[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20180260906A1 - System for rule-based insurance underwriting suitable for use by an automated system - Google Patents

System for rule-based insurance underwriting suitable for use by an automated system Download PDF

Info

Publication number
US20180260906A1
US20180260906A1 US15/836,689 US201715836689A US2018260906A1 US 20180260906 A1 US20180260906 A1 US 20180260906A1 US 201715836689 A US201715836689 A US 201715836689A US 2018260906 A1 US2018260906 A1 US 2018260906A1
Authority
US
United States
Prior art keywords
application
component
category
decision
insurance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/836,689
Inventor
Piero Patrone Bonissone
Richard Paul Messmer
William Michael Durham
Dan Yang
Marc Pavese
Diane Marie Russell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Life Insurance Co
Original Assignee
Pacific Life Insurance Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Life Insurance Co filed Critical Pacific Life Insurance Co
Priority to US15/836,689 priority Critical patent/US20180260906A1/en
Publication of US20180260906A1 publication Critical patent/US20180260906A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/08Insurance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management

Definitions

  • the present invention relates to a system for underwriting insurance applications, and more particularly to a system for underwriting insurance applications based on a flexible fuzzy rule logic based system.
  • a given application for insurance (also referred to as an “insurance application”) may be compared against a plurality of underwriting standards set by an insurance company.
  • the insurance application may be classified into one of a plurality of risk categories available for a type of insurance coverage requested by an applicant.
  • the risk categories then affect a premium paid by the applicant, e.g., the higher the risk category, the higher the premium.
  • a decision to accept or reject the application for insurance may also be part of this risk classification, as risks above a certain tolerance level set by the insurance company may simply be rejected.
  • underwriting standards cannot cover all possible cases and variations of an application for insurance.
  • the underwriting standards may even be self-contradictory or ambiguous, leading to uncertain application of the standards.
  • the subject judgment of the underwriter will almost always play a role in the process.
  • Variation in factors such as underwriter training and experience, and a multitude of other effects can cause different underwriters to issue different, inconsistent decisions.
  • these decisions can be in disagreement with the established underwriting standards of the insurance company, while sometimes they can fall into a “gray area” not explicitly covered by the underwriting standards.
  • APS attending physician statement
  • APS may be almost as unique as each individual physician.
  • a significant fraction of applications may require the use of one or more APS due to the presence of medical impairments, age of applicants, or other factors. Without such key information, the application underwriting process cannot be automated for these cases.
  • a system for underwriting an insurance application comprises a receiver for receiving a request to underwrite an insurance application, where the request includes information about at least one application component, an evaluation module for evaluating the at least one application component based on at least one rule associated with the at least one application component, and an assignment module for assigning a measurement to the at least one application component, and assigning the at least one application component to a specific component category out of a plurality of component categories based on the assigned measurement.
  • Another exemplary embodiment provides a system for underwriting an insurance application comprising a receiver for receiving a request to underwrite an insurance application, wherein the insurance application includes a plurality of application components, an evaluation module for evaluating the plurality of application components based on a plurality of rules, wherein each of the plurality of rules is associated with each of the plurality of application components, and an assignment module for assigning a measurement to each of the plurality of application components, and assigning each of the plurality of application components to a specific component category out of a plurality of component categories based on the assigned measurement.
  • a system for underwriting an insurance application comprises a receiver for receiving a request to underwrite an insurance application for a customer, wherein the insurance application includes a plurality of application components, and an evaluation module for evaluating the plurality of application components based on a plurality of rules, wherein each of the plurality of rules is associated with each of the plurality of application components.
  • system also comprises an assignment module for assigning a measurement lo each of the plurality of application components, assigning each of the plurality of application components to a specific component category out of a plurality of component categories based on the assigned measurement and assigning the insurance application to a specific application category out of a plurality of application categories, wherein the specific application category is based at least in part on the specific component category, and an issuance module for issuing the insurance application to the customer.
  • a further exemplary embodiment of the invention provides a system for underwriting an insurance application comprising means for receiving a request to underwrite an insurance application, where the request includes information about at least one application component, means for evaluating the at least one application component based on at least one rule associated with the at least one application component, means for assigning a measurement to the at least one application component, and means for assigning the at least one application component to a specific component category out of a plurality of component categories based on the assigned measurement.
  • a system for underwriting an insurance application comprises means for receiving a request to underwrite an insurance application, wherein the insurance application includes a plurality of application components, means for evaluating the plurality of application components based on a plurality of rules, wherein each of the plurality of rules is associated with each of the plurality of application components, means for assigning a measurement to each of the plurality of application components, and means for assigning each of the plurality of application components to a specific component category out of a plurality of component categories based on the assigned measurement.
  • An additional exemplary embodiment of the invention provides a system for underwriting an insurance application comprising means for receiving a request to underwrite an insurance application for a customer, wherein the insurance application includes a plurality of application components and means for evaluating the plurality of application components based on a plurality of rules, wherein each of the plurality of rules is associated with each of the plurality of application components.
  • the invention further provides that the system comprises means for assigning a measurement to each of the plurality of application components, means for assigning each of the plurality of application components to a specific component category out of a plurality of component categories based on the assigned measurement, means for assigning the insurance application to a specific application category out of a plurality of application categories, wherein the specific application category is based at least in part on the specific component category and means for issuing the insurance application to the customer.
  • a further embodiment of the invention provides a system for underwriting a transaction orientated process comprising a receiver for receiving a request to underwrite a transaction, where the request includes information about at least one transaction component, an evaluation module for evaluating the at least one transaction component based on at least one rule associated with the at least one transaction component, wherein the at least one rule is a fuzzy logic rule, and an assignment module for assigning a measurement to the at least one transaction component, assigning the at least one transaction component to a specific component category out of a plurality of component categories based on the assigned measurement, and assigning the transaction lo a specific transaction category out of a plurality of transaction categories, where the one specific transaction category is based at least in part on the specific component category.
  • FIG. 1 is a graph illustrating a fuzzy (or soft) constraint, a function defining for each value of the abscissa the degree of satisfaction for a fuzzy rule, according to an embodiment of the invention.
  • FIG. 2 is a graph illustrating the measurements based on the degree of satisfaction for a collection of fuzzy rules, according to an embodiment of the invention.
  • FIG. 3 is a schematic representation of an object-oriented system to determine the degree of satisfaction for a collection of fuzzy rules, according to an embodiment of the invention.
  • FIG. 4 is a flowchart illustrating steps performed in a process for underwriting an insurance application using fuzzy logic according to an embodiment of the invention.
  • FIG. 5 is a flowchart illustrating steps for an inference cycle according to an embodiment of the invention.
  • FIG. 6 is a graph illustrating a fuzzy (or soft) constraint, a function defining for each value of the abscissa the degree of satisfaction for a rule comparing similar cases, according to an embodiment of the invention.
  • FIG. 7 is a graph illustrating the core of a fuzzy (or soft) constraint, according to an embodiment of the invention.
  • FIG. 8 is a graph illustrating the support of a fuzzy (or soft) constraint, according to an embodiment of the invention.
  • FIG. 9 is a graph illustrating the rate class histogram derived from a set of retrieved cases, according to an embodiment of the invention.
  • FIG. 10 is a chart illustrating the distribution of similarity measures for a set of retrieved cases, according to an embodiment of the invention.
  • FIG. 11 is a table illustrating a linear aggregation of rate classes, according to an embodiment of the invention.
  • FIG. 12 is a flowchart illustrating the steps performed in a process for determining the degree of confidence of an underwriting decision based on similar cases, according to an embodiment of the invention.
  • FIG. 13 is a process map illustrating a decision flow, according to an embodiment of the invention.
  • FIG. 14 illustrates a comparison matrix, according to an embodiment of the invention.
  • FIG. 15 illustrates a distribution of classification distances for each bin containing a range of retrieved cases, according to an embodiment of the invention.
  • FIG. 16 illustrates a distribution of normalized percentage of classification distances for each bin containing a range of retrieved cases, according to an embodiment of the invention.
  • FIG. 17 illustrates a distribution of correct classification for each bin containing a range of retrieved cases, according to an embodiment of the invention.
  • FIG. 18 illustrates a distribution of a performance function for each bin containing a range of retrieved cases, according to an embodiment of the invention.
  • FIG. 19 illustrates a distribution of a performance function for each bin containing a range of retrieved cases, after removing negative numbers and normalizing the values between 0 and 1, according to an embodiment of the invention.
  • FIG. 20 illustrates results of a plot of the preference function (derived from FIG. 19 ) according to an embodiment of the invention.
  • FIG. 21 illustrates a computation of coverage and accuracy according to an embodiment of the invention.
  • FIG. 22 is a schematic representation of a system for underwriting according to an embodiment of the invention.
  • FIG. 23 a flowchart illustrating the steps performed for executing and manipulating a summarization tool according to an embodiment of the invention.
  • FIG. 24 illustrates a graphic user interface for a summarization tool for a general form according to an embodiment of the invention.
  • FIG. 25 illustrates a graphic user interface for a summarization tool for a condition-specific form according to an embodiment of the invention.
  • FIG. 26 illustrates an optimization process according to an embodiment of the invention.
  • FIG. 27 illustrates an example of an encoded population at a given generation according to an embodiment of the invention.
  • FIG. 28 illustrates a process schematic for an evaluation system according to an embodiment of the invention.
  • FIG. 29 illustrates an example of the mechanics of an evolutionary process according to an embodiment of the invention.
  • FIG. 30 is a graph illustrating a linear penalty function used in the evaluation of the accuracy of the CBE, according to an embodiment of the invention.
  • FIG. 31 is a graph illustrating a nonlinear penalty function used in the evaluation of the accuracy of the CBE, according to an embodiment of the invention.
  • a process and system for insurance underwriting which is able to incorporate all of the rules in the underwriting standards of a company, while being robust, accurate, and reliable.
  • the process and system provided may be suitable for automation. Such a process and system may be flexible enough to adjust the underwriting standards when appropriate.
  • each individual underwriter may have his/her own set of interpretations of underwriting standards about when one or more adjustments should occur.
  • rules may be incorporated while still allowing for adjustment using a fuzzy logic-based system.
  • a fuzzy logic-based system may be described as a formal system of logic in which the traditional binary truth-values “true” and “false” are replaced by real numbers on a scale from 0 to 1.
  • a given rule is either satisfied (with a degree of satisfaction of 1), or not (with a degree of satisfaction of 0), creating a sharp boundary between the two possible degrees of satisfaction.
  • fuzzy logic a given rule may be assigned a “partial degree of satisfaction”, a number between 1 and 0, in some boundary region between a “definite yes”, and a “definite no” for the satisfaction of a given rule.
  • Each rule will be composed by a conjunction of conditions.
  • Each condition will be represented by a fuzzy set A(x), which can be interpreted as a degree of preference induced by a value x for satisfying a condition A.
  • An inference engine determines a degree of satisfaction of each condition and an overall degree of satisfaction of a given rule.
  • a hypothetical life insurance company has a plurality of risk categories, which are identified as “cat1”, “cat2”, “cat3”, and “cat4.”
  • a rating of cat I is a best or low risk
  • cat4 is considered a worst or high risk.
  • An applicant for an insurance policy would be rejected if he/she fails to be placed in any category.
  • An example of a type of rule laid out in a set of underwriting guidelines could be, “The applicant may not be in cat1 if his/her cholesterol value is higher than X L”.
  • a cholesterol value of X2 could be a cutoff for cat2, and so on.
  • a cholesterol reading of one point over X I may not in practice disqualify the applicant from the cat1 rating, if all of the other rules are satisfied for cat I. It may be that readings of one point over X I are still allowable, and so on.
  • two parameters, X1a and X1b may be needed. When the applicant's cholesterol is below X1a, a fuzzy rule may be fully satisfied (e.g., a degree of satisfaction of 1).
  • X1 from the above may be used as X1a.
  • a parameter X1b may be a cutoff above which the fuzzy rule is fully unsatisfied (e.g., a degree of satisfaction of 0).
  • X1a X1
  • X1b X1a+4, that is 194.
  • Other settings may be used.
  • X1a and X1b are parameters of the model.
  • a continuous switching function may be used, which interpolates between the values 1 and 0. The simplest such function is a straight line, as disclosed in FIG. 1 , but other forms of interpolation may also be used.
  • cat2 there may be a different cholesterol rule for each category, which states that the applicant may not be placed in that category if his/her cholesterol is higher than X2, X3, or X4, respectively.
  • the same procedures may be used, turning each rule into a fuzzy logic rule by assigning high and low cutoff values (e.g., X2a, X2b; X3a, X3b; X4a, X4b).
  • each fuzzy rule in the rule set has been applied, a decision is made to which category the applicant belongs. For each risk category, there may be a subset of rules that apply to that category. In order to judge whether the applicant is eligible for the given category, some number of aggregation criteria may be applied. To be concrete, using the above hypothetical case, take the subset of all rules that apply to cat1. There will be a fuzzy degree of satisfaction for every rule, where the set of degrees of satisfaction is called ⁇ DS-cat1 ⁇ . According to an embodiment of the invention, if any of the degrees of satisfaction are zero, then the applicant may be ruled out of cat I.
  • A1 is a chosen constant
  • MIN( . . . ) denotes selection of the smallest value out of the set.
  • A1 may be 0.5, but other choices may be used.
  • the constant A1 may be considered as a parameter of the model, which may be determined.
  • ⁇ MS-cat1 ⁇ is the set of “missing scores” for each rule.
  • the aggregation criteria above may use the sum of all of the missing scores for the cat I rules as a measure to determine when too much adjusting has been done, comparing that with the constant A2.
  • the measure defined above (SUM ⁇ MS-cat1 ⁇ ) may be interpreted as a measure proportional to the difference between the degree of complete satisfaction of all rules and the average degree of satisfaction of each rule (DS-cat1). It is understood in this invention that there may be any number of different kinds of aggregation criteria, of which the above two are only specific examples.
  • results of applying the aggregation criteria to the set of rules relating to each category may be compared.
  • a result according to one example may be that the applicant is ruled out of cat1 and cat2, but not from cat3 or cat4. In that case, assuming that the insurance company's policy was to place applicants in the best possible risk category, the final decision would be to place the applicant in cat3. Other results may also be obtained.
  • this fuzzy logic system may have many parameters that may be freely chosen. It should be noted that the fuzzy logic system may extend and therefore subsume a conventional (Boolean) logic system. By setting the fuzzy logic system parameters to have only crisp thresholds (in which the core value is equal to the support) the Boolean rules may be represented as a case of fuzzy rules. Those parameters may be fit to reproduce a given set of decisions, or set by management in order to achieve certain results.
  • a large set of cases may be provided by the insurance company as a standard to be reproduced as closely as possible.
  • fuzzy rules may be determined directly by the management of the insurance company. This may be done through knowledge engineering sessions with experienced underwriters, by actuaries acting on statistical information related to the risk being insured or by other manners. In fact, when considering maintenance of the system, initial parameters may be chosen using optimization versus a set of cases, while at a future time, as actuarial knowledge changes, these facts may be used to directly adjust the parameters of the fuzzy rules. New fuzzy rules may be added, or aggregation rules may change. The fuzzy logic system can be kept current, allowing the insurance company to implement changes quickly and with zero variability, thereby providing a process and system that is flexible.
  • the fuzzy logic parameters may be entered into a spreadsheet to evaluate the fuzzy rules for one case at a time.
  • FIG. 2 is a graphical representation illustrating a plurality of measurements based on a degree of satisfaction for a rule.
  • a graphical user interface (GUI) 200 displays the degree of satisfaction for one or more rules.
  • GUI 200 includes a standard toolbar 202 , which may enable a user to manipulate the information in known manners (e.g., printing, cutting, copying, pasting, etc.).
  • GUI may be presented over a network using a browser application such as Internet Explorer®, Netscape Navigator®, etc.
  • An address bar 204 may enable the user to indicate what portion is displayed.
  • a chart 206 displays various insurance decision components and how each insurance decision component satisfies its associated rule.
  • a plurality of columns 208 illustrates a plurality of categories for each decision component, as well as a plurality of parameters for each decision component.
  • a column 210 identifies the actual parameters of the potential applicant for insurance and a plurality of columns 212 illustrate a degree of satisfaction of each rule.
  • a row 214 is labeled BP (Sys), corresponding to a systolic blood pressure rule.
  • the applicant To receive the Best or Preferred category classification, the applicant must have a systolic blood pressure score (score) between 140 and 150.
  • the applicant To receive a Select category classification, the applicant must have a score between 150 and 155, while a score of 155 or more receives a “Standard Plus” or St. Plus category classification. In this example, the applicant has a score of 151.
  • the columns 212 show zero satisfaction of the rule for the Best and Preferred category classifications. Additionally, FIG. 2 shows that the applicant slightly missed satisfaction for the Select category, and Perfect Constraint Satisfaction for the St. Plus Category.
  • a row 216 is labeled BP (Dia.), corresponding to a diastolic blood pressure rule.
  • BP Dia.
  • the applicant To receive a Best category classification, the applicant must have a diastolic blood pressure score (score) between 85 and 90, between 90 and 95 for a Preferred category classification, between 90 and 95 for the Select category classification, and between 95 and 100 for the St. Plus category classification.
  • the applicant has a score of 70, resulting in Perfect Constraint Satisfaction in all of the columns 212 .
  • a row 218 is labeled Nicotine, where a score between 4 and 5 receives the Best category classification, a score between 2.5 and 3 receives the Preferred category classification, a score between 1.5 and 2 receives the Select category classification, and a score between 0.7 and 1 receives the St. Plus category classification.
  • the applicant has a score of 4.2.
  • a score of “Mostly Missing” is indicated under the Best category of a column 212
  • a score of Perfect Constraint Satisfaction is indicated for all others.
  • GUI 200 presents a submit button 220 to enable the user to accept a decision and submit it to a database. Alternatively, the user may decide not to accept the decision.
  • the user may activate a next button 222 to record his/her decision.
  • Other methods for display may also be used.
  • the rules may be encoded into a Java-based computer code, which can query a database to obtain the case parameters, and write its decision in the database as well.
  • the object model of the java implementation is illustrated in FIG. 3 . This java implementation may be suitable for batch processing, or for use m a fully automated underwriting environment.
  • a rule engine (class RuleEngine) 302 may be the control of the system.
  • the decision components of rule engine 302 may be composed of several rules (class Rule) 304 , several aggregations (class Aggregation) 306 and zero or one decision post-processors (class DecisionPost-Processor) 308 .
  • a Rule object 304 may represent the fuzzy logic for one or a group of variables.
  • Each rule is further composed of a number of rateclasses (class Rateclass) 310 .
  • a Rateclass object 310 defines the rules for a specific rateclass.
  • a Rateclass object 310 may comprise two parts. The first is pre-processing (class Preprocessor) 312 , which may process multiple inputs to form one output.
  • the second is post-processing (class Postprocessor) 314 , which may take the result of the pre-processing, feed it to a fuzzy function and get a fuzzy score.
  • Some of the rules may be conditional, such as the variable blood pressure systolic, where the thresholds vary depending on the age of the applicant.
  • Class Condition 316 may represent such a condition, if there is any.
  • Classes FixedScore 318 , Minimal and Maximal may define some special preprocessing functions, and class Linear 320 may define the general linear fuzzy function as illustrated in FIG. 1 .
  • the first phase may be initialization.
  • the rule definition file in XML format configures the rule engine. All the rule engine parameters are defined in the process, for example, number of rules, the fuzzy thresholds, pre and post processing and aggregation operation (including class Intersection 322 and Sum Missing 324 ) and class ThresholdLevel 326 .
  • the second phase may be scoring.
  • the fireEngine method in rule engine 302 may take an input parameter—an instance of class Case 328 containing all the required variable values, and output an instance of class Result 330 , which encapsulates all the decision results, including rateclass placement, the fuzzy scores for each variable and each rateclass, and the aggregation scores.
  • Class ResultLogger 332 may log the output.
  • Other object models for a java implementation may also be used.
  • FIG. 4 is a flowchart illustrating the steps performed in a process for underwriting an insurance application using fuzzy logic rules according to an embodiment of the invention.
  • a request to underwrite an insurance application may be received.
  • the request to underwrite may come directly from a consumer (e.g., the person being insured), an insurance agent or another person.
  • the request to underwrite comprises information about one or more components of the insurance application.
  • the components may include the various characteristics associated with the individual to be insured, such as a cholesterol level, a blood pressure level, a pulse, and other characteristics.
  • evaluating a decision component may comprise evaluating a decision component using a fuzzy logic rule.
  • a rule may be defined and assigned to the decision component. While each rule is generally only assigned one decision component, it is understood that more than one decision component may be assigned to each rule. Further, parameters for each rule may be defined, as also described above.
  • At step 420 at least one measurement is assigned to the at least one decision component.
  • a measurement may be assigned to the decision component from a sliding scale, such as between zero (0) and one (1). Other types of measurements may also be assigned.
  • each decision component is assigned a specific component category based on the assigned measurement. As described above, a number of specific component categories arc defined. Based on the assigned measurements, each decision component is assigned to one or more specific component categories.
  • the specific component categories may be defined as cat1, cat2, cat3, and cat4.
  • Cat1 may only be assigned decision components at a certain level or higher.
  • cat2 may on I y be assigned decision components at a second level or higher and so on.
  • Other methods for assigning a specific component category may also be used.
  • the insurance application is assigned to a category.
  • the categories to which the insurance application is assigned are the same as the categories to which the insurance decision components are assigned.
  • the insurance application may be assigned to a category based upon how the decision components were assigned.
  • an insurance application may be assigned to cat I only if two or fewer decision components are assigned to cat2 and all other decision components are assigned to cat I.
  • Other methods for assigning an insurance application to a category may also be used.
  • an insurance policy is issued. Based on the category to which it is assigned, certain amounts are paid to maintain the insurance policy in a manner that is well known in the industry. It is understood that based on a category, an insurance policy may not be issued. The customers may decide the premiums are too high. Alternatively, the insurance company may determine that the risk is too great, and decide not to issue the insurance policy.
  • a rule-based reasoning (RBR) system may provide for an underwriting process by following a generative approach, typically a rule-chaining approach, in which a deductive path is created from the evidence (facts) to the decisions (goals).
  • a case-based reasoning (CBR) system may follow an analogical approach rather than a deductive approach.
  • a reasoner may determine the correct rate class suitable for underwriting by noticing a similarity of an application for insurance with one or more previously underwritten insurance applications and by adapting known solutions of such previously underwritten insurance applications instead of developing a solution from scratch.
  • a plurality of underwriting descriptions and their solutions are stored in a CBR Case Base and are the basis for measurement of the CBR performance.
  • a CBR system may be only as good as the cases within its Case Base (also referred to as “CB”) and its ability to retrieve the most relevant cases in response to a new situation.
  • a case-based reasoning system can provide an alternative to a rules-based expert system, and may be especially appropriate when a number of rules needed to capture an expert's knowledge is unmanageable, when a domain theory is too weak or incomplete, or when such domain theory is too dynamic.
  • the CBR system has been successful in areas where individual cases or precedents govern the decision-making processes.
  • a case-based reasoning system and process is a problem solving method different from other artificial intelligence approaches.
  • CBR general domain dependent heuristic knowledge
  • Another important characteristic may be that CBR implies incremental learning, as a new experience is memorized and available for future problem solving each time a problem is solved.
  • CBR may involve solving new problems by identifying and adapting solutions to similar problems stored in a library of past experiences.
  • an inference cycle of the CBR process may comprise a plurality of steps, as illustrated in the flow chart of FIG. 5 .
  • probing and retrieving one or more relevant cases from a case library is performed.
  • Ranking the retrieved relevant cases, based on a similarity measure occurs at step 504 .
  • one or more best cases are selected.
  • one or more retrieved relevant cases are adapted to a current case.
  • the retrieved, relevant cases are evaluated versus the current case, based on a confidence factor at step 510 .
  • the newly solved case is stored in the case memory at step 512 .
  • X [x 1 , x 2 . . . , x n ].
  • This condition may require the applicant to provide additional detailed information related to the history of hypertension, e.g., a cardiomegaly, a chest pain, a blood pressure mean and a trend over the past three months (where mean is the average of the blood pressure readings over a particular time period and trend corresponds to the slope of the reading such as upward, or downward, etc.)
  • the first step in the CBR methodology may be to represent a new case (probe) as a query in a structured query language (SQL), which may be formulated against a database of previously placed applicants (cases).
  • SQL structured query language
  • the SQL query may be of the form:
  • Normal(i) may be determined by a fuzzy logic set representing a soft threshold for a variable, x(i), as it is used in the stricter class rate, (e.g., Preferred Best in the case of Life Insurance.)
  • FIG. 6 illustrates the case of Normal G), where x(j) corresponds to the cholesterol ratio.
  • x(j) corresponds to the cholesterol ratio.
  • the specific values for X Ia and X Ib may be parameters of the model, and will be explained below in greater detail.
  • a continuous switching function may be used which interpolates between the values I and 0. The simplest such function is a straight line, but other functions may also be used.
  • a trapezoidal membership distribution representing the relationship may have a natural preference interpretation.
  • the support of the distribution may represent a range of tolerable values and correspond to an interval-value used in an initial SQL retrieval query.
  • the core may represent the most desirable range of values and may establish a top preference.
  • a feature value falling inside the core will receive a preference value of 1.
  • As the feature value moves away from a most desirable range its associated preference value will decrease from I to 0.
  • N cases may be retrieved.
  • all N cases must have all of their vital values inside the support of the corresponding element x(i) defined by QI.
  • all cases must be related to the same medical condition, (e.g., hypertension).
  • a decision may be made only on the retrieved cases, i.e., only using the first n variables and the label used in the SQL query Q1.
  • Each retrieved case may be referred to as a case C k (k between 1 and N), and an output classification of case Ck as Ok, where Ok is a variable having an attribute value indicating the rate class assigned to the applicant corresponding to case Ck.
  • L ⁇ Preferred-Best
  • Other values may also be used.
  • FIG. 9 illustrates the histogram (distribution of the retrieved cases over the rate classes) of the results of the SQL query QI.
  • a first preliminary decision indicates Table-II as being the most likely rate class for the new applicant represented by the SQL query Q1.
  • All N cases may have all their vital values inside the support of the corresponding element x(i) defined by the SQL query Q1 and they are all related to the same medical condition, (e.g., hypertension). Therefore, each case may also contain p additional elements corresponding to the variables specific to the medical condition.
  • the first n elements correspond to the n vital sign described by the vector X, namely [x 1,k , x 2,k , . . . , x n,k ].
  • the remaining p elements may correspond to the specific features related to the condition hypertension, namely [x (n+1) , x (n+2) , k, . . . , X r,k ].
  • the value of p may vary according to the value of the label, i.e., the medical condition.
  • the n-dimensional vector M(C k , Q1) may be defined as an evaluation of each of the functions [f i x), f 2 (x), . . . , f n (x)] from the SQL Query Q1 with the first n elements of Ck. namely [x 1,k , x 2,k , . . . , x n,k ]:
  • each case will have a preference vector whose elements take values in the (0,1] interval (where the notation (0,1] indicates that this is an open interval at 0 (i.e., it does not include the value 0), and a closed interval at 1 (i.e., it includes the value 1)).
  • These values may represent a partial degree of membership of the feature value in each case and the fuzzy relationships representing preference criteria in the SQL query Q1. Since this preference vector represents a partial order, the CBR system aggregates its elements to generate a ranking of the case, according to their overall preference.
  • a determination is made of an n-dimensional weight vector W [w 1 , w 2 , . . . , w n ] in which the element w i takes a value in the interval [0,1] and determines the relative importance of feature i in M(C k , Q1), i.e., relevance of f j (x i,k ). According to an embodiment of the invention, this can be done via direct elicitation from an underwriter or using pair-wise comparisons, following Saaty's method. By way of example, if all features are equally important, all their corresponding weights may be equal to 1. Other methods may also be used.
  • n-dimensional unitary hypercube into a one-dimensional unit interval, i.e. [0,1] n ⁇ >[0,1].
  • a strict intersection aggregation without compensation may be obtained using a weighted minimum, i.e.
  • cases may be sorted according to an overall degree of preference, which may be interpreted as a measure of similarity between each retrieved case C k and the query Q1.
  • case C k the output of case C k may be referred to as O k , where O k is a variable whose attribute value indicates a rate class assigned to the applicant corresponding to a case C k .
  • L ⁇ Preferred-Best, Preferred, Preferred-Nicotine, . . . , Standard, . . . , Table-32 ⁇ .
  • a minimum similarity value may be considered for a case. For instance, to only consider similar cases, a threshold may be established on the similarity value. By way of example, only cases with a similarity greater or equal to 0.5 may be considered. According to an embodiment of the invention, a determination may be made of a fuzzy cardinality of each of the rate classes, by adding up the similarity values in each class. Other distributions may also be evaluated.
  • a histogram may be drawn that aggregates the original retrieval frequency with the similarity of the retrieved cases, and may be referred to as a pseudo-histogram.
  • This process may be similar to a N-Nearest Neighbor approach, where the N retrieved cases represent the N points in the neighborhood, and the value of S(k, 1) represents the complement of the distance between the point K and the probe, i.e., the similarity between each case and a query.
  • the rate class Ri with the largest cumulative measure may be proposed as a solution.
  • Table-II is the solution indicated by either option.
  • YIN chest pain
  • N malignant hypertension
  • Mild, Treated etc.
  • continuous values e.g., cardiomegaly (% of enlargement)
  • systolic and diastolic blood pressure averaged and trend in past 3 months, 24 months, etc.
  • An attribute-value and a binary-value may be used to select, among the N retrieved cases, the cases that have the same values. This may be the same as performing a second SQL query, thereby refining the first SQL query Q1. From the originally retrieved N cases, the cases with the correct binary or attribute values may be selected. This may be done for all of the attribute-values and the binary-valued variables, or for a subset of the most important variables. After this selection, the original set of cases will likely have been reduced. However, when a Case Base is not sufficiently large, a reduction in the number of variables used to perform this selection may be needed. Assuming that there are now L cases (where L ⁇ N), these cases may still he sorted according to a value of a similarity metric S(k, 1).
  • a third preliminary decision may be obtained by re-computing the distribution of the similarity measure S(k, 1) over the T values for the output O k , and then proposing as a solution the class Ri with the largest cumulative measure using the same pseudo-histogram method described above.
  • a similarity measure over the numerical features related to the medical condition may be obtained by establishing a fuzzy relationship Around(a; x) similar to the one described above. This fuzzy relationship would establish a neighborhood of cases with similar condition intensities.
  • a similarity measure may be obtained by medical condition, and may be referred to as I(k, 1).
  • a final decision may involve creating a linear combination of both similarity measures:
  • the final decision or solution may be the class R i with the largest cumulative measure using the same pseudo-histogram method.
  • a reliability of the solution may be measured in several ways, and as a function of many internal parameters computed during this process.
  • the number of retrieved (N) and refined (L) cases (e.g., area of the histogram) may be measured. Larger values of N+L may imply a higher reliability of the solution.
  • the fuzzy cardinality of the retrieved and refined cases i.e., area of the pseudo-histogram
  • Larger values may imply a higher reliability of the solution.
  • the shape of the pseudo-histogram of the values of O k may be measured, where a tighter distribution (smaller sigmas) would be more reliable than scattered ones.
  • the mode of the pseudo-histogram of the values of O k (e.g., maximum value of the histogram) may be measured. Higher values of the mode may be more reliable than lower ones. A contribution of one or more of these measurements may be used to determine reliability. Other measurements may also be used.
  • a conditional probability of misclassification as a function of each of the above parameters may be determined, as well. Then, the (fuzzy) ranges of those parameters may be determined and a confidence factor may be computed.
  • the CBR system may suggest a solution to the individual underwriter and delegate to him/her the final decision. Alternatively, if the confidence factor is above the confidence threshold, then the CBR system may validate the underwriter's decision. Regardless of the decision maker, once the decision is made, the new case and its corresponding solution are stored in the Case Base, becoming available for new queries.
  • a confidence threshold e.g., because it does not have enough retrieved cases, has a scattered pseudo-histogram, etc.
  • clean cases may be used to tune the CBR parameters (e.g., membership functions, weights, and similarity metrics), thereby abating risk.
  • CBR parameters e.g., membership functions, weights, and similarity metrics
  • Other methods for abating risk may also be used.
  • the CBR system may display tests, thereby generating useful information for the underwriter while the Case Base is still under development. As more information (cases and variables describing each case) is stored in the Case Base, the CBR system may be able to use a more specific decision stage.
  • the first two preliminary decision stages may only require the same vital information used for clean applications and the symbolic (i.e., label) information of the medical condition.
  • a third decision' stage may make use of a subset of the variables describing the medical condition thereby refining the most similar cases.
  • the subset of variables may be chosen by an expert underwriter as a function of their relevance to the insured risk (mortality, morbidity, etc.). This step will allow the CBR system to refine the set of N retrieved cases, and select the most similar L cases, on the basis of the most important binary and attribute variables describing the medical condition.
  • the final two preliminary decision stages may only require the same vital information used for clean applications and the symbolic (i.e., label) information of the medical condition.
  • the value of N (for the first two decision stages) and the value of L (for the third decision stage) may be large enough to ensure significance.
  • the number of cases used may be one of the parameters used to compute the confidence factor described above.
  • the new case (probe) was represented as a SQL query, and it was assumed that only one medical condition was present.
  • the complete SQL query Q may have been formulated as:
  • the applicant may be compared with other applicants having the same medical conditions.
  • the applicant discloses that he/she has two medical conditions, (e.g., hypertension and diabetes).
  • An alternative (surrogate) solution may be to decompose a query into two separate queries, treating each medical condition separately. For instance, assuming that the modified query Q1 requesting two simultaneous conditions does not yield any meaningful result, the CBR system may decompose the query Q1 into a plurality of queries, Q1-A and Q1-B:
  • the answers may be combined according to a set of aggregation rules representing the union of multiple rate classes induced by the presence of multiple medical conditions.
  • these rules may be elicited from experienced underwriters.
  • a look-up table, as illustrated in FIG. 11 may represent this rule set.
  • these tables may be used in an associative fashion.
  • the CBR system may aggregate the rate classes derived from the first two medical conditions, obtain the result and aggregate the result with the rate class obtained from the third medical condition, and so on, as illustrated in FIG. 11 .
  • This method is a surrogate alternative that may be used when enough cases with multiple conditions are included in the Case Base.
  • a CBR engine may be encoded into a Java based computer code, which can query a database to obtain the case parameters, and write its decision in the database as well.
  • This embodiment may be suitable for batch processing, and for use in a fully automated underwriting environment.
  • CBR may be used to automate decisions in a variety of circumstances, such as, but not limited to, business, commercial, and manufacturing processes. Specifically, it may provide a method and system to determine at run-time a degree of confidence associated with the output of a Case Based Decision Engine, also referred to as CBE.
  • a confidence measure may enable a determination to be made on when a CBE decision is trustworthy enough to automate its execution and when the CBE decision is not as reliable and may need further consideration. If a CBE decision is not determined to be as reliable, a CBE analysis may still be beneficial by providing an indicator, forwarding it to a human decision maker, and improving the human decision maker's productivity with an initial screening that may limit the complexity of the final decision.
  • the run-time assessment of the confidence measure may enable the routing mechanism and increases the usefulness of a CBE.
  • FIG. 12 is a flowchart illustrating a process for determining a run-time computation of a confidence factor according to an embodiment of the invention.
  • a confidence factor process is initiated.
  • CBE internal parameters that may affect the probability of misclassification are identified.
  • the conditional probability of misclassification for each of the identified parameters is estimated.
  • the conditional probability of misclassification is translated into a soft constraint for each parameter.
  • a run-time function to evaluate the confidence factor for each new query is defined.
  • the determination of the threshold for the confidence factor may be obtained by using a gradient-based search. It is understood that other steps may he performed within this process, and/or the order of steps may be changed.
  • the process of FIG. 12 will now be described in greater detail below.
  • CBE may be used to automate the underwriting process of insurance policies.
  • CBE may be used for underwriting life insurance applications, as illustrated below. It is understood, however, that the applicability of this invention is much broader, as it may apply to any Case-Based Decision Engine(s).
  • an advantage of the present invention may include improving deployment of a method and system of automated insurance underwriting, based on the analysis of previous similar cases, as it may allow for an incremental deployment of the CBE, instead of postponing deployment until an entire case base has been completely populated. Further, a determination may be made for which applications (e.g., characterized by specific medical conditions) the CBE can provide sufficiently high confidence in the output to shift its use from a human underwriter productivity tool to an automated placement tool. As a case base (also referred to as a “CB”) is augmented and/or updated by new resolved applications, the quality of the retrieved cases may improve.
  • a case base also referred to as a “CB”
  • the quality of the retrieved cases may improve.
  • Another advantage of the present invention may be that the quality of the case base may be monitored, thereby indicating the portion of the case base that requires growth or scrubbing. For instance, monitoring may enable identification of regions in the CB with insufficient coverage (small area histograms, low similarity levels), regions containing inconsistent decisions (bimodal histograms), and ambiguous regions (very broad histograms).
  • a process may be used after the deployment of the CBE, as part of maintenance of the case base.
  • the case base is enriched by the influx of new cases, the distribution of its cases may also vary. Regions of the case base that were sparsely populated might now contain a larger number of cases. Therefore, as part of the tuning of the CBE, one may periodically recompute certain steps within the process to update the soft constraints on each of the parameters. As part of the same maintenance, one may also periodically update the value of the best threshold to be used in the process.
  • CBR systems may have applications in manufacturing, scheduling, design, diagnosis, planning, and other areas.
  • the CBE relies on having a densely populated Case Base (“CB”) from which to retrieve the precedents for the new application (i.e., the similar cases).
  • CB Case Base
  • the CBE output may not be reliable.
  • Such an output may, by way of example, be used as a productivity aid for a human underwriter, rather than an automation tool.
  • a measure of confidence in the CBE output is computed so that a final decision maker (CBE or human underwriter) may be identified.
  • a confidence measure may reflect the quality of the match between the input (the application under consideration) and the current knowledge, e.g., the cases used by the CBE for its decision.
  • the confidence measure proposed by this invention needs to reflect the quality of the match between the current application under consideration and the cases used for the CBE decision. This measure needs to be evaluated within the context of the statistics for misclassification gathered from the training set. More specifically, according to an embodiment of the invention, the steps described below may be performed. These steps may include, but are not limited to, the following: 1) Formulate a query against the CB, reflecting the characteristics of the new application as query constraints; 2) retrieve the most relevant cases from the case library. For purposes of illustration, assume that N cases have been retrieved, where N is greater than 0 (i.e., not a null query or an empty retrieved set of cases).
  • a histogram of the N cases is generated over the universe of their responses, i.e., a frequency of the rate class; 3) Rank the retrieved cases using a similarity measure; 4) Select the best cases thereby reducing the total number of useful retrieved cases from N to L; and 5) Adapt the L refined solutions to the current case in order to derive a solution for the case.
  • selecting the mode of the histogram may be used to derive a solution.
  • the confidence in the decision it may be desirable to understand what the probability of generating a correct or incorrect classification is. Specifically, it may be desirable to identify which factors affect misclassifications, and, for a given case, use these factors to assess if it is more or less likely to generate a wrong decision.
  • the decision will consist of placing the case under considerations in one of several bins. Hence, there may be different degrees of misclassification, depending on the distance of the CBE decision from the correct value. Given the different costs associated with different degrees of misclassification, the factors impacting the decision may be used with the likely degree of misclassification.
  • Parameters that may affect the probability of misclassification include, but are not limited to, the following potential list of candidates:
  • other parameters may include:
  • Static parameters may be tuned at development time (e.g., when a system is initially developed) and periodically revised at maintenance time(s) (e.g., during maintenance periods for a system). According to an embodiment of the invention, static parameters may be considered fixed while evaluating parameters [x1-x9:].
  • the above parameters may likely be positively correlated.
  • the number or refined cases L may depend on the total number of cases N.
  • the relative impact of these parameters may be evaluated via a statistical correlation analysis, CART, C4.5 or other algorithms to identify and eliminate those parameters that contribute the least amount of additional information.
  • methods may be used to handle partially redundant information in a way that avoids double counting of the evidence. The use of a minimum operator in the computation of the Confidence Factor, as is described below, is such an example.
  • the conditional probability of misclassification for each parameter Xi may be estimated.
  • this step may be achieved by running a set of experiments with a training set.
  • Given a certified Case Base e.g., a CB containing a number K of cases whose associated decisions were certified correct, the following steps may then be followed:
  • the comparison matrix of FIG. 14 illustrates a comparison between a probe's decision derived from the CBE and the probe's certified reference decision.
  • the cells located on the comparison matrix's main diagonal may contain the percentage of correct classifications.
  • the cells off the main diagonal may contain the percentage of incorrect classifications. As was previously mentioned, there may be different degrees of misclassification, depending on the distance of a CBE decision from the corresponding reference decision.
  • FIG. 15 shows an example of cross-tabulation of classification distances and number of retrieved cases for each probe.
  • the processing of 573 probes is shown, achieving a correct classification for 242 of them.
  • 214 were classified as one rate class off (where 114 at ( ⁇ 1) and 100 at (+1) equal 214).
  • 99 were two rate classes off (where 64 at ( ⁇ 2) and 35 at (+2) equal 99), and 18 were 3 or more classes off.
  • These 573 cases may also be subdivided in ten bins, representing ranges of the number of retrieved cases used for each probe.
  • 41 cases had between 1 and 4 retrieved cases (first column), while 58 cases used more than 40 retrieved cases (last column).
  • this table contains the same percentages illustrated in FIG. 15 , once we normalize the values by the total number of cases, tabulated for different values of x 1 ⁇ .
  • the total percentage of Correct Classifications (CC) in FIG. 14 may be defined as the sum of the elements on the main diagonal, i.e.
  • the same percentage may be obtained by adding the percentages distributed along the fourth row (corresponding to Distance 0), i.e.
  • an estimate may be derived of the probability of correct/incorrect classification, given that the number of cases is in the range of values corresponding to the column.
  • all misclassifications are determined to be equally undesirable, the only concern may be with the row corresponding to distance equal 0 (i.e., correct classification), as illustrated in FIG. 17 .
  • it may be desirable to penalize more those misclassifications that are two or three rate classes away from the correct decision. Therefore, an overall performance function may be formulated that aggregates the rewards of correct classifications with increasing penalties for misclassifications.
  • aggregating function may be used to achieve these ends, one possible aggregating function may use a weighted sum of rewards and penalties. Specifically, for each bin (range of values) of the parameter x 1 under consideration, a reward/penalty wi may he considered. For instance:
  • FIG. 18 illustrates the result of applying the performance function j(Bin k ) to the values of FIG. 16 , i.e., Matrix D.
  • a fuzzy membership function Ci(x i ) is derived, indicating the tolerable and desirable ranges for each parameter x 1 .
  • a possible way to convert the values of FIG. 18 to a fuzzy membership function is to replace any negative value with a zero and then normalize the elements by the largest value. In this example, the result of this process is illustrated in FIGS. 19 and 20 .
  • the membership function of a fuzzy set is a mapping from the universe of discourse (the range of values of the performance function) into the interval [0,1].
  • the membership function has a natural preference interpretation.
  • the support of the membership function Ci(x,) represents the range of tolerable (i.e., acceptable) values of x 1 .
  • the support of the fuzzy set Ci(x i ) is defined as the interval of values of x for which Ci(x i )>0.
  • the core may represent the most desirable range of values and establish a top preference.
  • the support is [22, infinity] and the core is [40, infinity].
  • a feature value falling inside the core will receive a preference value of 1.
  • the information may be translated into a soft constraint representing our preference for the values of parameter x.
  • the soft constraint may be referred to as Ci(x i ), as illustrated in FIG. 20 .
  • a fourth step of this invention may be to define a nm-time function to evaluate the confidence measure for each new query.
  • a soft constraint evaluation (SCE) vector is generated that contains the degree to which each parameter satisfies its corresponding soft constraint; SCE [C 1 (x 1 ), . . . , C 9 (x 9 )].
  • the Confidence Factor (CF j ) to be associated to each new case j may be computed at run-time as the intersection of all the soft constraints evaluations contained in the SCE vector.
  • all elements in the Soft Constraint Evaluation (SCE) vector may be real numbers in the interval [0,1]. Therefore the Confidence Factor CFj will also be a real number in the interval [0,1].
  • SCE Soft Constraint Evaluation
  • the minimum threshold for the confidence value may be determined by a series of experiments with the data, to avoid being too restrictive or too inclusive.
  • a higher-than-needed threshold may decrease the coverage provided by the CBE by rejecting too many correct solutions (False Negatives).
  • False Negatives As the threshold is lowered, the number of accepted solutions is increased and therefore, an increase in coverage is obtained.
  • a lower-than needed threshold may decrease the accuracy provided by the CBE by accepting too many incorrect solutions (False Positives). Therefore, it may be desirable to obtain a threshold using a method that balances these two concepts.
  • coverage for any given threshold level r may include accepting n(r) cases out of K.
  • the function g 1 (t) may be defined as a measure or coverage:
  • R 1 may he used.
  • the penalty function p(i, j) may indicate the increasing penalty for misclassifications farther away from the correct one.
  • Many possible versions of function p(i, j) can be used.
  • a penalty function may be left as a choice to a user to represent the cost of different misclassifications. According to an embodiment of the invention, if there were no differences among such costs, then a simplified version of g 2 (r) could be used to measure the CBE accuracy, e.g.
  • Functions g 1 (t) and g 2 (t) may be defined to measure coverage and relative accuracy, respectively.
  • Function g 1 (t) may be a monotonically non-increasing with the value t (larger values of t will not increase coverage)
  • g 2 (t) may be a monotonically non-decreasing with the value t (larger values of t will not decrease relative accuracy, unless the set is empty.).
  • the two functions may be aggregated into a global accuracy function A(t) to evaluate the overall system performance under different thresholds t:
  • FIG. 21 illustrates an example of the computation of Coverage, Relative Accuracy, and Global Accuracy as a function of threshold t.
  • the value of A(t) may be computed for nine values of t.
  • values may be explored to determine a best threshold.
  • the present invention provides many advantages. According to an embodiment of the present invention, incremental deployment of the CBE may be achieved, instead of postponing its deployment until an entire Case Base has been completely populated. Further, a determination may be made for which applications (e.g., characterized by specific medical conditions) the CBE can provide sufficiently high confidence in the output to shift its use from a human underwriter productivity tool to an automated placement tool.
  • applications e.g., characterized by specific medical conditions
  • the quality of the retrieved cases may change.
  • the present invention may enable monitoring of the quality of the Case Base, indicating the part of the CB requiring growth or scrubbing.
  • regions within the Case Base with insufficient coverage small area histograms, low similarity levels
  • regions within the Case Base with insufficient coverage may be identified, as well as regions containing inconsistent decisions (bimodal histograms), and ambiguous regions (very broad histograms).
  • a determination can be made, for each application processed by the CBE, if the output can be used directly to place the application or if it will be a suggestion to be revised by a human underwriter.
  • a process as described above may be used after the deployment of the CBE, as part of the Case Base maintenance.
  • the Case Based is enriched by the influx of new cases, the distribution of its cases may also vary. Regions of the CB that were sparsely populated might now contain a larger number of cases. Therefore, as part of the tuning of the CBE, one should periodically recompute various steps within the process to update the soft constraints on each of the parameters.
  • the value of the best threshold may also be updated and used m the process.
  • FIG. 22 illustrates a system 2200 according to an embodiment of the present invention.
  • the system 2200 comprises a plurality of computer devices 2205 (or “computers”) used by a plurality of users to connect to a network 2202 through a plurality of connection providers (CPs) 2210 .
  • the network 2202 may be any network that permits multiple computers to connect and interact.
  • the network 2202 may be comprised of a dedicated line to connect the plurality of the users, such as the Internet, an intranet, a local area network (LAN), a wide area network (WAN), a wireless network, or other type of network.
  • Each of the CPs 2210 may be a provider that connects the users to the network 2202 .
  • the CP 2210 may be an Internet service provider (ISP), a dial-up access means, such as a modem, or other manner of connecting to the network 2202 .
  • ISP Internet service provider
  • a dial-up access means such as a modem
  • the discussion will presume three computer devices 2205 are connected to the network 2202 through two CPs 2210 .
  • the computer devices 2205 a - 2205 c may each make use of any device (e.g., a computer, a wireless telephone, a personal digital assistant, etc.) capable of accessing the network 2202 through the CP 2210 .
  • some or all of the computer devices 2205 a - 2205 c may access the network 2202 through a direct connection, such as a TI line, or similar connection.
  • FIG. 22 shows the three computer devices 2205 a - 2205 c, each having a connection to the network 2202 through the CP 2210 a and the CP 2210 b.
  • the computer devices 2205 a - 2205 c may each make use of a personal computer such as a computer located in a user's home, or may use other devices which allow the user to access and interact with others on the network 2202 .
  • a central controller module 2212 may also have a connection to the network 2202 as described above.
  • the central controller module 2212 may communicate with one or more modules, such as one or more data storage modules 2236 , one or more evaluation modules 2224 , one or more case database modules 2240 or other modules discussed in greater detail below.
  • Each of the computer devices 2205 a - 2205 c used may contain a processor module 2204 , a display module 2208 , and a user interface module 2206 .
  • Each of the computer devices 2205 a - 2205 c may have at least one user interface module 2206 for interacting and controlling the computer.
  • the user interface module 2206 may be comprised of one or more of a keyboard, a joystick, a touchpad, a mouse, a scanner or any similar device or combination of devices.
  • Each of the computers 2205 a - 2205 c may also include a display module 2208 , such as a CRT display or other device.
  • a developer, a user of a production system, and/or a change management module may use a computer device 2205 .
  • the central controller module 2212 may maintain a connection to the network 2202 such as through a transmitter module 2214 and a receiver module 2216 .
  • the transmitter module 2214 and the receiver module 2216 may be comprised of conventional devices that enable the central controller module 2212 to interact with the network 2202 .
  • the transmitter module 2214 and the receiver module 2216 may be integral with the central controller module 2212 .
  • the transmitter module 2214 and the receiver module 2216 may be portions of one connection device.
  • the connection to the network 2202 by the central controller module 2212 and the computer devices 2205 may be a high speed, large bandwidth connection, such as through a T 1 or a T 3 line, a cable connection, a telephone line connection, a DSL connection, or another similar type of connection.
  • the central controller module 2212 functions to permit the computer devices 2205 a - 2205 c to interact with each other in connection with various applications, messaging services and other services which may be provided through the system 2200 .
  • the central controller module 2212 preferably comprises either a single server computer or a plurality of server computers configured to appear to the computer devices 2205 a - 2205 c as a single resource.
  • the central controller module 2212 communicates with a number of modules. Each module will now be described in greater detail.
  • a processor module 2218 may be responsible for carrying out processing within the system 2200 .
  • the processor module 2218 may handle high-level processing, and may comprise a math co-processor or other processing devices.
  • a decision component category module 2220 and an application category module 2222 may handle categories for various insurance policies and decision components. As described above, each decision component and each application may be assigned a category.
  • the decision component category module 2220 may include information related to the category assigned for each decision component, including a cross-reference Lo the application associated with each decision component, the assigned category or categories, and/or other information.
  • the application category module 2222 may include information related to the category assigned for each application, including a cross-reference to the decision components associated with each application, the assigned category or categories, and/or other information.
  • An evaluation module 2224 may include an evaluation of a decision component using one or more rules, where the rules may be fuzzy logic rules.
  • the evaluation module 2224 may direct the application of one or more fuzzy logic rules to one or more decision components. Further, the evaluation module 2224 may direct the application of one or more fuzzy logic rules to one or more policies within a case database 2240 , to be described in greater detail below. Evaluation module policies within a case database 2240 , are to be described in greater detail below.
  • a measurement module 2226 may include measurements assigned to one or more decision components. As described above, a measurement may be assigned to each decision component based on an evaluation, such as an evaluation with a fuzzy logic rule. The measurement module 2226 may associate a measurement with each decision component, direct the generation of the measurement, and/or include information related to a measurement.
  • An issue module 2228 may handle issuing an insurance policy based on the evaluation and measurements of one or more decision components and the application itself. According to an embodiment of the invention, decisions whether to ultimately issue an insurance policy or not to issue an insurance policy may be communicated to an applicant through the issue module 2228 .
  • the issue module 2228 may associate issuance of an insurance policy with an applicant, with various measurement(s) and evaluation(s) of one or more policies and/or decision components and other information.
  • a retrieval module 2230 may be responsible for retrieving cases from a case database module 2240 . According to an embodiment of the invention, queries submitted by a user for case-based reasoning may be coordinated through the retrieval module 2230 for retrieving cases. Other information and functions related for case retrieval may also be available.
  • a ranking module 2232 may be responsible for ranking cases retrieved based on one or more queries received from a user. According to an embodiment of the invention, the ranking module 2232 may maintain information related to cases and associated with one or more queries. The ranking module 2232 may associate each case with the ranking(s) associated with one or more queries. Other information may also be associated with the ranking module 2232 .
  • a rate class module 2234 may handle various designations of rate classes for one or more insurance policies. According to an embodiment of the invention, each application may be assigned a rate class, where the premiums paid by the applicant are based on the rate class.
  • the rate class module 2234 may associate a rate class with each insurance application, and may assign a rate class based on evaluation and measurements of various applications and decision components, as well as based on a decision by one or more underwriters. Other information may also be associated with the rate class module 2234 .
  • Data may be stored in a data storage module 2236 .
  • the data storage module 2236 stores a plurality of digital files.
  • a plurality of data storage modules 2236 may be used and located on one or more data storage devices, where the data storage devices are combined or separate from the controller module 2212 .
  • One or more data storage modules 2236 may also be used to archive information.
  • An adaptation module 2238 may be responsible for adapting the results of one or more queries to determine which previous cases are most similar to the application for the present application for insurance. Other information may also be associated with the adaptation module 2238 .
  • All cases used in a case based reasoning may be stored in a case database module 2240 .
  • a plurality of case database modules 2240 may be used and located on one or more data storage devices, where the data storage devices are combined or separate from the controller module 2212 .
  • While the system 2200 of Pig. 22 discloses the requester device 2205 connected to the network 2202 , it should be understood that a personal digital assistant (“FDA”), a mobile telephone, a television, or another device that permits access to the network 2202 may be used to arrive at the system of the present invention.
  • FDA personal digital assistant
  • a computer-usable and writeable medium having a plurality of computer readable program code stored therein may be provided for practicing the process of the present invention.
  • the process and system of the present invention may be implemented within a variety of operating systems, such as a Windows® operating system, various versions of a Unix-based operating system (e.g., a Hewlett Packard, a Red Hat, or a Linux version of a Unix-based operating system), or various versions of an AS/400-based operating system.
  • the computer-usable and writeable medium may be comprised of a CD ROM, a floppy disk, a hard disk, or any other computer-usable medium.
  • One or more of the components of the system 2200 may comprise computer readable program code in the form of functional instructions stored in the computer-usable medium such that when the computer-usable medium is installed on the system 2200 , those components cause the system 2200 to perform the functions described.
  • the computer readable program code for the present invention may also be bundled with other computer readable program software.
  • the central controller module 2212 , the transmitter module 2214 , the receiver module 2216 , the processor module 2218 , the decision component category module 2220 , application category module 2222 , evaluation module 2224 , measurement module 2226 , issue module 2228 , retrieval module 2230 , ranking module 2232 , rate class module 2234 , data storage module 2236 , adaptation module 2238 , and case database module 2240 may each comprise computer-readable code that, when installed on a computer, performs the functions described above. Also, only some of the components may be provided in computer-readable code.
  • the computer may be a standard computer comprising an input device, an output device, a processor device, and a data storage device.
  • various components may be computers in different departments within the same corporation or entity. Other computer configurations may also be used.
  • various components may be separate entities such as corporations or limited liability companies. Other embodiments, in compliance with applicable laws and regulations, may also be used.
  • the system may comprise components of a software system.
  • the system may operate on a network and may be connected to other systems sharing a common database.
  • Other hardware arrangements may also be provided.
  • the fuzzy rule-based decision engine and the case-based decision engine may need to capture the medical/actuarial knowledge required to evaluate and underwrite an application. They may do so by using a rule set or a case base, respectively. However, both decision engines may also need access to all the relevant information that characterizes the new application. While the structured component of this information can be captured as data and stored into a database (“DB”), the free-form nature of an attending physician statement (APS) may not be suitable to automated parsing and interpretation. Therefore, for each application requiring an APS, a summarization tool may be used that will convert all the essential input variables from that statement into a structured form, suitable for storage in a DB and for supporting automated decision systems. Furthermore, if the decision engines were not capable of handling this new application, then the use of the APS summarization tool may be a productivity aid for a human underwriter, rather than an automation tool.
  • DB database
  • APS attending physician statement
  • the present invention may be used in connection with an engine to automate decisions in business, commercial, or manufacturing processes.
  • Such an engine may be based on (but not limited to) rules and/or cases.
  • a process and system may be provided to structure and summarize key information required by a reasoning system.
  • summarized information required by a reasoning system may be used to underwrite insurance applications, and establish a rate class corresponding to the perceived risk of the applicant.
  • risk may be characterized by several information sources, such as, but not limited to, the application form, the APS, laboratory data, medical insurance consortium data bases, motor vehicle registration data bases, etc. Once this information has been gathered and compiled, the application risk may be evaluated by a human underwriter or by an automated decision system.
  • an APS summarization tool may capture the relevant variables that characterize a given medical impairment, allowing an automated reasoning system to determine the degree of severity of such impairment and to estimate the underlying insurance risk.
  • a focus of this invention on the individual medical impairments of a patient may provide 1) incremental deployment of the Automated Underwriting system as summaries for new impairments can be developed and added; 2) efficient coverage, by addressing the most frequent impairments first, according to a Pareto analysis of their frequencies; 3) efficient description of the impairment, by including in the summary only the variables that could have an impact on the decision.
  • a method for executing and manipulating an APS summarization tool may occur as illustrated in FIG. 23 .
  • a summarizer with the appropriate medical knowledge would log into a web-based system to begin the summarization process.
  • the APS summarization system may include a general form plus various condition specific forms, which are then filled out by the summarizer.
  • the summarizer may first fill out the general form, which contains data fields relevant to all applicants.
  • Condition specific forms arc then filled out as needed, as the summarizer discovers various features present m the APS being summarized.
  • a summarizer may verify that the APS corresponds to the correct applicant. This may be done by matching information on the APS itself with information about the applicant provided by the system. By way of example, an applicant's name, date of birth, and social security number could be matched. If a match is not made, the summarizer may note this by checking the appropriate checkbox. According to an embodiment of the invention, at step 2304 , failure to match an APS to an applicant would end the summarizer's session for that applicant, and the summarizer may recommend corrective action.
  • FIG. 24 illustrates a general form within a graphical user interface 2400 according to an embodiment of the invention.
  • Graphical user interface 2400 may comprise access to any network browser, such as Netscape Navigator, Microsoft Explorer, or others. Other means of accessing a network may also be used.
  • Graphical user interface 2400 may include a control area 2402 , whereby a summarizer may control various aspects of graphical user interface 2400 . Control may include moving to various portions of the network via the graphical user interface 2400 , printing information from the network, searching for information within the network, and other functions used within a browser.
  • a general form 2400 may provide a fixed structure 2406 to capture the data within the system.
  • different sections of the form may be organized into fields that are structured to provide only a fixed set of choices for the summarizer. This may be done to standardize the different pieces of information contained in the APS.
  • a fixed set of choices may be provided to a summarizer via a pull-down menu 2408 .
  • For fields that cannot be treated as pull-down menus e.g., dates, numeric values of lab tests), such as entry field 2410 labeled as “Initial date,” validation may be performed to ensure that data entry errors are minimized, and to check that values are within allowable pre-determined limits.
  • validation may include a “client-side” validation, designed to give the summarizer an immediate response if any of the data is incorrectly entered.
  • a “client-side” validation may be achieved through JavaScript code embedded in the web pages.
  • validation may include a “server-side” validation, which may be performed after data submission. “Server-side” validation may be designed primarily as a fail-safe check to prevent erroneous data from entering the business-critical database.
  • link section 2404 may provide access to other portions of general form 2400 .
  • link section 2404 may include links (such as hypertext links) to portions of general form 2400 that relate to blood pressure, family history, nicotine use, build, lipids, alcohol use, cardiovascular fitness and tests, final check, comments, abnormal physical symptoms, abnormal blood results, abnormal urine results, abnormal pap test, mammogram, abnormal colonoscopy, chest x-ray, pulmonary function, substance abuse, and non-medical history.
  • Other information within a general form 2400 may also be provided, and as such, may be linked through link section 2404 .
  • an APS summary may distinguish between a blank data field and answers such as “don't know” or “not applicable,” thereby ensuring the completeness of the summary.
  • a final validation pass may be performed at step 2308 to alert the summarizer if certain required fields are blank. If required fields are blank, the system may require a summarizer to return to step 2306 and complete the general form. If the summarizer wishes to indicate that the particular piece of information is not known, they may be required to specifically indicate so, thereby maintaining information about what information is specifically not known. However, it will be recognized that not all fields will necessarily require information. For example, certain fields may be “conditionally mandatory,” meaning that they require an answer only if other fields have been filled out in a particular way. Use of conditionally mandatory fields may ensure that all necessary information is gathered. Further, ensuring that all required fields have been filled may also ensure that the necessary information is gathered.
  • condition-specific forms When the general form has been filled out and validated at step 2308 , with all of the required fields entered, it may be necessary to complete one or more condition-specific forms. At step 2310 , it is determined if any condition-specific forms arc required. If no condition specific forms are required, the results may be submitted to a database or other storage device for use at a later time at step 2320 .
  • a summarizer may select a condition-specific form to fill-in at step 2312 .
  • a summarizer may move from the general form to any of the condition-specific forms by following a hypertext link embedded within the general form.
  • a link to a condition-specific form may be similar to, and/or same as links located within link portion 2404 .
  • links to condition-specific forms may be located within link portion 2404 .
  • a portion of the knowledge of which condition-specific forms are necessary may be obtained while filling out the general form. In the current example of life insurance underwriting, these condition-specific forms may include hypertension, diabetes, etc.
  • FIG. 25 illustrates an example of a condition-specific form for hypertension within a graphical user interface 2500 according to an embodiment of the invention.
  • Graphical user interface 2500 may comprise access to any network browser, such as Netscape Navigator, Microsoft Explorer, or other browser. Other manners of accessing a network may also be used.
  • Graphical user interface 2500 may include a control area 2502 , whereby a summarizer may control various aspects of graphic user interface 2500 . Control may include moving to various portions of the network via the graphic user interface 2500 , printing information from the network, searching for information within the network, and other functions used within a browser.
  • Graphical user interface 2500 displays the hypertension-specific form, which may include various sections for inputting information related to hypertension.
  • initial identification section 2504 may enable a summarizer to provide initial identification information, including whether an applicant has hypertension, the type of hypertension, whether it was secondary hypertension, and if so, how the cause was removed or cured.
  • pull down menus may be used to ensure that information entered is standardized for each patient. Other information may also be gathered in initial identification section 2504 .
  • EKG section 2506 may enable a summarizer to provide EKG information, including EKG readings within a specified time period (e.g., 6 months), chest X-rays within a specified time period (e.g., 6 months), and other information related to EKG readings.
  • pull down menus may be used to ensure that information entered is standardized for each patient.
  • Patient cooperation section 2508 may enable a summarizer to provide information related to a patient's cooperation, including whether the patient has cooperated, whether a patient's blood pressure is under control, and if so, for how many months, and other information related to a patient's cooperation in dealing with hypertension.
  • pull down menus may be used to ensure that information entered is standardized for each patient.
  • Blood pressure section 2510 may enable a summarizer to enter blood pressure readings corresponding to various dates. According to an embodiment of the invention, separate entry fields may be provided for the date the blood pressure reading was taken, (e.g., systolic reading (SBP) and the diastolic reading (DBP)). Other information may also be entered in blood pressure section 2510 . Further, it will he understood by those skilled in the art that other information related to hypertension may also be entered in a hypertension form displayed on graphical user interface 2500 .
  • SBP systolic reading
  • DBP diastolic reading
  • a summarizer fills out a condition-specific form.
  • a final validation pass may be performed at step 2316 to alert the summarizer if certain required fields are blank. If required fields are blank, the system may require a summarizer to return to step 2314 and complete the condition-specific form.
  • the summarizer wishes to indicate that the particular piece of information is not known, they may be required to specifically indicate so, thereby facilitating the tracking of what information is specifically not known.
  • it will be recognized that not all fields will necessarily require information.
  • certain fields may be “conditionally mandatory,” meaning that they require an answer only if other fields have been filled out in a particular way. Use of conditionally mandatory fields may ensure that all necessary information is gathered. Further, ensuring that all required fields have been filled may also ensure that the necessary information is gathered.
  • a summarizer may determine if additional condition-specific forms are necessary at step 2318 . If additional condition-specific forms are necessary, a summarizer may return to step 2312 and select the appropriate condition-specific form in which to enter information. If no additional condition-specific forms are required, the results may be submitted to a database or other storage device for use at a later time at step 2320 .
  • the summarizer may submit the results, such as described in step 2320 .
  • the data may then be transferred over a network, such as the Internet, and stored in a database for later use.
  • a network such as the Internet
  • different categorical data fields may be presented to the summarizer as text, but for space efficiency are encoded as integer values in the database.
  • a “translation table” to the corresponding field meanings may then be provided as part of the design of the APS summary.
  • the APS summarizer may provide a structured list of topics, thereby enabling a trained person to summarize the most significant information currently contained in a handwritten or typewritten APS. Further, the APS summarizer may provide an efficient description of the data content of the APS.
  • the APS itself can be several tens of pages of doctor's notes.
  • the APS summary is designed to capture only the data fields that are relevant to the problem at hand.
  • a structured and organized description of the APS data may be provided.
  • An APS itself can adhere to any arbitrary order because of different doctor's styles.
  • the APS summary may provide a single consistent format for the data as required for an automated system, and/or which facilitates the human underwriter's job greatly.
  • the APS summary may be captured in a database, the information contained in it may be easily available to any computer-based application. Again, this is a requirement for an automated underwriting system, but it may provide many other advantages as well.
  • the APS data may otherwise be very difficult to analyze statistically, to categorize, or to classify.
  • the APS summary forms can be web-based, the physical location of the summarizers may be immaterial.
  • the original APS sheets can be received in location X, scanned, sent over the Internet to location Y, where the APS summary is filled out, and the digital data from the summary can be submitted and stored on a database server in location Z.
  • the automated decision engine can be in any fourth location, as could an individual running queries against the APS summary database for statistical analysis or reporting purposes.
  • general and condition specific forms may be written in HTML and JavaScript, which provide the validation functionality.
  • a system for storing filled out summary data into a remote database has also been created. This system was created using JavaBeans and JSP. Testing by experienced underwriters has been performed. The HTML summary forms are displayed to the underwriters via a web browser, and the data from an actual APS is entered onto the form. The underwriter comments and feedback are captured on the form as well, and used to aid the continual improvement of the forms.
  • a statistical analysis was done of the frequencies of the various medical conditions. The conditions that are most frequent were chosen to be worked on first. The APS summary does not have to cover all conditions before it is put into production.
  • Deployment of the APS summary may be progressive, covering new conditions one by one as new forms become available. Applicants with APS requirements that are not covered in the current APS summary may be underwritten using the usual procedures. Condition-specific forms may therefore be added to the APS summary in order to increase coverage of applicants by the digital underwriting system.
  • fuzzy rule-based and case-based reasoning may be used to automate decisions in business, commercial, or manufacturing process. Specifically, a process and system to automate the determination of optimal design parameters that impact the quality of the output of the decision engines is described.
  • the optimization aspect may provide a structured and robust search and optimization methodology for identifying and tuning the decision thresholds (cutoffs) of the fuzzy rules and internal parameters of the fuzzy rule-based decision engine (“RBE”), and the internal parameters of the case-based decision engine (“CBE”).
  • RBE fuzzy rule-based decision engine
  • CBE case-based decision engine
  • the system and process of the present invention may apply to a class of stochastic global search algorithms known as evolutionary algorithms to perform parameter identification and tuning.
  • evolutionary algorithms may be executed utilizing principles of natural evolution and may be robust adaptive search schemes suitable for searching non-linear, discontinuous, and high-dimensional spaces.
  • this tuning approach may not require an explicit mathematical description of the multi-dimensional search space. Instead, this tuning approach may rely solely on an objective function that is capable of producing a relative measure of alternative solutions.
  • an evolutionary algorithm may be used for optimization within an RBE and CBE.
  • an evolutionary algorithm (“EA”) may include genetic algorithms, evolutionary programming, evolution strategies, and genetic programming. The principles of these related techniques may define a general paradigm that is based on a simulation of natural evolution.
  • P(t) ⁇ P 1 (t), P 2 (t), . . . , P p (t) ⁇ of individuals.
  • “genetic” operators that model simplified rules of biological evolution are applied to create the new and desirably more superior population P(t+1). Such a process may continue until a sufficiently good population is achieved, or some other termination condition is satisfied.
  • Each Pi(t) ⁇ P(t) represents via an internal data structure, a potential solution to the original problem.
  • the choice of an appropriate data structure for representing solutions may be more an “art” than a “science” due to the plurality of data structures suitable for a given problem.
  • an appropriate representation may be a critical step in a successful application of EAs. Effort may be required to select a data structure that is compact, minimally superfluous, and can avoid creation of infeasible individuals. For instance, if the problem domain requires finding an optimal real vector from the space defined by dissimilarly bounded real coordinates, it may be more appropriate to choose as a representation a real-set-array (e.g., bounded sets of real numbers) instead of a representation capable of generating bit strings. A representation that generates bit strings may create many infeasible individuals, and can be certainly longer than a more compact sequence of real numbers.
  • a representation that generates bit strings may create many infeasible individuals, and can be certainly longer than a more compact sequence of real numbers.
  • Closely linked to a choice of representation of solutions may be a choice of a fitness function ⁇ : P(t) ⁇ R, that assigns credit to candidate solutions.
  • Individuals in a population are assigned fitness values according to some evaluation criterion. Fitness values may measure how well individuals represent solutions to the problem. Highly fit individuals are more likely to create offspring by recombination or mutation operations. Weak individuals are less likely to be picked for reproduction, so they eventually die out.
  • a mutation operator introduces genetic variations in the population by randomly modifying some of the building blocks of individuals. Evolutionary algorithms are essentially parallel by design, and at each evolutionary step a breadth search of increasingly optimal sub-regions of the options space is performed.
  • Evolutionary search is a powerful technique of solving problems, and is applicable to a wide variety of practical problems that are nearly intractable with other conventional optimization techniques.
  • Practical evolutionary search schemes do not guarantee convergence to the global optimum in a predetermined finite time, but they are often capable of finding very good and consistent approximate solutions. However, they are shown to asymptotically converge under mild conditions.
  • An evolutionary algorithm may be used within a process and system for automating the tuning and maintenance of fuzzy rule-based and case-based decision systems used for automated decisions in insurance underwriting. While this approach is demonstrated for insurance underwriting, it is broadly applicable to diverse rule-based and case-based decision-making applications in business, commercial, and manufacturing processes. Specifically, we describe a structured and robust search and optimization methodology based on a configurable multi-stage evolutionary algorithm for identifying and tuning the decision thresholds of the fuzzy rules and internal parameters of the fuzzy rule-based decision engine and the internal parameters of the case-based decision engine. The parameters of the decision systems impact the quality of the decision-making, and are therefore critical. Furthermore, this tuning methodology can be used periodically to update and maintain the decision engines.
  • these fuzzy logic systems may have many parameters that can be freely chosen. These parameters may either be fit to reproduce a given set of decisions, or set by management in order to achieve certain results, or a combination of the two.
  • a large set of cases may be provided by the company as a “certified case base.”
  • the statistics of the certified case base may closely match the statistics of insurance applications received in a reasonable time window.
  • there will be man y more cases than free parameters so that the system will be over-determined. Then, an optimal solution may be found which minimizes the classification error between a decision engine's output and the supplied cases.
  • the parameters are chosen using optimization vs. a set of certified cases. New fuzzy rules and certified cases may be added, or aggregation rules may change.
  • the fuzzy logic systems may be kept current, allowing the insurance company to implement changes quickly and with zero variability.
  • is an n-dimensional bounded hyper-volume (parametric search space) i n the n-dimensional space of reals, x is a parameter vector, and If/ is the objective function that maps the parametric search space to the non-negative real line.
  • FIG. 26 illustrates such a minimization (optimization) problem according to an embodiment of the invention in the context of the application domain, where the search space x corresponds to the space of decision engine designs induced by the parameters imbedded in the decision engine, and the objective function If/ measures the corresponding degree of rate-class assignment mismatch between that of the expert human underwriter and the decision-engine for the certified case base.
  • An evolutionary algorithm iteratively generates trial solutions (trial parameter vectors in the space x), and uses their corresponding consequent degree of rate-class assignment mismatch as the search feedback.
  • a space of decision engine's designs is probed.
  • a mismatch matrix which will be described in greater detail below, is generated based on the rate-class decisions generated for the cases by the decision engine. Penalties for mismatching cases are assigned at step 2606 .
  • the evolutionary algorithm uses the corresponding degree of rate-class assignment mismatches, and the associated penalties to provide feedback to the decision engine at step 2608 .
  • the system may then refine the internal parameters and decision thresholds in the decision engine at step 2602 , and proceed through the process again. Thus, an iterative process may be performed.
  • FIG. 27 illustrates an example of an encoded population maintained by the evolutionary algorithm at a given generation.
  • each individual in the population is a trial vector of design parameters representing fuzzy rule thresholds and internal parameters of the decision engine.
  • Each percentage entry may represent a value of a trial parameter that falls within a corresponding bounded real line.
  • Each trial solution vector may be used to initialize an instance of the decision engine, following which each of the cases in the certified case base is evaluated.
  • FIG. 28 illustrates a process schematic for an evaluation system according to an embodiment of the invention.
  • Trial design parameters are provided at an input module 2802 .
  • the trial design parameters are automatically input to decision engine 2804 .
  • Case subset 2808 from certified case base 2806 is input into decision engine 2804 .
  • Certified case base 2806 may comprises cases that have been certified as being correct.
  • Case subset 2808 may be a predetermined number of cases from certified case base 2806 .
  • case subset 2808 may comprise two thousand (2000) certified cases.
  • case subset 2808 may comprise a number of times the number of tunable parameters of decision engine 2804 .
  • the cases within case subset 2808 are processed in decision engine 2804 , and output to decision engine case decisions 2810 .
  • confusion matrix 2814 may be generated by comparing decision engine case decisions 2810 and certified case decisions 2812 .
  • the rows of confusion matrix 2814 may correspond to certified case decisions 2812 as determined by an expert human underwriter, and the columns of confusion matrix 2814 may correspond to the decision engine case decisions 2810 for the cases in the certified case base.
  • a case has been assigned a category S from certified case decision 2812 (from the matrix 2814 ) and a category PB from decision engine decision 2810 .
  • the case would count towards an entry in the cell at row 3 and column L
  • the certified case decision 2812 places the case in a higher risk category
  • the decision engine case decision 2810 places the case in a lower risk category. Therefore, for this particular case, the decision engine 2810 has been more liberal in decision-making.
  • both the certified case decision 2812 and the decision engine case decisions 2810 agree as upon categorizing the case in class S, then the case would count towards an entry in the cell at row 3 and column 3.
  • the certified case decision 2812 is PB, but the machine decision 2810 is S, then clearly the machine decision is more strict.
  • Confusion matrix 2814 may be used as the foundation to compute an aggregate mismatch penalty or score, using penalty module 2816 .
  • a penalty matrix may be derived from actuarial studies and is element-by-element multiplied with the cells of the confusion matrix 2814 to generate an aggregate penalty/score for a trial vector of parameters in the evolutionary search. A summation over the number of rows and columns of the matrix may occur, and that should now be “T” (upper case T), as the confusion matrix M may be of a dimension T ⁇ T.
  • Other process systems may also be used to achieve the present invention.
  • an evolutionary algorithm may utilize only the selection and stochastic variation (mutation) operations to evolve generations of trial solutions. While the selection operation may seek to exploit known search space regions, the mutation operation may seek to explore new regions of the search space.
  • Such an algorithm is known to those of ordinary skill in the art.
  • One example of the theoretical foundation for such an algorithm class appears in Modeling and Convergence Analysis of Distributed Coevolutionary Algorithms, Raj Subbu and Arthur C. Sanderson, Proceedings of the IEEE International Congress on Evolutionary Computation, 2000.
  • FIG. 29 illustrates an example of the mechanics of such an evolutionary process.
  • an initial population of trial decision engine parameters is created.
  • Proportional selection occurs at step 2904 and an intermediate population is created at step 2906 .
  • Stochastic variation occurs at step 2908 , and a new population is created at step 2910 .
  • the new population may then be subject to proportional selection at step 2904 , thereby creating an iterative process.
  • the evolutionary algorithm may use a specified fixed population size and operate in one or more stages, each stage of which may be user configurable.
  • a stage is specified by a tuple consisting of a fixed number of generations and normalized spread of a Gaussian distribution governing randomized sampling.
  • a given solution (also called the parent) in generation i may be improved by cloning it to create two identical child solutions from the parent solution.
  • the first child solution may be mutated according to a uniform distribution within the allowable search bounds.
  • the second child solution may then be mutated according to the Gaussian distribution for generation i. If the mutated solution falls outside of the allowable search bounds, then the sampling is repeated a few times until an acceptable sample is found. If no acceptable sample is found within the allotted number of trials, then the second child solution may be mutated according to a uniform distribution.
  • the best of the parent and two child solutions is retained and is transferred to the population at generation i+1. In addition, it is ensured via elitism that the improvement in the best performing individual of each generation of evolution i+n (where n is an increasing whole number) is a monotone function.
  • the process may be repeated until i+n generation has been generated, where i+n is a whole number.
  • the engine optimization process described in this document can be applied to any engine in which the structure of the engine has been defined and the parametric values of the engine need to be specified to meet a predefined performance metric. Furthermore, one of ordinary skill in the art will recognize that such decision engines do not need to be restricted to insurance underwriting applications.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Finance (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Accounting & Taxation (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Technology Law (AREA)
  • Data Mining & Analysis (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

A system for at least a partial underwriting of insurance policies is described. Various rules are created, along with a degree of satisfaction for each rule. Rules may be directed toward various insurance underwriting components (e.g., cholesterol levels, blood pressure, etc.). Based on the degree of satisfaction for each rule, a component may be assigned to a category. Based on the category for each component, the insurance application may be assigned an underwriting category.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet, or any correction thereto, are hereby incorporated by reference in this application under 37 CFR 1.57.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to a system for underwriting insurance applications, and more particularly to a system for underwriting insurance applications based on a flexible fuzzy rule logic based system.
  • A trained individual or individuals traditionally perform insurance underwriting. A given application for insurance (also referred to as an “insurance application”) may be compared against a plurality of underwriting standards set by an insurance company. The insurance application may be classified into one of a plurality of risk categories available for a type of insurance coverage requested by an applicant. The risk categories then affect a premium paid by the applicant, e.g., the higher the risk category, the higher the premium. A decision to accept or reject the application for insurance may also be part of this risk classification, as risks above a certain tolerance level set by the insurance company may simply be rejected.
  • There can be a large amount of variability in the insurance underwriting process when performed by individual underwriters. Typically, underwriting standards cannot cover all possible cases and variations of an application for insurance. The underwriting standards may even be self-contradictory or ambiguous, leading to uncertain application of the standards. The subject judgment of the underwriter will almost always play a role in the process. Variation in factors such as underwriter training and experience, and a multitude of other effects can cause different underwriters to issue different, inconsistent decisions. Sometimes these decisions can be in disagreement with the established underwriting standards of the insurance company, while sometimes they can fall into a “gray area” not explicitly covered by the underwriting standards.
  • Further, there may be an occasion in which an underwriter's decision could still be considered correct, even if it disagrees with the written underwriting standards. This situation can be caused when the underwriter uses his/her own experience to determine whether the underwriting standards may or should be interpreted and/or adjusted. Different underwriters may make different determinations about when these adjustments are allowed, as they might apply stricter or more liberal interpretations of the underwriting standards. Thus, the judgment of experienced underwriters may be in conflict with the desire to consistently apply the underwriting standards.
  • Most of the key information required for automated insurance underwriting is structured and standardized. However, some sources of information may be non-standard or not amenable to standardization. By way of example, an attending physician statement (“APS”) may be almost as unique as each individual physician. However, a significant fraction of applications may require the use of one or more APS due to the presence of medical impairments, age of applicants, or other factors. Without such key information, the application underwriting process cannot be automated for these cases.
  • Conventional methods for dealing with some of the problems described above have included having human underwriters directly reading the APS. However, an APS document can be as long as several tens of pages. Therefore, the manual reading process, combined with note-taking and consulting other information, such as an underwriting manual or the like, can greatly extend the cycle-time for each application processed, increase underwriter variability, and limit capacity by preventing the automation of the decision process.
  • SUMMARY OF THE INVENTION
  • In an exemplary embodiment of the invention, a system for underwriting an insurance application comprises a receiver for receiving a request to underwrite an insurance application, where the request includes information about at least one application component, an evaluation module for evaluating the at least one application component based on at least one rule associated with the at least one application component, and an assignment module for assigning a measurement to the at least one application component, and assigning the at least one application component to a specific component category out of a plurality of component categories based on the assigned measurement.
  • Another exemplary embodiment provides a system for underwriting an insurance application comprising a receiver for receiving a request to underwrite an insurance application, wherein the insurance application includes a plurality of application components, an evaluation module for evaluating the plurality of application components based on a plurality of rules, wherein each of the plurality of rules is associated with each of the plurality of application components, and an assignment module for assigning a measurement to each of the plurality of application components, and assigning each of the plurality of application components to a specific component category out of a plurality of component categories based on the assigned measurement.
  • In a further embodiment of the invention, a system for underwriting an insurance application comprises a receiver for receiving a request to underwrite an insurance application for a customer, wherein the insurance application includes a plurality of application components, and an evaluation module for evaluating the plurality of application components based on a plurality of rules, wherein each of the plurality of rules is associated with each of the plurality of application components. In addition, the system also comprises an assignment module for assigning a measurement lo each of the plurality of application components, assigning each of the plurality of application components to a specific component category out of a plurality of component categories based on the assigned measurement and assigning the insurance application to a specific application category out of a plurality of application categories, wherein the specific application category is based at least in part on the specific component category, and an issuance module for issuing the insurance application to the customer.
  • A further exemplary embodiment of the invention provides a system for underwriting an insurance application comprising means for receiving a request to underwrite an insurance application, where the request includes information about at least one application component, means for evaluating the at least one application component based on at least one rule associated with the at least one application component, means for assigning a measurement to the at least one application component, and means for assigning the at least one application component to a specific component category out of a plurality of component categories based on the assigned measurement.
  • In another embodiment of the invention, a system for underwriting an insurance application is provided. The system comprises means for receiving a request to underwrite an insurance application, wherein the insurance application includes a plurality of application components, means for evaluating the plurality of application components based on a plurality of rules, wherein each of the plurality of rules is associated with each of the plurality of application components, means for assigning a measurement to each of the plurality of application components, and means for assigning each of the plurality of application components to a specific component category out of a plurality of component categories based on the assigned measurement.
  • An additional exemplary embodiment of the invention provides a system for underwriting an insurance application comprising means for receiving a request to underwrite an insurance application for a customer, wherein the insurance application includes a plurality of application components and means for evaluating the plurality of application components based on a plurality of rules, wherein each of the plurality of rules is associated with each of the plurality of application components. The invention further provides that the system comprises means for assigning a measurement to each of the plurality of application components, means for assigning each of the plurality of application components to a specific component category out of a plurality of component categories based on the assigned measurement, means for assigning the insurance application to a specific application category out of a plurality of application categories, wherein the specific application category is based at least in part on the specific component category and means for issuing the insurance application to the customer.
  • A further embodiment of the invention provides a system for underwriting a transaction orientated process comprising a receiver for receiving a request to underwrite a transaction, where the request includes information about at least one transaction component, an evaluation module for evaluating the at least one transaction component based on at least one rule associated with the at least one transaction component, wherein the at least one rule is a fuzzy logic rule, and an assignment module for assigning a measurement to the at least one transaction component, assigning the at least one transaction component to a specific component category out of a plurality of component categories based on the assigned measurement, and assigning the transaction lo a specific transaction category out of a plurality of transaction categories, where the one specific transaction category is based at least in part on the specific component category.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a graph illustrating a fuzzy (or soft) constraint, a function defining for each value of the abscissa the degree of satisfaction for a fuzzy rule, according to an embodiment of the invention.
  • FIG. 2 is a graph illustrating the measurements based on the degree of satisfaction for a collection of fuzzy rules, according to an embodiment of the invention.
  • FIG. 3 is a schematic representation of an object-oriented system to determine the degree of satisfaction for a collection of fuzzy rules, according to an embodiment of the invention.
  • FIG. 4 is a flowchart illustrating steps performed in a process for underwriting an insurance application using fuzzy logic according to an embodiment of the invention.
  • FIG. 5 is a flowchart illustrating steps for an inference cycle according to an embodiment of the invention.
  • FIG. 6 is a graph illustrating a fuzzy (or soft) constraint, a function defining for each value of the abscissa the degree of satisfaction for a rule comparing similar cases, according to an embodiment of the invention.
  • FIG. 7 is a graph illustrating the core of a fuzzy (or soft) constraint, according to an embodiment of the invention.
  • FIG. 8 is a graph illustrating the support of a fuzzy (or soft) constraint, according to an embodiment of the invention.
  • FIG. 9 is a graph illustrating the rate class histogram derived from a set of retrieved cases, according to an embodiment of the invention.
  • FIG. 10 is a chart illustrating the distribution of similarity measures for a set of retrieved cases, according to an embodiment of the invention.
  • FIG. 11 is a table illustrating a linear aggregation of rate classes, according to an embodiment of the invention.
  • FIG. 12 is a flowchart illustrating the steps performed in a process for determining the degree of confidence of an underwriting decision based on similar cases, according to an embodiment of the invention.
  • FIG. 13 is a process map illustrating a decision flow, according to an embodiment of the invention.
  • FIG. 14 illustrates a comparison matrix, according to an embodiment of the invention.
  • FIG. 15 illustrates a distribution of classification distances for each bin containing a range of retrieved cases, according to an embodiment of the invention.
  • FIG. 16 illustrates a distribution of normalized percentage of classification distances for each bin containing a range of retrieved cases, according to an embodiment of the invention.
  • FIG. 17 illustrates a distribution of correct classification for each bin containing a range of retrieved cases, according to an embodiment of the invention.
  • FIG. 18 illustrates a distribution of a performance function for each bin containing a range of retrieved cases, according to an embodiment of the invention.
  • FIG. 19 illustrates a distribution of a performance function for each bin containing a range of retrieved cases, after removing negative numbers and normalizing the values between 0 and 1, according to an embodiment of the invention.
  • FIG. 20 illustrates results of a plot of the preference function (derived from FIG. 19) according to an embodiment of the invention.
  • FIG. 21 illustrates a computation of coverage and accuracy according to an embodiment of the invention.
  • FIG. 22 is a schematic representation of a system for underwriting according to an embodiment of the invention.
  • FIG. 23 a flowchart illustrating the steps performed for executing and manipulating a summarization tool according to an embodiment of the invention.
  • FIG. 24 illustrates a graphic user interface for a summarization tool for a general form according to an embodiment of the invention.
  • FIG. 25 illustrates a graphic user interface for a summarization tool for a condition-specific form according to an embodiment of the invention.
  • FIG. 26 illustrates an optimization process according to an embodiment of the invention.
  • FIG. 27 illustrates an example of an encoded population at a given generation according to an embodiment of the invention.
  • FIG. 28 illustrates a process schematic for an evaluation system according to an embodiment of the invention.
  • FIG. 29 illustrates an example of the mechanics of an evolutionary process according to an embodiment of the invention.
  • FIG. 30 is a graph illustrating a linear penalty function used in the evaluation of the accuracy of the CBE, according to an embodiment of the invention.
  • FIG. 31 is a graph illustrating a nonlinear penalty function used in the evaluation of the accuracy of the CBE, according to an embodiment of the invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings in which like reference characters refer to corresponding elements.
  • Rules Based Reasoning
  • As stated above, a process and system is provided for insurance underwriting which is able to incorporate all of the rules in the underwriting standards of a company, while being robust, accurate, and reliable. According to an embodiment of the invention, the process and system provided may be suitable for automation. Such a process and system may be flexible enough to adjust the underwriting standards when appropriate. As mentioned above, each individual underwriter may have his/her own set of interpretations of underwriting standards about when one or more adjustments should occur. According to an embodiment of the present invention, rules may be incorporated while still allowing for adjustment using a fuzzy logic-based system. A fuzzy logic-based system may be described as a formal system of logic in which the traditional binary truth-values “true” and “false” are replaced by real numbers on a scale from 0 to 1. These numbers are absolute values that represent intermediate truth-values for answers to questions that do not have simple true or false, or yes or no answers. In standard binary logic, a given rule is either satisfied (with a degree of satisfaction of 1), or not (with a degree of satisfaction of 0), creating a sharp boundary between the two possible degrees of satisfaction. With fuzzy logic, a given rule may be assigned a “partial degree of satisfaction”, a number between 1 and 0, in some boundary region between a “definite yes”, and a “definite no” for the satisfaction of a given rule. Each rule will be composed by a conjunction of conditions. Each condition will be represented by a fuzzy set A(x), which can be interpreted as a degree of preference induced by a value x for satisfying a condition A. An inference engine determines a degree of satisfaction of each condition and an overall degree of satisfaction of a given rule.
  • For the purposes of illustration, imagine that a hypothetical life insurance company has a plurality of risk categories, which are identified as “cat1”, “cat2”, “cat3”, and “cat4.” In this example, a rating of cat I is a best or low risk, while cat4 is considered a worst or high risk. An applicant for an insurance policy would be rejected if he/she fails to be placed in any category. An example of a type of rule laid out in a set of underwriting guidelines could be, “The applicant may not be in cat1 if his/her cholesterol value is higher than X L”. Similarly, a cholesterol value of X2 could be a cutoff for cat2, and so on. However, it is possible that a cholesterol reading of one point over X I may not in practice disqualify the applicant from the cat1 rating, if all of the other rules are satisfied for cat I. It may be that readings of one point over X I are still allowable, and so on. To define a fuzzy rule, two parameters, X1a and X1b may be needed. When the applicant's cholesterol is below X1a, a fuzzy rule may be fully satisfied (e.g., a degree of satisfaction of 1). By way of present example, X1 from the above may be used as X1a. A parameter X1b may be a cutoff above which the fuzzy rule is fully unsatisfied (e.g., a degree of satisfaction of 0). For example, it may be determined from experienced underwriters of the insurance company that under no circumstances can the applicant get the cat1 rating if his/her cholesterol is above 190 (XI) by more than four points. In that situation, the fuzzy rule may use X1a=X1, that is 190, and X1b=X1a+4, that is 194. Other settings may be used. X1a and X1b are parameters of the model. To obtain the partial degree of satisfaction when the cholesterol value falls within the range [X1a, X1b], a continuous switching function may be used, which interpolates between the values 1 and 0. The simplest such function is a straight line, as disclosed in FIG. 1, but other forms of interpolation may also be used.
  • Turning to cat2, cat3, and cat4, there may be a different cholesterol rule for each category, which states that the applicant may not be placed in that category if his/her cholesterol is higher than X2, X3, or X4, respectively. The same procedures may be used, turning each rule into a fuzzy logic rule by assigning high and low cutoff values (e.g., X2a, X2b; X3a, X3b; X4a, X4b). Thus, by way of continuing the example, cat2 may be associated with a fuzzy rule that uses X2a=X2 and X2b=X2+4, where X2=195 (for cat2). In addition X3a=X3 and X3b=X3+4, where X3=200 (for cat3), and X4a=X4 and X4b=X4, where X4=205 (for cat4). Other parameters also may be used. Similarly, one would proceed through each rule in the underwriting guidelines, allowing for fuzzy partial degrees of satisfaction. In the present invention, each piece of data may be judged many times on the basis of each rule.
  • Once each fuzzy rule in the rule set has been applied, a decision is made to which category the applicant belongs. For each risk category, there may be a subset of rules that apply to that category. In order to judge whether the applicant is eligible for the given category, some number of aggregation criteria may be applied. To be concrete, using the above hypothetical case, take the subset of all rules that apply to cat1. There will be a fuzzy degree of satisfaction for every rule, where the set of degrees of satisfaction is called {DS-cat1}. According to an embodiment of the invention, if any of the degrees of satisfaction are zero, then the applicant may be ruled out of cat I. Thus, one of the aggregation criteria may be, “reject from cat 1 if MIN({DS-cat I})<=A1,” where A1 is a chosen constant, and the notation MIN( . . . ) denotes selection of the smallest value out of the set. One choice for A1 may be 0.5, but other choices may be used. By way of another example, the choice, A1=0.7 may also be used. Again, the constant A1 may be considered as a parameter of the model, which may be determined.
  • As another aggregation rule, by way of example, if very many of the rules have partial degrees of satisfaction of 0.9, then too much adjusting may be occurring, and the applicant may be ruled out of cat I, even though the aggregation rule, MIN({DS-cat1})<=A1, may not be satisfied. The missing score (MS) is determined from the degree of satisfaction (DS) by MS=1−DS. If a given fuzzy rule has DS=0.9, then it would have a missing score of 0.1. The aggregation criterion for this case might take the form, “reject from cat1 if SUM({MS-cat1})>=A2,” where A2 is a different chosen constant, the notation, SUM( . . . ) denotes summation of all the elements of the set, and {MS-cat1} is the set of “missing scores” for each rule. The aggregation criteria above may use the sum of all of the missing scores for the cat I rules as a measure to determine when too much adjusting has been done, comparing that with the constant A2. The measure defined above (SUM {MS-cat1}) may be interpreted as a measure proportional to the difference between the degree of complete satisfaction of all rules and the average degree of satisfaction of each rule (DS-cat1). It is understood in this invention that there may be any number of different kinds of aggregation criteria, of which the above two are only specific examples.
  • In a further step, the results of applying the aggregation criteria to the set of rules relating to each category may be compared. A result according to one example may be that the applicant is ruled out of cat1 and cat2, but not from cat3 or cat4. In that case, assuming that the insurance company's policy was to place applicants in the best possible risk category, the final decision would be to place the applicant in cat3. Other results may also be obtained.
  • As stated above, this fuzzy logic system may have many parameters that may be freely chosen. It should be noted that the fuzzy logic system may extend and therefore subsume a conventional (Boolean) logic system. By setting the fuzzy logic system parameters to have only crisp thresholds (in which the core value is equal to the support) the Boolean rules may be represented as a case of fuzzy rules. Those parameters may be fit to reproduce a given set of decisions, or set by management in order to achieve certain results. By way of one example, a large set of cases may be provided by the insurance company as a standard to be reproduced as closely as possible. Preferably in such an example, there may be man y cases, thereby minimizing the error between the fuzzy rules model and the supplied cases. Optimization techniques such as logistic regression, genetic algorithms, Monte Carlo, etc., also may be used to find an optimal set of parameters. By way of another example, some of the fuzzy rules may be determined directly by the management of the insurance company. This may be done through knowledge engineering sessions with experienced underwriters, by actuaries acting on statistical information related to the risk being insured or by other manners. In fact, when considering maintenance of the system, initial parameters may be chosen using optimization versus a set of cases, while at a future time, as actuarial knowledge changes, these facts may be used to directly adjust the parameters of the fuzzy rules. New fuzzy rules may be added, or aggregation rules may change. The fuzzy logic system can be kept current, allowing the insurance company to implement changes quickly and with zero variability, thereby providing a process and system that is flexible.
  • According to one embodiment of the invention, the fuzzy logic parameters may be entered into a spreadsheet to evaluate the fuzzy rules for one case at a time. This may be essentially equivalent to implementation in a manual processing type environment. FIG. 2 is a graphical representation illustrating a plurality of measurements based on a degree of satisfaction for a rule. A graphical user interface (GUI) 200 displays the degree of satisfaction for one or more rules. GUI 200 includes a standard toolbar 202, which may enable a user to manipulate the information in known manners (e.g., printing, cutting, copying, pasting, etc.). According to an embodiment of the invention, GUI may be presented over a network using a browser application such as Internet Explorer®, Netscape Navigator®, etc. An address bar 204 may enable the user to indicate what portion is displayed. A chart 206 displays various insurance decision components and how each insurance decision component satisfies its associated rule. A plurality of columns 208 illustrates a plurality of categories for each decision component, as well as a plurality of parameters for each decision component. A column 210 identifies the actual parameters of the potential applicant for insurance and a plurality of columns 212 illustrate a degree of satisfaction of each rule. By way of example, a row 214 is labeled BP (Sys), corresponding to a systolic blood pressure rule. To receive the Best or Preferred category classification, the applicant must have a systolic blood pressure score (score) between 140 and 150. To receive a Select category classification, the applicant must have a score between 150 and 155, while a score of 155 or more receives a “Standard Plus” or St. Plus category classification. In this example, the applicant has a score of 151. The columns 212 show zero satisfaction of the rule for the Best and Preferred category classifications. Additionally, FIG. 2 shows that the applicant slightly missed satisfaction for the Select category, and Perfect Constraint Satisfaction for the St. Plus Category.
  • In another example, a row 216 is labeled BP (Dia.), corresponding to a diastolic blood pressure rule. To receive a Best category classification, the applicant must have a diastolic blood pressure score (score) between 85 and 90, between 90 and 95 for a Preferred category classification, between 90 and 95 for the Select category classification, and between 95 and 100 for the St. Plus category classification. Here, the applicant has a score of 70, resulting in Perfect Constraint Satisfaction in all of the columns 212.
  • By way of a further example, a row 218 is labeled Nicotine, where a score between 4 and 5 receives the Best category classification, a score between 2.5 and 3 receives the Preferred category classification, a score between 1.5 and 2 receives the Select category classification, and a score between 0.7 and 1 receives the St. Plus category classification. In this example, the applicant has a score of 4.2. Thus, a score of “Mostly Missing” is indicated under the Best category of a column 212, while a score of Perfect Constraint Satisfaction is indicated for all others. GUI 200 presents a submit button 220 to enable the user to accept a decision and submit it to a database. Alternatively, the user may decide not to accept the decision. The user may activate a next button 222 to record his/her decision. Other methods for display may also be used. According to another embodiment of the invention, the rules may be encoded into a Java-based computer code, which can query a database to obtain the case parameters, and write its decision in the database as well. The object model of the java implementation is illustrated in FIG. 3. This java implementation may be suitable for batch processing, or for use m a fully automated underwriting environment. According to an embodiment of the invention, a rule engine (class RuleEngine) 302 may be the control of the system. The decision components of rule engine 302 may be composed of several rules (class Rule) 304, several aggregations (class Aggregation) 306 and zero or one decision post-processors (class DecisionPost-Processor) 308. A Rule object 304 may represent the fuzzy logic for one or a group of variables. Each rule is further composed of a number of rateclasses (class Rateclass) 310. A Rateclass object 310 defines the rules for a specific rateclass. According to an embodiment of the invention, a Rateclass object 310 may comprise two parts. The first is pre-processing (class Preprocessor) 312, which may process multiple inputs to form one output. The second is post-processing (class Postprocessor) 314, which may take the result of the pre-processing, feed it to a fuzzy function and get a fuzzy score. Some of the rules may be conditional, such as the variable blood pressure systolic, where the thresholds vary depending on the age of the applicant. Class Condition 316 may represent such a condition, if there is any. Classes FixedScore 318, Minimal and Maximal may define some special preprocessing functions, and class Linear 320 may define the general linear fuzzy function as illustrated in FIG. 1.
  • According to an embodiment of the invention, there may be two phases at runtime for rule engine 302. The first phase may be initialization. In the process, the rule definition file in XML format configures the rule engine. All the rule engine parameters are defined in the process, for example, number of rules, the fuzzy thresholds, pre and post processing and aggregation operation (including class Intersection 322 and Sum Missing 324) and class ThresholdLevel 326. The second phase may be scoring. After correct initialization, the fireEngine method in rule engine 302 may take an input parameter—an instance of class Case 328 containing all the required variable values, and output an instance of class Result 330, which encapsulates all the decision results, including rateclass placement, the fuzzy scores for each variable and each rateclass, and the aggregation scores. Class ResultLogger 332 may log the output. Other object models for a java implementation may also be used.
  • FIG. 4 is a flowchart illustrating the steps performed in a process for underwriting an insurance application using fuzzy logic rules according to an embodiment of the invention. At step 400, a request to underwrite an insurance application may be received. The request to underwrite may come directly from a consumer (e.g., the person being insured), an insurance agent or another person. The request to underwrite comprises information about one or more components of the insurance application. According to an embodiment of the invention, the components may include the various characteristics associated with the individual to be insured, such as a cholesterol level, a blood pressure level, a pulse, and other characteristics.
  • At step 410, at least one decision component is evaluated. As described above, evaluating a decision component may comprise evaluating a decision component using a fuzzy logic rule. To perform the evaluation, a rule may be defined and assigned to the decision component. While each rule is generally only assigned one decision component, it is understood that more than one decision component may be assigned to each rule. Further, parameters for each rule may be defined, as also described above.
  • At step 420, at least one measurement is assigned to the at least one decision component. As described above with regard to the application of a fuzzy logic rule, a measurement may be assigned to the decision component from a sliding scale, such as between zero (0) and one (1). Other types of measurements may also be assigned.
  • At step 430, each decision component is assigned a specific component category based on the assigned measurement. As described above, a number of specific component categories arc defined. Based on the assigned measurements, each decision component is assigned to one or more specific component categories.
  • By way of the examples above, the specific component categories may be defined as cat1, cat2, cat3, and cat4. Cat1 may only be assigned decision components at a certain level or higher. Similarly, cat2 may on I y be assigned decision components at a second level or higher and so on. Other methods for assigning a specific component category may also be used.
  • At step 440, the insurance application is assigned to a category. According to an embodiment of the invention, the categories to which the insurance application is assigned are the same as the categories to which the insurance decision components are assigned. As described above, the insurance application may be assigned to a category based upon how the decision components were assigned. Thus, by way of example, an insurance application may be assigned to cat I only if two or fewer decision components are assigned to cat2 and all other decision components are assigned to cat I. Other methods for assigning an insurance application to a category may also be used.
  • At step 450, an insurance policy is issued. Based on the category to which it is assigned, certain amounts are paid to maintain the insurance policy in a manner that is well known in the industry. It is understood that based on a category, an insurance policy may not be issued. The customers may decide the premiums are too high. Alternatively, the insurance company may determine that the risk is too great, and decide not to issue the insurance policy.
  • Case Based Reasoning
  • A rule-based reasoning (RBR) system may provide for an underwriting process by following a generative approach, typically a rule-chaining approach, in which a deductive path is created from the evidence (facts) to the decisions (goals). A case-based reasoning (CBR) system, on the other hand, may follow an analogical approach rather than a deductive approach. In such a system, a reasoner may determine the correct rate class suitable for underwriting by noticing a similarity of an application for insurance with one or more previously underwritten insurance applications and by adapting known solutions of such previously underwritten insurance applications instead of developing a solution from scratch. A plurality of underwriting descriptions and their solutions are stored in a CBR Case Base and are the basis for measurement of the CBR performance. According to an embodiment of the invention, a CBR system may be only as good as the cases within its Case Base (also referred to as “CB”) and its ability to retrieve the most relevant cases in response to a new situation.
  • A case-based reasoning system can provide an alternative to a rules-based expert system, and may be especially appropriate when a number of rules needed to capture an expert's knowledge is unmanageable, when a domain theory is too weak or incomplete, or when such domain theory is too dynamic. The CBR system has been successful in areas where individual cases or precedents govern the decision-making processes.
  • In many aspects, a case-based reasoning system and process is a problem solving method different from other artificial intelligence approaches. In particular, instead of using only general domain dependent heuristic knowledge, such as in the case of an expert system, specific knowledge of concrete, previously experienced, problem situations may be used with CBR. Another important characteristic may be that CBR implies incremental learning, as a new experience is memorized and available for future problem solving each time a problem is solved. CBR may involve solving new problems by identifying and adapting solutions to similar problems stored in a library of past experiences.
  • According to an embodiment of the invention, an inference cycle of the CBR process may comprise a plurality of steps, as illustrated in the flow chart of FIG. 5. At step 502, probing and retrieving one or more relevant cases from a case library is performed. Ranking the retrieved relevant cases, based on a similarity measure occurs at step 504. At step 506, one or more best cases are selected. At step 508, one or more retrieved relevant cases are adapted to a current case. The retrieved, relevant cases are evaluated versus the current case, based on a confidence factor at step 510. The newly solved case is stored in the case memory at step 512.
  • These steps will be illustrated below within the context of insurance underwriting. However, one of ordinary skill in the art will recognize that these steps may be used in other contexts as well. For purposes of this example only, assume that an applicant provides his/her vital sign information (e.g., an age, a weight, a height, a systolic blood pressure level and a diastolic blood pressure level, a cholesterol level and a ratio, etc.) as a vector equal to:

  • X=[x1, x2 . . . , xn].
  • Furthermore, in this example, assume that two of the values corresponding to the cholesterol level, and a weight-to-height ratio, are above normal levels, while the others fall within normal ranges. The first two components of vector X correspond to the cholesterol level (x1) and the weight-to-height ratio (x2). For purposes of this example, the applicant has an abnormally high cholesterol ratio (8.5%) and is over-weight (weight-to-height ratio=3.8 lb/inch). Furthermore, the applicant has one medical condition/history, for instance a history of hypertension. This condition may require the applicant to provide additional detailed information related to the history of hypertension, e.g., a cardiomegaly, a chest pain, a blood pressure mean and a trend over the past three months (where mean is the average of the blood pressure readings over a particular time period and trend corresponds to the slope of the reading such as upward, or downward, etc.) The detailed information may be contained in a vector Y=[y1, y2, . . . , yp], where the value of p will vary according to the applicant's medical condition.
  • The first step in the CBR methodology may be to represent a new case (probe) as a query in a structured query language (SQL), which may be formulated against a database of previously placed applicants (cases). According to an embodiment of the invention, the SQL query may be of the form:
      • Q: [f1(x), f2(x), . . . , fn(x)] AND [Condition=label]
        where [f1(x), f2(x), . . . , fn(x)], will will be a vector of n fuzzy preference functions, one of each of the elements of vector X, and a label will be an index representing the applicant's current medical condition. For this example, the CBR system may retrieve all previous applicants with a history of hypertension, whose vital signs were normal, except for a cholesterol ratio and a weight-to-height ratio. In other words, the SQL query may be for all cases matching the same condition and similar vital information as the applicant. An example of such a SQL query may be:
      • Q1=[Support(Around (8.5%; x)), Support (Around (3.8; x)), Support (Normal(i)), . . . , Support (Normal(n))] AND [Condition=Hypertension]
  • The meaning of Normal(i) may be determined by a fuzzy logic set representing a soft threshold for a variable, x(i), as it is used in the stricter class rate, (e.g., Preferred Best in the case of Life Insurance.) FIG. 6 illustrates the case of Normal G), where x(j) corresponds to the cholesterol ratio. For example, it may be determined from the most experienced underwriters of the insurance company that under no circumstances can the applicant get the best class rate if his/her cholesterol ratio is above X I by more than five points. In that example, one may use X Ib-X Ia=5. The specific values for X Ia and X Ib may be parameters of the model, and will be explained below in greater detail. To obtain the partial degree of satisfaction when the cholesterol ratio value falls within the range [X1a, X1b], a continuous switching function may be used which interpolates between the values I and 0. The simplest such function is a straight line, but other functions may also be used.
  • In a linear membership function as shown in FIG. 6, the values X Ia and X Ib are the low and high cutoffs, respectively. A strict yes/no rule may be recovered in the limit that X Ia=X Ib. Thus, many methods that mix fuzzy and strict rules in any proportion m:iy be covered as a subset of this method.
  • Around (a; x) may be determined by a fuzzy relationship, whose membership function can be interpreted as the degree to which the value x meets the property of “being around a.” If Around (a; x)=1, then the value of x may be close to a well within a desired tolerance. The support of the fuzzy relationship Around (a; x) may be defined as the interval of values of x for which Around (a; x)>0, as illustrated in FIG. 7. If Around (a; x)=0 then the value of x is too far from a, beyond any acceptable tolerance.
  • The core of the fuzzy relationship Around (a; x) may be defined as the interval of values of x for which Around (a; x)=1, as illustrated in FIG. 8. Any value belonging to the core fully satisfies the property and, in terms of a preference, it is indistinguishable from any other value in the core.
  • A trapezoidal membership distribution representing the relationship may have a natural preference interpretation. The support of the distribution may represent a range of tolerable values and correspond to an interval-value used in an initial SQL retrieval query. The core may represent the most desirable range of values and may establish a top preference. By definition, a feature value falling inside the core will receive a preference value of 1. As the feature value moves away from a most desirable range, its associated preference value will decrease from I to 0. By retrieving the cases having cholesterol ratios falling in the support of Around (8.5%; x) and having weight-to-height ratios falling in the support of Around (3.8; x) all possible relevant cases may be retrieved.
  • In executing an SQL query Q1 of the above example against the CBR database, N cases may be retrieved. By construction, all N cases must have all of their vital values inside the support of the corresponding element x(i) defined by QI. Furthermore, all cases must be related to the same medical condition, (e.g., hypertension).
  • At this point, considering the outputs of each of the N retrieved cases may provide a first preliminary decision. According to an embodiment of the invention, a decision may be made only on the retrieved cases, i.e., only using the first n variables and the label used in the SQL query Q1. Each retrieved case may be referred to as a case Ck (k between 1 and N), and an output classification of case Ck as Ok, where Ok is a variable having an attribute value indicating the rate class assigned to the applicant corresponding to case Ck. By way of example, Ok may assume one out of T possible values, i.e., Ok=L, where L E {R1, R2, . . . , RT}. For instance, in the case of Life insurance products, L={Preferred-Best, Preferred, Preferred-Nicotine, . . . , Standard, . . . , Table-32}. Other values may also be used.
  • In this example, the SQL query Q1 retrieves 40 cases (N=40). FIG. 9 illustrates the histogram (distribution of the retrieved cases over the rate classes) of the results of the SQL query QI. As seen in FIG. 9, a first preliminary decision indicates Table-II as being the most likely rate class for the new applicant represented by the SQL query Q1.
  • All N cases may have all their vital values inside the support of the corresponding element x(i) defined by the SQL query Q1 and they are all related to the same medical condition, (e.g., hypertension). Therefore, each case may also contain p additional elements corresponding to the variables specific to the medical condition. A case Ck (k between 1 and N) may he represented as an r-dimensional vector, where r=n+p. The first n elements correspond to the n vital sign described by the vector X, namely [x1,k, x2,k, . . . , xn,k]. The remaining p elements may correspond to the specific features related to the condition hypertension, namely [x(n+1), x(n+2), k, . . . , Xr,k]. The value of p may vary according to the value of the label, i.e., the medical condition.
  • A degree of matching between case Ck and the SQL query Q1 may be determined. To this extent, the n-dimensional vector M(Ck, Q1) may be defined as an evaluation of each of the functions [fix), f2(x), . . . , fn(x)] from the SQL Query Q1 with the first n elements of Ck. namely [x1,k, x2,k, . . . , xn,k]:

  • M(C k , Q1)=[f 1(x 1,k), f 2(x 2,k), . . . , f n(x n,k)]
  • At the end of this evaluation, each case will have a preference vector whose elements take values in the (0,1] interval (where the notation (0,1] indicates that this is an open interval at 0 (i.e., it does not include the value 0), and a closed interval at 1 (i.e., it includes the value 1)). These values may represent a partial degree of membership of the feature value in each case and the fuzzy relationships representing preference criteria in the SQL query Q1. Since this preference vector represents a partial order, the CBR system aggregates its elements to generate a ranking of the case, according to their overall preference.
  • A determination is made of an n-dimensional weight vector W=[w1, w2, . . . , wn] in which the element wi takes a value in the interval [0,1] and determines the relative importance of feature i in M(Ck, Q1), i.e., relevance of fj (xi,k). According to an embodiment of the invention, this can be done via direct elicitation from an underwriter or using pair-wise comparisons, following Saaty's method. By way of example, if all features are equally important, all their corresponding weights may be equal to 1. Other methods may also be used. Once the weight vector has been determined, several aggregating functions are used to rank the cases, where the aggregating function will map an n-dimensional unitary hypercube into a one-dimensional unit interval, i.e. [0,1]n−>[0,1].
  • To consider compensation among the elements, a definition is made of the aggregating function A[W,M(Ck, Q1)] as a weighted sum of its elements, i.e.
  • A [ W , M ( C k , Q 1 ) ] = i = 1 n w i f i ( x i , k )
  • Alternatively, a strict intersection aggregation without compensation may be obtained using a weighted minimum, i.e.

  • A[W,M(C k , Q1)]=Minimum1,n[max(1−w j), f(x i,k)]
  • Regardless of the aggregating function selected, it may be considered as a measure of similarity between the each retrieved case Ck and the query Q1, and may be referred to as S(k, 1). Using this measure, cases may be sorted according to an overall degree of preference, which may be interpreted as a measure of similarity between each retrieved case Ck and the query Q1.
  • In the first preliminary decision, the output of case Ck may be referred to as Ok, where Ok is a variable whose attribute value indicates a rate class assigned to the applicant corresponding to a case Ck. Assume, for example, that Ok can take one out of T possible values, i.e., Ok=L, where L ∈ (R1, R2, . . . , RT}. For instance, in the case of Life insurance products, L={Preferred-Best, Preferred, Preferred-Nicotine, . . . , Standard, . . . , Table-32}. However, not all cases are equally similar to our probe. FIG. 10 illustrates a distribution of the similarity measure S(k, 1) over the T for the retrieved N cases (e.g., N=40 in the present example).
  • According to an embodiment of the invention, a minimum similarity value may be considered for a case. For instance, to only consider similar cases, a threshold may be established on the similarity value. By way of example, only cases with a similarity greater or equal to 0.5 may be considered. According to an embodiment of the invention, a determination may be made of a fuzzy cardinality of each of the rate classes, by adding up the similarity values in each class. Other distributions may also be evaluated.
  • A histogram may be drawn that aggregates the original retrieval frequency with the similarity of the retrieved cases, and may be referred to as a pseudo-histogram. This process may be similar to a N-Nearest Neighbor approach, where the N retrieved cases represent the N points in the neighborhood, and the value of S(k, 1) represents the complement of the distance between the point K and the probe, i.e., the similarity between each case and a query. The rate class Ri, with the largest cumulative measure may be proposed as a solution. By way of example, Table-II is the solution indicated by either option.
  • A decision may be made on how many cases will be used to refine a solution. Having sorted the cases along the first n dimensions, the remaining p dimensions may be analyzed corresponding to the features related to the specific medical condition. Some of these medical conditions may have variables with binary or attribute values (e.g., chest pain (YIN), malignant hypertension (N), Mild, Treated, etc.), while others ones may have continuous values (e.g., cardiomegaly (% of enlargement), systolic and diastolic blood pressure averaged and trend in past 3 months, 24 months, etc.).
  • An attribute-value and a binary-value may be used to select, among the N retrieved cases, the cases that have the same values. This may be the same as performing a second SQL query, thereby refining the first SQL query Q1. From the originally retrieved N cases, the cases with the correct binary or attribute values may be selected. This may be done for all of the attribute-values and the binary-valued variables, or for a subset of the most important variables. After this selection, the original set of cases will likely have been reduced. However, when a Case Base is not sufficiently large, a reduction in the number of variables used to perform this selection may be needed. Assuming that there are now L cases (where L<N), these cases may still he sorted according to a value of a similarity metric S(k, 1).
  • A third preliminary decision may be obtained by re-computing the distribution of the similarity measure S(k, 1) over the T values for the output Ok, and then proposing as a solution the class Ri with the largest cumulative measure using the same pseudo-histogram method described above.
  • A similarity measure over the numerical features related to the medical condition may be obtained by establishing a fuzzy relationship Around(a; x) similar to the one described above. This fuzzy relationship would establish a neighborhood of cases with similar condition intensities. By performing an evaluation and an aggregation similar to one described above, a similarity measure may be obtained by medical condition, and may be referred to as I(k, 1).
  • A final decision may involve creating a linear combination of both similarity measures:

  • F(k,1)=αS(k,1)+(1−α)I(k,1),
  • thereby providing the distribution of the final similarity measure F(k, 1) over the T values of Ok. According to an embodiment of the invention, the final decision or solution may be the class Ri with the largest cumulative measure using the same pseudo-histogram method.
  • A reliability of the solution may be measured in several ways, and as a function of many internal parameters computed during this process. According to an embodiment of the invention, the number of retrieved (N) and refined (L) cases (e.g., area of the histogram) may be measured. Larger values of N+L may imply a higher reliability of the solution. According to another embodiment of the invention, the fuzzy cardinality of the retrieved and refined cases (i.e., area of the pseudo-histogram) may be measured. Larger values may imply a higher reliability of the solution. According to a further embodiment of the invention, the shape of the pseudo-histogram of the values of Ok, (i.e., spread of the histogram) may be measured, where a tighter distribution (smaller sigmas) would be more reliable than scattered ones. According to another embodiment of the invention, the mode of the pseudo-histogram of the values of Ok, (e.g., maximum value of the histogram) may be measured. Higher values of the mode may be more reliable than lower ones. A contribution of one or more of these measurements may be used to determine reliability. Other measurements may also be used.
  • Using a training set, a conditional probability of misclassification as a function of each of the above parameters may be determined, as well. Then, the (fuzzy) ranges of those parameters may be determined and a confidence factor may be computed.
  • If the solution does not pass a confidence threshold (e.g., because it does not have enough retrieved cases, has a scattered pseudo-histogram, etc.), then the CBR system may suggest a solution to the individual underwriter and delegate to him/her the final decision. Alternatively, if the confidence factor is above the confidence threshold, then the CBR system may validate the underwriter's decision. Regardless of the decision maker, once the decision is made, the new case and its corresponding solution are stored in the Case Base, becoming available for new queries.
  • According to an embodiment of the invention, clean cases (previously placed by rule base) may be used to tune the CBR parameters (e.g., membership functions, weights, and similarity metrics), thereby abating risk. Other methods for abating risk may also be used.
  • By defining and using three stages of preliminary decisions, the CBR system may display tests, thereby generating useful information for the underwriter while the Case Base is still under development. As more information (cases and variables describing each case) is stored in the Case Base, the CBR system may be able to use a more specific decision stage.
  • According to an embodiment of the invention, the first two preliminary decision stages may only require the same vital information used for clean applications and the symbolic (i.e., label) information of the medical condition. A third decision' stage may make use of a subset of the variables describing the medical condition thereby refining the most similar cases. The subset of variables may be chosen by an expert underwriter as a function of their relevance to the insured risk (mortality, morbidity, etc.). This step will allow the CBR system to refine the set of N retrieved cases, and select the most similar L cases, on the basis of the most important binary and attribute variables describing the medical condition. The final two preliminary decision stages may only require the same vital information used for clean applications and the symbolic (i.e., label) information of the medical condition.
  • According to an embodiment of the invention, it may be important that at all times the value of N (for the first two decision stages) and the value of L (for the third decision stage) be large enough to ensure significance. The number of cases used may be one of the parameters used to compute the confidence factor described above.
  • In the first step of the example, the new case (probe) was represented as a SQL query, and it was assumed that only one medical condition was present. The complete SQL query Q may have been formulated as:

  • Q: [f 1,(x), f 2(x), . . . , f n(x)] AND [Condition=label] AND [Condition number=1]
  • If the applicant has more than one medical condition, the applicant may be compared with other applicants having the same medical conditions. By way of another example extending the original example used, the applicant is assumed to have an abnormally high cholesterol ratio (8.5%) and be over-weight (weight-to-height ratio=lb/inch). Furthermore, the applicant discloses that he/she has two medical conditions, (e.g., hypertension and diabetes).
  • In a densely populated Case Base, the applicant may be represented by the query:
      • Q: [f1,(x), f2(x), . . . , fn(x)] AND [Condition 1=label] AND [Condition 2=label 2] AND [Condition number=2]
        This query may be instantiated as:
      • Q1: [Support(Around (8.5%, x)), Support (Around (3.8; x)), Support (Normal(i)), . . . , Support (Normal(n))] AND [Condition=Hypertension] AND [Condition=Diabetes] AND [Condition number=2]
        With a well-populated Case Base, this may be a process for handling multiple medical conditions in complex cases.
  • As more conditions are added to a query, fewer cases will likely be retrieved. If the retrieved number of cases N is not significant, a useful decision may not be produced. An alternative (surrogate) solution may be to decompose a query into two separate queries, treating each medical condition separately. For instance, assuming that the modified query Q1 requesting two simultaneous conditions does not yield any meaningful result, the CBR system may decompose the query Q1 into a plurality of queries, Q1-A and Q1-B:
      • where Q1-A: [Support(Around (8.5%, x)), Support (Around (3.8; x)), Support (Normal(i)), . . . , Support (Normal(n))] AND [Condition=Hypertension] AND [Condition number=I]; and
      • where Q1-B: [Support(Around (8.5%, x)), Support (Around (3.8; x)), Support (Normal(i)), . . . , Support (Normal(n))] AND [Condition=Diabetes] AND [Condition number=1]
        Each query may be treated separately and may obtain a decision on the rate class for each of the queries. In other words, it may be assumed that there are two applicants, both overweight and with a high cholesterol ratio, one with hypertension and one with diabetes.
  • After obtaining suggested placements in the appropriate rate class, (e.g., RC-A and RC-B, respectively) the answers may be combined according to a set of aggregation rules representing the union of multiple rate classes induced by the presence of multiple medical conditions. According to an embodiment of the invention, these rules may be elicited from experienced underwriters. A look-up table, as illustrated in FIG. 11, may represent this rule set. FIG. 11 is just an example that shows a linear aggregation of the rate classes. Assume that the rate class assigned to query Q1-A is RC-A=Table 6 and the rate class assigned to query Q1-B is RC-B=Table 8. The combined rate class generated from the aggregation rule is RC=Table 14. Other tables may be designed to over-penalize the occurrence of multiple conditions as their presence might affect risk and, therefore, claims, in a non-linear fashion. For example RC-A=Table 6 and RC-B=Table 8 could be aggregated into RC=Table 18 by a stricter table. Other aggregation process may also be used.
  • Additionally, these tables may be used in an associative fashion. In other words, when an applicant has three or more medical conditions, the CBR system may aggregate the rate classes derived from the first two medical conditions, obtain the result and aggregate the result with the rate class obtained from the third medical condition, and so on, as illustrated in FIG. 11. This method is a surrogate alternative that may be used when enough cases with multiple conditions are included in the Case Base.
  • According to an embodiment of the invention, a CBR engine may be encoded into a Java based computer code, which can query a database to obtain the case parameters, and write its decision in the database as well. This embodiment may be suitable for batch processing, and for use in a fully automated underwriting environment.
  • Calculation of Confidence Factor
  • A described above, CBR may be used to automate decisions in a variety of circumstances, such as, but not limited to, business, commercial, and manufacturing processes. Specifically, it may provide a method and system to determine at run-time a degree of confidence associated with the output of a Case Based Decision Engine, also referred to as CBE. Such a confidence measure may enable a determination to be made on when a CBE decision is trustworthy enough to automate its execution and when the CBE decision is not as reliable and may need further consideration. If a CBE decision is not determined to be as reliable, a CBE analysis may still be beneficial by providing an indicator, forwarding it to a human decision maker, and improving the human decision maker's productivity with an initial screening that may limit the complexity of the final decision. The run-time assessment of the confidence measure may enable the routing mechanism and increases the usefulness of a CBE.
  • An embodiment of the invention may comprise two parts: a) the run-time computation of a confidence factor for a query; and b) the determination of the threshold Lu be used with the computed confidence factor. FIG. 12 is a flowchart illustrating a process for determining a run-time computation of a confidence factor according to an embodiment of the invention. At Step 1200, a confidence factor process is initiated. At Step 1210, CBE internal parameters that may affect the probability of misclassification are identified. At Step 1220, the conditional probability of misclassification for each of the identified parameters is estimated. At Step 1230, the conditional probability of misclassification is translated into a soft constraint for each parameter. At Step 1240, a run-time function to evaluate the confidence factor for each new query is defined. The determination of the threshold for the confidence factor may be obtained by using a gradient-based search. It is understood that other steps may he performed within this process, and/or the order of steps may be changed. The process of FIG. 12 will now be described in greater detail below.
  • According to an embodiment of the invention, CBE may be used to automate the underwriting process of insurance policies. By way of example, CBE may be used for underwriting life insurance applications, as illustrated below. It is understood, however, that the applicability of this invention is much broader, as it may apply to any Case-Based Decision Engine(s).
  • According to an embodiment of the invention, an advantage of the present invention may include improving deployment of a method and system of automated insurance underwriting, based on the analysis of previous similar cases, as it may allow for an incremental deployment of the CBE, instead of postponing deployment until an entire case base has been completely populated. Further, a determination may be made for which applications (e.g., characterized by specific medical conditions) the CBE can provide sufficiently high confidence in the output to shift its use from a human underwriter productivity tool to an automated placement tool. As a case base (also referred to as a “CB”) is augmented and/or updated by new resolved applications, the quality of the retrieved cases may improve. Another advantage of the present invention may be that the quality of the case base may be monitored, thereby indicating the portion of the case base that requires growth or scrubbing. For instance, monitoring may enable identification of regions in the CB with insufficient coverage (small area histograms, low similarity levels), regions containing inconsistent decisions (bimodal histograms), and ambiguous regions (very broad histograms).
  • In addition, by establishing a confidence threshold, a determination may be made whether the output can be used directly to place the application or if it will be a suggestion to be revised by the human underwriter, where such a determination may be made for each application processed by the CBE. Further, according to an embodiment of the invention, a process may be used after the deployment of the CBE, as part of maintenance of the case base. As the case base is enriched by the influx of new cases, the distribution of its cases may also vary. Regions of the case base that were sparsely populated might now contain a larger number of cases. Therefore, as part of the tuning of the CBE, one may periodically recompute certain steps within the process to update the soft constraints on each of the parameters. As part of the same maintenance, one may also periodically update the value of the best threshold to be used in the process.
  • While the present invention is described in relation to applicability to the improvement of the performance of a Case Based Engine for Digital Underwriting, it is understood that the method and system described herein may be applied to any Case Based Reasoning system, to annotate the quality of its output and decide whether or not to act upon the generated output. By way of example, CBR systems may have applications in manufacturing, scheduling, design, diagnosis, planning, and other areas.
  • As described above, the CBE relies on having a densely populated Case Base (“CB”) from which to retrieve the precedents for the new application (i.e., the similar cases). According to an embodiment of the invention, until the CB contains a sufficiently large number of cases for most possible applications, the CBE output may not be reliable. Such an output may, by way of example, be used as a productivity aid for a human underwriter, rather than an automation tool.
  • For each processed application, a measure of confidence in the CBE output is computed so that a final decision maker (CBE or human underwriter) may be identified. As the decision engine generates its output from the retrieval, selection, and adaptation of the most similar cases, such a confidence measure may reflect the quality of the match between the input (the application under consideration) and the current knowledge, e.g., the cases used by the CBE for its decision.
  • The confidence measure proposed by this invention needs to reflect the quality of the match between the current application under consideration and the cases used for the CBE decision. This measure needs to be evaluated within the context of the statistics for misclassification gathered from the training set. More specifically, according to an embodiment of the invention, the steps described below may be performed. These steps may include, but are not limited to, the following: 1) Formulate a query against the CB, reflecting the characteristics of the new application as query constraints; 2) Retrieve the most relevant cases from the case library. For purposes of illustration, assume that N cases have been retrieved, where N is greater than 0 (i.e., not a null query or an empty retrieved set of cases). A histogram of the N cases is generated over the universe of their responses, i.e., a frequency of the rate class; 3) Rank the retrieved cases using a similarity measure; 4) Select the best cases thereby reducing the total number of useful retrieved cases from N to L; and 5) Adapt the L refined solutions to the current case in order to derive a solution for the case. By way of example, selecting the mode of the histogram may be used to derive a solution.
  • To determine the confidence in the decision, it may be desirable to understand what the probability of generating a correct or incorrect classification is. Specifically, it may be desirable to identify which factors affect misclassifications, and, for a given case, use these factors to assess if it is more or less likely to generate a wrong decision. According to an embodiment of the invention, unless a decision is binary, the decision will consist of placing the case under considerations in one of several bins. Hence, there may be different degrees of misclassification, depending on the distance of the CBE decision from the correct value. Given the different costs associated with different degrees of misclassification, the factors impacting the decision may be used with the likely degree of misclassification.
  • One aspect of the present invention deals with the process and method used to accomplish this result. At Step 1210 the CBE internal parameters that might affect the probability of misclassification may be determined. Each of these parameters may be referred to as an x. Furthermore, assume that there are M parameters (i.e., i=1, . . . M, forming a parameter vector X=[x1, x2, . . . xM].
  • Parameters that may affect the probability of misclassification include, but are not limited to, the following potential list of candidates:
      • x1: N=Number of retrieved cases (i.e., cardinality of retrieved set and area of histogram in FIG. 9), e.g., N=40 cases.
      • x2: variability of retrieved cases (measure of dispersion of histogram in FIG. 9).
      • x3: number of retrieved cases thresholded by similarity value (area of histogram in FIG. 10) e.g., 25 cases.
      • x4: variability of retrieved cases thresholded by similarity value. (measure of dispersion of histogram in FIG. 10).
      • x5: L=number of refined cases. (i.e., cardinality of refined set) e.g., 21 cases.
      • x6: variability of refined cases.
      • x7: number of refined cases, thresholded by similarity value e.g., 16 cases.
      • x8: variability of refined cases thresholded by similarity value.
      • x9: measure of strength of mode (percentage of cases in mode of histogram) e.g., 50%.
  • According to an embodiment of the invention, other parameters may include:
      • x10: number of retrieved cases weighted by similarities. (i.e. fuzzy cardinality of retrieved set (area of histogram in FIG. 9)).
      • x11: variability of retrieved cases weighted by similarities (measure of dispersion of histogram in FIG. 9).
      • x12: number of refined cases weighted by similarities (i.e. fuzzy cardinality of refined set).
      • x13: variability of refined cases weighted for similarities.
  • These parameters may be query-dependent, (e.g., they may vary for each new application). This may be in contrast to static design parameters, such as, but not limited to, similarity weights, retrieval parameters, and confidence threshold. Static parameters may be tuned at development time (e.g., when a system is initially developed) and periodically revised at maintenance time(s) (e.g., during maintenance periods for a system). According to an embodiment of the invention, static parameters may be considered fixed while evaluating parameters [x1-x9:].
  • According to an embodiment of the invention, the above parameters may likely be positively correlated. By way of example, the number or refined cases L may depend on the total number of cases N. The relative impact of these parameters may be evaluated via a statistical correlation analysis, CART, C4.5 or other algorithms to identify and eliminate those parameters that contribute the least amount of additional information. By way of another example, methods may be used to handle partially redundant information in a way that avoids double counting of the evidence. The use of a minimum operator in the computation of the Confidence Factor, as is described below, is such an example.
  • According to an embodiment of the invention, at step 1220, the conditional probability of misclassification for each parameter Xi (for i=1 . . . 9) may be estimated. By way of example, this step may be achieved by running a set of experiments with a training set. Given a certified Case Base (e.g., a CB containing a number K of cases whose associated decisions were certified correct), the following steps may then be followed:
      • (1) For each of the K cases in the CB, one case is selected (from the CB) and may be considered as the probe, i.e., the case whose decision we want to determine (1310).
      • (2) The Case Based Engine (CBE) and the (K-1) cases remaining in the CB may then be used to determine the rate class (i.e., the placement decision for the probe) (1320).
      • (3) The decision derived from the CBE may then be compared with the original certified decision of the probe (1330).
      • (4) The comparison and its associated parameters [x1-x9] may then be recorded.
      • (5) The selected case may be placed in the CB and another case selected. (i.e., back to step (1) (1340)).
      • (6) Perform steps (2) through (5) until all the K cases in the CB have been used as probes (1350).
  • This process is illustrated in FIG. 13. Once the process is completed, the results may be collected and analyzed. The comparison matrix of FIG. 14 illustrates a comparison between a probe's decision derived from the CBE and the probe's certified reference decision. The cells located on the comparison matrix's main diagonal may contain the percentage of correct classifications. The cells off the main diagonal may contain the percentage of incorrect classifications. As was previously mentioned, there may be different degrees of misclassification, depending on the distance of a CBE decision from the corresponding reference decision.
  • At this point, it may be desirable to estimate the conditional probability of misclassification given each of parameters [x1-x9]. Since each case in the comparison matrix has its associated parameters [x1-x9] recorded, a histogram of the distance from the correct decision for each of these parameters may be generated.
  • This process may be illustrated by a simple example. As was previously described, the value of the first parameter x1:
      • x1: N=Number of retrieved cases. (i.e., cardinality of retrieved set (area of histogram in FIG. 9))
  • FIG. 15 shows an example of cross-tabulation of classification distances and number of retrieved cases for each probe. By way of this example, the processing of 573 probes is shown, achieving a correct classification for 242 of them. Additionally, 214 were classified as one rate class off (where 114 at (−1) and 100 at (+1) equal 214). Further, 99 were two rate classes off (where 64 at (−2) and 35 at (+2) equal 99), and 18 were 3 or more classes off. These 573 cases may also be subdivided in ten bins, representing ranges of the number of retrieved cases used for each probe. By way of example, 41 cases had between 1 and 4 retrieved cases (first column), while 58 cases used more than 40 retrieved cases (last column). FIG. 16 illustrates the same cross-tabulation using percentages instead of the number of cases. According to an embodiment of the invention, this table may be referred to as matrix D(i, j), where i=I . . . 7 (the seven distances considered), and j=I . . . 10 (the ten bins considered).
  • Note that this table contains the same percentages illustrated in FIG. 15, once we normalize the values by the total number of cases, tabulated for different values of x 1·. For instance, the total percentage of Correct Classifications (CC) in FIG. 14 may be defined as the sum of the elements on the main diagonal, i.e.
  • % CC = i = 1 T M ( i , i )
  • The same percentage may be obtained by adding the percentages distributed along the fourth row (corresponding to Distance 0), i.e.
  • % CC = j = 1 10 D ( 4 , j )
  • The percentage of correct classification may increase with the number of cases retrieved for each probe (fourth row, distance=0). By analyzing a given column on this table, an estimate may be derived of the probability of correct/incorrect classification, given that the number of cases is in the range of values corresponding to the column.
  • According to an embodiment of the invention, step 1230 may comprise translating the conditional probability of misclassification into a soft constraint for each parameter xi(for i= . . . 9). By way of example, all misclassifications are determined to be equally undesirable, the only concern may be with the row corresponding to distance equal 0 (i.e., correct classification), as illustrated in FIG. 17. By way of another example, it may be desirable to penalize more those misclassifications that are two or three rate classes away from the correct decision. Therefore, an overall performance function may be formulated that aggregates the rewards of correct classifications with increasing penalties for misclassifications. Although various types of aggregating function may be used to achieve these ends, one possible aggregating function may use a weighted sum of rewards and penalties. Specifically, for each bin (range of values) of the parameter x 1 under consideration, a reward/penalty wi may he considered. For instance:
  • f ( Bin k ) = i = 1 7 w 1 D ( i , k )
  • Where, for example, the weight vector W[wi, i=1 . . . 7 is W=−11, −6, −1,4, −1, −6. −11]
  • This weight vector indicates that misclassifying a decision by three or more rate classes is eleven times worse than a misclassification that is one rate class away. Except for the fourth element, which indicates the reward for correct classifications, all other elements in vector W indicate the penalty value for the corresponding degree of misclassification. FIG. 18 illustrates the result of applying the performance function j(Bink) to the values of FIG. 16, i.e., Matrix D.
  • By interpreting the values of FIG. 18 as degree of preference, a fuzzy membership function Ci(xi), is derived, indicating the tolerable and desirable ranges for each parameter x1. According to an embodiment of the invention, a possible way to convert the values of FIG. 18 to a fuzzy membership function is to replace any negative value with a zero and then normalize the elements by the largest value. In this example, the result of this process is illustrated in FIGS. 19 and 20.
  • As previously described, the membership function of a fuzzy set is a mapping from the universe of discourse (the range of values of the performance function) into the interval [0,1]. The membership function has a natural preference interpretation. The support of the membership function Ci(x,) represents the range of tolerable (i.e., acceptable) values of x1. The support of the fuzzy set Ci(xi) is defined as the interval of values of x for which Ci(xi)>0. Similarly, the core may represent the most desirable range of values and establish a top preference. The core of the membership function Ci(xi) may be defined as the interval of values x, for which Ci(xi)=1. In the example of FIG. 20, the support is [22, infinity] and the core is [40, infinity]. By definition, a feature value falling inside the core will receive a preference value of 1. As the feature value moves away from the most desirable range, its associated preference value will decrease from 1 to 0. At this point, the information may be translated into a soft constraint representing our preference for the values of parameter x. The soft constraint may be referred to as Ci(xi), as illustrated in FIG. 20.
  • According to an embodiment of the invention, a fourth step of this invention may be to define a nm-time function to evaluate the confidence measure for each new query. By way of example, after executing the third step for each of the nine parameters, nine soft constraints may be obtained Ci(xi) i=1, . . . , 9. A soft constraint evaluation (SCE) vector is generated that contains the degree to which each parameter satisfies its corresponding soft constraint; SCE [C1(x1), . . . , C9(x9)]. The Confidence Factor (CFj) to be associated to each new case j may be computed at run-time as the intersection of all the soft constraints evaluations contained in the SCE vector.
  • CF j = i = 1 9 C i ( x i ) = Min i = 1 9 C i ( x i )
  • According to an embodiment of the invention, all elements in the Soft Constraint Evaluation (SCE) vector may be real numbers in the interval [0,1]. Therefore the Confidence Factor CFj will also be a real number in the interval [0,1]. Nine potential soft constraints represent the most desirable fuzzy ranges for the nine parameters described above. Given a new probe, its computed parameter vector X=[x1-x9] may used be to determine the degree to which all soft constraints are satisfied (SCE), leading to the computation of its Confidence Factor CF.
  • As previously described above, a four-step process was described to compute at run-time the confidence factor. The minimum threshold for the confidence value may be determined by a series of experiments with the data, to avoid being too restrictive or too inclusive. A higher-than-needed threshold may decrease the coverage provided by the CBE by rejecting too many correct solutions (False Negatives). As the threshold is lowered, the number of accepted solutions is increased and therefore, an increase in coverage is obtained. However, a lower-than needed threshold may decrease the accuracy provided by the CBE by accepting too many incorrect solutions (False Positives). Therefore, it may be desirable to obtain a threshold using a method that balances these two concepts.
  • According to an embodiment of the invention, coverage for any given threshold level r may include accepting n(r) cases out of K. Given a Case Base with K cases, the function g1(t) may be defined as a measure or coverage:

  • g 1(τ)=n(τ)/K
  • For accuracy, the performance function}; as previously defined, may be used (e.g., aggregate the rewards of correct classifications with the increasing penalties for misclassifications) and may be adapted to the entire Case Base to evaluate its accuracy for any given threshold r. As the value of r is modified, more decisions may be accepted or rejected, modifying the entries of the comparison matrix M=[M(i, j)].
  • 2 ( τ ) = i = 1 T K * R * M ( i , i ) + i = 1 T j = 1 , j 1 T p ( i , j ) * R * M ( i , j )
  • Specifically, the function g2(τ) may be defined as a measure of relative accuracy, where M(i, j) is the (i, j) element of the comparison matrix illustrated in FIG. 14. It may represent the percentage of cases classified in cell i while the correct classification was cell j. Therefore (i=j) implies a correct classification. The percentage may be computed over the total cases for which the decision has been accepted (i.e., its corresponding confidence was above the threshold). Further, K*R may be a reward for correct classification (where K indicates a static multiple of basic reward R), and p(i, j)*R may be the penalty for incorrect classification (p(i, j) determine a dynamic multiple of basic reward R).
  • For simplicity, R=1 may he used. The penalty function p(i, j) may indicate the increasing penalty for misclassifications farther away from the correct one. Many possible versions of function p(i, j) can be used. By way of example, the vector W={−11, −6, −1, 4, −1, −6, −11] corresponds to the values:

  • K=4 and

  • p(i,j)=5|i-j|+4
  • A linear penalty function p(i, j) is illustrated m FIG. 30. It will be recognized by those of ordinary skill in the art that other linear functions may also be used. If over-penalization for larger misclassifications is desired, a non-linear penalty function may be used, such as p(i, j)=−3(i-j)2+4, such as that illustrated in FIG. 31.
  • The selection of a penalty function may be left as a choice to a user to represent the cost of different misclassifications. According to an embodiment of the invention, if there were no differences among such costs, then a simplified version of g2(r) could be used to measure the CBE accuracy, e.g.
  • 2 ( τ ) = i = 1 T K * R * M ( i , i )
  • Functions g1(t) and g2(t) may be defined to measure coverage and relative accuracy, respectively. Function g1(t) may be a monotonically non-increasing with the value t (larger values of t will not increase coverage) , while g2(t) may be a monotonically non-decreasing with the value t (larger values of t will not decrease relative accuracy, unless the set is empty.). The two functions may be aggregated into a global accuracy function A(t) to evaluate the overall system performance under different thresholds t:

  • A(τ)=g 1(τ)×g 2(τ)
  • where x indicates scalar multiplication
  • The function A(t) provides a measure of accuracy combined with the coverage of cases. FIG. 21 illustrates an example of the computation of Coverage, Relative Accuracy, and Global Accuracy as a function of threshold t. In this example, t=0.1 has the largest coverage, t=0.7 has the largest relative accuracy, and t=0.5 has the largest global accuracy.
  • There are many approaches that may be used to maximize the aggregate function A(t) to obtain the best value for threshold t. Any reasonable optimization algorithm (such as a gradient-based search, or a combined gradient and binary search) may be used to this effect. For example, in FIG. 21, the value of A(t) may be computed for nine values of t. According to an embodiment of the invention, values may be explored to determine a best threshold. By way of example only, the neighborhood of t=0.5 may be explored, such as by a gradient method, to determine that the value t=0.55 is the best threshold.
  • As described above, the present invention provides many advantages. According to an embodiment of the present invention, incremental deployment of the CBE may be achieved, instead of postponing its deployment until an entire Case Base has been completely populated. Further, a determination may be made for which applications (e.g., characterized by specific medical conditions) the CBE can provide sufficiently high confidence in the output to shift its use from a human underwriter productivity tool to an automated placement tool.
  • According to an embodiment of the invention, as the Case Base is augmented and or updated by new resolved applications, the quality of the retrieved cases may change. The present invention may enable monitoring of the quality of the Case Base, indicating the part of the CB requiring growth or scrubbing. By way of example, regions within the Case Base with insufficient coverage (small area histograms, low similarity levels) may be identified, as well as regions containing inconsistent decisions (bimodal histograms), and ambiguous regions (very broad histograms).
  • According to an embodiment of the invention, by establishing a confidence threshold, a determination can be made, for each application processed by the CBE, if the output can be used directly to place the application or if it will be a suggestion to be revised by a human underwriter.
  • According to an embodiment of the invention, a process as described above may be used after the deployment of the CBE, as part of the Case Base maintenance. As the Case Based is enriched by the influx of new cases, the distribution of its cases may also vary. Regions of the CB that were sparsely populated might now contain a larger number of cases. Therefore, as part of the tuning of the CBE, one should periodically recompute various steps within the process to update the soft constraints on each of the parameters. As part of the same maintenance, the value of the best threshold may also be updated and used m the process.
  • Network-Based Underwriting System
  • FIG. 22 illustrates a system 2200 according to an embodiment of the present invention. The system 2200 comprises a plurality of computer devices 2205 (or “computers”) used by a plurality of users to connect to a network 2202 through a plurality of connection providers (CPs) 2210. The network 2202 may be any network that permits multiple computers to connect and interact. According to an embodiment of the invention, the network 2202 may be comprised of a dedicated line to connect the plurality of the users, such as the Internet, an intranet, a local area network (LAN), a wide area network (WAN), a wireless network, or other type of network. Each of the CPs 2210 may be a provider that connects the users to the network 2202. For example, the CP 2210 may be an Internet service provider (ISP), a dial-up access means, such as a modem, or other manner of connecting to the network 2202. In actual practice, there may be significantly more users connected to the system 2200 than shown in FIG. 22. This would mean that there would be additional users who are connected through the same CPs 2210 shown or through another CP 2210. Nevertheless, for purposes of illustration, the discussion will presume three computer devices 2205 are connected to the network 2202 through two CPs 2210.
  • According to an embodiment of the invention, the computer devices 2205 a-2205 c may each make use of any device (e.g., a computer, a wireless telephone, a personal digital assistant, etc.) capable of accessing the network 2202 through the CP 2210. Alternatively, some or all of the computer devices 2205 a-2205 c may access the network 2202 through a direct connection, such as a TI line, or similar connection. FIG. 22 shows the three computer devices 2205 a-2205 c, each having a connection to the network 2202 through the CP 2210 a and the CP 2210 b. The computer devices 2205 a-2205 c may each make use of a personal computer such as a computer located in a user's home, or may use other devices which allow the user to access and interact with others on the network 2202. A central controller module 2212 may also have a connection to the network 2202 as described above. The central controller module 2212 may communicate with one or more modules, such as one or more data storage modules 2236, one or more evaluation modules 2224, one or more case database modules 2240 or other modules discussed in greater detail below.
  • Each of the computer devices 2205 a-2205 c used may contain a processor module 2204, a display module 2208, and a user interface module 2206. Each of the computer devices 2205 a-2205 c may have at least one user interface module 2206 for interacting and controlling the computer. The user interface module 2206 may be comprised of one or more of a keyboard, a joystick, a touchpad, a mouse, a scanner or any similar device or combination of devices. Each of the computers 2205 a-2205 c may also include a display module 2208, such as a CRT display or other device. According to an embodiment of the invention, a developer, a user of a production system, and/or a change management module may use a computer device 2205.
  • The central controller module 2212 may maintain a connection to the network 2202 such as through a transmitter module 2214 and a receiver module 2216. The transmitter module 2214 and the receiver module 2216 may be comprised of conventional devices that enable the central controller module 2212 to interact with the network 2202. According to an embodiment of the invention, the transmitter module 2214 and the receiver module 2216 may be integral with the central controller module 2212. According to another embodiment of the invention, the transmitter module 2214 and the receiver module 2216 may be portions of one connection device. The connection to the network 2202 by the central controller module 2212 and the computer devices 2205 may be a high speed, large bandwidth connection, such as through a T1 or a T3 line, a cable connection, a telephone line connection, a DSL connection, or another similar type of connection. The central controller module 2212 functions to permit the computer devices 2205 a-2205 c to interact with each other in connection with various applications, messaging services and other services which may be provided through the system 2200.
  • The central controller module 2212 preferably comprises either a single server computer or a plurality of server computers configured to appear to the computer devices 2205 a-2205 c as a single resource. The central controller module 2212 communicates with a number of modules. Each module will now be described in greater detail.
  • A processor module 2218 may be responsible for carrying out processing within the system 2200. According to an embodiment of the invention, the processor module 2218 may handle high-level processing, and may comprise a math co-processor or other processing devices.
  • A decision component category module 2220 and an application category module 2222 may handle categories for various insurance policies and decision components. As described above, each decision component and each application may be assigned a category. The decision component category module 2220 may include information related to the category assigned for each decision component, including a cross-reference Lo the application associated with each decision component, the assigned category or categories, and/or other information. The application category module 2222 may include information related to the category assigned for each application, including a cross-reference to the decision components associated with each application, the assigned category or categories, and/or other information.
  • An evaluation module 2224 may include an evaluation of a decision component using one or more rules, where the rules may be fuzzy logic rules. The evaluation module 2224 may direct the application of one or more fuzzy logic rules to one or more decision components. Further, the evaluation module 2224 may direct the application of one or more fuzzy logic rules to one or more policies within a case database 2240, to be described in greater detail below. Evaluation module policies within a case database 2240, are to be described in greater detail below.
  • A measurement module 2226 may include measurements assigned to one or more decision components. As described above, a measurement may be assigned to each decision component based on an evaluation, such as an evaluation with a fuzzy logic rule. The measurement module 2226 may associate a measurement with each decision component, direct the generation of the measurement, and/or include information related to a measurement.
  • An issue module 2228 may handle issuing an insurance policy based on the evaluation and measurements of one or more decision components and the application itself. According to an embodiment of the invention, decisions whether to ultimately issue an insurance policy or not to issue an insurance policy may be communicated to an applicant through the issue module 2228. The issue module 2228 may associate issuance of an insurance policy with an applicant, with various measurement(s) and evaluation(s) of one or more policies and/or decision components and other information.
  • A retrieval module 2230 may be responsible for retrieving cases from a case database module 2240. According to an embodiment of the invention, queries submitted by a user for case-based reasoning may be coordinated through the retrieval module 2230 for retrieving cases. Other information and functions related for case retrieval may also be available.
  • A ranking module 2232 may be responsible for ranking cases retrieved based on one or more queries received from a user. According to an embodiment of the invention, the ranking module 2232 may maintain information related to cases and associated with one or more queries. The ranking module 2232 may associate each case with the ranking(s) associated with one or more queries. Other information may also be associated with the ranking module 2232.
  • A rate class module 2234 may handle various designations of rate classes for one or more insurance policies. According to an embodiment of the invention, each application may be assigned a rate class, where the premiums paid by the applicant are based on the rate class. The rate class module 2234 may associate a rate class with each insurance application, and may assign a rate class based on evaluation and measurements of various applications and decision components, as well as based on a decision by one or more underwriters. Other information may also be associated with the rate class module 2234.
  • Data may be stored in a data storage module 2236. The data storage module 2236 stores a plurality of digital files. According to an embodiment of the invention, a plurality of data storage modules 2236 may be used and located on one or more data storage devices, where the data storage devices are combined or separate from the controller module 2212. One or more data storage modules 2236 may also be used to archive information.
  • An adaptation module 2238 may be responsible for adapting the results of one or more queries to determine which previous cases are most similar to the application for the present application for insurance. Other information may also be associated with the adaptation module 2238.
  • All cases used in a case based reasoning may be stored in a case database module 2240. According to an embodiment of the invention, a plurality of case database modules 2240 may be used and located on one or more data storage devices, where the data storage devices are combined or separate from the controller module 2212.
  • While the system 2200 of Pig. 22 discloses the requester device 2205 connected to the network 2202, it should be understood that a personal digital assistant (“FDA”), a mobile telephone, a television, or another device that permits access to the network 2202 may be used to arrive at the system of the present invention.
  • According to another embodiment of the invention, a computer-usable and writeable medium having a plurality of computer readable program code stored therein may be provided for practicing the process of the present invention. The process and system of the present invention may be implemented within a variety of operating systems, such as a Windows® operating system, various versions of a Unix-based operating system (e.g., a Hewlett Packard, a Red Hat, or a Linux version of a Unix-based operating system), or various versions of an AS/400-based operating system. For example, the computer-usable and writeable medium may be comprised of a CD ROM, a floppy disk, a hard disk, or any other computer-usable medium. One or more of the components of the system 2200 may comprise computer readable program code in the form of functional instructions stored in the computer-usable medium such that when the computer-usable medium is installed on the system 2200, those components cause the system 2200 to perform the functions described. The computer readable program code for the present invention may also be bundled with other computer readable program software.
  • According to one embodiment, the central controller module 2212, the transmitter module 2214, the receiver module 2216, the processor module 2218, the decision component category module 2220, application category module 2222, evaluation module 2224, measurement module 2226, issue module 2228, retrieval module 2230, ranking module 2232, rate class module 2234, data storage module 2236, adaptation module 2238, and case database module 2240 may each comprise computer-readable code that, when installed on a computer, performs the functions described above. Also, only some of the components may be provided in computer-readable code.
  • Additionally, various entities and combinations of entities may employ a computer to implement the components performing the above-described functions. According to an embodiment of the invention, the computer may be a standard computer comprising an input device, an output device, a processor device, and a data storage device. According to other embodiments of the invention, various components may be computers in different departments within the same corporation or entity. Other computer configurations may also be used. According to another embodiment of the invention, various components may be separate entities such as corporations or limited liability companies. Other embodiments, in compliance with applicable laws and regulations, may also be used.
  • According to one specific embodiment of the present invention, the system may comprise components of a software system. The system may operate on a network and may be connected to other systems sharing a common database. Other hardware arrangements may also be provided.
  • Other embodiments, uses and advantages of the present invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. The specification and examples should be considered exemplary only. The intended scope of the invention is only limited by the claims appended hereto.
  • Information Summarization
  • The fuzzy rule-based decision engine and the case-based decision engine may need to capture the medical/actuarial knowledge required to evaluate and underwrite an application. They may do so by using a rule set or a case base, respectively. However, both decision engines may also need access to all the relevant information that characterizes the new application. While the structured component of this information can be captured as data and stored into a database (“DB”), the free-form nature of an attending physician statement (APS) may not be suitable to automated parsing and interpretation. Therefore, for each application requiring an APS, a summarization tool may be used that will convert all the essential input variables from that statement into a structured form, suitable for storage in a DB and for supporting automated decision systems. Furthermore, if the decision engines were not capable of handling this new application, then the use of the APS summarization tool may be a productivity aid for a human underwriter, rather than an automation tool.
  • The present invention may be used in connection with an engine to automate decisions in business, commercial, or manufacturing processes. Such an engine may be based on (but not limited to) rules and/or cases. A process and system may be provided to structure and summarize key information required by a reasoning system. According to an embodiment of the invention, summarized information required by a reasoning system may be used to underwrite insurance applications, and establish a rate class corresponding to the perceived risk of the applicant. Such risk may be characterized by several information sources, such as, but not limited to, the application form, the APS, laboratory data, medical insurance consortium data bases, motor vehicle registration data bases, etc. Once this information has been gathered and compiled, the application risk may be evaluated by a human underwriter or by an automated decision system. This evaluation is carried out leveraging the medical and actuarial knowledge of the human underwriter, which is captured in its essence by the automated reasoning system. According to an embodiment of the invention, an APS summarization tool may capture the relevant variables that characterize a given medical impairment, allowing an automated reasoning system to determine the degree of severity of such impairment and to estimate the underlying insurance risk.
  • According to an embodiment of the invention, a focus of this invention on the individual medical impairments of a patient may provide 1) incremental deployment of the Automated Underwriting system as summaries for new impairments can be developed and added; 2) efficient coverage, by addressing the most frequent impairments first, according to a Pareto analysis of their frequencies; 3) efficient description of the impairment, by including in the summary only the variables that could have an impact on the decision.
  • By way of example, an aspect of the present invention will be described in terms of underwriting of an application for a fixed life insurance policy. Although the description focuses on the use of a reasoning system to automate the underwriting process of insurance policies, it will be understood by one of ordinary skill in the art that the applicability of this invention may be much broader, as it may apply to other reasoning system applications.
  • According to an embodiment of the invention, a method for executing and manipulating an APS summarization tool may occur as illustrated in FIG. 23. At step 2300, a summarizer with the appropriate medical knowledge would log into a web-based system to begin the summarization process. According to an embodiment of the invention, the APS summarization system may include a general form plus various condition specific forms, which are then filled out by the summarizer. The summarizer may first fill out the general form, which contains data fields relevant to all applicants. Condition specific forms arc then filled out as needed, as the summarizer discovers various features present m the APS being summarized.
  • At step 2302, a summarizer may verify that the APS corresponds to the correct applicant. This may be done by matching information on the APS itself with information about the applicant provided by the system. By way of example, an applicant's name, date of birth, and social security number could be matched. If a match is not made, the summarizer may note this by checking the appropriate checkbox. According to an embodiment of the invention, at step 2304, failure to match an APS to an applicant would end the summarizer's session for that applicant, and the summarizer may recommend corrective action.
  • At step 2306, the general form is filled out. FIG. 24 illustrates a general form within a graphical user interface 2400 according to an embodiment of the invention. Graphical user interface 2400 may comprise access to any network browser, such as Netscape Navigator, Microsoft Explorer, or others. Other means of accessing a network may also be used. Graphical user interface 2400 may include a control area 2402, whereby a summarizer may control various aspects of graphical user interface 2400. Control may include moving to various portions of the network via the graphical user interface 2400, printing information from the network, searching for information within the network, and other functions used within a browser.
  • According to an embodiment of the invention, a general form 2400 may provide a fixed structure 2406 to capture the data within the system. According to an embodiment of the invention, different sections of the form may be organized into fields that are structured to provide only a fixed set of choices for the summarizer. This may be done to standardize the different pieces of information contained in the APS. By way of example, a fixed set of choices may be provided to a summarizer via a pull-down menu 2408. For fields that cannot be treated as pull-down menus (e.g., dates, numeric values of lab tests), such as entry field 2410 labeled as “Initial date,” validation may be performed to ensure that data entry errors are minimized, and to check that values are within allowable pre-determined limits. According to an embodiment of the invention, validation may include a “client-side” validation, designed to give the summarizer an immediate response if any of the data is incorrectly entered. A “client-side” validation may be achieved through JavaScript code embedded in the web pages. According to an embodiment of the invention, validation may include a “server-side” validation, which may be performed after data submission. “Server-side” validation may be designed primarily as a fail-safe check to prevent erroneous data from entering the business-critical database.
  • According to an embodiment of the invention, link section 2404 may provide access to other portions of general form 2400. As illustrated in FIG. 24, link section 2404 may include links (such as hypertext links) to portions of general form 2400 that relate to blood pressure, family history, nicotine use, build, lipids, alcohol use, cardiovascular fitness and tests, final check, comments, abnormal physical symptoms, abnormal blood results, abnormal urine results, abnormal pap test, mammogram, abnormal colonoscopy, chest x-ray, pulmonary function, substance abuse, and non-medical history. Other information within a general form 2400 may also be provided, and as such, may be linked through link section 2404.
  • According to an embodiment of the invention, an APS summary may distinguish between a blank data field and answers such as “don't know” or “not applicable,” thereby ensuring the completeness of the summary. For a general form submission, a final validation pass may be performed at step 2308 to alert the summarizer if certain required fields are blank. If required fields are blank, the system may require a summarizer to return to step 2306 and complete the general form. If the summarizer wishes to indicate that the particular piece of information is not known, they may be required to specifically indicate so, thereby maintaining information about what information is specifically not known. However, it will be recognized that not all fields will necessarily require information. For example, certain fields may be “conditionally mandatory,” meaning that they require an answer only if other fields have been filled out in a particular way. Use of conditionally mandatory fields may ensure that all necessary information is gathered. Further, ensuring that all required fields have been filled may also ensure that the necessary information is gathered.
  • When the general form has been filled out and validated at step 2308, with all of the required fields entered, it may be necessary to complete one or more condition-specific forms. At step 2310, it is determined if any condition-specific forms arc required. If no condition specific forms are required, the results may be submitted to a database or other storage device for use at a later time at step 2320.
  • If a condition-specific form is required, a summarizer may select a condition-specific form to fill-in at step 2312. According to an embodiment of the invention, a summarizer may move from the general form to any of the condition-specific forms by following a hypertext link embedded within the general form. By way of example, a link to a condition-specific form may be similar to, and/or same as links located within link portion 2404. Further, links to condition-specific forms may be located within link portion 2404. A portion of the knowledge of which condition-specific forms are necessary may be obtained while filling out the general form. In the current example of life insurance underwriting, these condition-specific forms may include hypertension, diabetes, etc.
  • FIG. 25 illustrates an example of a condition-specific form for hypertension within a graphical user interface 2500 according to an embodiment of the invention. Graphical user interface 2500 may comprise access to any network browser, such as Netscape Navigator, Microsoft Explorer, or other browser. Other manners of accessing a network may also be used. Graphical user interface 2500 may include a control area 2502, whereby a summarizer may control various aspects of graphic user interface 2500. Control may include moving to various portions of the network via the graphic user interface 2500, printing information from the network, searching for information within the network, and other functions used within a browser.
  • Graphical user interface 2500 displays the hypertension-specific form, which may include various sections for inputting information related to hypertension. In the hypertension specific form illustrated in FIG. 25, initial identification section 2504 may enable a summarizer to provide initial identification information, including whether an applicant has hypertension, the type of hypertension, whether it was secondary hypertension, and if so, how the cause was removed or cured. According to an embodiment of the invention, pull down menus may be used to ensure that information entered is standardized for each patient. Other information may also be gathered in initial identification section 2504.
  • EKG section 2506 may enable a summarizer to provide EKG information, including EKG readings within a specified time period (e.g., 6 months), chest X-rays within a specified time period (e.g., 6 months), and other information related to EKG readings. According to an embodiment of the invention, pull down menus may be used to ensure that information entered is standardized for each patient. Patient cooperation section 2508 may enable a summarizer to provide information related to a patient's cooperation, including whether the patient has cooperated, whether a patient's blood pressure is under control, and if so, for how many months, and other information related to a patient's cooperation in dealing with hypertension. According to an embodiment of the invention, pull down menus may be used to ensure that information entered is standardized for each patient.
  • Blood pressure section 2510 may enable a summarizer to enter blood pressure readings corresponding to various dates. According to an embodiment of the invention, separate entry fields may be provided for the date the blood pressure reading was taken, (e.g., systolic reading (SBP) and the diastolic reading (DBP)). Other information may also be entered in blood pressure section 2510. Further, it will he understood by those skilled in the art that other information related to hypertension may also be entered in a hypertension form displayed on graphical user interface 2500.
  • At step 2314, a summarizer fills out a condition-specific form. For a condition-specific form, a final validation pass may be performed at step 2316 to alert the summarizer if certain required fields are blank. If required fields are blank, the system may require a summarizer to return to step 2314 and complete the condition-specific form. As with a general form, if the summarizer wishes to indicate that the particular piece of information is not known, they may be required to specifically indicate so, thereby facilitating the tracking of what information is specifically not known. However, it will be recognized that not all fields will necessarily require information. For example, certain fields may be “conditionally mandatory,” meaning that they require an answer only if other fields have been filled out in a particular way. Use of conditionally mandatory fields may ensure that all necessary information is gathered. Further, ensuring that all required fields have been filled may also ensure that the necessary information is gathered.
  • If the condition-specific form has been filled out and validated at step 2316, with all of the required fields entered, a summarizer may determine if additional condition-specific forms are necessary at step 2318. If additional condition-specific forms are necessary, a summarizer may return to step 2312 and select the appropriate condition-specific form in which to enter information. If no additional condition-specific forms are required, the results may be submitted to a database or other storage device for use at a later time at step 2320.
  • Once the summarization is complete for a general form and any selected condition-specific forms, the summarizer may submit the results, such as described in step 2320. The data may then be transferred over a network, such as the Internet, and stored in a database for later use. According to an embodiment of the invention, different categorical data fields may be presented to the summarizer as text, but for space efficiency are encoded as integer values in the database. A “translation table” to the corresponding field meanings may then be provided as part of the design of the APS summary. The APS summarizer may provide a structured list of topics, thereby enabling a trained person to summarize the most significant information currently contained in a handwritten or typewritten APS. Further, the APS summarizer may provide an efficient description of the data content of the APS. As stated above, the APS itself can be several tens of pages of doctor's notes. The APS summary is designed to capture only the data fields that are relevant to the problem at hand. In addition, a structured and organized description of the APS data may be provided. An APS itself can adhere to any arbitrary order because of different doctor's styles. The APS summary may provide a single consistent format for the data as required for an automated system, and/or which facilitates the human underwriter's job greatly.
  • Since the APS summary may be captured in a database, the information contained in it may be easily available to any computer-based application. Again, this is a requirement for an automated underwriting system, but it may provide many other advantages as well. For example, the APS data may otherwise be very difficult to analyze statistically, to categorize, or to classify. Since the APS summary forms can be web-based, the physical location of the summarizers may be immaterial. The original APS sheets can be received in location X, scanned, sent over the Internet to location Y, where the APS summary is filled out, and the digital data from the summary can be submitted and stored on a database server in location Z. Further, the automated decision engine can be in any fourth location, as could an individual running queries against the APS summary database for statistical analysis or reporting purposes.
  • According to an embodiment of the invention, general and condition specific forms may be written in HTML and JavaScript, which provide the validation functionality. A system for storing filled out summary data into a remote database has also been created. This system was created using JavaBeans and JSP. Testing by experienced underwriters has been performed. The HTML summary forms are displayed to the underwriters via a web browser, and the data from an actual APS is entered onto the form. The underwriter comments and feedback are captured on the form as well, and used to aid the continual improvement of the forms. In choosing which condition-specific forms to create, a statistical analysis was done of the frequencies of the various medical conditions. The conditions that are most frequent were chosen to be worked on first. The APS summary does not have to cover all conditions before it is put into production. Deployment of the APS summary may be progressive, covering new conditions one by one as new forms become available. Applicants with APS requirements that are not covered in the current APS summary may be underwritten using the usual procedures. Condition-specific forms may therefore be added to the APS summary in order to increase coverage of applicants by the digital underwriting system.
  • Optimization of Fuzzy Rule-Based and Case-Based Decision Engines
  • According to an embodiment of the present invention, fuzzy rule-based and case-based reasoning may be used to automate decisions in business, commercial, or manufacturing process. Specifically, a process and system to automate the determination of optimal design parameters that impact the quality of the output of the decision engines is described.
  • According to an embodiment of the invention, the optimization aspect may provide a structured and robust search and optimization methodology for identifying and tuning the decision thresholds (cutoffs) of the fuzzy rules and internal parameters of the fuzzy rule-based decision engine (“RBE”), and the internal parameters of the case-based decision engine (“CBE”). These benefits may include a minimization of the degree of rate class assignment mismatch between that of an expert human underwriter and automated rate class decisions. Further, the maintenance of the accuracy of rule-based and case-based decision-making as decision guidelines evolve with time may be achieved. In addition, identification of ideal parameter combinations that govern the automated decision-making process may occur.
  • The system and process of the present invention may apply to a class of stochastic global search algorithms known as evolutionary algorithms to perform parameter identification and tuning. Such algorithms may be executed utilizing principles of natural evolution and may be robust adaptive search schemes suitable for searching non-linear, discontinuous, and high-dimensional spaces. Moreover, this tuning approach may not require an explicit mathematical description of the multi-dimensional search space. Instead, this tuning approach may rely solely on an objective function that is capable of producing a relative measure of alternative solutions. According to an embodiment of the invention, an evolutionary algorithm may be used for optimization within an RBE and CBE. By way of example, an evolutionary algorithm (“EA”) may include genetic algorithms, evolutionary programming, evolution strategies, and genetic programming. The principles of these related techniques may define a general paradigm that is based on a simulation of natural evolution. EAs may perform their search by maintaining at any time t a population P(t)={P1(t), P2(t), . . . , Pp(t)} of individuals. In this example, “genetic” operators that model simplified rules of biological evolution are applied to create the new and desirably more superior population P(t+1). Such a process may continue until a sufficiently good population is achieved, or some other termination condition is satisfied. Each Pi(t) ∈ P(t), represents via an internal data structure, a potential solution to the original problem. The choice of an appropriate data structure for representing solutions may be more an “art” than a “science” due to the plurality of data structures suitable for a given problem. However, the choice of an appropriate representation may be a critical step in a successful application of EAs. Effort may be required to select a data structure that is compact, minimally superfluous, and can avoid creation of infeasible individuals. For instance, if the problem domain requires finding an optimal real vector from the space defined by dissimilarly bounded real coordinates, it may be more appropriate to choose as a representation a real-set-array (e.g., bounded sets of real numbers) instead of a representation capable of generating bit strings. A representation that generates bit strings may create many infeasible individuals, and can be certainly longer than a more compact sequence of real numbers. Closely linked to a choice of representation of solutions may be a choice of a fitness function ψ: P(t)→R, that assigns credit to candidate solutions. Individuals in a population are assigned fitness values according to some evaluation criterion. Fitness values may measure how well individuals represent solutions to the problem. Highly fit individuals are more likely to create offspring by recombination or mutation operations. Weak individuals are less likely to be picked for reproduction, so they eventually die out. A mutation operator introduces genetic variations in the population by randomly modifying some of the building blocks of individuals. Evolutionary algorithms are essentially parallel by design, and at each evolutionary step a breadth search of increasingly optimal sub-regions of the options space is performed. Evolutionary search is a powerful technique of solving problems, and is applicable to a wide variety of practical problems that are nearly intractable with other conventional optimization techniques. Practical evolutionary search schemes do not guarantee convergence to the global optimum in a predetermined finite time, but they are often capable of finding very good and consistent approximate solutions. However, they are shown to asymptotically converge under mild conditions.
  • An evolutionary algorithm may be used within a process and system for automating the tuning and maintenance of fuzzy rule-based and case-based decision systems used for automated decisions in insurance underwriting. While this approach is demonstrated for insurance underwriting, it is broadly applicable to diverse rule-based and case-based decision-making applications in business, commercial, and manufacturing processes. Specifically, we describe a structured and robust search and optimization methodology based on a configurable multi-stage evolutionary algorithm for identifying and tuning the decision thresholds of the fuzzy rules and internal parameters of the fuzzy rule-based decision engine and the internal parameters of the case-based decision engine. The parameters of the decision systems impact the quality of the decision-making, and are therefore critical. Furthermore, this tuning methodology can be used periodically to update and maintain the decision engines.
  • As stated above, these fuzzy logic systems may have many parameters that can be freely chosen. These parameters may either be fit to reproduce a given set of decisions, or set by management in order to achieve certain results, or a combination of the two. A large set of cases may be provided by the company as a “certified case base.” According to an embodiment of the invention, the statistics of the certified case base may closely match the statistics of insurance applications received in a reasonable time window. According to an embodiment of the invention, there will be man y more cases than free parameters, so that the system will be over-determined. Then, an optimal solution may be found which minimizes the classification error between a decision engine's output and the supplied cases. When considering maintenance of a system, it may be convenient and advantageous that the parameters are chosen using optimization vs. a set of certified cases. New fuzzy rules and certified cases may be added, or aggregation rules may change. The fuzzy logic systems may be kept current, allowing the insurance company to implement changes quickly and with zero variability.
  • The parameter identification and tuning problem which may presented in this invention can be mathematically described as a minimization problem:

  • min ψ(x) where χ=χ1×χ2× . . . ×χnχi
    Figure US20180260906A1-20180913-P00001
    and ψ:χ→
    Figure US20180260906A1-20180913-P00001
    +X ∈ χ
  • where χ is an n-dimensional bounded hyper-volume (parametric search space) i n the n-dimensional space of reals, x is a parameter vector, and If/ is the objective function that maps the parametric search space to the non-negative real line.
  • FIG. 26 illustrates such a minimization (optimization) problem according to an embodiment of the invention in the context of the application domain, where the search space x corresponds to the space of decision engine designs induced by the parameters imbedded in the decision engine, and the objective function If/ measures the corresponding degree of rate-class assignment mismatch between that of the expert human underwriter and the decision-engine for the certified case base. An evolutionary algorithm iteratively generates trial solutions (trial parameter vectors in the space x), and uses their corresponding consequent degree of rate-class assignment mismatch as the search feedback. Thus, at step 2602, a space of decision engine's designs is probed. At step 2604, a mismatch matrix, which will be described in greater detail below, is generated based on the rate-class decisions generated for the cases by the decision engine. Penalties for mismatching cases are assigned at step 2606. The evolutionary algorithm uses the corresponding degree of rate-class assignment mismatches, and the associated penalties to provide feedback to the decision engine at step 2608. The system may then refine the internal parameters and decision thresholds in the decision engine at step 2602, and proceed through the process again. Thus, an iterative process may be performed.
  • FIG. 27 illustrates an example of an encoded population maintained by the evolutionary algorithm at a given generation. According to an embodiment of the invention, each individual in the population is a trial vector of design parameters representing fuzzy rule thresholds and internal parameters of the decision engine. Each percentage entry may represent a value of a trial parameter that falls within a corresponding bounded real line. Each trial solution vector may be used to initialize an instance of the decision engine, following which each of the cases in the certified case base is evaluated.
  • FIG. 28 illustrates a process schematic for an evaluation system according to an embodiment of the invention. Trial design parameters are provided at an input module 2802. The trial design parameters are automatically input to decision engine 2804. Case subset 2808 from certified case base 2806 is input into decision engine 2804. Certified case base 2806 may comprises cases that have been certified as being correct. Case subset 2808 may be a predetermined number of cases from certified case base 2806. According to an embodiment of the invention, case subset 2808 may comprise two thousand (2000) certified cases. According to an embodiment of the invention, case subset 2808 may comprise a number of times the number of tunable parameters of decision engine 2804. The cases within case subset 2808 are processed in decision engine 2804, and output to decision engine case decisions 2810.
  • Once all the cases i n the certified case base are evaluated, a square confusion matrix 2814 is created. According to an embodiment of the invention, confusion matrix 2814 may be generated by comparing decision engine case decisions 2810 and certified case decisions 2812. The rows of confusion matrix 2814 may correspond to certified case decisions 2812 as determined by an expert human underwriter, and the columns of confusion matrix 2814 may correspond to the decision engine case decisions 2810 for the cases in the certified case base. By way of example, assume a case has been assigned a category S from certified case decision 2812 (from the matrix 2814) and a category PB from decision engine decision 2810. Under these categorizations, the case would count towards an entry in the cell at row 3 and column L In this example, the certified case decision 2812 places the case in a higher risk category, while the decision engine case decision 2810 places the case in a lower risk category. Therefore, for this particular case, the decision engine 2810 has been more liberal in decision-making. By way of another example, if on the other hand both the certified case decision 2812 and the decision engine case decisions 2810 agree as upon categorizing the case in class S, then the case would count towards an entry in the cell at row 3 and column 3. By way of another example, if the certified case decision 2812 is PB, but the machine decision 2810 is S, then clearly the machine decision is more strict.
  • According to an embodiment of the invention, it may be desirable lo use a decision engine that is able to place the maximum number of certified cases along the main diagonal of confusion matrix 2814. It may also be desirable to determine those parameters 2802 for decision engine 2804 that produce such results (e.g., minimize the degree of rate class assignment confusion or mismatch between certified case decisions 2812 and decision engine case decisions 2810). Confusion matrix 2814 may be used as the foundation to compute an aggregate mismatch penalty or score, using penalty module 2816. According to an embodiment of the invention, a penalty matrix may be derived from actuarial studies and is element-by-element multiplied with the cells of the confusion matrix 2814 to generate an aggregate penalty/score for a trial vector of parameters in the evolutionary search. A summation over the number of rows and columns of the matrix may occur, and that should now be “T” (upper case T), as the confusion matrix M may be of a dimension T×T. Other process systems may also be used to achieve the present invention.
  • According to an embodiment of the invention, an evolutionary algorithm may utilize only the selection and stochastic variation (mutation) operations to evolve generations of trial solutions. While the selection operation may seek to exploit known search space regions, the mutation operation may seek to explore new regions of the search space. Such an algorithm is known to those of ordinary skill in the art. One example of the theoretical foundation for such an algorithm class appears in Modeling and Convergence Analysis of Distributed Coevolutionary Algorithms, Raj Subbu and Arthur C. Sanderson, Proceedings of the IEEE International Congress on Evolutionary Computation, 2000.
  • FIG. 29 illustrates an example of the mechanics of such an evolutionary process. At step 2902, an initial population of trial decision engine parameters is created. Proportional selection occurs at step 2904 and an intermediate population is created at step 2906. Stochastic variation occurs at step 2908, and a new population is created at step 2910. The new population may then be subject to proportional selection at step 2904, thereby creating an iterative process.
  • According to an embodiment of the invention, the evolutionary algorithm may use a specified fixed population size and operate in one or more stages, each stage of which may be user configurable. A stage is specified by a tuple consisting of a fixed number of generations and normalized spread of a Gaussian distribution governing randomized sampling. A given solution (also called the parent) in generation i may be improved by cloning it to create two identical child solutions from the parent solution.
  • The first child solution may be mutated according to a uniform distribution within the allowable search bounds. The second child solution may then be mutated according to the Gaussian distribution for generation i. If the mutated solution falls outside of the allowable search bounds, then the sampling is repeated a few times until an acceptable sample is found. If no acceptable sample is found within the allotted number of trials, then the second child solution may be mutated according to a uniform distribution. The best of the parent and two child solutions is retained and is transferred to the population at generation i+1. In addition, it is ensured via elitism that the improvement in the best performing individual of each generation of evolution i+n (where n is an increasing whole number) is a monotone function. According to an embodiment of the invention, the process may be repeated until i+n generation has been generated, where i+n is a whole number.
  • While the invention has been particularly shown and described within the framework of an insurance underwriting application, it will be appreciated that variations and modifications can be effected by a person of ordinary skill in the art without departing from the scope of the invention. For example, one of ordinary skill in the art will recognize that the fuzzy rule-based or case-based engine of this invention can be applied to any other transaction-oriented process in which underlying risk estimation is required to determine the price structure (premium, price, commission, etc.) of an offered product, such as insurance, re-insurance, annuities, etc. Furthermore, the determination of the confidence factor and the optimization of the decision engines transcend the scope of insurance underwriting. A confidence factor obtained in the manner described in this document could be determined from any application of a case-based reasoner (whether it is fuzzy or not). Similarly, the engine optimization process described in this document can be applied to any engine in which the structure of the engine has been defined and the parametric values of the engine need to be specified to meet a predefined performance metric. Furthermore, one of ordinary skill in the art will recognize that such decision engines do not need to be restricted to insurance underwriting applications.

Claims (21)

1. A system for underwriting an insurance application comprising:
a receiver for receiving a request to underwrite an insurance application, where the request includes information about at least one application component;
an evaluation module for evaluating the at least one application component based on at least one rule associated with the at least one application component; and
an assignment module for:
a) assigning a measurement to the at least one application component; and
b) assigning the at least one application component to a specific component category out of a plurality of component categories based on the assigned measurement.
2. The system according to claim 1, wherein the assignment module further assigns the insurance application to a specific application category out of a plurality of application categories, where the one specific application category is based at least in part on the specific component category.
3. The system according to claim 2, wherein the plurality of component categories are identical to the plurality of application categories.
4. The system according to claim 1, wherein the evaluation of the at least one application component includes:
defining the at least one rule;
assigning the at least one rule to the at least one application component; and
defining a plurality of parameters associated with the at least one rule, wherein each parameter corresponds to a particular category of the plurality of component categories.
5. The system according to claim 4, wherein the assignment module further assigns the insurance application to a specific application category out of a plurality of application categories, wherein the specific application category is based at least in part on the component category.
6. The system according to claim 5, wherein the plurality of component categories are identical to the plurality of application categories.
7. The system according to claim 1, wherein the at least one rule is a fuzzy logic rule.
8. A system for underwriting an insurance application comprising:
a receiver for receiving a request to underwrite an insurance application, wherein the insurance application includes a plurality of application components;
an evaluation module for evaluating the plurality of application components based on a plurality of rules, wherein each of the plurality of rules is associated with each of the plurality of application components; and
an assignment module for:
a) assigning a measurement to each of the plurality of application components; and
b) assigning each of the plurality of application components to a specific component category out of a plurality of component categories based on the assigned measurement.
9. The system according to claim 8, wherein the assignment module further assigns the insurance application to a specific application category out of a plurality of application categories, wherein the specific application category is based at least in part on the component categories for each of the plurality of component categories.
10. The system according to claim 9, wherein the plurality of component categories are identical to the plurality of application categories.
11. The system according to claim 8, wherein the evaluation of the plurality of application components includes:
defining the plurality of rules;
assigning each of the plurality of rules to one of the plurality of components;
and
defining a plurality of parameters associated with each of the plurality of rules, wherein each parameter corresponds to a particular category of the plurality of component categories.
12. The system according to claim 11, wherein the assignment module further assigns the insurance application to a specific application category out of a plurality of application categories, wherein the specific application category is based at least in part on the component categories for each of the plurality of component categories.
13. The system according to claim 12, wherein the plurality of component categories are identical to the plurality of application categories.
14. The system according to claim 8, wherein the plurality of rules are fuzzy logic rules.
15. A system for underwriting an insurance application comprising:
a receiver for receiving a request to underwrite an insurance application for a customer, wherein the insurance application includes a plurality of application components;
an evaluation module for evaluating the plurality of application components based on a plurality of rules, wherein each of the plurality of rules is associated with each of the plurality of application components;
an assignment module for:
a) assigning a measurement to each of the plurality of application components;
b) assigning each of the plurality of application components to a specific component category out of a plurality of component categories based on the assigned measurement; and
c) assigning the insurance application to a specific application category out of a plurality of application categories, wherein the specific application category is based at least in part on the specific component category; and
an issuance module for issuing the insurance application to the customer.
16. The system according to claim 15, wherein the plurality of component categories are identical to the plurality of application categories.
17. The system according to claim 15, wherein the evaluation of the at least one application component includes:
defining the at least one rule;
assigning the at least one rule to the at least one component; and
defining a plurality of parameters associated with the at least one rule, wherein each parameter corresponds to a particular category of the plurality of component categories.
18. The system according to claim 17, wherein the assignment module further assigns the insurance application to a specific application category out of a plurality of application categories, wherein the specific application category is based at least in part on the component category.
19. The system according to claim 18, wherein the plurality of component categories are identical to the plurality of application categories.
20. The system according to claim 15, wherein the plurality of rules are fuzzy logic rules.
21-45. (canceled)
US15/836,689 2001-12-31 2017-12-08 System for rule-based insurance underwriting suitable for use by an automated system Abandoned US20180260906A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/836,689 US20180260906A1 (en) 2001-12-31 2017-12-08 System for rule-based insurance underwriting suitable for use by an automated system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US34324001P 2001-12-31 2001-12-31
US10/171,575 US8793146B2 (en) 2001-12-31 2002-06-17 System for rule-based insurance underwriting suitable for use by an automated system
US14/444,529 US20150019269A1 (en) 2001-12-31 2014-07-28 System for Rule-Based Insurance Underwriting Suitable for Use by an Automated System
US15/836,689 US20180260906A1 (en) 2001-12-31 2017-12-08 System for rule-based insurance underwriting suitable for use by an automated system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/444,529 Continuation US20150019269A1 (en) 2001-12-31 2014-07-28 System for Rule-Based Insurance Underwriting Suitable for Use by an Automated System

Publications (1)

Publication Number Publication Date
US20180260906A1 true US20180260906A1 (en) 2018-09-13

Family

ID=26867212

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/171,575 Active 2027-08-07 US8793146B2 (en) 2001-12-31 2002-06-17 System for rule-based insurance underwriting suitable for use by an automated system
US14/444,529 Abandoned US20150019269A1 (en) 2001-12-31 2014-07-28 System for Rule-Based Insurance Underwriting Suitable for Use by an Automated System
US15/836,689 Abandoned US20180260906A1 (en) 2001-12-31 2017-12-08 System for rule-based insurance underwriting suitable for use by an automated system

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/171,575 Active 2027-08-07 US8793146B2 (en) 2001-12-31 2002-06-17 System for rule-based insurance underwriting suitable for use by an automated system
US14/444,529 Abandoned US20150019269A1 (en) 2001-12-31 2014-07-28 System for Rule-Based Insurance Underwriting Suitable for Use by an Automated System

Country Status (3)

Country Link
US (3) US8793146B2 (en)
AU (1) AU2002357887A1 (en)
WO (1) WO2003058387A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10963970B2 (en) 2019-03-27 2021-03-30 Hartford Fire Insurance Company Processing system to facilitate multi-region risk relationships

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6988082B1 (en) 2000-06-13 2006-01-17 Fannie Mae Computerized systems and methods for facilitating the flow of capital through the housing finance industry
US7702580B1 (en) 2000-06-13 2010-04-20 Fannie Mae System and method for mortgage loan pricing, sale and funding
US8024248B2 (en) * 2001-06-08 2011-09-20 Genworth Financial, Inc. System and method for imbedding a defined benefit in a defined contribution plan
US7203734B2 (en) * 2001-12-28 2007-04-10 Insurancenoodle, Inc. Methods and apparatus for selecting an insurance carrier for an online insurance policy purchase
US7818186B2 (en) 2001-12-31 2010-10-19 Genworth Financial, Inc. System for determining a confidence factor for insurance underwriting suitable for use by an automated system
US7899688B2 (en) 2001-12-31 2011-03-01 Genworth Financial, Inc. Process for optimization of insurance underwriting suitable for use by an automated system
US7895062B2 (en) 2001-12-31 2011-02-22 Genworth Financial, Inc. System for optimization of insurance underwriting suitable for use by an automated system
US7844477B2 (en) 2001-12-31 2010-11-30 Genworth Financial, Inc. Process for rule-based insurance underwriting suitable for use by an automated system
US8793146B2 (en) 2001-12-31 2014-07-29 Genworth Holdings, Inc. System for rule-based insurance underwriting suitable for use by an automated system
US7844476B2 (en) 2001-12-31 2010-11-30 Genworth Financial, Inc. Process for case-based insurance underwriting suitable for use by an automated system
US8005693B2 (en) 2001-12-31 2011-08-23 Genworth Financial, Inc. Process for determining a confidence factor for insurance underwriting suitable for use by an automated system
AU2003291140A1 (en) * 2002-12-30 2004-07-29 Fannie Mae System and method for facilitating sale of a loan to a secondary market purchaser
AU2003297295A1 (en) 2002-12-30 2004-07-29 Fannie Mae System and method of processing data pertaining to financial assets
AU2003297296A1 (en) 2002-12-30 2004-07-29 Fannie Mae System and method for creating and tracking agreements for selling loans to a secondary market purchaser
WO2004061564A2 (en) 2002-12-30 2004-07-22 Fannie Mae System and method for pricing loans in the secondary mortgage market
US7742981B2 (en) 2002-12-30 2010-06-22 Fannie Mae Mortgage loan commitment system and method
US7885889B2 (en) 2002-12-30 2011-02-08 Fannie Mae System and method for processing data pertaining to financial assets
WO2004061561A2 (en) 2002-12-30 2004-07-22 Fannie Mae System and method for facilitating delivery of a loan to a secondary mortgage market purchaser
US20040128230A1 (en) 2002-12-30 2004-07-01 Fannie Mae System and method for modifying attribute data pertaining to financial assets in a data processing system
US8666879B1 (en) 2002-12-30 2014-03-04 Fannie Mae Method and system for pricing forward commitments for mortgage loans and for buying committed loans
US7089241B1 (en) * 2003-01-24 2006-08-08 America Online, Inc. Classifier tuning based on data similarities
US7813945B2 (en) 2003-04-30 2010-10-12 Genworth Financial, Inc. System and process for multivariate adaptive regression splines classification for insurance underwriting suitable for use by an automated system
US7383239B2 (en) 2003-04-30 2008-06-03 Genworth Financial, Inc. System and process for a fusion classification for insurance underwriting suitable for use by an automated system
US7801748B2 (en) 2003-04-30 2010-09-21 Genworth Financial, Inc. System and process for detecting outliers for insurance underwriting suitable for use by an automated system
US7590695B2 (en) 2003-05-09 2009-09-15 Aol Llc Managing electronic messages
US8046298B1 (en) 2003-07-21 2011-10-25 Fannie Mae Systems and methods for facilitating the flow of capital through the housing finance industry
US7925579B1 (en) 2003-12-01 2011-04-12 Fannie Mae System and method for processing a loan
US7756778B1 (en) 2003-12-18 2010-07-13 Fannie Mae System and method for tracking and facilitating analysis of variance and recourse transactions
US7822680B1 (en) 2003-12-31 2010-10-26 Fannie Mae System and method for managing data pertaining to a plurality of financial assets for multifamily and housing developments
US7657475B1 (en) 2003-12-31 2010-02-02 Fannie Mae Property investment rating system and method
US20050187809A1 (en) * 2004-01-15 2005-08-25 Falkenhainer Brian C. Adaptive process systems and methods for managing business processes
US8423471B1 (en) * 2004-02-04 2013-04-16 Radix Holdings, Llc Protected document elements
US7698159B2 (en) 2004-02-13 2010-04-13 Genworth Financial Inc. Systems and methods for performing data collection
US8566125B1 (en) 2004-09-20 2013-10-22 Genworth Holdings, Inc. Systems and methods for performing workflow
US7801809B1 (en) 2005-06-24 2010-09-21 Fannie Mae System and method for management of delegated real estate project reviews
US7668828B2 (en) * 2005-12-02 2010-02-23 Guard Insurance Group Computer-implemented electronic diary to enter locked notes for historical archival
US8402056B2 (en) * 2005-12-02 2013-03-19 Guard Insurance Group Resolving, protecting against and/or defending an employer liability claim based on historically archived locked notes
US7747526B1 (en) 2006-03-27 2010-06-29 Fannie Mae System and method for transferring mortgage loan servicing rights
US9838877B2 (en) * 2008-04-02 2017-12-05 Yougetitback Limited Systems and methods for dynamically assessing and mitigating risk of an insured entity
US9886599B2 (en) 2008-04-02 2018-02-06 Yougetitback Limited Display of information through auxiliary user interface
US20110040582A1 (en) * 2009-08-17 2011-02-17 Kieran Mullins Online system and method of insurance underwriting
WO2011028139A1 (en) * 2009-09-07 2011-03-10 Kiwibank Limited Information exchange system
US8452678B2 (en) * 2009-12-22 2013-05-28 Hartford Fire Insurance Company System and method for administering an advanced insurance component-based product
WO2011137164A2 (en) * 2010-04-30 2011-11-03 Next Step Medical Technologies, Llc System and method for underwriting insurance policies based on cardiovascular risk
US9135574B2 (en) * 2010-07-20 2015-09-15 Sparkling Logic, Inc. Contextual decision logic elicitation
US8666922B2 (en) * 2011-03-18 2014-03-04 Battelle Memorial Institute Information processing systems, reasoning modules, and reasoning system design methods
US9892462B1 (en) * 2013-12-23 2018-02-13 Massachusetts Mutual Life Insurance Company Heuristic model for improving the underwriting process
US11403711B1 (en) 2013-12-23 2022-08-02 Massachusetts Mutual Life Insurance Company Method of evaluating heuristics outcome in the underwriting process
US10489861B1 (en) 2013-12-23 2019-11-26 Massachusetts Mutual Life Insurance Company Methods and systems for improving the underwriting process
US10438292B1 (en) 2015-09-17 2019-10-08 Allstate Insurance Company Determining body characteristics based on images
US11270382B2 (en) * 2015-11-24 2022-03-08 Risk Management Solutions, Inc. High performance computing system and platform
CN105631600A (en) * 2016-01-07 2016-06-01 平安科技(深圳)有限公司 Method and system for publishing auto insurance survey tasks
US10706474B2 (en) 2016-04-25 2020-07-07 Hartford Fire Insurance Company Supplemental review process determination utilizing advanced analytics decision making model
CN114611707A (en) * 2016-08-25 2022-06-10 第四范式(北京)技术有限公司 Method and system for machine learning by combining rules
US11494845B1 (en) * 2016-08-31 2022-11-08 Nationwide Mutual Insurance Company System and method for employing a predictive model
US10650329B2 (en) * 2016-12-21 2020-05-12 Hartford Fire Insurance Company System to facilitate predictive analytic algorithm deployment in an enterprise
US10558920B2 (en) * 2017-10-02 2020-02-11 Servicenow, Inc. Machine learning classification with confidence thresholds
US11062327B2 (en) * 2019-02-26 2021-07-13 Xybion Corporation Inc. Regulatory compliance assessment and business risk prediction system
US11488027B2 (en) 2020-02-21 2022-11-01 Optum, Inc. Targeted data retrieval and decision-tree-guided data evaluation
US11983777B1 (en) * 2021-07-28 2024-05-14 Massachusetts Mutual Life Insurance Company Systems and methods for risk factor predictive modeling with model explanations

Family Cites Families (380)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4722055A (en) 1984-03-08 1988-01-26 College Savings Bank Methods and apparatus for funding future liability of uncertain cost
US4642768A (en) 1984-03-08 1987-02-10 Roberts Peter A Methods and apparatus for funding future liability of uncertain cost
US4766539A (en) 1985-03-08 1988-08-23 Fox Henry L Method of determining the premium for and writing a policy insuring against specified weather conditions
US4831526A (en) * 1986-04-22 1989-05-16 The Chubb Corporation Computerized insurance premium quote request and policy issuance system
US5218539A (en) * 1986-12-01 1993-06-08 International Business Machines Corporation Forms processor with controlled remote revision
US4839804A (en) 1986-12-30 1989-06-13 College Savings Bank Method and apparatus for insuring the funding of a future liability of uncertain cost
US4837693A (en) * 1987-02-27 1989-06-06 Schotz Barry R Method and apparatus for facilitating operation of an insurance plan
JPH01309101A (en) * 1988-06-08 1989-12-13 Hitachi Ltd Adaptive knowledge estimating method
US4975840A (en) * 1988-06-17 1990-12-04 Lincoln National Risk Management, Inc. Method and apparatus for evaluating a potentially insurable risk
US4949278A (en) * 1988-12-29 1990-08-14 International Business Machines Corporation Expert system architecture
US5191522A (en) * 1990-01-18 1993-03-02 Itt Corporation Integrated group insurance information processing and reporting system based upon an enterprise-wide data structure
FR2658337A1 (en) * 1990-02-09 1991-08-16 Philips Electronique Lab METHOD FOR LEARNING A HIERARCHISED NEURONE NETWORK AND HIERARCHISED NEURON NETWORK.
US6584446B1 (en) 1990-02-14 2003-06-24 Golden Rule Insurance Company System for underwriting a combined joint life and long term care insurance policy which is actuarially responsive to long term care demands and life expectancies of the individual insureds
US5235702A (en) * 1990-04-11 1993-08-10 Miller Brent G Automated posting of medical insurance claims
US5202827A (en) 1990-05-10 1993-04-13 Sober Michael S Apparatus for insuring futures contracts against catastrophic loss
US5241620A (en) * 1991-01-03 1993-08-31 Promised Land Technologies, Inc. Embedding neural networks into spreadsheet applications
EP0570522A1 (en) 1991-02-06 1993-11-24 Risk Data Corporation System for funding future workers' compensation losses
US5636117A (en) 1991-03-11 1997-06-03 Rothstein; Robert E. Method and apparatus for monitoring the strength of a real estate market or commodity market and making lending and insurance decisions therefrom
US6683697B1 (en) 1991-03-20 2004-01-27 Millenium L.P. Information processing methodology
US6604080B1 (en) 1991-10-30 2003-08-05 B&S Underwriters, Inc. Computer system and methods for supporting workers' compensation/employers liability insurance
US5359509A (en) * 1991-10-31 1994-10-25 United Healthcare Corporation Health care payment adjudication and review system
US5235654A (en) 1992-04-30 1993-08-10 International Business Machines Corporation Advanced data capture architecture data processing system and method for scanned images of document forms
US5655085A (en) * 1992-08-17 1997-08-05 The Ryan Evalulife Systems, Inc. Computer system for automated comparing of universal life insurance policies based on selectable criteria
US5586313A (en) * 1993-02-12 1996-12-17 L.I.D.P. Consulting Services, Inc. Method for updating a file
JPH06309492A (en) 1993-04-21 1994-11-04 Eastman Kodak Co Method for plural sorter output synthesis and synthesis system
US7319970B1 (en) * 1993-05-20 2008-01-15 Simone Charles B Method and apparatus for lifestyle risk evaluation and insurability determination
US5845256A (en) * 1993-08-19 1998-12-01 John B. Pescitelli Interactive self-service vending system
US5619694A (en) 1993-08-26 1997-04-08 Nec Corporation Case database storage/retrieval system
JPH09502819A (en) * 1993-08-27 1997-03-18 エイ. ノリス、ジェフリー Closed loop financial transaction method and apparatus
US5692501A (en) * 1993-09-20 1997-12-02 Minturn; Paul Scientific wellness personal/clinical/laboratory assessments, profile and health risk managment system with insurability rankings on cross-correlated 10-point optical health/fitness/wellness scales
US5627973A (en) 1994-03-14 1997-05-06 Moore Business Forms, Inc. Method and apparatus for facilitating evaluation of business opportunities for supplying goods and/or services to potential customers
US5537315A (en) 1994-03-23 1996-07-16 Mitcham; Martin K. Method and apparatus for issuing insurance from kiosk
US5523942A (en) 1994-03-31 1996-06-04 New England Mutual Life Insurance Company Design grid for inputting insurance and investment product information in a computer system
US5590038A (en) * 1994-06-20 1996-12-31 Pitroda; Satyan G. Universal electronic transaction card including receipt storage and system and methods of conducting electronic transactions
US5619621A (en) * 1994-07-15 1997-04-08 Storage Technology Corporation Diagnostic expert system for hierarchically decomposed knowledge domains
US6263321B1 (en) 1994-07-29 2001-07-17 Economic Inventions, Llc Apparatus and process for calculating an option
US5752236A (en) 1994-09-02 1998-05-12 Sexton; Frank M. Life insurance method, and system
US5897619A (en) 1994-11-07 1999-04-27 Agriperil Software Inc. Farm management system
US5696907A (en) 1995-02-27 1997-12-09 General Electric Company System and method for performing risk and credit analysis of financial service applications
US5835758A (en) * 1995-02-28 1998-11-10 Vidya Technologies, Inc. Method and system for respresenting and processing physical and conceptual entities
US5701400A (en) * 1995-03-08 1997-12-23 Amado; Carlos Armando Method and apparatus for applying if-then-else rules to data sets in a relational data base and generating from the results of application of said rules a database of diagnostics linked to said data sets to aid executive analysis of financial data
US5852808A (en) 1995-04-11 1998-12-22 Mottola Cherny & Associates, Inc. Method and apparatus for providing professional liability coverage
US5752237A (en) 1995-04-11 1998-05-12 Mottola Cherny & Associates, Inc. Method and apparatus for providing professional liability coverage
US5754980A (en) 1995-05-24 1998-05-19 Century Associates L.L.C. Method of providing for a future benefit conditioned on life expectancies of both an insured and a beneficiary
US5839103A (en) * 1995-06-07 1998-11-17 Rutgers, The State University Of New Jersey Speaker verification system using decision fusion logic
US5835897C1 (en) * 1995-06-22 2002-02-19 Symmetry Health Data Systems Computer-implemented method for profiling medical claims
US5768422A (en) * 1995-08-08 1998-06-16 Apple Computer, Inc. Method for training an adaptive statistical classifier to discriminate against inproper patterns
US5796863A (en) * 1995-08-08 1998-08-18 Apple Computer, Inc. Method for training an adaptive statistical classifier to balance unigram prior factors
US5805730A (en) * 1995-08-08 1998-09-08 Apple Computer, Inc. Method for training an adaptive statistical classifier with improved learning of difficult samples
US5805731A (en) * 1995-08-08 1998-09-08 Apple Computer, Inc. Adaptive statistical classifier which provides reliable estimates or output classes having low probabilities
US5819230A (en) 1995-08-08 1998-10-06 Homevest Financial Group, Inc. System and method for tracking and funding asset purchase and insurance policy
US6178406B1 (en) * 1995-08-25 2001-01-23 General Electric Company Method for estimating the value of real property
US6141648A (en) * 1995-08-25 2000-10-31 General Electric Company Method for estimating the price per square foot value of real property
US6115694A (en) * 1995-08-25 2000-09-05 General Electric Company Method for validating specified prices on real property
US6186793B1 (en) 1995-11-07 2001-02-13 Randall E. Brubaker Process to convert cost and location of a number of actual contingent events within a region into a three dimensional surface over a map that provides for every location within the region its own estimate of expected cost for future contingent events
US5809478A (en) 1995-12-08 1998-09-15 Allstate Insurance Company Method for accessing and evaluating information for processing an application for insurance
US6088686A (en) 1995-12-12 2000-07-11 Citibank, N.A. System and method to performing on-line credit reviews and approvals
US5839118A (en) 1996-01-16 1998-11-17 The Evergreen Group, Incorporated System and method for premium optimization and loan monitoring
US6868386B1 (en) 1996-01-29 2005-03-15 Progressive Casualty Insurance Company Monitoring system for determining and communicating a cost of insurance
US5797134A (en) 1996-01-29 1998-08-18 Progressive Casualty Insurance Company Motor vehicle monitoring system for determining a cost of insurance
US6684188B1 (en) 1996-02-02 2004-01-27 Geoffrey C Mitchell Method for production of medical records and other technical documents
US6125194A (en) 1996-02-06 2000-09-26 Caelum Research Corporation Method and system for re-screening nodules in radiological images using multi-resolution processing, neural network, and image processing
US5704371A (en) 1996-03-06 1998-01-06 Shepard; Franziska Medical history documentation system and method
US6003007A (en) 1996-03-28 1999-12-14 Dirienzo; Andrew L. Attachment integrated claims system and operating method therefor
US5930759A (en) * 1996-04-30 1999-07-27 Symbol Technologies, Inc. Method and system for processing health care electronic data transactions
US5850480A (en) 1996-05-30 1998-12-15 Scan-Optics, Inc. OCR error correction methods and apparatus utilizing contextual comparison
US5987434A (en) 1996-06-10 1999-11-16 Libman; Richard Marc Apparatus and method for transacting marketing and sales of financial products
US5893072A (en) 1996-06-20 1999-04-06 Aetna Life & Casualty Company Insurance classification plan loss control system
US5855005A (en) 1996-06-24 1998-12-29 Insurance Company Of North America System for electronically auditing exposures used for determining insurance premiums
US5930392A (en) * 1996-07-12 1999-07-27 Lucent Technologies Inc. Classification technique using random decision forests
JPH10177594A (en) 1996-10-15 1998-06-30 Pfu Ltd Will information management open processing system and method, and program storage medium for the system and method
US5839113A (en) 1996-10-30 1998-11-17 Okemos Agency, Inc. Method and apparatus for rating geographical areas using meteorological conditions
US5884274A (en) 1996-11-15 1999-03-16 Walker Asset Management Limited Partnership System and method for generating and executing insurance policies for foreign exchange losses
US5956691A (en) 1997-01-07 1999-09-21 Second Opinion Financial Systems, Inc. Dynamic policy illustration system
US5873066A (en) * 1997-02-10 1999-02-16 Insurance Company Of North America System for electronically managing and documenting the underwriting of an excess casualty insurance policy
US6869362B2 (en) 1997-02-21 2005-03-22 Walker Digital, Llc Method and apparatus for providing insurance policies for gambling losses
US5907848A (en) * 1997-03-14 1999-05-25 Lakeview Technology, Inc. Method and system for defining transactions from a database log
JPH10269284A (en) * 1997-03-25 1998-10-09 Hitachi Ltd Method and system for providing commodity information in electronic business transaction system
US5890129A (en) 1997-05-30 1999-03-30 Spurgeon; Loren J. System for exchanging health care insurance information
US6119093A (en) 1997-07-01 2000-09-12 Walker Asset Management Limited Partnership System for syndication of insurance
US6009402A (en) 1997-07-28 1999-12-28 Whitworth; Brian L. System and method for predicting, comparing and presenting the cost of self insurance versus insurance and for creating bond financing when advantageous
US6112190A (en) 1997-08-19 2000-08-29 Citibank, N.A. Method and system for commercial credit analysis
US5970464A (en) * 1997-09-10 1999-10-19 International Business Machines Corporation Data mining based underwriting profitability analysis
US5774761A (en) 1997-10-14 1998-06-30 Xerox Corporation Machine set up procedure using multivariate modeling and multiobjective optimization
US6049773A (en) * 1997-10-14 2000-04-11 Reclaim Technology And Services Limited Automated method for identification of reinsurance claims
US6018714A (en) 1997-11-08 2000-01-25 Ip Value, Llc Method of protecting against a change in value of intellectual property, and product providing such protection
US6151584A (en) 1997-11-20 2000-11-21 Ncr Corporation Computer architecture and method for validating and collecting and metadata and data about the internet and electronic commerce environments (data discoverer)
US20010014868A1 (en) * 1997-12-05 2001-08-16 Frederick Herz System for the automatic determination of customized prices and promotions
US6208974B1 (en) 1997-12-30 2001-03-27 Medical Management International, Inc. Method and system for managing wellness plans for a medical care practice
US6334192B1 (en) 1998-03-09 2001-12-25 Ronald S. Karpf Computer system and method for a self administered risk assessment
US5978769A (en) 1998-04-14 1999-11-02 Chubb & Sons System and method for determining and analyzing building occupancy
US7117188B2 (en) * 1998-05-01 2006-10-03 Health Discovery Corporation Methods of identifying patterns in biological systems and uses thereof
US7318051B2 (en) * 2001-05-18 2008-01-08 Health Discovery Corporation Methods for feature selection in a learning machine
US6078890A (en) 1998-06-01 2000-06-20 Ford Global Technologies, Inc. Method and system for automated health care rate renewal and quality assessment
US6098070A (en) 1998-06-09 2000-08-01 Hipersoft Corp. Case management for a personal injury plaintiff's law office using a relational database
US6272482B1 (en) 1998-08-14 2001-08-07 International Business Machines Corporation Managing business rules using jurisdictions
US6163770A (en) 1998-08-25 2000-12-19 Financial Growth Resources, Inc. Computer apparatus and method for generating documentation using a computed value for a claims cost affected by at least one concurrent, different insurance policy for the same insured
US6266645B1 (en) 1998-09-01 2001-07-24 Imetrikus, Inc. Risk adjustment tools for analyzing patient electronic discharge records
US6314415B1 (en) 1998-11-04 2001-11-06 Cch Incorporated Automated forms publishing system and method using a rule-based expert system to dynamically generate a graphical user interface
US6182048B1 (en) 1998-11-23 2001-01-30 General Electric Company System and method for automated risk-based pricing of a vehicle warranty insurance policy
US6332125B1 (en) 1998-12-18 2001-12-18 Spincor Llc Providing termination benefits for employees
US6023691A (en) 1998-12-22 2000-02-08 Ac Properties B.V. Goal based stimulator utilizing a spreadsheet architecture
US20010037223A1 (en) * 1999-02-04 2001-11-01 Brian Beery Management and delivery of product information
US6542905B1 (en) * 1999-03-10 2003-04-01 Ltcq, Inc. Automated data integrity auditing system
US7337121B1 (en) * 1999-03-30 2008-02-26 Iso Claims Services, Inc. Claim assessment model
US7072841B1 (en) * 1999-04-29 2006-07-04 International Business Machines Corporation Method for constructing segmentation-based predictive models from data that is particularly well-suited for insurance risk or profitability modeling purposes
US7127407B1 (en) * 1999-04-29 2006-10-24 3M Innovative Properties Company Method of grouping and analyzing clinical risks, and system therefor
US6714925B1 (en) * 1999-05-01 2004-03-30 Barnhill Technologies, Llc System for identifying patterns in biological data using a distributed network
US7617240B2 (en) * 1999-05-04 2009-11-10 Accenture Llp Component based task handling during claim processing
US6877132B1 (en) * 1999-06-11 2005-04-05 Nortel Network Limited Method and apparatus for channel decoding of tail-biting convolutional codes
US6862571B2 (en) 1999-06-24 2005-03-01 The Premium Group, Inc. Credentialer/Medical malpractice insurance collaboration
US6415284B1 (en) 1999-06-30 2002-07-02 Rivio, Inc. Intelligent forms for improved automated workflow processing
WO2001001286A2 (en) * 1999-06-30 2001-01-04 Accenture Llp A system, method and article of manufacture for an internet based distribution architecture
US7395239B1 (en) 1999-07-19 2008-07-01 American Business Financial System and method for automatically processing loan applications
US6272471B1 (en) * 1999-08-02 2001-08-07 Jeffrey J. Segal Method and apparatus for deterring frivolous professional liability claims
US6615181B1 (en) * 1999-10-18 2003-09-02 Medical Justice Corp. Digital electrical computer system for determining a premium structure for insurance coverage including for counterclaim coverage
EP1242934A4 (en) 1999-08-06 2004-03-31 Ace Ina Holdings Inc Systems for, and method of, insuring risks in a restructured energy industry
US6519578B1 (en) 1999-08-09 2003-02-11 Mindflow Technologies, Inc. System and method for processing knowledge items of a knowledge warehouse
US7398218B1 (en) * 1999-08-27 2008-07-08 Accenture Llp Insurance pattern analysis
MXPA02002113A (en) 1999-08-27 2003-08-20 Comfidex Corp System and method for integrating paper-based business documents with computer-readable data entered via a computer network.
EP1232454A1 (en) 1999-09-10 2002-08-21 Portogo, Inc. System and method for insuring correct data transmission over the internet
CA2389222A1 (en) 1999-09-15 2001-03-22 General Electric Company Method for modeling market response rates
US7020618B1 (en) 1999-10-25 2006-03-28 Ward Richard E Method and system for customer service process management
US6589290B1 (en) 1999-10-29 2003-07-08 America Online, Inc. Method and apparatus for populating a form with data
US6757668B1 (en) 1999-11-05 2004-06-29 General Electric Company Information fusion of classifiers in systems with partial redundant information
US7325076B1 (en) 1999-11-10 2008-01-29 Navimedix, Inc. System for dynamic information exchange
US20040024620A1 (en) 1999-12-01 2004-02-05 Rightfind Technology Company, Llc Risk classification methodology
US7231327B1 (en) * 1999-12-03 2007-06-12 Digital Sandbox Method and apparatus for risk management
US7464040B2 (en) * 1999-12-18 2008-12-09 Raymond Anthony Joao Apparatus and method for processing and/or for providing healthcare information and/or healthcare-related information
US7165043B2 (en) 1999-12-30 2007-01-16 Ge Corporate Financial Services, Inc. Valuation prediction models in situations with missing inputs
US6826539B2 (en) 1999-12-31 2004-11-30 Xactware, Inc. Virtual structure data repository and directory
US6829584B2 (en) 1999-12-31 2004-12-07 Xactware, Inc. Virtual home data repository and directory
US7542911B2 (en) * 2000-02-28 2009-06-02 International Business Machines Corporation Method for electronically maintaining medical information between patients and physicians
US7376575B2 (en) 2000-03-03 2008-05-20 Fujitsu Limited Designing program and method of financial article and recording medium storing financial article designing program
US7979347B1 (en) * 2000-03-16 2011-07-12 Goldman Sachs & Co. Automated online sales risk management
US6731993B1 (en) 2000-03-16 2004-05-04 Siemens Information & Communication Networks, Inc. Computer telephony audio configuration
US20010049611A1 (en) * 2000-03-31 2001-12-06 Zurich-American Insurance Company Electronically acquiring and distributing insurnace policy data to agent offices
US7113914B1 (en) 2000-04-07 2006-09-26 Jpmorgan Chase Bank, N.A. Method and system for managing risks
US7426474B2 (en) 2000-04-25 2008-09-16 The Rand Corporation Health cost calculator/flexible spending account calculator
CA2307404A1 (en) 2000-05-02 2001-11-02 Provenance Systems Inc. Computer readable electronic records automated classification system
US8301468B2 (en) * 2000-05-15 2012-10-30 Optuminsight, Inc. System and method of drug disease matching
WO2001088834A2 (en) 2000-05-17 2001-11-22 New York University Method and system for data classification in the presence of a temporal non-stationarity
US7143051B1 (en) * 2000-05-24 2006-11-28 Jefferson Pilot Financial Insurance Company Method and system for quoting, issuing, and administering insurance policies including determining whether insurance policies are self bill or list bill
US7542914B1 (en) * 2000-05-25 2009-06-02 Bates David L Method for generating an insurance quote
JP2002073990A (en) 2000-06-15 2002-03-12 Matsushita Electric Ind Co Ltd System for adjusting content of insurance
US20010053986A1 (en) 2000-06-19 2001-12-20 Dick Richard S. Method and apparatus for requesting, retrieving, and normalizing medical information
US7343307B1 (en) * 2000-06-23 2008-03-11 Computer Sciences Corporation Dynamic help method and system for an insurance claims processing system
US7095426B1 (en) * 2000-06-23 2006-08-22 Computer Sciences Corporation Graphical user interface with a hide/show feature for a reference system in an insurance claims processing system
US20020059126A1 (en) 2000-06-27 2002-05-16 John Ricciardi System and method for a selecting an investment item
US20020091550A1 (en) * 2000-06-29 2002-07-11 White Mitchell Franklin System and method for real-time rating, underwriting and policy issuance
US7587368B2 (en) * 2000-07-06 2009-09-08 David Paul Felsher Information record infrastructure, system and method
US6594668B1 (en) 2000-07-17 2003-07-15 John Joseph Hudy Auto-norming process and system
US20020049618A1 (en) 2000-08-01 2002-04-25 Mcclure Darin Scoville Method and computer system for generating historical claims loss data reports
US20020072936A1 (en) 2000-08-08 2002-06-13 Newman Jeffrey Marc Children's income protection and benefit health insurance policy and method of underwriting the same
US6963853B1 (en) 2000-08-09 2005-11-08 User-Centric Enterprises, Inc. Method and apparatus for calculating a return on investment for weather-related risk management
AU2001286425B2 (en) 2000-08-10 2007-09-06 Miralink Corporation Data/presence insurance tools and techniques
US7444291B1 (en) * 2000-08-10 2008-10-28 Ingenix, Inc. System and method for modeling of healthcare utilization
US6647374B2 (en) 2000-08-24 2003-11-11 Namita Kansal System and method of assessing and rating vendor risk and pricing of technology delivery insurance
JP2002108865A (en) 2000-09-29 2002-04-12 Hitachi Kokusai Electric Inc Data retrieving system
US7742988B2 (en) 2000-10-02 2010-06-22 Computer Sciences Corporation Computerized method and system for adjusting liability estimation factors in an accident liability assessment program
US20030093302A1 (en) * 2000-10-04 2003-05-15 Francis Quido Method and system for online binding of insurance policies
US20030088488A1 (en) 2000-10-19 2003-05-08 Ramius Capital Group, Llp System and method for firm underwritten equity facility (FUEL)
AU2002243431A1 (en) 2000-10-23 2002-06-24 Deloitte And Touche Llp Commercial insurance scoring system and method
WO2002037387A2 (en) * 2000-11-06 2002-05-10 Worldinsure Limited Underwriting insurance
US20020087364A1 (en) 2000-11-07 2002-07-04 Lerner Andrew S. System and method for enabling real time underwriting of insurance policies
US20020055862A1 (en) * 2000-11-09 2002-05-09 Jinks Jill K. Systems and methods for interactively evaluating a commercial insurance risk
US7392201B1 (en) * 2000-11-15 2008-06-24 Trurisk, Llc Insurance claim forecasting system
NO20005848D0 (en) 2000-11-17 2000-11-17 Gunnar Bretvin Procedure and system for issuing and managing a credit insurance portfolio
AUPR166500A0 (en) 2000-11-27 2000-12-21 Insfin Insurance & Finance Group Pty Ltd Intelligent computerised system and method for the sale of multiple products within a single process
US20020099596A1 (en) * 2000-11-27 2002-07-25 Geraghty Michael Kevin Dynamic ratemaking for insurance
US20050144046A1 (en) 2000-11-30 2005-06-30 Schloss Robert J. System and method for assisting a buyer in selecting a supplier of goods or services
US20020077860A1 (en) 2000-12-18 2002-06-20 Earnest Jocelyn Branham Method and system for assisting in determining when to order supplemental medical information about a patient
JP4576060B2 (en) 2001-02-15 2010-11-04 富士通株式会社 Automatic contract apparatus, automatic contract method and automatic contract program
US6612985B2 (en) * 2001-02-26 2003-09-02 University Of Rochester Method and system for monitoring and treating a patient
US20020120560A1 (en) 2001-02-26 2002-08-29 Morgan Richard L. System for pricing a payment protection product and method of operation thereof
US7395218B2 (en) 2001-03-02 2008-07-01 Hereford Fonda A Methods and systems for insuring an entity's exposure to liability
JP2002259708A (en) 2001-03-06 2002-09-13 Toyota Motor Corp Vehicular insurance bill calculating system, on-vehicle device, and server device
AU2002252308A1 (en) 2001-03-13 2002-09-24 M Financial Holdings, Inc., Doing Business As M Financial Group Life insurance products under a single approved form
US20050267783A1 (en) 2001-03-20 2005-12-01 Edward Zaccaria Method and computerized system for reducing risk in an energy industry
US20020138307A1 (en) 2001-03-26 2002-09-26 Kramer Andrew J. Process for auditing insurance underwriting
JP2002358425A (en) 2001-03-27 2002-12-13 Hitachi Ltd Contents setting system, premium setting system, and premium collection system for automobile insurance
US6684276B2 (en) * 2001-03-28 2004-01-27 Thomas M. Walker Patient encounter electronic medical record system, method, and computer product
US20020143586A1 (en) 2001-03-29 2002-10-03 Ryuichiro Kodama Apparatus and method for supporting insurance determination, and program thereof
US20020143585A1 (en) 2001-03-29 2002-10-03 Ryuichiro Kodama Apparatus and method for determining insurance and program thereof
US20040093242A1 (en) 2001-04-02 2004-05-13 Terry Cadigan Insurance information management system and method
US20020156655A1 (en) 2001-04-19 2002-10-24 Yutaka Matsuda Guaranty system
US20030028404A1 (en) 2001-04-30 2003-02-06 Robert Herron System and method for processing insurance claims
US20030009359A1 (en) 2001-05-08 2003-01-09 James Weidner Property/casualty insurance and techniques
US20050060207A1 (en) 2001-05-08 2005-03-17 Weidner James L. Claims paid insurance
US20020169641A1 (en) 2001-05-10 2002-11-14 Wallace Elbie D. Method of qualifying a renter
US20030061075A1 (en) 2001-05-17 2003-03-27 Converium Reinsurance (North America) Inc. System and method for rating and structuring bands of crop production insurance
US20030023462A1 (en) 2001-07-12 2003-01-30 Heilizer Anthony Jason Method and system for insuring the future value of real property
US20040172308A1 (en) 2001-08-07 2004-09-02 Macchia Joseph D. Method of generating insurance business by providing an on-site underwriter
US20060108434A1 (en) 2001-08-10 2006-05-25 Cerys Systems Inc. Impartial co-management to aid crop marketing
US20030187768A1 (en) 2001-10-03 2003-10-02 Ryan Ronald D. Virtual finance/insurance company
US20030069760A1 (en) 2001-10-04 2003-04-10 Arthur Gelber System and method for processing and pre-adjudicating patient benefit claims
US7516079B2 (en) * 2001-10-16 2009-04-07 Lance Harrison Method and apparatus for insurance risk management
US20030074231A1 (en) 2001-10-17 2003-04-17 Johan Renes Insurance for cessation of legal personal contract
US7630911B2 (en) 2001-10-24 2009-12-08 Qtc Management, Inc. Method of automated processing of medical data for insurance and disability determinations
US7624037B2 (en) * 2001-10-31 2009-11-24 Ncqa Economic model for measuring the cost and value of a particular health insurance plan
US20030093304A1 (en) 2001-11-02 2003-05-15 Keller James B. System and method for managing short term risk
US20030088443A1 (en) 2001-11-08 2003-05-08 Majikes Matthew George System and method for personalizing and delivering insurance or financial services-related content to a user
JP3918526B2 (en) 2001-11-22 2007-05-23 富士通株式会社 Chilling information information exclusion apparatus and program
US8200511B2 (en) 2001-11-28 2012-06-12 Deloitte Development Llc Method and system for determining the importance of individual variables in a statistical model
US6949883B2 (en) 2001-12-06 2005-09-27 Seiko Epson Corporation Electro-optical device and an electronic apparatus
US7523065B2 (en) 2001-12-12 2009-04-21 Asset Trust, Inc. Risk transfer supply chain system
AU2002361477A1 (en) 2001-12-18 2003-06-30 Silver Bell Finance Inc. A system and method for managing insurance of valuables having unpredictable fluctuating values
US7844476B2 (en) * 2001-12-31 2010-11-30 Genworth Financial, Inc. Process for case-based insurance underwriting suitable for use by an automated system
US20030182159A1 (en) * 2001-12-31 2003-09-25 Bonissone Piero Patrone Process for summarizing information for insurance underwriting suitable for use by an automated system
US7895062B2 (en) * 2001-12-31 2011-02-22 Genworth Financial, Inc. System for optimization of insurance underwriting suitable for use by an automated system
US20030126049A1 (en) 2001-12-31 2003-07-03 Nagan Douglas A. Programmed assessment of technological, legal and management risks
US8005693B2 (en) 2001-12-31 2011-08-23 Genworth Financial, Inc. Process for determining a confidence factor for insurance underwriting suitable for use by an automated system
US7630910B2 (en) 2001-12-31 2009-12-08 Genworth Financial, Inc. System for case-based insurance underwriting suitable for use by an automated system
US7844477B2 (en) 2001-12-31 2010-11-30 Genworth Financial, Inc. Process for rule-based insurance underwriting suitable for use by an automated system
US7899688B2 (en) 2001-12-31 2011-03-01 Genworth Financial, Inc. Process for optimization of insurance underwriting suitable for use by an automated system
US7818186B2 (en) 2001-12-31 2010-10-19 Genworth Financial, Inc. System for determining a confidence factor for insurance underwriting suitable for use by an automated system
US8793146B2 (en) 2001-12-31 2014-07-29 Genworth Holdings, Inc. System for rule-based insurance underwriting suitable for use by an automated system
US20030177032A1 (en) * 2001-12-31 2003-09-18 Bonissone Piero Patrone System for summerizing information for insurance underwriting suitable for use by an automated system
US20030167191A1 (en) 2002-02-25 2003-09-04 Slabonik Elizabeth Ann System and method for underwriting review in an insurance system
US7451065B2 (en) 2002-03-11 2008-11-11 International Business Machines Corporation Method for constructing segmentation-based predictive models
US20050086084A1 (en) 2002-03-13 2005-04-21 Greg Dillard Method of administrating insurance coverage for multi tasks building projects
US7117450B1 (en) 2002-03-15 2006-10-03 Apple Computer, Inc. Method and apparatus for determining font attributes
JP4416374B2 (en) 2002-03-26 2010-02-17 富士通株式会社 Insurance premium setting method, insurance premium setting program, and insurance premium setting device
US20040122764A1 (en) 2002-03-27 2004-06-24 Bernie Bilski Capped bill systems, methods and products
JP2003296575A (en) 2002-04-02 2003-10-17 Nippon Colin Co Ltd Insurance premium updating method and device
US10121193B2 (en) 2002-04-10 2018-11-06 Swiss Reinsurance Company Ltd. Facultative underwriting system and method
US20030208385A1 (en) 2002-05-03 2003-11-06 Ing North America Insurance Corporation System and method for underwriting insurance
US20040024619A1 (en) 2002-05-15 2004-02-05 Dibella Joseph Patrick System and method for facilitating the determination of property and casualty insurance rates
JP3932409B2 (en) 2002-05-23 2007-06-20 ミネベア株式会社 Brushless DC 1-phase motor drive circuit
US20040078243A1 (en) 2002-06-04 2004-04-22 Fisher Fredrick J. Automatic insurance processing method
US7698157B2 (en) 2002-06-12 2010-04-13 Anvita, Inc. System and method for multi-dimensional physician-specific data mining for pharmaceutical sales and marketing
US20040181435A9 (en) 2002-06-14 2004-09-16 Reinsurance Group Of America Corporation Computerized system and method of performing insurability analysis
US20030236685A1 (en) 2002-06-19 2003-12-25 Robert Buckner Preferred life mortality systems and methods
JP2004029872A (en) 2002-06-21 2004-01-29 Hitachi Ltd Insurance fee calculation system
US20040039608A1 (en) 2002-06-21 2004-02-26 Lulac, Llc Health benefit system and methodology
US20040078250A1 (en) 2002-06-25 2004-04-22 Schorb Robert B. Dedicated risk management line of credit
CA2494567A1 (en) 2002-06-27 2004-01-08 Beachwalk Capital Corporation Llc Method, system and apparatus for forming an insurance program
US7424466B2 (en) * 2002-07-24 2008-09-09 Northrop Grumman Corporation General purpose fusion engine
US7483840B2 (en) 2002-08-23 2009-01-27 Atera /Solutions Llc Randomized competitive insurance pricing system and method
US20040039710A1 (en) 2002-08-23 2004-02-26 Mcmillan Benjamin System and method for health care costs and outcomes modeling with timing terms
US7050932B2 (en) * 2002-08-23 2006-05-23 International Business Machines Corporation Method, system, and computer program product for outlier detection
ATE387671T1 (en) 2002-08-30 2008-03-15 Ubs Ag NETWORK-BASED INFORMATION MANAGEMENT
US20040230460A1 (en) 2002-09-16 2004-11-18 Thomas Bruce Bradford Secondary loss expense coverage
US7908156B2 (en) 2002-09-20 2011-03-15 Discovery Holdings Limited Method of calculating a premium payable by an insured person on a life insurance policy
US7707049B2 (en) 2002-10-02 2010-04-27 United Services Automobile Association System and method of providing pricing information
US20050027572A1 (en) 2002-10-16 2005-02-03 Goshert Richard D.. System and method to evaluate crop insurance plans
US20050170528A1 (en) * 2002-10-24 2005-08-04 Mike West Binary prediction tree modeling with many predictors and its uses in clinical and genomic applications
US20040103012A1 (en) 2002-11-22 2004-05-27 Swiss Reinsurance Company Method for automated insurance pricing and renewal notification
US20040103003A1 (en) 2002-11-22 2004-05-27 E-Comm Connect, Llc Method and system for insuring users of electronic trading systems or exchanges and traditional established commodity exchanges against weather-related risks and hazards
EP1573598A4 (en) 2002-12-16 2006-07-26 Questerra Corp Real-time insurance policy underwriting and risk management
US20040128170A1 (en) * 2002-12-19 2004-07-01 Mackethan Edwin Robeson Method for intergrating insurance quotation, payment and issuance to mortgage loan origination process
KR100511785B1 (en) 2002-12-20 2005-08-31 한국전자통신연구원 A System and A Method for Authoring Multimedia Content Description Metadata
US20040128147A1 (en) 2002-12-26 2004-07-01 Sundar Vallinayagam Method and system to implement complex pricing rules
US7627491B2 (en) 2003-01-07 2009-12-01 Swiss Reinsurance Company Method for evaluating flood plain risks
US7337122B2 (en) 2003-01-14 2008-02-26 Mirant Americas, Inc. Method for producing a superior insurance model for commodity event risk
US8655683B2 (en) 2003-02-04 2014-02-18 Allstate Insurance Company Remote contents estimating system and method
US20040172311A1 (en) 2003-02-28 2004-09-02 Kauderer Steven I. Method of and system for evaluating underwriting activities
US20040186753A1 (en) 2003-03-21 2004-09-23 David Kim System and method for catastrophic risk assessment
US7757162B2 (en) 2003-03-31 2010-07-13 Ricoh Co. Ltd. Document collection manipulation
GB0307906D0 (en) 2003-04-05 2003-05-14 Hewlett Packard Development Co A method of purchasing insurance or validating an anonymous transaction
US6804609B1 (en) 2003-04-14 2004-10-12 Conocophillips Company Property prediction using residual stepwise regression
US7813945B2 (en) 2003-04-30 2010-10-12 Genworth Financial, Inc. System and process for multivariate adaptive regression splines classification for insurance underwriting suitable for use by an automated system
US20040236611A1 (en) 2003-04-30 2004-11-25 Ge Financial Assurance Holdings, Inc. System and process for a neural network classification for insurance underwriting suitable for use by an automated system
US7383239B2 (en) * 2003-04-30 2008-06-03 Genworth Financial, Inc. System and process for a fusion classification for insurance underwriting suitable for use by an automated system
US7567914B2 (en) * 2003-04-30 2009-07-28 Genworth Financial, Inc. System and process for dominance classification for insurance underwriting suitable for use by an automated system
US7801748B2 (en) 2003-04-30 2010-09-21 Genworth Financial, Inc. System and process for detecting outliers for insurance underwriting suitable for use by an automated system
US7873527B2 (en) 2003-05-14 2011-01-18 International Business Machines Corporation Insurance for service level agreements in e-utilities and other e-service environments
US20040249678A1 (en) 2003-06-03 2004-12-09 Henderson E. Devere Systems and methods for qualifying expected risk due to contingent destructive human activities
US20040249679A1 (en) 2003-06-03 2004-12-09 Risk Assessment Solutions, Llc Systems and methods for qualifying expected loss due to contingent destructive human activities
US20040260594A1 (en) 2003-06-18 2004-12-23 Maddox Edward P. Maintenance and inspection system and method
US20040267579A1 (en) 2003-06-30 2004-12-30 Markman Barry S. Method, apparatus and system for providing insurance coverage and claims payment for single event surgical and diagnostic procedures
JP2005025292A (en) 2003-06-30 2005-01-27 Nippon Steel Corp Disaster risk management method
US20050027571A1 (en) 2003-07-30 2005-02-03 International Business Machines Corporation Method and apparatus for risk assessment for a disaster recovery process
EP1654624A4 (en) 2003-08-13 2007-12-26 Swiss Reinsurance Co Method and apparatus for automated insurance processing
US20050044050A1 (en) 2003-08-18 2005-02-24 Horticultural Asset Management, Inc. Techniques for valuing, insuring, and certifying a valuation of landscape architectures
US20050102168A1 (en) 2003-11-10 2005-05-12 Thomas Bruce B. Collateral coverage for insurers and advisors
US20050060203A1 (en) 2003-08-28 2005-03-17 Lajoie John T. RESPA compliant title insurance commitment system
US7711584B2 (en) 2003-09-04 2010-05-04 Hartford Fire Insurance Company System for reducing the risk associated with an insured building structure through the incorporation of selected technologies
US7610210B2 (en) 2003-09-04 2009-10-27 Hartford Fire Insurance Company System for the acquisition of technology risk mitigation information associated with insurance
CA2504810A1 (en) 2003-09-10 2005-03-17 Swiss Reinsurance Company System and method for the automated establishment of experience ratings and/or risk reserves
US20050060208A1 (en) 2003-09-17 2005-03-17 Gianantoni Raymond J. Method for optimizing insurance estimates utilizing Monte Carlo simulation
US20090089101A1 (en) 2003-09-19 2009-04-02 Hashim Safaa H Techniques for underwriting insurance policies using web-centric insurance management system
US6999935B2 (en) 2003-09-30 2006-02-14 Kiritharan Parankirinathan Method of calculating premium payment to cover the risk attributable to insureds surviving a specified period
US20050075911A1 (en) 2003-10-03 2005-04-07 Affiliated Flood Group, L.L.C. Method for producing, selling, and delivering data required by mortgage lenders and servicers to comply with flood insurance monitoring requirements
US20050080649A1 (en) 2003-10-08 2005-04-14 Alvarez Andres C. Systems and methods for automating the capture, organization, and transmission of data
WO2005038695A2 (en) 2003-10-17 2005-04-28 United Health Group Incorporated Cost projections for diagnoses
US20050144045A1 (en) 2003-10-23 2005-06-30 Corsi Jerome R. System and method to reduce insurance premiums
US20050102171A1 (en) 2003-10-29 2005-05-12 Ashley Thomas R. Elderly assessment protocol
US8725540B2 (en) 2003-10-30 2014-05-13 Swiss Reinsurance Company Ltd. Automated system and method for evaluating insurable risks at point of sale
US20050102172A1 (en) 2003-10-31 2005-05-12 Sirmans James R.Jr. System and method for evaluating insurance member activity and pricing insurance products
US8484050B2 (en) 2003-11-06 2013-07-09 Swiss Reinsurance Company Ltd. System and method for evaluating underwriting requirements
US20050108064A1 (en) 2003-11-14 2005-05-19 Ge Mortgage Holdings, Llc Methods and apparatus for developing and marketing combined insurance packages
US20050114184A1 (en) 2003-11-21 2005-05-26 Brian Rock Insurance coverage system and method
US20050125253A1 (en) 2003-12-04 2005-06-09 Ge Financial Assurance Holdings, Inc. System and method for using medication and medical condition information in automated insurance underwriting
US8606603B2 (en) 2003-12-05 2013-12-10 Scorelogix Llc Unemployment risk score and private insurance for employees
US20090265190A1 (en) 2003-12-23 2009-10-22 Ashley Thomas R System for classification and assessment of preferred risks
US20050137914A1 (en) 2003-12-23 2005-06-23 Hans Schmitter Method, computer program product, and system for calculating a premium for stop loss insurance for a fleet of vehicles
JP2005196249A (en) 2003-12-26 2005-07-21 Hitachi Maxell Ltd Environment-related substance insurance system and computer program
US8090599B2 (en) 2003-12-30 2012-01-03 Hartford Fire Insurance Company Method and system for computerized insurance underwriting
US7747455B2 (en) 2004-01-14 2010-06-29 Consilience, Inc. Partner protection insurance
US20050182666A1 (en) 2004-02-13 2005-08-18 Perry Timothy P.J. Method and system for electronically routing and processing information
US7698159B2 (en) 2004-02-13 2010-04-13 Genworth Financial Inc. Systems and methods for performing data collection
US20050182670A1 (en) 2004-02-18 2005-08-18 Burgess Steven A. Methods for reducing and eliminating risk exposure in life insurance transactions
US7685008B2 (en) 2004-02-20 2010-03-23 Accenture Global Services Gmbh Account level participation for underwriting components
US8160902B2 (en) 2004-02-27 2012-04-17 Spalding Jr Philip F System for facilitating life settlement transactions
US7707050B2 (en) 2004-03-11 2010-04-27 Risk Management Solutions, Inc. Systems and methods for determining concentrations of exposure
US8494955B2 (en) 2004-03-23 2013-07-23 John S. Quarterman Method, system, and service for quantifying network risk to price insurance premiums and bonds
US7197427B2 (en) 2004-03-31 2007-03-27 Genworth Financial Inc. Method for risk based testing
US7676379B2 (en) 2004-04-27 2010-03-09 Humana Inc. System and method for automated extraction and display of past health care use to aid in predicting future health status
US20050256747A1 (en) 2004-04-28 2005-11-17 Hellrigel Robert M System and method for underwriting payment processing risk
US20050251428A1 (en) 2004-05-06 2005-11-10 Dust Larry R Method and system for providing healthcare insurance
WO2005116880A1 (en) 2004-05-28 2005-12-08 Emergis Inc. Methodology for generating flexible insurance plans using a hierarchical model with override capabilities
US20050273370A1 (en) 2004-06-02 2005-12-08 Best Practices Medical Partners, Llc System and method for determining risk management solutions
US20050288971A1 (en) 2004-06-11 2005-12-29 Frank Cassandra Critical illness insurance product and system for administering same
US7752120B2 (en) 2004-06-14 2010-07-06 Accenture Global Services Gmbh Auction insurance system
US20050288968A1 (en) 2004-06-29 2005-12-29 John Collins Method and system for evaluating a cost for health care coverage for an entity
US20060085230A1 (en) 2004-07-15 2006-04-20 Brill Joel V Methods and systems for healthcare assessment
US20060015374A1 (en) 2004-07-19 2006-01-19 Yanhong Ochs Risk management on the application of crop inputs
CN101027689A (en) 2004-07-26 2007-08-29 发现控股有限公司 A data processing system for accurately calculating a policyholder's discount in a medical insurance plan and a method therefor
US20060026044A1 (en) 2004-07-28 2006-02-02 Smith Donald X Ii Electronic content insurance system
US20060026045A1 (en) 2004-08-02 2006-02-02 Rothschild Jesse B Method for providing an income for, or a financial benefit to an individual who loses any or all income, or loses the potential for any or all income, resulting from the necessary and/or voluntary care of another individual who is ill, injured, disabled, diseased, or otherwise incapacitated
US20060031104A1 (en) 2004-08-09 2006-02-09 Gianantoni Raymond J System and method for optimizing insurance estimates
US20060064331A1 (en) 2004-08-18 2006-03-23 Cassie Odermott Insurance premium refund incentive program
US8744877B2 (en) 2004-08-26 2014-06-03 Barclays Capital Inc. Methods and systems for providing GMWB hedging and GMDB reinsurance
US20060047540A1 (en) 2004-09-01 2006-03-02 Hutten Bruce V System and method for underwriting
US8271299B2 (en) 2004-09-10 2012-09-18 Davidson S Kenneth Return-of-premium insurance system and method
US7246070B2 (en) 2004-09-24 2007-07-17 James Dennis Schwartz Method and apparatus for bundling insurance coverages in order to gain a pricing advantage
US20060080153A1 (en) 2004-10-08 2006-04-13 Fox John L Health care system and method for operating a health care system
US20060080139A1 (en) 2004-10-08 2006-04-13 Woodhaven Health Services Preadmission health care cost and reimbursement estimation tool
US20060089860A1 (en) 2004-10-21 2006-04-27 Barry Fitzmorris System and method for creating a favorable risk pool for portability and conversion life insurance programs
US20060089861A1 (en) 2004-10-22 2006-04-27 Oracle International Corporation Survey based risk assessment for processes, entities and enterprise
US7865378B2 (en) 2004-10-29 2011-01-04 Milemeter, Inc. System and method for the assessment, pricing, and provisioning of distance-based vehicle insurance
US20060095304A1 (en) 2004-10-29 2006-05-04 Choicepoint, Asset Company Evaluating risk of insuring an individual based on timely assessment of motor vehicle records
US20060095305A1 (en) 2004-10-29 2006-05-04 Choicepoint, Asset Company Insurance coverage verification
US8095380B2 (en) * 2004-11-16 2012-01-10 Health Dialog Services Corporation Systems and methods for predicting healthcare related financial risk
US20050209894A1 (en) 2004-12-10 2005-09-22 Aflac Systems and devices for vision protection policy
US20090076860A1 (en) 2005-01-27 2009-03-19 Taburit - The Central Cord Blood Registry Ltd. Method and system for providing insurance
US8095393B2 (en) * 2005-04-21 2012-01-10 Seifert Michael J Method and system for automated processing of insurance information
US20060253305A1 (en) * 2005-05-06 2006-11-09 Dougherty Jack B Computerized automated new policy quoting system and method
US8195484B2 (en) 2005-06-15 2012-06-05 Hartford Steam Boiler Inspection And Insurance Company Insurance product, rating system and method
US20090119133A1 (en) 2005-07-07 2009-05-07 Yeransian Luke W Method and system for policy underwriting and risk management over a network
US20070011033A1 (en) * 2005-07-11 2007-01-11 Paul Atkinson System and process for providing insurance
US7555439B1 (en) * 2005-07-21 2009-06-30 Trurisk, Llc Computerized medical underwriting of group life insurance using medical claims data
US7555438B2 (en) * 2005-07-21 2009-06-30 Trurisk, Llc Computerized medical modeling of group life insurance using medical claims data
WO2007022644A1 (en) 2005-08-24 2007-03-01 Swiss Reinsurance Company Computer system and method for determining an insurance rate
US8019628B1 (en) * 2005-12-28 2011-09-13 United Services Automobile Association Systems and methods of automating determination of hepatitis risk
US7610257B1 (en) * 2006-01-10 2009-10-27 Sas Institute Inc. Computer-implemented risk evaluation systems and methods
FR2896338B1 (en) * 2006-01-17 2008-04-18 St Microelectronics Crolles 2 METHOD FOR MAKING A MONOCRYSTALLINE LAYER ON A DIELECTRIC LAYER
US7249040B1 (en) * 2006-03-16 2007-07-24 Trurisk, L.L.C. Computerized medical underwriting of group life and disability insurance using medical claims data
AU2007257546A1 (en) 2006-06-06 2007-12-13 Discovery Holdings Limited A system and method of managing an insurance scheme
IL176540A0 (en) 2006-06-25 2006-10-05 Oded Sarel Case based means and associated method of data analysis for use in risk assessment
US20070005405A1 (en) 2006-09-12 2007-01-04 Dust Larry R Insurance system and method
US8060422B2 (en) 2007-07-27 2011-11-15 Hartford Fire Insurance Company Financial risk management system
US20090055226A1 (en) 2007-08-20 2009-02-26 American International Group, Inc. Method and system for determining rates of insurance
US20090070152A1 (en) 2007-09-12 2009-03-12 Rolling Solutions Llc Systems and methods for dynamic quote generation
US20090100095A1 (en) 2007-10-04 2009-04-16 Jung Edward K Y Systems and methods for reinsurance utilizing epigenetic information
US20090094067A1 (en) 2007-10-04 2009-04-09 Searete LLC, a limited liability corporation of Systems and methods for company internal optimization utilizing epigenetic data
US20090094065A1 (en) 2007-10-04 2009-04-09 Hyde Roderick A Systems and methods for underwriting risks utilizing epigenetic information
US20090099877A1 (en) 2007-10-11 2009-04-16 Hyde Roderick A Systems and methods for underwriting risks utilizing epigenetic information
US7890357B2 (en) * 2007-11-20 2011-02-15 Hartford Fire Insurance Company System and method for identifying and evaluating nanomaterial-related risk
US20090177500A1 (en) 2008-01-04 2009-07-09 Michael Swahn System and method for numerical risk of loss assessment of an insured property
US8239221B2 (en) 2008-01-14 2012-08-07 Fidelity Life Association Methods for selling insurance using rapid decision term
US20090187434A1 (en) 2008-01-23 2009-07-23 Benemax, Inc System and method for a health insurance risk evaluator
US20090192828A1 (en) 2008-01-29 2009-07-30 Metropolitan Chicago Healthcare Council Method of managing insurance data
US8275639B2 (en) 2008-02-01 2012-09-25 Guerrero John M Insurance product and related system and method
US20090204443A1 (en) 2008-02-08 2009-08-13 Honeywell International Inc. Integrated roof wind risk mitigation method and system
US20090210256A1 (en) 2008-02-15 2009-08-20 Aetna Inc. System For Real-Time Online Health Care Insurance Underwriting
TWI425436B (en) 2008-03-05 2014-02-01 Shacom Com Inc Process apparatus and mutual insurance method performed by the process apparatus
US20090276247A1 (en) 2008-03-10 2009-11-05 Roger Glenn Howell Systems and methods for web-based group insurance/benefits procurement and/or administration
US20090248453A1 (en) 2008-03-28 2009-10-01 Guidewire Software, Inc. Method and apparatus to facilitate determining insurance policy element availability
US9378527B2 (en) 2008-04-08 2016-06-28 Hartford Fire Insurance Company Computer system for applying predictive model to determine and indeterminate data
US7860735B2 (en) 2008-04-22 2010-12-28 Xerox Corporation Online life insurance document management service
US20090281841A1 (en) 2008-05-12 2009-11-12 International Business Machines Corporation Method for automating insurance claims processing
US20090287509A1 (en) 2008-05-16 2009-11-19 International Business Machines Corporation Method and system for automating insurance claims processing
WO2009147594A1 (en) 2008-06-03 2009-12-10 Discovery Holdings Limited A system and method of managing an insurance scheme
WO2009147593A1 (en) 2008-06-03 2009-12-10 Discovery Holdings Limited A system and method of managing an insurance scheme
WO2009147591A2 (en) 2008-06-03 2009-12-10 Discovery Holdings Limited A system and method of managing an insurance scheme
CN102057390A (en) 2008-06-03 2011-05-11 发现控股有限公司 A system and method of managing an insurance scheme
WO2009147572A1 (en) 2008-06-03 2009-12-10 Discovery Holdings Limited A system and method of managing an insurance scheme
US20090055227A1 (en) 2008-10-30 2009-02-26 Bakos Thomas L Risk Assessment Company

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10963970B2 (en) 2019-03-27 2021-03-30 Hartford Fire Insurance Company Processing system to facilitate multi-region risk relationships
US11694274B2 (en) * 2019-03-27 2023-07-04 Hartford Fire Insurance Company Processing system to facilitate multi-region risk relationships
US20230298110A1 (en) * 2019-03-27 2023-09-21 Hartford Fire Insurance Company Processing system to facilitate multi-region risk relationships

Also Published As

Publication number Publication date
WO2003058387A3 (en) 2003-12-04
US20030187699A1 (en) 2003-10-02
US8793146B2 (en) 2014-07-29
WO2003058387A2 (en) 2003-07-17
AU2002357887A8 (en) 2003-07-24
US20150019269A1 (en) 2015-01-15
AU2002357887A1 (en) 2003-07-24

Similar Documents

Publication Publication Date Title
US20180260906A1 (en) System for rule-based insurance underwriting suitable for use by an automated system
US7899688B2 (en) Process for optimization of insurance underwriting suitable for use by an automated system
US8005693B2 (en) Process for determining a confidence factor for insurance underwriting suitable for use by an automated system
US7844477B2 (en) Process for rule-based insurance underwriting suitable for use by an automated system
US7844476B2 (en) Process for case-based insurance underwriting suitable for use by an automated system
US7818186B2 (en) System for determining a confidence factor for insurance underwriting suitable for use by an automated system
US7895062B2 (en) System for optimization of insurance underwriting suitable for use by an automated system
US7630910B2 (en) System for case-based insurance underwriting suitable for use by an automated system
US20030177032A1 (en) System for summerizing information for insurance underwriting suitable for use by an automated system
US20030182159A1 (en) Process for summarizing information for insurance underwriting suitable for use by an automated system
US20040220839A1 (en) System and process for dominance classification for insurance underwriting suitable for use by an automated system
US20040220840A1 (en) System and process for multivariate adaptive regression splines classification for insurance underwriting suitable for use by an automated system
WO2007005975A2 (en) Risk modeling system
WO2001013295A1 (en) Detection of insurance premium fraud or abuse using a predictive software system
EP1955273A2 (en) Electronic enterprise capital marketplace and monitoring apparatus and method
US20090076988A1 (en) Method and system for optimal choice
Wang [Retracted] Analysis and Application of Quality Indicators in Hospital Administrative Management Based on a Fuzzy Hierarchical Model
Patterson et al. Six sigma applied throughout the lifecycle of an automated decision system
Aggour et al. Automating the underwriting of insurance applications
Sachs et al. Quantifying qualitative information on risks: Development of the QQIR method
Kumra et al. Assessing a knowledge-based approach to commercial loan underwriting
Aggour et al. Automating the underwriting of insurance applications
Bollapragada et al. GE's energy rentals business automates its credit assessment process
Jacob Determinants of corporate governance performance based on disclosures in published reports: evidence from India
Antoro et al. Comparison Between Machine Learning Regression Modelling to Predict Individual Premium Price

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION