked polyurethane network that surrounds the colorant and extends from the ink layer to the overcoat layer.
  • the overcoat composition may comprise a food compatible curable polyurethane dispersion and water.
  • the resulting printed substrate may be food compatible and suitable for direct contact with food.
  • the resulting printed substrate may be used as food packaging, for example, primary or secondary food packaging.
  • the resulting printed substrate may be used as a food label, for example, for contact (e.g. direct or indirect contact) with the food product.
  • the resulting printed substrate may be used as a food label or food packaging, for instance, for indirect contact with a food product.
  • Polyurethane dispersions may be used as curable polymer binders in aqueous curable inkjet ink compositions.
  • it can be difficult to achieve adequate durability without compromising other characteristics of the inkjet ink composition.
  • high levels of polymer binder can improve durability
  • excessive levels of polymer binder can affect the jettability of an inkjet ink composition. The latter can have a negative effect on the printed image, as well as on the lifespan of the printhead.
  • aqueous UV-curable inks comprising e.g. yellow or black colorants may be difficult to cure because these colorants may be strong absorbers of UV light. While curing may be improved by increasing the polyurethane and/or photoinitiator content of the inkjet ink, this may have a detrimental effect on the jettability of the ink composition.
  • a polyurethane dispersion is included in an overcoat composition that is applied as an overcoat layer over the inkjet ink composition.
  • This can allow higher levels of polyurethane to be deposited onto the substrate to enhance durability.
  • the polyurethane content of the inkjet ink composition can be kept below a threshold to maintain desired levels of jettability. Since the overcoat composition need not be applied digitally using a printhead, high levels of polyurethane can be employed without the risk of compromising jettability.
  • the relative concentrations of polyurethane in the overcoat composition and inkjet ink composition may be tailored to provide the desired levels of durability, while maintaining jettability of the inkjet ink composition.
  • the presence of an overcoat layer over the inkjet ink layer may also reduce or eliminate exposure of the inkjet ink layer to oxygen, facilitating cure of the inkjet ink layer.
  • both the overcoat composition and the inkjet ink composition comprise curable polyurethane.
  • photoinitiators in the overcoat and inkjet ink when the overcoat and the inkjet ink are exposed to radiation, photoinitiators in the overcoat and inkjet ink generate reactive species e.g. radicals. These reactive species react to cure the polyurethane in the overcoat and inkjet ink, forming a crosslinked polyurethane network that extends from the inkjet ink layer to the overcoat layer.
  • This crosslinked polyurethane network can help to retain colorant on the substrate, improving the durability of the printed image on the substrate.
  • reactive groups of the polyurethane in the overcoat layer crosslink with reactive groups of the polyurethane in the ink layer.
  • the crosslinked polyurethane network may surround the colorant in the ink layer.
  • the overcoat composition may include a food compatible polyurethane dispersion
  • the method described in the present disclosure may be used to produce a substrate that is food compatible, and that can be printed and cured in an effective manner.
  • the overcoat composition comprises water and a curable polyurethane dispersion.
  • the overcoat composition may additionally comprise a surfactant.
  • the overcoat composition may additionally include a photoinitiator.
  • the overcoat composition may be an analogue overcoat composition.
  • Water may be present in the overcoat composition in an amount of at least 30 weight %, for example, at least 40 or 50 weight %. In some examples, water may be present in the overcoat composition in an amount of at least 60 weight %. Water may be present in an amount of at most 99 weight %, for example, at most 95 weight %. In some examples, water may be present in the overcoat composition in an amount of 30 to 99 weight %, for instance, 40 to 98 weight % or 50 to 95 weight %. In other examples, water may be present in an amount of 60 to 93 weight %, for instance, 70 to 90 weight %.
  • any suitable photoinitiator may be employed in the overcoat composition.
  • the photoinitiator initiates the polymerization and/or crosslinking of the radiation-curable polyurethane upon exposure to radiation.
  • the photoinitiator may be the same or different from the photoinitiator employed in the inkjet ink composition.
  • Suitable photoinitiators are described in relation to the overcoat composition below. However, for the avoidance of doubt, the water-soluble photoinitiators described in relation to the inkjet ink composition may be used in the overcoat composition, if desired.
  • photoinitiator examples include 1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1-one (which is commercially available from BASF Corp. as IRGACURE® 2959); acyl phosphine oxide photoinitiators (e.g., IRGACURE® 819, commercially available from BASF Corp.); alpha hydroxy ketone photoinitiators (e.g., IRGACURE® 184, commercially available from BASF Corp.); Iodonium, (4-methylphenyl)[4-(2-methylpropyl) phenyl]-, hexafluorophosphate(I—) (which is commercially available from BASF Corp.
  • acyl phosphine oxide photoinitiators e.g., IRGACURE® 819, commercially available from BASF Corp.
  • alpha hydroxy ketone photoinitiators e.g., IRGACURE® 184, commercially
  • IRGACURE® 250 a high-molecular-weight sulfonium salt (e.g., IRGACURE® 270, commercially available from BASF Corp.); 2-Benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 (which is commercially available from BASF Corp.
  • IRGACURE® 369 alpha amino ketone photoinitiator
  • alpha amino ketone photoinitiator e.g., IRGACURE® 379, commercially available from BASF Corp.
  • a liquid blend of alpha hydroxy ketone/benzophenone photoinitiator e.g., IRGACURE® 500, commercially available from BASF Corp.
  • a liquid photoinitiator blend of acyl phosphine oxide/alpha hydroxy ketone e.g., IRGACURE® 2022, commercially available from BASF Corp.
  • Some other suitable photoinitiators include phosphine oxide derivatives, thioxanthone derivatives, and benzophenone derivatives.
  • a water-soluble photoinitiator may be used in the overcoat composition.
  • the water soluble photoinitiator may be a trimethylbenzoylphenylphosphinic acid metal salt (i.e., TPA salt) having a formula (I) of:
  • n is any integer from 1 to 5 and M is a metal with a valence from 1 to 5.
  • suitable metals include Li, Na, K, Cs, Rb, Be, Mg, Ca, Ba, Al, Ge, Sn, Pb, As, and Sb.
  • the TPA salt may be formed from ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate (TPO-L) and a metal salt.
  • TPO-L ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate
  • MK methyl ethyl ketone
  • the solution may be heated and stirred at a predetermined temperature for a predetermined time to allow the reaction to take place. As a result of the reaction, a solid TPA salt may form. This salt may be collected, washed, and dried.
  • TPA-Li lithium TPA salt
  • TPA-Na sodium TPA salt
  • the solubility of the water soluble photoinitiator disclosed herein may be high.
  • the water soluble photoinitiator can have a water solubility of at least 0.1 wt %, When the water solubility is at least 0.1 wt %, it means that of the total wt % of the water soluble photoinitiator added to water, at least 0.1 wt % of the total is water soluble.
  • the water soluble photoinitiator may have a water solubility of at least 0.5 wt %. In some instances, the water soluble photoinitiator may have a water solubility up to about 20 wt %.
  • the water soluble photoinitiator may be used in combination with a sensitizer.
  • the sensitizer may be a water soluble polymeric sensitizer that includes a functionalized anthrone moiety, a polyether chain, and an amide linkage or an ether linkage attaching one end of the polyether chain to the functionalized anthrone moiety.
  • the anthrone moiety may be a thioxanthrenone moiety.
  • the polymeric sensitizer may have a formula (Q):
  • R 1 , R 2 , R 3 , R 4 , and R 5 are each independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted allyl group, a substituted or unsubstituted alkene or alkenyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a halogen atom, —NO 2 , —O—R d , —CO—R d , —CO—O—R d , —O—CO—R d , —CO—NR d R e , —NR d R e , —NR d —CO—R e , —NR d —CO—O—R e , —NR d —CO—NR e R f , —SR d , —
  • R d , R e , and R f are each independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted allyl group, a substituted or unsubstituted alkene or alkenyl group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted aralkyl group.
  • suitable alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, hexyl, etc.
  • a suitable alkene group is an ethylene group.
  • Suitable aryl groups include phenyl, phenylmethyl, etc.
  • X is O, S, or NH and the polyether chain has n number of repeating monomer units, where n ranges from 1 to 200.
  • the linkage is an ether linkage.
  • the sensitizer may be present in an amount of 0.1 wt % to about 10 wt % of the inkjet ink composition.
  • the photoinitiator may be present in the overcoat composition in an amount ranging from about 0 wt % to about 20 wt.% of the total wt % of the overcoat composition.
  • the photoinitiator is present in the in the inkjet ink in an amount ranging from about 0.2 wt % to about 15 wt %, for example, 0.5 wt % to 10 wt % or 0.5 to 5 wt % of the total wt % of the overcoat composition.
  • any suitable curable polyurethane dispersion may be included in the overcoat composition.
  • the polyurethane dispersion may be e-beam curable.
  • the polyurethane dispersion may be UV-curable, for example, curable by UV-LED. Suitable UV-LED wavelengths include 365nm, 385nm, 395 nm or 405 nm.
  • the polyurethane dispersion may be curable by UV-LED at 365nm, 385nm or 395 nm.
  • the polyurethane dispersion may be curable by UV-LED at 395 nm.
  • the polyurethane may be the same as or different from the polyurethane present in the inkjet ink composition. Suitable polyurethanes are described in relation to the overcoat composition below, However, for the avoidance of doubt, the pH stable polyurethane dispersions described below in relation to the inkjet ink composition may be used to form the overcoat composition, if desired. In some examples, however, the polyurethane in the overcoat is a food compatible polyurethane dispersion. Examples of such food compatible dispersions include reactive and curable polyurethane dispersions that are essentially BPA-free polyurethane dispersions. By “BPA-free”, it is meant that the polyurethane dispersions are substantially free from bisphenol-A.
  • the polyurethane dispersions may also be based on non-halogen based diisocyanates.
  • the polyurethane dispersions may be substantially free from components that can migrate from the polyurethane composition in appreciable amounts. Examples include polyurethane dispersions sold under the product IRR 832 RD 10-603 and IRR 912 RD 10-604 supplied by Allnex®.
  • polyurethane dispersions comprise polyurethane polymer particles dispersed in water.
  • the particles may range from about 20 to about 200 nm in size.
  • the polyurethane can have a molecular weight (Mw) in the range of about 1,000 to 100,000 or in the range of about 5,000 to about 50,000.
  • the polyurethane may have a NCO/OH ratio of 1.2 to 5 and an acid number of 20 to 100.
  • the double bond density of the polyurethane may be 1.5 to 20, for example, 2 to 10.
  • the polyurethane may be formed from the reaction of a diisocyanate and a polyol.
  • the diisocyanate can be an aliphatic diisocyanate or an aromatic diisocyanate.
  • suitable diisocyanates include methylene diphenyl diisocyanate, hexamethylene diisocyanate, p-tetramethyl xylene diisocyanate, m-tetramethyl xylene diisocyanate, bitolylene diisocyanate, toluene diisocyanate, methylene-bis(4-cyclohexyl)diisocyanate, p-phenylene diisocyanate, isophorone diisocyanate, 1,5-naphthalene diisocyanate and mixtures thereof.
  • the polyol can be a diol selected from the group of: cyclic diols (e.g. 1,3-cyclohexanedimethanol and 1,4-cyclohexanedimethanol); aliphatic polycarbonate diols; polyether diols; polyethylene glycol; polypropylene glycol; polytetramethylene glycol; polyethylene oxide) polymers; poly(propylene oxide) polymers; poly(tetramethylene oxide) polymers; copolymers thereof having terminal hydroxyl groups derived from polyhydric compounds including diols; and combinations thereof.
  • the diol can be a cyclic diol.
  • the diol can be an aliphatic cyclic diol.
  • the polyurethane is a water-dispersible acrylic functional polyurethane.
  • polyurethane is a water-dispersible (meth)acrylated polyurethane.
  • Suitable water-dispersible (meth)acrylated polyurethane are commercially available under the trademarks Ucecoat®6558, Ucecoat®559, Ebecryl®2002 and Ebecryl®2003 (Cytec).
  • the polyurethane dispersions are water-dispersible (meth)acrylated polyurethane, sold under the trade name of NeoRad® R441 by NeoResins (Avecia).
  • suitable polyurethane dispersions include Ucecoat®7710, Ucecoat®7655 (available from Cytec), Neorad®R440, Neorad®R441, Neorad®R447, Neorad®R448 (available from DSM NeoResins), Bayhydrol®UV2317, Bayhydrol®UV VP LS 2348 (available from Bayer), Lux®430, Lux®399, Lux®484 (available from Alberdingk Boley), Laromer®LR8949, Laromer®LR8983, Laromer®PE22WN, Laromer®PE55WN, Laromer®UA9060 (available from BASF).
  • the amount of polyurethane (solids) dispersed in the overcoat composition may be 0.1 to 50 weight % or 0.5 to 40 weight %, for example, 1 to 30 weight %. In some examples, the amount of polyurethane (solids) in the overcoat composition may be 2 to 25 weight %, for instance, 5 to 15 weight %. As the overcoat composition may not be applied by inkjet printing, the polyurethane content may be relatively high as jettability may not be a concern. The polyurethane content (solids) of the overcoat composition may be greater than the polyurethane content (solids) of the ink composition.
  • the overcoat composition may be formed using a pre-formed or commercially available polyurethane dispersion comprising polyurethane dispersed in its own solvent (e.g. water).
  • the amount of polyurethane dispersion used to form the overcoat composition may be 5 to 30 weight % of the total weight of the overcoat composition.
  • any suitable surfactant may be present in the overcoat composition.
  • the surfactant present in the overcoat may be the same or different from the surfactant in the inkjet ink composition.
  • Suitable surfactants may include non-ionic, cationic, and/or anionic surfactants.
  • examples include a silicone-free alkoxylated alcohol surfactant such as, for example, TEGO® Wet 510 (Evonik Tego Chemie GmbH) and/or a self-emulsifiable wetting agent based on acetylenic diol chemistry, such as, for example, SURFYNOL® SE-F (Air Products and Chemicals, Inc.).
  • Suitable commercially available surfactants include SURFYNOL® 465 (ethoxylated acetylenic did), SURFYNOL® CT 211 (non-ionic, alkylphenylethoxylate and solvent free), and SURFYNOL® 104 (non-ionic wetting agent based on acetylenic diol chemistry), (all of which are from Air Products and Chemicals, Inc.); ZONYL® FSO (a.k.a.
  • CAPSTONE® which is a water-soluble, ethoxylated non-ionic fluorosurfactant from Dupont
  • TERGITOLTM TMN-3 and TERGITOLTM TMN-6 both of which are branched secondary alcohol ethoxylate, non-ionic surfactants
  • TERGITOLTM 15-S-3, TERGITOLTM 15-S-5, and TERGITOLTM 15-S-7 each of which is a secondary alcohol ethoxylate, non-ionic surfactant
  • Fluorosurfactants may also be employed.
  • the surfactant present in the overcoat composition in an amount ranging from about 0.01 wt % to about 5 wt % based on the total wt % of the overcoat composition.
  • the overcoat composition may contain less than 0.01 wt % colorant, for example, less than 0.001 wt % colorant.
  • the overcoat composition may be substantially free from colorant. In some examples, the overcoat composition may be substantially free from pigment or dye.
  • the overcoat composition may be transparent.
  • the overcoat composition may be made in-situ just before being applied to the substrate.
  • the inkjet ink composition comprises water, a colorant and a curable polyurethane dispersion.
  • the inkjet ink composition may additionally comprise a surfactant.
  • the inkjet ink composition may additionally comprise a photoinitiator.
  • Water may be present in the inkjet ink composition in an amount of at least 30 weight %, for example, at least 40 or 50 weight %. In some examples, water may be present in the inkjet ink composition in an amount of at least 60 weight %. Water may be present in an amount of at most 99 weight %, for example, at most 95 weight %. In some examples, water may be present in the inkjet ink composition in an amount of 30 to 99 weight %, for instance, 40 to 98 weight % or 50 to 95 weight %. In other examples, water may be present in an amount of 60 to 93 weight %, for instance, 70 to 90 weight %.
  • any suitable colorant may be used in the inkjet ink composition.
  • the colorant may be a pigment or a dye.
  • the colorant can be present in an amount from about 0.5 wt % to about 15 wt % based on a total wt % of the inkjet ink composition.
  • the colorant can be present in an amount from about 1 wt % to about 10 wt %.
  • the colorant can be present in an amount from about 5 wt % to about 10 wt %.
  • the colorant may be a pigment or dye.
  • the colorant may be a pigment.
  • pigment generally includes organic or inorganic pigment colorants, magnetic particles, aluminas, silicas, and/or other ceramics, organo-metallics or other opaque particles, whether or not such particulates impart color.
  • pigment colorants can be used more generally to describe pigment colorants, as well as other pigments such as organometallics, ferrites, ceramics, etc.
  • Suitable pigments include the following, which are available from BASF Corp.: PALIOGEN® Orange, HELIOGEN® Blue L 6901F, HELIOGEN® Blue NBD 7010, HELIOGEN® Blue K 7090, HELIOGEN® Blue L 7101F, PALIOGEN® Blue L 6470, HELIOGEN® Green K 8683, HELIOGEN® Green L 9140, CHROMOPHTAL® Yellow 3G, CHROMOPHTAL® Yellow GR, CHROMOPHTAL® Yellow 8G, IGRAZIN® Yellow 5GT, and IGRALITE® Rubine 4BL.
  • the following pigments are available from Degussa Corp.: Color Black FWI, Color Black FW2, Color Black FW2V, Color Black 18, Color Black.
  • the following black pigments are available from Cabot Corp.: REGAL® 400R, REGAL® 330R, REGAL® 660R, MOGUL® L, BLACK PEARLS® L, MONARCH® 1400, MONARCH® 1300, MONARCH® 1100, MONARCH® 1000, MONARCH® 900, MONARCH® 880, MONARCH® 800, and MONARCH® 700.
  • the following pigments are available from Orion Engineered Carbons GMBH: PRINTEX® U, PRINTEX® V, PRINTEX® 140U, PRINTEX® 140V, PRINTEX® 35, Color Black FW 200, Color Black FW 2, Color Black FW 2V, Color Black FW 1, Color Black FW 18, Color Black S 160, Color Black S 170, Special Black 6, Special Black 5, Special Black 4A, and Special Black 4.
  • the following pigment is available from DuPont: TI-PURE® R-101.
  • the following pigments are available from Heubach: MONASTRAL® Magenta, MONASTRAL® Scarlet, MONASTRAL® Violet R, MONASTRAL® Red B, and MONASTRAL® Violet Maroon B.
  • the following pigments are available from Clariant: DALAMAR® Yellow YT-858-D, Permanent Yellow GR, Permanent Yellow G, Permanent Yellow DHG, Permanent Yellow NCG-71, Permanent Yellow GG, Hansa Yellow RA, Hansa Brilliant Yellow 5GX-02, Hansa Yellow-X, NOVOPERM® Yellow HR, NOVOPERM® Yellow FGL, Hansa Brilliant Yellow 10GX, Permanent Yellow G3R-01, HOSTAPERM® Yellow H4G, HOSTAPERM® Yellow H3G, HOSTAPERM® Orange GR, HOSTAPERM® Scarlet GO, and Permanent Rubine F6B.
  • the following pigments are available from Sun Chemical: QUINDO® Magenta, INDOFAST® Brilliant Scarlet, QUINDO® Red R6700, QUINDO® Red R6713, INDOFAST® Violet, L74-1357 Yellow, L75-1331 Yellow, L75-2577 Yellow, and LHD9303 Black.
  • the following pigments are available from Birla Carbon: RAVEN® 7000, RAVEN® 5750, RAVEN® 5250, RAVEN® 5000 Ultra® II, RAVEN® 2000, RAVEN® 1500, RAVEN® 1250, RAVEN® 1200, RAVEN® 1190 Ultra®.
  • RAVEN® 1170, RAVEN® 1255, RAVEN® 1080, and RAVEN® 1060 are available from Sun Chemical: QUINDO® Magenta, INDOFAST® Brilliant Scarlet, QUINDO® Red R6700, QUINDO® Red R6713, INDOFAST® Violet, L74-1357 Yellow, L75-1331 Yellow, L75
  • the following pigments are available from Mitsubishi Chemical Corp.: No. 25, No. 33, No. 40, No. 47, No. 52, No. 900, No. 2300, MCF-88, MA600, MA7, MA8, and MA100.
  • the colorant may be a white pigment, such as titanium dioxide, or other inorganic pigments such as zinc oxide and iron oxide.
  • a cyan colour pigment may include C.I. Pigment Blue -1, -2, -3, -15, -15:1,-15:2, -15:3, -15:4, -16, -22, and -60.
  • magenta colour pigment may include C.I. Pigment Red -5, -7, -12, -48, -48:1, -57, -112,-122, -123, -146, -168, -177, -184, -202, and C.I. Pigment Violet-19.
  • a yellow pigment may include C.I. Pigment Yellow -1, -2, -3, -12, -13, -14, -16, -17, -73, -74, -75, -83, -93, -95, -97, -98, -114, -128, -129, -138, -151,-154, and -180. While several examples have been given herein, it is to be understood that any other pigment or dye can be used that is useful in modifying the colour of the UV curable ink.
  • black pigment examples include carbon black pigments.
  • An example of an organic black pigment includes aniline black, such as C.I. Pigment Black 1.
  • the pigment may be a cyan, magenta, black or yellow pigment.
  • colorants e.g. black colorants can be strong absorbers of radiation (e.g. UV radiation). As a result they can be more difficult to cure.
  • the amount of polyurethane in the inkjet ink composition and/or the overcoat composition may be varied depending on the nature of the colorant, for example, to ensure adequate curing and print durability.
  • the photoinitiator may be present in the inkjet ink composition in an amount ranging from about 0.1 wt % to about 10 wt % based on a total wt % of the inkjet ink composition.
  • the photoinitiator may be the same or different from any photoinitiator employed in the overcoat composition. Suitable photoinitiators are described in relation to the overcoat composition above.
  • any suitable curable polyurethane dispersion may be used to form the inkjet ink composition.
  • a pre-formed curable polyurethane dispersion may be added to the remaining ink components.
  • Such a pre-formed curable polyurethane dispersion may comprise polyurethane dispersed in its own solvent (e.g. water).
  • the curable polyurethane dispersion may be present in the inkjet ink composition in an amount of 0.5 to 20 weight % or 2 to 15 weight %, for example, 3 to 12 weight %.
  • the curable polyurethane (solids) that is dispersed in an inkjet ink composition may be present in the inkjet ink composition an amount of 0.1 to 30 or 20 weight % or 0.1 to 10 weight %, for example, 0.5 to 7 weight %, or 0.6 to 5 weight % of the total weight of the inkjet ink composition.
  • Suitable curable polyurethanes are described in relation to the overcoat composition above.
  • the curable polyurethane in the inkjet ink composition may be the same or different from the curable polyurethane in the overcoat composition.
  • the curable polyurethane is a pH stable polyurethane
  • pH stable polyurethane may form pH stable polyurethane dispersions that may be resistant to hydrolysis.
  • the pH of the pH stable polyurethane dispersions remains substantially stable even when the dispersions are stored for a prolonged period of time.
  • inkjet inks formed using such pH stable polyurethanes may have a longer shelf-life, as the tendency for pigments dispersed in the inkjet ink composition to crash out of the inkjet ink composition may be reduced.
  • the pH stable polyurethane may comprise a polyurethane polymer comprising a polyurethane backbone having at least one terminal (or capping) group selected an acrylamide-containing group, a styrene-containing group, an allyl-containing group:
  • CAPS and CHES terminal groups above may be in anionic form, namely:
  • these capping groups may be formed by reacting a polyurethane pre-polymer with 3-(cyclohexylamino)-1-propanesulfonic acid and/or 2-(cyclohexylamino)ethanesulfonic acid.
  • the 3-(cyclohexylamino)-1-propanesulfonic acid and 2-(cyclohexylamino)ethanesulfonic acid may react with terminal —N ⁇ C ⁇ O groups on the polyurethane pre-polymer.
  • These capping groups may help to stabilise the polyurethane dispersion.
  • acrylamide-containing capping group may be CH 2 ⁇ CHC(O)NH(CH 2 ) n O—, wherein n is an integer from 1 to 10. In some examples, n is 1 to 6, for instance, 1 to 4. In one example, the acrylamide-containing capping group may be a group of the formula below:
  • the acrylamide-containing group may be formed by reacting a polyurethane pre-polymer with an acrylamide-containing monoalcohol or monoamine.
  • the acrylamide-containing monoalcohol may react with terminal —N ⁇ C ⁇ O groups on the polyurethane pre-polymer,
  • An example of a suitable acrylamide-containing mono-alcohol may be:
  • capping group comprises a styrene-containing group
  • suitable styrene-containing capping groups may include:
  • the styrene-containing groups may be formed by reacting suitable styrene-containing mono-alcohols or mono-amines with a polyurethane pre-polymer.
  • the styrene-containing monoalcohol may react with terminal —N ⁇ C ⁇ O groups on the polyurethane pre-polymer.
  • the corresponding styrene-containing mono-alcohols for Groups (II) to (VI) above may be:
  • the capping group comprises an allyl-containing group
  • the allyl-containing group may comprise an allyl ether group or an allyl amine group.
  • Suitable allyl-containing capping groups include:
  • the allyl-containing groups may be formed by reacting suitable allyl-containing mono-alcohols or monoamines with a polyurethane pre-polymer.
  • suitable allyl-containing mono-alcohols or monoamines may react with terminal —N ⁇ C ⁇ O groups on the polyurethane pre-polymer.
  • the corresponding allyl-containing mono-alcohols or monoamines may be:
  • the polyurethane dispersion may comprise polyurethane polymers that comprise polyurethane backbones having terminal groups selected from acrylamide-containing groups, styrene-containing groups, and allyl-containing groups.
  • the dispersion may be devoid of polyurethane polymers that comprise polyurethane backbones having terminal methacrylate-containing or acrylate-containing groups.
  • the polyurethane dispersion may comprise at least one polyurethane polymer comprising a polyurethane backbone having at least one terminal (or capping) group selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group, and at least one polyurethane polymer comprising a polyurethane backbone having at least one terminal (or capping) ionic group; and/or at least one polyurethane polymer comprising a polyurethane backbone that is capped at one end with a terminal (or capping) group selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group and at the opposite end with a terminal ionic group.
  • 1 to 99 weight % of the capping groups may be ionic groups, while 99 to 1 weight % of the capping groups may be selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group.
  • 5 to 70 weight % of the capping groups may be ionic groups, while 95 to 30 weight % of the capping groups may be selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group.
  • 10 to 50 weight % of the capping groups may be ionic groups, while 90 to 50 weight % of the capping groups may be selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group.
  • 20 to 40 weight % of the capping groups may be ionic groups, while 80 to 60 weight % of the capping groups may be selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group.
  • the polyurethane dispersion may comprise at least one polyurethane polymer comprising a polyurethane backbone that is capped at one end with a terminal (or capping) group selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group and capped at the opposite end with a terminal ionic group.
  • a terminal (or capping) group selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group and capped at the opposite end with a terminal ionic group.
  • the polyurethane dispersion may comprise (i) at least one polyurethane polymer comprising a polyurethane backbone that is capped at one end with a terminal (or capping) group selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group and capped at the opposite end with a terminal ionic group; and (ii) at least one polyurethane polymer comprising a polyurethane backbone that is capped at both ends with a terminal (or capping) group selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group or (iii) at least one polyurethane polymer comprising at least one polyurethane polymer comprising a polyurethane backbone that is capped at both ends with ionic groups.
  • the polyurethane dispersion may comprise (i) at least one polyurethane polymer comprising a polyurethane backbone that is capped at one end with a terminal (or capping) group selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group and capped at the opposite end with a terminal ionic group; (ii) at least one polyurethane polymer comprising a polyurethane backbone that is capped at both ends with a terminal (or capping) group selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group and (iii) at least one polyurethane polymer comprising at least one polyurethane polymer comprising a polyurethane backbone that is capped at both ends with ionic groups.
  • the ionic group may comprise a carboxylic acid group, a carboxylate group, a sulphonic acid group and/or a sulphonic acid group.
  • the ionic group may be formed by reacting an amino carboxylic acid or an amino sulphonic with a polyurethane pre-polymer, for example, with terminal —N ⁇ C ⁇ O groups on the polyurethane pre-polymer.
  • Suitable amino sulphonic acids include taurine, CAPS or CHES (see above).
  • the ionic groups may help to keep the polyurethane particles in dispersion in water.
  • the polyurethane dispersion may comprise at least one polyurethane polymer comprising a polyurethane backbone having at least one terminal (or capping) group selected from a methacrylic-containing group and/or an acrylate-containing group, and at least one polyurethane polymer comprising a polyurethane backbone having at least one terminal (or capping) ionic group selected from
  • polyurethane polymer comprising a polyurethane backbone that is capped at one end with a terminal (or capping) group selected from a methacrylic-containing group and/or an acrylate-containing group, and at the opposite end with a terminal group selected from CAPS or CHES above.
  • a terminal (or capping) group selected from a methacrylic-containing group and/or an acrylate-containing group
  • CAPS or CHES a terminal group selected from CAPS or CHES
  • 1 to 99 weight % of the capping groups may be CAPS and/or CHES
  • 99 to 1 weight % of the capping groups may be selected from an acrylate-containing group and/or a methacrylic-containing group.
  • 5 to 70 weight % of the capping groups may be CAPS and/or CHES, while 95 to 30 weight % of the capping groups may be selected from an acrylate-containing group and/or a methacrylic-containing group.
  • 10 to 50 weight % of the capping groups may be CAPS and/or CHES, while 90 to 50 weight % of the capping groups may be selected from an acrylate-containing group and/or a methacrylic-containing group.
  • 20 to 40 weight % of the capping groups may be CAPS and/or CHES, while 80 to 60 weight % of the capping groups may be selected from an acrylate-containing group and/or a methacrylic-containing group.
  • the polyurethane dispersion may comprise at least one polyurethane polymer comprising a polyurethane backbone that is capped at one end with a terminal (or capping) group selected from an acrylate-containing group and/or a methacrylic-containing group and capped at the opposite end with a terminal CAPS or CHES group.
  • a terminal (or capping) group selected from an acrylate-containing group and/or a methacrylic-containing group and capped at the opposite end with a terminal CAPS or CHES group.
  • the polyurethane dispersion may comprise (i) at least one polyurethane polymer comprising a polyurethane backbone that is capped at one end with a terminal (or capping) group selected from an acrylate-containing group and/or a methacrylic-containing group, and capped at the opposite end with a terminal CAPS or CHES group; and (ii) at least one polyurethane polymer comprising a polyurethane backbone that is capped at both ends with a terminal (or capping) group selected from an an acrylate-containing group and/or a methacrylic-containing group or (iii) at least one polyurethane polymer comprising at least one polyurethane polymer comprising a polyurethane backbone that is capped at both ends with terminal groups selected from CAPS and/or CHES groups.
  • the polyurethane dispersion may comprise (i) at least one polyurethane polymer comprising a polyurethane backbone that is capped at one end with a terminal (or capping) group selected from an acrylate-containing group and/or a methacrylic-containing group and capped at the opposite end with a terminal CAPS or CHES group; (ii) at least one polyurethane polymer comprising a polyurethane backbone that is capped at both ends with a terminal (or capping) group selected from an an acrylate-containing group and/or a methacrylic-containing group and (iii) at least one polyurethane polymer comprising at least one polyurethane polymer comprising a polyurethane backbone that is capped at both ends with terminal groups selected from CAPS and/or CHES groups.
  • Suitable acrylate- or methacrylate-containing capping groups may include
  • Groups (XIII) to (XIVI) above may be formed by reacting the corresponding methacrylate/acrylate-containing mono-alcohols with a polyurethane pre-polymer, for example, with —N ⁇ C ⁇ O terminal groups on the pre-polymer.
  • the polyurethane backbone of the polyurethane polymers present in the pH stable polyurethane dispersion may be formed from the reaction between a reactive diol and a diisocyanate.
  • the reactive diol may be selected from an acrylate-containing diol, a methacrylate-containing diol, acrylamide-containing diol, styrene-containing diol and/or an allyl-containing diol.
  • Suitable methacrylate-containing and acrylate-containing reactive dials include:
  • the reactive diol may also be a styrene-containing reactive diol selected from:
  • the reactive diol may also be an allyl-containing containing diol selected from:
  • Suitable diisocyanates include methylene diphenyl diisocyanate, hexamethylene diisocyanate, p-tetramethyl xylene diisocyanate, m-tetramethyl xylene diisocyanate, bitolylene diisocyanate, toluene diisocyanate, 4,4′-Methylene dicyclohexyl diisocyanate, p-phenylene diisocyanate, isophorone diisocyanate, 1,5-naphthalene diisocyanate, trimethylhexamethylene diisocyanate and mixtures thereof.
  • the diisocyanate is selected from at least one of 2,2,4-trimethyl hexamethylene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, methylene diphenyl diisocyanate and 4,4′-Methylene dicyclohexyl diisocyanate.
  • a blend of 4,4′-Methylene dicyclohexyl diisocyanate and hexamethylene diisocyanate is used.
  • a blend of at least two diisocyanates is reacted with a reactive diol to produce the polyurethane backbone.
  • the reactive diol may be a methacrylate-containing and/or acrylate-containing reactive diol.
  • the reactive diol may be an acrylamide-containing reactive diol, an allyl-containing reactive diol and/or a styrene-containing reactive diol.
  • the reactive diol may be a methacrylate-containing or acrylate-containing diol that is bisphenol A-free. As shown above, examples of such diols include:
  • the polyurethane backbone may be devoid of any ionic side groups, for example, acid stabilisation groups (e.g. carboxylic or sulphonic acid groups). Such ionic groups may act as capping groups at the terminal end(s) of at least some of the polyurethane polymer strands in the polyurethane dispersion.
  • acid stabilisation groups e.g. carboxylic or sulphonic acid groups.
  • Such ionic groups may act as capping groups at the terminal end(s) of at least some of the polyurethane polymer strands in the polyurethane dispersion.
  • the polyurethane dispersion is formed by reacting a reactive diol with a diisocyanate to form a polyurethane pre-polymer.
  • a polymerisation initiator may be used to initiate polymerisation.
  • the NCO/OH ratio may range from greater to 1 to 8, for example, 1.2 to 5.
  • the polymerisation may be carried out to produce a polyurethane pre-polymer.
  • a capping agent may be added to the reaction mixture.
  • the capping agent may be a monoalcohol or monoamine e.g. selected from a methacrylate-containing monoalcohol or monoamine, an acrylate-containing monoalcohol or monoamine, an acrylamide-containing monoalcohol or monoamine, a styrene-containing monoalcohol or monoamine, an allyl-containing monoalcohol or an allyl-containing monoamine.
  • the monoalcohol or monoamine may react with terminal —N ⁇ C ⁇ O groups on the polyurethane pre-polymer to cap the polyurethane pre-polymer.
  • the reaction is carried out such that at least some of the polyurethane pre-polymer strands are capped by this reaction. In some examples, most of the polyurethane pre-polymer strands are capped by this reaction. For example, at least 10% of unreacted —N ⁇ C ⁇ O groups are capped by this reaction. In some instances, 50 to 95%, for instance, 60 to 90% of unreacted —N ⁇ C ⁇ O groups are capped by this reaction.
  • amino carboxylic acid or an amino sulphonic acid may then be added to the reaction mixture.
  • suitable acids include taurine, 3-(cyclohexylamino)-1-propanesulfonic acid and 2-(cyclohexylamino)ethanesulfonic acid.
  • the amino carboxylic acid or amino sulphonic acid may react with the remaining —N ⁇ C ⁇ O groups. These groups form can form ionic capping groups that help to stabilise the dispersion of polyurethane in e.g. water.
  • the pH stable curable polyurethane may have an acid number of 20 to 100.
  • the pH stable curable polyurethane may have a double bond density from 1.5 to 1.0 meq/g.
  • the particle size range of the pH stable polyurethane dispersion may be 10 to 200 nm.
  • any suitable surfactant may be present in the inkjet ink composition. Suitable surfactants are described in relation to the overcoat composition above.
  • the surfactant employed in the inkjet ink composition may be the same or different from the surfactant used in the overcoat composition.
  • the surfactant present in the inkjet ink composition in an amount ranging from about 0.01 wt % to about 5 wt % based on the total wt % of the inkjet ink composition.
  • the inkjet ink composition may include a co-solvent in addition to water.
  • Classes of co-solvents that may be used can include organic co-solvents, including alcohols (e.g., aliphatic alcohols, aromatic alcohols, polyhydric alcohols (e.g., diols), polyhydric alcohol derivatives, long chain alcohols, etc.), glycol ethers, polyglycol ethers, a nitrogen-containing solvent (e.g., pyrrolidinones, caprolactams, formamides, acetamides, etc.), and a sulfur-containing solvent.
  • alcohols e.g., aliphatic alcohols, aromatic alcohols, polyhydric alcohols (e.g., diols), polyhydric alcohol derivatives, long chain alcohols, etc.
  • glycol ethers e.g., polyglycol ethers
  • a nitrogen-containing solvent e.g., pyrrolidinones, caprolactams, form
  • Examples of such compounds include primary aliphatic alcohols, secondary aliphatic alcohols, 1,2-alcohols, 1,3-alcohols, 1,5-alcohols, ethylene glycol alkyl ethers, propylene glycol alkyl ethers, higher homologs (C6-C12) of polyethylene glycol alkyl ethers, N-alkyl caprolactams, unsubstituted caprolactams, both substituted and unsubstituted formamides, both substituted and unsubstituted acetamides, and the like.
  • suitable co-solvents include propylene carbonate and ethylene carbonate.
  • a single co-solvent may be used, or several co-solvents may be used in combination.
  • the co-solvent(s) is/are present in total in an amount ranging from 0 wt % to 60 wt %, depending on the jetting architecture, though amounts outside of this range can also be used.
  • the co-solvent(s) may range from about 1 wt % to about 30 wt % or about 20 wt % of the total wt % of the inkjet ink composition.
  • the inkjet ink composition may also include various other additives to enhance the properties of the ink composition for specific applications.
  • additives include those added to inhibit the growth of microorganisms, viscosity modifiers, materials for pH adjustment, sequestering agents, anti-kogation agents, preservatives, and the like.
  • Such additives may be present in an amount of 0 to 5 wt % of the inkjet ink composition.
  • the present disclosure relates to a process that comprises inkjet printing an inkjet ink composition onto a substrate.
  • a radiation-curable (e.g. analogue) overcoat composition may be applied over the printed inkjet ink composition on the substrate.
  • the printed inkjet ink composition on the substrate is cured by exposing both the overcoat composition and inkjet ink composition on the substrate to radiation.
  • Suitable forms of radiation include UV or e-beam radiation.
  • the overcoat composition may be applied using any suitable technique.
  • the overcoat may be applied by brush, roller, knife, spraying or inkjet ink printing.
  • the overcoat may be applied to form a overcoat layer that is 0.1 to 5 microns thick, for example, 0.5 to 4 microns thick or 1 to 3 microns thick.
  • the substrate Prior to the inkjet printing the inkjet ink composition onto the substrate, the substrate may be treated, for example, with corona treatment.
  • a fixer composition Prior to inkjet printing the inkjet ink composition onto the substrate, a fixer composition may be applied to the substrate.
  • the fixer may help to optimise the deposition of pigment onto the print substrate.
  • Suitable fixers may include one or more calcium salts and water. Examples of suitable calcium salts include calcium nitrate tetrahydrate and calcium propionate. In one example, the fixer comprises calcium nitrate tetrahydrate and calcium propionate.
  • Surfactant may also be present in the fixer composition.
  • a suitable surfactant may be a non-ionic surfactant, for example, Surfonyl® SEF.
  • the fixer may also include a biocide.
  • a suitable biocide may be Acticide® B20.
  • Water may be present in the fixer in an amount of 5 to 30 weight % of the fixer composition.
  • the fixer may be applied after the substrate has been treated by corona treatment. In some examples, the fixer may be applied to a substrate that has not been corona treated.
  • Any suitable inkjet ink printing method may be used. Examples include thermal and piezoelectric inkjet printing. In some examples, thermal inkjet printing is employed.
  • the inkjet ink composition After the inkjet ink composition is printed onto the substrate, it may be dried prior to application of the overcoat composition.
  • the overcoat may be dried prior to the curing step.
  • UV radiation is employed.
  • Suitable sources of UV radiation include UV lamps, LED (light emitting diode) lamps, LEP (light emitting plasma) plasma torches, or lasers operating in the UV range.
  • the actual wavelength (within the UV range of 280 nm to 400 nm) and intensity of the ultraviolet radiation used may vary, depending at least in part, upon the curable polyurethane in the binder and inkjet ink composition.
  • suitable UV LED wavelengths include 365 nm, 385 nm, 395 nm or 405 nm, for example, 365 nm and 395 nm.
  • the printing process of the present disclosure can be used to print on a broad selection of substrates, including untreated plastics, flexible as well as rigid, porous or non-porous substrates.
  • substrates including paper (e.g., plain paper, coated, glossy paper, etc.), cardboard, foam board, textile, and plastics.
  • suitable plastic substrates include vinyl substrates, for example, vinyl graphic films available from 3MTM under the trademark ScotchcalTM series IJ-40.
  • acrylic substrates for example, acrylic cast graphic films available from 3MTM under the trademark ControltacTM (e.g. 180-10 (cast)).
  • Other examples include acrylic glass substrates (PMMA), polypropylene substrates, polystyrene substrates (e.g. high impact polystyrene substrates), PVC substrates and polycarbonate substrates.
  • FIG. 1 depicts schematically, by way of example only, an example of the sequence of steps that may be taken to perform an example inkjet printing process of the present disclosure.
  • a fixer 10 may be applied to a print substrate 12 .
  • An ink jet ink composition 14 may then be inkjet printed over the fixer.
  • the printed ink layer may be dried by a dryer 16 .
  • an overcoat composition 18 may be applied (e.g. by an analogue method e.g. using a roller) over the printed ink layer as an overcoat layer.
  • the overcoat layer may then by dried 20 .
  • the over coated print layer may be cured by exposure to UV-LED 22 .
  • the agitation was continued for 60 mins at 40° C.
  • the PUD dispersion was filtered through 400 mesh stainless sieve. Acetone was removed with rotorvap at 50° C. (add 2 drops (20 mg) BYK®-011 de-foaming agent if there is a lot of foaming).
  • the final PUD dispersion was filtered through fiber glass filter paper. Particle size measured by Malvern Zetasizer is 16.08 nm. Its pH was 7.3. Solid content was 29.58%. This PUD shows less than 0.12 unit pH drop after 1 week accelerated shelf life testing at elevated (60 degrees C.) temperature (ASL).
  • the curable pH stable PUD produced in Example 1 was used to formulate an inkjet ink formulation.
  • the overcoat is based on commercial available curable and food compatible IRR 832 RD 10-603 (Allnex®) IRR 912 RD 10-604 (Allnex®).
  • the overcoat weight is approximately 1, 2 or 3 gsm.
  • the overcoat samples were LED cured at a speed of 25 ft/min.
  • Example 3A TS (%) dry wt (%) Weight (g) IRR 832 RD 10-603 35% 90 100 (Allnex ®) Alkylphenylethoxylate 100% 1.8 1.8 surfactant (Surfonyl ® CT-211, supplied by Evonik) Non-ionic 100% 0.75 0.75 fluorosurfactant (Capstone ® FS-35) (supplied by DuPont) Water soluble 100% 1.5 1.5 1.5 photoinitiator (TPA Na) Water soluble 100% 1.5 1.5 1.5 sensitizer 2 2 A photosensitizer based on a functionalised anthrone moiety coupled to a polyether chain, see Q above.
  • Example 3B TS (%) dry wt (%) Weight (g) IRR 832 RD 10-603 35% 90 100 (Allnex ®) Alkylphenylethoxylate 100% 1.8 1.8 surfactant (Surfonyl ® CT-211, supplied by Evonik) Non-ionic 100% 0.75 0.75 fluorosurfactant (Capstone ® FS-35) (supplied by DuPont) Water soluble 100% 1.5 1.5 1.5 photoinitiator (TPA Na) Water soluble 100% 1.5 1.5 1.5 1.5 sensitizer 2 Wax 20% 0.5 2.5 2 A photosensitizer based on a functionalised anthrone moiety coupled to a polyether chain, see Q above.
  • Example 3C TS (%) dry wt (%) Weight (g) IRR 912 RD 10-604 35% 90 100 (Allnexe ®) Alkylphenylethoxylate 100% 1.8 1.8 surfactant (Surfonyl ® CT-211, supplied by Evonik) Non-ionic 100% 0.75 0.75 fluorosurfactant (Capstone ® FS-35) (supplied by DuPont) Water soluble 100% 1.5 1.5 1.5 photoinitiator (TPA Na) Water soluble 100% 1.5 1.5 1.5 sensitizer 2 2 A photosensitizer based on a functionalised anthrone moiety coupled to a polyether chain, see Q above.
  • Example 3D TS (%) dry wt (%) Weight (g) IRR 912 RD 10-604 35% 90 100 (Allnexe ®) Alkylphenylethoxylate 100% 1.8 1.8 Surfactant (Surfonyl ® CT-211, supplied by Evonik) Non-ionic 100% 0.75 0.75 fluorosurfactant (Capstone ® FS-35) (supplied by DuPont) Water soluble 100% 1.5 1.5 1.5 photoinitiator (TPA Na) Water soluble 100% 1.5 1.5 1.5 1.5 sensitizer 2 Wax 20% 0.5 2.5 2 A photosensitizer based on a functionalised anthrone moiety coupled to a polyether chain, see Q above.
  • a fixer composition was applied to vinyl and Graph+substrates. Thereafter, the inkjet ink compositions of Example 2 were inkjet printed over the fixer using a thermal inkjet printer. The printed inkjet ink composition was dried and then coated with the overcoat composition of Example 3 (2 gsm in Table 1, 1 gsm in Table 2). The printed substrates were then dried and cured using UV-LED at 395 nm.
  • the printed substrates were subject to the following rub tests: a) Eraser Rub—1 Weight (250 g), 10 Cycles; b) Windex—1 Weight (250 g), 5 Cycles, Crockmeter Cloth; c) Quanta wet—No Weight (0 g), 1 Cycle, Crockmeter Cloth; d) 70% IPA Rub—1 Weight (250 g), 5 Cycles, Crockmeter Cloth; e) Quanta regular Sutherland 4 lbs, 200 cycles—Mellotexrubbing paper.
  • Test criteria (visual evaluation) is: 5—Fail (ink is fully removed), 1—Excellent rub resistance. Note: “0” is a perfect score. Threshold is “2”. Note for the Sutherland tests, 5—is perfect score and 1 is the worst.
  • optical densities and gloss characteristics of the printed films were also determined using a 75 degree angle Glossmeter.
  • results are reported in the tables below.
  • the results show that, by using overcoat compositions of Examples 3A to 3D, durable images can be produced to provide food compatible substrates even with relatively low cPUD concentrations in the ink.
  • a comparison of the results of Tables 1 and 2 illustrate that the thickness of the overcoat can be increased, for example, to 2 gsm in order to improve the durability of the images.
  • the PUD dispersion was filtered through 400 mesh stainless sieve. Acetone was removed with rotorvap at 50° C. (add 2 drops (20 mg) BYK®-011 de-foaming agent if there is a lot of foaming). The final PUD dispersion was filtered through fiber glass filter paper. Particle size measured by Malvern Zetasizer is 26.8 nm. Its pH was 6.0. Solid content was 30.04%. This PUD shows less than 0.4 unit pH drop after 1 week accelerated shelf life testing at elevated (60 degrees C.) temperature (ASL).
  • ASL elevated temperature
  • the curable pH stable PUD produced in Example 5 was used to formulate an inkjet ink formulation.
  • a curable overcoat composition was prepared having the following composition: 35% polyurethane dispersion (Ucecoat® 7571 from Allnex®), 3% surfactant (Tegowet® 510) and 0.3% photo initiator (Irgacure®, commercially available from BASF Corp, 819DW).
  • a fixer composition was applied to a vinyl substrate (Avery Dennison® IC MPI 2900). Thereafter, the inkjet ink compositions of Example 6 were inkjet printed over the substrate using a thermal inkjet printer. The printed inkjet ink composition was dried and then coated with the overcoat composition of Example 7. The printed substrate was then dried and cured using UV-LED at 395 nm.
  • the cured substrates were subjected to tests to determine their durability with respect to a Windex rub test (1 weight (250 g), 5 cycles, Crockmeter cloth), a 70% IPA rub test (1 weight (250 g), 5 cycles, Crockmeter Cloth), and an eraser rub test (1 weight (250 g), 10 cycles).
  • the tested substrates were inspected by visual inspection.
  • the rub tests (Windex, 70% IPA, Eraser rub) were graded with a score of 0 (best) to 5 (worst). The results are shown in table 3 below.
  • the tested substrates were also found to have excellent optical density (OD), L* (Lightness) and gloss.
  • Example 8 The procedure of Example 8 was repeated with a coated paper substrate, Graph+.
  • the cured substrates were tested according to the Windex rub test and 70% IPA rub test as described in Example 8 above.
  • the cured substrates were tested by a smear rub test (4 in. length, 1700 g weight, Mellotex), a heated Sutherland rub test (177 degrees C. (350 degrees F.), 27.6 kPa (4 psi) heated weight, speed 2, 10 cycles) and a quanta regular Sutherland rub test (4 lbs, 200 cycles, Mellotex).
  • a score of 5 is indicative of excellent rub resistance, while a score of 1 shows poor rub resistance.
  • the results are shown in Table below. Smear rub mean values of around 238 were considered to be good.
  • Examples 8 and 9 above show that, by using an overcoat composition, durable images can be produced.
  • curing of the black ink compositions was found to be very difficult. This is believed to be because of UV absorption by the black colorant, which reduced the efficiency of the curing process.
  • the images produced in the absence of the overcoat had poor durability and very poor scores were achieved, particularly with respect to IPA rub resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet (AREA)

Abstract

The present disclosure relates to an inkjet printing process that comprises inkjet printing an inkjet ink composition onto a substrate to form a printed inkjet ink layer. The inkjet ink composition comprises a colorant, a curable polyurethane dispersion, a photoinitiator and water, wherein the amount of curable polyurethane dispersed in the inkjet ink composition is 0.1 to 30 weight %. A radiation-curable overcoat composition is applied over the printed inkjet ink layer as an overcoat layer. The overcoat composition comprises a curable polyurethane dispersion, a photoinitiator and water. The printed inkjet ink layer is then cured on the substrate by exposing both the overcoat layer and inkjet ink layer on the substrate to radiation.

Description

    BACKGROUND
  • Inkjet printing is a printing method that utilizes electronic signals to control and direct droplets or a stream of ink onto print media. Inkjet printing may involve forcing ink drops through small nozzles by thermal ejection, piezoelectric pressure or oscillation onto the surface of the media. This technology can be used to record images on various media surfaces (e.g. paper).
  • In inkjet printing, curable polymer binders may be added to inkjet inks to improve the durability of the resulting print. Such binders may be cured, for example, by exposure to radiation e.g. UV radiation.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various implementations are described, by way of example, with reference to the accompanying drawings, in which:
  • FIG. 1 is a schematic diagram illustrating, by way of example, an example of a printing process of the present disclosure.
  • DETAILED DESCRIPTION
  • Before the present disclosure is disclosed and described, it is to be understood that this disclosure is not limited to the particular process steps and materials disclosed in this disclosure because such process steps and materials may vary. It is also to be understood that the terminology used in this disclosure is used for the purpose of describing particular examples. The terms are not intended to be limiting because the scope is intended to be limited by the appended claims and equivalents thereof.
  • It is noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
  • As used in this disclosure, “overcoat” in the context of the present disclosure refers to a composition that is applied to a print substrate as an under layer to the inkjet ink composition. The overcoat composition may be substantially colourless, clear or transparent. Accordingly, the overcoat composition may be substantially free from pigment or other colorants, and may have no substantive effect on the colour of an underlying coloured image printed from inkjet ink.
  • As used in this disclosure, “acidity,” “acid number,” or “acid value” refers to the mass of potassium hydroxide (KOH) in milligrams that neutralizes one gram of a substance. The acidity of a polymer can be measured according to standard techniques, for example as described in ASTM D1386. If the acidity of a particular polymer is specified, unless otherwise stated, it is the acidity for that polymer alone, in the absence of any of the other components of the overcoat or inkjet ink composition.
  • As used herein, the term “transparent” is used to describe a composition that allows light to pass therethrough. In some examples, in the context of an overcoat composition, the term “transparent” may mean that the composition allows light to pass through it such that, when the overcoat composition is applied over a printed image of at a thickness of 3 microns or less, for instance, 1.5 to 2 microns (e.g. 1.5 microns), the printed image may be clearly visible to the naked eye. In some examples, the overcoat composition may be transparent, whereby, when the overcoat composition is printed over a printed image of at a thickness of 1.5 microns, the colours in the image are substantially the same as the colours in the uncoated image. In some examples, the difference in the colour(s) of the coated and uncoated image are small, Reference is made to ASTM D1729-96 (Reapproved 2009, which specifies the equipment and procedures for visual appraisal of colours and colour differences of opaque materials that are diffusely illuminated. In some examples, the delta E (determined according to CIE94) between the colours of the coated and un-coated image may be 3 or less, for example, 2 or less. In some examples, the delta E (determined according to CIE94) may be 1.5 or less, for example, 1 or less.
  • Optical density or absorbance is a quantitative measure expressed as a logarithmic ratio between the radiation falling upon a material and the radiation transmitted through a material.
  • A λ = - log 10 ( I 1 I 0 ) ,
  • where Aλ is the absorbance at a certain wavelength of light (λ), is the intensity of the radiation (light) that has passed through the material (transmitted radiation), and I0 is the intensity of the radiation before it passes through the material (incident radiation). The incident radiation may be any suitable white light, for example, day light or artificial white light. The optical density or delta E of an image may be determined using methods that are well-known in the art. For example, optical density and/or delta E may be determined using a spectrophotometer. Suitable spectrophotometers are available under the trademark X-rite.
  • As used in this disclosure, the term “about” is used to provide flexibility to a numerical range endpoint by providing that a given value may be a little above or a little below the endpoint to allow for variation in test methods or apparatus. The degree of flexibility of this term can be dictated by the particular variable and would be within the knowledge of those skilled in the art to determine based on experience and the associated description in this disclosure.
  • As used in this disclosure, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary.
  • As used in this disclosure, the term “food compatible” is used to describe a material that is suitable for indirect or direct contact with food. In some examples, the material is suitable for indirect food contact. Such materials may be sufficiently inert to prevent the transfer of substances to food in quantities large enough to endanger human health, and/or prevent unacceptable changes to the composition of the food and how it looks, tastes or smells. Materials that are food compatible may be used as or to manufacture food packaging, including self-adhesive labels applied to food packaging. In some examples, food compatible materials may comply with the Frame regulation EC 1935/2004. In some examples, food compatible materials may meet the requirements of Regulation EU 10/2011. In some examples, food compatible materials may comply with the food contact provisions of the FDA.
  • Concentrations, amounts, and other numerical data may be expressed or presented in this disclosure in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not just the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “about 1 wt % to about 5 wt %” should be interpreted to include not just the explicitly recited values of about 1 wt % to about 5 wt %, but also include individual values and subranges within the indicated range. Thus, included in this numerical range are individual values such as 2, 3.5, and 4 and sub-ranges such as from 1-3, from 2-4, and from 3-5, etc. This same principle applies to ranges reciting a single numerical value. Furthermore, such an interpretation should apply regardless of the breadth of the range or the characteristics being described.
  • The present disclosure relates to an inkjet printing process comprising inkjet printing an inkjet ink composition onto a substrate to form a printed inkjet ink layer. The inkjet ink composition comprises a colorant, a curable polyurethane dispersion and water. The amount of curable polyurethane dispersed in the inkjet ink composition is 0.1 to 30 weight %. A curable overcoat composition is applied over the printed inkjet ink layer as an overcoat layer. The printed inkjet ink layer is then cured on the substrate by exposing both the overcoat layer and inkjet ink layer on the substrate to radiation.
  • The present disclosure also relates to a printed substrate comprising an ink layer comprising a colorant disposed over the substrate and an overcoat layer disposed over the ink layer, wherein the printed substrate comprises a crosslinked polyurethane network that surrounds the colorant and extends from the ink layer to the overcoat layer.
  • The overcoat composition may comprise a food compatible curable polyurethane dispersion and water. Accordingly, the resulting printed substrate may be food compatible and suitable for direct contact with food. The resulting printed substrate may be used as food packaging, for example, primary or secondary food packaging. The resulting printed substrate may be used as a food label, for example, for contact (e.g. direct or indirect contact) with the food product. In some examples, the resulting printed substrate may be used as a food label or food packaging, for instance, for indirect contact with a food product.
  • Polyurethane dispersions may be used as curable polymer binders in aqueous curable inkjet ink compositions. However, it can be difficult to achieve adequate durability without compromising other characteristics of the inkjet ink composition. For example, while high levels of polymer binder can improve durability, excessive levels of polymer binder can affect the jettability of an inkjet ink composition. The latter can have a negative effect on the printed image, as well as on the lifespan of the printhead. Moreover, aqueous UV-curable inks comprising e.g. yellow or black colorants may be difficult to cure because these colorants may be strong absorbers of UV light. While curing may be improved by increasing the polyurethane and/or photoinitiator content of the inkjet ink, this may have a detrimental effect on the jettability of the ink composition.
  • In the present disclosure, a polyurethane dispersion is included in an overcoat composition that is applied as an overcoat layer over the inkjet ink composition. This can allow higher levels of polyurethane to be deposited onto the substrate to enhance durability. At the same time, the polyurethane content of the inkjet ink composition can be kept below a threshold to maintain desired levels of jettability. Since the overcoat composition need not be applied digitally using a printhead, high levels of polyurethane can be employed without the risk of compromising jettability. The relative concentrations of polyurethane in the overcoat composition and inkjet ink composition may be tailored to provide the desired levels of durability, while maintaining jettability of the inkjet ink composition. The presence of an overcoat layer over the inkjet ink layer may also reduce or eliminate exposure of the inkjet ink layer to oxygen, facilitating cure of the inkjet ink layer.
  • Furthermore, in the present disclosure, both the overcoat composition and the inkjet ink composition comprise curable polyurethane. Thus, when the overcoat and the inkjet ink are exposed to radiation, photoinitiators in the overcoat and inkjet ink generate reactive species e.g. radicals. These reactive species react to cure the polyurethane in the overcoat and inkjet ink, forming a crosslinked polyurethane network that extends from the inkjet ink layer to the overcoat layer. This crosslinked polyurethane network can help to retain colorant on the substrate, improving the durability of the printed image on the substrate. In some examples, reactive groups of the polyurethane in the overcoat layer crosslink with reactive groups of the polyurethane in the ink layer. In some examples, the crosslinked polyurethane network may surround the colorant in the ink layer.
  • As discussed above, because the overcoat composition may include a food compatible polyurethane dispersion, the method described in the present disclosure may be used to produce a substrate that is food compatible, and that can be printed and cured in an effective manner.
  • Overcoat
  • The overcoat composition comprises water and a curable polyurethane dispersion. The overcoat composition may additionally comprise a surfactant. The overcoat composition may additionally include a photoinitiator. The overcoat composition may be an analogue overcoat composition.
  • Water may be present in the overcoat composition in an amount of at least 30 weight %, for example, at least 40 or 50 weight %. In some examples, water may be present in the overcoat composition in an amount of at least 60 weight %. Water may be present in an amount of at most 99 weight %, for example, at most 95 weight %. In some examples, water may be present in the overcoat composition in an amount of 30 to 99 weight %, for instance, 40 to 98 weight % or 50 to 95 weight %. In other examples, water may be present in an amount of 60 to 93 weight %, for instance, 70 to 90 weight %.
  • Any suitable photoinitiator may be employed in the overcoat composition. The photoinitiator initiates the polymerization and/or crosslinking of the radiation-curable polyurethane upon exposure to radiation. The photoinitiator may be the same or different from the photoinitiator employed in the inkjet ink composition. Suitable photoinitiators are described in relation to the overcoat composition below. However, for the avoidance of doubt, the water-soluble photoinitiators described in relation to the inkjet ink composition may be used in the overcoat composition, if desired.
  • Some examples of the photoinitiator include 1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1-one (which is commercially available from BASF Corp. as IRGACURE® 2959); acyl phosphine oxide photoinitiators (e.g., IRGACURE® 819, commercially available from BASF Corp.); alpha hydroxy ketone photoinitiators (e.g., IRGACURE® 184, commercially available from BASF Corp.); Iodonium, (4-methylphenyl)[4-(2-methylpropyl) phenyl]-, hexafluorophosphate(I—) (which is commercially available from BASF Corp. as IRGACURE® 250); a high-molecular-weight sulfonium salt (e.g., IRGACURE® 270, commercially available from BASF Corp.); 2-Benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 (which is commercially available from BASF Corp. as IRGACURE® 369); alpha amino ketone photoinitiator (e.g., IRGACURE® 379, commercially available from BASF Corp.); a liquid blend of alpha hydroxy ketone/benzophenone photoinitiator (e.g., IRGACURE® 500, commercially available from BASF Corp.); and a liquid photoinitiator blend of acyl phosphine oxide/alpha hydroxy ketone (e.g., IRGACURE® 2022, commercially available from BASF Corp.). Some other suitable photoinitiators include phosphine oxide derivatives, thioxanthone derivatives, and benzophenone derivatives.
  • In some examples, a water-soluble photoinitiator may be used in the overcoat composition. The water soluble photoinitiator may be a trimethylbenzoylphenylphosphinic acid metal salt (i.e., TPA salt) having a formula (I) of:
  • Figure US20190193448A1-20190627-C00001
  • where n is any integer from 1 to 5 and M is a metal with a valence from 1 to 5. Examples of suitable metals include Li, Na, K, Cs, Rb, Be, Mg, Ca, Ba, Al, Ge, Sn, Pb, As, and Sb.
  • The TPA salt may be formed from ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate (TPO-L) and a metal salt. The ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate may be added to a suitable solvent (e.g., methyl ethyl ketone (MEK)) to form a solution, and then the metal salt may be added to the solution. The solution may be heated and stirred at a predetermined temperature for a predetermined time to allow the reaction to take place. As a result of the reaction, a solid TPA salt may form. This salt may be collected, washed, and dried.
  • Two example synthetic pathways for forming a lithium TPA salt (TPA-Li) and a sodium TPA salt (TPA-Na) are shown in the schemes below:
  • Figure US20190193448A1-20190627-C00002
  • The solubility of the water soluble photoinitiator disclosed herein may be high. In one example, the water soluble photoinitiator can have a water solubility of at least 0.1 wt %, When the water solubility is at least 0.1 wt %, it means that of the total wt % of the water soluble photoinitiator added to water, at least 0.1 wt % of the total is water soluble. In some instances, the water soluble photoinitiator may have a water solubility of at least 0.5 wt %. In some instances, the water soluble photoinitiator may have a water solubility up to about 20 wt %.
  • The water soluble photoinitiator may be used in combination with a sensitizer. The sensitizer may be a water soluble polymeric sensitizer that includes a functionalized anthrone moiety, a polyether chain, and an amide linkage or an ether linkage attaching one end of the polyether chain to the functionalized anthrone moiety. The anthrone moiety may be a thioxanthrenone moiety.
  • In one example, the polymeric sensitizer may have a formula (Q):
  • Figure US20190193448A1-20190627-C00003
  • where R1, R2, R3, R4, and R5 are each independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted allyl group, a substituted or unsubstituted alkene or alkenyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a halogen atom, —NO2, —O—Rd, —CO—Rd, —CO—O—Rd, —O—CO—Rd, —CO—NRdRe, —NRdRe, —NRd—CO—Re, —NRd—CO—O—Re, —NRd—CO—NReRf, —SRd, —SO—Rd, —SO2—Rd, —SO2—O—Rd, —SO2NRdRe and a perfluoroalkyl group. Rd, Re, and Rf are each independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted allyl group, a substituted or unsubstituted alkene or alkenyl group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted aralkyl group. Some examples of suitable alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, hexyl, etc. One example of a suitable alkene group is an ethylene group. Some examples of suitable aryl groups include phenyl, phenylmethyl, etc. In the formula Q above, X is O, S, or NH and the polyether chain has n number of repeating monomer units, where n ranges from 1 to 200. As shown in the formula Q above, the linkage is an ether linkage.
  • When present, the sensitizer may be present in an amount of 0.1 wt % to about 10 wt % of the inkjet ink composition.
  • The photoinitiator may be present in the overcoat composition in an amount ranging from about 0 wt % to about 20 wt.% of the total wt % of the overcoat composition. In another example, the photoinitiator is present in the in the inkjet ink in an amount ranging from about 0.2 wt % to about 15 wt %, for example, 0.5 wt % to 10 wt % or 0.5 to 5 wt % of the total wt % of the overcoat composition.
  • Any suitable curable polyurethane dispersion may be included in the overcoat composition. The polyurethane dispersion may be e-beam curable. The polyurethane dispersion may be UV-curable, for example, curable by UV-LED. Suitable UV-LED wavelengths include 365nm, 385nm, 395 nm or 405 nm. In one example, the polyurethane dispersion may be curable by UV-LED at 365nm, 385nm or 395 nm. In one example, the polyurethane dispersion may be curable by UV-LED at 395 nm.
  • The polyurethane may be the same as or different from the polyurethane present in the inkjet ink composition. Suitable polyurethanes are described in relation to the overcoat composition below, However, for the avoidance of doubt, the pH stable polyurethane dispersions described below in relation to the inkjet ink composition may be used to form the overcoat composition, if desired. In some examples, however, the polyurethane in the overcoat is a food compatible polyurethane dispersion. Examples of such food compatible dispersions include reactive and curable polyurethane dispersions that are essentially BPA-free polyurethane dispersions. By “BPA-free”, it is meant that the polyurethane dispersions are substantially free from bisphenol-A. The polyurethane dispersions may also be based on non-halogen based diisocyanates. The polyurethane dispersions may be substantially free from components that can migrate from the polyurethane composition in appreciable amounts. Examples include polyurethane dispersions sold under the product IRR 832 RD 10-603 and IRR 912 RD 10-604 supplied by Allnex®.
  • In some examples, polyurethane dispersions comprise polyurethane polymer particles dispersed in water. The particles may range from about 20 to about 200 nm in size. The polyurethane can have a molecular weight (Mw) in the range of about 1,000 to 100,000 or in the range of about 5,000 to about 50,000. The polyurethane may have a NCO/OH ratio of 1.2 to 5 and an acid number of 20 to 100. The double bond density of the polyurethane may be 1.5 to 20, for example, 2 to 10.
  • The polyurethane may be formed from the reaction of a diisocyanate and a polyol. The diisocyanate can be an aliphatic diisocyanate or an aromatic diisocyanate. Examples of suitable diisocyanates include methylene diphenyl diisocyanate, hexamethylene diisocyanate, p-tetramethyl xylene diisocyanate, m-tetramethyl xylene diisocyanate, bitolylene diisocyanate, toluene diisocyanate, methylene-bis(4-cyclohexyl)diisocyanate, p-phenylene diisocyanate, isophorone diisocyanate, 1,5-naphthalene diisocyanate and mixtures thereof.
  • In some examples, the polyol can be a diol selected from the group of: cyclic diols (e.g. 1,3-cyclohexanedimethanol and 1,4-cyclohexanedimethanol); aliphatic polycarbonate diols; polyether diols; polyethylene glycol; polypropylene glycol; polytetramethylene glycol; polyethylene oxide) polymers; poly(propylene oxide) polymers; poly(tetramethylene oxide) polymers; copolymers thereof having terminal hydroxyl groups derived from polyhydric compounds including diols; and combinations thereof. In one aspect, the diol can be a cyclic diol. In another aspect, the diol can be an aliphatic cyclic diol.
  • In some examples, the polyurethane is a water-dispersible acrylic functional polyurethane. In some other examples, polyurethane is a water-dispersible (meth)acrylated polyurethane. Suitable water-dispersible (meth)acrylated polyurethane are commercially available under the trademarks Ucecoat®6558, Ucecoat®559, Ebecryl®2002 and Ebecryl®2003 (Cytec).
  • In some examples, the polyurethane dispersions are water-dispersible (meth)acrylated polyurethane, sold under the trade name of NeoRad® R441 by NeoResins (Avecia). Other representative but non limiting examples of suitable polyurethane dispersions include Ucecoat®7710, Ucecoat®7655 (available from Cytec), Neorad®R440, Neorad®R441, Neorad®R447, Neorad®R448 (available from DSM NeoResins), Bayhydrol®UV2317, Bayhydrol®UV VP LS 2348 (available from Bayer), Lux®430, Lux®399, Lux®484 (available from Alberdingk Boley), Laromer®LR8949, Laromer®LR8983, Laromer®PE22WN, Laromer®PE55WN, Laromer®UA9060 (available from BASF).
  • The amount of polyurethane (solids) dispersed in the overcoat composition may be 0.1 to 50 weight % or 0.5 to 40 weight %, for example, 1 to 30 weight %. In some examples, the amount of polyurethane (solids) in the overcoat composition may be 2 to 25 weight %, for instance, 5 to 15 weight %. As the overcoat composition may not be applied by inkjet printing, the polyurethane content may be relatively high as jettability may not be a concern. The polyurethane content (solids) of the overcoat composition may be greater than the polyurethane content (solids) of the ink composition.
  • The overcoat composition may be formed using a pre-formed or commercially available polyurethane dispersion comprising polyurethane dispersed in its own solvent (e.g. water). The amount of polyurethane dispersion used to form the overcoat composition may be 5 to 30 weight % of the total weight of the overcoat composition.
  • Any suitable surfactant may be present in the overcoat composition. Where the inkjet ink composition also includes a surfactant, the surfactant present in the overcoat may be the same or different from the surfactant in the inkjet ink composition.
  • Suitable surfactants may include non-ionic, cationic, and/or anionic surfactants. Examples include a silicone-free alkoxylated alcohol surfactant such as, for example, TEGO® Wet 510 (Evonik Tego Chemie GmbH) and/or a self-emulsifiable wetting agent based on acetylenic diol chemistry, such as, for example, SURFYNOL® SE-F (Air Products and Chemicals, Inc.). Other suitable commercially available surfactants include SURFYNOL® 465 (ethoxylated acetylenic did), SURFYNOL® CT 211 (non-ionic, alkylphenylethoxylate and solvent free), and SURFYNOL® 104 (non-ionic wetting agent based on acetylenic diol chemistry), (all of which are from Air Products and Chemicals, Inc.); ZONYL® FSO (a.k.a. CAPSTONE®, which is a water-soluble, ethoxylated non-ionic fluorosurfactant from Dupont); TERGITOL™ TMN-3 and TERGITOL™ TMN-6 (both of which are branched secondary alcohol ethoxylate, non-ionic surfactants), and TERGITOL™ 15-S-3, TERGITOL™ 15-S-5, and TERGITOL™ 15-S-7 (each of which is a secondary alcohol ethoxylate, non-ionic surfactant) (all of the TERGITOL™ surfactants are available from The Dow Chemical Co.). Fluorosurfactants may also be employed.
  • When present, the surfactant present in the overcoat composition in an amount ranging from about 0.01 wt % to about 5 wt % based on the total wt % of the overcoat composition.
  • The overcoat composition may contain less than 0.01 wt % colorant, for example, less than 0.001 wt % colorant. The overcoat composition may be substantially free from colorant. In some examples, the overcoat composition may be substantially free from pigment or dye.
  • The overcoat composition may be transparent.
  • The overcoat composition may be made in-situ just before being applied to the substrate.
  • Inkjet Ink Composition
  • The inkjet ink composition comprises water, a colorant and a curable polyurethane dispersion. The inkjet ink composition may additionally comprise a surfactant. The inkjet ink composition may additionally comprise a photoinitiator.
  • Water may be present in the inkjet ink composition in an amount of at least 30 weight %, for example, at least 40 or 50 weight %. In some examples, water may be present in the inkjet ink composition in an amount of at least 60 weight %. Water may be present in an amount of at most 99 weight %, for example, at most 95 weight %. In some examples, water may be present in the inkjet ink composition in an amount of 30 to 99 weight %, for instance, 40 to 98 weight % or 50 to 95 weight %. In other examples, water may be present in an amount of 60 to 93 weight %, for instance, 70 to 90 weight %.
  • Any suitable colorant may be used in the inkjet ink composition. The colorant may be a pigment or a dye. In some examples, the colorant can be present in an amount from about 0.5 wt % to about 15 wt % based on a total wt % of the inkjet ink composition. In one example, the colorant can be present in an amount from about 1 wt % to about 10 wt %. In another example, the colorant can be present in an amount from about 5 wt % to about 10 wt %.
  • In other examples, the colorant may be a pigment or dye. In some examples, the colorant may be a pigment. As used herein, “pigment” generally includes organic or inorganic pigment colorants, magnetic particles, aluminas, silicas, and/or other ceramics, organo-metallics or other opaque particles, whether or not such particulates impart color. Thus, although the present description primarily illustrates the use of pigment colorants, the term “pigment” can be used more generally to describe pigment colorants, as well as other pigments such as organometallics, ferrites, ceramics, etc.
  • Suitable pigments include the following, which are available from BASF Corp.: PALIOGEN® Orange, HELIOGEN® Blue L 6901F, HELIOGEN® Blue NBD 7010, HELIOGEN® Blue K 7090, HELIOGEN® Blue L 7101F, PALIOGEN® Blue L 6470, HELIOGEN® Green K 8683, HELIOGEN® Green L 9140, CHROMOPHTAL® Yellow 3G, CHROMOPHTAL® Yellow GR, CHROMOPHTAL® Yellow 8G, IGRAZIN® Yellow 5GT, and IGRALITE® Rubine 4BL. The following pigments are available from Degussa Corp.: Color Black FWI, Color Black FW2, Color Black FW2V, Color Black 18, Color Black. FW200, Color Black 5150, Color Black 5160, and Color Black 5170. The following black pigments are available from Cabot Corp.: REGAL® 400R, REGAL® 330R, REGAL® 660R, MOGUL® L, BLACK PEARLS® L, MONARCH® 1400, MONARCH® 1300, MONARCH® 1100, MONARCH® 1000, MONARCH® 900, MONARCH® 880, MONARCH® 800, and MONARCH® 700. The following pigments are available from Orion Engineered Carbons GMBH: PRINTEX® U, PRINTEX® V, PRINTEX® 140U, PRINTEX® 140V, PRINTEX® 35, Color Black FW 200, Color Black FW 2, Color Black FW 2V, Color Black FW 1, Color Black FW 18, Color Black S 160, Color Black S 170, Special Black 6, Special Black 5, Special Black 4A, and Special Black 4. The following pigment is available from DuPont: TI-PURE® R-101. The following pigments are available from Heubach: MONASTRAL® Magenta, MONASTRAL® Scarlet, MONASTRAL® Violet R, MONASTRAL® Red B, and MONASTRAL® Violet Maroon B. The following pigments are available from Clariant: DALAMAR® Yellow YT-858-D, Permanent Yellow GR, Permanent Yellow G, Permanent Yellow DHG, Permanent Yellow NCG-71, Permanent Yellow GG, Hansa Yellow RA, Hansa Brilliant Yellow 5GX-02, Hansa Yellow-X, NOVOPERM® Yellow HR, NOVOPERM® Yellow FGL, Hansa Brilliant Yellow 10GX, Permanent Yellow G3R-01, HOSTAPERM® Yellow H4G, HOSTAPERM® Yellow H3G, HOSTAPERM® Orange GR, HOSTAPERM® Scarlet GO, and Permanent Rubine F6B. The following pigments are available from Sun Chemical: QUINDO® Magenta, INDOFAST® Brilliant Scarlet, QUINDO® Red R6700, QUINDO® Red R6713, INDOFAST® Violet, L74-1357 Yellow, L75-1331 Yellow, L75-2577 Yellow, and LHD9303 Black. The following pigments are available from Birla Carbon: RAVEN® 7000, RAVEN® 5750, RAVEN® 5250, RAVEN® 5000 Ultra® II, RAVEN® 2000, RAVEN® 1500, RAVEN® 1250, RAVEN® 1200, RAVEN® 1190 Ultra®. RAVEN® 1170, RAVEN® 1255, RAVEN® 1080, and RAVEN® 1060. The following pigments are available from Mitsubishi Chemical Corp.: No. 25, No. 33, No. 40, No. 47, No. 52, No. 900, No. 2300, MCF-88, MA600, MA7, MA8, and MA100. The colorant may be a white pigment, such as titanium dioxide, or other inorganic pigments such as zinc oxide and iron oxide.
  • Specific examples of a cyan colour pigment may include C.I. Pigment Blue -1, -2, -3, -15, -15:1,-15:2, -15:3, -15:4, -16, -22, and -60.
  • Specific examples of a magenta colour pigment may include C.I. Pigment Red -5, -7, -12, -48, -48:1, -57, -112,-122, -123, -146, -168, -177, -184, -202, and C.I. Pigment Violet-19.
  • Specific examples of a yellow pigment may include C.I. Pigment Yellow -1, -2, -3, -12, -13, -14, -16, -17, -73, -74, -75, -83, -93, -95, -97, -98, -114, -128, -129, -138, -151,-154, and -180. While several examples have been given herein, it is to be understood that any other pigment or dye can be used that is useful in modifying the colour of the UV curable ink.
  • Specific examples of black pigment include carbon black pigments. An example of an organic black pigment includes aniline black, such as C.I. Pigment Black 1.
  • In some examples, the pigment may be a cyan, magenta, black or yellow pigment.
  • It has been found that certain colorants e.g. black colorants can be strong absorbers of radiation (e.g. UV radiation). As a result they can be more difficult to cure. The amount of polyurethane in the inkjet ink composition and/or the overcoat composition may be varied depending on the nature of the colorant, for example, to ensure adequate curing and print durability.
  • Any suitable photoinitiator may be employed. The photoinitiator may be present in the inkjet ink composition in an amount ranging from about 0.1 wt % to about 10 wt % based on a total wt % of the inkjet ink composition.
  • The photoinitiator may be the same or different from any photoinitiator employed in the overcoat composition. Suitable photoinitiators are described in relation to the overcoat composition above.
  • Any suitable curable polyurethane dispersion may be used to form the inkjet ink composition. For example, a pre-formed curable polyurethane dispersion may be added to the remaining ink components. Such a pre-formed curable polyurethane dispersion may comprise polyurethane dispersed in its own solvent (e.g. water). The curable polyurethane dispersion may be present in the inkjet ink composition in an amount of 0.5 to 20 weight % or 2 to 15 weight %, for example, 3 to 12 weight %.
  • The curable polyurethane (solids) that is dispersed in an inkjet ink composition may be present in the inkjet ink composition an amount of 0.1 to 30 or 20 weight % or 0.1 to 10 weight %, for example, 0.5 to 7 weight %, or 0.6 to 5 weight % of the total weight of the inkjet ink composition.
  • Suitable curable polyurethanes are described in relation to the overcoat composition above. The curable polyurethane in the inkjet ink composition may be the same or different from the curable polyurethane in the overcoat composition. In some examples, the curable polyurethane is a pH stable polyurethane, pH stable polyurethane may form pH stable polyurethane dispersions that may be resistant to hydrolysis. In some examples, the pH of the pH stable polyurethane dispersions remains substantially stable even when the dispersions are stored for a prolonged period of time. Thus, inkjet inks formed using such pH stable polyurethanes may have a longer shelf-life, as the tendency for pigments dispersed in the inkjet ink composition to crash out of the inkjet ink composition may be reduced.
  • The pH stable polyurethane may comprise a polyurethane polymer comprising a polyurethane backbone having at least one terminal (or capping) group selected an acrylamide-containing group, a styrene-containing group, an allyl-containing group:
  • Figure US20190193448A1-20190627-C00004
  • For avoidance of doubt the CAPS and CHES terminal groups above may be in anionic form, namely:
  • Figure US20190193448A1-20190627-C00005
  • Where the terminal group is selected from CAPS or CHES, these capping groups (CAPS) and (CHES) may be formed by reacting a polyurethane pre-polymer with 3-(cyclohexylamino)-1-propanesulfonic acid and/or 2-(cyclohexylamino)ethanesulfonic acid. The 3-(cyclohexylamino)-1-propanesulfonic acid and 2-(cyclohexylamino)ethanesulfonic acid may react with terminal —N═C═O groups on the polyurethane pre-polymer. These capping groups may help to stabilise the polyurethane dispersion.
  • Where the terminal or capping group is an acrylamide, acrylamide-containing capping group may be CH2═CHC(O)NH(CH2)nO—, wherein n is an integer from 1 to 10. In some examples, n is 1 to 6, for instance, 1 to 4. In one example, the acrylamide-containing capping group may be a group of the formula below:
  • Figure US20190193448A1-20190627-C00006
  • The acrylamide-containing group may be formed by reacting a polyurethane pre-polymer with an acrylamide-containing monoalcohol or monoamine. For example, the acrylamide-containing monoalcohol may react with terminal —N═C═O groups on the polyurethane pre-polymer, An example of a suitable acrylamide-containing mono-alcohol may be:
  • Figure US20190193448A1-20190627-C00007
  • (N-Hydroxyethyl acrylamide, HEAA)
  • Where the capping group comprises a styrene-containing group, suitable styrene-containing capping groups may include:
  • Figure US20190193448A1-20190627-C00008
  • The styrene-containing groups (e.g. Groups (II) to (VI) above) may be formed by reacting suitable styrene-containing mono-alcohols or mono-amines with a polyurethane pre-polymer. For example, the styrene-containing monoalcohol may react with terminal —N═C═O groups on the polyurethane pre-polymer. The corresponding styrene-containing mono-alcohols for Groups (II) to (VI) above may be:
  • Figure US20190193448A1-20190627-C00009
  • Where the capping group comprises an allyl-containing group, the allyl-containing group may comprise an allyl ether group or an allyl amine group. Suitable allyl-containing capping groups include:
  • Figure US20190193448A1-20190627-C00010
  • The allyl-containing groups (e.g. Groups (VII) to (XIII) above) may be formed by reacting suitable allyl-containing mono-alcohols or monoamines with a polyurethane pre-polymer. For example, the allyl-containing monoalcohol or monoamine may react with terminal —N═C═O groups on the polyurethane pre-polymer. The corresponding allyl-containing mono-alcohols or monoamines may be:
  • Figure US20190193448A1-20190627-C00011
  • In one example, the polyurethane dispersion may comprise polyurethane polymers that comprise polyurethane backbones having terminal groups selected from acrylamide-containing groups, styrene-containing groups, and allyl-containing groups. The dispersion may be devoid of polyurethane polymers that comprise polyurethane backbones having terminal methacrylate-containing or acrylate-containing groups.
  • In one example, the polyurethane dispersion may comprise at least one polyurethane polymer comprising a polyurethane backbone having at least one terminal (or capping) group selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group, and at least one polyurethane polymer comprising a polyurethane backbone having at least one terminal (or capping) ionic group; and/or at least one polyurethane polymer comprising a polyurethane backbone that is capped at one end with a terminal (or capping) group selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group and at the opposite end with a terminal ionic group.
  • In the polyurethane that is dispersed in the ink and/or overcoat composition, 1 to 99 weight % of the capping groups may be ionic groups, while 99 to 1 weight % of the capping groups may be selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group. In some examples, 5 to 70 weight % of the capping groups may be ionic groups, while 95 to 30 weight % of the capping groups may be selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group. In some examples, 10 to 50 weight % of the capping groups may be ionic groups, while 90 to 50 weight % of the capping groups may be selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group. In other examples, 20 to 40 weight % of the capping groups may be ionic groups, while 80 to 60 weight % of the capping groups may be selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group.
  • In one example, the polyurethane dispersion may comprise at least one polyurethane polymer comprising a polyurethane backbone that is capped at one end with a terminal (or capping) group selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group and capped at the opposite end with a terminal ionic group.
  • In one example, the polyurethane dispersion may comprise (i) at least one polyurethane polymer comprising a polyurethane backbone that is capped at one end with a terminal (or capping) group selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group and capped at the opposite end with a terminal ionic group; and (ii) at least one polyurethane polymer comprising a polyurethane backbone that is capped at both ends with a terminal (or capping) group selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group or (iii) at least one polyurethane polymer comprising at least one polyurethane polymer comprising a polyurethane backbone that is capped at both ends with ionic groups.
  • In one example, the polyurethane dispersion may comprise (i) at least one polyurethane polymer comprising a polyurethane backbone that is capped at one end with a terminal (or capping) group selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group and capped at the opposite end with a terminal ionic group; (ii) at least one polyurethane polymer comprising a polyurethane backbone that is capped at both ends with a terminal (or capping) group selected from an acrylamide-containing group, a styrene-containing group, an acrylate-containing group, a methacrylic-containing group and an allyl-containing group and (iii) at least one polyurethane polymer comprising at least one polyurethane polymer comprising a polyurethane backbone that is capped at both ends with ionic groups.
  • The ionic group may comprise a carboxylic acid group, a carboxylate group, a sulphonic acid group and/or a sulphonic acid group. The ionic group may be formed by reacting an amino carboxylic acid or an amino sulphonic with a polyurethane pre-polymer, for example, with terminal —N═C═O groups on the polyurethane pre-polymer. Suitable amino sulphonic acids include taurine, CAPS or CHES (see above). The ionic groups may help to keep the polyurethane particles in dispersion in water.
  • In one example, the polyurethane dispersion may comprise at least one polyurethane polymer comprising a polyurethane backbone having at least one terminal (or capping) group selected from a methacrylic-containing group and/or an acrylate-containing group, and at least one polyurethane polymer comprising a polyurethane backbone having at least one terminal (or capping) ionic group selected from
  • Figure US20190193448A1-20190627-C00012
  • and/or at least one polyurethane polymer comprising a polyurethane backbone that is capped at one end with a terminal (or capping) group selected from a methacrylic-containing group and/or an acrylate-containing group, and at the opposite end with a terminal group selected from CAPS or CHES above. In the polyurethane that is dispersed in the ink and/or overcoat composition 1 to 99 weight % of the capping groups may be CAPS and/or CHES, while 99 to 1 weight % of the capping groups may be selected from an acrylate-containing group and/or a methacrylic-containing group. In some examples, 5 to 70 weight % of the capping groups may be CAPS and/or CHES, while 95 to 30 weight % of the capping groups may be selected from an acrylate-containing group and/or a methacrylic-containing group. In some examples, 10 to 50 weight % of the capping groups may be CAPS and/or CHES, while 90 to 50 weight % of the capping groups may be selected from an acrylate-containing group and/or a methacrylic-containing group. In some examples, 20 to 40 weight % of the capping groups may be CAPS and/or CHES, while 80 to 60 weight % of the capping groups may be selected from an acrylate-containing group and/or a methacrylic-containing group.
  • In one example, the polyurethane dispersion may comprise at least one polyurethane polymer comprising a polyurethane backbone that is capped at one end with a terminal (or capping) group selected from an acrylate-containing group and/or a methacrylic-containing group and capped at the opposite end with a terminal CAPS or CHES group.
  • In one example, the polyurethane dispersion may comprise (i) at least one polyurethane polymer comprising a polyurethane backbone that is capped at one end with a terminal (or capping) group selected from an acrylate-containing group and/or a methacrylic-containing group, and capped at the opposite end with a terminal CAPS or CHES group; and (ii) at least one polyurethane polymer comprising a polyurethane backbone that is capped at both ends with a terminal (or capping) group selected from an an acrylate-containing group and/or a methacrylic-containing group or (iii) at least one polyurethane polymer comprising at least one polyurethane polymer comprising a polyurethane backbone that is capped at both ends with terminal groups selected from CAPS and/or CHES groups.
  • In one example, the polyurethane dispersion may comprise (i) at least one polyurethane polymer comprising a polyurethane backbone that is capped at one end with a terminal (or capping) group selected from an acrylate-containing group and/or a methacrylic-containing group and capped at the opposite end with a terminal CAPS or CHES group; (ii) at least one polyurethane polymer comprising a polyurethane backbone that is capped at both ends with a terminal (or capping) group selected from an an acrylate-containing group and/or a methacrylic-containing group and (iii) at least one polyurethane polymer comprising at least one polyurethane polymer comprising a polyurethane backbone that is capped at both ends with terminal groups selected from CAPS and/or CHES groups.
  • Suitable acrylate- or methacrylate-containing capping groups may include
  • Figure US20190193448A1-20190627-C00013
  • Groups (XIII) to (XIVI) above may be formed by reacting the corresponding methacrylate/acrylate-containing mono-alcohols with a polyurethane pre-polymer, for example, with —N═C═O terminal groups on the pre-polymer.
  • Figure US20190193448A1-20190627-C00014
  • The polyurethane backbone of the polyurethane polymers present in the pH stable polyurethane dispersion may be formed from the reaction between a reactive diol and a diisocyanate. The reactive diol may be selected from an acrylate-containing diol, a methacrylate-containing diol, acrylamide-containing diol, styrene-containing diol and/or an allyl-containing diol.
  • Suitable methacrylate-containing and acrylate-containing reactive dials include:
  • Figure US20190193448A1-20190627-C00015
  • The reactive diol may also be a styrene-containing reactive diol selected from:
  • Figure US20190193448A1-20190627-C00016
  • The reactive diol may also be an allyl-containing containing diol selected from:
  • Figure US20190193448A1-20190627-C00017
  • Suitable diisocyanates include methylene diphenyl diisocyanate, hexamethylene diisocyanate, p-tetramethyl xylene diisocyanate, m-tetramethyl xylene diisocyanate, bitolylene diisocyanate, toluene diisocyanate, 4,4′-Methylene dicyclohexyl diisocyanate, p-phenylene diisocyanate, isophorone diisocyanate, 1,5-naphthalene diisocyanate, trimethylhexamethylene diisocyanate and mixtures thereof.
  • In one example, the diisocyanate is selected from at least one of 2,2,4-trimethyl hexamethylene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, methylene diphenyl diisocyanate and 4,4′-Methylene dicyclohexyl diisocyanate.
  • In one example, a blend of 4,4′-Methylene dicyclohexyl diisocyanate and hexamethylene diisocyanate is used.
  • In one example, a blend of at least two diisocyanates is reacted with a reactive diol to produce the polyurethane backbone. The reactive diol may be a methacrylate-containing and/or acrylate-containing reactive diol. In some examples, the reactive diol may be an acrylamide-containing reactive diol, an allyl-containing reactive diol and/or a styrene-containing reactive diol. In one example, the reactive diol may be a methacrylate-containing or acrylate-containing diol that is bisphenol A-free. As shown above, examples of such diols include:
  • Figure US20190193448A1-20190627-C00018
  • The polyurethane backbone may be devoid of any ionic side groups, for example, acid stabilisation groups (e.g. carboxylic or sulphonic acid groups). Such ionic groups may act as capping groups at the terminal end(s) of at least some of the polyurethane polymer strands in the polyurethane dispersion.
  • In one example, the polyurethane dispersion is formed by reacting a reactive diol with a diisocyanate to form a polyurethane pre-polymer. A polymerisation initiator may be used to initiate polymerisation. The NCO/OH ratio may range from greater to 1 to 8, for example, 1.2 to 5.
  • The polymerisation may be carried out to produce a polyurethane pre-polymer. Once the polyurethane pre-polymer is formed, a capping agent may be added to the reaction mixture. For example, the capping agent may be a monoalcohol or monoamine e.g. selected from a methacrylate-containing monoalcohol or monoamine, an acrylate-containing monoalcohol or monoamine, an acrylamide-containing monoalcohol or monoamine, a styrene-containing monoalcohol or monoamine, an allyl-containing monoalcohol or an allyl-containing monoamine. The monoalcohol or monoamine may react with terminal —N═C═O groups on the polyurethane pre-polymer to cap the polyurethane pre-polymer. The reaction is carried out such that at least some of the polyurethane pre-polymer strands are capped by this reaction. In some examples, most of the polyurethane pre-polymer strands are capped by this reaction. For example, at least 10% of unreacted —N═C═O groups are capped by this reaction. In some instances, 50 to 95%, for instance, 60 to 90% of unreacted —N═C═O groups are capped by this reaction.
  • An amino carboxylic acid or an amino sulphonic acid may then be added to the reaction mixture. As mentioned above, suitable acids include taurine, 3-(cyclohexylamino)-1-propanesulfonic acid and 2-(cyclohexylamino)ethanesulfonic acid. The amino carboxylic acid or amino sulphonic acid may react with the remaining —N═C═O groups. These groups form can form ionic capping groups that help to stabilise the dispersion of polyurethane in e.g. water.
  • The pH stable curable polyurethane may have an acid number of 20 to 100. The pH stable curable polyurethane may have a double bond density from 1.5 to 1.0 meq/g.
  • The particle size range of the pH stable polyurethane dispersion may be 10 to 200 nm.
  • Any suitable surfactant may be present in the inkjet ink composition. Suitable surfactants are described in relation to the overcoat composition above. The surfactant employed in the inkjet ink composition may be the same or different from the surfactant used in the overcoat composition. When present, the surfactant present in the inkjet ink composition in an amount ranging from about 0.01 wt % to about 5 wt % based on the total wt % of the inkjet ink composition.
  • The inkjet ink composition may include a co-solvent in addition to water. Classes of co-solvents that may be used can include organic co-solvents, including alcohols (e.g., aliphatic alcohols, aromatic alcohols, polyhydric alcohols (e.g., diols), polyhydric alcohol derivatives, long chain alcohols, etc.), glycol ethers, polyglycol ethers, a nitrogen-containing solvent (e.g., pyrrolidinones, caprolactams, formamides, acetamides, etc.), and a sulfur-containing solvent. Examples of such compounds include primary aliphatic alcohols, secondary aliphatic alcohols, 1,2-alcohols, 1,3-alcohols, 1,5-alcohols, ethylene glycol alkyl ethers, propylene glycol alkyl ethers, higher homologs (C6-C12) of polyethylene glycol alkyl ethers, N-alkyl caprolactams, unsubstituted caprolactams, both substituted and unsubstituted formamides, both substituted and unsubstituted acetamides, and the like. Still other examples of suitable co-solvents include propylene carbonate and ethylene carbonate.
  • A single co-solvent may be used, or several co-solvents may be used in combination. When included, the co-solvent(s) is/are present in total in an amount ranging from 0 wt % to 60 wt %, depending on the jetting architecture, though amounts outside of this range can also be used. As other example, the co-solvent(s) may range from about 1 wt % to about 30 wt % or about 20 wt % of the total wt % of the inkjet ink composition.
  • The inkjet ink composition may also include various other additives to enhance the properties of the ink composition for specific applications. Examples of these additives include those added to inhibit the growth of microorganisms, viscosity modifiers, materials for pH adjustment, sequestering agents, anti-kogation agents, preservatives, and the like. Such additives may be present in an amount of 0 to 5 wt % of the inkjet ink composition.
  • Printing Process
  • As described above, the present disclosure relates to a process that comprises inkjet printing an inkjet ink composition onto a substrate. A radiation-curable (e.g. analogue) overcoat composition may be applied over the printed inkjet ink composition on the substrate. Thereafter, the printed inkjet ink composition on the substrate is cured by exposing both the overcoat composition and inkjet ink composition on the substrate to radiation. Suitable forms of radiation include UV or e-beam radiation.
  • The overcoat composition may be applied using any suitable technique. For example, the overcoat may be applied by brush, roller, knife, spraying or inkjet ink printing. The overcoat may be applied to form a overcoat layer that is 0.1 to 5 microns thick, for example, 0.5 to 4 microns thick or 1 to 3 microns thick.
  • Prior to the inkjet printing the inkjet ink composition onto the substrate, the substrate may be treated, for example, with corona treatment. Prior to inkjet printing the inkjet ink composition onto the substrate, a fixer composition may be applied to the substrate. The fixer may help to optimise the deposition of pigment onto the print substrate. Suitable fixers may include one or more calcium salts and water. Examples of suitable calcium salts include calcium nitrate tetrahydrate and calcium propionate. In one example, the fixer comprises calcium nitrate tetrahydrate and calcium propionate. Surfactant may also be present in the fixer composition. A suitable surfactant may be a non-ionic surfactant, for example, Surfonyl® SEF. The fixer may also include a biocide. A suitable biocide may be Acticide® B20. Water may be present in the fixer in an amount of 5 to 30 weight % of the fixer composition. The fixer may be applied after the substrate has been treated by corona treatment. In some examples, the fixer may be applied to a substrate that has not been corona treated.
  • Any suitable inkjet ink printing method may be used. Examples include thermal and piezoelectric inkjet printing. In some examples, thermal inkjet printing is employed.
  • After the inkjet ink composition is printed onto the substrate, it may be dried prior to application of the overcoat composition.
  • Once the overcoat is applied, it may be dried prior to the curing step.
  • Any suitable source of radiation may be used to cure the inkjet ink and overcoat. In one example, UV radiation is employed. Suitable sources of UV radiation include UV lamps, LED (light emitting diode) lamps, LEP (light emitting plasma) plasma torches, or lasers operating in the UV range.
  • The actual wavelength (within the UV range of 280 nm to 400 nm) and intensity of the ultraviolet radiation used may vary, depending at least in part, upon the curable polyurethane in the binder and inkjet ink composition. Examples of suitable UV LED wavelengths include 365 nm, 385 nm, 395 nm or 405 nm, for example, 365 nm and 395 nm.
  • The printing process of the present disclosure can be used to print on a broad selection of substrates, including untreated plastics, flexible as well as rigid, porous or non-porous substrates. Some examples include paper (e.g., plain paper, coated, glossy paper, etc.), cardboard, foam board, textile, and plastics. Examples of suitable plastic substrates include vinyl substrates, for example, vinyl graphic films available from 3M™ under the trademark Scotchcal™ series IJ-40. Other examples include acrylic substrates, for example, acrylic cast graphic films available from 3M™ under the trademark Controltac™ (e.g. 180-10 (cast)). Other examples include acrylic glass substrates (PMMA), polypropylene substrates, polystyrene substrates (e.g. high impact polystyrene substrates), PVC substrates and polycarbonate substrates.
  • FIG. 1 depicts schematically, by way of example only, an example of the sequence of steps that may be taken to perform an example inkjet printing process of the present disclosure. As can be seen from the FIGURE, a fixer 10 may be applied to a print substrate 12. An ink jet ink composition 14 may then be inkjet printed over the fixer. The printed ink layer may be dried by a dryer 16. Thereafter, an overcoat composition 18 may be applied (e.g. by an analogue method e.g. using a roller) over the printed ink layer as an overcoat layer. The overcoat layer may then by dried 20. Thereafter, the over coated print layer may be cured by exposure to UV-LED 22.
  • To further illustrate the present disclosure, examples are described below. It is to be understood that these examples are provided for illustrative purposes and are not to be construed as limiting the scope of the present disclosure.
  • EXAMPLES Example 1 Synthesis of Curable pH Stable Acrylamide-Based PUD
  • 31.410 g of BGDA (see compound XVII above), 0.314 g of 4-methoxyphenol (MEHQ), 40.812 g of 4,4′-Methylene dicyclohexyl diisocyanate (H12MDI), and 31 g of acetone were mixed in a 500 ml of 4-neck round bottom flask. The reaction mixture was stirred and the flask immersed in a constant temperature bath at 60° C. 3 drops of DBTDL was added to initiate the polymerization. Polymerization was continued for 3 hrs at 60° C., 0.5 g samples was withdrawn for % NCO titration to confirm the reaction. The measured NCO value was 10.30%. Theoretical % NCO should have been 10.55%. 13.432 g of HEAA (N-hydroxylethyl acrylamide, CAS # 7646-67-5, purchased from Sigma Aldrich), 0.134 g of MEHQ, and 19 g of acetone were mixed in a beaker and added to the reactor over 30 sec. 9 g of acetone was used to rinse off the residual monomers on the beaker and added to the reactor. The polymerization was continued 3 hours at 50° C. 0.5g of pre-polymer was withdrawn for final %NCO titration. The measured NCO value was 3.10%. The theoretical % NCO should have been 3.18%. The polymerization temperature was reduced to 40° C. 14.345 g of 3-(cyclohexylamino)-1-propanesulfonic acid(CAPS), 8.486 g of 45% KOH, and 71.727 g of deionized water are mixed in a beaker until CAPS is completely dissolved. CAPS solution was added to the pre-polymer solution at 40° C. with vigorous stirring over 1-3 mins. The solution became viscous and slight hazy. Continue to stir for 30 mins at 40° C. The mixture became clear and viscous after 15-20 mins at 40° C. Add cold 165.236 g of deionized water to polymer mixture in 4-neck round bottom flask over 1-3 mins with good agitation to form polyurethane dispersion (PUD). The agitation was continued for 60 mins at 40° C. The PUD dispersion was filtered through 400 mesh stainless sieve. Acetone was removed with rotorvap at 50° C. (add 2 drops (20 mg) BYK®-011 de-foaming agent if there is a lot of foaming). The final PUD dispersion was filtered through fiber glass filter paper. Particle size measured by Malvern Zetasizer is 16.08 nm. Its pH was 7.3. Solid content was 29.58%. This PUD shows less than 0.12 unit pH drop after 1 week accelerated shelf life testing at elevated (60 degrees C.) temperature (ASL).
  • Example 2
  • The curable pH stable PUD produced in Example 1 was used to formulate an inkjet ink formulation.
  • Component Weight %
    Surfactant (Surfonyl ® CT-211, 0.80
    supplied by AirProducts ®)
    Dynax ® DX-4000 (fluorsurfactant, 0.50
    supplied by Dynax ®)
    Water soluble photoinitiator (TPA Na) 0.50
    Water soluble sensitizer2 0.25
    curable PUD of Example 1 (cPUD) 3-11.001
    Black pigment 2.00-4.00
    Water Balance
    10.9 to 3.3 weight % polyurethane (solids) dispersed in ink composition; 2A photosensitizer based on functionalised anthrone moiety coupled to a polyether chain, see Q above.
  • Example 3
  • The overcoat is based on commercial available curable and food compatible IRR 832 RD 10-603 (Allnex®) IRR 912 RD 10-604 (Allnex®). The overcoat weight is approximately 1, 2 or 3 gsm. The overcoat samples were LED cured at a speed of 25 ft/min.
  • Example 3A TS (%) dry wt (%) Weight (g)
    IRR 832 RD 10-603  35% 90 100
    (Allnex ®)
    Alkylphenylethoxylate 100% 1.8 1.8
    surfactant (Surfonyl ®
    CT-211, supplied by
    Evonik)
    Non-ionic 100% 0.75 0.75
    fluorosurfactant
    (Capstone ® FS-35)
    (supplied by DuPont)
    Water soluble 100% 1.5 1.5
    photoinitiator
    (TPA Na)
    Water soluble 100% 1.5 1.5
    sensitizer2
    2A photosensitizer based on a functionalised anthrone moiety coupled to a polyether chain, see Q above.
  • Example 3B TS (%) dry wt (%) Weight (g)
    IRR 832 RD 10-603  35% 90 100
    (Allnex ®)
    Alkylphenylethoxylate 100% 1.8 1.8
    surfactant (Surfonyl ®
    CT-211, supplied by
    Evonik)
    Non-ionic 100% 0.75 0.75
    fluorosurfactant
    (Capstone ® FS-35)
    (supplied by DuPont)
    Water soluble 100% 1.5 1.5
    photoinitiator
    (TPA Na)
    Water soluble 100% 1.5 1.5
    sensitizer2
    Wax  20% 0.5 2.5
    2A photosensitizer based on a functionalised anthrone moiety coupled to a polyether chain, see Q above.
  • Example 3C TS (%) dry wt (%) Weight (g)
    IRR 912 RD 10-604  35% 90 100
    (Allnexe ®)
    Alkylphenylethoxylate 100% 1.8 1.8
    surfactant (Surfonyl ®
    CT-211, supplied by
    Evonik)
    Non-ionic 100% 0.75 0.75
    fluorosurfactant
    (Capstone ® FS-35)
    (supplied by DuPont)
    Water soluble 100% 1.5 1.5
    photoinitiator
    (TPA Na)
    Water soluble 100% 1.5 1.5
    sensitizer2
    2A photosensitizer based on a functionalised anthrone moiety coupled to a polyether chain, see Q above.
  • Example 3D TS (%) dry wt (%) Weight (g)
    IRR 912 RD 10-604  35% 90 100
    (Allnexe ®)
    Alkylphenylethoxylate 100% 1.8 1.8
    Surfactant (Surfonyl ®
    CT-211, supplied by
    Evonik)
    Non-ionic 100% 0.75 0.75
    fluorosurfactant
    (Capstone ® FS-35)
    (supplied by DuPont)
    Water soluble 100% 1.5 1.5
    photoinitiator
    (TPA Na)
    Water soluble 100% 1.5 1.5
    sensitizer2
    Wax  20% 0.5 2.5
    2A photosensitizer based on a functionalised anthrone moiety coupled to a polyether chain, see Q above.
  • Example 4
  • In this example, a fixer composition was applied to vinyl and Graph+substrates. Thereafter, the inkjet ink compositions of Example 2 were inkjet printed over the fixer using a thermal inkjet printer. The printed inkjet ink composition was dried and then coated with the overcoat composition of Example 3 (2 gsm in Table 1, 1 gsm in Table 2). The printed substrates were then dried and cured using UV-LED at 395 nm.
  • The printed substrates were subject to the following rub tests: a) Eraser Rub—1 Weight (250 g), 10 Cycles; b) Windex—1 Weight (250 g), 5 Cycles, Crockmeter Cloth; c) Quanta wet—No Weight (0 g), 1 Cycle, Crockmeter Cloth; d) 70% IPA Rub—1 Weight (250 g), 5 Cycles, Crockmeter Cloth; e) Quanta regular Sutherland 4 lbs, 200 cycles—Mellotexrubbing paper. Test criteria (visual evaluation) is: 5—Fail (ink is fully removed), 1—Excellent rub resistance. Note: “0” is a perfect score. Threshold is “2”. Note for the Sutherland tests, 5—is perfect score and 1 is the worst.
  • The optical densities and gloss characteristics of the printed films were also determined using a 75 degree angle Glossmeter.
  • The results are reported in the tables below. The results show that, by using overcoat compositions of Examples 3A to 3D, durable images can be produced to provide food compatible substrates even with relatively low cPUD concentrations in the ink. A comparison of the results of Tables 1 and 2 illustrate that the thickness of the overcoat can be increased, for example, to 2 gsm in order to improve the durability of the images.
  • TABLE 1
    % of
    cPUD Quan-
    of Ex. Rub Rub Wet ta
    Over- 1 in 75 Eras- Win- IPA Quan- Suther-
    Media coat Ink OD Gloss er dex 70% ta land
    Vinyl 3A 3% 1.21 93 1 0 0 0 5
    3C 3% 1.18 88.7 1 2 3 0 5
    3B 3% 1.2 91.7 1 0 0 0 5
    3D 3% 1.18 89.3 1 2 3.5 0 5
    3A 5% 1.36 88.4 1 0 0 0 4
    3C 5% 1.41 88 1 0 3 0 5
    3B 5% 1.38 94.3 1 0 0 0 5
    3D 5% 1.47 87.1 2 0.5 3 0 5
    3A 7% 1.47 91.6 1 0 0 0 5
    3C 7% 1.48 87.3 1 0.5 3 0 5
    3B 7% 1.55 93.2 1 0 0 0 5
    3D 7% 1.6 88.8 1 0 3 0 5
    Graph 3A 3% 1.98 93.5 1 0 0 0 4
    + 3C 3% 1.82 90.5 2 0 2 0 4
    3B 3% 1.94 92 2 0 0 0 5
    3D 3% 1.93 90.9 2 0 2 0 5
    3A 5% 1.99 94.9 1 0 0 0 4
    3C 5% 1.97 94.2 1 0 0 0 5
    3B 5% 1.97 95.6 1 0 0 0 5
    3D 5% 2 93.7 2 0 0 0 5
    3A 7% 1.95 96.5 1 0 0 0 4
    3C 7% 1.98 93 1 0 0 0 5
    3B 7% 1.96 95.6 1 0 0 0 5
    3D 7% 1.93 94.2 2 0 0 0 5

  • Example 5 Synthesis of Curable pH Stable Acrylamide-Based PUD
  • 38.884 g of g of BGDA (see compound XVII above), 0.389 g of 4-methoxyphenol (MEHQ), 42.103 g of 4,4′-Methylene dicyclohexyl diisocyanate (H12MDI), and 42 g of acetone were mixed in a 500 ml of 4-neck round bottom flask. The reaction mixture was stirred and the flask immersed in a constant temperature bath at 60° C. 3 drops of DBTDL was added to initiate the polymerization. Polymerization was continued for 3 hrs at 60° C. 0.5 g samples was withdrawn for % NCO titration to confirm the reaction. The measured NCO value was 7.6%. Theoretical % NCO should have been 8.32%. 12.318 g of HEAA (N-hydroxylethyl acrylamide, CAS # 7646-67-5, purchased from Sigma Aldrich), 0.159 g of MEHQ, and 19 g of acetone were mixed in a beaker and added to the reactor over 30 sec. 9 g of acetone was used to rinse off the residual monomers on the beaker and added to the reactor. The polymerization was continued 3 hours at 50° C. 0.5 g of pre-polymer was withdrawn for final % NCO titration. The measured NCO value was 2.41%. The theoretical % NCO should have been 2.41%. The polymerization temperature was reduced to 40° C. 6.695 g of taurine, 4.494 g of 50% NaOH, and 33.474 g of deionized water are mixed in a beaker until taurine is completely dissolved. Taurine solution was added to the pre-polymer solution at 40° C. with vigorous stirring over 1-3 mins. The solution became viscous and slight hazy. Continue to stir for 30 mins at 40° C. The mixture became clear and viscous after 15-20 mins at 40° C. Add cold 194.649 g of deionized water to polymer mixture in 4-neck round bottom flask over 1-3 mins with good agitation to form polyurethane dispersion (PUD). The agitation was continued for 60 mins at 40° C. The PUD dispersion was filtered through 400 mesh stainless sieve. Acetone was removed with rotorvap at 50° C. (add 2 drops (20 mg) BYK®-011 de-foaming agent if there is a lot of foaming). The final PUD dispersion was filtered through fiber glass filter paper. Particle size measured by Malvern Zetasizer is 26.8 nm. Its pH was 6.0. Solid content was 30.04%. This PUD shows less than 0.4 unit pH drop after 1 week accelerated shelf life testing at elevated (60 degrees C.) temperature (ASL).
  • Example 6
  • The curable pH stable PUD produced in Example 5 was used to formulate an inkjet ink formulation.
  • Component Weight %
    Surfactant (Surfonyl ® CT-211, 0.80
    supplied by Evonik ®)
    Dynax ® DX-4000 (fluorsurfactant, 0.50
    supplied by Dynax ®)
    Water soluble photoinitiator (TPA Na) 0.50
    Water soluble sensitizer2 0.25
    curable PUD of Example 5 3-11.001
    Black pigment 2.5
    Water Balance
    10.9 to 3.3 weight % polyurethane (solids) dispersed in ink composition; 2A photosensitizer based on a functionalised anthrone moiety coupled to a polyether chain, see Q above.
  • Example 7
  • A curable overcoat composition was prepared having the following composition: 35% polyurethane dispersion (Ucecoat® 7571 from Allnex®), 3% surfactant (Tegowet® 510) and 0.3% photo initiator (Irgacure®, commercially available from BASF Corp, 819DW).
  • Example 8
  • In this example, a fixer composition was applied to a vinyl substrate (Avery Dennison® IC MPI 2900). Thereafter, the inkjet ink compositions of Example 6 were inkjet printed over the substrate using a thermal inkjet printer. The printed inkjet ink composition was dried and then coated with the overcoat composition of Example 7. The printed substrate was then dried and cured using UV-LED at 395 nm.
  • The cured substrates were subjected to tests to determine their durability with respect to a Windex rub test (1 weight (250 g), 5 cycles, Crockmeter cloth), a 70% IPA rub test (1 weight (250 g), 5 cycles, Crockmeter Cloth), and an eraser rub test (1 weight (250 g), 10 cycles). The tested substrates were inspected by visual inspection. The rub tests (Windex, 70% IPA, Eraser rub) were graded with a score of 0 (best) to 5 (worst). The results are shown in table 3 below.
  • TABLE 3
    wt % of
    curable PUD
    of Example
    1 in ink
    tested/(wt %
    polyurethane
    solids in ink 75 70% Eraser
    tested) OD L* Gloss Windex IPA rub
    5(1.5) 1.49 23 90 0 0 2
    7(2.1) 1.53 21 91 0 0 1
    9(2.7) 1.59 20 93 0 0 1
    11(3.3) 1.61 19 89 0 0 1
  • The tested substrates were also found to have excellent optical density (OD), L* (Lightness) and gloss.
  • Example 9
  • The procedure of Example 8 was repeated with a coated paper substrate, Graph+. The cured substrates were tested according to the Windex rub test and 70% IPA rub test as described in Example 8 above. In addition, the cured substrates were tested by a smear rub test (4 in. length, 1700 g weight, Mellotex), a heated Sutherland rub test (177 degrees C. (350 degrees F.), 27.6 kPa (4 psi) heated weight, speed 2, 10 cycles) and a quanta regular Sutherland rub test (4 lbs, 200 cycles, Mellotex). For the Sutherland tests, a score of 5 is indicative of excellent rub resistance, while a score of 1 shows poor rub resistance. The results are shown in Table below. Smear rub mean values of around 238 were considered to be good.
  • TABLE 4
    wt % of curable PUD of Example 1 in ink
    tested/(wt % polyurethane solids in ink tested) OD L* 75 Gloss Windex 70% IPA Smear Rub Heated Sutherland Quanta Regular Sutherland
    3(0.9) 1.99 10 94 0 0 239.4 5 4
    5(1.5) 2.10 6 94 0 0 238.1 5 4
    7(2.1) 2.08 6 94 0 0 238.8 5 4
    9(2.7) 2.16 7 92 0 0 238.5 5 5
    11(3.3) 2.07 8 93 0 2 238.5 4 3
  • Examples 8 and 9 above show that, by using an overcoat composition, durable images can be produced. In contrast, in the absence of the overcoat compositions, curing of the black ink compositions was found to be very difficult. This is believed to be because of UV absorption by the black colorant, which reduced the efficiency of the curing process. Furthermore, the images produced in the absence of the overcoat had poor durability and very poor scores were achieved, particularly with respect to IPA rub resistance.

Claims (15)

1. An inkjet printing process comprising
inkjet printing an inkjet ink composition onto a substrate to form a printed inkjet ink layer, the inkjet ink composition comprising a colorant, a curable polyurethane dispersion and water, wherein the amount of curable polyurethane dispersed in the inkjet ink composition is 0.1 to 30 weight %,
applying a curable overcoat composition over the printed inkjet ink layer as an overcoat layer, said overcoat composition comprising a curable polyurethane dispersion and water,
and
curing the printed inkjet ink layer on the substrate by exposing both the overcoat layer and printed inkjet ink layer on the substrate to radiation.
2. A process as claimed in claim 1, wherein the polyurethane dispersion in the overcoat composition is food compatible.
3. A process as claimed in claim 1, wherein the polyurethane in the overcoat layer and the polyurethane in the printed inkjet layer are crosslinked during curing to form a crosslinked polyurethane network.
4. A process as claimed in claim 1, wherein the overcoat layer and printed inkjet ink layer on the substrate are cured by exposure to UV-LED and/or e-beam radiation.
5. A process as claimed in claim 1, wherein the curable polyurethane is present in an amount of 1 to 7 weight % of the inkjet ink composition.
6. A process as claimed in claim 1, wherein the curable polyurethane is present in an amount of 10 to 60 weight % of the overcoat composition.
7. A process as claimed in claim 1, wherein the curable polyurethane dispersion in the inkjet ink composition is a pH stable curable polyurethane dispersion.
8. A process as claimed in claim 6, wherein the pH stable curable polyurethane dispersion comprises a polyurethane polymer comprising a polyurethane backbone having at least one terminal group selected from at least one of an acrylamide-containing group, a styrene-containing group, an allyl-containing group,
Figure US20190193448A1-20190627-C00019
9. A process as claimed in claim 7, wherein the pH stable curable polyurethane dispersion comprises a polyurethane polymer comprising a polyurethane backbone that is capped at one end with a terminal group selected from at least one of an acrylamide-containing group, a styrene-containing group and an allyl-containing group and at the opposite end with a terminal group selected from carboxylic acid-, carboxylate anion-, sulphonate anion- and sulphonic acid-containing group.
10. A process as claimed in claim 7, wherein the pH stable curable polyurethane dispersion comprises polyurethane polymer comprising a backbone that is capped at one end with a terminal group selected from an acrylamide-containing group, a styrene-containing group, an allyl-containing group, a methacrylate-containing or acrylate-containing group, and at the opposite end with a terminal group selected from at least one of:
Figure US20190193448A1-20190627-C00020
11. A process as claimed in claim 6, wherein pH stable curable polyurethane dispersion comprises a polyurethane polymer formed from the reaction of a) a blend of at least 2 isocyanates and b) a reactive diol.
12. A process as claimed in claim 1, wherein the overcoat composition is an analog coating.
13. A process as claimed in claim 1, wherein the concentration of polyurethane in the overcoat composition is greater than the concentration of polyurethane in the inkjet ink composition.
14. A printed substrate comprising an ink layer comprising a colorant disposed over the substrate and an overcoat layer disposed over the ink layer, wherein the printed substrate comprises a crosslinked polyurethane network that surrounds the colorant and extends from the ink layer to the overcoat layer.
15. A substrate as claimed in claim 14, which is a food packaging material.
US16/331,359 2017-01-31 2017-09-18 Inkjet printing Abandoned US20190193448A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/US2017/015912 WO2018143965A1 (en) 2017-01-31 2017-01-31 Inkjet printing
PCT/US2017/051988 WO2018144071A1 (en) 2017-01-31 2017-09-18 Inkjet printing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/015912 Continuation WO2018143965A1 (en) 2017-01-31 2017-01-31 Inkjet printing

Publications (1)

Publication Number Publication Date
US20190193448A1 true US20190193448A1 (en) 2019-06-27

Family

ID=63040995

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/331,209 Active US10857825B2 (en) 2017-01-31 2017-01-31 Inkjet printing
US16/331,359 Abandoned US20190193448A1 (en) 2017-01-31 2017-09-18 Inkjet printing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/331,209 Active US10857825B2 (en) 2017-01-31 2017-01-31 Inkjet printing

Country Status (2)

Country Link
US (2) US10857825B2 (en)
WO (2) WO2018143965A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10857825B2 (en) * 2017-01-31 2020-12-08 Hewlett-Packard Development Company, L.P. Inkjet printing
US20210309873A1 (en) * 2018-12-14 2021-10-07 Hewlett-Packard Development Company, L.P. Textile printing
CN114231081A (en) * 2022-01-19 2022-03-25 深圳市丽冠卓宏科技有限公司 Ultra-high aging-resistant UV (ultraviolet) ink and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3818111A4 (en) * 2018-12-14 2021-07-21 Hewlett-Packard Development Company, L.P. Textile printing
GB201904351D0 (en) 2019-03-28 2019-05-15 Saf T Glo Ltd Photoluminescent marker systems
GB202001143D0 (en) * 2020-01-28 2020-03-11 Fujifilm Speciality Ink Systems Ltd A method of printing

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006111707A1 (en) * 2005-04-19 2006-10-26 Sun Chemical B.V. A method and apparatus for ink jet printing
US20110008542A1 (en) * 2009-07-09 2011-01-13 Zeng Xi Inkjet recording material
US8128744B2 (en) * 2008-02-15 2012-03-06 BASF Coating GmbH Aqueous coating composition, method for production of the same, and use thereof
US20130071679A1 (en) * 2010-05-25 2013-03-21 Clariant Production (France) Paper Coating Composition, Paper Coated Therewith And Method For Producing Coated Paper
US20130156953A1 (en) * 2011-12-19 2013-06-20 George Sarkisian Pretreatment fluids with associative thicker for printing media
WO2015152862A1 (en) * 2014-03-31 2015-10-08 Hewlett-Packard Development Company, L.P. Printable recording media
WO2016122569A1 (en) * 2015-01-30 2016-08-04 Hewlett-Packard Development Company, L.P. Polyurethane-based binder dispersion
WO2016143889A1 (en) * 2015-03-11 2016-09-15 三井化学株式会社 Laminate, food packaging material, and method for manufacturing laminate
US20170028688A1 (en) * 2015-07-30 2017-02-02 Eastman Kodak Company Multilayered structure with water-impermeable substrate

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028683A (en) * 1988-04-22 1991-07-02 Minnesota Mining And Manufacturing Company Electron-beam curable polyurethane compositions; and method
JP3452386B2 (en) 1993-11-22 2003-09-29 株式会社フジシール Method for producing heat shrinkable label
US5968605A (en) 1997-02-27 1999-10-19 Acushnet Company Electron beam radiation curable inks for game balls, golf balls and the like
DE19727767A1 (en) 1997-06-30 1999-01-07 Basf Ag Pigment preparations with radiation-curable binder suitable as ink-jet inks
US6352805B1 (en) * 2000-09-25 2002-03-05 Eastman Kodak Company Photocrosslinkable latex protective overcoat for imaging elements
US6633735B2 (en) 2000-11-29 2003-10-14 Samsung Electronics Co., Ltd. Reduction of seam mark from an endless seamed organophotoreceptor belt
US9410049B2 (en) 2002-05-06 2016-08-09 Sun Chemical Corporation Single phase water based energy curable polymers and method of preparing coatings and printing inks
JP2005255833A (en) 2004-03-11 2005-09-22 Dai Ichi Kogyo Seiyaku Co Ltd One-component aqueous resin composition and aqueous coating agent composition using the same
GB0423863D0 (en) 2004-10-27 2004-12-01 Sun Chemical Bv A printing process
US20060088674A1 (en) * 2004-10-27 2006-04-27 Hladik Molly L Ultraviolet curable barrier layers
CN101184629B (en) 2005-06-02 2012-07-11 爱克发印艺公司 Ink-jet authentication mark for a product or product packaging.
US7578587B2 (en) 2005-11-30 2009-08-25 Xerox Corporation Curable overcoat for wax-based inks
RU2411255C2 (en) * 2005-12-16 2011-02-10 ПиПиДжи ИНДАСТРИЗ ОГАЙО, ИНК. Polyurethanes, articles and coatings made from said polyurethanes, and production methods thereof
JP2013512999A (en) 2009-12-04 2013-04-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Inkjet ink with self-dispersing pigment and hydroxyl-terminated polyurethane ink additive
JP5656577B2 (en) * 2009-12-16 2015-01-21 キヤノン株式会社 Ink jet ink, ink cartridge, and ink jet recording method
US8697768B2 (en) 2010-09-22 2014-04-15 Michelman, Inc. Energy curable overprint varnish and coated product
EP2604663B1 (en) 2011-12-16 2017-08-09 Agfa Graphics N.V. Curable liquids and inkjet inks for food packaging applications
EP2657308B1 (en) 2012-04-26 2013-12-11 Actega Terra GmbH Aqueous radiation curable coating composition
DE102012016690A1 (en) 2012-08-24 2014-02-27 Mankiewicz Gebr. & Co. Gmbh & Co. Kg Electron-beam curable inkjet inks and their use in inkjet printing processes
US9605180B2 (en) 2012-08-29 2017-03-28 Sun Chemical Corporation Overprint varnishes reducing odor and contaminants
US8783842B2 (en) 2012-09-14 2014-07-22 Hewlett-Packard Development Company, L.P. Methods and systems for printing on non-porous media
GB201222571D0 (en) 2012-12-14 2013-01-30 Fujifilm Speciality Ink Systems Ltd Method of printing
WO2014165323A1 (en) 2013-04-03 2014-10-09 Sun Chemical Corporation Uv-curable inkjet and overprint varnish combination
EP2787046B1 (en) * 2013-04-04 2018-06-06 HP Scitex Ltd Photo-curable ink composition
EP3024591B1 (en) 2013-07-25 2024-01-24 Shurtape Technologies, LLC Digital printed duct tape
KR101931659B1 (en) 2014-04-15 2018-12-21 아그파 엔브이 Aqueous Resin Based Inkjet Inks
EP3307838A1 (en) 2015-04-06 2018-04-18 COMET Technologies USA Inc. Electron beam curing of water based inkjet inks
US9796862B2 (en) 2015-05-27 2017-10-24 Ricoh Company, Ltd. Active-energy-ray-curable composition, active-energy-ray-curable ink, ink stored container, ink ejecting device, method for forming image, and image
US10821760B2 (en) * 2017-01-31 2020-11-03 Hewlett-Packard Development Company, L.P. Inkjet printing
WO2018143965A1 (en) * 2017-01-31 2018-08-09 Hewlett-Packard Development Company, L.P. Inkjet printing
WO2018143964A1 (en) * 2017-01-31 2018-08-09 Hewlett-Packard Development Company, L.P. Inkjet printing

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006111707A1 (en) * 2005-04-19 2006-10-26 Sun Chemical B.V. A method and apparatus for ink jet printing
US8128744B2 (en) * 2008-02-15 2012-03-06 BASF Coating GmbH Aqueous coating composition, method for production of the same, and use thereof
US20110008542A1 (en) * 2009-07-09 2011-01-13 Zeng Xi Inkjet recording material
US20130071679A1 (en) * 2010-05-25 2013-03-21 Clariant Production (France) Paper Coating Composition, Paper Coated Therewith And Method For Producing Coated Paper
US20130156953A1 (en) * 2011-12-19 2013-06-20 George Sarkisian Pretreatment fluids with associative thicker for printing media
WO2015152862A1 (en) * 2014-03-31 2015-10-08 Hewlett-Packard Development Company, L.P. Printable recording media
US20170066270A1 (en) * 2014-03-31 2017-03-09 Hewlett-Packard Development Company, L.P. Printable recording media
WO2016122569A1 (en) * 2015-01-30 2016-08-04 Hewlett-Packard Development Company, L.P. Polyurethane-based binder dispersion
WO2016143889A1 (en) * 2015-03-11 2016-09-15 三井化学株式会社 Laminate, food packaging material, and method for manufacturing laminate
US20180037005A1 (en) * 2015-03-11 2018-02-08 Mitsui Chemicals, Inc. Laminate, food packaging material, and method for producing laminate
US20170028688A1 (en) * 2015-07-30 2017-02-02 Eastman Kodak Company Multilayered structure with water-impermeable substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10857825B2 (en) * 2017-01-31 2020-12-08 Hewlett-Packard Development Company, L.P. Inkjet printing
US20210309873A1 (en) * 2018-12-14 2021-10-07 Hewlett-Packard Development Company, L.P. Textile printing
CN114231081A (en) * 2022-01-19 2022-03-25 深圳市丽冠卓宏科技有限公司 Ultra-high aging-resistant UV (ultraviolet) ink and preparation method thereof

Also Published As

Publication number Publication date
WO2018143965A1 (en) 2018-08-09
US20190276695A1 (en) 2019-09-12
WO2018144071A1 (en) 2018-08-09
US10857825B2 (en) 2020-12-08

Similar Documents

Publication Publication Date Title
US20190193448A1 (en) Inkjet printing
EP2614964B1 (en) Image forming method
US10995227B2 (en) Water-based inkjet ink
CN107922762A (en) Adhesive dispersion based on radiation-curable polyurethane
JP5678403B2 (en) Ink composition, recording apparatus and recording method
US10723896B2 (en) Inkjet printing
US10821760B2 (en) Inkjet printing
JP2020075436A (en) Pretreatment liquid, and ink set containing pretreatment liquid
US10723897B2 (en) Inkjet compositions
CN110198965B (en) Polyurethane-based adhesive dispersions
JP5900566B2 (en) Ink composition and recording method
JP2012025884A (en) Ink set
EP4190868A1 (en) Colored dispersion for inkjet, inkjet recording ink, and inkjet recording method
US11001073B2 (en) UV-curable inkjet inks
US11111402B2 (en) Printable compositions
JP2012025886A (en) Ink set
JP7054050B2 (en) Inkjet recording ink and recording method
US11180601B2 (en) Polyurethane dispersions
JP5924602B2 (en) Ink set
US20220403188A1 (en) Inkjet ink
US11186099B2 (en) Inkjet printing method and apparatus
JP2020146993A (en) Image formation apparatus and ink
US12054623B2 (en) Image forming method, set of processing fluid and ink, and image forming apparatus
US20200140711A1 (en) Inkjet printing method and apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHOU, ZHANG-LIN;LANE, GREGG A.;YANG, QIANHAN;SIGNING DATES FROM 20170905 TO 20170906;REEL/FRAME:048531/0929

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION