US20180025299A1 - Automated data center maintenance - Google Patents
Automated data center maintenance Download PDFInfo
- Publication number
- US20180025299A1 US20180025299A1 US15/654,615 US201715654615A US2018025299A1 US 20180025299 A1 US20180025299 A1 US 20180025299A1 US 201715654615 A US201715654615 A US 201715654615A US 2018025299 A1 US2018025299 A1 US 2018025299A1
- Authority
- US
- United States
- Prior art keywords
- maintenance
- automated
- sled
- data center
- automation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000012423 maintenance Methods 0.000 title claims abstract description 493
- 238000000034 method Methods 0.000 claims abstract description 333
- 238000003860 storage Methods 0.000 claims abstract description 112
- 238000012545 processing Methods 0.000 claims abstract description 61
- 230000015654 memory Effects 0.000 claims description 160
- 230000007613 environmental effect Effects 0.000 claims description 51
- 230000000977 initiatory effect Effects 0.000 claims description 7
- 238000004891 communication Methods 0.000 description 84
- 230000003287 optical effect Effects 0.000 description 77
- 238000005259 measurement Methods 0.000 description 25
- 230000006870 function Effects 0.000 description 20
- 238000012360 testing method Methods 0.000 description 20
- 238000007726 management method Methods 0.000 description 18
- 239000004744 fabric Substances 0.000 description 15
- 238000001816 cooling Methods 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 13
- 230000005291 magnetic effect Effects 0.000 description 12
- 230000011664 signaling Effects 0.000 description 11
- 230000033001 locomotion Effects 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- 238000009529 body temperature measurement Methods 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000008439 repair process Effects 0.000 description 7
- 238000009530 blood pressure measurement Methods 0.000 description 6
- 230000037361 pathway Effects 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 230000001953 sensory effect Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000001351 cycling effect Effects 0.000 description 4
- 239000012636 effector Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- VCGRFBXVSFAGGA-UHFFFAOYSA-N (1,1-dioxo-1,4-thiazinan-4-yl)-[6-[[3-(4-fluorophenyl)-5-methyl-1,2-oxazol-4-yl]methoxy]pyridin-3-yl]methanone Chemical compound CC=1ON=C(C=2C=CC(F)=CC=2)C=1COC(N=C1)=CC=C1C(=O)N1CCS(=O)(=O)CC1 VCGRFBXVSFAGGA-UHFFFAOYSA-N 0.000 description 3
- VJPPLCNBDLZIFG-ZDUSSCGKSA-N 4-[(3S)-3-(but-2-ynoylamino)piperidin-1-yl]-5-fluoro-2,3-dimethyl-1H-indole-7-carboxamide Chemical compound C(C#CC)(=O)N[C@@H]1CN(CCC1)C1=C2C(=C(NC2=C(C=C1F)C(=O)N)C)C VJPPLCNBDLZIFG-ZDUSSCGKSA-N 0.000 description 3
- GISRWBROCYNDME-PELMWDNLSA-N F[C@H]1[C@H]([C@H](NC1=O)COC1=NC=CC2=CC(=C(C=C12)OC)C(=O)N)C Chemical compound F[C@H]1[C@H]([C@H](NC1=O)COC1=NC=CC2=CC(=C(C=C12)OC)C(=O)N)C GISRWBROCYNDME-PELMWDNLSA-N 0.000 description 3
- IDRGFNPZDVBSSE-UHFFFAOYSA-N OCCN1CCN(CC1)c1ccc(Nc2ncc3cccc(-c4cccc(NC(=O)C=C)c4)c3n2)c(F)c1F Chemical compound OCCN1CCN(CC1)c1ccc(Nc2ncc3cccc(-c4cccc(NC(=O)C=C)c4)c3n2)c(F)c1F IDRGFNPZDVBSSE-UHFFFAOYSA-N 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000006855 networking Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- YFCIFWOJYYFDQP-PTWZRHHISA-N 4-[3-amino-6-[(1S,3S,4S)-3-fluoro-4-hydroxycyclohexyl]pyrazin-2-yl]-N-[(1S)-1-(3-bromo-5-fluorophenyl)-2-(methylamino)ethyl]-2-fluorobenzamide Chemical compound CNC[C@@H](NC(=O)c1ccc(cc1F)-c1nc(cnc1N)[C@H]1CC[C@H](O)[C@@H](F)C1)c1cc(F)cc(Br)c1 YFCIFWOJYYFDQP-PTWZRHHISA-N 0.000 description 2
- XYWIPYBIIRTJMM-IBGZPJMESA-N 4-[[(2S)-2-[4-[5-chloro-2-[4-(trifluoromethyl)triazol-1-yl]phenyl]-5-methoxy-2-oxopyridin-1-yl]butanoyl]amino]-2-fluorobenzamide Chemical compound CC[C@H](N1C=C(OC)C(=CC1=O)C1=C(C=CC(Cl)=C1)N1C=C(N=N1)C(F)(F)F)C(=O)NC1=CC(F)=C(C=C1)C(N)=O XYWIPYBIIRTJMM-IBGZPJMESA-N 0.000 description 2
- AYCPARAPKDAOEN-LJQANCHMSA-N N-[(1S)-2-(dimethylamino)-1-phenylethyl]-6,6-dimethyl-3-[(2-methyl-4-thieno[3,2-d]pyrimidinyl)amino]-1,4-dihydropyrrolo[3,4-c]pyrazole-5-carboxamide Chemical compound C1([C@H](NC(=O)N2C(C=3NN=C(NC=4C=5SC=CC=5N=C(C)N=4)C=3C2)(C)C)CN(C)C)=CC=CC=C1 AYCPARAPKDAOEN-LJQANCHMSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- DGLFSNZWRYADFC-UHFFFAOYSA-N chembl2334586 Chemical compound C1CCC2=CN=C(N)N=C2C2=C1NC1=CC=C(C#CC(C)(O)C)C=C12 DGLFSNZWRYADFC-UHFFFAOYSA-N 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- XGVXKJKTISMIOW-ZDUSSCGKSA-N simurosertib Chemical compound N1N=CC(C=2SC=3C(=O)NC(=NC=3C=2)[C@H]2N3CCC(CC3)C2)=C1C XGVXKJKTISMIOW-ZDUSSCGKSA-N 0.000 description 2
- MAYZWDRUFKUGGP-VIFPVBQESA-N (3s)-1-[5-tert-butyl-3-[(1-methyltetrazol-5-yl)methyl]triazolo[4,5-d]pyrimidin-7-yl]pyrrolidin-3-ol Chemical compound CN1N=NN=C1CN1C2=NC(C(C)(C)C)=NC(N3C[C@@H](O)CC3)=C2N=N1 MAYZWDRUFKUGGP-VIFPVBQESA-N 0.000 description 1
- UKGJZDSUJSPAJL-YPUOHESYSA-N (e)-n-[(1r)-1-[3,5-difluoro-4-(methanesulfonamido)phenyl]ethyl]-3-[2-propyl-6-(trifluoromethyl)pyridin-3-yl]prop-2-enamide Chemical compound CCCC1=NC(C(F)(F)F)=CC=C1\C=C\C(=O)N[C@H](C)C1=CC(F)=C(NS(C)(=O)=O)C(F)=C1 UKGJZDSUJSPAJL-YPUOHESYSA-N 0.000 description 1
- ZGYIXVSQHOKQRZ-COIATFDQSA-N (e)-n-[4-[3-chloro-4-(pyridin-2-ylmethoxy)anilino]-3-cyano-7-[(3s)-oxolan-3-yl]oxyquinolin-6-yl]-4-(dimethylamino)but-2-enamide Chemical compound N#CC1=CN=C2C=C(O[C@@H]3COCC3)C(NC(=O)/C=C/CN(C)C)=CC2=C1NC(C=C1Cl)=CC=C1OCC1=CC=CC=N1 ZGYIXVSQHOKQRZ-COIATFDQSA-N 0.000 description 1
- MOWXJLUYGFNTAL-DEOSSOPVSA-N (s)-[2-chloro-4-fluoro-5-(7-morpholin-4-ylquinazolin-4-yl)phenyl]-(6-methoxypyridazin-3-yl)methanol Chemical compound N1=NC(OC)=CC=C1[C@@H](O)C1=CC(C=2C3=CC=C(C=C3N=CN=2)N2CCOCC2)=C(F)C=C1Cl MOWXJLUYGFNTAL-DEOSSOPVSA-N 0.000 description 1
- APWRZPQBPCAXFP-UHFFFAOYSA-N 1-(1-oxo-2H-isoquinolin-5-yl)-5-(trifluoromethyl)-N-[2-(trifluoromethyl)pyridin-4-yl]pyrazole-4-carboxamide Chemical compound O=C1NC=CC2=C(C=CC=C12)N1N=CC(=C1C(F)(F)F)C(=O)NC1=CC(=NC=C1)C(F)(F)F APWRZPQBPCAXFP-UHFFFAOYSA-N 0.000 description 1
- ABDDQTDRAHXHOC-QMMMGPOBSA-N 1-[(7s)-5,7-dihydro-4h-thieno[2,3-c]pyran-7-yl]-n-methylmethanamine Chemical compound CNC[C@@H]1OCCC2=C1SC=C2 ABDDQTDRAHXHOC-QMMMGPOBSA-N 0.000 description 1
- FMFKNGWZEQOWNK-UHFFFAOYSA-N 1-butoxypropan-2-yl 2-(2,4,5-trichlorophenoxy)propanoate Chemical compound CCCCOCC(C)OC(=O)C(C)OC1=CC(Cl)=C(Cl)C=C1Cl FMFKNGWZEQOWNK-UHFFFAOYSA-N 0.000 description 1
- HCDMJFOHIXMBOV-UHFFFAOYSA-N 3-(2,6-difluoro-3,5-dimethoxyphenyl)-1-ethyl-8-(morpholin-4-ylmethyl)-4,7-dihydropyrrolo[4,5]pyrido[1,2-d]pyrimidin-2-one Chemical compound C=1C2=C3N(CC)C(=O)N(C=4C(=C(OC)C=C(OC)C=4F)F)CC3=CN=C2NC=1CN1CCOCC1 HCDMJFOHIXMBOV-UHFFFAOYSA-N 0.000 description 1
- BYHQTRFJOGIQAO-GOSISDBHSA-N 3-(4-bromophenyl)-8-[(2R)-2-hydroxypropyl]-1-[(3-methoxyphenyl)methyl]-1,3,8-triazaspiro[4.5]decan-2-one Chemical compound C[C@H](CN1CCC2(CC1)CN(C(=O)N2CC3=CC(=CC=C3)OC)C4=CC=C(C=C4)Br)O BYHQTRFJOGIQAO-GOSISDBHSA-N 0.000 description 1
- YGYGASJNJTYNOL-CQSZACIVSA-N 3-[(4r)-2,2-dimethyl-1,1-dioxothian-4-yl]-5-(4-fluorophenyl)-1h-indole-7-carboxamide Chemical compound C1CS(=O)(=O)C(C)(C)C[C@@H]1C1=CNC2=C(C(N)=O)C=C(C=3C=CC(F)=CC=3)C=C12 YGYGASJNJTYNOL-CQSZACIVSA-N 0.000 description 1
- WNEODWDFDXWOLU-QHCPKHFHSA-N 3-[3-(hydroxymethyl)-4-[1-methyl-5-[[5-[(2s)-2-methyl-4-(oxetan-3-yl)piperazin-1-yl]pyridin-2-yl]amino]-6-oxopyridin-3-yl]pyridin-2-yl]-7,7-dimethyl-1,2,6,8-tetrahydrocyclopenta[3,4]pyrrolo[3,5-b]pyrazin-4-one Chemical compound C([C@@H](N(CC1)C=2C=NC(NC=3C(N(C)C=C(C=3)C=3C(=C(N4C(C5=CC=6CC(C)(C)CC=6N5CC4)=O)N=CC=3)CO)=O)=CC=2)C)N1C1COC1 WNEODWDFDXWOLU-QHCPKHFHSA-N 0.000 description 1
- SRVXSISGYBMIHR-UHFFFAOYSA-N 3-[3-[3-(2-amino-2-oxoethyl)phenyl]-5-chlorophenyl]-3-(5-methyl-1,3-thiazol-2-yl)propanoic acid Chemical compound S1C(C)=CN=C1C(CC(O)=O)C1=CC(Cl)=CC(C=2C=C(CC(N)=O)C=CC=2)=C1 SRVXSISGYBMIHR-UHFFFAOYSA-N 0.000 description 1
- KVCQTKNUUQOELD-UHFFFAOYSA-N 4-amino-n-[1-(3-chloro-2-fluoroanilino)-6-methylisoquinolin-5-yl]thieno[3,2-d]pyrimidine-7-carboxamide Chemical compound N=1C=CC2=C(NC(=O)C=3C4=NC=NC(N)=C4SC=3)C(C)=CC=C2C=1NC1=CC=CC(Cl)=C1F KVCQTKNUUQOELD-UHFFFAOYSA-N 0.000 description 1
- IRPVABHDSJVBNZ-RTHVDDQRSA-N 5-[1-(cyclopropylmethyl)-5-[(1R,5S)-3-(oxetan-3-yl)-3-azabicyclo[3.1.0]hexan-6-yl]pyrazol-3-yl]-3-(trifluoromethyl)pyridin-2-amine Chemical compound C1=C(C(F)(F)F)C(N)=NC=C1C1=NN(CC2CC2)C(C2[C@@H]3CN(C[C@@H]32)C2COC2)=C1 IRPVABHDSJVBNZ-RTHVDDQRSA-N 0.000 description 1
- KCBWAFJCKVKYHO-UHFFFAOYSA-N 6-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-1-[[4-[1-propan-2-yl-4-(trifluoromethyl)imidazol-2-yl]phenyl]methyl]pyrazolo[3,4-d]pyrimidine Chemical compound C1(CC1)C1=NC=NC(=C1C1=NC=C2C(=N1)N(N=C2)CC1=CC=C(C=C1)C=1N(C=C(N=1)C(F)(F)F)C(C)C)OC KCBWAFJCKVKYHO-UHFFFAOYSA-N 0.000 description 1
- CYJRNFFLTBEQSQ-UHFFFAOYSA-N 8-(3-methyl-1-benzothiophen-5-yl)-N-(4-methylsulfonylpyridin-3-yl)quinoxalin-6-amine Chemical compound CS(=O)(=O)C1=C(C=NC=C1)NC=1C=C2N=CC=NC2=C(C=1)C=1C=CC2=C(C(=CS2)C)C=1 CYJRNFFLTBEQSQ-UHFFFAOYSA-N 0.000 description 1
- ZRPZPNYZFSJUPA-UHFFFAOYSA-N ARS-1620 Chemical compound Oc1cccc(F)c1-c1c(Cl)cc2c(ncnc2c1F)N1CCN(CC1)C(=O)C=C ZRPZPNYZFSJUPA-UHFFFAOYSA-N 0.000 description 1
- 241001589086 Bellapiscis medius Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- LXRZVMYMQHNYJB-UNXOBOICSA-N [(1R,2S,4R)-4-[[5-[4-[(1R)-7-chloro-1,2,3,4-tetrahydroisoquinolin-1-yl]-5-methylthiophene-2-carbonyl]pyrimidin-4-yl]amino]-2-hydroxycyclopentyl]methyl sulfamate Chemical compound CC1=C(C=C(S1)C(=O)C1=C(N[C@H]2C[C@H](O)[C@@H](COS(N)(=O)=O)C2)N=CN=C1)[C@@H]1NCCC2=C1C=C(Cl)C=C2 LXRZVMYMQHNYJB-UNXOBOICSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000014510 cooky Nutrition 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- FMASTMURQSHELY-UHFFFAOYSA-N n-(4-fluoro-2-methylphenyl)-3-methyl-n-[(2-methyl-1h-indol-4-yl)methyl]pyridine-4-carboxamide Chemical compound C1=CC=C2NC(C)=CC2=C1CN(C=1C(=CC(F)=CC=1)C)C(=O)C1=CC=NC=C1C FMASTMURQSHELY-UHFFFAOYSA-N 0.000 description 1
- NNKPHNTWNILINE-UHFFFAOYSA-N n-cyclopropyl-3-fluoro-4-methyl-5-[3-[[1-[2-[2-(methylamino)ethoxy]phenyl]cyclopropyl]amino]-2-oxopyrazin-1-yl]benzamide Chemical compound CNCCOC1=CC=CC=C1C1(NC=2C(N(C=3C(=C(F)C=C(C=3)C(=O)NC3CC3)C)C=CN=2)=O)CC1 NNKPHNTWNILINE-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- LZMJNVRJMFMYQS-UHFFFAOYSA-N poseltinib Chemical compound C1CN(C)CCN1C(C=C1)=CC=C1NC1=NC(OC=2C=C(NC(=O)C=C)C=CC=2)=C(OC=C2)C2=N1 LZMJNVRJMFMYQS-UHFFFAOYSA-N 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- XIIOFHFUYBLOLW-UHFFFAOYSA-N selpercatinib Chemical compound OC(COC=1C=C(C=2N(C=1)N=CC=2C#N)C=1C=NC(=CC=1)N1CC2N(C(C1)C2)CC=1C=NC(=CC=1)OC)(C)C XIIOFHFUYBLOLW-UHFFFAOYSA-N 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/061—Improving I/O performance
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/3873—Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
- G02B6/3882—Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using rods, pins or balls to align a pair of ferrule ends
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/389—Dismountable connectors, i.e. comprising plugs characterised by the method of fastening connecting plugs and sockets, e.g. screw- or nut-lock, snap-in, bayonet type
- G02B6/3893—Push-pull type, e.g. snap-in, push-on
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/3897—Connectors fixed to housings, casing, frames or circuit boards
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4292—Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4439—Auxiliary devices
- G02B6/444—Systems or boxes with surplus lengths
- G02B6/4452—Distribution frames
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/18—Packaging or power distribution
- G06F1/183—Internal mounting support structures, e.g. for printed circuit boards, internal connecting means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/20—Cooling means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/10—Address translation
- G06F12/109—Address translation for multiple virtual address spaces, e.g. segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/14—Protection against unauthorised use of memory or access to memory
- G06F12/1408—Protection against unauthorised use of memory or access to memory by using cryptography
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/1668—Details of memory controller
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/382—Information transfer, e.g. on bus using universal interface adapter
- G06F13/385—Information transfer, e.g. on bus using universal interface adapter for adaptation of a particular data processing system to different peripheral devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/40—Bus structure
- G06F13/4004—Coupling between buses
- G06F13/4022—Coupling between buses using switching circuits, e.g. switching matrix, connection or expansion network
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/40—Bus structure
- G06F13/4063—Device-to-bus coupling
- G06F13/4068—Electrical coupling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/40—Bus structure
- G06F13/4063—Device-to-bus coupling
- G06F13/409—Mechanical coupling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/42—Bus transfer protocol, e.g. handshake; Synchronisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
- G06F15/161—Computing infrastructure, e.g. computer clusters, blade chassis or hardware partitioning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/10—File systems; File servers
- G06F16/17—Details of further file system functions
- G06F16/174—Redundancy elimination performed by the file system
- G06F16/1748—De-duplication implemented within the file system, e.g. based on file segments
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/901—Indexing; Data structures therefor; Storage structures
- G06F16/9014—Indexing; Data structures therefor; Storage structures hash tables
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/061—Improving I/O performance
- G06F3/0613—Improving I/O performance in relation to throughput
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/0614—Improving the reliability of storage systems
- G06F3/0619—Improving the reliability of storage systems in relation to data integrity, e.g. data losses, bit errors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/0625—Power saving in storage systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0638—Organizing or formatting or addressing of data
- G06F3/064—Management of blocks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0646—Horizontal data movement in storage systems, i.e. moving data in between storage devices or systems
- G06F3/065—Replication mechanisms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0653—Monitoring storage devices or systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0655—Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0655—Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
- G06F3/0659—Command handling arrangements, e.g. command buffers, queues, command scheduling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0662—Virtualisation aspects
- G06F3/0664—Virtualisation aspects at device level, e.g. emulation of a storage device or system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0662—Virtualisation aspects
- G06F3/0665—Virtualisation aspects at area level, e.g. provisioning of virtual or logical volumes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0668—Interfaces specially adapted for storage systems adopting a particular infrastructure
- G06F3/067—Distributed or networked storage systems, e.g. storage area networks [SAN], network attached storage [NAS]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0668—Interfaces specially adapted for storage systems adopting a particular infrastructure
- G06F3/0671—In-line storage system
- G06F3/0673—Single storage device
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0668—Interfaces specially adapted for storage systems adopting a particular infrastructure
- G06F3/0671—In-line storage system
- G06F3/0673—Single storage device
- G06F3/0679—Non-volatile semiconductor memory device, e.g. flash memory, one time programmable memory [OTP]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0668—Interfaces specially adapted for storage systems adopting a particular infrastructure
- G06F3/0671—In-line storage system
- G06F3/0683—Plurality of storage devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0668—Interfaces specially adapted for storage systems adopting a particular infrastructure
- G06F3/0671—In-line storage system
- G06F3/0683—Plurality of storage devices
- G06F3/0688—Non-volatile semiconductor memory arrays
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0668—Interfaces specially adapted for storage systems adopting a particular infrastructure
- G06F3/0671—In-line storage system
- G06F3/0683—Plurality of storage devices
- G06F3/0689—Disk arrays, e.g. RAID, JBOD
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/60—Software deployment
- G06F8/65—Updates
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
- G06F9/30007—Arrangements for executing specific machine instructions to perform operations on data operands
- G06F9/30036—Instructions to perform operations on packed data, e.g. vector, tile or matrix operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/4401—Bootstrapping
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Program initiating; Program switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/4881—Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/54—Interprogram communication
- G06F9/544—Buffers; Shared memory; Pipes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06314—Calendaring for a resource
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/008—Registering or indicating the working of vehicles communicating information to a remotely located station
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
- G08C17/02—Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C14/00—Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down
- G11C14/0009—Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a DRAM cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/02—Disposition of storage elements, e.g. in the form of a matrix array
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1072—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers for memories with random access ports synchronised on clock signal pulse trains, e.g. synchronous memories, self timed memories
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/3084—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction using adaptive string matching, e.g. the Lempel-Ziv method
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/3084—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction using adaptive string matching, e.g. the Lempel-Ziv method
- H03M7/3086—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction using adaptive string matching, e.g. the Lempel-Ziv method employing a sliding window, e.g. LZ77
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/40—Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/40—Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code
- H03M7/4031—Fixed length to variable length coding
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/40—Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code
- H03M7/4031—Fixed length to variable length coding
- H03M7/4037—Prefix coding
- H03M7/4043—Adaptive prefix coding
- H03M7/4056—Coding table selection
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/40—Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code
- H03M7/4031—Fixed length to variable length coding
- H03M7/4037—Prefix coding
- H03M7/4081—Static prefix coding
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/60—General implementation details not specific to a particular type of compression
- H03M7/6005—Decoder aspects
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/60—General implementation details not specific to a particular type of compression
- H03M7/6017—Methods or arrangements to increase the throughput
- H03M7/6023—Parallelization
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2589—Bidirectional transmission
- H04B10/25891—Transmission components
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2803—Home automation networks
- H04L12/2807—Exchanging configuration information on appliance services in a home automation network
- H04L12/2809—Exchanging configuration information on appliance services in a home automation network indicating that an appliance service is present in a home automation network
-
- H04L29/12009—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/02—Standardisation; Integration
- H04L41/024—Standardisation; Integration using relational databases for representation of network management data, e.g. managing via structured query language [SQL]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/145—Network analysis or design involving simulating, designing, planning or modelling of a network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0805—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
- H04L43/0817—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0876—Network utilisation, e.g. volume of load or congestion level
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0876—Network utilisation, e.g. volume of load or congestion level
- H04L43/0894—Packet rate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/52—Multiprotocol routers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/38—Flow control; Congestion control by adapting coding or compression rate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/78—Architectures of resource allocation
- H04L47/782—Hierarchical allocation of resources, e.g. involving a hierarchy of local and centralised entities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/83—Admission control; Resource allocation based on usage prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/15—Interconnection of switching modules
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/25—Routing or path finding in a switch fabric
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/35—Switches specially adapted for specific applications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/35—Switches specially adapted for specific applications
- H04L49/356—Switches specially adapted for specific applications for storage area networks
- H04L49/357—Fibre channel switches
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/45—Arrangements for providing or supporting expansion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/02—Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/2866—Architectures; Arrangements
- H04L67/30—Profiles
- H04L67/306—User profiles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/04—Protocols for data compression, e.g. ROHC
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/18—Multiprotocol handlers, e.g. single devices capable of handling multiple protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/30—Definitions, standards or architectural aspects of layered protocol stacks
- H04L69/32—Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
- H04L69/322—Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
- H04L69/329—Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q1/00—Details of selecting apparatus or arrangements
- H04Q1/02—Constructional details
- H04Q1/09—Frames or mounting racks not otherwise provided for
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0003—Details
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1438—Back panels or connecting means therefor; Terminals; Coding means to avoid wrong insertion
- H05K7/1439—Back panel mother boards
- H05K7/1442—Back panel mother boards with a radial structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
- B25J15/0014—Gripping heads and other end effectors having fork, comb or plate shaped means for engaging the lower surface on a object to be transported
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G1/00—Storing articles, individually or in orderly arrangement, in warehouses or magazines
- B65G1/02—Storage devices
- B65G1/04—Storage devices mechanical
- B65G1/0492—Storage devices mechanical with cars adapted to travel in storage aisles
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/1919—Control of temperature characterised by the use of electric means characterised by the type of controller
- G05D23/1921—Control of temperature characterised by the use of electric means characterised by the type of controller using a thermal motor
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/20—Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
- G05D23/2037—Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature details of the regulator
- G05D23/2039—Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature details of the regulator using mechanical means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/14—Error detection or correction of the data by redundancy in operation
- G06F11/1402—Saving, restoring, recovering or retrying
- G06F11/1405—Saving, restoring, recovering or retrying at machine instruction level
- G06F11/141—Saving, restoring, recovering or retrying at machine instruction level for bus or memory accesses
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
- G06F11/3409—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment
- G06F11/3414—Workload generation, e.g. scripts, playback
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
- G06F12/0862—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches with prefetch
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
- G06F12/0893—Caches characterised by their organisation or structure
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/10—Address translation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/1605—Handling requests for interconnection or transfer for access to memory bus based on arbitration
- G06F13/161—Handling requests for interconnection or transfer for access to memory bus based on arbitration with latency improvement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/1668—Details of memory controller
- G06F13/1694—Configuration of memory controller to different memory types
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/42—Bus transfer protocol, e.g. handshake; Synchronisation
- G06F13/4282—Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/76—Architectures of general purpose stored program computers
- G06F15/80—Architectures of general purpose stored program computers comprising an array of processing units with common control, e.g. single instruction multiple data processors
- G06F15/8053—Vector processors
- G06F15/8061—Details on data memory access
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2209/00—Indexing scheme relating to G06F9/00
- G06F2209/48—Indexing scheme relating to G06F9/48
- G06F2209/483—Multiproc
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2209/00—Indexing scheme relating to G06F9/00
- G06F2209/50—Indexing scheme relating to G06F9/50
- G06F2209/5019—Workload prediction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2209/00—Indexing scheme relating to G06F9/00
- G06F2209/50—Indexing scheme relating to G06F9/50
- G06F2209/5022—Workload threshold
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/10—Providing a specific technical effect
- G06F2212/1008—Correctness of operation, e.g. memory ordering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/10—Providing a specific technical effect
- G06F2212/1016—Performance improvement
- G06F2212/1024—Latency reduction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/10—Providing a specific technical effect
- G06F2212/1041—Resource optimization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/10—Providing a specific technical effect
- G06F2212/1041—Resource optimization
- G06F2212/1044—Space efficiency improvement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/15—Use in a specific computing environment
- G06F2212/152—Virtualized environment, e.g. logically partitioned system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/20—Employing a main memory using a specific memory technology
- G06F2212/202—Non-volatile memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/40—Specific encoding of data in memory or cache
- G06F2212/401—Compressed data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/40—Specific encoding of data in memory or cache
- G06F2212/402—Encrypted data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/72—Details relating to flash memory management
- G06F2212/7207—Details relating to flash memory management management of metadata or control data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/061—Improving I/O performance
- G06F3/0611—Improving I/O performance in relation to response time
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/0614—Improving the reliability of storage systems
- G06F3/0616—Improving the reliability of storage systems in relation to life time, e.g. increasing Mean Time Between Failures [MTBF]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0629—Configuration or reconfiguration of storage systems
- G06F3/0631—Configuration or reconfiguration of storage systems by allocating resources to storage systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0638—Organizing or formatting or addressing of data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0646—Horizontal data movement in storage systems, i.e. moving data in between storage devices or systems
- G06F3/0647—Migration mechanisms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0655—Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
- G06F3/0658—Controller construction arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline or look ahead
- G06F9/3885—Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units
- G06F9/3887—Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units controlled by a single instruction for multiple data lanes [SIMD]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5011—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
- G06F9/5016—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals the resource being the memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
- G06F9/5044—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering hardware capabilities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
- G06F9/505—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
- G06F9/5072—Grid computing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
- G06F9/5077—Logical partitioning of resources; Management or configuration of virtualized resources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/08—Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
- G06Q10/087—Inventory or stock management, e.g. order filling, procurement or balancing against orders
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/20—Administration of product repair or maintenance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/04—Manufacturing
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C2200/00—Transmission systems for measured values, control or similar signals
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/06—Arrangements for interconnecting storage elements electrically, e.g. by wiring
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/04—Network management architectures or arrangements
- H04L41/046—Network management architectures or arrangements comprising network management agents or mobile agents therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0803—Configuration setting
- H04L41/0813—Configuration setting characterised by the conditions triggering a change of settings
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0803—Configuration setting
- H04L41/0813—Configuration setting characterised by the conditions triggering a change of settings
- H04L41/082—Configuration setting characterised by the conditions triggering a change of settings the condition being updates or upgrades of network functionality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0896—Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/12—Discovery or management of network topologies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/147—Network analysis or design for predicting network behaviour
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/149—Network analysis or design for prediction of maintenance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/40—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using virtualisation of network functions or resources, e.g. SDN or NFV entities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/50—Network service management, e.g. ensuring proper service fulfilment according to agreements
- H04L41/5003—Managing SLA; Interaction between SLA and QoS
- H04L41/5019—Ensuring fulfilment of SLA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/06—Generation of reports
- H04L43/065—Generation of reports related to network devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/16—Threshold monitoring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/02—Topology update or discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/24—Traffic characterised by specific attributes, e.g. priority or QoS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/76—Admission control; Resource allocation using dynamic resource allocation, e.g. in-call renegotiation requested by the user or requested by the network in response to changing network conditions
- H04L47/765—Admission control; Resource allocation using dynamic resource allocation, e.g. in-call renegotiation requested by the user or requested by the network in response to changing network conditions triggered by the end-points
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/80—Actions related to the user profile or the type of traffic
- H04L47/805—QOS or priority aware
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/82—Miscellaneous aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/55—Prevention, detection or correction of errors
- H04L49/555—Error detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L61/00—Network arrangements, protocols or services for addressing or naming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
- H04L67/1004—Server selection for load balancing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
- H04L67/1004—Server selection for load balancing
- H04L67/1008—Server selection for load balancing based on parameters of servers, e.g. available memory or workload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
- H04L67/1004—Server selection for load balancing
- H04L67/1012—Server selection for load balancing based on compliance of requirements or conditions with available server resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
- H04L67/1004—Server selection for load balancing
- H04L67/1014—Server selection for load balancing based on the content of a request
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
- H04L67/1029—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers using data related to the state of servers by a load balancer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
- H04L67/1034—Reaction to server failures by a load balancer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1097—Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/34—Network arrangements or protocols for supporting network services or applications involving the movement of software or configuration parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/51—Discovery or management thereof, e.g. service location protocol [SLP] or web services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/06—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
- H04L9/0643—Hash functions, e.g. MD5, SHA, HMAC or f9 MAC
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/14—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using a plurality of keys or algorithms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3247—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3263—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving certificates, e.g. public key certificate [PKC] or attribute certificate [AC]; Public key infrastructure [PKI] arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q1/00—Details of selecting apparatus or arrangements
- H04Q1/02—Constructional details
- H04Q1/04—Frames or mounting racks for selector switches; Accessories therefor, e.g. frame cover
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0071—Provisions for the electrical-optical layer interface
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0037—Operation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0037—Operation
- H04Q2011/0041—Optical control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0052—Interconnection of switches
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0073—Provisions for forwarding or routing, e.g. lookup tables
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0079—Operation or maintenance aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0086—Network resource allocation, dimensioning or optimisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/13523—Indexing scheme relating to selecting arrangements in general and for multiplex systems bandwidth management, e.g. capacity management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/13527—Indexing scheme relating to selecting arrangements in general and for multiplex systems protocols - X.25, TCAP etc.
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/023—Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/80—Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0201—Thermal arrangements, e.g. for cooling, heating or preventing overheating
- H05K1/0203—Cooling of mounted components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/181—Printed circuits structurally associated with non-printed electric components associated with surface mounted components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/04—Mounting of components, e.g. of leadless components
- H05K13/0486—Replacement and removal of components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/06—Thermal details
- H05K2201/066—Heatsink mounted on the surface of the printed circuit board [PCB]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10121—Optical component, e.g. opto-electronic component
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10159—Memory
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10189—Non-printed connector
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K5/00—Casings, cabinets or drawers for electric apparatus
- H05K5/02—Details
- H05K5/0204—Mounting supporting structures on the outside of casings
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1417—Mounting supporting structure in casing or on frame or rack having securing means for mounting boards, plates or wiring boards
- H05K7/1418—Card guides, e.g. grooves
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1421—Drawers for printed circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1422—Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1438—Back panels or connecting means therefor; Terminals; Coding means to avoid wrong insertion
- H05K7/1447—External wirings; Wiring ducts; Laying cables
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1461—Slidable card holders; Card stiffeners; Control or display means therefor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1485—Servers; Data center rooms, e.g. 19-inch computer racks
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1485—Servers; Data center rooms, e.g. 19-inch computer racks
- H05K7/1487—Blade assemblies, e.g. blade cases or inner arrangements within a blade
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1485—Servers; Data center rooms, e.g. 19-inch computer racks
- H05K7/1488—Cabinets therefor, e.g. chassis or racks or mechanical interfaces between blades and support structures
- H05K7/1489—Cabinets therefor, e.g. chassis or racks or mechanical interfaces between blades and support structures characterized by the mounting of blades therein, e.g. brackets, rails, trays
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1485—Servers; Data center rooms, e.g. 19-inch computer racks
- H05K7/1488—Cabinets therefor, e.g. chassis or racks or mechanical interfaces between blades and support structures
- H05K7/1491—Cabinets therefor, e.g. chassis or racks or mechanical interfaces between blades and support structures having cable management arrangements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1485—Servers; Data center rooms, e.g. 19-inch computer racks
- H05K7/1488—Cabinets therefor, e.g. chassis or racks or mechanical interfaces between blades and support structures
- H05K7/1492—Cabinets therefor, e.g. chassis or racks or mechanical interfaces between blades and support structures having electrical distribution arrangements, e.g. power supply or data communications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1485—Servers; Data center rooms, e.g. 19-inch computer racks
- H05K7/1498—Resource management, Optimisation arrangements, e.g. configuration, identification, tracking, physical location
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
- H05K7/20718—Forced ventilation of a gaseous coolant
- H05K7/20727—Forced ventilation of a gaseous coolant within server blades for removing heat from heat source
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
- H05K7/20718—Forced ventilation of a gaseous coolant
- H05K7/20736—Forced ventilation of a gaseous coolant within cabinets for removing heat from server blades
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
- H05K7/20718—Forced ventilation of a gaseous coolant
- H05K7/20745—Forced ventilation of a gaseous coolant within rooms for removing heat from cabinets, e.g. by air conditioning device
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
- H05K7/20836—Thermal management, e.g. server temperature control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
- Y04S10/52—Outage or fault management, e.g. fault detection or location
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S901/00—Robots
- Y10S901/01—Mobile robot
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S901/00—Robots
- Y10S901/30—End effector
Definitions
- FIG. 1 illustrates an embodiment of a first data center.
- FIG. 2 illustrates an embodiment of a logical configuration of a rack.
- FIG. 3 illustrates an embodiment of a second data center.
- FIG. 4 illustrates an embodiment of a third data center.
- FIG. 5 illustrates an embodiment of a connectivity scheme
- FIG. 6 illustrates an embodiment of first rack architecture.
- FIG. 7 illustrates an embodiment of a first sled.
- FIG. 8 illustrates an embodiment of a second rack architecture.
- FIG. 9 illustrates an embodiment of a rack.
- FIG. 10 illustrates an embodiment of a second sled.
- FIG. 11 illustrates an embodiment of a fourth data center.
- FIG. 12 illustrates an embodiment of a first logic flow.
- FIG. 13 illustrates an embodiment of a fifth data center.
- FIG. 14 illustrates an embodiment of an automated maintenance device.
- FIG. 15 illustrates an embodiment of a first operating environment.
- FIG. 16 illustrates an embodiment of a second operating environment.
- FIG. 17 illustrates an embodiment of a third operating environment.
- FIG. 18 illustrates an embodiment of a fourth operating environment.
- FIG. 19 illustrates an embodiment of a fifth operating environment.
- FIG. 20 illustrates an embodiment of a sixth operating environment.
- FIG. 21 illustrates an embodiment of a first logic flow.
- FIG. 22 illustrates an embodiment of a second logic flow.
- FIG. 23 illustrates an embodiment of a third logic flow.
- FIG. 24A illustrates an embodiment of a first storage medium.
- FIG. 24B illustrates an embodiment of a second storage medium.
- FIG. 25 illustrates an embodiment of a computing architecture.
- FIG. 26 illustrates an embodiment of a communications architecture.
- FIG. 27 illustrates an embodiment of a communication device.
- FIG. 28 illustrates an embodiment of a first wireless network.
- FIG. 29 illustrates an embodiment of a second wireless network.
- an automated maintenance device may comprise processing circuitry and non-transitory computer-readable storage media comprising instructions for execution by the processing circuitry to cause the automated maintenance device to receive an automation command from an automation coordinator for a data center, identify an automated maintenance procedure based on the received automation command, and perform the identified automated maintenance procedure.
- processing circuitry may comprise processing circuitry and non-transitory computer-readable storage media comprising instructions for execution by the processing circuitry to cause the automated maintenance device to receive an automation command from an automation coordinator for a data center, identify an automated maintenance procedure based on the received automation command, and perform the identified automated maintenance procedure.
- Various embodiments may comprise one or more elements.
- An element may comprise any structure arranged to perform certain operations.
- Each element may be implemented as hardware, software, or any combination thereof, as desired for a given set of design parameters or performance constraints.
- an embodiment may be described with a limited number of elements in a certain topology by way of example, the embodiment may include more or less elements in alternate topologies as desired for a given implementation.
- any reference to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment.
- the appearances of the phrases “in one embodiment,” “in some embodiments,” and “in various embodiments” in various places in the specification are not necessarily all referring to the same embodiment.
- FIG. 1 illustrates a conceptual overview of a data center 100 that may generally be representative of a data center or other type of computing network in/for which one or more techniques described herein may be implemented according to various embodiments.
- data center 100 may generally contain a plurality of racks, each of which may house computing equipment comprising a respective set of physical resources.
- data center 100 contains four racks 102 A to 102 D, which house computing equipment comprising respective sets of physical resources (PCRs) 105 A to 105 D.
- PCRs physical resources
- a collective set of physical resources 106 of data center 100 includes the various sets of physical resources 105 A to 105 D that are distributed among racks 102 A to 102 D.
- Physical resources 106 may include resources of multiple types, such as—for example—processors, co-processors, accelerators, field-programmable gate arrays (FPGAs), memory, and storage. The embodiments are not limited to these examples.
- the illustrative data center 100 differs from typical data centers in many ways.
- the circuit boards (“sleds”) on which components such as CPUs, memory, and other components are placed are designed for increased thermal performance.
- the sleds are shallower than typical boards. In other words, the sleds are shorter from the front to the back, where cooling fans are located. This decreases the length of the path that air must to travel across the components on the board.
- the components on the sled are spaced further apart than in typical circuit boards, and the components are arranged to reduce or eliminate shadowing (i.e., one component in the air flow path of another component).
- processing components such as the processors are located on a top side of a sled while near memory, such as DIMMs, are located on a bottom side of the sled.
- near memory such as DIMMs
- the components may operate at higher frequencies and power levels than in typical systems, thereby increasing performance.
- the sleds are configured to blindly mate with power and data communication cables in each rack 102 A, 102 B, 102 C, 102 D, enhancing their ability to be quickly removed, upgraded, reinstalled, and/or replaced.
- individual components located on the sleds such as processors, accelerators, memory, and data storage drives, are configured to be easily upgraded due to their increased spacing from each other.
- the components additionally include hardware attestation features to prove their authenticity.
- the data center 100 utilizes a single network architecture (“fabric”) that supports multiple other network architectures including Ethernet and Omni-Path.
- the sleds in the illustrative embodiment, are coupled to switches via optical fibers, which provide higher bandwidth and lower latency than typical twister pair cabling (e.g., Category 5, Category 5e, Category 6, etc.).
- the data center 100 may, in use, pool resources, such as memory, accelerators (e.g., graphics accelerators, FPGAs, ASICs, etc.), and data storage drives that are physically disaggregated, and provide them to compute resources (e.g., processors) on an as needed basis, enabling the compute resources to access the pooled resources as if they were local.
- the illustrative data center 100 additionally receives usage information for the various resources, predicts resource usage for different types of workloads based on past resource usage, and dynamically reallocates the resources based on this information.
- the racks 102 A, 102 B, 102 C, 102 D of the data center 100 may include physical design features that facilitate the automation of a variety of types of maintenance tasks.
- data center 100 may be implemented using racks that are designed to be robotically-accessed, and to accept and house robotically-manipulable resource sleds.
- the racks 102 A, 102 B, 102 C, 102 D include integrated power sources that receive a greater voltage than is typical for power sources. The increased voltage enables the power sources to provide additional power to the components on each sled, enabling the components to operate at higher than typical frequencies.
- FIG. 2 illustrates an exemplary logical configuration of a rack 202 of the data center 100 . As shown in FIG.
- rack 202 may generally house a plurality of sleds, each of which may comprise a respective set of physical resources.
- rack 202 houses sleds 204 - 1 to 204 - 4 comprising respective sets of physical resources 205 - 1 to 205 - 4 , each of which constitutes a portion of the collective set of physical resources 206 comprised in rack 202 .
- rack 202 is representative of—for example—rack 102 A
- physical resources 206 may correspond to the physical resources 105 A comprised in rack 102 A.
- physical resources 105 A may thus be made up of the respective sets of physical resources, including physical storage resources 205 - 1 , physical accelerator resources 205 - 2 , physical memory resources 205 - 3 , and physical compute resources 205 - 5 comprised in the sleds 204 - 1 to 204 - 4 of rack 202 .
- the embodiments are not limited to this example.
- Each sled may contain a pool of each of the various types of physical resources (e.g., compute, memory, accelerator, storage).
- robotically accessible and robotically manipulable sleds comprising disaggregated resources, each type of resource can be upgraded independently of each other and at their own optimized refresh rate.
- FIG. 3 illustrates an example of a data center 300 that may generally be representative of one in/for which one or more techniques described herein may be implemented according to various embodiments.
- data center 300 comprises racks 302 - 1 to 302 - 32 .
- the racks of data center 300 may be arranged in such fashion as to define and/or accommodate various access pathways.
- the racks of data center 300 may be arranged in such fashion as to define and/or accommodate access pathways 311 A, 311 B, 311 C, and 311 D.
- the presence of such access pathways may generally enable automated maintenance equipment, such as robotic maintenance equipment, to physically access the computing equipment housed in the various racks of data center 300 and perform automated maintenance tasks (e.g., replace a failed sled, upgrade a sled).
- automated maintenance equipment such as robotic maintenance equipment
- the dimensions of access pathways 311 A, 311 B, 311 C, and 311 D, the dimensions of racks 302 - 1 to 302 - 32 , and/or one or more other aspects of the physical layout of data center 300 may be selected to facilitate such automated operations. The embodiments are not limited in this context.
- FIG. 4 illustrates an example of a data center 400 that may generally be representative of one in/for which one or more techniques described herein may be implemented according to various embodiments.
- data center 400 may feature an optical fabric 412 .
- Optical fabric 412 may generally comprise a combination of optical signaling media (such as optical cabling) and optical switching infrastructure via which any particular sled in data center 400 can send signals to (and receive signals from) each of the other sleds in data center 400 .
- the signaling connectivity that optical fabric 412 provides to any given sled may include connectivity both to other sleds in a same rack and sleds in other racks. In the particular non-limiting example depicted in FIG.
- data center 400 includes four racks 402 A to 402 D.
- Racks 402 A to 402 D house respective pairs of sleds 404 A- 1 and 404 A- 2 , 404 B- 1 and 404 B- 2 , 404 C- 1 and 404 C- 2 , and 404 D- 1 and 404 D- 2 .
- data center 400 comprises a total of eight sleds. Via optical fabric 412 , each such sled may possess signaling connectivity with each of the seven other sleds in data center 400 .
- sled 404 A- 1 in rack 402 A may possess signaling connectivity with sled 404 A- 2 in rack 402 A, as well as the six other sleds 404 B- 1 , 404 B- 2 , 404 C- 1 , 404 C- 2 , 404 D- 1 , and 404 D- 2 that are distributed among the other racks 402 B, 402 C, and 402 D of data center 400 .
- the embodiments are not limited to this example.
- FIG. 5 illustrates an overview of a connectivity scheme 500 that may generally be representative of link-layer connectivity that may be established in some embodiments among the various sleds of a data center, such as any of example data centers 100 , 300 , and 400 of FIGS. 1, 3 , and 4 .
- Connectivity scheme 500 may be implemented using an optical fabric that features a dual-mode optical switching infrastructure 514 .
- Dual-mode optical switching infrastructure 514 may generally comprise a switching infrastructure that is capable of receiving communications according to multiple link-layer protocols via a same unified set of optical signaling media, and properly switching such communications.
- dual-mode optical switching infrastructure 514 may be implemented using one or more dual-mode optical switches 515 .
- dual-mode optical switches 515 may generally comprise high-radix switches. In some embodiments, dual-mode optical switches 515 may comprise multi-ply switches, such as four-ply switches. In various embodiments, dual-mode optical switches 515 may feature integrated silicon photonics that enable them to switch communications with significantly reduced latency in comparison to conventional switching devices. In some embodiments, dual-mode optical switches 515 may constitute leaf switches 530 in a leaf-spine architecture additionally including one or more dual-mode optical spine switches 520 .
- dual-mode optical switches may be capable of receiving both Ethernet protocol communications carrying Internet Protocol (IP packets) and communications according to a second, high-performance computing (HPC) link-layer protocol (e.g., Intel's Omni-Path Architecture's, Infiniband) via optical signaling media of an optical fabric.
- HPC high-performance computing
- connectivity scheme 500 may thus provide support for link-layer connectivity via both Ethernet links and HPC links.
- both Ethernet and HPC communications can be supported by a single high-bandwidth, low-latency switch fabric.
- the embodiments are not limited to this example.
- FIG. 6 illustrates a general overview of a rack architecture 600 that may be representative of an architecture of any particular one of the racks depicted in FIGS. 1 to 4 according to some embodiments.
- rack architecture 600 may generally feature a plurality of sled spaces into which sleds may be inserted, each of which may be robotically-accessible via a rack access region 601 .
- rack architecture 600 features five sled spaces 603 - 1 to 603 - 5 .
- Sled spaces 603 - 1 to 603 - 5 feature respective multi-purpose connector modules (MPCMs) 616 - 1 to 616 - 5 .
- MPCMs multi-purpose connector modules
- FIG. 7 illustrates an example of a sled 704 that may be representative of a sled of such a type.
- sled 704 may comprise a set of physical resources 705 , as well as an MPCM 716 designed to couple with a counterpart MPCM when sled 704 is inserted into a sled space such as any of sled spaces 603 - 1 to 603 - 5 of FIG. 6 .
- Sled 704 may also feature an expansion connector 717 .
- Expansion connector 717 may generally comprise a socket, slot, or other type of connection element that is capable of accepting one or more types of expansion modules, such as an expansion sled 718 . By coupling with a counterpart connector on expansion sled 718 , expansion connector 717 may provide physical resources 705 with access to supplemental computing resources 705 B residing on expansion sled 718 .
- the embodiments are not limited in this context.
- FIG. 8 illustrates an example of a rack architecture 800 that may be representative of a rack architecture that may be implemented in order to provide support for sleds featuring expansion capabilities, such as sled 704 of FIG. 7 .
- rack architecture 800 includes seven sled spaces 803 - 1 to 803 - 7 , which feature respective MPCMs 816 - 1 to 816 - 7 .
- Sled spaces 803 - 1 to 803 - 7 include respective primary regions 803 - 1 A to 803 - 7 A and respective expansion regions 803 - 1 B to 803 - 7 B.
- the primary region may generally constitute a region of the sled space that physically accommodates the inserted sled.
- the expansion region may generally constitute a region of the sled space that can physically accommodate an expansion module, such as expansion sled 718 of FIG. 7 , in the event that the inserted sled is configured with such a module.
- FIG. 9 illustrates an example of a rack 902 that may be representative of a rack implemented according to rack architecture 800 of FIG. 8 according to some embodiments.
- rack 902 features seven sled spaces 903 - 1 to 903 - 7 , which include respective primary regions 903 - 1 A to 903 - 7 A and respective expansion regions 903 - 1 B to 903 - 7 B.
- temperature control in rack 902 may be implemented using an air cooling system.
- rack 902 may feature a plurality of fans 919 that are generally arranged to provide air cooling within the various sled spaces 903 - 1 to 903 - 7 .
- the height of the sled space is greater than the conventional “1U” server height.
- fans 919 may generally comprise relatively slow, large diameter cooling fans as compared to fans used in conventional rack configurations. Running larger diameter cooling fans at lower speeds may increase fan lifetime relative to smaller diameter cooling fans running at higher speeds while still providing the same amount of cooling.
- the sleds are physically shallower than conventional rack dimensions. Further, components are arranged on each sled to reduce thermal shadowing (i.e., not arranged serially in the direction of air flow).
- the wider, shallower sleds allow for an increase in device performance because the devices can be operated at a higher thermal envelope (e.g., 250 W) due to improved cooling (i.e., no thermal shadowing, more space between devices, more room for larger heat sinks, etc.).
- a higher thermal envelope e.g. 250 W
- improved cooling i.e., no thermal shadowing, more space between devices, more room for larger heat sinks, etc.
- MPCMs 916 - 1 to 916 - 7 may be configured to provide inserted sleds with access to power sourced by respective power modules 920 - 1 to 920 - 7 , each of which may draw power from an external power source 921 .
- external power source 921 may deliver alternating current (AC) power to rack 902
- power modules 920 - 1 to 920 - 7 may be configured to convert such AC power to direct current (DC) power to be sourced to inserted sleds.
- power modules 920 - 1 to 920 - 7 may be configured to convert 277-volt AC power into 12-volt DC power for provision to inserted sleds via respective MPCMs 916 - 1 to 916 - 7 .
- the embodiments are not limited to this example.
- MPCMs 916 - 1 to 916 - 7 may also be arranged to provide inserted sleds with optical signaling connectivity to a dual-mode optical switching infrastructure 914 , which may be the same as—or similar to—dual-mode optical switching infrastructure 514 of FIG. 5 .
- optical connectors contained in MPCMs 916 - 1 to 916 - 7 may be designed to couple with counterpart optical connectors contained in MPCMs of inserted sleds to provide such sleds with optical signaling connectivity to dual-mode optical switching infrastructure 914 via respective lengths of optical cabling 922 - 1 to 922 - 7 .
- each such length of optical cabling may extend from its corresponding MPCM to an optical interconnect loom 923 that is external to the sled spaces of rack 902 .
- optical interconnect loom 923 may be arranged to pass through a support post or other type of load-bearing element of rack 902 . The embodiments are not limited in this context. Because inserted sleds connect to an optical switching infrastructure via MPCMs, the resources typically spent in manually configuring the rack cabling to accommodate a newly inserted sled can be saved.
- FIG. 10 illustrates an example of a sled 1004 that may be representative of a sled designed for use in conjunction with rack 902 of FIG. 9 according to some embodiments.
- Sled 1004 may feature an MPCM 1016 that comprises an optical connector 1016 A and a power connector 1016 B, and that is designed to couple with a counterpart MPCM of a sled space in conjunction with insertion of MPCM 1016 into that sled space. Coupling MPCM 1016 with such a counterpart MPCM may cause power connector 1016 to couple with a power connector comprised in the counterpart MPCM. This may generally enable physical resources 1005 of sled 1004 to source power from an external source, via power connector 1016 and power transmission media 1024 that conductively couples power connector 1016 to physical resources 1005 .
- Dual-mode optical network interface circuitry 1026 may generally comprise circuitry that is capable of communicating over optical signaling media according to each of multiple link-layer protocols supported by dual-mode optical switching infrastructure 914 of FIG. 9 .
- dual-mode optical network interface circuitry 1026 may be capable both of Ethernet protocol communications and of communications according to a second, high-performance protocol.
- dual-mode optical network interface circuitry 1026 may include one or more optical transceiver modules 1027 , each of which may be capable of transmitting and receiving optical signals over each of one or more optical channels. The embodiments are not limited in this context.
- Coupling MPCM 1016 with a counterpart MPCM of a sled space in a given rack may cause optical connector 1016 A to couple with an optical connector comprised in the counterpart MPCM.
- This may generally establish optical connectivity between optical cabling of the sled and dual-mode optical network interface circuitry 1026 , via each of a set of optical channels 1025 .
- Dual-mode optical network interface circuitry 1026 may communicate with the physical resources 1005 of sled 1004 via electrical signaling media 1028 .
- a relatively higher thermal envelope e.g. 250 W
- a sled may include one or more additional features to facilitate air cooling, such as a heatpipe and/or heat sinks arranged to dissipate heat generated by physical resources 1005 .
- additional features such as a heatpipe and/or heat sinks arranged to dissipate heat generated by physical resources 1005 .
- any given sled that features the design elements of sled 1004 may also feature an expansion connector according to some embodiments. The embodiments are not limited in this context.
- FIG. 11 illustrates an example of a data center 1100 that may generally be representative of one in/for which one or more techniques described herein may be implemented according to various embodiments.
- a physical infrastructure management framework 1150 A may be implemented to facilitate management of a physical infrastructure 1100 A of data center 1100 .
- one function of physical infrastructure management framework 1150 A may be to manage automated maintenance functions within data center 1100 , such as the use of robotic maintenance equipment to service computing equipment within physical infrastructure 1100 A.
- physical infrastructure 1100 A may feature an advanced telemetry system that performs telemetry reporting that is sufficiently robust to support remote automated management of physical infrastructure 1100 A.
- telemetry information provided by such an advanced telemetry system may support features such as failure prediction/prevention capabilities and capacity planning capabilities.
- physical infrastructure management framework 1150 A may also be configured to manage authentication of physical infrastructure components using hardware attestation techniques. For example, robots may verify the authenticity of components before installation by analyzing information collected from a radio frequency identification (RFID) tag associated with each component to be installed.
- RFID radio frequency identification
- the physical infrastructure 1100 A of data center 1100 may comprise an optical fabric 1112 , which may include a dual-mode optical switching infrastructure 1114 .
- Optical fabric 1112 and dual-mode optical switching infrastructure 1114 may be the same as—or similar to—optical fabric 412 of FIG. 4 and dual-mode optical switching infrastructure 514 of FIG. 5 , respectively, and may provide high-bandwidth, low-latency, multi-protocol connectivity among sleds of data center 1100 .
- the availability of such connectivity may make it feasible to disaggregate and dynamically pool resources such as accelerators, memory, and storage.
- one or more pooled accelerator sleds 1130 may be included among the physical infrastructure 1100 A of data center 1100 , each of which may comprise a pool of accelerator resources—such as co-processors and/or FPGAs, for example—that is available globally accessible to other sleds via optical fabric 1112 and dual-mode optical switching infrastructure 1114 .
- accelerator resources such as co-processors and/or FPGAs, for example
- one or more pooled storage sleds 1132 may be included among the physical infrastructure 1100 A of data center 1100 , each of which may comprise a pool of storage resources that is available globally accessible to other sleds via optical fabric 1112 and dual-mode optical switching infrastructure 1114 .
- such pooled storage sleds 1132 may comprise pools of solid-state storage devices such as solid-state drives (SSDs).
- SSDs solid-state drives
- one or more high-performance processing sleds 1134 may be included among the physical infrastructure 1100 A of data center 1100 .
- high-performance processing sleds 1134 may comprise pools of high-performance processors, as well as cooling features that enhance air cooling to yield a higher thermal envelope of up to 250 W or more.
- any given high-performance processing sled 1134 may feature an expansion connector 1117 that can accept a far memory expansion sled, such that the far memory that is locally available to that high-performance processing sled 1134 is disaggregated from the processors and near memory comprised on that sled.
- such a high-performance processing sled 1134 may be configured with far memory using an expansion sled that comprises low-latency SSD storage.
- the optical infrastructure allows for compute resources on one sled to utilize remote accelerator/FPGA, memory, and/or SSD resources that are disaggregated on a sled located on the same rack or any other rack in the data center.
- the remote resources can be located one switch jump away or two-switch jumps away in the spine-leaf network architecture described above with reference to FIG. 5 .
- the embodiments are not limited in this context.
- one or more layers of abstraction may be applied to the physical resources of physical infrastructure 1100 A in order to define a virtual infrastructure, such as a software-defined infrastructure 1100 B.
- virtual computing resources 1136 of software-defined infrastructure 1100 B may be allocated to support the provision of cloud services 1140 .
- particular sets of virtual computing resources 1136 may be grouped for provision to cloud services 1140 in the form of SDI services 1138 .
- cloud services 1140 may include—without limitation—software as a service (SaaS) services 1142 , platform as a service (PaaS) services 1144 , and infrastructure as a service (IaaS) services 1146 .
- management of software-defined infrastructure 1100 B may be conducted using a virtual infrastructure management framework 1150 B.
- virtual infrastructure management framework 1150 B may be designed to implement workload fingerprinting techniques and/or machine-learning techniques in conjunction with managing allocation of virtual computing resources 1136 and/or SDI services 1138 to cloud services 1140 .
- virtual infrastructure management framework 1150 B may use/consult telemetry data in conjunction with performing such resource allocation.
- an application/service management framework 1150 C may be implemented in order to provide QoS management capabilities for cloud services 1140 . The embodiments are not limited in this context.
- FIG. 12 illustrates an example of a logic flow 1200 that may be representative of a maintenance algorithm for a data center, such as one or more of data center 100 of FIG. 1 , data center 300 of FIG. 3 , data center 400 of FIG. 4 , and data center 1100 of FIG. 11 .
- data center operation information may be collected at 1202 .
- the collected data center operation information may include information describing various characteristics of ongoing operation of the data center, such as resource utilization levels, workload sizes, throughput rates, temperature measurements, and so forth.
- the collected data center operation information may additionally or alternatively include information describing other characteristics of the data center, such as the types of resources comprised in the data center, the locations/distributions of such resources within the data center, the capabilities and/or features of those resources, and so forth.
- the embodiments are not limited to these examples.
- a maintenance task to be completed may be identified at 1204 .
- data center operation information indicating that processing resources on a given sled are non-responsive to communications from resources on other sleds
- data center operation information indicating that a particular DIMM has reached the end of its estimated service life
- a set of physical actions associated with the maintenance task may be determined, and those physical actions may be performed at 1208 in order to complete the maintenance task.
- the physical actions identified at 1206 and performed at 1208 may include traveling to a particular rack in order to access a sled comprising the DIMM, removing the DIMM from a socket on the sled, and inserting a replacement DIMM into the socket.
- the embodiments are not limited to this example.
- FIG. 13 illustrates an overhead view of an example data center 1300 .
- data center 1300 may be representative of a data center in which various operations associated with data center maintenance—such as operations associated with one or more of blocks 1202 , 1204 , 1206 , and 1208 in logic flow 1200 of FIG. 12 —are automated using the capabilities of robotic maintenance equipment.
- data center 1300 may be representative of one or more of data center 100 of FIG. 1 , data center 300 of FIG. 3 , data center 400 of FIG. 4 , and data center 1100 of FIG. 11 .
- the embodiments are not limited in this context.
- robots 1360 may be used to service, repair, replace, clean, test, configure, upgrade, move, position, and/or otherwise manipulate equipment housed in racks 1302 .
- Racks 1302 may be arranged in such fashion as to define and/or accommodate access pathways via which robots 1360 can physically access such equipment.
- Robots 1360 may traverse such access pathways in conjunction with moving around in data center 1300 to perform various tasks.
- Physical features of equipment housed in racks 1302 may be designed to facilitate robotic manipulation/handling. It is to be appreciated that in various embodiments, the equipment housed in racks 1302 may include some equipment that is not robotically accessible/serviceable. Further, in some embodiments, there may be some equipment within data center 1300 that is robotically accessible/serviceable but is not housed in racks 1302 . The embodiments are not limited in this context.
- FIG. 14 illustrates a block diagram of an automated maintenance device 1400 that may be representative of any given robot 1360 in data center 1300 of FIG. 13 according to various embodiments.
- automated maintenance device 1400 may comprise a variety of elements.
- automated maintenance device 1400 comprises locomotion elements 1462 , manipulation elements 1463 , sensory elements 1464 , communication elements 1465 , interfaces 1466 , memory/storage elements 1467 , and operations management and control (OMC) elements 1468 .
- locomotion elements 1462 manipulation elements 1463 , sensory elements 1464 , communication elements 1465 , interfaces 1466 , memory/storage elements 1467 , and operations management and control (OMC) elements 1468 .
- OMC operations management and control
- Locomotion elements 1462 may generally comprise physical elements enabling automated maintenance device 1400 to move around within a data center.
- locomotion elements 1462 may comprise wheels.
- locomotion elements 1462 may comprise caterpillar tracks.
- automated maintenance device 1400 may provide the motive power/force required for motion.
- automated maintenance device 1400 may feature a battery that provides power to drive wheels or tracks used by automated maintenance device 1400 for moving around in a data center.
- the motive power/force may be provided by an external source. The embodiments are not limited in this context.
- Manipulation elements 1463 may generally comprise physical elements that are usable to manipulate various types of equipment in a data center.
- manipulation elements 1463 may include one or more robotic arms.
- manipulation elements 1463 may include one or more multi-link manipulators.
- manipulation elements 1463 may include one or more end effectors usable for gripping various types of equipment, components, and/or other objects within the data center.
- manipulation elements 1463 may include one or more end effectors comprising impactive grippers, such as jaw or claw grippers.
- manipulation elements 1463 may include one or more end effectors comprising ingressive grippers, which may feature pins, needles, hackles, or other elements that are to physically penetrate the surface of an object being gripped.
- manipulation elements 1463 may include one or more end effectors comprising astrictive grippers, which may grip objects using air suction, magnetic adhesion, or electroadhesion. The embodiments are not limited to these examples.
- Sensory elements 1464 may generally comprise physical elements that are usable to sense various aspects of ambient conditions within a data center. Examples of sensory elements 1464 may include cameras, alignment guides/sensors, distance sensors, proximity sensors, barcode readers, RFID/NFC readers, temperature sensors, airflow sensors, air quality sensors, humidity sensors, and pressure sensors. The embodiments are not limited to these examples.
- Communication elements 1465 may generally comprise a set of electronic components and/or circuitry operable to perform functions associated with communications between automated maintenance device 1400 and one or more external devices.
- such communications may include wireless communications, wired communications, or both.
- communication elements 1465 may include elements operative to generate/construct packets, frames, messages, and/or other information to be wirelessly communicated to external device(s), and/or to process/deconstruct packets, frames, messages, and/or other information wirelessly received from external device(s).
- communication elements 1465 may include baseband circuitry supporting wireless communications according to one or more wireless communication protocols/standards.
- communication elements 1465 may include elements operative to generate, process, construct, and/or deconstruct packets, frames, messages, and/or other information communicated over wired media.
- communication elements 1465 may include network interface circuitry supporting wired communications according to one or more wired communication protocols/standards. The embodiments are not limited in this context.
- interfaces 1466 may include one or more communication interfaces 1466 A.
- examples of interfaces 1466 that automated maintenance device 1400 may feature in various embodiments may include—without limitation—communication interfaces 1466 A, testing interfaces 1466 B, power interfaces 1466 C, and user interfaces 1466 D.
- Communication interfaces 1466 A may generally comprise interfaces usable to transmit and/or receive signals via one or more communication media, which may include wired media, wireless media, or both.
- communication interfaces 1466 A may include one or more wireless communication interfaces, such as radio frequency (RF) interfaces and/or optical wireless communication (OWC) interfaces.
- RF radio frequency
- OBC optical wireless communication
- communication interfaces may additionally or alternatively include one or more wired communication interfaces, such as interface(s) for communicating over media such as coaxial cable, twisted pair, and optical fiber. The embodiments are not limited to these examples.
- interfaces 1466 may include one or more testing interfaces 1466 B.
- Testing interfaces 1466 B may generally comprise interfaces via which automated maintenance device 1400 is able to test physical components/resources of one or more types, which may include—without limitation—one or more of physical storage resources 205 - 1 , physical accelerator resources 205 - 2 , physical memory resources 205 - 3 , and physical compute resources 205 - 4 of FIG. 2 .
- interfaces 1466 may include a testing interface 1466 B that enables automated maintenance device 1400 to test the functionality of a DIMM inserted into a testing slot. The embodiments are not limited to these examples.
- interfaces 1466 may include one or more power interfaces 1466 C.
- Power interfaces 1466 C may generally comprise interfaces via which automated maintenance device 1400 can draw and/or source power.
- power interfaces 1466 C may include one or more interfaces via which automated maintenance device 1400 can draw power from external source(s).
- automated maintenance device 1400 may feature one or more power interfaces 1466 C configured to provide charge to one or more batteries (not shown), and automated maintenance device may draw its operating power from those one or more batteries.
- automated maintenance device 1400 may feature one or more power interfaces 1466 C via which it can directly draw operating power.
- automated maintenance device 1400 may feature one or more power interfaces 1466 C via which it can source power to external devices.
- automated maintenance device 1400 may feature a power interface 1466 C via which it can source power to charge a battery of a second automated maintenance device. The embodiments are not limited to this example.
- interfaces 1466 may include one or more user interfaces.
- User interfaces 1466 D may generally comprise interfaces via which information can be provided to human technicians and/or user input can be accepted from human technicians. Examples of user interfaces 1466 D may include displays, touchscreens, speakers, microphones, keypads, mice, trackballs, trackpads, joysticks, fingerprint readers, retinal scanners, buttons, switches, and the like. The embodiments are not limited to these examples.
- Memory/storage elements 1467 may generally comprise a set of electronic components and/or circuitry capable of retaining data, such as any of various types of data that may be generated, transmitted, received, and/or used by automated maintenance device 1400 during normal operation.
- memory/storage elements 1467 may include one or both of volatile memory and non-volatile memory.
- memory/storage elements 1467 may include one or more of read-only memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory, polymer memory such as ferroelectric polymer memory, ovonic memory, phase change or ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, hard disks, an array of devices such as Redundant Array of Independent Disks (RAID) drives, solid state memory devices, solid state drives (SSDs), or any other type of media suitable for storing information.
- ROM read-only memory
- RAM random-access memory
- DRAM dynamic RAM
- DDRAM Double-Data-Rate DRAM
- SDRAM synchronous DRAM
- SRAM static RAM
- PROM
- OMC elements 1468 may generally comprise a set of components and/or circuitry capable of performing computing operations required to implement logic for managing and controlling the operations of automated maintenance device 1400 .
- OMC elements 1468 may include processing circuitry, such as one or more processors/processing units.
- an automation engine 1469 may execute on such processing circuitry. Automation engine 1469 may generally be operative to conduct overall management, control, coordination, and/or oversight of the operations of automated maintenance device 1400 .
- this may include management, coordination, control, and/or oversight of the operations/usage of various other elements within automated maintenance device 1400 , such as any or all of locomotion elements 1462 , manipulation elements 1463 , sensory elements 1464 , communication elements 1465 , interfaces 1466 , and memory/storage elements 1467 .
- locomotion elements 1462 manipulation elements 1463 , sensory elements 1464 , communication elements 1465 , interfaces 1466 , and memory/storage elements 1467 .
- FIG. 15 illustrates an example of an operating environment 1500 that may be representative of the implementation of an automated maintenance scheme in data center 1300 according to various embodiments.
- an automation coordinator 1555 may centrally manage/coordinate various aspects of automated maintenance operations in data center 1300 .
- automation coordinator 1555 may centrally manage/coordinate various aspects of automated maintenance operations in data center 1300 based in part on telemetry data 1571 provided by a telemetry framework 1570 .
- telemetry framework 1570 may be representative of an advanced telemetry system that performs telemetry reporting for physical infrastructure 1100 A in data center 1100 of FIG. 11
- automation coordinator 1555 may be representative of automated maintenance coordination functionality of physical infrastructure management framework 1150 A.
- the embodiments are not limited in this context.
- management/coordination functionality of automation coordinator 1555 may be provided by a coordination engine 1572 .
- coordination engine 1572 may execute on processing circuitry of automation coordinator 1555 .
- coordination engine 1572 may generate automation commands 1573 for transmission to robots 1360 in order to instruct robots 1360 to perform automated maintenance tasks and/or actions associated with such tasks.
- robots 1360 may provide automation coordinator 1555 with various types of feedback 1574 in order to—for example—acknowledge automation commands 1573 , report the results of attempted maintenance tasks, provide information regarding the statuses of components, resources, and/or equipment, provide information regarding information regarding the statuses of robots 1360 themselves, and/or report measurements of one or more aspects of ambient conditions in the data center.
- the embodiments are not limited to these examples.
- coordination engine 1572 may consider various types of information in conjunction with automated maintenance coordination/management. As reflected in FIG. 15 , examples of such types of information may include physical infrastructure information 1575 , data center operations information 1576 , maintenance task information 1577 , and maintenance equipment information 1579 .
- Physical infrastructure information 1575 may generally comprise information identifying equipment, devices, components, interconnects, physical resources, and/or other infrastructure elements that comprise portions of the physical infrastructure of data center 1300 , and describing characteristics of such elements.
- Data center operations information 1576 may generally comprise information describing various aspects of ongoing operations within data center 1300 .
- data center operations information 1576 may include information describing one or more workloads currently being processed in data center 1300 .
- data center operations information 1576 may include metrics characterizing one or more aspects of current operations in data center 1300 .
- data center operations information 1576 may include performance metrics characterizing the relative level of performance currently being achieved in data center 1300 , efficiency metrics characterizing the relative level of efficiency with which the physical resources of data center 1300 are being used to handle the current workloads, and utilization metrics generally indicative of current usage levels of various types of resources in data center 1300 .
- data center operations information 1576 may include telemetry data 1571 , such as automation coordinator 1555 may receive via telemetry framework 1570 or from robots 1360 . The embodiments are not limited in this context.
- Maintenance task information 1577 may generally comprise information identifying and describing ongoing and pending maintenance tasks of data center 1300 . Maintenance task information 1577 may also include information identifying and describing previously completed maintenance tasks. In various embodiments, maintenance task information 1577 may include a pending task queue 1578 . Pending task queue 1578 may generally comprise information identifying a set of maintenance tasks that need to be performed in data center 1300 . Maintenance equipment information 1579 may generally comprise identifying and describing automated maintenance equipment—such as robots 1360 —of data center 1300 . In some embodiments, maintenance equipment information 1579 may include a candidate device pool 1580 . Candidate device pool 1580 may generally comprise information identifying a set of robots 1360 that are currently available for use in data center 1300 . The embodiments are not limited in this context.
- automation coordinator 1555 may identify automated maintenance tasks to be performed in data center 1300 by robots 1360 . For example, based on telemetry data 1571 indicating a high bit error rate at a DIMM, automation coordinator 1555 may determine that a robot 1360 should be assigned to replace that DIMM. In some embodiments, automation coordinator 1555 may use telemetry data 1571 to prioritize among automated maintenance tasks, such as tasks comprised in pending task queue 1578 . For example, automation coordinator 1555 may use telemetry data 1571 to assess the respective expected performance impacts of multiple automated maintenance tasks in pending task queue 1578 , and may assign out an automated maintenance task with the highest expected performance impact first.
- automation coordinator 1555 may consider any or all of physical infrastructure information 1575 , data center operations information 1576 , maintenance task information 1577 , and maintenance equipment information 1579 in addition to—or in lieu of—telemetry data 1571 .
- automation coordinator 1555 may assign a low priority to an automated maintenance task involving replacement of a malfunctioning compute sled based on physical infrastructure information 1575 indicating that another sled in a different rack can be used as a substitute without need for replacing the malfunctioning compute sled.
- automation coordinator 1555 may assign a high priority to an automated maintenance task involving replacing a malfunctioning memory sled based on data center operation information 1576 indicating that a scarcity of memory constitutes a performance bottleneck with respect to workloads being processed in data center 1300 .
- automation coordinator 1555 may determine not to add a new maintenance task to pending task queue 1578 based on a determination that a maintenance task already present in pending task queue 1578 may render the new maintenance task unnecessary and/or moot.
- automation coordinator 1555 may consider maintenance equipment information 1579 indicating whether any robots 1360 featuring such specialized capabilities are currently available. The embodiments are not limited to these examples.
- automation coordinator 1555 may control the positioning and/or movement of robots 1360 within data center 1300 . For example, having used telemetry data 1571 to identify a region of data center 1300 within which a greater number of hardware failures have been and/or are expected to be observed, automation coordinator 1555 may position robots 1360 more densely within that identified region than within other regions of data center 1300 .
- the embodiments are not limited in this context.
- automated maintenance decisions such as may be reached based on any or all of telemetry data 1571 , physical infrastructure information 1575 , data center operations information 1576 , maintenance task information 1577 , and maintenance equipment information 1579 —automation coordinator 1555 may send automation commands 1573 to robots 1360 in order to instruct robots 1360 to perform operations associated with automated maintenance tasks. For example, upon determining that a particular compute sled should be replaced, automation coordinator 1555 may send an automation command 1573 in order to instruct a robot 1360 to perform a sled replacement procedure to replace the sled. In various embodiments, automation coordinator 1555 may inform robots 1360 of various parameters characterizing assigned automated maintenance tasks by including such parameters in automation commands 1573 .
- the automation command 1573 may contain fields specifying a sled ID uniquely identifying the sled to be replaced and a rack ID and/or sled space ID identifying the location of that sled within the data center, as well as analogous parameters associated with the replacement sled.
- the embodiments are not limited to this example.
- robots 1360 may make some automated maintenance decisions autonomously.
- robots 1360 may perform such autonomous decision-making based on telemetry data 1571 received from telemetry framework 1570 .
- a robot 1360 may determine based on analysis of telemetry data 1571 that a particular CPU is malfunctioning, and autonomously decide to replace that malfunctioning CPU.
- some or all of the robots 1360 in data center 1300 may have access to any or all of physical infrastructure information 1575 , data center operations information 1576 , maintenance task information 1577 , and maintenance equipment information 1579 , and may consider such information as well in conjunction with autonomous decision-making.
- distributed coordination functions may be implemented to enable some types of maintenance tasks to be completed via collaborative maintenance procedures involving cooperation between multiple robots. The embodiments are not limited in this context.
- FIG. 16 illustrates an example of an operating environment 1600 that may be representative of various embodiments.
- robots 1360 may provide automation coordinator 1555 with feedback 1574 that includes one or more of position data 1681 , assistance data 1682 , and environmental data 1683 .
- the embodiments are not limited to these examples. It is worthy of note that in some embodiments, although not depicted in FIG. 16 , robots 1360 may gather various types of telemetry data 1571 in conjunction with automated maintenance operations and include such gathered telemetry data 1571 in the feedback 1574 provided to automation coordinator 1555 . The embodiments are not limited in this context.
- Position data 1681 may generally comprise data for use by automation coordinator 1555 to determine/track the positions and/or movements of robots 1360 within data center 1300 .
- position data 1681 may comprise data associated with an indoor positioning system.
- the indoor positioning system may be a radio-based system, such as a Wi-Fi-based or Bluetooth-based indoor positioning system.
- a non-radio based positioning system such as a magnetic, optical, or inertial indoor positioning system may be used.
- the indoor positioning system may be a hybrid system, such as one that combines two or more of radio-based, magnetic, optical, and inertial indoor positioning techniques. The embodiments are not limited in this context.
- Assistance data 1682 may generally comprise data for use by automation coordinator 1555 to provide human maintenance personnel with information aiding them in the identification and/or performance of manual maintenance tasks.
- a given robot 1360 may generate assistance data 1682 in response to identifying a maintenance issue that it cannot correct/resolve in an automated fashion. For instance, after identifying a component that needs to be replaced and determining that it cannot perform the replacement itself, a robot 1360 take a picture of the component and provide assistance data 1682 comprising that picture to automation coordinator 1555 . Automation coordinator 1555 may then cause the picture to be presented on a display for reference by human maintenance personnel in order to aid visual identification of the component to be replaced.
- the embodiments are not limited to this example.
- the performance and/or reliability of various types of hardware in data center 1300 may potentially be affected by one or more aspects of the ambient conditions within data center 1300 , such as ambient temperature, pressure, humidity, and air quality.
- a rate at which corrosion occurs on metallic contacts of components such as DIMMs may depend on the ambient temperature and humidity.
- robots 1360 may be configured to support environmental condition monitoring by measuring one or more aspects of ambient conditions within the data center during ongoing operations and providing those collected measurements to automation coordinator 1555 in the form of environmental data 1683 .
- robots 1360 may collect environmental data 1683 using sensors or sensor arrays comprising sensory elements such as sensory elements 1464 of FIG. 14 . Examples of conditions/parameters that robots 1360 may measure and report to automation coordinator 1555 in the form of environmental data 1683 may include—without limitation—temperature, pressure, humidity, and air quality.
- robots 1360 in conjunction with providing environmental condition measurements in the form of environmental data 1683 , robots 1360 may also provide corresponding position data 1681 that indicates the locations at which the associated measurements were performed. The embodiments are not limited in this context.
- access to dynamic, continuous, and location-specific measurements of such parameters may enable a data center operator to predict failures, dynamically configure systems for best performance, and dynamically move resources for data center optimization.
- a data center operator may be able to predict accelerated failure of parts versus standard factory specification and replace parts earlier (or move to lower priority tasks).
- environmental data 1683 provided by robots 1360 may enable a data center operator to initiate service tickets ahead of predicted failure timelines. For example, a cleaning of DIMM contacts may be initiated in order to avoid corrosion build-up to the level where failures start occurring.
- environmental data 1683 provided by robots 1360 may enable a data center operator to continuously and dynamically configure servers based on, for example, altitude, pressure and other parameters that may be important to such things as fan speeds and cooling configurations which in turn may affect performance of a server in a given environment and temperature.
- environmental data 1683 provided by robots 1360 may enable a data center operator to detect and move data center resources automatically from zones/locations of the data center that may be affected by equipment failures or environment variations detected by the robot's sensors. For example, based on environmental data 1683 indicating an excessive temperature or air quality deterioration in a particular data center region, servers and/or other resources may be relocated from the affected region to a different region. The embodiments are not limited to these examples.
- FIG. 17 illustrates an example of an operating environment 1700 that may be representative of the implementation of an automated data center maintenance scheme according to some embodiments.
- a robot 1760 may perform one or more automated maintenance tasks at a rack 1702 .
- robot 1760 may be representative of a robot 1360 that performs operations associated with automated data center maintenance in data center 1300 of FIGS. 13, 15, and 16 .
- robot 1760 may be implemented using automated maintenance device 1400 of FIG. 14 .
- robot 1760 may move to a location of rack 1702 from another location in order to perform one or more automated maintenance tasks at rack 1702 .
- robot 1760 may perform one or more such tasks based on automation commands 1773 received from automation coordinator 1555 . In various embodiments, robot 1760 may additionally or alternatively perform one or more such tasks autonomously, without intervention on the part of automation coordinator 1555 . The embodiments are not limited in this context.
- robot 1760 may perform one or more automated maintenance tasks involving the installation and/or removal of sleds at racks of a data center such as data center 1300 .
- robot 1760 may be operative to install a sled 1704 at rack 1702 .
- robot 1760 may install sled 1704 by inserting it into an available sled space of rack 1702 .
- robot 1760 in conjunction with inserting sled 1704 , robot 1760 may grip particular physical elements designed to accommodate robotic manipulation/handling.
- robot 1760 may use image recognition and/or other location techniques to locate the elements to be gripped, and may insert sled 1704 while gripping those elements.
- robot 1760 may instead remove sled 1704 from rack 1702 and install a replacement sled 1704 B.
- robot 1760 may install replacement sled 1704 B in a same sled space as was occupied by sled 1704 , once it has removed sled 1704 .
- robot 1760 may install replacement sled 1704 B in a different sled space, such that it does not need to remove sled 1704 before installing replacement sled 1704 B.
- the embodiments are not limited in this context.
- robot 1760 may perform one or more automated maintenance tasks involving upkeep, repair, and/or replacement of particular components on sleds of a data center such as data center 1300 .
- robot 1760 may be used to power up a component 1706 in accordance with a scheme for periodically powering up components in the data center on a periodic basis in order to improve the reliability of such components.
- storage and/or memory components may tend to malfunction when left idle for excessive periods of time, and thus robots may be used to power up such components according to a defined cycle.
- robot 1760 may be operative to power up an appropriate component 1706 by plugging that component 1706 into a powered interface/slot.
- the embodiments are not limited to this example.
- robot 1760 may be operative to manipulate a given component 1706 in accordance with a scheme for automated upkeep of pooled memory resources of a data center. According to such a scheme, robots may be used to assess/troubleshoot apparently malfunctioning memory resources such as DIMMs. In some embodiments, according to such a scheme, robot 1760 may identify a component 1706 comprising a memory resource such as a DIMM, remove that component 1706 from a slot on sled 1704 , and clean the component 1706 . Robot 1760 may then test the component 1706 to determine whether the issue has been resolved, and may determine to pull sled 1704 for “back-room” servicing if it finds that the problem persists.
- a scheme for automated upkeep of pooled memory resources of a data center According to such a scheme, robots may be used to assess/troubleshoot apparently malfunctioning memory resources such as DIMMs. In some embodiments, according to such a scheme, robot 1760 may identify a component 1706 comprising a
- robot 1760 may test the component 1706 after reinserting it into its slot on sled 1704 .
- robot 1760 may be configured with a testing slot into which it can insert the component 1706 for the purpose of testing. The embodiments are not limited in this context.
- FIG. 18 illustrates an example of an operating environment 1800 that may be representative of the implementation of an automated data center maintenance scheme according to some embodiments.
- a robot 1860 may perform automated CPU cache servicing for a sled 1804 at a rack 1802 .
- robot 1860 may be representative of a robot 1360 that performs operations associated with automated data center maintenance in data center 1300 of FIGS. 13, 15, and 16 .
- robot 1860 may be implemented using automated maintenance device 1400 of FIG. 14 .
- robot 1860 may move to a location of rack 1802 from another location in order to perform the automated CPU cache servicing for sled 1804 .
- robot 1860 may perform such automated CPU cache servicing based on automation commands 1873 received from automation coordinator 1555 . In some other embodiments, robot 1860 may perform the automated CPU cache servicing autonomously, without intervention on the part of automation coordinator 1555 .
- the embodiments are not limited in this context.
- sled 1804 may comprise components 1806 that include a CPU 1806 A, cache memory 1806 B for the CPU 1806 A, and a heatsink 1806 C for the CPU 1806 A.
- cache memory 1806 B may underlie CPU 1806 A
- CPU 1806 A may underlie heatsink 1806 C.
- cache memory 1806 B may comprise one or more cache memory modules.
- the automated CPU cache servicing that robot 1860 performs in operating environment 1800 may involve replacing cache memory 1806 B.
- cache memory 1806 B may comprise one or more cache memory modules that robot 1860 removes from sled 1804 and replaces with one or more replacement cache modules.
- the determination to perform automated CPU cache servicing and thus replace cache memory 1806 B may be based on a determination that cache memory 1806 B is not functioning properly or is outdated.
- automation coordinator 1555 may determine—based on telemetry data 1571 of FIG. 15 —that cache memory 1806 B is not functioning, and may use robot 1860 to replace cache memory 1806 B in response to that determination.
- the embodiments are not limited to this example.
- robot 1860 may remove CPU 1806 A and heat sink 1806 C from sled 1804 in order to gain physical access to cache memory 1806 B. In some embodiments, robot 1860 may remove sled 1804 from rack 1802 prior to removing CPU 1806 A and heat sink 1806 C from sled 1804 . In various other embodiments, robot 1860 may remove CPU 1806 A and heat sink 1806 C from sled 1804 while sled 1804 remains seated within a sled space of rack 1802 . In some embodiments, robot 1860 may first remove heat sink 1806 C, and then remove CPU 1806 A.
- robot 1860 may remove both heat sink 1806 C and CPU 1806 A simultaneously and/or as a collective unit (i.e., without removing heat sink 1806 C from CPU 1806 A). In some embodiments, after replacing cache memory 1806 B, robot 1860 may reinstall CPU 1806 A and heat sink 1806 C upon sled 1804 , which it may then reinsert into a sled space of rack 1802 in embodiments in which it was previously removed. The embodiments are not limited in this context.
- FIG. 19 illustrates an example of an operating environment 1900 that may be representative of the implementation of an automated data center maintenance scheme according to some embodiments.
- a robot 1960 may perform automated storage and/or transfer of a compute state of a compute sled 1904 at a rack 1902 .
- robot 1760 may be representative of a robot 1360 that performs operations associated with automated data center maintenance in data center 1300 of FIGS. 13, 15, and 16 .
- robot 1960 may be implemented using automated maintenance device 1400 of FIG. 14 .
- robot 1960 may move to a location of rack 1902 from another location in order to perform the automated storage and/or transfer of the compute state of compute sled 1904 .
- robot 1960 may perform such automated compute state storage and/or transfer based on automation commands 1973 received from automation coordinator 1555 .
- robot 1960 may perform the automated compute state storage and/or transfer autonomously, without intervention on the part of automation coordinator 1555 .
- the embodiments are not limited in this context.
- compute sled 1904 may comprise components 1906 that include one or more CPUs 1906 A and a connector 1906 B.
- compute sled 1904 may comprise two CPUs 1906 A.
- compute sled 1904 may comprise more than two CPUs 1906 A, or only a single CPU 1906 A.
- Connector 1906 B may generally comprise a slot, socket, or other connective component designed to accept a memory daughter card for use to store a compute state of compute sled 1904 .
- compute sled 1904 may comprise two CPUs 1906 A and connector 1906 B may be located between those two CPUs 1906 A. The embodiments are not limited in this context.
- robot 1960 may insert a memory card 1918 into connector 1906 B.
- robot 1960 may remove compute sled 1904 from rack 1902 prior to inserting memory card 1918 into connector 1906 B.
- robot 1960 may insert memory card 1918 into connector 1906 B while compute sled 1904 remains seated within a sled space of rack 1902 .
- memory card 1918 may be present and coupled with connector 1906 B prior to initiation of the automated compute state storage and/or transfer procedure.
- memory card 1918 may comprise a set of physical memory resources 1906 C.
- a compute state 1984 of compute sled 1904 may be stored on memory card 1918 using one or more of the physical memory resources 1906 C comprised thereon.
- compute state 1984 may include respective states of each CPU 1906 A comprised on compute sled 1904 .
- compute state 1984 may also include states of one or more memory resources comprised on compute sled 1904 . The embodiments are not limited in this context.
- robot 1960 may perform an automated compute state storage/transfer procedure in order to preserve the compute state of compute sled 1904 during upkeep/repair of compute sled 1904 .
- robot 1960 may remove memory card 1918 from connector 1906 B, perform upkeep/repair of compute sled 1904 , reinsert memory card 1918 into connector 1906 B, and then restore compute sled 1904 to the compute state 1984 stored on memory card 1918 .
- robot 1960 may remove a CPU 1906 A from a socket on compute sled 1904 and insert a replacement CPU into that socket, and then cause compute sled 1904 to be restored to the compute state 1984 stored on memory card 1918 .
- robot 1960 may perform an automated compute state storage/transfer procedure in order to replace compute sled 1904 with another compute sled.
- robot 1960 may remove memory card 1918 from connector 1906 B, insert memory card 1918 into a connector on a replacement compute sled, insert the replacement compute sled into a sled space of rack 1902 or another rack, and cause the replacement compute sled to realize the compute state 1984 stored on memory card 1918 .
- the embodiments are not limited in this context.
- FIG. 20 illustrates an example of an operating environment 2000 .
- operating environment 2000 may be representative of the implementation of an automated data center maintenance scheme according to which some aspects of automated maintenance operations involve collaboration/cooperation between robots.
- robots 2060 A and 2060 B may coordinate with each other by exchanging interdevice coordination information 2086 A and 2086 B via one or more communication links 2085 .
- Communication links 2085 may comprise wireless communication links, wired communication links, or a combination of both.
- robots 2060 A and 2060 B may be representative of robots 1360 that perform operations associated with automated data center maintenance in data center 1300 of FIGS. 13, 15 , and 16 .
- one or both of robots 2060 A and 2060 B may be implemented using automated maintenance device 1400 of FIG. 14 .
- automation coordinator 1555 in FIG. 20 is not intended to indicate that no aspects of automated maintenance would/could be centrally coordinated in operating environment 2000 . It is both possible and contemplated that in various embodiments, distributed coordination may be implemented for some aspects of automated maintenance in a data center in which other aspects of automated maintenance are centrally coordinated by an entity such as automation coordinator 1555 .
- a central automation coordinator may determine the need for performance of the collaborative maintenance task, select robots 2060 A and 2060 B as the robots that are to perform the collaborative maintenance task, and send automation commands to cause robots 2060 A and 2060 B to initiate the collaborative maintenance task. Robots 2060 A and 2060 B may then coordinate directly with each other in conjunction with performing the physical actions necessary to complete the collaborative maintenance task.
- the embodiments are not limited to this example.
- FIG. 21 illustrates an example of a logic flow 2100 that may be representative of the implementation of one or more of the disclosed techniques according to some embodiments.
- logic flow 2100 may be representative of operations that automation coordinator 1555 may perform in any of operating environments 1500 , 1600 , 1700 , 1800 , 1900 , and 2000 of FIGS. 15-20 according to various embodiments.
- a maintenance task that is to be performed in a data center may be identified.
- automation coordinator 1555 may identify a maintenance task that is to be performed in data center 1300 .
- a determination may be made to initiate automated performance of the maintenance task. For example, having added an identified maintenance task to pending task queue 1578 in operating environment 1500 of FIG. 15 , automation coordinator 1555 may determine at a subsequent point in time that that maintenance task constitutes the highest priority task in the pending task queue 1578 and thus that its performance should be initiated. In another example, rather than adding the identified maintenance task to pending task queue 1578 , automation coordinator 1555 may determine to initiate performance of the maintenance task immediately after it is identified.
- an automated maintenance device to which to assign the maintenance task may be selected. For example, among one or more robots 1360 comprised in candidate device pool 1580 in operating environment 1500 of FIG. 15 , automation coordinator 1555 may select a robot 1360 to which to assign an identified maintenance task. It is worthy of note that in some embodiments, the identified maintenance task may be handled by multiple robots according to a collaborate maintenance procedure. In such cases, more than one automated maintenance device may be selected at 2106 as an assignee of the maintenance task. For example, in operating environment 1500 of FIG. 15 , automation coordinator 1555 may select multiple robots 1360 among those comprised in candidate device pool 1580 that are to work together according to a collaborative maintenance procedure to complete a maintenance task.
- one or more automation commands may be sent to cause an automated maintenance device selected at 2106 to perform an automated maintenance procedure associated with the maintenance task.
- automation coordinator 1555 may send one or more automation commands 1573 to cause a robot 1360 to perform an automated maintenance procedure associated with a maintenance task to which that robot 1360 has been allocated.
- automation commands may be sent to multiple automated maintenance devices at 2108 .
- automation coordinator 1555 may send respective automation command(s) 1573 to multiple robots 1360 to cause those robots to perform a collaborative maintenance procedure associated with the maintenance task to be completed. The embodiments are not limited to these examples.
- FIG. 22 illustrates an example of a logic flow 2200 that may be representative of the implementation of one or more of the disclosed techniques according to some embodiments.
- logic flow 2200 may be representative of operations that may be performed in various embodiments by a robot such as a robot 1360 in one or both of operating environments 1500 and 1600 of FIGS. 15 and 16 and/or any of robots 1760 , 1860 , 1960 , 2060 A, and 2060 B in operating environments 1700 , 1800 , 1900 , and 2000 of FIGS. 17-20 .
- one or more automation commands may be received from an automation coordinator of a data center at 2202 .
- a robot 1360 may receive one or more automation commands 1573 from automation coordinator 1555 .
- an automated maintenance procedure may be identified based on the one or more automation commands received at 2202 .
- a robot 1360 may identify an automated maintenance procedure that it is to perform.
- the automated maintenance procedure identified at 2204 may then be performed at 2206 .
- the identification of the automated maintenance procedure at 2204 may be based on a maintenance task code that is comprised in at least one of the received automation commands, and is defined to correspond to a particular automated maintenance procedure. For example, based on a maintenance task code comprised in an automation command 1573 received from automation coordinator 1555 , a robot 1360 in operating environment 1500 of FIG.
- the robot 1360 may identify—based on maintenance task parameters comprised in one or more automation commands 1573 received from automation coordinator 1555 —details such as a physical resource ID of a DIMM to be tested, an identity and location of a sled on which that DIMM resides, and an identity of a particular DIMM slot on that sled that currently houses the DIMM.
- the embodiments are not limited to these examples.
- FIG. 23 illustrates an example of a logic flow 2300 that may be representative of the implementation of one or more of the disclosed techniques according to some embodiments.
- logic flow 2300 may be representative of operations that may be performed by robot 2060 A or robot 2060 B in operating environment 2000 of FIG. 20 .
- a collaborative maintenance procedure that is to be performed in a data center may be identified at an automated maintenance device at 2302 .
- robot 2060 A may determine that a collaborative CPU replacement procedure is to be performed.
- the identification of the collaborative maintenance procedure at 2302 may be based on one or more automation commands received by the automated maintenance device from a centralized automation coordinator such as automation coordinator 1555 .
- the identification of the collaborative maintenance procedure at 2302 may be performed autonomously.
- a robot 1360 may determine based on analysis of telemetry data 1571 that a particular CPU is malfunctioning, and may then identify a collaborative maintenance procedure to be performed in order to replace that malfunctioning CPU.
- the embodiments are not limited to this example.
- a second automated maintenance device with which to collaborate during performance of the collaborative maintenance procedure may be identified at 2304 , and interdevice coordination information may be sent to the second automated maintenance device at 2306 in order to initiate the collaborative maintenance procedure.
- robot 2060 A may determine that it is to collaborate with robot 2060 B in conjunction with a collaborative CPU replacement procedure, and may send interdevice coordination information 2086 A to robot 2086 B in order to initiate that collaborative CPU replacement procedure.
- the identification of the second automated maintenance device may be based on information received from a centralized automation coordinator such as automation coordinator 1555 .
- a centralized automation coordinator may be responsible for selecting the particular robots that are to work together to perform the collaborative maintenance procedure, and the identity of the second automated maintenance device may be indicated by a parameter comprised in an automation command received from the centralized automation coordinator.
- the identification performed at 2304 may correspond to an autonomous selection of the second automated maintenance device.
- a first robot 1360 may select a second robot 1360 that is comprised among those in candidate device pool 1580 as the second automated maintenance device that is to participate in the collaborative maintenance procedure. The embodiments are not limited to these examples.
- FIG. 24A illustrates an embodiment of a storage medium 2400 .
- Storage medium 2400 may comprise any computer-readable storage medium or machine-readable storage medium, such as an optical, magnetic or semiconductor storage medium.
- storage medium 2400 may comprise a non-transitory storage medium.
- storage medium 2400 may comprise an article of manufacture.
- storage medium 2400 may store computer-executable instructions, such as computer-executable instructions to implement logic flow 2100 of FIG. 21 .
- Examples of a computer-readable storage medium or machine-readable storage medium may include any tangible media capable of storing electronic data, including volatile memory or non-volatile memory, removable or non-removable memory, erasable or non-erasable memory, writeable or re-writeable memory, and so forth.
- Examples of computer-executable instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, object-oriented code, visual code, and the like. The embodiments are not limited to these examples.
- FIG. 24B illustrates an embodiment of a storage medium 2450 .
- Storage medium 2450 may comprise any computer-readable storage medium or machine-readable storage medium, such as an optical, magnetic or semiconductor storage medium.
- storage medium 2450 may comprise a non-transitory storage medium.
- storage medium 2450 may comprise an article of manufacture.
- storage medium 2450 may be representative of a memory/storage element 1467 comprised in automated maintenance device 1400 of FIG. 14 .
- storage medium 2450 may store computer-executable instructions, such as computer-executable instructions to implement one or both of logic flow 2200 of FIG. 22 and logic flow 2300 of FIG. 23 . Examples of a computer-readable storage medium or machine-readable storage medium and of computer-executable instructions may include any of the respective examples identified above in reference to storage medium 2400 of FIG. 24A . The embodiments are not limited to these examples.
- FIG. 25 illustrates an embodiment of an exemplary computing architecture 2500 that may be suitable for implementing various embodiments as previously described.
- the computing architecture 2500 may comprise or be implemented as part of an electronic device.
- the computing architecture 2500 may be representative, for example, of a computing device suitable for use in conjunction with implementation of one or more of robots 1360 , 1760 , 1860 , 1960 , 2060 A, and 2060 B, automated maintenance device 1400 , automation coordinator 1555 , and logic flows 2100 , 2200 , and 2300 .
- the embodiments are not limited in this context.
- a component can be, but is not limited to being, a process running on a processor, a processor, a hard disk drive, multiple storage drives (of optical and/or magnetic storage medium), an object, an executable, a thread of execution, a program, and/or a computer.
- a component can be, but is not limited to being, a process running on a processor, a processor, a hard disk drive, multiple storage drives (of optical and/or magnetic storage medium), an object, an executable, a thread of execution, a program, and/or a computer.
- an application running on a server and the server can be a component.
- One or more components can reside within a process and/or thread of execution, and a component can be localized on one computer and/or distributed between two or more computers. Further, components may be communicatively coupled to each other by various types of communications media to coordinate operations. The coordination may involve the uni-directional or bi-directional exchange of information. For instance, the components may communicate information in the form of signals communicated over the communications media. The information can be implemented as signals allocated to various signal lines. In such allocations, each message may be a signal. Further embodiments, however, may alternatively employ data messages. Such data messages may be sent across various connections. Exemplary connections include parallel interfaces, serial interfaces, and bus interfaces.
- the computing architecture 2500 includes various common computing elements, such as one or more processors, multi-core processors, co-processors, memory units, chipsets, controllers, peripherals, interfaces, oscillators, timing devices, video cards, audio cards, multimedia input/output (I/O) components, power supplies, and so forth.
- processors multi-core processors
- co-processors memory units
- chipsets controllers
- peripherals peripherals
- oscillators oscillators
- timing devices video cards
- audio cards audio cards
- multimedia input/output (I/O) components power supplies, and so forth.
- the embodiments are not limited to implementation by the computing architecture 2500 .
- a computer 2502 comprises a processing unit 2504 , a system memory 2506 and a system bus 2508 .
- computer 2502 may comprise a server.
- computer 2502 may comprise a client.
- the processing unit 2504 can be any of various commercially available processors, including without limitation an AMD® Athlon®, Duron® and Opteron® processors; ARM® application, embedded and secure processors; IBM® and Motorola® DragonBall® and PowerPC® processors; IBM and Sony® Cell processors; Intel® Celeron®, Core (2) Duo®, Itanium®, Pentium®, Xeon®, and XScale® processors; and similar processors. Dual microprocessors, multi-core processors, and other multi processor architectures may also be employed as the processing unit 2504 .
- the system bus 2508 provides an interface for system components including, but not limited to, the system memory 2506 to the processing unit 2504 .
- the system bus 2508 can be any of several types of bus structure that may further interconnect to a memory bus (with or without a memory controller), a peripheral bus, and a local bus using any of a variety of commercially available bus architectures.
- Interface adapters may connect to the system bus 2508 via a slot architecture.
- Example slot architectures may include without limitation Accelerated Graphics Port (AGP), Card Bus, (Extended) Industry Standard Architecture ((E)ISA), Micro Channel Architecture (MCA), NuBus, Peripheral Component Interconnect (Extended) (PCI(X)), PCI Express, Personal Computer Memory Card International Association (PCMCIA), and the like.
- the system memory 2506 may include various types of computer-readable storage media in the form of one or more higher speed memory units, such as read-only memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory, polymer memory such as ferroelectric polymer memory, ovonic memory, phase change or ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, an array of devices such as Redundant Array of Independent Disks (RAID) drives, solid state memory devices (e.g., USB memory, solid state drives (SSD) and any other type of storage media suitable for storing information.
- the system memory 2506 can include non-volatile memory 2510 and/or volatile memory 2512
- the computer 2502 may include various types of computer-readable storage media in the form of one or more lower speed memory units, including an internal (or external) hard disk drive (HDD) 2514 , a magnetic floppy disk drive (FDD) 2516 to read from or write to a removable magnetic disk 2518 , and an optical disk drive 2520 to read from or write to a removable optical disk 2522 (e.g., a CD-ROM or DVD).
- the HDD 2514 , FDD 2516 and optical disk drive 2520 can be connected to the system bus 2508 by a HDD interface 2524 , an FDD interface 2526 and an optical drive interface 2528 , respectively.
- the HDD interface 2524 for external drive implementations can include at least one or both of Universal Serial Bus (USB) and IEEE 1394 interface technologies.
- the drives and associated computer-readable media provide volatile and/or nonvolatile storage of data, data structures, computer-executable instructions, and so forth.
- a number of program modules can be stored in the drives and memory units 2510 , 2512 , including an operating system 2530 , one or more application programs 2532 , other program modules 2534 , and program data 2536 .
- a user can enter commands and information into the computer 2502 through one or more wire/wireless input devices, for example, a keyboard 2538 and a pointing device, such as a mouse 2540 .
- Other input devices may include microphones, infra-red (IR) remote controls, radio-frequency (RF) remote controls, game pads, stylus pens, card readers, dongles, finger print readers, gloves, graphics tablets, joysticks, keyboards, retina readers, touch screens (e.g., capacitive, resistive, etc.), trackballs, trackpads, sensors, styluses, and the like.
- IR infra-red
- RF radio-frequency
- input devices are often connected to the processing unit 2504 through an input device interface 2542 that is coupled to the system bus 2508 , but can be connected by other interfaces such as a parallel port, IEEE 1394 serial port, a game port, a USB port, an IR interface, and so forth.
- a monitor 2544 or other type of display device may also be connected to the system bus 2508 via an interface, such as a video adaptor 2546 .
- the monitor 2544 may be internal or external to the computer 2502 .
- a computer typically includes other peripheral output devices, such as speakers, printers, and so forth.
- the computer 2502 may operate in a networked environment using logical connections via wire and/or wireless communications to one or more remote computers, such as a remote computer 2548 .
- the remote computer 2548 can be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor-based entertainment appliance, a peer device or other common network node, and typically includes many or all of the elements described relative to the computer 2502 , although, for purposes of brevity, only a memory/storage device 2550 is illustrated.
- the logical connections depicted include wire/wireless connectivity to a local area network (LAN) 2552 and/or larger networks, for example, a wide area network (WAN) 2554 .
- LAN and WAN networking environments are commonplace in offices and companies, and facilitate enterprise-wide computer networks, such as intranets, all of which may connect to a global communications network, for example, the Internet.
- the computer 2502 When used in a LAN networking environment, the computer 2502 may be connected to the LAN 2552 through a wire and/or wireless communication network interface or adaptor 2556 .
- the adaptor 2556 can facilitate wire and/or wireless communications to the LAN 2552 , which may also include a wireless access point disposed thereon for communicating with the wireless functionality of the adaptor 2556 .
- the computer 2502 can include a modem 2558 , or may be connected to a communications server on the WAN 2554 , or has other means for establishing communications over the WAN 2554 , such as by way of the Internet.
- the modem 2558 which can be internal or external and a wire and/or wireless device, connects to the system bus 2508 via the input device interface 2542 .
- program modules depicted relative to the computer 2502 can be stored in the remote memory/storage device 2550 . It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers can be used.
- the computer 2502 may be operable to communicate with wire and wireless devices or entities using the IEEE 802 family of standards, such as wireless devices operatively disposed in wireless communication (e.g., IEEE 802.16 over-the-air modulation techniques).
- wireless communication e.g., IEEE 802.16 over-the-air modulation techniques.
- the communication can be a predefined structure as with a conventional network or simply an ad hoc communication between at least two devices.
- Wi-Fi networks use radio technologies called IEEE 802.11x (a, b, g, n, etc.) to provide secure, reliable, fast wireless connectivity.
- a Wi-Fi network can be used to connect computers to each other, to the Internet, and to wire networks (which use IEEE 802.3-related media and functions).
- FIG. 26 illustrates a block diagram of an exemplary communications architecture 2600 suitable for implementing various embodiments as previously described.
- the communications architecture 2600 includes various common communications elements, such as a transmitter, receiver, transceiver, radio, network interface, baseband processor, antenna, amplifiers, filters, power supplies, and so forth.
- the embodiments, however, are not limited to implementation by the communications architecture 2600 .
- the communications architecture 2600 comprises includes one or more clients 2602 and servers 2604 .
- the clients 2602 and the servers 2604 are operatively connected to one or more respective client data stores 2608 and server data stores 2610 that can be employed to store information local to the respective clients 2602 and servers 2604 , such as cookies and/or associated contextual information.
- Any one of clients 2602 and/or servers 2604 may implement one or more of robots 1360 , 1760 , 1860 , 1960 , 2060 A, and 2060 B, automated maintenance device 1400 , automation coordinator 1555 , logic flows 2100 , 2200 , and 2300 , and computing architecture 2500 .
- the clients 2602 and the servers 2604 may communicate information between each other using a communication framework 2606 .
- the communications framework 2606 may implement any well-known communications techniques and protocols.
- the communications framework 2606 may be implemented as a packet-switched network (e.g., public networks such as the Internet, private networks such as an enterprise intranet, and so forth), a circuit-switched network (e.g., the public switched telephone network), or a combination of a packet-switched network and a circuit-switched network (with suitable gateways and translators).
- the communications framework 2606 may implement various network interfaces arranged to accept, communicate, and connect to a communications network.
- a network interface may be regarded as a specialized form of an input output interface.
- Network interfaces may employ connection protocols including without limitation direct connect, Ethernet (e.g., thick, thin, twisted pair 10/100/1000 Base T, and the like), token ring, wireless network interfaces, cellular network interfaces, IEEE 802.11a-x network interfaces, IEEE 802.16 network interfaces, IEEE 802.20 network interfaces, and the like.
- multiple network interfaces may be used to engage with various communications network types. For example, multiple network interfaces may be employed to allow for the communication over broadcast, multicast, and unicast networks.
- a communications network may be any one and the combination of wired and/or wireless networks including without limitation a direct interconnection, a secured custom connection, a private network (e.g., an enterprise intranet), a public network (e.g., the Internet), a Personal Area Network (PAN), a Local Area Network (LAN), a Metropolitan Area Network (MAN), an Operating Missions as Nodes on the Internet (OMNI), a Wide Area Network (WAN), a wireless network, a cellular network, and other communications networks.
- a private network e.g., an enterprise intranet
- a public network e.g., the Internet
- PAN Personal Area Network
- LAN Local Area Network
- MAN Metropolitan Area Network
- OMNI Operating Missions as Nodes on the Internet
- WAN Wide Area Network
- wireless network a cellular network, and other communications networks.
- circuitry may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group), and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
- ASIC Application Specific Integrated Circuit
- the circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
- circuitry may include logic, at least partially operable in hardware. Embodiments described herein may be implemented into a system using any suitably configured hardware and/or software.
- FIG. 27 illustrates an embodiment of a communication device 2700 that may implement one or more of robots 1360 , 1760 , 1860 , 1960 , 2060 A, and 2060 B, automated maintenance device 1400 , automation coordinator 1555 , logic flows 2100 , 2200 , and 2300 , storage media 2400 and 2450 , computing architecture 2500 , clients 2602 , and servers 2604 .
- device 2700 may comprise a logic circuit 2728 .
- the logic circuit 2728 may include physical circuits to perform operations described for one or more of robots 1360 , 1760 , 1860 , 1960 , 2060 A, and 2060 B, automated maintenance device 1400 , automation coordinator 1555 , logic flows 2100 , 2200 , and 2300 , computing architecture 2500 , clients 2602 , and servers 2604 for example.
- device 2700 may include a radio interface 2710 , baseband circuitry 2720 , and computing platform 2730 , although the embodiments are not limited to this configuration.
- the device 2700 may implement some or all of the structure and/or operations for one or more of robots 1360 , 1760 , 1860 , 1960 , 2060 A, and 2060 B, automated maintenance device 1400 , automation coordinator 1555 , logic flows 2100 , 2200 , and 2300 , storage media 2400 and 2450 , computing architecture 2500 , clients 2602 , servers 2604 , and logic circuit 2728 in a single computing entity, such as entirely within a single device.
- the device 2700 may distribute portions of the structure and/or operations for one or more of robots 1360 , 1760 , 1860 , 1960 , 2060 A, and 2060 B, automated maintenance device 1400 , automation coordinator 1555 , logic flows 2100 , 2200 , and 2300 , storage media 2400 and 2450 , computing architecture 2500 , clients 2602 , servers 2604 , and logic circuit 2728 across multiple computing entities using a distributed system architecture, such as a client-server architecture, a 3-tier architecture, an N-tier architecture, a tightly-coupled or clustered architecture, a peer-to-peer architecture, a master-slave architecture, a shared database architecture, and other types of distributed systems.
- a distributed system architecture such as a client-server architecture, a 3-tier architecture, an N-tier architecture, a tightly-coupled or clustered architecture, a peer-to-peer architecture, a master-slave architecture, a shared database architecture, and other types of distributed systems.
- radio interface 2710 may include a component or combination of components adapted for transmitting and/or receiving single-carrier or multi-carrier modulated signals (e.g., including complementary code keying (CCK), orthogonal frequency division multiplexing (OFDM), and/or single-carrier frequency division multiple access (SC-FDMA) symbols) although the embodiments are not limited to any specific over-the-air interface or modulation scheme.
- Radio interface 2710 may include, for example, a receiver 2712 , a frequency synthesizer 2714 , and/or a transmitter 2716 .
- Radio interface 2710 may include bias controls, a crystal oscillator and/or one or more antennas 2718 - f .
- radio interface 2710 may use external voltage-controlled oscillators (VCOs), surface acoustic wave filters, intermediate frequency (IF) filters and/or RF filters, as desired. Due to the variety of potential RF interface designs an expansive description thereof is omitted.
- VCOs voltage-controlled oscillators
- IF intermediate frequency
- Baseband circuitry 2720 may communicate with radio interface 2710 to process receive and/or transmit signals and may include, for example, a mixer for down-converting received RF signals, an analog-to-digital converter 2722 for converting analog signals to digital form, a digital-to-analog converter 2724 for converting digital signals to analog form, and a mixer for up-converting signals for transmission. Further, baseband circuitry 2720 may include a baseband or physical layer (PHY) processing circuit 2726 for PHY link layer processing of respective receive/transmit signals. Baseband circuitry 2720 may include, for example, a medium access control (MAC) processing circuit 2727 for MAC/data link layer processing. Baseband circuitry 2720 may include a memory controller 2732 for communicating with MAC processing circuit 2727 and/or a computing platform 2730 , for example, via one or more interfaces 2734 .
- PHY physical layer
- PHY processing circuit 2726 may include a frame construction and/or detection module, in combination with additional circuitry such as a buffer memory, to construct and/or deconstruct communication frames.
- MAC processing circuit 2727 may share processing for certain of these functions or perform these processes independent of PHY processing circuit 2726 .
- MAC and PHY processing may be integrated into a single circuit.
- the computing platform 2730 may provide computing functionality for the device 2700 .
- the computing platform 2730 may include a processing component 2740 .
- the device 2700 may execute processing operations or logic for one or more of robots 1360 , 1760 , 1860 , 1960 , 2060 A, and 2060 B, automated maintenance device 1400 , automation coordinator 1555 , logic flows 2100 , 2200 , and 2300 , storage media 2400 and 2450 , computing architecture 2500 , clients 2602 , servers 2604 , and logic circuit 2728 using the processing component 2740 .
- the processing component 2740 may comprise various hardware elements, software elements, or a combination of both.
- hardware elements may include devices, logic devices, components, processors, microprocessors, circuits, processor circuits, circuit elements (e.g., transistors, resistors, capacitors, inductors, and so forth), integrated circuits, application specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal processors (DSP), field programmable gate array (FPGA), memory units, logic gates, registers, semiconductor device, chips, microchips, chip sets, and so forth.
- ASIC application specific integrated circuits
- PLD programmable logic devices
- DSP digital signal processors
- FPGA field programmable gate array
- Examples of software elements may include software components, programs, applications, computer programs, application programs, system programs, software development programs, machine programs, operating system software, middleware, firmware, software modules, routines, subroutines, functions, methods, procedures, software interfaces, application program interfaces (API), instruction sets, computing code, computer code, code segments, computer code segments, words, values, symbols, or any combination thereof. Determining whether an embodiment is implemented using hardware elements and/or software elements may vary in accordance with any number of factors, such as desired computational rate, power levels, heat tolerances, processing cycle budget, input data rates, output data rates, memory resources, data bus speeds and other design or performance constraints, as desired for a given implementation.
- the computing platform 2730 may further include other platform components 2750 .
- Other platform components 2750 include common computing elements, such as one or more processors, multi-core processors, co-processors, memory units, chipsets, controllers, peripherals, interfaces, oscillators, timing devices, video cards, audio cards, multimedia input/output (I/O) components (e.g., digital displays), power supplies, and so forth.
- processors multi-core processors
- co-processors such as one or more processors, multi-core processors, co-processors, memory units, chipsets, controllers, peripherals, interfaces, oscillators, timing devices, video cards, audio cards, multimedia input/output (I/O) components (e.g., digital displays), power supplies, and so forth.
- I/O multimedia input/output
- Examples of memory units may include without limitation various types of computer readable and machine readable storage media in the form of one or more higher speed memory units, such as read-only memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory, polymer memory such as ferroelectric polymer memory, ovonic memory, phase change or ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, an array of devices such as Redundant Array of Independent Disks (RAID) drives, solid state memory devices (e.g., USB memory, solid state drives (SSD) and any other type of storage media suitable for storing information.
- ROM read-only memory
- RAM random-access memory
- DRAM dynamic RAM
- DDRAM Double
- Device 2700 may be, for example, an ultra-mobile device, a mobile device, a fixed device, a machine-to-machine (M2M) device, a personal digital assistant (PDA), a mobile computing device, a smart phone, a telephone, a digital telephone, a cellular telephone, user equipment, eBook readers, a handset, a one-way pager, a two-way pager, a messaging device, a computer, a personal computer (PC), a desktop computer, a laptop computer, a notebook computer, a netbook computer, a handheld computer, a tablet computer, a server, a server array or server farm, a web server, a network server, an Internet server, a work station, a mini-computer, a main frame computer, a supercomputer, a network appliance, a web appliance, a distributed computing system, multiprocessor systems, processor-based systems, consumer electronics, programmable consumer electronics, game devices, display, television, digital television, set top box, wireless access point, base station, node
- Embodiments of device 2700 may be implemented using single input single output (SISO) architectures. However, certain implementations may include multiple antennas (e.g., antennas 2718 - f ) for transmission and/or reception using adaptive antenna techniques for beamforming or spatial division multiple access (SDMA) and/or using MIMO communication techniques.
- SISO single input single output
- certain implementations may include multiple antennas (e.g., antennas 2718 - f ) for transmission and/or reception using adaptive antenna techniques for beamforming or spatial division multiple access (SDMA) and/or using MIMO communication techniques.
- SDMA spatial division multiple access
- device 2700 may be implemented using any combination of discrete circuitry, application specific integrated circuits (ASICs), logic gates and/or single chip architectures. Further, the features of device 2700 may be implemented using microcontrollers, programmable logic arrays and/or microprocessors or any combination of the foregoing where suitably appropriate. It is noted that hardware, firmware and/or software elements may be collectively or individually referred to herein as “logic” or “circuit.”
- the exemplary device 2700 shown in the block diagram of FIG. 27 may represent one functionally descriptive example of many potential implementations. Accordingly, division, omission or inclusion of block functions depicted in the accompanying figures does not infer that the hardware components, circuits, software and/or elements for implementing these functions would be necessarily be divided, omitted, or included in embodiments.
- FIG. 28 illustrates an embodiment of a broadband wireless access system 2800 .
- broadband wireless access system 2800 may be an internet protocol (IP) type network comprising an internet 2810 type network or the like that is capable of supporting mobile wireless access and/or fixed wireless access to internet 2810 .
- IP internet protocol
- broadband wireless access system 2800 may comprise any type of orthogonal frequency division multiple access (OFDMA)-based or single-carrier frequency division multiple access (SC-FDMA)-based wireless network, such as a system compliant with one or more of the 3GPP LTE Specifications and/or IEEE 802.16 Standards, and the scope of the claimed subject matter is not limited in these respects.
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single-carrier frequency division multiple access
- radio access networks (RANs) 2812 and 2818 are capable of coupling with evolved node Bs (eNBs) 2814 and 2820 , respectively, to provide wireless communication between one or more fixed devices 2816 and internet 2810 and/or between or one or more mobile devices 2822 and Internet 2810 .
- RANs 2812 and 2818 may implement profiles that are capable of defining the mapping of network functions to one or more physical entities on broadband wireless access system 2800 .
- eNBs 2814 and 2820 may comprise radio equipment to provide RF communication with fixed device 2816 and/or mobile device 2822 , such as described with reference to device 2700 , and may comprise, for example, the PHY and MAC layer equipment in compliance with a 3GPP LTE Specification or an IEEE 802.16 Standard. eNBs 2814 and 2820 may further comprise an IP backplane to couple to Internet 2810 via RANs 2812 and 2818 , respectively, although the scope of the claimed subject matter is not limited in these respects.
- Broadband wireless access system 2800 may further comprise a visited core network (CN) 2824 and/or a home CN 2826 , each of which may be capable of providing one or more network functions including but not limited to proxy and/or relay type functions, for example authentication, authorization and accounting (AAA) functions, dynamic host configuration protocol (DHCP) functions, or domain name service controls or the like, domain gateways such as public switched telephone network (PSTN) gateways or voice over internet protocol (VoIP) gateways, and/or internet protocol (IP) type server functions, or the like.
- AAA authentication, authorization and accounting
- DHCP dynamic host configuration protocol
- IP internet protocol
- these are merely example of the types of functions that are capable of being provided by visited CN 2824 and/or home CN 2826 , and the scope of the claimed subject matter is not limited in these respects.
- Visited CN 2824 may be referred to as a visited CN in the case where visited CN 2824 is not part of the regular service provider of fixed device 2816 or mobile device 2822 , for example where fixed device 2816 or mobile device 2822 is roaming away from its respective home CN 2826 , or where broadband wireless access system 2800 is part of the regular service provider of fixed device 2816 or mobile device 2822 but where broadband wireless access system 2800 may be in another location or state that is not the main or home location of fixed device 2816 or mobile device 2822 .
- the embodiments are not limited in this context.
- Fixed device 2816 may be located anywhere within range of one or both of eNBs 2814 and 2820 , such as in or near a home or business to provide home or business customer broadband access to Internet 2810 via eNBs 2814 and 2820 and RANs 2812 and 2818 , respectively, and home CN 2826 . It is worthy of note that although fixed device 2816 is generally disposed in a stationary location, it may be moved to different locations as needed. Mobile device 2822 may be utilized at one or more locations if mobile device 2822 is within range of one or both of eNBs 2814 and 2820 , for example.
- operation support system (OSS) 2828 may be part of broadband wireless access system 2800 to provide management functions for broadband wireless access system 2800 and to provide interfaces between functional entities of broadband wireless access system 2800 .
- Broadband wireless access system 2800 of FIG. 28 is merely one type of wireless network showing a certain number of the components of broadband wireless access system 2800 , and the scope of the claimed subject matter is not limited in these respects.
- FIG. 29 illustrates an embodiment of a wireless network 2900 .
- wireless network comprises an access point 2902 and wireless stations 2904 , 2906 , and 2908 .
- Any one of access point 2902 and wireless stations 2904 , 2906 , and 2908 may potentially implement one or more of robots 1360 , 1760 , 1860 , 1960 , 2060 A, and 2060 B, automated maintenance device 1400 , automation coordinator 1555 , logic flows 2100 , 2200 , and 2300 , storage media 2400 and 2450 , computing architecture 2500 , clients 2602 , servers 2604 , and communication device 2700 .
- wireless network 2900 may comprise a wireless local area network (WLAN), such as a WLAN implementing one or more Institute of Electrical and Electronics Engineers (IEEE) 802.11 standards (sometimes collectively referred to as “Wi-Fi”).
- WLAN wireless local area network
- IEEE Institute of Electrical and Electronics Engineers
- wireless network 2900 may comprise another type of wireless network, and/or may implement other wireless communications standards.
- wireless network 2900 may comprise a WWAN or WPAN rather than a WLAN. The embodiments are not limited to this example.
- wireless network 2900 may implement one or more broadband wireless communications standards, such as 3G or 4G standards, including their revisions, progeny, and variants.
- 3G or 4G wireless standards may include without limitation any of the IEEE 802.16m and 802.16p standards, 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) and LTE-Advanced (LTE-A) standards, and International Mobile Telecommunications Advanced (IMT-ADV) standards, including their revisions, progeny and variants.
- 3GPP 3rd Generation Partnership Project
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- IMT-ADV International Mobile Telecommunications Advanced
- GSM Global System for Mobile Communications
- EDGE Universal Mobile Telecommunications System
- UMTS Universal Mobile Telecommunications System
- High Speed Packet Access WiMAX II technologies
- CDMA 2000 system technologies e.g., CDMA2000 1 ⁇ RTT, CDMA2000 EV-DO, CDMA EV-DV, and so forth
- High Performance Radio Metropolitan Area Network HIPERMAN
- ETSI European Telecommunications Standards Institute
- BRAN Broadband Radio Access Networks
- WiBro Wireless Broadband
- HSDPA High Speed Downlink Packet Access
- HSUPA High Speed Orthogonal Frequency-Division Multiplexing
- HOPA High-Speed Uplink Packet Access
- HSUPA High-Speed Uplink Packet Access
- wireless stations 2904 , 2906 , and 2908 may communicate with access point 2902 in order to obtain connectivity to one or more external data networks.
- wireless stations 2904 , 2906 , and 2908 may connect to the Internet 2912 via access point 2902 and access network 2910 .
- access network 2910 may comprise a private network that provides subscription-based Internet-connectivity, such as an Internet Service Provider (ISP) network. The embodiments are not limited to this example.
- ISP Internet Service Provider
- two or more of wireless stations 2904 , 2906 , and 2908 may communicate with each other directly by exchanging peer-to-peer communications.
- wireless stations 2904 and 2906 communicate with each other directly by exchanging peer-to-peer communications 2914 .
- peer-to-peer communications may be performed according to one or more Wi-Fi Alliance (WFA) standards.
- WFA Wi-Fi Alliance
- such peer-to-peer communications may be performed according to the WFA Wi-Fi Direct standard, 2010 Release.
- such peer-to-peer communications may additionally or alternatively be performed using one or more interfaces, protocols, and/or standards developed by the WFA Wi-Fi Direct Services (WFDS) Task Group. The embodiments are not limited to these examples.
- Various embodiments may be implemented using hardware elements, software elements, or a combination of both.
- hardware elements may include processors, microprocessors, circuits, circuit elements (e.g., transistors, resistors, capacitors, inductors, and so forth), integrated circuits, application specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal processors (DSP), field programmable gate array (FPGA), logic gates, registers, semiconductor device, chips, microchips, chip sets, and so forth.
- Examples of software may include software components, programs, applications, computer programs, application programs, system programs, machine programs, operating system software, middleware, firmware, software modules, routines, subroutines, functions, methods, procedures, software interfaces, application program interfaces (API), instruction sets, computing code, computer code, code segments, computer code segments, words, values, symbols, or any combination thereof. Determining whether an embodiment is implemented using hardware elements and/or software elements may vary in accordance with any number of factors, such as desired computational rate, power levels, heat tolerances, processing cycle budget, input data rates, output data rates, memory resources, data bus speeds and other design or performance constraints.
- One or more aspects of at least one embodiment may be implemented by representative instructions stored on a machine-readable medium which represents various logic within the processor, which when read by a machine causes the machine to fabricate logic to perform the techniques described herein.
- Such representations known as “IP cores” may be stored on a tangible, machine readable medium and supplied to various customers or manufacturing facilities to load into the fabrication machines that actually make the logic or processor.
- Some embodiments may be implemented, for example, using a machine-readable medium or article which may store an instruction or a set of instructions that, if executed by a machine, may cause the machine to perform a method and/or operations in accordance with the embodiments.
- Such a machine may include, for example, any suitable processing platform, computing platform, computing device, processing device, computing system, processing system, computer, processor, or the like, and may be implemented using any suitable combination of hardware and/or software.
- the machine-readable medium or article may include, for example, any suitable type of memory unit, memory device, memory article, memory medium, storage device, storage article, storage medium and/or storage unit, for example, memory, removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), optical disk, magnetic media, magneto-optical media, removable memory cards or disks, various types of Digital Versatile Disk (DVD), a tape, a cassette, or the like.
- CD-ROM Compact Disk Read Only Memory
- CD-R Compact Disk Recordable
- CD-RW Compact Dis
- the instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, encrypted code, and the like, implemented using any suitable high-level, low-level, object-oriented, visual, compiled and/or interpreted programming language.
- Example 1 is a method for automated data center maintenance, comprising processing, by processing circuitry of an automated maintenance device, an automation command received from an automation coordinator for a data center, identifying an automated maintenance procedure based on the received automation command, and performing the identified automated maintenance procedure.
- Example 2 is the method of Example 1, the identified automated maintenance procedure to comprise a sled replacement procedure.
- Example 3 is the method of Example 2, the sled replacement procedure to comprise replacing a compute sled.
- Example 4 is the method of Example 3, the sled replacement procedure to comprise removing the compute sled from a sled space, removing a memory card from a connector slot of the compute sled, inserting the memory card into a connector slot of a replacement compute sled, and inserting the replacement compute sled into the sled space.
- Example 5 is the method of Example 4, the memory card to store a compute state of the compute sled.
- Example 6 is the method of Example 5, the sled replacement procedure to comprise initiating a restoration of the stored compute state on the replacement compute sled.
- Example 7 is the method of Example 2, the sled replacement procedure to comprise replacing an accelerator sled.
- Example 8 is the method of Example 2, the sled replacement procedure to comprise replacing a memory sled.
- Example 9 is the method of Example 2, the sled replacement procedure to comprise replacing a storage sled.
- Example 10 is the method of Example 1, the identified automated maintenance procedure to comprise a component replacement procedure.
- Example 11 is the method of Example 10, the component replacement procedure to comprise removing a component from a socket of a sled, and inserting a replacement component into the socket.
- Example 12 is the method of Example 11, the component to comprise a processor.
- Example 13 is the method of Example 11, the component to comprise a field-programmable gate array (FPGA).
- FPGA field-programmable gate array
- Example 14 is the method of Example 11, the component to comprise a memory module.
- Example 15 is the method of Example 11, the component to comprise a non-volatile storage device.
- Example 16 is the method of Example 15, the non-volatile storage device to comprise a solid-state drive (SSD).
- SSD solid-state drive
- Example 17 is the method of Example 16, the SSD to comprise a three-dimensional (3D) NAND SSD.
- Example 18 is the method of Example 10, the component replacement procedure to comprise a cache memory replacement procedure.
- Example 19 is the method of Example 18, the cache memory replacement procedure to comprise replacing one or more cache memory modules of a processor on a sled.
- Example 20 is the method of Example 19, the cache memory replacement procedure to comprise removing a heat sink from atop the processor, removing the processor from a socket to facilitate access to one or more cache memory modules underlying the processor, removing the one or cache memory modules, inserting one or more replacement cache memory modules, reinserting the processor into the socket, and reinstalling the heat sink.
- Example 21 is the method of Example 1, the identified automated maintenance procedure to comprise a component servicing procedure.
- Example 22 is the method of Example 21, the component servicing procedure to comprise servicing a component on a sled.
- Example 23 is the method of Example 22, the component servicing procedure to comprise removing the sled from a sled space of a rack.
- Example 24 is the method of any of Examples 22 to 23, the component servicing procedure to comprise removing the component from the sled.
- Example 25 is the method of any of Examples 22 to 24, the component servicing procedure to comprise testing the component.
- Example 26 is the method of any of Examples 22 to 25, the component servicing procedure to comprise cleaning the component.
- Example 27 is the method of any of Examples 22 to 26, the component servicing procedure to comprise power-cycling the component.
- Example 28 is the method of any of Examples 22 to 27, the component servicing procedure to comprise capturing one or more images of the component.
- Example 29 is the method of Example 28, comprising sending the one or more captured images to the automation coordinator.
- Example 30 is the method of any of Examples 22 to 29, the component to comprise a processor.
- Example 31 is the method of any of Examples 22 to 29, the component to comprise a field-programmable gate array (FPGA).
- FPGA field-programmable gate array
- Example 32 is the method of any of Examples 22 to 29, the component to comprise a memory module.
- Example 33 is the method of any of Examples 22 to 29, the component to comprise a non-volatile storage device.
- Example 34 is the method of Example 33, the non-volatile storage device to comprise a solid-state drive (SSD).
- SSD solid-state drive
- Example 35 is the method of Example 34, the SSD to comprise a three-dimensional (3D) NAND SSD.
- Example 36 is the method of any of Examples 1 to 35, comprising identifying the automated maintenance procedure based on a maintenance task code comprised in the received automation command.
- Example 37 is the method of any of Examples 1 to 36, comprising performing the identified automated maintenance procedure based on one or more maintenance task parameters.
- Example 38 is the method of Example 37, the one or more maintenance task parameters to be comprised in the received automation command.
- Example 39 is the method of Example 37, at least one of the one or more maintenance task parameters to be comprised in a second automation command received from the automation coordinator.
- Example 40 is the method of any of Examples 37 to 39, the one or more maintenance task parameters to include one or more location parameters.
- Example 41 is the method of Example 40, the one or more location parameters to include a rack identifier (ID) associated with a rack within the data center.
- ID rack identifier
- Example 42 is the method of any of Examples 40 to 41, the one or more location parameters to include a sled space identifier (ID) associated with a sled space within the data center.
- ID sled space identifier
- Example 43 is the method of any of Examples 40 to 42, the one or more location parameters to include a slot identifier (ID) associated with a connector socket on a sled within the data center.
- ID slot identifier
- Example 44 is the method of any of Examples 37 to 43, the one or more maintenance task parameters to include a sled identifier (ID) associated with a sled within the data center.
- ID sled identifier
- Example 45 is the method of any of Examples 37 to 44, the one or more maintenance task parameters to include a component identifier (ID) associated with a component on a sled within the data center.
- ID component identifier
- Example 46 is the method of any of Examples 1 to 45, the automation command to be comprised in signals received via a communication interface of the automated maintenance device.
- Example 47 is the method of Example 46, the communication interface to comprise a radio frequency (RF) interface, the signals to comprise RF signals.
- RF radio frequency
- Example 48 is the method of any of Examples 1 to 47, comprising sending a message to the automation coordinator to acknowledge the received automation command.
- Example 49 is the method of any of Examples 1 to 48, comprising sending a message to the automation coordinator to report a result of the automated maintenance procedure.
- Example 50 is the method of any of Examples 1 to 49, comprising sending position data to the automation coordinator, the position data to indicate a position of the automated maintenance device within the data center.
- Example 51 is the method of any of Examples 1 to 50, comprising sending assistance data to the automation coordinator, the assistance data to comprise an image of a component that is to be manually replaced or serviced.
- Example 52 is the method of any of Example 1 to 51, comprising sending environmental data to the automation coordinator, the environmental data to comprise measurements of one or more aspects of ambient conditions within the data center.
- Example 53 is the method of Example 52, comprising one or more sensors to generate the measurements comprised in the environmental data.
- Example 54 is the method of any of Examples 52 to 53, the environmental data to comprise one or more temperature measurements.
- Example 55 is the method of any of Examples 52 to 54, the environmental data to comprise one or more humidity measurements.
- Example 56 is the method of any of Examples 52 to 55, the environmental data to comprise one or more air quality measurements.
- Example 57 is the method of any of Examples 52 to 56, the environmental data to comprise one or more pressure measurements.
- Example 58 is a computer-readable storage medium storing instructions that, when executed, cause an automated maintenance device to perform a method according to any of Examples 1 to 57.
- Example 59 is an automated maintenance device, comprising processing circuitry and computer-readable storage media storing instructions for execution by the processing circuitry to cause the automated maintenance device to perform a method according to any of Examples 1 to 57.
- Example 60 is a method for coordination of automated data center maintenance, comprising identifying, by processing circuitry, a maintenance task to be performed in a data center, determining to initiate automated performance of the maintenance task, selecting an automated maintenance device to which to assign the maintenance task, and sending an automation command to cause the automated maintenance device to perform an automated maintenance procedure associated with the maintenance task.
- Example 61 is the method of Example 60, comprising identifying the maintenance task based on telemetry data associated with one or more physical resources of the data center.
- Example 62 is the method of Example 61, comprising receiving the telemetry data via a telemetry framework of the data center.
- Example 63 is the method of any of Examples 61 to 62, the telemetry data to include one or more telemetry metrics associated with a physical compute resource.
- Example 64 is the method of any of Examples 61 to 63, the telemetry data to include one or more telemetry metrics associated with a physical accelerator resource.
- Example 65 is the method of any of Examples 61 to 64, the telemetry data to include one or more telemetry metrics associated with a physical memory resource.
- Example 66 is the method of any of Examples 61 to 65, the telemetry data to include one or more telemetry metrics associated with a physical storage resource.
- Example 67 is the method of any of Examples 60 to 66, comprising identifying the maintenance task based on environmental data received from one or more automated maintenance devices of the data center.
- Example 68 is the method of Example 67, the environmental data to include one or more temperature measurements.
- Example 69 is the method of any of Examples 67 to 68, the environmental data to include one or more humidity measurements.
- Example 70 is the method of any of Examples 67 to 69, the environmental data to include one or more air quality measurements.
- Example 71 is the method of any of Examples 67 to 70, the environmental data to include one or more pressure measurements.
- Example 72 is the method of any of Examples 60 to 71, comprising adding the maintenance task to a pending task queue following identification of the maintenance task.
- Example 73 is the method of Example 72, comprising determining to initiate automated performance of the maintenance task based on a determination that the maintenance task constitutes a highest priority task among one or more maintenance tasks comprised in the pending task queue.
- Example 74 is the method of any of Examples 60 to 73, comprising selecting the automated maintenance device from among one or more automated maintenance devices in a candidate device pool.
- Example 75 is the method of any of Examples 60 to 74, comprising selecting the automated maintenance device based on one or more capabilities of the automated maintenance device.
- Example 76 is the method of any of Examples 60 to 75, comprising selecting the automated maintenance device based on position data received from the automated maintenance device.
- Example 77 is the method of any of Examples 60 to 76, the automation command to comprise a maintenance task code indicating a task type associated with the maintenance task.
- Example 78 is the method of any of Examples 60 to 77, the automation command to comprise location information associated with the maintenance task.
- Example 79 is the method of Example 78, the location information to include a rack identifier (ID) associated with a rack within the data center.
- ID rack identifier
- Example 81 is the method of any of Examples 78 to 80, the location information to include a slot identifier (ID) associated with a connector socket on a sled within the data center.
- ID slot identifier
- Example 82 is the method of any of Examples 60 to 81, the automation command to comprise a sled identifier (ID) associated with a sled within the data center.
- ID sled identifier
- Example 83 is the method of any of Examples 60 to 82, the automation command to comprise a physical resource identifier (ID) associated with a physical resource within the data center.
- ID physical resource identifier
- Example 84 is the method of any of Examples 60 to 81, the maintenance task to comprise replacement of a sled.
- Example 85 is the method of Example 83, the sled to comprise a compute sled, an accelerator sled, a memory sled, or a storage sled.
- Example 86 is the method of any of Examples 60 to 81, the maintenance task to comprise replacement of one or more components of a sled.
- Example 87 is the method of any of Examples 60 to 81, the maintenance task to comprise repair of one or more components of a sled.
- Example 88 is the method of any of Examples 60 to 81, the maintenance task to comprise testing of one or more components of a sled.
- Example 89 is the method of any of Examples 60 to 81, the maintenance task to comprise cleaning of one or more components of a sled.
- Example 90 is the method of any of Examples 60 to 81, the maintenance task to comprise power cycling one or more memory modules.
- Example 91 is the method of any of Examples 60 to 81, the maintenance task to comprise power cycling one or more non-volatile storage devices.
- Example 92 is the method of any of Examples 60 to 81, the maintenance task to comprise storing a compute state of a compute sled, replacing the compute sled with a second compute sled, and transferring the stored compute state to the second compute sled.
- Example 93 is the method of any of Examples 60 to 81, the maintenance task to comprise replacing one or more cache memory modules of a processor.
- Example 94 is a computer-readable storage medium storing instructions that, when executed by an automation coordinator for a data center, cause the automation coordinator to perform a method according to any of Examples 60 to 93.
- Example 95 is an apparatus, comprising processing circuitry and computer-readable storage media storing instructions for execution by the processing circuitry to perform a method according to any of Examples 60 to 93.
- Example 96 is a method for automated data center maintenance, comprising identifying, by processing circuitry of an automated maintenance device, a collaborative maintenance procedure to be performed in a data center, identifying a second automated maintenance device with which to collaborate during performance of the collaborative maintenance procedure, and sending interdevice coordination information to the second automated maintenance device to initiate the collaborative maintenance procedure.
- Example 97 is the method of Example 96, comprising identifying the collaborative maintenance procedure based on telemetry data associated with one or more physical resources of the data center.
- Example 98 is the method of Example 97, the telemetry data to include one or more telemetry metrics associated with a physical compute resource.
- Example 99 is the method of any of Examples 97 to 98, the telemetry data to include one or more telemetry metrics associated with a physical accelerator resource.
- Example 100 is the method of any of Examples 97 to 99, the telemetry data to include one or more telemetry metrics associated with a physical memory resource.
- Example 101 is the method of any of Examples 97 to 100, the telemetry data to include one or more telemetry metrics associated with a physical storage resource.
- Example 102 is the method of any of Examples 96 to 101, comprising identifying the collaborative maintenance procedure based on environmental data comprising measurements of one or more aspects of ambient conditions within the data center.
- Example 103 is the method of Example 102, comprising one or more sensors to generate the measurements comprised in the environmental data.
- Example 104 is the method of any of Examples 102 to 103, the environmental data to comprise one or more temperature measurements.
- Example 105 is the method of any of Examples 102 to 104, the environmental data to comprise one or more humidity measurements.
- Example 106 is the method of any of Examples 102 to 105, the environmental data to comprise one or more air quality measurements.
- Example 107 is the method of any of Examples 102 to 106, the environmental data to comprise one or more pressure measurements.
- Example 108 is the method of Example 96, comprising identifying the collaborative maintenance procedure based on an automation command received from an automation coordinator for the data center.
- Example 109 is the method of Example 108, comprising identifying the collaborative maintenance procedure based on a maintenance task code comprised in the received automation command.
- Example 110 is the method of any of Examples 96 to 109, comprising selecting the second automated maintenance device from among a plurality of automated maintenance devices in a candidate device pool for the data center.
- Example 111 is the method of any of Examples 96 to 110, comprising identifying the second automated maintenance device based on a parameter comprised in a command received from an automation coordinator for the data center.
- Example 112 is the method of any of Examples 96 to 111, the collaborative maintenance procedure to comprise replacing a sled.
- Example 113 is the method of Example 112, the sled to comprise a compute sled.
- Example 114 is the method of Example 113, the collaborative maintenance procedure to comprise removing the compute sled from a sled space, removing a memory card from a connector slot of the compute sled, inserting the memory card into a connector slot of a replacement compute sled, and inserting the replacement compute sled into the sled space.
- Example 115 is the method of Example 114, the memory card to store a compute state of the compute sled.
- Example 116 is the method of Example 115, the collaborative maintenance procedure to comprise initiating a restoration of the stored compute state on the replacement compute sled.
- Example 117 is the method of Example 112, the sled to comprise an accelerator sled, a memory sled, or a storage sled.
- Example 118 is the method of any of Examples 96 to 111, the collaborative maintenance procedure to comprise replacing a component on a sled.
- Example 119 is the method of Example 118, the component to comprise a processor.
- Example 120 is the method of Example 118, the component to comprise a field-programmable gate array (FPGA).
- FPGA field-programmable gate array
- Example 121 is the method of Example 118, the component to comprise a memory module.
- Example 122 is the method of Example 118, the component to comprise a non-volatile storage device.
- Example 123 is the method of Example 122, the non-volatile storage device to comprise a solid-state drive (SSD).
- SSD solid-state drive
- Example 124 is the method of Example 123, the SSD to comprise a three-dimensional (3D) NAND SSD.
- Example 125 is the method of any of Examples 96 to 111, the collaborative maintenance procedure to comprise replacing one or more cache memory modules of a processor on a sled.
- Example 126 is the method of Example 125, the collaborative maintenance procedure to comprise removing a heat sink from atop the processor, removing the processor from a socket to facilitate access to one or more cache memory modules underlying the processor, removing the one or cache memory modules, inserting one or more replacement cache memory modules, reinserting the processor into the socket, and reinstalling the heat sink.
- Example 127 is the method of any of Examples 96 to 111, the collaborative maintenance procedure to comprise servicing a component on a sled.
- Example 128 is the method of Example 127, the collaborative maintenance procedure to comprise removing the sled from a sled space of a rack.
- Example 129 is the method of any of Examples 127 to 128, the collaborative maintenance procedure to comprise removing the component from the sled.
- Example 130 is the method of any of Examples 127 to 129, the collaborative maintenance procedure to comprise testing the component.
- Example 131 is the method of any of Examples 127 to 130, the collaborative maintenance procedure to comprise cleaning the component.
- Example 132 is the method of any of Examples 127 to 131, the collaborative maintenance procedure to comprise power-cycling the component.
- Example 133 is the method of any of Examples 127 to 132, the collaborative maintenance procedure to comprise capturing one or more images of the component.
- Example 134 is the method of any of Examples 127 to 133, the component to comprise a processor.
- Example 135 is the method of any of Examples 127 to 133, the component to comprise a field-programmable gate array (FPGA).
- FPGA field-programmable gate array
- Example 136 is the method of any of Examples 127 to 133, the component to comprise a memory module.
- Example 137 is the method of any of Examples 127 to 133, the component to comprise a non-volatile storage device.
- Example 138 is the method of Example 137, the non-volatile storage device to comprise a solid-state drive (SSD).
- SSD solid-state drive
- Example 139 is the method of Example 138, the SSD to comprise a three-dimensional (3D) NAND SSD.
- Example 140 is the method of any of Examples 96 to 139, the interdevice coordination information to comprise a rack identifier (ID) associated with a rack within the data center.
- ID rack identifier
- Example 141 is the method of any of Examples 96 to 140, the interdevice coordination information to comprise a sled space identifier (ID) associated with a sled space within the data center.
- ID sled space identifier
- Example 142 is the method of any of Examples 96 to 141, the interdevice coordination information to comprise a slot identifier (ID) associated with a connector socket on a sled within the data center.
- ID slot identifier
- Example 143 is the method of any of Examples 96 to 142, the interdevice coordination information to comprise a sled identifier (ID) associated with a sled within the data center.
- ID sled identifier
- Example 144 is the method of any of Examples 96 to 143, the interdevice coordination information to comprise a component identifier (ID) associated with a component on a sled within the data center.
- ID component identifier
- Example 145 is a computer-readable storage medium storing instructions that, when executed, cause an automated maintenance device to perform a method according to any of Examples 96 to 144.
- Example 146 is an automated maintenance device, comprising processing circuitry and computer-readable storage media storing instructions for execution by the processing circuitry to cause the automated maintenance device to perform a method according to any of Examples 96 to 144.
- Example 147 is an automated maintenance device, comprising means for receiving an automation command from an automation coordinator for a data center, means for identifying an automated maintenance procedure based on the received automation command, and means for performing the identified automated maintenance procedure.
- Example 148 is the automated maintenance device of Example 147, the identified automated maintenance procedure to comprise a sled replacement procedure.
- Example 149 is the automated maintenance device of Example 148, the sled replacement procedure to comprise removing a compute sled from a sled space, removing a memory card from a connector slot of the compute sled, inserting the memory card into a connector slot of a replacement compute sled, and inserting the replacement compute sled into the sled space.
- Example 150 is the automated maintenance device of Example 149, the memory card to store a compute state of the compute sled.
- Example 151 is the automated maintenance device of Example 150, the sled replacement procedure to comprise initiating a restoration of the stored compute state on the replacement compute sled.
- Example 152 is the automated maintenance device of Example 148, the sled replacement procedure to comprise replacing an accelerator sled, a memory sled, or a storage sled.
- Example 153 is the automated maintenance device of Example 147, the identified automated maintenance procedure to comprise a component replacement procedure.
- Example 154 is the automated maintenance device of Example 153, the component replacement procedure to comprise removing a component from a socket of a sled, and inserting a replacement component into the socket.
- Example 155 is the automated maintenance device of Example 154, the component to comprise a processor, a field-programmable gate array (FPGA), a memory module, or a solid-state drive (SSD).
- FPGA field-programmable gate array
- SSD solid-state drive
- Example 156 is the automated maintenance device of Example 153, the component replacement procedure to comprise a cache memory replacement procedure.
- Example 157 is the automated maintenance device of Example 156, the cache memory replacement procedure to comprise replacing one or more cache memory modules of a processor on a sled.
- Example 158 is the automated maintenance device of Example 157, the cache memory replacement procedure to comprise removing a heat sink from atop the processor, removing the processor from a socket to facilitate access to one or more cache memory modules underlying the processor, removing the one or cache memory modules, inserting one or more replacement cache memory modules, reinserting the processor into the socket, and reinstalling the heat sink.
- Example 159 is the automated maintenance device of Example 147, the identified automated maintenance procedure to comprise a component servicing procedure.
- Example 160 is the automated maintenance device of Example 159, the component servicing procedure to comprise servicing a component on a sled.
- Example 161 is the automated maintenance device of Example 160, the component servicing procedure to comprise removing the sled from a sled space of a rack.
- Example 162 is the automated maintenance device of any of Examples 160 to 161, the component servicing procedure to comprise removing the component from the sled.
- Example 163 is the automated maintenance device of any of Examples 160 to 162, the component servicing procedure to comprise testing the component.
- Example 164 is the automated maintenance device of any of Examples 160 to 163, the component servicing procedure to comprise cleaning the component.
- Example 165 is the automated maintenance device of any of Examples 160 to 164, the component servicing procedure to comprise power-cycling the component.
- Example 166 is the automated maintenance device of any of Examples 160 to 165, the component servicing procedure to comprise capturing one or more images of the component.
- Example 167 is the automated maintenance device of any of Examples 160 to 166, the component to comprise a processor, a field-programmable gate array (FPGA), a memory module, or a solid-state drive (SSD).
- FPGA field-programmable gate array
- SSD solid-state drive
- Example 168 is the automated maintenance device of any of Examples 147 to 167, comprising means for identifying the automated maintenance procedure based on a maintenance task code comprised in the received automation command.
- Example 169 is the automated maintenance device of any of Examples 147 to 168, comprising means for performing the identified automated maintenance procedure based on one or more maintenance task parameters.
- Example 170 is the automated maintenance device of Example 169, the one or more maintenance task parameters to be comprised in the received automation command.
- Example 171 is the automated maintenance device of Example 169, at least one of the one or more maintenance task parameters to be comprised in a second automation command received from the automation coordinator.
- Example 172 is the automated maintenance device of any of Examples 169 to 171, the one or more maintenance task parameters to include one or more location parameters.
- Example 173 is the automated maintenance device of Example 172, the one or more location parameters to include a rack identifier (ID) associated with a rack within the data center.
- ID rack identifier
- Example 174 is the automated maintenance device of any of Examples 172 to 173, the one or more location parameters to include a sled space identifier (ID) associated with a sled space within the data center.
- ID sled space identifier
- Example 175 is the automated maintenance device of any of Examples 172 to 174, the one or more location parameters to include a slot identifier (ID) associated with a connector socket on a sled within the data center.
- ID slot identifier
- Example 176 is the automated maintenance device of any of Examples 169 to 175, the one or more maintenance task parameters to include a sled identifier (ID) associated with a sled within the data center.
- ID sled identifier
- Example 177 is the automated maintenance device of any of Examples 169 to 176, the one or more maintenance task parameters to include a component identifier (ID) associated with a component on a sled within the data center.
- ID component identifier
- Example 178 is the automated maintenance device of any of Examples 147 to 177, the automation command to be comprised in signals received via a communication interface of the automated maintenance device.
- Example 179 is the automated maintenance device of Example 178, the communication interface to comprise a radio frequency (RF) interface, the signals to comprise RF signals.
- RF radio frequency
- Example 180 is the automated maintenance device of any of Examples 147 to 179, comprising means for sending a message to the automation coordinator to acknowledge the received automation command.
- Example 181 is the automated maintenance device of any of Examples 147 to 180, comprising means for sending a message to the automation coordinator to report a result of the automated maintenance procedure.
- Example 182 is the automated maintenance device of any of Examples 147 to 181, comprising means for sending position data to the automation coordinator, the position data to indicate a position of the automated maintenance device within the data center.
- Example 183 is the automated maintenance device of any of Examples 147 to 182, comprising means for sending assistance data to the automation coordinator, the assistance data to comprise an image of a component that is to be manually replaced or serviced.
- Example 184 is the automated maintenance device of any of Example 147 to 183, comprising means for sending environmental data to the automation coordinator, the environmental data to comprise measurements of one or more aspects of ambient conditions within the data center.
- Example 185 is the automated maintenance device of Example 184, comprising means for generating the measurements comprised in the environmental data.
- Example 186 is the automated maintenance device of any of Examples 184 to 185, the environmental data to comprise one or more temperature measurements.
- Example 187 is the automated maintenance device of any of Examples 184 to 186, the environmental data to comprise one or more humidity measurements.
- Example 188 is the automated maintenance device of any of Examples 184 to 187, the environmental data to comprise one or more air quality measurements.
- Example 189 is the automated maintenance device of any of Examples 184 to 188, the environmental data to comprise one or more pressure measurements.
- Example 189 is an apparatus for coordination of automated data center maintenance, comprising means for identifying a maintenance task to be performed in a data center, means for determining to initiate automated performance of the maintenance task, means for selecting an automated maintenance device to which to assign the maintenance task, and means for sending an automation command to cause the automated maintenance device to perform an automated maintenance procedure associated with the maintenance task.
- Example 190 is the apparatus of Example 189, comprising means for identifying the maintenance task based on telemetry data associated with one or more physical resources of the data center.
- Example 191 is the apparatus of Example 190, comprising means for receiving the telemetry data via a telemetry framework of the data center.
- Example 192 is the apparatus of any of Examples 190 to 191, the telemetry data to include one or more telemetry metrics associated with a physical compute resource.
- Example 193 is the apparatus of any of Examples 190 to 192, the telemetry data to include one or more telemetry metrics associated with a physical accelerator resource.
- Example 194 is the apparatus of any of Examples 190 to 193, the telemetry data to include one or more telemetry metrics associated with a physical memory resource.
- Example 195 is the apparatus of any of Examples 190 to 194, the telemetry data to include one or more telemetry metrics associated with a physical storage resource.
- Example 196 is the apparatus of any of Examples 189 to 195, comprising means for identifying the maintenance task based on environmental data received from one or more automated maintenance devices of the data center.
- Example 197 is the apparatus of Example 196, the environmental data to include one or more temperature measurements.
- Example 198 is the apparatus of any of Examples 196 to 197, the environmental data to include one or more humidity measurements.
- Example 199 is the apparatus of any of Examples 196 to 198, the environmental data to include one or more air quality measurements.
- Example 200 is the apparatus of any of Examples 196 to 199, the environmental data to include one or more pressure measurements.
- Example 201 is the apparatus of any of Examples 189 to 200, comprising means for adding the maintenance task to a pending task queue following identification of the maintenance task.
- Example 202 is the apparatus of Example 201, comprising means for determining to initiate automated performance of the maintenance task based on a determination that the maintenance task constitutes a highest priority task among one or more maintenance tasks comprised in the pending task queue.
- Example 203 is the apparatus of any of Examples 189 to 202, comprising means for selecting the automated maintenance device from among one or more automated maintenance devices in a candidate device pool.
- Example 204 is the apparatus of any of Examples 189 to 203, comprising means for selecting the automated maintenance device based on one or more capabilities of the automated maintenance device.
- Example 205 is the apparatus of any of Examples 189 to 204, comprising means for selecting the automated maintenance device based on position data received from the automated maintenance device.
- Example 206 is the apparatus of any of Examples 189 to 205, the automation command to comprise a maintenance task code indicating a task type associated with the maintenance task.
- Example 207 is the apparatus of any of Examples 189 to 206, the automation command to comprise location information associated with the maintenance task.
- Example 208 is the apparatus of Example 207, the location information to include a rack identifier (ID) associated with a rack within the data center.
- ID rack identifier
- Example 209 is the apparatus of any of Examples 207 to 208, the location information to include a sled space identifier (ID) associated with a sled space within the data center.
- ID sled space identifier
- Example 210 is the apparatus of any of Examples 207 to 209, the location information to include a slot identifier (ID) associated with a connector socket on a sled within the data center.
- ID slot identifier
- Example 211 is the apparatus of any of Examples 189 to 210, the automation command to comprise a sled identifier (ID) associated with a sled within the data center.
- ID sled identifier
- Example 212 is the apparatus of any of Examples 189 to 211, the automation command to comprise a physical resource identifier (ID) associated with a physical resource within the data center.
- ID physical resource identifier
- Example 213 is the apparatus of any of Examples 189 to 212, the maintenance task to comprise replacement of a sled.
- Example 214 is the apparatus of Example 213, the sled to comprise a compute sled, an accelerator sled, a memory sled, or a storage sled.
- Example 215 is the apparatus of any of Examples 189 to 212, the maintenance task to comprise replacement of one or more components of a sled.
- Example 216 is the apparatus of any of Examples 189 to 212, the maintenance task to comprise repair of one or more components of a sled.
- Example 217 is the apparatus of any of Examples 189 to 212, the maintenance task to comprise testing of one or more components of a sled.
- Example 218 is the apparatus of any of Examples 189 to 212, the maintenance task to comprise cleaning of one or more components of a sled.
- Example 219 is the apparatus of any of Examples 189 to 212, the maintenance task to comprise power cycling one or more memory modules.
- Example 220 is the apparatus of any of Examples 189 to 212, the maintenance task to comprise power cycling one or more non-volatile storage devices.
- Example 221 is the apparatus of any of Examples 189 to 212, the maintenance task to comprise storing a compute state of a compute sled, replacing the compute sled with a second compute sled, and transferring the stored compute state to the second compute sled.
- Example 222 is the apparatus of any of Examples 189 to 212, the maintenance task to comprise replacing one or more cache memory modules of a processor.
- Example 223 is an automated maintenance device, comprising means for identifying a collaborative maintenance procedure to be performed in a data center, means for identifying a second automated maintenance device with which to collaborate during performance of the collaborative maintenance procedure, and means for sending interdevice coordination information to the second automated maintenance device to initiate the collaborative maintenance procedure.
- Example 224 is the automated maintenance device of Example 223, comprising means for identifying the collaborative maintenance procedure based on telemetry data associated with one or more physical resources of the data center.
- Example 225 is the automated maintenance device of Example 224, the telemetry data to include one or more telemetry metrics associated with a physical compute resource.
- Example 226 is the automated maintenance device of any of Examples 224 to 225, the telemetry data to include one or more telemetry metrics associated with a physical accelerator resource.
- Example 227 is the automated maintenance device of any of Examples 224 to 226, the telemetry data to include one or more telemetry metrics associated with a physical memory resource.
- Example 228 is the automated maintenance device of any of Examples 224 to 227, the telemetry data to include one or more telemetry metrics associated with a physical storage resource.
- Example 229 is the automated maintenance device of any of Examples 223 to 228, comprising means for identifying the collaborative maintenance procedure based on environmental data comprising measurements of one or more aspects of ambient conditions within the data center.
- Example 230 is the automated maintenance device of Example 229, comprising one or more sensors to generate the measurements comprised in the environmental data.
- Example 231 is the automated maintenance device of any of Examples 229 to 230, the environmental data to comprise one or more temperature measurements.
- Example 232 is the automated maintenance device of any of Examples 229 to 231, the environmental data to comprise one or more humidity measurements.
- Example 233 is the automated maintenance device of any of Examples 229 to 232, the environmental data to comprise one or more air quality measurements.
- Example 234 is the automated maintenance device of any of Examples 229 to 233, the environmental data to comprise one or more pressure measurements.
- Example 235 is the automated maintenance device of Example 223, comprising means for identifying the collaborative maintenance procedure based on an automation command received from an automation coordinator for the data center.
- Example 236 is the automated maintenance device of Example 235, comprising means for identifying the collaborative maintenance procedure based on a maintenance task code comprised in the received automation command.
- Example 237 is the automated maintenance device of any of Examples 223 to 236, comprising means for selecting the second automated maintenance device from among a plurality of automated maintenance devices in a candidate device pool for the data center.
- Example 238 is the automated maintenance device of any of Examples 223 to 237, comprising means for identifying the second automated maintenance device based on a parameter comprised in a command received from an automation coordinator for the data center.
- Example 239 is the automated maintenance device of any of Examples 223 to 238, the collaborative maintenance procedure to comprise replacing a sled.
- Example 240 is the automated maintenance device of Example 239, the sled to comprise a compute sled.
- Example 241 is the automated maintenance device of Example 240, the collaborative maintenance procedure to comprise removing the compute sled from a sled space, removing a memory card from a connector slot of the compute sled, inserting the memory card into a connector slot of a replacement compute sled, and inserting the replacement compute sled into the sled space.
- Example 242 is the automated maintenance device of Example 241, the memory card to store a compute state of the compute sled.
- Example 243 is the automated maintenance device of Example 242, the collaborative maintenance procedure to comprise initiating a restoration of the stored compute state on the replacement compute sled.
- Example 244 is the automated maintenance device of Example 239, the sled to comprise an accelerator sled, a memory sled, or a storage sled.
- Example 245 is the automated maintenance device of any of Examples 223 to 238, the collaborative maintenance procedure to comprise replacing a component on a sled.
- Example 246 is the automated maintenance device of Example 245, the component to comprise a processor, a field-programmable gate array (FPGA), a memory module, or a solid-state drive (SSD).
- FPGA field-programmable gate array
- SSD solid-state drive
- Example 247 is the automated maintenance device of any of Examples 223 to 238, the collaborative maintenance procedure to comprise replacing one or more cache memory modules of a processor on a sled.
- Example 248 is the automated maintenance device of Example 247, the collaborative maintenance procedure to comprise removing a heat sink from atop the processor, removing the processor from a socket to facilitate access to one or more cache memory modules underlying the processor, removing the one or cache memory modules, inserting one or more replacement cache memory modules, reinserting the processor into the socket, and reinstalling the heat sink.
- Example 249 is the automated maintenance device of any of Examples 223 to 238, the collaborative maintenance procedure to comprise servicing a component on a sled.
- Example 250 is the automated maintenance device of Example 249, the collaborative maintenance procedure to comprise removing the sled from a sled space of a rack.
- Example 251 is the automated maintenance device of any of Examples 249 to 250, the collaborative maintenance procedure to comprise removing the component from the sled.
- Example 252 is the automated maintenance device of any of Examples 249 to 251, the collaborative maintenance procedure to comprise testing the component.
- Example 253 is the automated maintenance device of any of Examples 249 to 252, the collaborative maintenance procedure to comprise cleaning the component.
- Example 254 is the automated maintenance device of any of Examples 249 to 253, the collaborative maintenance procedure to comprise power-cycling the component.
- Example 255 is the automated maintenance device of any of Examples 249 to 254, the collaborative maintenance procedure to comprise capturing one or more images of the component.
- Example 256 is the automated maintenance device of any of Examples 249 to 255, the component to comprise a processor, a field-programmable gate array (FPGA), a memory module, or a solid-state drive (SSD).
- FPGA field-programmable gate array
- SSD solid-state drive
- Example 257 is the automated maintenance device of any of Examples 223 to 256, the interdevice coordination information to comprise a rack identifier (ID) associated with a rack within the data center.
- ID rack identifier
- Example 258 is the automated maintenance device of any of Examples 223 to 257, the interdevice coordination information to comprise a sled space identifier (ID) associated with a sled space within the data center.
- ID sled space identifier
- Example 259 is the automated maintenance device of any of Examples 223 to 258, the interdevice coordination information to comprise a slot identifier (ID) associated with a connector socket on a sled within the data center.
- ID slot identifier
- Example 260 is the automated maintenance device of any of Examples 223 to 259, the interdevice coordination information to comprise a sled identifier (ID) associated with a sled within the data center.
- ID sled identifier
- Example 261 is the automated maintenance device of any of Examples 223 to 260, the interdevice coordination information to comprise a component identifier (ID) associated with a component on a sled within the data center.
- ID component identifier
- Coupled and “connected” along with their derivatives. These terms are not intended as synonyms for each other. For example, some embodiments may be described using the terms “connected” and/or “coupled” to indicate that two or more elements are in direct physical or electrical contact with each other. The term “coupled,” however, may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
- processing refers to the action and/or processes of a computer or computing system, or similar electronic computing device, that manipulates and/or transforms data represented as physical quantities (e.g., electronic) within the computing system's registers and/or memories into other data similarly represented as physical quantities within the computing system's memories, registers or other such information storage, transmission or display devices.
- physical quantities e.g., electronic
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Human Computer Interaction (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Computer Security & Cryptography (AREA)
- Business, Economics & Management (AREA)
- Optics & Photonics (AREA)
- Human Resources & Organizations (AREA)
- Mathematical Physics (AREA)
- Environmental & Geological Engineering (AREA)
- Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Strategic Management (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Databases & Information Systems (AREA)
- Quality & Reliability (AREA)
- Development Economics (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Operations Research (AREA)
- Marketing (AREA)
- Game Theory and Decision Science (AREA)
- Educational Administration (AREA)
- Data Mining & Analysis (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Computing Systems (AREA)
- Optical Communication System (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Robotics (AREA)
- Manufacturing & Machinery (AREA)
Abstract
Description
- This application claims priority to U.S. Provisional Patent Application No. 62/365,969, filed Jul. 22, 2016, U.S. Provisional Patent Application No. 62/376,859, filed Aug. 18, 2016, and U.S. Provisional Patent Application No. 62/427,268, filed Nov. 29, 2016, each of which is hereby incorporated by reference in its entirety.
- In the course of ordinary operation of a data center, various types of maintenance are typically necessary in order to maintain desired levels of performance, stability, and reliability. Examples of such maintenance include testing, repair, replacement, and/or reconfiguration of components, installing new components, upgrading existing components, repositioning components and equipment, and other tasks of such a nature. A large modern data center may contain great numbers of components and equipment of various types, and as a result, may have the potential to impose a fairly substantial maintenance burden.
-
FIG. 1 illustrates an embodiment of a first data center. -
FIG. 2 illustrates an embodiment of a logical configuration of a rack. -
FIG. 3 illustrates an embodiment of a second data center. -
FIG. 4 illustrates an embodiment of a third data center. -
FIG. 5 illustrates an embodiment of a connectivity scheme. -
FIG. 6 illustrates an embodiment of first rack architecture. -
FIG. 7 illustrates an embodiment of a first sled. -
FIG. 8 illustrates an embodiment of a second rack architecture. -
FIG. 9 illustrates an embodiment of a rack. -
FIG. 10 illustrates an embodiment of a second sled. -
FIG. 11 illustrates an embodiment of a fourth data center. -
FIG. 12 illustrates an embodiment of a first logic flow. -
FIG. 13 illustrates an embodiment of a fifth data center. -
FIG. 14 illustrates an embodiment of an automated maintenance device. -
FIG. 15 illustrates an embodiment of a first operating environment. -
FIG. 16 illustrates an embodiment of a second operating environment. -
FIG. 17 illustrates an embodiment of a third operating environment. -
FIG. 18 illustrates an embodiment of a fourth operating environment. -
FIG. 19 illustrates an embodiment of a fifth operating environment. -
FIG. 20 illustrates an embodiment of a sixth operating environment. -
FIG. 21 illustrates an embodiment of a first logic flow. -
FIG. 22 illustrates an embodiment of a second logic flow. -
FIG. 23 illustrates an embodiment of a third logic flow. -
FIG. 24A illustrates an embodiment of a first storage medium. -
FIG. 24B illustrates an embodiment of a second storage medium. -
FIG. 25 illustrates an embodiment of a computing architecture. -
FIG. 26 illustrates an embodiment of a communications architecture. -
FIG. 27 illustrates an embodiment of a communication device. -
FIG. 28 illustrates an embodiment of a first wireless network. -
FIG. 29 illustrates an embodiment of a second wireless network. - Various embodiments may be generally directed to techniques for automated data center maintenance. In one embodiment, for example, an automated maintenance device may comprise processing circuitry and non-transitory computer-readable storage media comprising instructions for execution by the processing circuitry to cause the automated maintenance device to receive an automation command from an automation coordinator for a data center, identify an automated maintenance procedure based on the received automation command, and perform the identified automated maintenance procedure. Other embodiments are described and claimed.
- Various embodiments may comprise one or more elements. An element may comprise any structure arranged to perform certain operations. Each element may be implemented as hardware, software, or any combination thereof, as desired for a given set of design parameters or performance constraints. Although an embodiment may be described with a limited number of elements in a certain topology by way of example, the embodiment may include more or less elements in alternate topologies as desired for a given implementation. It is worthy to note that any reference to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearances of the phrases “in one embodiment,” “in some embodiments,” and “in various embodiments” in various places in the specification are not necessarily all referring to the same embodiment.
-
FIG. 1 illustrates a conceptual overview of adata center 100 that may generally be representative of a data center or other type of computing network in/for which one or more techniques described herein may be implemented according to various embodiments. As shown inFIG. 1 ,data center 100 may generally contain a plurality of racks, each of which may house computing equipment comprising a respective set of physical resources. In the particular non-limiting example depicted inFIG. 1 ,data center 100 contains fourracks 102A to 102D, which house computing equipment comprising respective sets of physical resources (PCRs) 105A to 105D. According to this example, a collective set ofphysical resources 106 ofdata center 100 includes the various sets of physical resources 105A to 105D that are distributed amongracks 102A to 102D.Physical resources 106 may include resources of multiple types, such as—for example—processors, co-processors, accelerators, field-programmable gate arrays (FPGAs), memory, and storage. The embodiments are not limited to these examples. - The
illustrative data center 100 differs from typical data centers in many ways. For example, in the illustrative embodiment, the circuit boards (“sleds”) on which components such as CPUs, memory, and other components are placed are designed for increased thermal performance. In particular, in the illustrative embodiment, the sleds are shallower than typical boards. In other words, the sleds are shorter from the front to the back, where cooling fans are located. This decreases the length of the path that air must to travel across the components on the board. Further, the components on the sled are spaced further apart than in typical circuit boards, and the components are arranged to reduce or eliminate shadowing (i.e., one component in the air flow path of another component). In the illustrative embodiment, processing components such as the processors are located on a top side of a sled while near memory, such as DIMMs, are located on a bottom side of the sled. As a result of the enhanced airflow provided by this design, the components may operate at higher frequencies and power levels than in typical systems, thereby increasing performance. Furthermore, the sleds are configured to blindly mate with power and data communication cables in eachrack - Furthermore, in the illustrative embodiment, the
data center 100 utilizes a single network architecture (“fabric”) that supports multiple other network architectures including Ethernet and Omni-Path. The sleds, in the illustrative embodiment, are coupled to switches via optical fibers, which provide higher bandwidth and lower latency than typical twister pair cabling (e.g., Category 5, Category 5e, Category 6, etc.). Due to the high bandwidth, low latency interconnections and network architecture, thedata center 100 may, in use, pool resources, such as memory, accelerators (e.g., graphics accelerators, FPGAs, ASICs, etc.), and data storage drives that are physically disaggregated, and provide them to compute resources (e.g., processors) on an as needed basis, enabling the compute resources to access the pooled resources as if they were local. Theillustrative data center 100 additionally receives usage information for the various resources, predicts resource usage for different types of workloads based on past resource usage, and dynamically reallocates the resources based on this information. - The
racks data center 100 may include physical design features that facilitate the automation of a variety of types of maintenance tasks. For example,data center 100 may be implemented using racks that are designed to be robotically-accessed, and to accept and house robotically-manipulable resource sleds. Furthermore, in the illustrative embodiment, theracks FIG. 2 illustrates an exemplary logical configuration of arack 202 of thedata center 100. As shown inFIG. 2 ,rack 202 may generally house a plurality of sleds, each of which may comprise a respective set of physical resources. In the particular non-limiting example depicted inFIG. 2 , rack 202 houses sleds 204-1 to 204-4 comprising respective sets of physical resources 205-1 to 205-4, each of which constitutes a portion of the collective set ofphysical resources 206 comprised inrack 202. With respect toFIG. 1 , ifrack 202 is representative of—for example—rack 102A, thenphysical resources 206 may correspond to the physical resources 105A comprised inrack 102A. In the context of this example, physical resources 105A may thus be made up of the respective sets of physical resources, including physical storage resources 205-1, physical accelerator resources 205-2, physical memory resources 205-3, and physical compute resources 205-5 comprised in the sleds 204-1 to 204-4 ofrack 202. The embodiments are not limited to this example. Each sled may contain a pool of each of the various types of physical resources (e.g., compute, memory, accelerator, storage). By having robotically accessible and robotically manipulable sleds comprising disaggregated resources, each type of resource can be upgraded independently of each other and at their own optimized refresh rate. -
FIG. 3 illustrates an example of adata center 300 that may generally be representative of one in/for which one or more techniques described herein may be implemented according to various embodiments. In the particular non-limiting example depicted inFIG. 3 ,data center 300 comprises racks 302-1 to 302-32. In various embodiments, the racks ofdata center 300 may be arranged in such fashion as to define and/or accommodate various access pathways. For example, as shown inFIG. 3 , the racks ofdata center 300 may be arranged in such fashion as to define and/or accommodateaccess pathways data center 300 and perform automated maintenance tasks (e.g., replace a failed sled, upgrade a sled). In various embodiments, the dimensions ofaccess pathways data center 300 may be selected to facilitate such automated operations. The embodiments are not limited in this context. -
FIG. 4 illustrates an example of adata center 400 that may generally be representative of one in/for which one or more techniques described herein may be implemented according to various embodiments. As shown inFIG. 4 ,data center 400 may feature anoptical fabric 412.Optical fabric 412 may generally comprise a combination of optical signaling media (such as optical cabling) and optical switching infrastructure via which any particular sled indata center 400 can send signals to (and receive signals from) each of the other sleds indata center 400. The signaling connectivity thatoptical fabric 412 provides to any given sled may include connectivity both to other sleds in a same rack and sleds in other racks. In the particular non-limiting example depicted inFIG. 4 ,data center 400 includes fourracks 402A to 402D.Racks 402A to 402D house respective pairs ofsleds 404A-1 and 404A-2, 404B-1 and 404B-2, 404C-1 and 404C-2, and 404D-1 and 404D-2. Thus, in this example,data center 400 comprises a total of eight sleds. Viaoptical fabric 412, each such sled may possess signaling connectivity with each of the seven other sleds indata center 400. For example, viaoptical fabric 412,sled 404A-1 inrack 402A may possess signaling connectivity withsled 404A-2 inrack 402A, as well as the sixother sleds 404B-1, 404B-2, 404C-1, 404C-2, 404D-1, and 404D-2 that are distributed among theother racks data center 400. The embodiments are not limited to this example. -
FIG. 5 illustrates an overview of aconnectivity scheme 500 that may generally be representative of link-layer connectivity that may be established in some embodiments among the various sleds of a data center, such as any ofexample data centers FIGS. 1, 3 , and 4.Connectivity scheme 500 may be implemented using an optical fabric that features a dual-modeoptical switching infrastructure 514. Dual-modeoptical switching infrastructure 514 may generally comprise a switching infrastructure that is capable of receiving communications according to multiple link-layer protocols via a same unified set of optical signaling media, and properly switching such communications. In various embodiments, dual-modeoptical switching infrastructure 514 may be implemented using one or more dual-modeoptical switches 515. In various embodiments, dual-modeoptical switches 515 may generally comprise high-radix switches. In some embodiments, dual-modeoptical switches 515 may comprise multi-ply switches, such as four-ply switches. In various embodiments, dual-modeoptical switches 515 may feature integrated silicon photonics that enable them to switch communications with significantly reduced latency in comparison to conventional switching devices. In some embodiments, dual-modeoptical switches 515 may constituteleaf switches 530 in a leaf-spine architecture additionally including one or more dual-mode optical spine switches 520. - In various embodiments, dual-mode optical switches may be capable of receiving both Ethernet protocol communications carrying Internet Protocol (IP packets) and communications according to a second, high-performance computing (HPC) link-layer protocol (e.g., Intel's Omni-Path Architecture's, Infiniband) via optical signaling media of an optical fabric. As reflected in
FIG. 5 , with respect to any particular pair ofsleds connectivity scheme 500 may thus provide support for link-layer connectivity via both Ethernet links and HPC links. Thus, both Ethernet and HPC communications can be supported by a single high-bandwidth, low-latency switch fabric. The embodiments are not limited to this example. -
FIG. 6 illustrates a general overview of arack architecture 600 that may be representative of an architecture of any particular one of the racks depicted inFIGS. 1 to 4 according to some embodiments. As reflected inFIG. 6 ,rack architecture 600 may generally feature a plurality of sled spaces into which sleds may be inserted, each of which may be robotically-accessible via arack access region 601. In the particular non-limiting example depicted inFIG. 6 ,rack architecture 600 features five sled spaces 603-1 to 603-5. Sled spaces 603-1 to 603-5 feature respective multi-purpose connector modules (MPCMs) 616-1 to 616-5. - Included among the types of sleds to be accommodated by
rack architecture 600 may be one or more types of sleds that feature expansion capabilities.FIG. 7 illustrates an example of asled 704 that may be representative of a sled of such a type. As shown inFIG. 7 ,sled 704 may comprise a set ofphysical resources 705, as well as anMPCM 716 designed to couple with a counterpart MPCM whensled 704 is inserted into a sled space such as any of sled spaces 603-1 to 603-5 ofFIG. 6 .Sled 704 may also feature anexpansion connector 717.Expansion connector 717 may generally comprise a socket, slot, or other type of connection element that is capable of accepting one or more types of expansion modules, such as anexpansion sled 718. By coupling with a counterpart connector onexpansion sled 718,expansion connector 717 may providephysical resources 705 with access tosupplemental computing resources 705B residing onexpansion sled 718. The embodiments are not limited in this context. -
FIG. 8 illustrates an example of arack architecture 800 that may be representative of a rack architecture that may be implemented in order to provide support for sleds featuring expansion capabilities, such assled 704 ofFIG. 7 . In the particular non-limiting example depicted inFIG. 8 ,rack architecture 800 includes seven sled spaces 803-1 to 803-7, which feature respective MPCMs 816-1 to 816-7. Sled spaces 803-1 to 803-7 include respective primary regions 803-1A to 803-7A and respective expansion regions 803-1B to 803-7B. With respect to each such sled space, when the corresponding MPCM is coupled with a counterpart MPCM of an inserted sled, the primary region may generally constitute a region of the sled space that physically accommodates the inserted sled. The expansion region may generally constitute a region of the sled space that can physically accommodate an expansion module, such asexpansion sled 718 ofFIG. 7 , in the event that the inserted sled is configured with such a module. -
FIG. 9 illustrates an example of arack 902 that may be representative of a rack implemented according torack architecture 800 ofFIG. 8 according to some embodiments. In the particular non-limiting example depicted inFIG. 9 , rack 902 features seven sled spaces 903-1 to 903-7, which include respective primary regions 903-1A to 903-7A and respective expansion regions 903-1B to 903-7B. In various embodiments, temperature control inrack 902 may be implemented using an air cooling system. For example, as reflected inFIG. 9 ,rack 902 may feature a plurality of fans 919 that are generally arranged to provide air cooling within the various sled spaces 903-1 to 903-7. In some embodiments, the height of the sled space is greater than the conventional “1U” server height. In such embodiments, fans 919 may generally comprise relatively slow, large diameter cooling fans as compared to fans used in conventional rack configurations. Running larger diameter cooling fans at lower speeds may increase fan lifetime relative to smaller diameter cooling fans running at higher speeds while still providing the same amount of cooling. The sleds are physically shallower than conventional rack dimensions. Further, components are arranged on each sled to reduce thermal shadowing (i.e., not arranged serially in the direction of air flow). As a result, the wider, shallower sleds allow for an increase in device performance because the devices can be operated at a higher thermal envelope (e.g., 250 W) due to improved cooling (i.e., no thermal shadowing, more space between devices, more room for larger heat sinks, etc.). - MPCMs 916-1 to 916-7 may be configured to provide inserted sleds with access to power sourced by respective power modules 920-1 to 920-7, each of which may draw power from an
external power source 921. In various embodiments,external power source 921 may deliver alternating current (AC) power to rack 902, and power modules 920-1 to 920-7 may be configured to convert such AC power to direct current (DC) power to be sourced to inserted sleds. In some embodiments, for example, power modules 920-1 to 920-7 may be configured to convert 277-volt AC power into 12-volt DC power for provision to inserted sleds via respective MPCMs 916-1 to 916-7. The embodiments are not limited to this example. - MPCMs 916-1 to 916-7 may also be arranged to provide inserted sleds with optical signaling connectivity to a dual-mode
optical switching infrastructure 914, which may be the same as—or similar to—dual-modeoptical switching infrastructure 514 ofFIG. 5 . In various embodiments, optical connectors contained in MPCMs 916-1 to 916-7 may be designed to couple with counterpart optical connectors contained in MPCMs of inserted sleds to provide such sleds with optical signaling connectivity to dual-modeoptical switching infrastructure 914 via respective lengths of optical cabling 922-1 to 922-7. In some embodiments, each such length of optical cabling may extend from its corresponding MPCM to an optical interconnect loom 923 that is external to the sled spaces ofrack 902. In various embodiments, optical interconnect loom 923 may be arranged to pass through a support post or other type of load-bearing element ofrack 902. The embodiments are not limited in this context. Because inserted sleds connect to an optical switching infrastructure via MPCMs, the resources typically spent in manually configuring the rack cabling to accommodate a newly inserted sled can be saved. -
FIG. 10 illustrates an example of asled 1004 that may be representative of a sled designed for use in conjunction withrack 902 ofFIG. 9 according to some embodiments.Sled 1004 may feature anMPCM 1016 that comprises anoptical connector 1016A and apower connector 1016B, and that is designed to couple with a counterpart MPCM of a sled space in conjunction with insertion ofMPCM 1016 into that sled space.Coupling MPCM 1016 with such a counterpart MPCM may causepower connector 1016 to couple with a power connector comprised in the counterpart MPCM. This may generally enablephysical resources 1005 ofsled 1004 to source power from an external source, viapower connector 1016 andpower transmission media 1024 that conductively couplespower connector 1016 tophysical resources 1005. -
Sled 1004 may also include dual-mode optical network interface circuitry 1026. Dual-mode optical network interface circuitry 1026 may generally comprise circuitry that is capable of communicating over optical signaling media according to each of multiple link-layer protocols supported by dual-modeoptical switching infrastructure 914 ofFIG. 9 . In some embodiments, dual-mode optical network interface circuitry 1026 may be capable both of Ethernet protocol communications and of communications according to a second, high-performance protocol. In various embodiments, dual-mode optical network interface circuitry 1026 may include one or more optical transceiver modules 1027, each of which may be capable of transmitting and receiving optical signals over each of one or more optical channels. The embodiments are not limited in this context. -
Coupling MPCM 1016 with a counterpart MPCM of a sled space in a given rack may causeoptical connector 1016A to couple with an optical connector comprised in the counterpart MPCM. This may generally establish optical connectivity between optical cabling of the sled and dual-mode optical network interface circuitry 1026, via each of a set ofoptical channels 1025. Dual-mode optical network interface circuitry 1026 may communicate with thephysical resources 1005 ofsled 1004 viaelectrical signaling media 1028. In addition to the dimensions of the sleds and arrangement of components on the sleds to provide improved cooling and enable operation at a relatively higher thermal envelope (e.g., 250 W), as described above with reference toFIG. 9 , in some embodiments, a sled may include one or more additional features to facilitate air cooling, such as a heatpipe and/or heat sinks arranged to dissipate heat generated byphysical resources 1005. It is worthy of note that although theexample sled 1004 depicted inFIG. 10 does not feature an expansion connector, any given sled that features the design elements ofsled 1004 may also feature an expansion connector according to some embodiments. The embodiments are not limited in this context. -
FIG. 11 illustrates an example of adata center 1100 that may generally be representative of one in/for which one or more techniques described herein may be implemented according to various embodiments. As reflected inFIG. 11 , a physicalinfrastructure management framework 1150A may be implemented to facilitate management of aphysical infrastructure 1100A ofdata center 1100. In various embodiments, one function of physicalinfrastructure management framework 1150A may be to manage automated maintenance functions withindata center 1100, such as the use of robotic maintenance equipment to service computing equipment withinphysical infrastructure 1100A. In some embodiments,physical infrastructure 1100A may feature an advanced telemetry system that performs telemetry reporting that is sufficiently robust to support remote automated management ofphysical infrastructure 1100A. In various embodiments, telemetry information provided by such an advanced telemetry system may support features such as failure prediction/prevention capabilities and capacity planning capabilities. In some embodiments, physicalinfrastructure management framework 1150A may also be configured to manage authentication of physical infrastructure components using hardware attestation techniques. For example, robots may verify the authenticity of components before installation by analyzing information collected from a radio frequency identification (RFID) tag associated with each component to be installed. The embodiments are not limited in this context. - As shown in
FIG. 11 , thephysical infrastructure 1100A ofdata center 1100 may comprise anoptical fabric 1112, which may include a dual-mode optical switching infrastructure 1114.Optical fabric 1112 and dual-mode optical switching infrastructure 1114 may be the same as—or similar to—optical fabric 412 ofFIG. 4 and dual-modeoptical switching infrastructure 514 ofFIG. 5 , respectively, and may provide high-bandwidth, low-latency, multi-protocol connectivity among sleds ofdata center 1100. As discussed above, with reference toFIG. 1 , in various embodiments, the availability of such connectivity may make it feasible to disaggregate and dynamically pool resources such as accelerators, memory, and storage. In some embodiments, for example, one or more pooledaccelerator sleds 1130 may be included among thephysical infrastructure 1100A ofdata center 1100, each of which may comprise a pool of accelerator resources—such as co-processors and/or FPGAs, for example—that is available globally accessible to other sleds viaoptical fabric 1112 and dual-mode optical switching infrastructure 1114. - In another example, in various embodiments, one or more pooled
storage sleds 1132 may be included among thephysical infrastructure 1100A ofdata center 1100, each of which may comprise a pool of storage resources that is available globally accessible to other sleds viaoptical fabric 1112 and dual-mode optical switching infrastructure 1114. In some embodiments, such pooledstorage sleds 1132 may comprise pools of solid-state storage devices such as solid-state drives (SSDs). In various embodiments, one or more high-performance processing sleds 1134 may be included among thephysical infrastructure 1100A ofdata center 1100. In some embodiments, high-performance processing sleds 1134 may comprise pools of high-performance processors, as well as cooling features that enhance air cooling to yield a higher thermal envelope of up to 250 W or more. In various embodiments, any given high-performance processing sled 1134 may feature anexpansion connector 1117 that can accept a far memory expansion sled, such that the far memory that is locally available to that high-performance processing sled 1134 is disaggregated from the processors and near memory comprised on that sled. In some embodiments, such a high-performance processing sled 1134 may be configured with far memory using an expansion sled that comprises low-latency SSD storage. The optical infrastructure allows for compute resources on one sled to utilize remote accelerator/FPGA, memory, and/or SSD resources that are disaggregated on a sled located on the same rack or any other rack in the data center. The remote resources can be located one switch jump away or two-switch jumps away in the spine-leaf network architecture described above with reference toFIG. 5 . The embodiments are not limited in this context. - In various embodiments, one or more layers of abstraction may be applied to the physical resources of
physical infrastructure 1100A in order to define a virtual infrastructure, such as a software-definedinfrastructure 1100B. In some embodiments, virtual computing resources 1136 of software-definedinfrastructure 1100B may be allocated to support the provision ofcloud services 1140. In various embodiments, particular sets of virtual computing resources 1136 may be grouped for provision to cloudservices 1140 in the form ofSDI services 1138. Examples ofcloud services 1140 may include—without limitation—software as a service (SaaS)services 1142, platform as a service (PaaS)services 1144, and infrastructure as a service (IaaS) services 1146. - In some embodiments, management of software-defined
infrastructure 1100B may be conducted using a virtualinfrastructure management framework 1150B. In various embodiments, virtualinfrastructure management framework 1150B may be designed to implement workload fingerprinting techniques and/or machine-learning techniques in conjunction with managing allocation of virtual computing resources 1136 and/orSDI services 1138 tocloud services 1140. In some embodiments, virtualinfrastructure management framework 1150B may use/consult telemetry data in conjunction with performing such resource allocation. In various embodiments, an application/service management framework 1150C may be implemented in order to provide QoS management capabilities forcloud services 1140. The embodiments are not limited in this context. -
FIG. 12 illustrates an example of alogic flow 1200 that may be representative of a maintenance algorithm for a data center, such as one or more ofdata center 100 ofFIG. 1 ,data center 300 ofFIG. 3 ,data center 400 ofFIG. 4 , anddata center 1100 ofFIG. 11 . As shown inFIG. 12 , data center operation information may be collected at 1202. In various embodiments, the collected data center operation information may include information describing various characteristics of ongoing operation of the data center, such as resource utilization levels, workload sizes, throughput rates, temperature measurements, and so forth. In some embodiments, the collected data center operation information may additionally or alternatively include information describing other characteristics of the data center, such as the types of resources comprised in the data center, the locations/distributions of such resources within the data center, the capabilities and/or features of those resources, and so forth. The embodiments are not limited to these examples. - Based on data center operation information such as may be collected at 1202, a maintenance task to be completed may be identified at 1204. In one example, based on data center operation information indicating that processing resources on a given sled are non-responsive to communications from resources on other sleds, it may be determined at 1204 that the sled is to be pulled for testing. In another example, based on data center operation information indicating that a particular DIMM has reached the end of its estimated service life, it may be determined that the DIMM is to be replaced. At 1206, a set of physical actions associated with the maintenance task may be determined, and those physical actions may be performed at 1208 in order to complete the maintenance task. For instance, in the aforementioned example in which it is determined at 1204 that a DIMM is to be replaced, the physical actions identified at 1206 and performed at 1208 may include traveling to a particular rack in order to access a sled comprising the DIMM, removing the DIMM from a socket on the sled, and inserting a replacement DIMM into the socket. The embodiments are not limited to this example.
-
FIG. 13 illustrates an overhead view of anexample data center 1300. According to various embodiments,data center 1300 may be representative of a data center in which various operations associated with data center maintenance—such as operations associated with one or more ofblocks logic flow 1200 ofFIG. 12 —are automated using the capabilities of robotic maintenance equipment. According to some embodiments,data center 1300 may be representative of one or more ofdata center 100 ofFIG. 1 ,data center 300 ofFIG. 3 ,data center 400 ofFIG. 4 , anddata center 1100 ofFIG. 11 . The embodiments are not limited in this context. - In various embodiments, according to an automated maintenance scheme implemented in
data center 1300,robots 1360 may be used to service, repair, replace, clean, test, configure, upgrade, move, position, and/or otherwise manipulate equipment housed inracks 1302.Racks 1302 may be arranged in such fashion as to define and/or accommodate access pathways via whichrobots 1360 can physically access such equipment.Robots 1360 may traverse such access pathways in conjunction with moving around indata center 1300 to perform various tasks. Physical features of equipment housed inracks 1302 may be designed to facilitate robotic manipulation/handling. It is to be appreciated that in various embodiments, the equipment housed inracks 1302 may include some equipment that is not robotically accessible/serviceable. Further, in some embodiments, there may be some equipment withindata center 1300 that is robotically accessible/serviceable but is not housed inracks 1302. The embodiments are not limited in this context. -
FIG. 14 illustrates a block diagram of anautomated maintenance device 1400 that may be representative of any givenrobot 1360 indata center 1300 ofFIG. 13 according to various embodiments. As shown inFIG. 14 , automatedmaintenance device 1400 may comprise a variety of elements. In the non-limiting example depicted inFIG. 14 , automatedmaintenance device 1400 compriseslocomotion elements 1462,manipulation elements 1463,sensory elements 1464,communication elements 1465,interfaces 1466, memory/storage elements 1467, and operations management and control (OMC)elements 1468. -
Locomotion elements 1462 may generally comprise physical elements enablingautomated maintenance device 1400 to move around within a data center. In various embodiments,locomotion elements 1462 may comprise wheels. In some embodiments,locomotion elements 1462 may comprise caterpillar tracks. In various embodiments,automated maintenance device 1400 may provide the motive power/force required for motion. For example, in some embodiments,automated maintenance device 1400 may feature a battery that provides power to drive wheels or tracks used byautomated maintenance device 1400 for moving around in a data center. In various other embodiments, the motive power/force may be provided by an external source. The embodiments are not limited in this context. -
Manipulation elements 1463 may generally comprise physical elements that are usable to manipulate various types of equipment in a data center. In some embodiments,manipulation elements 1463 may include one or more robotic arms. In various embodiments,manipulation elements 1463 may include one or more multi-link manipulators. In some embodiments,manipulation elements 1463 may include one or more end effectors usable for gripping various types of equipment, components, and/or other objects within the data center. In various embodiments,manipulation elements 1463 may include one or more end effectors comprising impactive grippers, such as jaw or claw grippers. In some embodiments,manipulation elements 1463 may include one or more end effectors comprising ingressive grippers, which may feature pins, needles, hackles, or other elements that are to physically penetrate the surface of an object being gripped. In various embodiments,manipulation elements 1463 may include one or more end effectors comprising astrictive grippers, which may grip objects using air suction, magnetic adhesion, or electroadhesion. The embodiments are not limited to these examples. -
Sensory elements 1464 may generally comprise physical elements that are usable to sense various aspects of ambient conditions within a data center. Examples ofsensory elements 1464 may include cameras, alignment guides/sensors, distance sensors, proximity sensors, barcode readers, RFID/NFC readers, temperature sensors, airflow sensors, air quality sensors, humidity sensors, and pressure sensors. The embodiments are not limited to these examples. -
Communication elements 1465 may generally comprise a set of electronic components and/or circuitry operable to perform functions associated with communications betweenautomated maintenance device 1400 and one or more external devices. In a given embodiment, such communications may include wireless communications, wired communications, or both. In various embodiments,communication elements 1465 may include elements operative to generate/construct packets, frames, messages, and/or other information to be wirelessly communicated to external device(s), and/or to process/deconstruct packets, frames, messages, and/or other information wirelessly received from external device(s). In various embodiments, for example,communication elements 1465 may include baseband circuitry supporting wireless communications according to one or more wireless communication protocols/standards. In some embodiments,communication elements 1465 may include elements operative to generate, process, construct, and/or deconstruct packets, frames, messages, and/or other information communicated over wired media. In various embodiments, for example,communication elements 1465 may include network interface circuitry supporting wired communications according to one or more wired communication protocols/standards. The embodiments are not limited in this context. - In various embodiments,
interfaces 1466 may include one or more communication interfaces 1466A. As reflected inFIG. 14 , examples ofinterfaces 1466 that automatedmaintenance device 1400 may feature in various embodiments may include—without limitation—communication interfaces 1466A,testing interfaces 1466B,power interfaces 1466C, and user interfaces 1466D. - Communication interfaces 1466A may generally comprise interfaces usable to transmit and/or receive signals via one or more communication media, which may include wired media, wireless media, or both. In various embodiments, communication interfaces 1466A may include one or more wireless communication interfaces, such as radio frequency (RF) interfaces and/or optical wireless communication (OWC) interfaces. In some embodiments, communication interfaces may additionally or alternatively include one or more wired communication interfaces, such as interface(s) for communicating over media such as coaxial cable, twisted pair, and optical fiber. The embodiments are not limited to these examples.
- In various embodiments,
interfaces 1466 may include one ormore testing interfaces 1466B. Testing interfaces 1466B may generally comprise interfaces via whichautomated maintenance device 1400 is able to test physical components/resources of one or more types, which may include—without limitation—one or more of physical storage resources 205-1, physical accelerator resources 205-2, physical memory resources 205-3, and physical compute resources 205-4 ofFIG. 2 . In an example embodiment, interfaces 1466 may include atesting interface 1466B that enables automatedmaintenance device 1400 to test the functionality of a DIMM inserted into a testing slot. The embodiments are not limited to these examples. - In various embodiments,
interfaces 1466 may include one or more power interfaces 1466C. Power interfaces 1466C may generally comprise interfaces via whichautomated maintenance device 1400 can draw and/or source power. In various embodiments,power interfaces 1466C may include one or more interfaces via whichautomated maintenance device 1400 can draw power from external source(s). In some embodiments,automated maintenance device 1400 may feature one ormore power interfaces 1466C configured to provide charge to one or more batteries (not shown), and automated maintenance device may draw its operating power from those one or more batteries. In various embodiments,automated maintenance device 1400 may feature one ormore power interfaces 1466C via which it can directly draw operating power. In various embodiments,automated maintenance device 1400 may feature one ormore power interfaces 1466C via which it can source power to external devices. For example, in various embodiments,automated maintenance device 1400 may feature apower interface 1466C via which it can source power to charge a battery of a second automated maintenance device. The embodiments are not limited to this example. - In some embodiments,
interfaces 1466 may include one or more user interfaces. User interfaces 1466D may generally comprise interfaces via which information can be provided to human technicians and/or user input can be accepted from human technicians. Examples of user interfaces 1466D may include displays, touchscreens, speakers, microphones, keypads, mice, trackballs, trackpads, joysticks, fingerprint readers, retinal scanners, buttons, switches, and the like. The embodiments are not limited to these examples. - Memory/
storage elements 1467 may generally comprise a set of electronic components and/or circuitry capable of retaining data, such as any of various types of data that may be generated, transmitted, received, and/or used byautomated maintenance device 1400 during normal operation. In some embodiments, memory/storage elements 1467 may include one or both of volatile memory and non-volatile memory. For example, in various embodiments, memory/storage elements 1467 may include one or more of read-only memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory, polymer memory such as ferroelectric polymer memory, ovonic memory, phase change or ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, hard disks, an array of devices such as Redundant Array of Independent Disks (RAID) drives, solid state memory devices, solid state drives (SSDs), or any other type of media suitable for storing information. The embodiments are not limited to these examples. -
OMC elements 1468 may generally comprise a set of components and/or circuitry capable of performing computing operations required to implement logic for managing and controlling the operations ofautomated maintenance device 1400. In various embodiments,OMC elements 1468 may include processing circuitry, such as one or more processors/processing units. In some embodiments, an automation engine 1469 may execute on such processing circuitry. Automation engine 1469 may generally be operative to conduct overall management, control, coordination, and/or oversight of the operations ofautomated maintenance device 1400. In various embodiments, this may include management, coordination, control, and/or oversight of the operations/usage of various other elements withinautomated maintenance device 1400, such as any or all oflocomotion elements 1462,manipulation elements 1463,sensory elements 1464,communication elements 1465,interfaces 1466, and memory/storage elements 1467. The embodiments are not limited in this context. -
FIG. 15 illustrates an example of anoperating environment 1500 that may be representative of the implementation of an automated maintenance scheme indata center 1300 according to various embodiments. According to such an automated maintenance scheme, anautomation coordinator 1555 may centrally manage/coordinate various aspects of automated maintenance operations indata center 1300. In some embodiments,automation coordinator 1555 may centrally manage/coordinate various aspects of automated maintenance operations indata center 1300 based in part ontelemetry data 1571 provided by atelemetry framework 1570. According to various embodiments,telemetry framework 1570 may be representative of an advanced telemetry system that performs telemetry reporting forphysical infrastructure 1100A indata center 1100 ofFIG. 11 , andautomation coordinator 1555 may be representative of automated maintenance coordination functionality of physicalinfrastructure management framework 1150A. The embodiments are not limited in this context. - In some embodiments, management/coordination functionality of
automation coordinator 1555 may be provided by a coordination engine 1572. In various embodiments, coordination engine 1572 may execute on processing circuitry ofautomation coordinator 1555. In various embodiments, coordination engine 1572 may generateautomation commands 1573 for transmission torobots 1360 in order to instructrobots 1360 to perform automated maintenance tasks and/or actions associated with such tasks. In some embodiments,robots 1360 may provideautomation coordinator 1555 with various types offeedback 1574 in order to—for example—acknowledge automation commands 1573, report the results of attempted maintenance tasks, provide information regarding the statuses of components, resources, and/or equipment, provide information regarding information regarding the statuses ofrobots 1360 themselves, and/or report measurements of one or more aspects of ambient conditions in the data center. The embodiments are not limited to these examples. - In some embodiments, coordination engine 1572 may consider various types of information in conjunction with automated maintenance coordination/management. As reflected in
FIG. 15 , examples of such types of information may includephysical infrastructure information 1575, datacenter operations information 1576,maintenance task information 1577, andmaintenance equipment information 1579. -
Physical infrastructure information 1575 may generally comprise information identifying equipment, devices, components, interconnects, physical resources, and/or other infrastructure elements that comprise portions of the physical infrastructure ofdata center 1300, and describing characteristics of such elements. Datacenter operations information 1576 may generally comprise information describing various aspects of ongoing operations withindata center 1300. In some embodiments, for example, datacenter operations information 1576 may include information describing one or more workloads currently being processed indata center 1300. In various embodiments, datacenter operations information 1576 may include metrics characterizing one or more aspects of current operations indata center 1300. For example, in some embodiments, datacenter operations information 1576 may include performance metrics characterizing the relative level of performance currently being achieved indata center 1300, efficiency metrics characterizing the relative level of efficiency with which the physical resources ofdata center 1300 are being used to handle the current workloads, and utilization metrics generally indicative of current usage levels of various types of resources indata center 1300. In various embodiments, datacenter operations information 1576 may includetelemetry data 1571, such asautomation coordinator 1555 may receive viatelemetry framework 1570 or fromrobots 1360. The embodiments are not limited in this context. -
Maintenance task information 1577 may generally comprise information identifying and describing ongoing and pending maintenance tasks ofdata center 1300.Maintenance task information 1577 may also include information identifying and describing previously completed maintenance tasks. In various embodiments,maintenance task information 1577 may include a pending task queue 1578. Pending task queue 1578 may generally comprise information identifying a set of maintenance tasks that need to be performed indata center 1300.Maintenance equipment information 1579 may generally comprise identifying and describing automated maintenance equipment—such asrobots 1360—ofdata center 1300. In some embodiments,maintenance equipment information 1579 may include a candidate device pool 1580. Candidate device pool 1580 may generally comprise information identifying a set ofrobots 1360 that are currently available for use indata center 1300. The embodiments are not limited in this context. - In various embodiments, based on
telemetry data 1571,automation coordinator 1555 may identify automated maintenance tasks to be performed indata center 1300 byrobots 1360. For example, based ontelemetry data 1571 indicating a high bit error rate at a DIMM,automation coordinator 1555 may determine that arobot 1360 should be assigned to replace that DIMM. In some embodiments,automation coordinator 1555 may usetelemetry data 1571 to prioritize among automated maintenance tasks, such as tasks comprised in pending task queue 1578. For example,automation coordinator 1555 may usetelemetry data 1571 to assess the respective expected performance impacts of multiple automated maintenance tasks in pending task queue 1578, and may assign out an automated maintenance task with the highest expected performance impact first. In some embodiments, in identifying and/or prioritizing among automated maintenance tasks,automation coordinator 1555 may consider any or all ofphysical infrastructure information 1575, datacenter operations information 1576,maintenance task information 1577, andmaintenance equipment information 1579 in addition to—or in lieu of—telemetry data 1571. - In a first example,
automation coordinator 1555 may assign a low priority to an automated maintenance task involving replacement of a malfunctioning compute sled based onphysical infrastructure information 1575 indicating that another sled in a different rack can be used as a substitute without need for replacing the malfunctioning compute sled. In a second example,automation coordinator 1555 may assign a high priority to an automated maintenance task involving replacing a malfunctioning memory sled based on datacenter operation information 1576 indicating that a scarcity of memory constitutes a performance bottleneck with respect to workloads being processed indata center 1300. In a third example,automation coordinator 1555 may determine not to add a new maintenance task to pending task queue 1578 based on a determination that a maintenance task already present in pending task queue 1578 may render the new maintenance task unnecessary and/or moot. In a fourth example, in determining an extent to which to prioritize an automated maintenance task that requires the use ofparticular robots 1360 featuring specialized capabilities,automation coordinator 1555 may considermaintenance equipment information 1579 indicating whether anyrobots 1360 featuring such specialized capabilities are currently available. The embodiments are not limited to these examples. - In various embodiments, based on
telemetry data 1571,automation coordinator 1555 may control the positioning and/or movement ofrobots 1360 withindata center 1300. For example, having usedtelemetry data 1571 to identify a region ofdata center 1300 within which a greater number of hardware failures have been and/or are expected to be observed,automation coordinator 1555 may positionrobots 1360 more densely within that identified region than within other regions ofdata center 1300. The embodiments are not limited in this context. - In some embodiments, in response to automated maintenance decisions—such as may be reached based on any or all of
telemetry data 1571,physical infrastructure information 1575, datacenter operations information 1576,maintenance task information 1577, andmaintenance equipment information 1579—automation coordinator 1555 may sendautomation commands 1573 torobots 1360 in order to instructrobots 1360 to perform operations associated with automated maintenance tasks. For example, upon determining that a particular compute sled should be replaced,automation coordinator 1555 may send anautomation command 1573 in order to instruct arobot 1360 to perform a sled replacement procedure to replace the sled. In various embodiments,automation coordinator 1555 may informrobots 1360 of various parameters characterizing assigned automated maintenance tasks by including such parameters in automation commands 1573. For instance, in the context of the preceding example, theautomation command 1573 may contain fields specifying a sled ID uniquely identifying the sled to be replaced and a rack ID and/or sled space ID identifying the location of that sled within the data center, as well as analogous parameters associated with the replacement sled. The embodiments are not limited to this example. - It is worthy of note that in various embodiments, with respect to some aspects of automated maintenance operations, decision-making may be handled in a distributed—rather than centralized—fashion. In such embodiments,
robots 1360 may make some automated maintenance decisions autonomously. In some such embodiments, as illustrated inFIG. 15 ,robots 1360 may perform such autonomous decision-making based ontelemetry data 1571 received fromtelemetry framework 1570. In an example embodiment, arobot 1360 may determine based on analysis oftelemetry data 1571 that a particular CPU is malfunctioning, and autonomously decide to replace that malfunctioning CPU. In various embodiments, some or all of therobots 1360 indata center 1300 may have access to any or all ofphysical infrastructure information 1575, datacenter operations information 1576,maintenance task information 1577, andmaintenance equipment information 1579, and may consider such information as well in conjunction with autonomous decision-making. In various embodiments, distributed coordination functions may be implemented to enable some types of maintenance tasks to be completed via collaborative maintenance procedures involving cooperation between multiple robots. The embodiments are not limited in this context. -
FIG. 16 illustrates an example of anoperating environment 1600 that may be representative of various embodiments. Inoperating environment 1600, in conjunction with automated maintenance operations indata center 1300,robots 1360 may provideautomation coordinator 1555 withfeedback 1574 that includes one or more ofposition data 1681,assistance data 1682, andenvironmental data 1683. The embodiments are not limited to these examples. It is worthy of note that in some embodiments, although not depicted inFIG. 16 ,robots 1360 may gather various types oftelemetry data 1571 in conjunction with automated maintenance operations and include such gatheredtelemetry data 1571 in thefeedback 1574 provided toautomation coordinator 1555. The embodiments are not limited in this context. -
Position data 1681 may generally comprise data for use byautomation coordinator 1555 to determine/track the positions and/or movements ofrobots 1360 withindata center 1300. In some embodiments,position data 1681 may comprise data associated with an indoor positioning system. In some such embodiments, the indoor positioning system may be a radio-based system, such as a Wi-Fi-based or Bluetooth-based indoor positioning system. In some other embodiments, a non-radio based positioning system, such as a magnetic, optical, or inertial indoor positioning system may be used. In various embodiments, the indoor positioning system may be a hybrid system, such as one that combines two or more of radio-based, magnetic, optical, and inertial indoor positioning techniques. The embodiments are not limited in this context. -
Assistance data 1682 may generally comprise data for use byautomation coordinator 1555 to provide human maintenance personnel with information aiding them in the identification and/or performance of manual maintenance tasks. In various embodiments, a givenrobot 1360 may generateassistance data 1682 in response to identifying a maintenance issue that it cannot correct/resolve in an automated fashion. For instance, after identifying a component that needs to be replaced and determining that it cannot perform the replacement itself, arobot 1360 take a picture of the component and provideassistance data 1682 comprising that picture toautomation coordinator 1555.Automation coordinator 1555 may then cause the picture to be presented on a display for reference by human maintenance personnel in order to aid visual identification of the component to be replaced. The embodiments are not limited to this example. - In some embodiments, the performance and/or reliability of various types of hardware in
data center 1300 may potentially be affected by one or more aspects of the ambient conditions withindata center 1300, such as ambient temperature, pressure, humidity, and air quality. For example, a rate at which corrosion occurs on metallic contacts of components such as DIMMs may depend on the ambient temperature and humidity. In various embodiments, it may thus be desirable to monitor various types of environmental parameters at various locations during ongoing operations ofdata center 1300. - In some embodiments,
robots 1360 may be configured to support environmental condition monitoring by measuring one or more aspects of ambient conditions within the data center during ongoing operations and providing those collected measurements toautomation coordinator 1555 in the form ofenvironmental data 1683. In various embodiments,robots 1360 may collectenvironmental data 1683 using sensors or sensor arrays comprising sensory elements such assensory elements 1464 ofFIG. 14 . Examples of conditions/parameters thatrobots 1360 may measure and report toautomation coordinator 1555 in the form ofenvironmental data 1683 may include—without limitation—temperature, pressure, humidity, and air quality. In some embodiments, in conjunction with providing environmental condition measurements in the form ofenvironmental data 1683,robots 1360 may also providecorresponding position data 1681 that indicates the locations at which the associated measurements were performed. The embodiments are not limited in this context. - In various embodiments, access to dynamic, continuous, and location-specific measurements of such parameters may enable a data center operator to predict failures, dynamically configure systems for best performance, and dynamically move resources for data center optimization. In some embodiments, based on
environmental data 1683 provided byrobots 1360, a data center operator may be able to predict accelerated failure of parts versus standard factory specification and replace parts earlier (or move to lower priority tasks). In various embodiments,environmental data 1683 provided byrobots 1360 may enable a data center operator to initiate service tickets ahead of predicted failure timelines. For example, a cleaning of DIMM contacts may be initiated in order to avoid corrosion build-up to the level where failures start occurring. In some embodiments,environmental data 1683 provided byrobots 1360 may enable a data center operator to continuously and dynamically configure servers based on, for example, altitude, pressure and other parameters that may be important to such things as fan speeds and cooling configurations which in turn may affect performance of a server in a given environment and temperature. In various embodiments,environmental data 1683 provided byrobots 1360 may enable a data center operator to detect and move data center resources automatically from zones/locations of the data center that may be affected by equipment failures or environment variations detected by the robot's sensors. For example, based onenvironmental data 1683 indicating an excessive temperature or air quality deterioration in a particular data center region, servers and/or other resources may be relocated from the affected region to a different region. The embodiments are not limited to these examples. -
FIG. 17 illustrates an example of anoperating environment 1700 that may be representative of the implementation of an automated data center maintenance scheme according to some embodiments. Inoperating environment 1700, arobot 1760 may perform one or more automated maintenance tasks at arack 1702. According to some embodiments,robot 1760 may be representative of arobot 1360 that performs operations associated with automated data center maintenance indata center 1300 ofFIGS. 13, 15, and 16 . In various embodiments,robot 1760 may be implemented using automatedmaintenance device 1400 ofFIG. 14 . In various embodiments, as reflected by the dashed line inFIG. 17 ,robot 1760 may move to a location ofrack 1702 from another location in order to perform one or more automated maintenance tasks atrack 1702. In some embodiments,robot 1760 may perform one or more such tasks based on automation commands 1773 received fromautomation coordinator 1555. In various embodiments,robot 1760 may additionally or alternatively perform one or more such tasks autonomously, without intervention on the part ofautomation coordinator 1555. The embodiments are not limited in this context. - In some embodiments,
robot 1760 may perform one or more automated maintenance tasks involving the installation and/or removal of sleds at racks of a data center such asdata center 1300. In various embodiments, for example,robot 1760 may be operative to install asled 1704 atrack 1702. In some embodiments,robot 1760 may installsled 1704 by inserting it into an available sled space ofrack 1702. In various embodiments, in conjunction with insertingsled 1704,robot 1760 may grip particular physical elements designed to accommodate robotic manipulation/handling. In some embodiments,robot 1760 may use image recognition and/or other location techniques to locate the elements to be gripped, and may insertsled 1704 while gripping those elements. In various embodiments, rather than installingsled 1704,robot 1760 may instead removesled 1704 fromrack 1702 and install areplacement sled 1704B. In some embodiments,robot 1760 may installreplacement sled 1704B in a same sled space as was occupied bysled 1704, once it has removedsled 1704. In various other embodiments,robot 1760 may installreplacement sled 1704B in a different sled space, such that it does not need to removesled 1704 before installingreplacement sled 1704B. The embodiments are not limited in this context. - In some embodiments,
robot 1760 may perform one or more automated maintenance tasks involving upkeep, repair, and/or replacement of particular components on sleds of a data center such asdata center 1300. In various embodiments,robot 1760 may be used to power up acomponent 1706 in accordance with a scheme for periodically powering up components in the data center on a periodic basis in order to improve the reliability of such components. In some embodiments, for example, storage and/or memory components may tend to malfunction when left idle for excessive periods of time, and thus robots may be used to power up such components according to a defined cycle. In such an embodiment,robot 1760 may be operative to power up anappropriate component 1706 by plugging thatcomponent 1706 into a powered interface/slot. The embodiments are not limited to this example. - In various embodiments,
robot 1760 may be operative to manipulate a givencomponent 1706 in accordance with a scheme for automated upkeep of pooled memory resources of a data center. According to such a scheme, robots may be used to assess/troubleshoot apparently malfunctioning memory resources such as DIMMs. In some embodiments, according to such a scheme,robot 1760 may identify acomponent 1706 comprising a memory resource such as a DIMM, remove thatcomponent 1706 from a slot onsled 1704, and clean thecomponent 1706.Robot 1760 may then test thecomponent 1706 to determine whether the issue has been resolved, and may determine to pullsled 1704 for “back-room” servicing if it finds that the problem persists. In various embodiments,robot 1760 may test thecomponent 1706 after reinserting it into its slot onsled 1704. In some other embodiments,robot 1760 may be configured with a testing slot into which it can insert thecomponent 1706 for the purpose of testing. The embodiments are not limited in this context. -
FIG. 18 illustrates an example of anoperating environment 1800 that may be representative of the implementation of an automated data center maintenance scheme according to some embodiments. Inoperating environment 1800, arobot 1860 may perform automated CPU cache servicing for asled 1804 at arack 1802. According to some embodiments,robot 1860 may be representative of arobot 1360 that performs operations associated with automated data center maintenance indata center 1300 ofFIGS. 13, 15, and 16 . In various embodiments,robot 1860 may be implemented using automatedmaintenance device 1400 ofFIG. 14 . In some embodiments, as reflected by the dashed line inFIG. 18 ,robot 1860 may move to a location ofrack 1802 from another location in order to perform the automated CPU cache servicing forsled 1804. In various embodiments,robot 1860 may perform such automated CPU cache servicing based on automation commands 1873 received fromautomation coordinator 1555. In some other embodiments,robot 1860 may perform the automated CPU cache servicing autonomously, without intervention on the part ofautomation coordinator 1555. The embodiments are not limited in this context. - As shown in
FIG. 18 ,sled 1804 may comprisecomponents 1806 that include a CPU 1806A,cache memory 1806B for the CPU 1806A, and aheatsink 1806C for the CPU 1806A. In various embodiments,cache memory 1806B may underlie CPU 1806A, and CPU 1806A may underlieheatsink 1806C. In some embodiments,cache memory 1806B may comprise one or more cache memory modules. In various embodiments, the automated CPU cache servicing thatrobot 1860 performs inoperating environment 1800 may involve replacingcache memory 1806B. For example, in some embodiments,cache memory 1806B may comprise one or more cache memory modules thatrobot 1860 removes fromsled 1804 and replaces with one or more replacement cache modules. In various embodiments, the determination to perform automated CPU cache servicing and thus replacecache memory 1806B may be based on a determination thatcache memory 1806B is not functioning properly or is outdated. For example, in some embodiments,automation coordinator 1555 may determine—based ontelemetry data 1571 ofFIG. 15 —thatcache memory 1806B is not functioning, and may userobot 1860 to replacecache memory 1806B in response to that determination. The embodiments are not limited to this example. - In various embodiments, according to a procedure for automated CPU cache servicing,
robot 1860 may remove CPU 1806A andheat sink 1806C fromsled 1804 in order to gain physical access tocache memory 1806B. In some embodiments,robot 1860 may removesled 1804 fromrack 1802 prior to removing CPU 1806A andheat sink 1806C fromsled 1804. In various other embodiments,robot 1860 may remove CPU 1806A andheat sink 1806C fromsled 1804 whilesled 1804 remains seated within a sled space ofrack 1802. In some embodiments,robot 1860 may first removeheat sink 1806C, and then remove CPU 1806A. In various other embodiments,robot 1860 may remove bothheat sink 1806C and CPU 1806A simultaneously and/or as a collective unit (i.e., without removingheat sink 1806C from CPU 1806A). In some embodiments, after replacingcache memory 1806B,robot 1860 may reinstall CPU 1806A andheat sink 1806C uponsled 1804, which it may then reinsert into a sled space ofrack 1802 in embodiments in which it was previously removed. The embodiments are not limited in this context. -
FIG. 19 illustrates an example of anoperating environment 1900 that may be representative of the implementation of an automated data center maintenance scheme according to some embodiments. Inoperating environment 1900, arobot 1960 may perform automated storage and/or transfer of a compute state of acompute sled 1904 at arack 1902. According to some embodiments,robot 1760 may be representative of arobot 1360 that performs operations associated with automated data center maintenance indata center 1300 ofFIGS. 13, 15, and 16 . In various embodiments,robot 1960 may be implemented using automatedmaintenance device 1400 ofFIG. 14 . In some embodiments, as reflected by the dashed line inFIG. 19 ,robot 1960 may move to a location ofrack 1902 from another location in order to perform the automated storage and/or transfer of the compute state ofcompute sled 1904. In various embodiments,robot 1960 may perform such automated compute state storage and/or transfer based on automation commands 1973 received fromautomation coordinator 1555. In some other embodiments,robot 1960 may perform the automated compute state storage and/or transfer autonomously, without intervention on the part ofautomation coordinator 1555. The embodiments are not limited in this context. - As shown in
FIG. 19 ,compute sled 1904 may comprise components 1906 that include one or more CPUs 1906A and aconnector 1906B. In various embodiments,compute sled 1904 may comprise two CPUs 1906A. In some other embodiments,compute sled 1904 may comprise more than two CPUs 1906A, or only a single CPU 1906A.Connector 1906B may generally comprise a slot, socket, or other connective component designed to accept a memory daughter card for use to store a compute state ofcompute sled 1904. In various embodiments,compute sled 1904 may comprise two CPUs 1906A andconnector 1906B may be located between those two CPUs 1906A. The embodiments are not limited in this context. - In some embodiments, according to a procedure for automated compute state storage and/or transfer,
robot 1960 may insert amemory card 1918 intoconnector 1906B. In various embodiments,robot 1960 may removecompute sled 1904 fromrack 1902 prior to insertingmemory card 1918 intoconnector 1906B. In some other embodiments,robot 1960 may insertmemory card 1918 intoconnector 1906B whilecompute sled 1904 remains seated within a sled space ofrack 1902. In still other embodiments,memory card 1918 may be present and coupled withconnector 1906B prior to initiation of the automated compute state storage and/or transfer procedure. In various embodiments,memory card 1918 may comprise a set of physical memory resources 1906C. In some embodiments, once memory card is inserted into/coupled withconnector 1906B, a compute state 1984 ofcompute sled 1904 may be stored onmemory card 1918 using one or more of the physical memory resources 1906C comprised thereon. In various embodiments, compute state 1984 may include respective states of each CPU 1906A comprised oncompute sled 1904. In some embodiments, compute state 1984 may also include states of one or more memory resources comprised oncompute sled 1904. The embodiments are not limited in this context. - In various embodiments,
robot 1960 may perform an automated compute state storage/transfer procedure in order to preserve the compute state ofcompute sled 1904 during upkeep/repair ofcompute sled 1904. In some such embodiments, once compute state 1984 is stored onmemory card 1918,robot 1960 may removememory card 1918 fromconnector 1906B, perform upkeep/repair ofcompute sled 1904, reinsertmemory card 1918 intoconnector 1906B, and then restorecompute sled 1904 to the compute state 1984 stored onmemory card 1918. For instance, in an example embodiment,robot 1960 may remove a CPU 1906A from a socket oncompute sled 1904 and insert a replacement CPU into that socket, and then causecompute sled 1904 to be restored to the compute state 1984 stored onmemory card 1918. In various other embodiments,robot 1960 may perform an automated compute state storage/transfer procedure in order to replacecompute sled 1904 with another compute sled. In some such embodiments, once compute state 1984 is stored onmemory card 1918,robot 1960 may removememory card 1918 fromconnector 1906B, insertmemory card 1918 into a connector on a replacement compute sled, insert the replacement compute sled into a sled space ofrack 1902 or another rack, and cause the replacement compute sled to realize the compute state 1984 stored onmemory card 1918. The embodiments are not limited in this context. -
FIG. 20 illustrates an example of anoperating environment 2000. According to various embodiments, operatingenvironment 2000 may be representative of the implementation of an automated data center maintenance scheme according to which some aspects of automated maintenance operations involve collaboration/cooperation between robots. Inoperating environment 2000, in conjunction with performing a collaborative maintenance task,robots interdevice coordination information more communication links 2085.Communication links 2085 may comprise wireless communication links, wired communication links, or a combination of both. According to some embodiments,robots robots 1360 that perform operations associated with automated data center maintenance indata center 1300 ofFIGS. 13, 15 , and 16. In various embodiments, one or both ofrobots maintenance device 1400 ofFIG. 14 . - It is worthy of note that the absence of
automation coordinator 1555 inFIG. 20 is not intended to indicate that no aspects of automated maintenance would/could be centrally coordinated inoperating environment 2000. It is both possible and contemplated that in various embodiments, distributed coordination may be implemented for some aspects of automated maintenance in a data center in which other aspects of automated maintenance are centrally coordinated by an entity such asautomation coordinator 1555. For example, inoperating environment 2000, a central automation coordinator may determine the need for performance of the collaborative maintenance task,select robots robots Robots -
FIG. 21 illustrates an example of alogic flow 2100 that may be representative of the implementation of one or more of the disclosed techniques according to some embodiments. For example,logic flow 2100 may be representative of operations thatautomation coordinator 1555 may perform in any ofoperating environments FIGS. 15-20 according to various embodiments. As shown inFIG. 21 , at 2102, a maintenance task that is to be performed in a data center may be identified. For example, inoperating environment 1500 ofFIG. 15 ,automation coordinator 1555 may identify a maintenance task that is to be performed indata center 1300. - At 2104, a determination may be made to initiate automated performance of the maintenance task. For example, having added an identified maintenance task to pending task queue 1578 in
operating environment 1500 ofFIG. 15 ,automation coordinator 1555 may determine at a subsequent point in time that that maintenance task constitutes the highest priority task in the pending task queue 1578 and thus that its performance should be initiated. In another example, rather than adding the identified maintenance task to pending task queue 1578,automation coordinator 1555 may determine to initiate performance of the maintenance task immediately after it is identified. - At 2106, an automated maintenance device to which to assign the maintenance task may be selected. For example, among one or
more robots 1360 comprised in candidate device pool 1580 inoperating environment 1500 ofFIG. 15 ,automation coordinator 1555 may select arobot 1360 to which to assign an identified maintenance task. It is worthy of note that in some embodiments, the identified maintenance task may be handled by multiple robots according to a collaborate maintenance procedure. In such cases, more than one automated maintenance device may be selected at 2106 as an assignee of the maintenance task. For example, inoperating environment 1500 ofFIG. 15 ,automation coordinator 1555 may selectmultiple robots 1360 among those comprised in candidate device pool 1580 that are to work together according to a collaborative maintenance procedure to complete a maintenance task. - At 2108, one or more automation commands may be sent to cause an automated maintenance device selected at 2106 to perform an automated maintenance procedure associated with the maintenance task. For example, in
operating environment 1500 ofFIG. 15 ,automation coordinator 1555 may send one or more automation commands 1573 to cause arobot 1360 to perform an automated maintenance procedure associated with a maintenance task to which thatrobot 1360 has been allocated. In some embodiments in which multiple automated maintenance devices are selected at 2106 as assignees of the same maintenance task, automation commands may be sent to multiple automated maintenance devices at 2108. For example, inoperating environment 1500 ofFIG. 15 ,automation coordinator 1555 may send respective automation command(s) 1573 tomultiple robots 1360 to cause those robots to perform a collaborative maintenance procedure associated with the maintenance task to be completed. The embodiments are not limited to these examples. -
FIG. 22 illustrates an example of alogic flow 2200 that may be representative of the implementation of one or more of the disclosed techniques according to some embodiments. For example,logic flow 2200 may be representative of operations that may be performed in various embodiments by a robot such as arobot 1360 in one or both ofoperating environments FIGS. 15 and 16 and/or any ofrobots environments FIGS. 17-20 . As shown inFIG. 22 , one or more automation commands may be received from an automation coordinator of a data center at 2202. For example, inoperating environment 1500 ofFIG. 15 , arobot 1360 may receive one or more automation commands 1573 fromautomation coordinator 1555. - At 2204, an automated maintenance procedure may be identified based on the one or more automation commands received at 2202. For example, based on one or more automation commands 1573 received from
automation coordinator 1555 inoperating environment 1500 ofFIG. 15 , arobot 1360 may identify an automated maintenance procedure that it is to perform. The automated maintenance procedure identified at 2204 may then be performed at 2206. In various embodiments, the identification of the automated maintenance procedure at 2204 may be based on a maintenance task code that is comprised in at least one of the received automation commands, and is defined to correspond to a particular automated maintenance procedure. For example, based on a maintenance task code comprised in anautomation command 1573 received fromautomation coordinator 1555, arobot 1360 inoperating environment 1500 ofFIG. 15 may identify an automated DIMM testing procedure as an automated maintenance procedure to be performed. In various embodiments, the one or more automation commands received at 2202 may collectively contain one or more maintenance task parameters specifying particular details of the automated maintenance task, and such details may also be identified at 2204. For instance, in the context of the preceding example, therobot 1360 may identify—based on maintenance task parameters comprised in one or more automation commands 1573 received fromautomation coordinator 1555—details such as a physical resource ID of a DIMM to be tested, an identity and location of a sled on which that DIMM resides, and an identity of a particular DIMM slot on that sled that currently houses the DIMM. The embodiments are not limited to these examples. -
FIG. 23 illustrates an example of alogic flow 2300 that may be representative of the implementation of one or more of the disclosed techniques according to some embodiments. For example,logic flow 2300 may be representative of operations that may be performed byrobot 2060A orrobot 2060B inoperating environment 2000 ofFIG. 20 . As shown inFIG. 23 , a collaborative maintenance procedure that is to be performed in a data center may be identified at an automated maintenance device at 2302. For example, inoperating environment 2000 ofFIG. 20 ,robot 2060A may determine that a collaborative CPU replacement procedure is to be performed. In some embodiments, the identification of the collaborative maintenance procedure at 2302 may be based on one or more automation commands received by the automated maintenance device from a centralized automation coordinator such asautomation coordinator 1555. In various other embodiments, the identification of the collaborative maintenance procedure at 2302 may be performed autonomously. For example, inoperating environment 1500 ofFIG. 15 , arobot 1360 may determine based on analysis oftelemetry data 1571 that a particular CPU is malfunctioning, and may then identify a collaborative maintenance procedure to be performed in order to replace that malfunctioning CPU. The embodiments are not limited to this example. - A second automated maintenance device with which to collaborate during performance of the collaborative maintenance procedure may be identified at 2304, and interdevice coordination information may be sent to the second automated maintenance device at 2306 in order to initiate the collaborative maintenance procedure. For example, in
operating environment 2000 ofFIG. 20 ,robot 2060A may determine that it is to collaborate withrobot 2060B in conjunction with a collaborative CPU replacement procedure, and may sendinterdevice coordination information 2086A torobot 2086B in order to initiate that collaborative CPU replacement procedure. In some embodiments, the identification of the second automated maintenance device may be based on information received from a centralized automation coordinator such asautomation coordinator 1555. For example, in some embodiments, a centralized automation coordinator may be responsible for selecting the particular robots that are to work together to perform the collaborative maintenance procedure, and the identity of the second automated maintenance device may be indicated by a parameter comprised in an automation command received from the centralized automation coordinator. In other embodiments, the identification performed at 2304 may correspond to an autonomous selection of the second automated maintenance device. For example, inoperating environment 1500 ofFIG. 15 , afirst robot 1360 may select asecond robot 1360 that is comprised among those in candidate device pool 1580 as the second automated maintenance device that is to participate in the collaborative maintenance procedure. The embodiments are not limited to these examples. -
FIG. 24A illustrates an embodiment of astorage medium 2400.Storage medium 2400 may comprise any computer-readable storage medium or machine-readable storage medium, such as an optical, magnetic or semiconductor storage medium. In some embodiments,storage medium 2400 may comprise a non-transitory storage medium. In various embodiments,storage medium 2400 may comprise an article of manufacture. In some embodiments,storage medium 2400 may store computer-executable instructions, such as computer-executable instructions to implementlogic flow 2100 ofFIG. 21 . Examples of a computer-readable storage medium or machine-readable storage medium may include any tangible media capable of storing electronic data, including volatile memory or non-volatile memory, removable or non-removable memory, erasable or non-erasable memory, writeable or re-writeable memory, and so forth. Examples of computer-executable instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, object-oriented code, visual code, and the like. The embodiments are not limited to these examples. -
FIG. 24B illustrates an embodiment of astorage medium 2450.Storage medium 2450 may comprise any computer-readable storage medium or machine-readable storage medium, such as an optical, magnetic or semiconductor storage medium. In some embodiments,storage medium 2450 may comprise a non-transitory storage medium. In various embodiments,storage medium 2450 may comprise an article of manufacture. According to some embodiments,storage medium 2450 may be representative of a memory/storage element 1467 comprised inautomated maintenance device 1400 ofFIG. 14 . In some embodiments,storage medium 2450 may store computer-executable instructions, such as computer-executable instructions to implement one or both oflogic flow 2200 ofFIG. 22 andlogic flow 2300 ofFIG. 23 . Examples of a computer-readable storage medium or machine-readable storage medium and of computer-executable instructions may include any of the respective examples identified above in reference tostorage medium 2400 ofFIG. 24A . The embodiments are not limited to these examples. -
FIG. 25 illustrates an embodiment of anexemplary computing architecture 2500 that may be suitable for implementing various embodiments as previously described. In various embodiments, thecomputing architecture 2500 may comprise or be implemented as part of an electronic device. In some embodiments, thecomputing architecture 2500 may be representative, for example, of a computing device suitable for use in conjunction with implementation of one or more ofrobots automated maintenance device 1400,automation coordinator 1555, andlogic flows - As used in this application, the terms “system” and “component” and “module” are intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution, examples of which are provided by the
exemplary computing architecture 2500. For example, a component can be, but is not limited to being, a process running on a processor, a processor, a hard disk drive, multiple storage drives (of optical and/or magnetic storage medium), an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a server and the server can be a component. One or more components can reside within a process and/or thread of execution, and a component can be localized on one computer and/or distributed between two or more computers. Further, components may be communicatively coupled to each other by various types of communications media to coordinate operations. The coordination may involve the uni-directional or bi-directional exchange of information. For instance, the components may communicate information in the form of signals communicated over the communications media. The information can be implemented as signals allocated to various signal lines. In such allocations, each message may be a signal. Further embodiments, however, may alternatively employ data messages. Such data messages may be sent across various connections. Exemplary connections include parallel interfaces, serial interfaces, and bus interfaces. - The
computing architecture 2500 includes various common computing elements, such as one or more processors, multi-core processors, co-processors, memory units, chipsets, controllers, peripherals, interfaces, oscillators, timing devices, video cards, audio cards, multimedia input/output (I/O) components, power supplies, and so forth. The embodiments, however, are not limited to implementation by thecomputing architecture 2500. - As shown in
FIG. 25 , according tocomputing architecture 2500, acomputer 2502 comprises aprocessing unit 2504, asystem memory 2506 and asystem bus 2508. In some embodiments,computer 2502 may comprise a server. In some embodiments,computer 2502 may comprise a client. Theprocessing unit 2504 can be any of various commercially available processors, including without limitation an AMD® Athlon®, Duron® and Opteron® processors; ARM® application, embedded and secure processors; IBM® and Motorola® DragonBall® and PowerPC® processors; IBM and Sony® Cell processors; Intel® Celeron®, Core (2) Duo®, Itanium®, Pentium®, Xeon®, and XScale® processors; and similar processors. Dual microprocessors, multi-core processors, and other multi processor architectures may also be employed as theprocessing unit 2504. - The
system bus 2508 provides an interface for system components including, but not limited to, thesystem memory 2506 to theprocessing unit 2504. Thesystem bus 2508 can be any of several types of bus structure that may further interconnect to a memory bus (with or without a memory controller), a peripheral bus, and a local bus using any of a variety of commercially available bus architectures. Interface adapters may connect to thesystem bus 2508 via a slot architecture. Example slot architectures may include without limitation Accelerated Graphics Port (AGP), Card Bus, (Extended) Industry Standard Architecture ((E)ISA), Micro Channel Architecture (MCA), NuBus, Peripheral Component Interconnect (Extended) (PCI(X)), PCI Express, Personal Computer Memory Card International Association (PCMCIA), and the like. - The
system memory 2506 may include various types of computer-readable storage media in the form of one or more higher speed memory units, such as read-only memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory, polymer memory such as ferroelectric polymer memory, ovonic memory, phase change or ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, an array of devices such as Redundant Array of Independent Disks (RAID) drives, solid state memory devices (e.g., USB memory, solid state drives (SSD) and any other type of storage media suitable for storing information. In the illustrated embodiment shown inFIG. 25 , thesystem memory 2506 can includenon-volatile memory 2510 and/orvolatile memory 2512. A basic input/output system (BIOS) can be stored in thenon-volatile memory 2510. - The
computer 2502 may include various types of computer-readable storage media in the form of one or more lower speed memory units, including an internal (or external) hard disk drive (HDD) 2514, a magnetic floppy disk drive (FDD) 2516 to read from or write to a removablemagnetic disk 2518, and anoptical disk drive 2520 to read from or write to a removable optical disk 2522 (e.g., a CD-ROM or DVD). TheHDD 2514,FDD 2516 andoptical disk drive 2520 can be connected to thesystem bus 2508 by aHDD interface 2524, anFDD interface 2526 and anoptical drive interface 2528, respectively. TheHDD interface 2524 for external drive implementations can include at least one or both of Universal Serial Bus (USB) and IEEE 1394 interface technologies. - The drives and associated computer-readable media provide volatile and/or nonvolatile storage of data, data structures, computer-executable instructions, and so forth. For example, a number of program modules can be stored in the drives and
memory units operating system 2530, one ormore application programs 2532,other program modules 2534, andprogram data 2536. - A user can enter commands and information into the
computer 2502 through one or more wire/wireless input devices, for example, akeyboard 2538 and a pointing device, such as amouse 2540. Other input devices may include microphones, infra-red (IR) remote controls, radio-frequency (RF) remote controls, game pads, stylus pens, card readers, dongles, finger print readers, gloves, graphics tablets, joysticks, keyboards, retina readers, touch screens (e.g., capacitive, resistive, etc.), trackballs, trackpads, sensors, styluses, and the like. These and other input devices are often connected to theprocessing unit 2504 through aninput device interface 2542 that is coupled to thesystem bus 2508, but can be connected by other interfaces such as a parallel port, IEEE 1394 serial port, a game port, a USB port, an IR interface, and so forth. - A
monitor 2544 or other type of display device may also be connected to thesystem bus 2508 via an interface, such as avideo adaptor 2546. Themonitor 2544 may be internal or external to thecomputer 2502. In addition to themonitor 2544, a computer typically includes other peripheral output devices, such as speakers, printers, and so forth. - The
computer 2502 may operate in a networked environment using logical connections via wire and/or wireless communications to one or more remote computers, such as aremote computer 2548. Theremote computer 2548 can be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor-based entertainment appliance, a peer device or other common network node, and typically includes many or all of the elements described relative to thecomputer 2502, although, for purposes of brevity, only a memory/storage device 2550 is illustrated. The logical connections depicted include wire/wireless connectivity to a local area network (LAN) 2552 and/or larger networks, for example, a wide area network (WAN) 2554. Such LAN and WAN networking environments are commonplace in offices and companies, and facilitate enterprise-wide computer networks, such as intranets, all of which may connect to a global communications network, for example, the Internet. - When used in a LAN networking environment, the
computer 2502 may be connected to theLAN 2552 through a wire and/or wireless communication network interface oradaptor 2556. Theadaptor 2556 can facilitate wire and/or wireless communications to theLAN 2552, which may also include a wireless access point disposed thereon for communicating with the wireless functionality of theadaptor 2556. - When used in a WAN networking environment, the
computer 2502 can include amodem 2558, or may be connected to a communications server on theWAN 2554, or has other means for establishing communications over theWAN 2554, such as by way of the Internet. Themodem 2558, which can be internal or external and a wire and/or wireless device, connects to thesystem bus 2508 via theinput device interface 2542. In a networked environment, program modules depicted relative to thecomputer 2502, or portions thereof, can be stored in the remote memory/storage device 2550. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers can be used. - The
computer 2502 may be operable to communicate with wire and wireless devices or entities using the IEEE 802 family of standards, such as wireless devices operatively disposed in wireless communication (e.g., IEEE 802.16 over-the-air modulation techniques). This includes at least Wi-Fi (or Wireless Fidelity), WiMax, and Bluetooth™ wireless technologies, among others. Thus, the communication can be a predefined structure as with a conventional network or simply an ad hoc communication between at least two devices. Wi-Fi networks use radio technologies called IEEE 802.11x (a, b, g, n, etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used to connect computers to each other, to the Internet, and to wire networks (which use IEEE 802.3-related media and functions). -
FIG. 26 illustrates a block diagram of anexemplary communications architecture 2600 suitable for implementing various embodiments as previously described. Thecommunications architecture 2600 includes various common communications elements, such as a transmitter, receiver, transceiver, radio, network interface, baseband processor, antenna, amplifiers, filters, power supplies, and so forth. The embodiments, however, are not limited to implementation by thecommunications architecture 2600. - As shown in
FIG. 26 , thecommunications architecture 2600 comprises includes one ormore clients 2602 andservers 2604. Theclients 2602 and theservers 2604 are operatively connected to one or more respectiveclient data stores 2608 andserver data stores 2610 that can be employed to store information local to therespective clients 2602 andservers 2604, such as cookies and/or associated contextual information. Any one ofclients 2602 and/orservers 2604 may implement one or more ofrobots automated maintenance device 1400,automation coordinator 1555, logic flows 2100, 2200, and 2300, andcomputing architecture 2500. - The
clients 2602 and theservers 2604 may communicate information between each other using acommunication framework 2606. Thecommunications framework 2606 may implement any well-known communications techniques and protocols. Thecommunications framework 2606 may be implemented as a packet-switched network (e.g., public networks such as the Internet, private networks such as an enterprise intranet, and so forth), a circuit-switched network (e.g., the public switched telephone network), or a combination of a packet-switched network and a circuit-switched network (with suitable gateways and translators). - The
communications framework 2606 may implement various network interfaces arranged to accept, communicate, and connect to a communications network. A network interface may be regarded as a specialized form of an input output interface. Network interfaces may employ connection protocols including without limitation direct connect, Ethernet (e.g., thick, thin, twisted pair 10/100/1000 Base T, and the like), token ring, wireless network interfaces, cellular network interfaces, IEEE 802.11a-x network interfaces, IEEE 802.16 network interfaces, IEEE 802.20 network interfaces, and the like. Further, multiple network interfaces may be used to engage with various communications network types. For example, multiple network interfaces may be employed to allow for the communication over broadcast, multicast, and unicast networks. Should processing requirements dictate a greater amount speed and capacity, distributed network controller architectures may similarly be employed to pool, load balance, and otherwise increase the communicative bandwidth required byclients 2602 and theservers 2604. A communications network may be any one and the combination of wired and/or wireless networks including without limitation a direct interconnection, a secured custom connection, a private network (e.g., an enterprise intranet), a public network (e.g., the Internet), a Personal Area Network (PAN), a Local Area Network (LAN), a Metropolitan Area Network (MAN), an Operating Missions as Nodes on the Internet (OMNI), a Wide Area Network (WAN), a wireless network, a cellular network, and other communications networks. - As used herein, the term “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group), and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules. In some embodiments, circuitry may include logic, at least partially operable in hardware. Embodiments described herein may be implemented into a system using any suitably configured hardware and/or software.
-
FIG. 27 illustrates an embodiment of acommunication device 2700 that may implement one or more ofrobots automated maintenance device 1400,automation coordinator 1555, logic flows 2100, 2200, and 2300,storage media computing architecture 2500,clients 2602, andservers 2604. In various embodiments,device 2700 may comprise alogic circuit 2728. Thelogic circuit 2728 may include physical circuits to perform operations described for one or more ofrobots automated maintenance device 1400,automation coordinator 1555, logic flows 2100, 2200, and 2300,computing architecture 2500,clients 2602, andservers 2604 for example. As shown inFIG. 27 ,device 2700 may include aradio interface 2710,baseband circuitry 2720, andcomputing platform 2730, although the embodiments are not limited to this configuration. - The
device 2700 may implement some or all of the structure and/or operations for one or more ofrobots automated maintenance device 1400,automation coordinator 1555, logic flows 2100, 2200, and 2300,storage media computing architecture 2500,clients 2602,servers 2604, andlogic circuit 2728 in a single computing entity, such as entirely within a single device. Alternatively, thedevice 2700 may distribute portions of the structure and/or operations for one or more ofrobots automated maintenance device 1400,automation coordinator 1555, logic flows 2100, 2200, and 2300,storage media computing architecture 2500,clients 2602,servers 2604, andlogic circuit 2728 across multiple computing entities using a distributed system architecture, such as a client-server architecture, a 3-tier architecture, an N-tier architecture, a tightly-coupled or clustered architecture, a peer-to-peer architecture, a master-slave architecture, a shared database architecture, and other types of distributed systems. The embodiments are not limited in this context. - In one embodiment,
radio interface 2710 may include a component or combination of components adapted for transmitting and/or receiving single-carrier or multi-carrier modulated signals (e.g., including complementary code keying (CCK), orthogonal frequency division multiplexing (OFDM), and/or single-carrier frequency division multiple access (SC-FDMA) symbols) although the embodiments are not limited to any specific over-the-air interface or modulation scheme.Radio interface 2710 may include, for example, areceiver 2712, afrequency synthesizer 2714, and/or atransmitter 2716.Radio interface 2710 may include bias controls, a crystal oscillator and/or one or more antennas 2718-f. In another embodiment,radio interface 2710 may use external voltage-controlled oscillators (VCOs), surface acoustic wave filters, intermediate frequency (IF) filters and/or RF filters, as desired. Due to the variety of potential RF interface designs an expansive description thereof is omitted. -
Baseband circuitry 2720 may communicate withradio interface 2710 to process receive and/or transmit signals and may include, for example, a mixer for down-converting received RF signals, an analog-to-digital converter 2722 for converting analog signals to digital form, a digital-to-analog converter 2724 for converting digital signals to analog form, and a mixer for up-converting signals for transmission. Further,baseband circuitry 2720 may include a baseband or physical layer (PHY)processing circuit 2726 for PHY link layer processing of respective receive/transmit signals.Baseband circuitry 2720 may include, for example, a medium access control (MAC)processing circuit 2727 for MAC/data link layer processing.Baseband circuitry 2720 may include amemory controller 2732 for communicating withMAC processing circuit 2727 and/or acomputing platform 2730, for example, via one ormore interfaces 2734. - In some embodiments,
PHY processing circuit 2726 may include a frame construction and/or detection module, in combination with additional circuitry such as a buffer memory, to construct and/or deconstruct communication frames. Alternatively or in addition,MAC processing circuit 2727 may share processing for certain of these functions or perform these processes independent ofPHY processing circuit 2726. In some embodiments, MAC and PHY processing may be integrated into a single circuit. - The
computing platform 2730 may provide computing functionality for thedevice 2700. As shown, thecomputing platform 2730 may include aprocessing component 2740. In addition to, or alternatively of, thebaseband circuitry 2720, thedevice 2700 may execute processing operations or logic for one or more ofrobots automated maintenance device 1400,automation coordinator 1555, logic flows 2100, 2200, and 2300,storage media computing architecture 2500,clients 2602,servers 2604, andlogic circuit 2728 using theprocessing component 2740. The processing component 2740 (and/orPHY 2726 and/or MAC 2727) may comprise various hardware elements, software elements, or a combination of both. Examples of hardware elements may include devices, logic devices, components, processors, microprocessors, circuits, processor circuits, circuit elements (e.g., transistors, resistors, capacitors, inductors, and so forth), integrated circuits, application specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal processors (DSP), field programmable gate array (FPGA), memory units, logic gates, registers, semiconductor device, chips, microchips, chip sets, and so forth. Examples of software elements may include software components, programs, applications, computer programs, application programs, system programs, software development programs, machine programs, operating system software, middleware, firmware, software modules, routines, subroutines, functions, methods, procedures, software interfaces, application program interfaces (API), instruction sets, computing code, computer code, code segments, computer code segments, words, values, symbols, or any combination thereof. Determining whether an embodiment is implemented using hardware elements and/or software elements may vary in accordance with any number of factors, such as desired computational rate, power levels, heat tolerances, processing cycle budget, input data rates, output data rates, memory resources, data bus speeds and other design or performance constraints, as desired for a given implementation. - The
computing platform 2730 may further includeother platform components 2750.Other platform components 2750 include common computing elements, such as one or more processors, multi-core processors, co-processors, memory units, chipsets, controllers, peripherals, interfaces, oscillators, timing devices, video cards, audio cards, multimedia input/output (I/O) components (e.g., digital displays), power supplies, and so forth. Examples of memory units may include without limitation various types of computer readable and machine readable storage media in the form of one or more higher speed memory units, such as read-only memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory, polymer memory such as ferroelectric polymer memory, ovonic memory, phase change or ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, an array of devices such as Redundant Array of Independent Disks (RAID) drives, solid state memory devices (e.g., USB memory, solid state drives (SSD) and any other type of storage media suitable for storing information. -
Device 2700 may be, for example, an ultra-mobile device, a mobile device, a fixed device, a machine-to-machine (M2M) device, a personal digital assistant (PDA), a mobile computing device, a smart phone, a telephone, a digital telephone, a cellular telephone, user equipment, eBook readers, a handset, a one-way pager, a two-way pager, a messaging device, a computer, a personal computer (PC), a desktop computer, a laptop computer, a notebook computer, a netbook computer, a handheld computer, a tablet computer, a server, a server array or server farm, a web server, a network server, an Internet server, a work station, a mini-computer, a main frame computer, a supercomputer, a network appliance, a web appliance, a distributed computing system, multiprocessor systems, processor-based systems, consumer electronics, programmable consumer electronics, game devices, display, television, digital television, set top box, wireless access point, base station, node B, subscriber station, mobile subscriber center, radio network controller, router, hub, gateway, bridge, switch, machine, or combination thereof. Accordingly, functions and/or specific configurations ofdevice 2700 described herein, may be included or omitted in various embodiments ofdevice 2700, as suitably desired. - Embodiments of
device 2700 may be implemented using single input single output (SISO) architectures. However, certain implementations may include multiple antennas (e.g., antennas 2718-f) for transmission and/or reception using adaptive antenna techniques for beamforming or spatial division multiple access (SDMA) and/or using MIMO communication techniques. - The components and features of
device 2700 may be implemented using any combination of discrete circuitry, application specific integrated circuits (ASICs), logic gates and/or single chip architectures. Further, the features ofdevice 2700 may be implemented using microcontrollers, programmable logic arrays and/or microprocessors or any combination of the foregoing where suitably appropriate. It is noted that hardware, firmware and/or software elements may be collectively or individually referred to herein as “logic” or “circuit.” - It should be appreciated that the
exemplary device 2700 shown in the block diagram ofFIG. 27 may represent one functionally descriptive example of many potential implementations. Accordingly, division, omission or inclusion of block functions depicted in the accompanying figures does not infer that the hardware components, circuits, software and/or elements for implementing these functions would be necessarily be divided, omitted, or included in embodiments. -
FIG. 28 illustrates an embodiment of a broadbandwireless access system 2800. As shown inFIG. 28 , broadbandwireless access system 2800 may be an internet protocol (IP) type network comprising aninternet 2810 type network or the like that is capable of supporting mobile wireless access and/or fixed wireless access tointernet 2810. In one or more embodiments, broadbandwireless access system 2800 may comprise any type of orthogonal frequency division multiple access (OFDMA)-based or single-carrier frequency division multiple access (SC-FDMA)-based wireless network, such as a system compliant with one or more of the 3GPP LTE Specifications and/or IEEE 802.16 Standards, and the scope of the claimed subject matter is not limited in these respects. - In the exemplary broadband
wireless access system 2800, radio access networks (RANs) 2812 and 2818 are capable of coupling with evolved node Bs (eNBs) 2814 and 2820, respectively, to provide wireless communication between one or more fixed devices 2816 andinternet 2810 and/or between or one or more mobile devices 2822 andInternet 2810. One example of a fixed device 2816 and a mobile device 2822 isdevice 2700 ofFIG. 27 , with the fixed device 2816 comprising a stationary version ofdevice 2700 and the mobile device 2822 comprising a mobile version ofdevice 2700.RANs wireless access system 2800.eNBs device 2700, and may comprise, for example, the PHY and MAC layer equipment in compliance with a 3GPP LTE Specification or an IEEE 802.16 Standard.eNBs Internet 2810 viaRANs - Broadband
wireless access system 2800 may further comprise a visited core network (CN) 2824 and/or ahome CN 2826, each of which may be capable of providing one or more network functions including but not limited to proxy and/or relay type functions, for example authentication, authorization and accounting (AAA) functions, dynamic host configuration protocol (DHCP) functions, or domain name service controls or the like, domain gateways such as public switched telephone network (PSTN) gateways or voice over internet protocol (VoIP) gateways, and/or internet protocol (IP) type server functions, or the like. However, these are merely example of the types of functions that are capable of being provided by visitedCN 2824 and/orhome CN 2826, and the scope of the claimed subject matter is not limited in these respects. VisitedCN 2824 may be referred to as a visited CN in the case where visitedCN 2824 is not part of the regular service provider of fixed device 2816 or mobile device 2822, for example where fixed device 2816 or mobile device 2822 is roaming away from itsrespective home CN 2826, or where broadbandwireless access system 2800 is part of the regular service provider of fixed device 2816 or mobile device 2822 but where broadbandwireless access system 2800 may be in another location or state that is not the main or home location of fixed device 2816 or mobile device 2822. The embodiments are not limited in this context. - Fixed device 2816 may be located anywhere within range of one or both of
eNBs Internet 2810 viaeNBs RANs home CN 2826. It is worthy of note that although fixed device 2816 is generally disposed in a stationary location, it may be moved to different locations as needed. Mobile device 2822 may be utilized at one or more locations if mobile device 2822 is within range of one or both ofeNBs wireless access system 2800 to provide management functions for broadbandwireless access system 2800 and to provide interfaces between functional entities of broadbandwireless access system 2800. Broadbandwireless access system 2800 ofFIG. 28 is merely one type of wireless network showing a certain number of the components of broadbandwireless access system 2800, and the scope of the claimed subject matter is not limited in these respects. -
FIG. 29 illustrates an embodiment of awireless network 2900. As shown inFIG. 29 , wireless network comprises anaccess point 2902 andwireless stations access point 2902 andwireless stations robots automated maintenance device 1400,automation coordinator 1555, logic flows 2100, 2200, and 2300,storage media computing architecture 2500,clients 2602,servers 2604, andcommunication device 2700. - In various embodiments,
wireless network 2900 may comprise a wireless local area network (WLAN), such as a WLAN implementing one or more Institute of Electrical and Electronics Engineers (IEEE) 802.11 standards (sometimes collectively referred to as “Wi-Fi”). In some other embodiments,wireless network 2900 may comprise another type of wireless network, and/or may implement other wireless communications standards. In various embodiments, for example,wireless network 2900 may comprise a WWAN or WPAN rather than a WLAN. The embodiments are not limited to this example. - In some embodiments,
wireless network 2900 may implement one or more broadband wireless communications standards, such as 3G or 4G standards, including their revisions, progeny, and variants. Examples of 3G or 4G wireless standards may include without limitation any of the IEEE 802.16m and 802.16p standards, 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) and LTE-Advanced (LTE-A) standards, and International Mobile Telecommunications Advanced (IMT-ADV) standards, including their revisions, progeny and variants. Other suitable examples may include, without limitation, Global System for Mobile Communications (GSM)/Enhanced Data Rates for GSM Evolution (EDGE) technologies, Universal Mobile Telecommunications System (UMTS)/High Speed Packet Access (HSPA) technologies, Worldwide Interoperability for Microwave Access (WiMAX) or the WiMAX II technologies, Code Division Multiple Access (CDMA) 2000 system technologies (e.g.,CDMA2000 1×RTT, CDMA2000 EV-DO, CDMA EV-DV, and so forth), High Performance Radio Metropolitan Area Network (HIPERMAN) technologies as defined by the European Telecommunications Standards Institute (ETSI) Broadband Radio Access Networks (BRAN), Wireless Broadband (WiBro) technologies, GSM with General Packet Radio Service (GPRS) system (GSM/GPRS) technologies, High Speed Downlink Packet Access (HSDPA) technologies, High Speed Orthogonal Frequency-Division Multiplexing (OFDM) Packet Access (HSOPA) technologies, High-Speed Uplink Packet Access (HSUPA) system technologies, 3GPP Rel. 8-12 of LTE/System Architecture Evolution (SAE), and so forth. The embodiments are not limited in this context. - In various embodiments,
wireless stations access point 2902 in order to obtain connectivity to one or more external data networks. In some embodiments, for example,wireless stations Internet 2912 viaaccess point 2902 andaccess network 2910. In various embodiments,access network 2910 may comprise a private network that provides subscription-based Internet-connectivity, such as an Internet Service Provider (ISP) network. The embodiments are not limited to this example. - In various embodiments, two or more of
wireless stations FIG. 29 ,wireless stations peer communications 2914. In some embodiments, such peer-to-peer communications may be performed according to one or more Wi-Fi Alliance (WFA) standards. For example, in various embodiments, such peer-to-peer communications may be performed according to the WFA Wi-Fi Direct standard, 2010 Release. In various embodiments, such peer-to-peer communications may additionally or alternatively be performed using one or more interfaces, protocols, and/or standards developed by the WFA Wi-Fi Direct Services (WFDS) Task Group. The embodiments are not limited to these examples. - Various embodiments may be implemented using hardware elements, software elements, or a combination of both. Examples of hardware elements may include processors, microprocessors, circuits, circuit elements (e.g., transistors, resistors, capacitors, inductors, and so forth), integrated circuits, application specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal processors (DSP), field programmable gate array (FPGA), logic gates, registers, semiconductor device, chips, microchips, chip sets, and so forth. Examples of software may include software components, programs, applications, computer programs, application programs, system programs, machine programs, operating system software, middleware, firmware, software modules, routines, subroutines, functions, methods, procedures, software interfaces, application program interfaces (API), instruction sets, computing code, computer code, code segments, computer code segments, words, values, symbols, or any combination thereof. Determining whether an embodiment is implemented using hardware elements and/or software elements may vary in accordance with any number of factors, such as desired computational rate, power levels, heat tolerances, processing cycle budget, input data rates, output data rates, memory resources, data bus speeds and other design or performance constraints.
- One or more aspects of at least one embodiment may be implemented by representative instructions stored on a machine-readable medium which represents various logic within the processor, which when read by a machine causes the machine to fabricate logic to perform the techniques described herein. Such representations, known as “IP cores” may be stored on a tangible, machine readable medium and supplied to various customers or manufacturing facilities to load into the fabrication machines that actually make the logic or processor. Some embodiments may be implemented, for example, using a machine-readable medium or article which may store an instruction or a set of instructions that, if executed by a machine, may cause the machine to perform a method and/or operations in accordance with the embodiments. Such a machine may include, for example, any suitable processing platform, computing platform, computing device, processing device, computing system, processing system, computer, processor, or the like, and may be implemented using any suitable combination of hardware and/or software. The machine-readable medium or article may include, for example, any suitable type of memory unit, memory device, memory article, memory medium, storage device, storage article, storage medium and/or storage unit, for example, memory, removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), optical disk, magnetic media, magneto-optical media, removable memory cards or disks, various types of Digital Versatile Disk (DVD), a tape, a cassette, or the like. The instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, encrypted code, and the like, implemented using any suitable high-level, low-level, object-oriented, visual, compiled and/or interpreted programming language.
- The following examples pertain to further embodiments:
- Example 1 is a method for automated data center maintenance, comprising processing, by processing circuitry of an automated maintenance device, an automation command received from an automation coordinator for a data center, identifying an automated maintenance procedure based on the received automation command, and performing the identified automated maintenance procedure.
- Example 2 is the method of Example 1, the identified automated maintenance procedure to comprise a sled replacement procedure.
- Example 3 is the method of Example 2, the sled replacement procedure to comprise replacing a compute sled.
- Example 4 is the method of Example 3, the sled replacement procedure to comprise removing the compute sled from a sled space, removing a memory card from a connector slot of the compute sled, inserting the memory card into a connector slot of a replacement compute sled, and inserting the replacement compute sled into the sled space.
- Example 5 is the method of Example 4, the memory card to store a compute state of the compute sled.
- Example 6 is the method of Example 5, the sled replacement procedure to comprise initiating a restoration of the stored compute state on the replacement compute sled.
- Example 7 is the method of Example 2, the sled replacement procedure to comprise replacing an accelerator sled.
- Example 8 is the method of Example 2, the sled replacement procedure to comprise replacing a memory sled.
- Example 9 is the method of Example 2, the sled replacement procedure to comprise replacing a storage sled.
- Example 10 is the method of Example 1, the identified automated maintenance procedure to comprise a component replacement procedure.
- Example 11 is the method of Example 10, the component replacement procedure to comprise removing a component from a socket of a sled, and inserting a replacement component into the socket.
- Example 12 is the method of Example 11, the component to comprise a processor.
- Example 13 is the method of Example 11, the component to comprise a field-programmable gate array (FPGA).
- Example 14 is the method of Example 11, the component to comprise a memory module.
- Example 15 is the method of Example 11, the component to comprise a non-volatile storage device.
- Example 16 is the method of Example 15, the non-volatile storage device to comprise a solid-state drive (SSD).
- Example 17 is the method of Example 16, the SSD to comprise a three-dimensional (3D) NAND SSD.
- Example 18 is the method of Example 10, the component replacement procedure to comprise a cache memory replacement procedure.
- Example 19 is the method of Example 18, the cache memory replacement procedure to comprise replacing one or more cache memory modules of a processor on a sled.
- Example 20 is the method of Example 19, the cache memory replacement procedure to comprise removing a heat sink from atop the processor, removing the processor from a socket to facilitate access to one or more cache memory modules underlying the processor, removing the one or cache memory modules, inserting one or more replacement cache memory modules, reinserting the processor into the socket, and reinstalling the heat sink.
- Example 21 is the method of Example 1, the identified automated maintenance procedure to comprise a component servicing procedure.
- Example 22 is the method of Example 21, the component servicing procedure to comprise servicing a component on a sled.
- Example 23 is the method of Example 22, the component servicing procedure to comprise removing the sled from a sled space of a rack.
- Example 24 is the method of any of Examples 22 to 23, the component servicing procedure to comprise removing the component from the sled.
- Example 25 is the method of any of Examples 22 to 24, the component servicing procedure to comprise testing the component.
- Example 26 is the method of any of Examples 22 to 25, the component servicing procedure to comprise cleaning the component.
- Example 27 is the method of any of Examples 22 to 26, the component servicing procedure to comprise power-cycling the component.
- Example 28 is the method of any of Examples 22 to 27, the component servicing procedure to comprise capturing one or more images of the component.
- Example 29 is the method of Example 28, comprising sending the one or more captured images to the automation coordinator.
- Example 30 is the method of any of Examples 22 to 29, the component to comprise a processor.
- Example 31 is the method of any of Examples 22 to 29, the component to comprise a field-programmable gate array (FPGA).
- Example 32 is the method of any of Examples 22 to 29, the component to comprise a memory module.
- Example 33 is the method of any of Examples 22 to 29, the component to comprise a non-volatile storage device.
- Example 34 is the method of Example 33, the non-volatile storage device to comprise a solid-state drive (SSD).
- Example 35 is the method of Example 34, the SSD to comprise a three-dimensional (3D) NAND SSD.
- Example 36 is the method of any of Examples 1 to 35, comprising identifying the automated maintenance procedure based on a maintenance task code comprised in the received automation command.
- Example 37 is the method of any of Examples 1 to 36, comprising performing the identified automated maintenance procedure based on one or more maintenance task parameters.
- Example 38 is the method of Example 37, the one or more maintenance task parameters to be comprised in the received automation command.
- Example 39 is the method of Example 37, at least one of the one or more maintenance task parameters to be comprised in a second automation command received from the automation coordinator.
- Example 40 is the method of any of Examples 37 to 39, the one or more maintenance task parameters to include one or more location parameters.
- Example 41 is the method of Example 40, the one or more location parameters to include a rack identifier (ID) associated with a rack within the data center.
- Example 42 is the method of any of Examples 40 to 41, the one or more location parameters to include a sled space identifier (ID) associated with a sled space within the data center.
- Example 43 is the method of any of Examples 40 to 42, the one or more location parameters to include a slot identifier (ID) associated with a connector socket on a sled within the data center.
- Example 44 is the method of any of Examples 37 to 43, the one or more maintenance task parameters to include a sled identifier (ID) associated with a sled within the data center.
- Example 45 is the method of any of Examples 37 to 44, the one or more maintenance task parameters to include a component identifier (ID) associated with a component on a sled within the data center.
- Example 46 is the method of any of Examples 1 to 45, the automation command to be comprised in signals received via a communication interface of the automated maintenance device.
- Example 47 is the method of Example 46, the communication interface to comprise a radio frequency (RF) interface, the signals to comprise RF signals.
- Example 48 is the method of any of Examples 1 to 47, comprising sending a message to the automation coordinator to acknowledge the received automation command.
- Example 49 is the method of any of Examples 1 to 48, comprising sending a message to the automation coordinator to report a result of the automated maintenance procedure.
- Example 50 is the method of any of Examples 1 to 49, comprising sending position data to the automation coordinator, the position data to indicate a position of the automated maintenance device within the data center.
- Example 51 is the method of any of Examples 1 to 50, comprising sending assistance data to the automation coordinator, the assistance data to comprise an image of a component that is to be manually replaced or serviced.
- Example 52 is the method of any of Example 1 to 51, comprising sending environmental data to the automation coordinator, the environmental data to comprise measurements of one or more aspects of ambient conditions within the data center.
- Example 53 is the method of Example 52, comprising one or more sensors to generate the measurements comprised in the environmental data.
- Example 54 is the method of any of Examples 52 to 53, the environmental data to comprise one or more temperature measurements.
- Example 55 is the method of any of Examples 52 to 54, the environmental data to comprise one or more humidity measurements.
- Example 56 is the method of any of Examples 52 to 55, the environmental data to comprise one or more air quality measurements.
- Example 57 is the method of any of Examples 52 to 56, the environmental data to comprise one or more pressure measurements.
- Example 58 is a computer-readable storage medium storing instructions that, when executed, cause an automated maintenance device to perform a method according to any of Examples 1 to 57.
- Example 59 is an automated maintenance device, comprising processing circuitry and computer-readable storage media storing instructions for execution by the processing circuitry to cause the automated maintenance device to perform a method according to any of Examples 1 to 57.
- Example 60 is a method for coordination of automated data center maintenance, comprising identifying, by processing circuitry, a maintenance task to be performed in a data center, determining to initiate automated performance of the maintenance task, selecting an automated maintenance device to which to assign the maintenance task, and sending an automation command to cause the automated maintenance device to perform an automated maintenance procedure associated with the maintenance task.
- Example 61 is the method of Example 60, comprising identifying the maintenance task based on telemetry data associated with one or more physical resources of the data center.
- Example 62 is the method of Example 61, comprising receiving the telemetry data via a telemetry framework of the data center.
- Example 63 is the method of any of Examples 61 to 62, the telemetry data to include one or more telemetry metrics associated with a physical compute resource.
- Example 64 is the method of any of Examples 61 to 63, the telemetry data to include one or more telemetry metrics associated with a physical accelerator resource.
- Example 65 is the method of any of Examples 61 to 64, the telemetry data to include one or more telemetry metrics associated with a physical memory resource.
- Example 66 is the method of any of Examples 61 to 65, the telemetry data to include one or more telemetry metrics associated with a physical storage resource.
- Example 67 is the method of any of Examples 60 to 66, comprising identifying the maintenance task based on environmental data received from one or more automated maintenance devices of the data center.
- Example 68 is the method of Example 67, the environmental data to include one or more temperature measurements.
- Example 69 is the method of any of Examples 67 to 68, the environmental data to include one or more humidity measurements.
- Example 70 is the method of any of Examples 67 to 69, the environmental data to include one or more air quality measurements.
- Example 71 is the method of any of Examples 67 to 70, the environmental data to include one or more pressure measurements.
- Example 72 is the method of any of Examples 60 to 71, comprising adding the maintenance task to a pending task queue following identification of the maintenance task.
- Example 73 is the method of Example 72, comprising determining to initiate automated performance of the maintenance task based on a determination that the maintenance task constitutes a highest priority task among one or more maintenance tasks comprised in the pending task queue.
- Example 74 is the method of any of Examples 60 to 73, comprising selecting the automated maintenance device from among one or more automated maintenance devices in a candidate device pool.
- Example 75 is the method of any of Examples 60 to 74, comprising selecting the automated maintenance device based on one or more capabilities of the automated maintenance device.
- Example 76 is the method of any of Examples 60 to 75, comprising selecting the automated maintenance device based on position data received from the automated maintenance device.
- Example 77 is the method of any of Examples 60 to 76, the automation command to comprise a maintenance task code indicating a task type associated with the maintenance task.
- Example 78 is the method of any of Examples 60 to 77, the automation command to comprise location information associated with the maintenance task.
- Example 79 is the method of Example 78, the location information to include a rack identifier (ID) associated with a rack within the data center.
- Example 80 is the method of any of Examples 78 to 79, the location information to include a sled space identifier (ID) associated with a sled space within the data center.
- Example 81 is the method of any of Examples 78 to 80, the location information to include a slot identifier (ID) associated with a connector socket on a sled within the data center.
- Example 82 is the method of any of Examples 60 to 81, the automation command to comprise a sled identifier (ID) associated with a sled within the data center.
- Example 83 is the method of any of Examples 60 to 82, the automation command to comprise a physical resource identifier (ID) associated with a physical resource within the data center.
- Example 84 is the method of any of Examples 60 to 81, the maintenance task to comprise replacement of a sled.
- Example 85 is the method of Example 83, the sled to comprise a compute sled, an accelerator sled, a memory sled, or a storage sled.
- Example 86 is the method of any of Examples 60 to 81, the maintenance task to comprise replacement of one or more components of a sled.
- Example 87 is the method of any of Examples 60 to 81, the maintenance task to comprise repair of one or more components of a sled.
- Example 88 is the method of any of Examples 60 to 81, the maintenance task to comprise testing of one or more components of a sled.
- Example 89 is the method of any of Examples 60 to 81, the maintenance task to comprise cleaning of one or more components of a sled.
- Example 90 is the method of any of Examples 60 to 81, the maintenance task to comprise power cycling one or more memory modules.
- Example 91 is the method of any of Examples 60 to 81, the maintenance task to comprise power cycling one or more non-volatile storage devices.
- Example 92 is the method of any of Examples 60 to 81, the maintenance task to comprise storing a compute state of a compute sled, replacing the compute sled with a second compute sled, and transferring the stored compute state to the second compute sled.
- Example 93 is the method of any of Examples 60 to 81, the maintenance task to comprise replacing one or more cache memory modules of a processor.
- Example 94 is a computer-readable storage medium storing instructions that, when executed by an automation coordinator for a data center, cause the automation coordinator to perform a method according to any of Examples 60 to 93.
- Example 95 is an apparatus, comprising processing circuitry and computer-readable storage media storing instructions for execution by the processing circuitry to perform a method according to any of Examples 60 to 93.
- Example 96 is a method for automated data center maintenance, comprising identifying, by processing circuitry of an automated maintenance device, a collaborative maintenance procedure to be performed in a data center, identifying a second automated maintenance device with which to collaborate during performance of the collaborative maintenance procedure, and sending interdevice coordination information to the second automated maintenance device to initiate the collaborative maintenance procedure.
- Example 97 is the method of Example 96, comprising identifying the collaborative maintenance procedure based on telemetry data associated with one or more physical resources of the data center.
- Example 98 is the method of Example 97, the telemetry data to include one or more telemetry metrics associated with a physical compute resource.
- Example 99 is the method of any of Examples 97 to 98, the telemetry data to include one or more telemetry metrics associated with a physical accelerator resource.
- Example 100 is the method of any of Examples 97 to 99, the telemetry data to include one or more telemetry metrics associated with a physical memory resource.
- Example 101 is the method of any of Examples 97 to 100, the telemetry data to include one or more telemetry metrics associated with a physical storage resource.
- Example 102 is the method of any of Examples 96 to 101, comprising identifying the collaborative maintenance procedure based on environmental data comprising measurements of one or more aspects of ambient conditions within the data center.
- Example 103 is the method of Example 102, comprising one or more sensors to generate the measurements comprised in the environmental data.
- Example 104 is the method of any of Examples 102 to 103, the environmental data to comprise one or more temperature measurements.
- Example 105 is the method of any of Examples 102 to 104, the environmental data to comprise one or more humidity measurements.
- Example 106 is the method of any of Examples 102 to 105, the environmental data to comprise one or more air quality measurements.
- Example 107 is the method of any of Examples 102 to 106, the environmental data to comprise one or more pressure measurements.
- Example 108 is the method of Example 96, comprising identifying the collaborative maintenance procedure based on an automation command received from an automation coordinator for the data center.
- Example 109 is the method of Example 108, comprising identifying the collaborative maintenance procedure based on a maintenance task code comprised in the received automation command.
- Example 110 is the method of any of Examples 96 to 109, comprising selecting the second automated maintenance device from among a plurality of automated maintenance devices in a candidate device pool for the data center.
- Example 111 is the method of any of Examples 96 to 110, comprising identifying the second automated maintenance device based on a parameter comprised in a command received from an automation coordinator for the data center.
- Example 112 is the method of any of Examples 96 to 111, the collaborative maintenance procedure to comprise replacing a sled.
- Example 113 is the method of Example 112, the sled to comprise a compute sled.
- Example 114 is the method of Example 113, the collaborative maintenance procedure to comprise removing the compute sled from a sled space, removing a memory card from a connector slot of the compute sled, inserting the memory card into a connector slot of a replacement compute sled, and inserting the replacement compute sled into the sled space.
- Example 115 is the method of Example 114, the memory card to store a compute state of the compute sled.
- Example 116 is the method of Example 115, the collaborative maintenance procedure to comprise initiating a restoration of the stored compute state on the replacement compute sled.
- Example 117 is the method of Example 112, the sled to comprise an accelerator sled, a memory sled, or a storage sled.
- Example 118 is the method of any of Examples 96 to 111, the collaborative maintenance procedure to comprise replacing a component on a sled.
- Example 119 is the method of Example 118, the component to comprise a processor.
- Example 120 is the method of Example 118, the component to comprise a field-programmable gate array (FPGA).
- Example 121 is the method of Example 118, the component to comprise a memory module.
- Example 122 is the method of Example 118, the component to comprise a non-volatile storage device.
- Example 123 is the method of Example 122, the non-volatile storage device to comprise a solid-state drive (SSD).
- Example 124 is the method of Example 123, the SSD to comprise a three-dimensional (3D) NAND SSD.
- Example 125 is the method of any of Examples 96 to 111, the collaborative maintenance procedure to comprise replacing one or more cache memory modules of a processor on a sled.
- Example 126 is the method of Example 125, the collaborative maintenance procedure to comprise removing a heat sink from atop the processor, removing the processor from a socket to facilitate access to one or more cache memory modules underlying the processor, removing the one or cache memory modules, inserting one or more replacement cache memory modules, reinserting the processor into the socket, and reinstalling the heat sink.
- Example 127 is the method of any of Examples 96 to 111, the collaborative maintenance procedure to comprise servicing a component on a sled.
- Example 128 is the method of Example 127, the collaborative maintenance procedure to comprise removing the sled from a sled space of a rack.
- Example 129 is the method of any of Examples 127 to 128, the collaborative maintenance procedure to comprise removing the component from the sled.
- Example 130 is the method of any of Examples 127 to 129, the collaborative maintenance procedure to comprise testing the component.
- Example 131 is the method of any of Examples 127 to 130, the collaborative maintenance procedure to comprise cleaning the component.
- Example 132 is the method of any of Examples 127 to 131, the collaborative maintenance procedure to comprise power-cycling the component.
- Example 133 is the method of any of Examples 127 to 132, the collaborative maintenance procedure to comprise capturing one or more images of the component.
- Example 134 is the method of any of Examples 127 to 133, the component to comprise a processor.
- Example 135 is the method of any of Examples 127 to 133, the component to comprise a field-programmable gate array (FPGA).
- Example 136 is the method of any of Examples 127 to 133, the component to comprise a memory module.
- Example 137 is the method of any of Examples 127 to 133, the component to comprise a non-volatile storage device.
- Example 138 is the method of Example 137, the non-volatile storage device to comprise a solid-state drive (SSD).
- Example 139 is the method of Example 138, the SSD to comprise a three-dimensional (3D) NAND SSD.
- Example 140 is the method of any of Examples 96 to 139, the interdevice coordination information to comprise a rack identifier (ID) associated with a rack within the data center.
- Example 141 is the method of any of Examples 96 to 140, the interdevice coordination information to comprise a sled space identifier (ID) associated with a sled space within the data center.
- Example 142 is the method of any of Examples 96 to 141, the interdevice coordination information to comprise a slot identifier (ID) associated with a connector socket on a sled within the data center.
- Example 143 is the method of any of Examples 96 to 142, the interdevice coordination information to comprise a sled identifier (ID) associated with a sled within the data center.
- Example 144 is the method of any of Examples 96 to 143, the interdevice coordination information to comprise a component identifier (ID) associated with a component on a sled within the data center.
- Example 145 is a computer-readable storage medium storing instructions that, when executed, cause an automated maintenance device to perform a method according to any of Examples 96 to 144.
- Example 146 is an automated maintenance device, comprising processing circuitry and computer-readable storage media storing instructions for execution by the processing circuitry to cause the automated maintenance device to perform a method according to any of Examples 96 to 144.
- Example 147 is an automated maintenance device, comprising means for receiving an automation command from an automation coordinator for a data center, means for identifying an automated maintenance procedure based on the received automation command, and means for performing the identified automated maintenance procedure.
- Example 148 is the automated maintenance device of Example 147, the identified automated maintenance procedure to comprise a sled replacement procedure.
- Example 149 is the automated maintenance device of Example 148, the sled replacement procedure to comprise removing a compute sled from a sled space, removing a memory card from a connector slot of the compute sled, inserting the memory card into a connector slot of a replacement compute sled, and inserting the replacement compute sled into the sled space.
- Example 150 is the automated maintenance device of Example 149, the memory card to store a compute state of the compute sled.
- Example 151 is the automated maintenance device of Example 150, the sled replacement procedure to comprise initiating a restoration of the stored compute state on the replacement compute sled.
- Example 152 is the automated maintenance device of Example 148, the sled replacement procedure to comprise replacing an accelerator sled, a memory sled, or a storage sled.
- Example 153 is the automated maintenance device of Example 147, the identified automated maintenance procedure to comprise a component replacement procedure.
- Example 154 is the automated maintenance device of Example 153, the component replacement procedure to comprise removing a component from a socket of a sled, and inserting a replacement component into the socket.
- Example 155 is the automated maintenance device of Example 154, the component to comprise a processor, a field-programmable gate array (FPGA), a memory module, or a solid-state drive (SSD).
- Example 156 is the automated maintenance device of Example 153, the component replacement procedure to comprise a cache memory replacement procedure.
- Example 157 is the automated maintenance device of Example 156, the cache memory replacement procedure to comprise replacing one or more cache memory modules of a processor on a sled.
- Example 158 is the automated maintenance device of Example 157, the cache memory replacement procedure to comprise removing a heat sink from atop the processor, removing the processor from a socket to facilitate access to one or more cache memory modules underlying the processor, removing the one or cache memory modules, inserting one or more replacement cache memory modules, reinserting the processor into the socket, and reinstalling the heat sink.
- Example 159 is the automated maintenance device of Example 147, the identified automated maintenance procedure to comprise a component servicing procedure.
- Example 160 is the automated maintenance device of Example 159, the component servicing procedure to comprise servicing a component on a sled.
- Example 161 is the automated maintenance device of Example 160, the component servicing procedure to comprise removing the sled from a sled space of a rack.
- Example 162 is the automated maintenance device of any of Examples 160 to 161, the component servicing procedure to comprise removing the component from the sled.
- Example 163 is the automated maintenance device of any of Examples 160 to 162, the component servicing procedure to comprise testing the component.
- Example 164 is the automated maintenance device of any of Examples 160 to 163, the component servicing procedure to comprise cleaning the component.
- Example 165 is the automated maintenance device of any of Examples 160 to 164, the component servicing procedure to comprise power-cycling the component.
- Example 166 is the automated maintenance device of any of Examples 160 to 165, the component servicing procedure to comprise capturing one or more images of the component.
- Example 167 is the automated maintenance device of any of Examples 160 to 166, the component to comprise a processor, a field-programmable gate array (FPGA), a memory module, or a solid-state drive (SSD).
- Example 168 is the automated maintenance device of any of Examples 147 to 167, comprising means for identifying the automated maintenance procedure based on a maintenance task code comprised in the received automation command.
- Example 169 is the automated maintenance device of any of Examples 147 to 168, comprising means for performing the identified automated maintenance procedure based on one or more maintenance task parameters.
- Example 170 is the automated maintenance device of Example 169, the one or more maintenance task parameters to be comprised in the received automation command.
- Example 171 is the automated maintenance device of Example 169, at least one of the one or more maintenance task parameters to be comprised in a second automation command received from the automation coordinator.
- Example 172 is the automated maintenance device of any of Examples 169 to 171, the one or more maintenance task parameters to include one or more location parameters.
- Example 173 is the automated maintenance device of Example 172, the one or more location parameters to include a rack identifier (ID) associated with a rack within the data center.
- Example 174 is the automated maintenance device of any of Examples 172 to 173, the one or more location parameters to include a sled space identifier (ID) associated with a sled space within the data center.
- Example 175 is the automated maintenance device of any of Examples 172 to 174, the one or more location parameters to include a slot identifier (ID) associated with a connector socket on a sled within the data center.
- Example 176 is the automated maintenance device of any of Examples 169 to 175, the one or more maintenance task parameters to include a sled identifier (ID) associated with a sled within the data center.
- Example 177 is the automated maintenance device of any of Examples 169 to 176, the one or more maintenance task parameters to include a component identifier (ID) associated with a component on a sled within the data center.
- Example 178 is the automated maintenance device of any of Examples 147 to 177, the automation command to be comprised in signals received via a communication interface of the automated maintenance device.
- Example 179 is the automated maintenance device of Example 178, the communication interface to comprise a radio frequency (RF) interface, the signals to comprise RF signals.
- Example 180 is the automated maintenance device of any of Examples 147 to 179, comprising means for sending a message to the automation coordinator to acknowledge the received automation command.
- Example 181 is the automated maintenance device of any of Examples 147 to 180, comprising means for sending a message to the automation coordinator to report a result of the automated maintenance procedure.
- Example 182 is the automated maintenance device of any of Examples 147 to 181, comprising means for sending position data to the automation coordinator, the position data to indicate a position of the automated maintenance device within the data center.
- Example 183 is the automated maintenance device of any of Examples 147 to 182, comprising means for sending assistance data to the automation coordinator, the assistance data to comprise an image of a component that is to be manually replaced or serviced.
- Example 184 is the automated maintenance device of any of Example 147 to 183, comprising means for sending environmental data to the automation coordinator, the environmental data to comprise measurements of one or more aspects of ambient conditions within the data center.
- Example 185 is the automated maintenance device of Example 184, comprising means for generating the measurements comprised in the environmental data.
- Example 186 is the automated maintenance device of any of Examples 184 to 185, the environmental data to comprise one or more temperature measurements.
- Example 187 is the automated maintenance device of any of Examples 184 to 186, the environmental data to comprise one or more humidity measurements.
- Example 188 is the automated maintenance device of any of Examples 184 to 187, the environmental data to comprise one or more air quality measurements.
- Example 189 is the automated maintenance device of any of Examples 184 to 188, the environmental data to comprise one or more pressure measurements.
- Example 189 is an apparatus for coordination of automated data center maintenance, comprising means for identifying a maintenance task to be performed in a data center, means for determining to initiate automated performance of the maintenance task, means for selecting an automated maintenance device to which to assign the maintenance task, and means for sending an automation command to cause the automated maintenance device to perform an automated maintenance procedure associated with the maintenance task.
- Example 190 is the apparatus of Example 189, comprising means for identifying the maintenance task based on telemetry data associated with one or more physical resources of the data center.
- Example 191 is the apparatus of Example 190, comprising means for receiving the telemetry data via a telemetry framework of the data center.
- Example 192 is the apparatus of any of Examples 190 to 191, the telemetry data to include one or more telemetry metrics associated with a physical compute resource.
- Example 193 is the apparatus of any of Examples 190 to 192, the telemetry data to include one or more telemetry metrics associated with a physical accelerator resource.
- Example 194 is the apparatus of any of Examples 190 to 193, the telemetry data to include one or more telemetry metrics associated with a physical memory resource.
- Example 195 is the apparatus of any of Examples 190 to 194, the telemetry data to include one or more telemetry metrics associated with a physical storage resource.
- Example 196 is the apparatus of any of Examples 189 to 195, comprising means for identifying the maintenance task based on environmental data received from one or more automated maintenance devices of the data center.
- Example 197 is the apparatus of Example 196, the environmental data to include one or more temperature measurements.
- Example 198 is the apparatus of any of Examples 196 to 197, the environmental data to include one or more humidity measurements.
- Example 199 is the apparatus of any of Examples 196 to 198, the environmental data to include one or more air quality measurements.
- Example 200 is the apparatus of any of Examples 196 to 199, the environmental data to include one or more pressure measurements.
- Example 201 is the apparatus of any of Examples 189 to 200, comprising means for adding the maintenance task to a pending task queue following identification of the maintenance task.
- Example 202 is the apparatus of Example 201, comprising means for determining to initiate automated performance of the maintenance task based on a determination that the maintenance task constitutes a highest priority task among one or more maintenance tasks comprised in the pending task queue.
- Example 203 is the apparatus of any of Examples 189 to 202, comprising means for selecting the automated maintenance device from among one or more automated maintenance devices in a candidate device pool.
- Example 204 is the apparatus of any of Examples 189 to 203, comprising means for selecting the automated maintenance device based on one or more capabilities of the automated maintenance device.
- Example 205 is the apparatus of any of Examples 189 to 204, comprising means for selecting the automated maintenance device based on position data received from the automated maintenance device.
- Example 206 is the apparatus of any of Examples 189 to 205, the automation command to comprise a maintenance task code indicating a task type associated with the maintenance task.
- Example 207 is the apparatus of any of Examples 189 to 206, the automation command to comprise location information associated with the maintenance task.
- Example 208 is the apparatus of Example 207, the location information to include a rack identifier (ID) associated with a rack within the data center.
- Example 209 is the apparatus of any of Examples 207 to 208, the location information to include a sled space identifier (ID) associated with a sled space within the data center.
- Example 210 is the apparatus of any of Examples 207 to 209, the location information to include a slot identifier (ID) associated with a connector socket on a sled within the data center.
- Example 211 is the apparatus of any of Examples 189 to 210, the automation command to comprise a sled identifier (ID) associated with a sled within the data center.
- Example 212 is the apparatus of any of Examples 189 to 211, the automation command to comprise a physical resource identifier (ID) associated with a physical resource within the data center.
- Example 213 is the apparatus of any of Examples 189 to 212, the maintenance task to comprise replacement of a sled.
- Example 214 is the apparatus of Example 213, the sled to comprise a compute sled, an accelerator sled, a memory sled, or a storage sled.
- Example 215 is the apparatus of any of Examples 189 to 212, the maintenance task to comprise replacement of one or more components of a sled.
- Example 216 is the apparatus of any of Examples 189 to 212, the maintenance task to comprise repair of one or more components of a sled.
- Example 217 is the apparatus of any of Examples 189 to 212, the maintenance task to comprise testing of one or more components of a sled.
- Example 218 is the apparatus of any of Examples 189 to 212, the maintenance task to comprise cleaning of one or more components of a sled.
- Example 219 is the apparatus of any of Examples 189 to 212, the maintenance task to comprise power cycling one or more memory modules.
- Example 220 is the apparatus of any of Examples 189 to 212, the maintenance task to comprise power cycling one or more non-volatile storage devices.
- Example 221 is the apparatus of any of Examples 189 to 212, the maintenance task to comprise storing a compute state of a compute sled, replacing the compute sled with a second compute sled, and transferring the stored compute state to the second compute sled.
- Example 222 is the apparatus of any of Examples 189 to 212, the maintenance task to comprise replacing one or more cache memory modules of a processor.
- Example 223 is an automated maintenance device, comprising means for identifying a collaborative maintenance procedure to be performed in a data center, means for identifying a second automated maintenance device with which to collaborate during performance of the collaborative maintenance procedure, and means for sending interdevice coordination information to the second automated maintenance device to initiate the collaborative maintenance procedure.
- Example 224 is the automated maintenance device of Example 223, comprising means for identifying the collaborative maintenance procedure based on telemetry data associated with one or more physical resources of the data center.
- Example 225 is the automated maintenance device of Example 224, the telemetry data to include one or more telemetry metrics associated with a physical compute resource.
- Example 226 is the automated maintenance device of any of Examples 224 to 225, the telemetry data to include one or more telemetry metrics associated with a physical accelerator resource.
- Example 227 is the automated maintenance device of any of Examples 224 to 226, the telemetry data to include one or more telemetry metrics associated with a physical memory resource.
- Example 228 is the automated maintenance device of any of Examples 224 to 227, the telemetry data to include one or more telemetry metrics associated with a physical storage resource.
- Example 229 is the automated maintenance device of any of Examples 223 to 228, comprising means for identifying the collaborative maintenance procedure based on environmental data comprising measurements of one or more aspects of ambient conditions within the data center.
- Example 230 is the automated maintenance device of Example 229, comprising one or more sensors to generate the measurements comprised in the environmental data.
- Example 231 is the automated maintenance device of any of Examples 229 to 230, the environmental data to comprise one or more temperature measurements.
- Example 232 is the automated maintenance device of any of Examples 229 to 231, the environmental data to comprise one or more humidity measurements.
- Example 233 is the automated maintenance device of any of Examples 229 to 232, the environmental data to comprise one or more air quality measurements.
- Example 234 is the automated maintenance device of any of Examples 229 to 233, the environmental data to comprise one or more pressure measurements.
- Example 235 is the automated maintenance device of Example 223, comprising means for identifying the collaborative maintenance procedure based on an automation command received from an automation coordinator for the data center.
- Example 236 is the automated maintenance device of Example 235, comprising means for identifying the collaborative maintenance procedure based on a maintenance task code comprised in the received automation command.
- Example 237 is the automated maintenance device of any of Examples 223 to 236, comprising means for selecting the second automated maintenance device from among a plurality of automated maintenance devices in a candidate device pool for the data center.
- Example 238 is the automated maintenance device of any of Examples 223 to 237, comprising means for identifying the second automated maintenance device based on a parameter comprised in a command received from an automation coordinator for the data center.
- Example 239 is the automated maintenance device of any of Examples 223 to 238, the collaborative maintenance procedure to comprise replacing a sled.
- Example 240 is the automated maintenance device of Example 239, the sled to comprise a compute sled.
- Example 241 is the automated maintenance device of Example 240, the collaborative maintenance procedure to comprise removing the compute sled from a sled space, removing a memory card from a connector slot of the compute sled, inserting the memory card into a connector slot of a replacement compute sled, and inserting the replacement compute sled into the sled space.
- Example 242 is the automated maintenance device of Example 241, the memory card to store a compute state of the compute sled.
- Example 243 is the automated maintenance device of Example 242, the collaborative maintenance procedure to comprise initiating a restoration of the stored compute state on the replacement compute sled.
- Example 244 is the automated maintenance device of Example 239, the sled to comprise an accelerator sled, a memory sled, or a storage sled.
- Example 245 is the automated maintenance device of any of Examples 223 to 238, the collaborative maintenance procedure to comprise replacing a component on a sled.
- Example 246 is the automated maintenance device of Example 245, the component to comprise a processor, a field-programmable gate array (FPGA), a memory module, or a solid-state drive (SSD).
- Example 247 is the automated maintenance device of any of Examples 223 to 238, the collaborative maintenance procedure to comprise replacing one or more cache memory modules of a processor on a sled.
- Example 248 is the automated maintenance device of Example 247, the collaborative maintenance procedure to comprise removing a heat sink from atop the processor, removing the processor from a socket to facilitate access to one or more cache memory modules underlying the processor, removing the one or cache memory modules, inserting one or more replacement cache memory modules, reinserting the processor into the socket, and reinstalling the heat sink.
- Example 249 is the automated maintenance device of any of Examples 223 to 238, the collaborative maintenance procedure to comprise servicing a component on a sled.
- Example 250 is the automated maintenance device of Example 249, the collaborative maintenance procedure to comprise removing the sled from a sled space of a rack.
- Example 251 is the automated maintenance device of any of Examples 249 to 250, the collaborative maintenance procedure to comprise removing the component from the sled.
- Example 252 is the automated maintenance device of any of Examples 249 to 251, the collaborative maintenance procedure to comprise testing the component.
- Example 253 is the automated maintenance device of any of Examples 249 to 252, the collaborative maintenance procedure to comprise cleaning the component.
- Example 254 is the automated maintenance device of any of Examples 249 to 253, the collaborative maintenance procedure to comprise power-cycling the component.
- Example 255 is the automated maintenance device of any of Examples 249 to 254, the collaborative maintenance procedure to comprise capturing one or more images of the component.
- Example 256 is the automated maintenance device of any of Examples 249 to 255, the component to comprise a processor, a field-programmable gate array (FPGA), a memory module, or a solid-state drive (SSD).
- Example 257 is the automated maintenance device of any of Examples 223 to 256, the interdevice coordination information to comprise a rack identifier (ID) associated with a rack within the data center.
- Example 258 is the automated maintenance device of any of Examples 223 to 257, the interdevice coordination information to comprise a sled space identifier (ID) associated with a sled space within the data center.
- Example 259 is the automated maintenance device of any of Examples 223 to 258, the interdevice coordination information to comprise a slot identifier (ID) associated with a connector socket on a sled within the data center.
- Example 260 is the automated maintenance device of any of Examples 223 to 259, the interdevice coordination information to comprise a sled identifier (ID) associated with a sled within the data center.
- Example 261 is the automated maintenance device of any of Examples 223 to 260, the interdevice coordination information to comprise a component identifier (ID) associated with a component on a sled within the data center.
- Numerous specific details have been set forth herein to provide a thorough understanding of the embodiments. It will be understood by those skilled in the art, however, that the embodiments may be practiced without these specific details. In other instances, well-known operations, components, and circuits have not been described in detail so as not to obscure the embodiments. It can be appreciated that the specific structural and functional details disclosed herein may be representative and do not necessarily limit the scope of the embodiments.
- Some embodiments may be described using the expression “coupled” and “connected” along with their derivatives. These terms are not intended as synonyms for each other. For example, some embodiments may be described using the terms “connected” and/or “coupled” to indicate that two or more elements are in direct physical or electrical contact with each other. The term “coupled,” however, may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
- Unless specifically stated otherwise, it may be appreciated that terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, that manipulates and/or transforms data represented as physical quantities (e.g., electronic) within the computing system's registers and/or memories into other data similarly represented as physical quantities within the computing system's memories, registers or other such information storage, transmission or display devices. The embodiments are not limited in this context.
- It should be noted that the methods described herein do not have to be executed in the order described, or in any particular order. Moreover, various activities described with respect to the methods identified herein can be executed in serial or parallel fashion.
- Although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combinations of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description. Thus, the scope of various embodiments includes any other applications in which the above compositions, structures, and methods are used.
- It is emphasized that the Abstract of the Disclosure is provided to comply with 37 C.F.R. §1.72(b), requiring an abstract that will allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate preferred embodiment. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein,” respectively. Moreover, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.
- Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Claims (25)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/654,615 US20180025299A1 (en) | 2016-07-22 | 2017-07-19 | Automated data center maintenance |
CN201780038802.3A CN109416675A (en) | 2016-07-22 | 2017-07-20 | Automated data central service |
DE112017003713.1T DE112017003713T5 (en) | 2016-07-22 | 2017-07-20 | AUTOMATED MAINTENANCE OF A DATA CENTER |
TW106124373A TWI832805B (en) | 2016-07-22 | 2017-07-20 | Automated data center maintenance |
PCT/US2017/043182 WO2018017905A1 (en) | 2016-07-22 | 2017-07-20 | Automated data center maintenance |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662365969P | 2016-07-22 | 2016-07-22 | |
US201662376859P | 2016-08-18 | 2016-08-18 | |
US201662427268P | 2016-11-29 | 2016-11-29 | |
US15/654,615 US20180025299A1 (en) | 2016-07-22 | 2017-07-19 | Automated data center maintenance |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180025299A1 true US20180025299A1 (en) | 2018-01-25 |
Family
ID=60804962
Family Applications (79)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/394,338 Active US10334334B2 (en) | 2016-07-22 | 2016-12-29 | Storage sled and techniques for a data center |
US15/394,321 Active US10091904B2 (en) | 2016-07-22 | 2016-12-29 | Storage sled for data center |
US15/394,392 Active US10034407B2 (en) | 2016-07-22 | 2016-12-29 | Storage sled for a data center |
US15/394,281 Active 2037-01-01 US10390114B2 (en) | 2016-07-22 | 2016-12-29 | Memory sharing for physical accelerator resources in a data center |
US15/395,084 Abandoned US20180027057A1 (en) | 2016-07-22 | 2016-12-30 | Technologies for Performing Orchestration With Online Analytics of Telemetry Data |
US15/395,179 Active 2038-03-28 US10567855B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for allocating resources within a self-managed node |
US15/395,192 Abandoned US20180027058A1 (en) | 2016-07-22 | 2016-12-30 | Technologies for Efficiently Identifying Managed Nodes Available for Workload Assignments |
US15/395,572 Abandoned US20180027059A1 (en) | 2016-07-22 | 2016-12-30 | Technologies for distributing data to improve data throughput rates |
US15/396,173 Abandoned US20180027063A1 (en) | 2016-07-22 | 2016-12-30 | Techniques to determine and process metric data for physical resources |
US15/395,995 Active 2039-05-12 US11233712B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for data center multi-zone cabling |
US15/395,443 Active 2039-01-24 US10823920B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for assigning workloads to balance multiple resource allocation objectives |
US15/395,566 Abandoned US20180026910A1 (en) | 2016-07-22 | 2016-12-30 | Technologies for Managing Resource Allocation With a Hierarchical Model |
US15/395,273 Expired - Fee Related US10461774B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for assigning workloads based on resource utilization phases |
US15/396,063 Abandoned US20180024756A1 (en) | 2016-07-22 | 2016-12-30 | Technologies for enhanced memory wear leveling |
US15/395,550 Active 2037-07-30 US10411729B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for allocating ephemeral data storage among managed nodes |
US15/395,174 Active 2037-05-14 US10687127B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for managing the efficiency of workload execution |
US15/395,765 Abandoned US20180024764A1 (en) | 2016-07-22 | 2016-12-30 | Technologies for accelerating data writes |
US15/396,187 Active US10349152B2 (en) | 2016-07-22 | 2016-12-30 | Robotically serviceable computing rack and sleds |
US15/396,035 Active US10070207B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for optical communication in rack clusters |
US15/396,017 Abandoned US20180024752A1 (en) | 2016-07-22 | 2016-12-30 | Technologies for low-latency compression |
US15/395,988 Abandoned US20180024864A1 (en) | 2016-07-22 | 2016-12-30 | Memory Module for a Data Center Compute Sled |
US15/396,151 Active 2038-10-09 US10757487B2 (en) | 2016-07-22 | 2016-12-30 | Accelerator resource allocation and pooling |
US15/396,039 Abandoned US20180024838A1 (en) | 2016-07-22 | 2016-12-30 | Techniques to detect non-enumerable devices via a firmware interface table |
US15/395,482 Active 2038-09-11 US10735835B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for predictively managing heat generation in a datacenter |
US15/395,692 Abandoned US20180024775A1 (en) | 2016-07-22 | 2016-12-30 | Technologies for storage block virtualization for non-volatile memory over fabrics |
US15/395,183 Active 2038-12-04 US10771870B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for dynamic remote resource allocation |
US15/396,284 Active 2037-03-18 US10313769B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for performing partially synchronized writes |
US15/395,494 Active 2037-02-07 US10616668B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for managing resource allocation with phase residency data |
US15/395,702 Active US9929747B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for high-performance single-stream LZ77 compression |
US15/396,028 Active 2037-10-14 US10542333B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for a low-latency interface to data storage |
US15/396,014 Abandoned US20180026835A1 (en) | 2016-07-22 | 2016-12-30 | Techniques to control system updates and configuration changes via the cloud |
US15/395,679 Abandoned US20180024740A1 (en) | 2016-07-22 | 2016-12-30 | Technologies for variable-extent storage over network fabrics |
US15/395,203 Active US10045098B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for switching network traffic in a data center |
US15/396,041 Expired - Fee Related US10788630B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for blind mating for sled-rack connections |
US15/396,338 Active 2037-01-31 US10368148B2 (en) | 2016-07-22 | 2016-12-30 | Configurable computing resource physical location determination |
US15/396,473 Active 2039-05-31 US11184261B2 (en) | 2016-07-22 | 2016-12-31 | Techniques to configure physical compute resources for workloads via circuit switching |
US15/396,653 Active US10356495B2 (en) | 2016-07-22 | 2016-12-31 | Technologies for cooling rack mounted sleds |
US15/396,501 Active 2038-12-27 US10884195B2 (en) | 2016-07-22 | 2016-12-31 | Techniques to support multiple interconnect protocols for a common set of interconnect connectors |
US15/396,646 Active US10085358B2 (en) | 2016-07-22 | 2016-12-31 | Technologies for sled architecture |
US15/396,652 Expired - Fee Related US10348327B2 (en) | 2016-07-22 | 2016-12-31 | Technologies for providing power to a rack |
US16/311,231 Active 2037-02-26 US10944656B2 (en) | 2016-07-22 | 2016-12-31 | Technologies for adaptive processing of multiple buffers |
US15/396,647 Active US9936613B2 (en) | 2016-07-22 | 2016-12-31 | Technologies for rack architecture |
US15/407,330 Abandoned US20180027060A1 (en) | 2016-07-22 | 2017-01-17 | Technologies for determining and storing workload characteristics |
US15/407,329 Abandoned US20180024861A1 (en) | 2016-07-22 | 2017-01-17 | Technologies for managing allocation of accelerator resources |
US15/423,467 Expired - Fee Related US10674238B2 (en) | 2016-07-22 | 2017-02-02 | Thermally efficient compute resource apparatuses and methods |
US15/425,916 Active 2037-03-05 US10397670B2 (en) | 2016-07-22 | 2017-02-06 | Techniques to process packets in a dual-mode switching environment |
US15/473,748 Active US9954552B2 (en) | 2016-07-22 | 2017-03-30 | Technologies for performing low-latency decompression with tree caching |
US15/473,778 Active US9859918B1 (en) | 2016-07-22 | 2017-03-30 | Technologies for performing speculative decompression |
US15/476,896 Abandoned US20180024958A1 (en) | 2016-07-22 | 2017-03-31 | Techniques to provide a multi-level memory architecture via interconnects |
US15/476,910 Active 2037-07-08 US10917321B2 (en) | 2016-07-22 | 2017-03-31 | Disaggregated physical memory resources in a data center |
US15/476,891 Abandoned US20180024957A1 (en) | 2016-07-22 | 2017-03-31 | Techniques to enable disaggregation of physical memory resources in a compute system |
US15/476,915 Active US10616669B2 (en) | 2016-07-22 | 2017-03-31 | Dynamic memory for compute resources in a data center |
US15/476,939 Abandoned US20180024932A1 (en) | 2016-07-22 | 2017-03-31 | Techniques for memory access prefetching using workload data |
US15/639,037 Active 2038-04-11 US10448126B2 (en) | 2016-07-22 | 2017-06-30 | Technologies for dynamic allocation of tiers of disaggregated memory resources |
US15/639,289 Active US10033404B2 (en) | 2016-07-22 | 2017-06-30 | Technologies for efficiently compressing data with run detection |
US15/638,855 Active 2038-12-03 US10986005B2 (en) | 2016-07-22 | 2017-06-30 | Technologies for dynamically managing resources in disaggregated accelerators |
US15/639,602 Active US9973207B2 (en) | 2016-07-22 | 2017-06-30 | Technologies for heuristic huffman code generation |
US15/638,842 Active US10116327B2 (en) | 2016-07-22 | 2017-06-30 | Technologies for efficiently compressing data with multiple hash tables |
US15/654,615 Abandoned US20180025299A1 (en) | 2016-07-22 | 2017-07-19 | Automated data center maintenance |
US15/656,798 Active 2037-12-25 US10489156B2 (en) | 2016-07-22 | 2017-07-21 | Techniques to verify and authenticate resources in a data center computer environment |
US15/656,830 Active 2038-08-14 US10931550B2 (en) | 2016-07-22 | 2017-07-21 | Out-of-band management techniques for networking fabrics |
US15/854,261 Active US10263637B2 (en) | 2016-07-22 | 2017-12-26 | Technologies for performing speculative decompression |
US16/055,602 Active US10802229B2 (en) | 2016-07-22 | 2018-08-06 | Technologies for switching network traffic in a data center |
US16/120,419 Active US10474460B2 (en) | 2016-07-22 | 2018-09-03 | Technologies for optical communication in rack clusters |
US16/506,457 Active 2037-07-26 US11349734B2 (en) | 2016-07-22 | 2019-07-09 | Robotically serviceable computing rack and sleds |
US16/513,371 Active US10785549B2 (en) | 2016-07-22 | 2019-07-16 | Technologies for switching network traffic in a data center |
US16/513,345 Active US10791384B2 (en) | 2016-07-22 | 2019-07-16 | Technologies for switching network traffic in a data center |
US16/656,009 Active 2039-12-06 US11838113B2 (en) | 2016-07-22 | 2019-10-17 | Techniques to verify and authenticate resources in a data center computer environment |
US17/015,479 Active US11128553B2 (en) | 2016-07-22 | 2020-09-09 | Technologies for switching network traffic in a data center |
US17/086,206 Active 2037-01-19 US11695668B2 (en) | 2016-07-22 | 2020-10-30 | Technologies for assigning workloads to balance multiple resource allocation objectives |
US16/951,723 Active US11245604B2 (en) | 2016-07-22 | 2020-11-18 | Techniques to support multiple interconnect protocols for a common set of interconnect connectors |
US17/235,135 Active US11336547B2 (en) | 2016-07-22 | 2021-04-20 | Technologies for dynamically managing resources in disaggregated accelerators |
US17/404,749 Active US11595277B2 (en) | 2016-07-22 | 2021-08-17 | Technologies for switching network traffic in a data center |
US17/531,494 Active US11689436B2 (en) | 2016-07-22 | 2021-11-19 | Techniques to configure physical compute resources for workloads via circuit switching |
US17/733,086 Active 2037-08-19 US11855766B2 (en) | 2016-07-22 | 2022-04-29 | Technologies for dynamically managing resources in disaggregated accelerators |
US18/076,104 Active US12040889B2 (en) | 2016-07-22 | 2022-12-06 | Technologies for switching network traffic in a data center |
US18/116,957 Active US12081323B2 (en) | 2016-07-22 | 2023-03-03 | Techniques to control system updates and configuration changes via the cloud |
US18/388,461 Pending US20240113954A1 (en) | 2016-07-22 | 2023-11-09 | Technologies for dynamically managing resources in disaggregated accelerators |
US18/778,493 Pending US20240372792A1 (en) | 2016-07-22 | 2024-07-19 | Techniques to control system updates and configuration changes via the cloud |
Family Applications Before (58)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/394,338 Active US10334334B2 (en) | 2016-07-22 | 2016-12-29 | Storage sled and techniques for a data center |
US15/394,321 Active US10091904B2 (en) | 2016-07-22 | 2016-12-29 | Storage sled for data center |
US15/394,392 Active US10034407B2 (en) | 2016-07-22 | 2016-12-29 | Storage sled for a data center |
US15/394,281 Active 2037-01-01 US10390114B2 (en) | 2016-07-22 | 2016-12-29 | Memory sharing for physical accelerator resources in a data center |
US15/395,084 Abandoned US20180027057A1 (en) | 2016-07-22 | 2016-12-30 | Technologies for Performing Orchestration With Online Analytics of Telemetry Data |
US15/395,179 Active 2038-03-28 US10567855B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for allocating resources within a self-managed node |
US15/395,192 Abandoned US20180027058A1 (en) | 2016-07-22 | 2016-12-30 | Technologies for Efficiently Identifying Managed Nodes Available for Workload Assignments |
US15/395,572 Abandoned US20180027059A1 (en) | 2016-07-22 | 2016-12-30 | Technologies for distributing data to improve data throughput rates |
US15/396,173 Abandoned US20180027063A1 (en) | 2016-07-22 | 2016-12-30 | Techniques to determine and process metric data for physical resources |
US15/395,995 Active 2039-05-12 US11233712B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for data center multi-zone cabling |
US15/395,443 Active 2039-01-24 US10823920B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for assigning workloads to balance multiple resource allocation objectives |
US15/395,566 Abandoned US20180026910A1 (en) | 2016-07-22 | 2016-12-30 | Technologies for Managing Resource Allocation With a Hierarchical Model |
US15/395,273 Expired - Fee Related US10461774B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for assigning workloads based on resource utilization phases |
US15/396,063 Abandoned US20180024756A1 (en) | 2016-07-22 | 2016-12-30 | Technologies for enhanced memory wear leveling |
US15/395,550 Active 2037-07-30 US10411729B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for allocating ephemeral data storage among managed nodes |
US15/395,174 Active 2037-05-14 US10687127B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for managing the efficiency of workload execution |
US15/395,765 Abandoned US20180024764A1 (en) | 2016-07-22 | 2016-12-30 | Technologies for accelerating data writes |
US15/396,187 Active US10349152B2 (en) | 2016-07-22 | 2016-12-30 | Robotically serviceable computing rack and sleds |
US15/396,035 Active US10070207B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for optical communication in rack clusters |
US15/396,017 Abandoned US20180024752A1 (en) | 2016-07-22 | 2016-12-30 | Technologies for low-latency compression |
US15/395,988 Abandoned US20180024864A1 (en) | 2016-07-22 | 2016-12-30 | Memory Module for a Data Center Compute Sled |
US15/396,151 Active 2038-10-09 US10757487B2 (en) | 2016-07-22 | 2016-12-30 | Accelerator resource allocation and pooling |
US15/396,039 Abandoned US20180024838A1 (en) | 2016-07-22 | 2016-12-30 | Techniques to detect non-enumerable devices via a firmware interface table |
US15/395,482 Active 2038-09-11 US10735835B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for predictively managing heat generation in a datacenter |
US15/395,692 Abandoned US20180024775A1 (en) | 2016-07-22 | 2016-12-30 | Technologies for storage block virtualization for non-volatile memory over fabrics |
US15/395,183 Active 2038-12-04 US10771870B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for dynamic remote resource allocation |
US15/396,284 Active 2037-03-18 US10313769B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for performing partially synchronized writes |
US15/395,494 Active 2037-02-07 US10616668B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for managing resource allocation with phase residency data |
US15/395,702 Active US9929747B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for high-performance single-stream LZ77 compression |
US15/396,028 Active 2037-10-14 US10542333B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for a low-latency interface to data storage |
US15/396,014 Abandoned US20180026835A1 (en) | 2016-07-22 | 2016-12-30 | Techniques to control system updates and configuration changes via the cloud |
US15/395,679 Abandoned US20180024740A1 (en) | 2016-07-22 | 2016-12-30 | Technologies for variable-extent storage over network fabrics |
US15/395,203 Active US10045098B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for switching network traffic in a data center |
US15/396,041 Expired - Fee Related US10788630B2 (en) | 2016-07-22 | 2016-12-30 | Technologies for blind mating for sled-rack connections |
US15/396,338 Active 2037-01-31 US10368148B2 (en) | 2016-07-22 | 2016-12-30 | Configurable computing resource physical location determination |
US15/396,473 Active 2039-05-31 US11184261B2 (en) | 2016-07-22 | 2016-12-31 | Techniques to configure physical compute resources for workloads via circuit switching |
US15/396,653 Active US10356495B2 (en) | 2016-07-22 | 2016-12-31 | Technologies for cooling rack mounted sleds |
US15/396,501 Active 2038-12-27 US10884195B2 (en) | 2016-07-22 | 2016-12-31 | Techniques to support multiple interconnect protocols for a common set of interconnect connectors |
US15/396,646 Active US10085358B2 (en) | 2016-07-22 | 2016-12-31 | Technologies for sled architecture |
US15/396,652 Expired - Fee Related US10348327B2 (en) | 2016-07-22 | 2016-12-31 | Technologies for providing power to a rack |
US16/311,231 Active 2037-02-26 US10944656B2 (en) | 2016-07-22 | 2016-12-31 | Technologies for adaptive processing of multiple buffers |
US15/396,647 Active US9936613B2 (en) | 2016-07-22 | 2016-12-31 | Technologies for rack architecture |
US15/407,330 Abandoned US20180027060A1 (en) | 2016-07-22 | 2017-01-17 | Technologies for determining and storing workload characteristics |
US15/407,329 Abandoned US20180024861A1 (en) | 2016-07-22 | 2017-01-17 | Technologies for managing allocation of accelerator resources |
US15/423,467 Expired - Fee Related US10674238B2 (en) | 2016-07-22 | 2017-02-02 | Thermally efficient compute resource apparatuses and methods |
US15/425,916 Active 2037-03-05 US10397670B2 (en) | 2016-07-22 | 2017-02-06 | Techniques to process packets in a dual-mode switching environment |
US15/473,748 Active US9954552B2 (en) | 2016-07-22 | 2017-03-30 | Technologies for performing low-latency decompression with tree caching |
US15/473,778 Active US9859918B1 (en) | 2016-07-22 | 2017-03-30 | Technologies for performing speculative decompression |
US15/476,896 Abandoned US20180024958A1 (en) | 2016-07-22 | 2017-03-31 | Techniques to provide a multi-level memory architecture via interconnects |
US15/476,910 Active 2037-07-08 US10917321B2 (en) | 2016-07-22 | 2017-03-31 | Disaggregated physical memory resources in a data center |
US15/476,891 Abandoned US20180024957A1 (en) | 2016-07-22 | 2017-03-31 | Techniques to enable disaggregation of physical memory resources in a compute system |
US15/476,915 Active US10616669B2 (en) | 2016-07-22 | 2017-03-31 | Dynamic memory for compute resources in a data center |
US15/476,939 Abandoned US20180024932A1 (en) | 2016-07-22 | 2017-03-31 | Techniques for memory access prefetching using workload data |
US15/639,037 Active 2038-04-11 US10448126B2 (en) | 2016-07-22 | 2017-06-30 | Technologies for dynamic allocation of tiers of disaggregated memory resources |
US15/639,289 Active US10033404B2 (en) | 2016-07-22 | 2017-06-30 | Technologies for efficiently compressing data with run detection |
US15/638,855 Active 2038-12-03 US10986005B2 (en) | 2016-07-22 | 2017-06-30 | Technologies for dynamically managing resources in disaggregated accelerators |
US15/639,602 Active US9973207B2 (en) | 2016-07-22 | 2017-06-30 | Technologies for heuristic huffman code generation |
US15/638,842 Active US10116327B2 (en) | 2016-07-22 | 2017-06-30 | Technologies for efficiently compressing data with multiple hash tables |
Family Applications After (20)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/656,798 Active 2037-12-25 US10489156B2 (en) | 2016-07-22 | 2017-07-21 | Techniques to verify and authenticate resources in a data center computer environment |
US15/656,830 Active 2038-08-14 US10931550B2 (en) | 2016-07-22 | 2017-07-21 | Out-of-band management techniques for networking fabrics |
US15/854,261 Active US10263637B2 (en) | 2016-07-22 | 2017-12-26 | Technologies for performing speculative decompression |
US16/055,602 Active US10802229B2 (en) | 2016-07-22 | 2018-08-06 | Technologies for switching network traffic in a data center |
US16/120,419 Active US10474460B2 (en) | 2016-07-22 | 2018-09-03 | Technologies for optical communication in rack clusters |
US16/506,457 Active 2037-07-26 US11349734B2 (en) | 2016-07-22 | 2019-07-09 | Robotically serviceable computing rack and sleds |
US16/513,371 Active US10785549B2 (en) | 2016-07-22 | 2019-07-16 | Technologies for switching network traffic in a data center |
US16/513,345 Active US10791384B2 (en) | 2016-07-22 | 2019-07-16 | Technologies for switching network traffic in a data center |
US16/656,009 Active 2039-12-06 US11838113B2 (en) | 2016-07-22 | 2019-10-17 | Techniques to verify and authenticate resources in a data center computer environment |
US17/015,479 Active US11128553B2 (en) | 2016-07-22 | 2020-09-09 | Technologies for switching network traffic in a data center |
US17/086,206 Active 2037-01-19 US11695668B2 (en) | 2016-07-22 | 2020-10-30 | Technologies for assigning workloads to balance multiple resource allocation objectives |
US16/951,723 Active US11245604B2 (en) | 2016-07-22 | 2020-11-18 | Techniques to support multiple interconnect protocols for a common set of interconnect connectors |
US17/235,135 Active US11336547B2 (en) | 2016-07-22 | 2021-04-20 | Technologies for dynamically managing resources in disaggregated accelerators |
US17/404,749 Active US11595277B2 (en) | 2016-07-22 | 2021-08-17 | Technologies for switching network traffic in a data center |
US17/531,494 Active US11689436B2 (en) | 2016-07-22 | 2021-11-19 | Techniques to configure physical compute resources for workloads via circuit switching |
US17/733,086 Active 2037-08-19 US11855766B2 (en) | 2016-07-22 | 2022-04-29 | Technologies for dynamically managing resources in disaggregated accelerators |
US18/076,104 Active US12040889B2 (en) | 2016-07-22 | 2022-12-06 | Technologies for switching network traffic in a data center |
US18/116,957 Active US12081323B2 (en) | 2016-07-22 | 2023-03-03 | Techniques to control system updates and configuration changes via the cloud |
US18/388,461 Pending US20240113954A1 (en) | 2016-07-22 | 2023-11-09 | Technologies for dynamically managing resources in disaggregated accelerators |
US18/778,493 Pending US20240372792A1 (en) | 2016-07-22 | 2024-07-19 | Techniques to control system updates and configuration changes via the cloud |
Country Status (6)
Country | Link |
---|---|
US (79) | US10334334B2 (en) |
EP (12) | EP3488338B1 (en) |
CN (29) | CN109416630B (en) |
DE (18) | DE112017003704T5 (en) |
TW (2) | TWI759307B (en) |
WO (45) | WO2018014515A1 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110091337A (en) * | 2019-04-24 | 2019-08-06 | 北京百度网讯科技有限公司 | Robot cooperated method, apparatus, intelligent robot and robot management platform |
US20190258523A1 (en) * | 2018-02-21 | 2019-08-22 | Anki, Inc. | Character-Driven Computing During Unengaged Time |
US20190363900A1 (en) * | 2016-12-21 | 2019-11-28 | British Telecommunications Public Limited Company | Network node |
US20200159609A1 (en) * | 2018-11-20 | 2020-05-21 | Acronis International Gmbh | Proactive disaster recovery based on external event monitoring |
US10747281B1 (en) * | 2019-11-19 | 2020-08-18 | International Business Machines Corporation | Mobile thermal balancing of data centers |
US10765026B2 (en) | 2018-08-17 | 2020-09-01 | Microsoft Technology Licensing, Llc | Automated data center |
US10785549B2 (en) | 2016-07-22 | 2020-09-22 | Intel Corporation | Technologies for switching network traffic in a data center |
US10848432B2 (en) * | 2016-12-18 | 2020-11-24 | Cisco Technology, Inc. | Switch fabric based load balancing |
US20210157701A1 (en) * | 2019-11-22 | 2021-05-27 | Dell Products, L.P. | Systems and methods for automated field replacement component configuration |
US11052541B1 (en) * | 2018-12-05 | 2021-07-06 | Facebook, Inc. | Autonomous robot telerobotic interface |
US11055149B2 (en) | 2017-08-30 | 2021-07-06 | Intel Corporation | Technologies for providing workload-based sled position adjustment |
US11126501B2 (en) * | 2019-04-30 | 2021-09-21 | EMC IP Holding Company LLC | Method, device and program product for avoiding a fault event of a disk array |
US11137922B2 (en) | 2016-11-29 | 2021-10-05 | Intel Corporation | Technologies for providing accelerated functions as a service in a disaggregated architecture |
WO2021199075A1 (en) * | 2020-04-02 | 2021-10-07 | Lightspeedai Labs Private Limited | A system and method for enabling reconfigurable and flexible modular compute |
US20220210083A1 (en) * | 2019-09-20 | 2022-06-30 | Huawei Technologies Co., Ltd. | Packet forwarding method and apparatus, system, device, and storage medium |
US20220239586A1 (en) * | 2021-01-22 | 2022-07-28 | Vmware, Inc. | Routing configuration for data center fabric maintenance |
US11470019B2 (en) * | 2019-09-05 | 2022-10-11 | Infinera Corporation | Dynamically switching queueing schemes for network switches |
US20230023869A1 (en) * | 2021-07-23 | 2023-01-26 | Dell Products, L.P. | System and method for providing intelligent assistance using a warranty bot |
US20230067201A1 (en) * | 2021-08-20 | 2023-03-02 | Nvidia Corporation | Cooling line monitoring and repair |
Families Citing this family (561)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103870317B (en) * | 2012-12-10 | 2017-07-21 | 中兴通讯股份有限公司 | Method for scheduling task and system in cloud computing |
US9882984B2 (en) | 2013-08-02 | 2018-01-30 | International Business Machines Corporation | Cache migration management in a virtualized distributed computing system |
US11847007B2 (en) | 2014-01-09 | 2023-12-19 | Nautilus True, Llc | Data center total resource utilization efficiency (TRUE) system and method |
US10852805B2 (en) * | 2017-07-30 | 2020-12-01 | Nautilus Data Technologies, Inc. | Data center total resource utilization efficiency (TRUE) system and method |
US11909616B2 (en) * | 2014-04-08 | 2024-02-20 | Eino, Inc. | Mobile telecommunications network capacity simulation, prediction and planning |
US11489749B2 (en) * | 2018-06-06 | 2022-11-01 | Eino, Inc. | Mobile telecommunications network capacity simulation, prediction and planning |
US9735958B2 (en) | 2015-05-19 | 2017-08-15 | Coinbase, Inc. | Key ceremony of a security system forming part of a host computer for cryptographic transactions |
JP6512055B2 (en) * | 2015-09-30 | 2019-05-15 | 富士通株式会社 | Analysis program, analyzer and analysis method |
US10516981B1 (en) * | 2015-12-03 | 2019-12-24 | Eta Vision Inc. | Systems and methods for sensing, recording, analyzing and reporting environmental conditions in data centers and similar facilities |
US10699211B2 (en) | 2016-02-29 | 2020-06-30 | Oracle International Corporation | Supervised method for classifying seasonal patterns |
US10331802B2 (en) | 2016-02-29 | 2019-06-25 | Oracle International Corporation | System for detecting and characterizing seasons |
US10885461B2 (en) | 2016-02-29 | 2021-01-05 | Oracle International Corporation | Unsupervised method for classifying seasonal patterns |
US10970891B2 (en) | 2016-02-29 | 2021-04-06 | Oracle International Corporation | Systems and methods for detecting and accommodating state changes in modelling |
US10931593B2 (en) * | 2016-03-30 | 2021-02-23 | Nec Corporation | Management node, management system, management method and computer-readable recording medium |
US10198339B2 (en) | 2016-05-16 | 2019-02-05 | Oracle International Corporation | Correlation-based analytic for time-series data |
US10306344B2 (en) * | 2016-07-04 | 2019-05-28 | Huawei Technologies Co., Ltd. | Method and system for distributed control of large photonic switched networks |
US10873521B2 (en) * | 2016-07-22 | 2020-12-22 | Intel Corporation | Methods and apparatus for SDI support for fast startup |
US11082439B2 (en) | 2016-08-04 | 2021-08-03 | Oracle International Corporation | Unsupervised method for baselining and anomaly detection in time-series data for enterprise systems |
US10635563B2 (en) | 2016-08-04 | 2020-04-28 | Oracle International Corporation | Unsupervised method for baselining and anomaly detection in time-series data for enterprise systems |
US10365981B2 (en) * | 2016-08-19 | 2019-07-30 | Samsung Electronics Co., Ltd. | Adaptive multipath fabric for balanced performance and high availability |
CN107025066A (en) * | 2016-09-14 | 2017-08-08 | 阿里巴巴集团控股有限公司 | The method and apparatus that data storage is write in the storage medium based on flash memory |
CN107885595B (en) * | 2016-09-30 | 2021-12-14 | 华为技术有限公司 | Resource allocation method, related equipment and system |
US10469383B2 (en) * | 2016-11-10 | 2019-11-05 | International Business Machines Corporation | Storing data in association with a key within a hash table and retrieving the data from the hash table using the key |
US20180136985A1 (en) * | 2016-11-17 | 2018-05-17 | International Business Machines Corporation | Asset placement management in a shared pool of configurable computing resources |
US10693725B1 (en) * | 2016-11-28 | 2020-06-23 | Barefoot Networks, Inc. | Dynamically reconfiguring data plane of forwarding element to account for operating temperature |
US11016832B2 (en) * | 2016-11-29 | 2021-05-25 | Intel Corporation | Cloud-based scale-up system composition |
CN108228337B (en) * | 2016-12-22 | 2021-08-27 | 财团法人工业技术研究院 | Configuration method of central processing unit and server suitable for the same |
US10387305B2 (en) * | 2016-12-23 | 2019-08-20 | Intel Corporation | Techniques for compression memory coloring |
US10171309B1 (en) * | 2016-12-23 | 2019-01-01 | EMC IP Holding Company LLC | Topology service |
US10628233B2 (en) * | 2016-12-30 | 2020-04-21 | Samsung Electronics Co., Ltd. | Rack-level scheduling for reducing the long tail latency using high performance SSDS |
US11153164B2 (en) | 2017-01-04 | 2021-10-19 | International Business Machines Corporation | Live, in-line hardware component upgrades in disaggregated systems |
US10534598B2 (en) | 2017-01-04 | 2020-01-14 | International Business Machines Corporation | Rolling upgrades in disaggregated systems |
US10423911B2 (en) | 2017-01-19 | 2019-09-24 | Bank Of America Corporation | System for platform activity gathering for achievement leveraging virtual visualization |
US10931744B1 (en) | 2017-01-19 | 2021-02-23 | Tigera, Inc. | Policy controlled service routing |
JP6886301B2 (en) * | 2017-01-26 | 2021-06-16 | キヤノン株式会社 | Memory access system, its control method, program, and image forming device |
US11475466B2 (en) * | 2017-02-03 | 2022-10-18 | David S. Wilson | Optimized lead generation, management, communication, and tracking system |
WO2018148316A1 (en) | 2017-02-07 | 2018-08-16 | Flir Detection, Inc. | Systems and methods for identifying threats and locations, systems and method for augmenting real-time displays demonstrating the threat location, and systems and methods for responding to threats |
US11488369B2 (en) | 2017-02-07 | 2022-11-01 | Teledyne Flir Detection, Inc. | Systems and methods for identifying threats and locations, systems and method for augmenting real-time displays demonstrating the threat location, and systems and methods for responding to threats |
JP6880242B2 (en) * | 2017-02-14 | 2021-06-02 | モレックス エルエルシー | Breakout module system |
US10298649B2 (en) * | 2017-02-15 | 2019-05-21 | Microsoft Technology Licensing, Llc | Guaranteeing stream exclusivity in a multi-tenant environment |
US10778831B2 (en) | 2017-02-17 | 2020-09-15 | Whatsapp Inc. | Methods and systems for displaying an ephemeral content message |
US10254961B2 (en) * | 2017-02-21 | 2019-04-09 | International Business Machines Corporation | Dynamic load based memory tag management |
US10915830B2 (en) | 2017-02-24 | 2021-02-09 | Oracle International Corporation | Multiscale method for predictive alerting |
US10949436B2 (en) | 2017-02-24 | 2021-03-16 | Oracle International Corporation | Optimization for scalable analytics using time series models |
US10628279B2 (en) * | 2017-02-28 | 2020-04-21 | International Business Machines Corporation | Memory management in multi-processor environments based on memory efficiency |
CA2981842C (en) | 2017-03-01 | 2024-04-09 | The Toronto-Dominion Bank | Resource allocation based on resource distribution data from child node |
GB201704277D0 (en) * | 2017-03-17 | 2017-05-03 | Technetix Bv | Method of segmenting an access network of a hybrid fibre coaxial network |
US10771369B2 (en) * | 2017-03-20 | 2020-09-08 | International Business Machines Corporation | Analyzing performance and capacity of a complex storage environment for predicting expected incident of resource exhaustion on a data path of interest by analyzing maximum values of resource usage over time |
GB2561974B (en) * | 2017-03-23 | 2022-05-04 | Rockley Photonics Ltd | Leaf switch module and optoelectronic switch |
US20180287949A1 (en) * | 2017-03-29 | 2018-10-04 | Intel Corporation | Throttling, sub-node composition, and balanced processing in rack scale architecture |
WO2018183553A1 (en) | 2017-03-29 | 2018-10-04 | Fungible, Inc. | Non-blocking any-to-any data center network having multiplexed packet spraying within access node groups |
US10686729B2 (en) | 2017-03-29 | 2020-06-16 | Fungible, Inc. | Non-blocking any-to-any data center network with packet spraying over multiple alternate data paths |
WO2018183526A1 (en) | 2017-03-29 | 2018-10-04 | Fungible, Inc. | Non-blocking, full-mesh data center network having optical permutors |
US10778599B2 (en) * | 2017-03-30 | 2020-09-15 | Home Box Office, Inc. | Predictive scaling of computing resources |
US10459517B2 (en) * | 2017-03-31 | 2019-10-29 | Qualcomm Incorporated | System and methods for scheduling software tasks based on central processing unit power characteristics |
CN117971715A (en) | 2017-04-10 | 2024-05-03 | 微软技术许可有限责任公司 | Relay coherent memory management in multiprocessor systems |
CN108733311B (en) * | 2017-04-17 | 2021-09-10 | 伊姆西Ip控股有限责任公司 | Method and apparatus for managing storage system |
US10171377B2 (en) * | 2017-04-18 | 2019-01-01 | International Business Machines Corporation | Orchestrating computing resources between different computing environments |
US11243949B2 (en) | 2017-04-21 | 2022-02-08 | Microsoft Technology Licensing, Llc | Query execution across multiple graphs |
US11010659B2 (en) * | 2017-04-24 | 2021-05-18 | Intel Corporation | Dynamic precision for neural network compute operations |
US10656987B1 (en) * | 2017-04-26 | 2020-05-19 | EMC IP Holding Company LLC | Analysis system and method |
US10474458B2 (en) | 2017-04-28 | 2019-11-12 | Intel Corporation | Instructions and logic to perform floating-point and integer operations for machine learning |
US10958990B2 (en) * | 2017-05-03 | 2021-03-23 | Intel Corporation | Trusted platform telemetry mechanisms inaccessible to software |
US10693704B2 (en) * | 2017-05-10 | 2020-06-23 | B.yond, Inc. | Dynamic allocation of service components of information service in hierarchical telecommunication architecture |
US11429871B2 (en) * | 2017-05-18 | 2022-08-30 | International Business Machines Corporation | Detection of data offloading through instrumentation analysis |
US10958729B2 (en) * | 2017-05-18 | 2021-03-23 | Intel Corporation | Non-volatile memory express over fabric (NVMeOF) using volume management device |
US10410015B2 (en) | 2017-05-18 | 2019-09-10 | Linden Research, Inc. | Systems and methods to secure personally identifiable information |
US10476674B2 (en) | 2017-05-18 | 2019-11-12 | Linden Research, Inc. | Systems and methods to secure searchable data having personally identifiable information |
US11010205B2 (en) * | 2017-05-30 | 2021-05-18 | Hewlett Packard Enterprise Development Lp | Virtual network function resource allocation |
US10817803B2 (en) | 2017-06-02 | 2020-10-27 | Oracle International Corporation | Data driven methods and systems for what if analysis |
US10512194B1 (en) * | 2017-06-09 | 2019-12-17 | VCE IP Holding Company, LLC | Devices, systems, and methods for thermal management of rack-mounted computing infrastructure devices |
US10506028B2 (en) * | 2017-06-14 | 2019-12-10 | American Megatrends International, Llc | Techniques of preserving service request payloads |
US10445143B2 (en) * | 2017-06-14 | 2019-10-15 | Vmware, Inc. | Device replacement for hyper-converged infrastructure computing environments |
US11025707B1 (en) * | 2017-06-20 | 2021-06-01 | Amazon Technologies, Inc. | Dynamic execution resource selection for customized workflow tasks |
US10382274B2 (en) * | 2017-06-26 | 2019-08-13 | Cisco Technology, Inc. | System and method for wide area zero-configuration network auto configuration |
CN107450702A (en) * | 2017-06-29 | 2017-12-08 | 郑州云海信息技术有限公司 | A kind of electric power system of reduction Rack GPU voltage pulsations |
US10409756B2 (en) * | 2017-07-07 | 2019-09-10 | Facebook, Inc. | Multi-node server platform with modularly replaceable cards |
EP3625939A1 (en) | 2017-07-10 | 2020-03-25 | Fungible, Inc. | Access node for data centers |
EP3625679A1 (en) | 2017-07-10 | 2020-03-25 | Fungible, Inc. | Data processing unit for stream processing |
US10831897B2 (en) * | 2017-07-14 | 2020-11-10 | Dell Products, L.P. | Selective enforcement of secure boot database entries in an information handling system |
US11030126B2 (en) * | 2017-07-14 | 2021-06-08 | Intel Corporation | Techniques for managing access to hardware accelerator memory |
US10489195B2 (en) * | 2017-07-20 | 2019-11-26 | Cisco Technology, Inc. | FPGA acceleration for serverless computing |
US10572307B2 (en) * | 2017-07-26 | 2020-02-25 | Bank Of America Corportion | System and method of training machine learning algorithm to satisfactorily allocate resources for task execution |
US10334330B2 (en) * | 2017-08-03 | 2019-06-25 | Facebook, Inc. | Scalable switch |
WO2019028799A1 (en) * | 2017-08-10 | 2019-02-14 | 华为技术有限公司 | Data access method, device and system |
US11249808B2 (en) * | 2017-08-22 | 2022-02-15 | Intel Corporation | Connecting accelerator resources using a switch |
US10687435B2 (en) | 2017-08-28 | 2020-06-16 | Facebook, Inc. | Apparatus, system, and method for enabling multiple storage-system configurations |
US20190044809A1 (en) * | 2017-08-30 | 2019-02-07 | Intel Corporation | Technologies for managing a flexible host interface of a network interface controller |
US10621005B2 (en) * | 2017-08-31 | 2020-04-14 | Oracle International Corporation | Systems and methods for providing zero down time and scalability in orchestration cloud services |
US10736228B2 (en) | 2017-08-31 | 2020-08-04 | Facebook, Inc. | Removeable drive-plane apparatus, system, and method |
US20190087174A1 (en) * | 2017-09-21 | 2019-03-21 | Western Digital Technologies, Inc. | Background firmware update |
US10496507B2 (en) * | 2017-09-21 | 2019-12-03 | American Megatrends International, Llc | Dynamic personality configurations for pooled system management engine |
US10601907B2 (en) * | 2017-09-22 | 2020-03-24 | Artiste QB Net Inc. | System and method for platform to securely distribute compute workload to web capable devices |
US10757831B2 (en) * | 2017-09-26 | 2020-08-25 | Facebook, Inc. | Apparatus, system, and method for reconfiguring air flow through a chassis |
US11218322B2 (en) * | 2017-09-28 | 2022-01-04 | Intel Corporation | System and method for reconfiguring and deploying soft stock-keeping units |
US10693737B1 (en) * | 2017-09-29 | 2020-06-23 | Charter Communications Operating, Llc | Universal alias and dependency models and network analysis |
US11178262B2 (en) | 2017-09-29 | 2021-11-16 | Fungible, Inc. | Fabric control protocol for data center networks with packet spraying over multiple alternate data paths |
CN111164938A (en) | 2017-09-29 | 2020-05-15 | 芬基波尔有限责任公司 | Resilient network communication using selective multipath packet stream injection |
US10188013B1 (en) * | 2017-10-09 | 2019-01-22 | Facebook, Inc. | Apparatus, system, and method for deploying data center modules |
US20190114232A1 (en) * | 2017-10-17 | 2019-04-18 | Christopher Squires | Local and offloaded snapshots for volatile memory |
JP2019079113A (en) * | 2017-10-20 | 2019-05-23 | 株式会社日立製作所 | Storage device, data management method, and data management program |
JP6681377B2 (en) * | 2017-10-30 | 2020-04-15 | 株式会社日立製作所 | System and method for optimizing resource allocation |
US10620999B2 (en) * | 2017-11-08 | 2020-04-14 | Western Digital Technologies, Inc | Task scheduling through an operating system agnostic system abstraction layer from a top of the rack switch in a hyper converged infrastructure |
US10469921B2 (en) * | 2017-11-10 | 2019-11-05 | Juniper Networks, Inc. | Data center packet optical transport failure protection |
US10791062B1 (en) * | 2017-11-14 | 2020-09-29 | Amazon Technologies, Inc. | Independent buffer memory for network element |
US10725660B2 (en) * | 2017-11-17 | 2020-07-28 | International Business Machines Corporation | Policy-based optimization of cloud resources on tiered storage operations |
US10841245B2 (en) | 2017-11-21 | 2020-11-17 | Fungible, Inc. | Work unit stack data structures in multiple core processor system for stream data processing |
US10725834B2 (en) * | 2017-11-30 | 2020-07-28 | International Business Machines Corporation | Job scheduling based on node and application characteristics |
US10620959B2 (en) * | 2017-12-01 | 2020-04-14 | International Business Machines Corporation | Optimized multi-processor instruction scheduler |
US11231852B2 (en) * | 2017-12-18 | 2022-01-25 | Microsoft Technology Licensing, Llc | Efficient sharing of non-volatile memory |
US10572250B2 (en) | 2017-12-20 | 2020-02-25 | International Business Machines Corporation | Dynamic accelerator generation and deployment |
US11645059B2 (en) | 2017-12-20 | 2023-05-09 | International Business Machines Corporation | Dynamically replacing a call to a software library with a call to an accelerator |
WO2019119442A1 (en) | 2017-12-22 | 2019-06-27 | Telefonaktiebolaget Lm Ericsson (Publ) | A wireless communications system, a radio network node, a machine learning unt and methods therein for transmission of a downlink signal in a wireless communications network supporting beamforming |
US11650598B2 (en) | 2017-12-30 | 2023-05-16 | Telescent Inc. | Automated physical network management system utilizing high resolution RFID, optical scans and mobile robotic actuator |
US11317542B2 (en) | 2017-12-30 | 2022-04-26 | Intel Corporation | Technologies for improving processor thermal design power |
KR20190083517A (en) * | 2018-01-04 | 2019-07-12 | 에스케이하이닉스 주식회사 | Memory system and operation method thereof |
US10725251B2 (en) * | 2018-01-31 | 2020-07-28 | Hewlett Packard Enterprise Development Lp | Cable router |
WO2019152063A1 (en) | 2018-02-02 | 2019-08-08 | Fungible, Inc. | Efficient work unit processing in a multicore system |
US10628176B1 (en) | 2018-02-09 | 2020-04-21 | American Megatrends International, Llc | Firmware configuration using REST over IPMI interface |
US10489142B1 (en) | 2018-02-09 | 2019-11-26 | American Megatrends International, Llc | Secure firmware integrity monitoring using rest over IPMI interface |
US10416988B1 (en) | 2018-02-09 | 2019-09-17 | American Megatrends International, Llc | Peripheral device firmware update using rest over IPMI interface firmware shell utility |
US10572242B1 (en) * | 2018-02-09 | 2020-02-25 | American Megatrends International, Llc | Firmware update using rest over IPMI interface |
US10649792B1 (en) | 2018-02-09 | 2020-05-12 | American Megatrends International, Llc | Cloning of firmware configuration settings using rest over IPMI interface |
US10409584B1 (en) | 2018-02-09 | 2019-09-10 | American Megatrends International, Llc | Peripheral device firmware update using rest over IPMI interface firmware update module |
US10776286B1 (en) | 2018-02-09 | 2020-09-15 | American Megatrends International, Llc | Rest over IPMI interface for firmware to BMC communication |
CN108306772A (en) * | 2018-02-12 | 2018-07-20 | 上海易杵行智能科技有限公司 | The distribution method and system of basic data can be certified in a kind of distribution high-reliability terminal equipment |
US11184778B2 (en) * | 2018-02-20 | 2021-11-23 | Intel Corporation | Mobile service chain placement |
US10698696B2 (en) * | 2018-03-02 | 2020-06-30 | Dell Products L.P. | Chipset fuse programming system |
TWI689816B (en) * | 2018-03-06 | 2020-04-01 | 群聯電子股份有限公司 | Block management method, memory control circuit unit and memory storage apparatus |
CN110244901B (en) * | 2018-03-07 | 2021-03-26 | 杭州海康威视系统技术有限公司 | Task allocation method and device and distributed storage system |
CN108375258B (en) * | 2018-03-09 | 2021-04-30 | 苏州市锐翊电子科技有限公司 | Double-track cooler |
US10838647B2 (en) | 2018-03-14 | 2020-11-17 | Intel Corporation | Adaptive data migration across disaggregated memory resources |
US10846955B2 (en) | 2018-03-16 | 2020-11-24 | Micron Technology, Inc. | Black box data recorder for autonomous driving vehicle |
US10990299B2 (en) * | 2018-03-26 | 2021-04-27 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd | Storing data based on the physical accessibility of data storage devices |
US11321249B2 (en) | 2018-03-26 | 2022-05-03 | Samsung Electronics Co., Ltd. | Mechanism to autonomously manage SSDS in an array |
US11099995B2 (en) * | 2018-03-28 | 2021-08-24 | Intel Corporation | Techniques for prefetching data to a first level of memory of a hierarchical arrangement of memory |
US10333548B1 (en) | 2018-04-09 | 2019-06-25 | International Business Machines Corporation | Efficient software closing of hardware-generated encoding context |
CN110213072B (en) * | 2018-04-19 | 2022-02-25 | 腾讯科技(深圳)有限公司 | Network equipment control method and network service processing method |
JP7104308B2 (en) * | 2018-04-25 | 2022-07-21 | 富士通株式会社 | Processor and information processing equipment |
US10599553B2 (en) | 2018-04-27 | 2020-03-24 | International Business Machines Corporation | Managing cloud-based hardware accelerators |
US10778552B2 (en) | 2018-04-30 | 2020-09-15 | Hewlett Packard Enterprise Development Lp | Storage system latency evaluation based on I/O patterns |
US11070455B2 (en) | 2018-04-30 | 2021-07-20 | Hewlett Packard Enterprise Development Lp | Storage system latency outlier detection |
JP7241068B2 (en) | 2018-05-02 | 2023-03-16 | 株式会社半導体エネルギー研究所 | semiconductor equipment |
US10606785B2 (en) * | 2018-05-04 | 2020-03-31 | Intel Corporation | Flex bus protocol negotiation and enabling sequence |
US10608961B2 (en) | 2018-05-08 | 2020-03-31 | Salesforce.Com, Inc. | Techniques for handling message queues |
US10893096B2 (en) | 2018-05-17 | 2021-01-12 | International Business Machines Corporation | Optimizing dynamical resource allocations using a data heat map in disaggregated data centers |
US10601903B2 (en) | 2018-05-17 | 2020-03-24 | International Business Machines Corporation | Optimizing dynamical resource allocations based on locality of resources in disaggregated data centers |
US10936374B2 (en) | 2018-05-17 | 2021-03-02 | International Business Machines Corporation | Optimizing dynamic resource allocations for memory-dependent workloads in disaggregated data centers |
US11221886B2 (en) | 2018-05-17 | 2022-01-11 | International Business Machines Corporation | Optimizing dynamical resource allocations for cache-friendly workloads in disaggregated data centers |
US10977085B2 (en) * | 2018-05-17 | 2021-04-13 | International Business Machines Corporation | Optimizing dynamical resource allocations in disaggregated data centers |
US10841367B2 (en) * | 2018-05-17 | 2020-11-17 | International Business Machines Corporation | Optimizing dynamical resource allocations for cache-dependent workloads in disaggregated data centers |
US11330042B2 (en) | 2018-05-17 | 2022-05-10 | International Business Machines Corporation | Optimizing dynamic resource allocations for storage-dependent workloads in disaggregated data centers |
US10984600B2 (en) | 2018-05-25 | 2021-04-20 | Tiff's Treats Holdings, Inc. | Apparatus, method, and system for presentation of multimedia content including augmented reality content |
US10818093B2 (en) * | 2018-05-25 | 2020-10-27 | Tiff's Treats Holdings, Inc. | Apparatus, method, and system for presentation of multimedia content including augmented reality content |
US10305511B1 (en) * | 2018-05-25 | 2019-05-28 | Xilinx, Inc. | Run length compression and decompression using an alternative value for single occurrences of a run value |
US11243846B2 (en) * | 2018-05-31 | 2022-02-08 | International Business Machines Corporation | Replicating workload and state data for disaster recovery in disaggregated datacenters |
US10983881B2 (en) | 2018-05-31 | 2021-04-20 | International Business Machines Corporation | Disaster recovery and replication in disaggregated datacenters |
US11036599B2 (en) | 2018-05-31 | 2021-06-15 | International Business Machines Corporation | Disaster recovery and replication according to workload priorities in disaggregated datacenters |
US10719418B2 (en) | 2018-05-31 | 2020-07-21 | International Business Machines Corporation | Replicating workload data according to a degree of resiliency for disaster recovery in disaggregated datacenters |
US10891206B2 (en) | 2018-05-31 | 2021-01-12 | International Business Machines Corporation | Disaster recovery orchestration and capacity planning in disaggregated datacenters |
US10789200B2 (en) * | 2018-06-01 | 2020-09-29 | Dell Products L.P. | Server message block remote direct memory access persistent memory dialect |
US10963346B2 (en) | 2018-06-05 | 2021-03-30 | Oracle International Corporation | Scalable methods and systems for approximating statistical distributions |
US10997517B2 (en) | 2018-06-05 | 2021-05-04 | Oracle International Corporation | Methods and systems for aggregating distribution approximations |
WO2019236851A1 (en) * | 2018-06-06 | 2019-12-12 | The Joan and Irwin Jacobs Technion-Cornell Institute | Telecommunications network traffic metrics evaluation and prediction |
WO2019237010A1 (en) | 2018-06-08 | 2019-12-12 | Fungible, Inc. | Early acknowledgment for write operations |
US11094148B2 (en) * | 2018-06-18 | 2021-08-17 | Micron Technology, Inc. | Downloading system memory data in response to event detection |
US10936039B2 (en) * | 2018-06-19 | 2021-03-02 | Intel Corporation | Multi-tenant edge cloud system power management |
US10785108B1 (en) * | 2018-06-21 | 2020-09-22 | Wells Fargo Bank, N.A. | Intelligent learning and management of a networked architecture |
US10489341B1 (en) * | 2018-06-25 | 2019-11-26 | Quanta Computer Inc. | Flexible interconnect port connection |
US11275617B2 (en) | 2018-06-27 | 2022-03-15 | Accenture Global Solutions Limited | Self-managed intelligent elastic cloud stack |
US20220109455A1 (en) * | 2018-06-29 | 2022-04-07 | Zenotta Holding Ag | Apparatus and method for providing authentication, non-repudiation, governed access and twin resolution for data utilizing a data control signature |
US20210034546A1 (en) * | 2018-06-29 | 2021-02-04 | John Joseph Browne | Transparent encryption |
US10944689B2 (en) * | 2018-06-29 | 2021-03-09 | Intel Corporation | Scalable edge computing |
US10846070B2 (en) * | 2018-07-05 | 2020-11-24 | At&T Intellectual Property I, L.P. | Facilitating cloud native edge computing via behavioral intelligence |
US10521395B1 (en) | 2018-07-05 | 2019-12-31 | Mythic, Inc. | Systems and methods for implementing an intelligence processing computing architecture |
US10691611B2 (en) | 2018-07-13 | 2020-06-23 | Micron Technology, Inc. | Isolated performance domains in a memory system |
US10671531B2 (en) * | 2018-07-13 | 2020-06-02 | Seagate Technology Llc | Secondary memory configuration for data backup |
CN109120272B (en) * | 2018-07-16 | 2021-09-28 | 南京航空航天大学 | RFID tag data compression method for discrete manufacturing workshop |
CN110737391B (en) * | 2018-07-20 | 2023-08-22 | 伊姆西Ip控股有限责任公司 | Method, apparatus and computer program product for managing a storage system |
US10925191B2 (en) * | 2018-07-25 | 2021-02-16 | Vmware, Inc | Methods and apparatus to manage power delivery for a data center based on predicted power consumption |
US10776149B2 (en) | 2018-07-25 | 2020-09-15 | Vmware, Inc. | Methods and apparatus to adjust energy requirements in a data center |
CN209015216U (en) * | 2018-07-27 | 2019-06-21 | 杭州海康威视数字技术股份有限公司 | A kind of electronic equipment |
US10649764B2 (en) * | 2018-08-01 | 2020-05-12 | EMC IP Holding Company LLC | Module mirroring during non-disruptive upgrade |
WO2020028569A1 (en) * | 2018-08-03 | 2020-02-06 | Intel Corporation | Dynamically direct compute tasks to any available compute resource within any local compute cluster of an embedded system |
US10491302B1 (en) * | 2018-08-06 | 2019-11-26 | Hewlett Packard Enterprise Development Lp | Rack-level photonic solution |
US10623101B1 (en) | 2018-08-07 | 2020-04-14 | Hewlett Packard Enterprise Development Lp | Hyperscale photonics connectivity solution |
EP3609120B1 (en) * | 2018-08-09 | 2022-04-13 | Nokia Technologies Oy | Distributed data storage |
EP3612011A1 (en) * | 2018-08-14 | 2020-02-19 | ABB Schweiz AG | Method of controlling cooling in a data centre |
TWI682320B (en) * | 2018-08-17 | 2020-01-11 | 緯穎科技服務股份有限公司 | Control method for data storage system, data storage module, and computer program product |
US10649927B2 (en) | 2018-08-20 | 2020-05-12 | Intel Corporation | Dual in-line memory module (DIMM) programmable accelerator card |
CN110851183B (en) * | 2018-08-20 | 2024-04-12 | 联想企业解决方案(新加坡)有限公司 | Method for fast booting a processor in a multiprocessor architecture |
US11423326B2 (en) * | 2018-09-14 | 2022-08-23 | Microsoft Technology Licensing, Llc | Using machine-learning methods to facilitate experimental evaluation of modifications to a computational environment within a distributed system |
US10884469B2 (en) * | 2018-09-14 | 2021-01-05 | Quanta Computer Inc. | Method and system for dynamically allocating and optimizing power resources |
US10901798B2 (en) | 2018-09-17 | 2021-01-26 | International Business Machines Corporation | Dependency layer deployment optimization in a workload node cluster |
US10969842B2 (en) | 2018-09-19 | 2021-04-06 | TMGCore, LLC | Chassis for a liquid immersion cooling system |
US10624237B2 (en) | 2018-09-19 | 2020-04-14 | TMGCore, LLC | Liquid immersion cooling vessel and components thereof |
US11102912B2 (en) | 2018-09-19 | 2021-08-24 | TMGCore, LLC | Liquid immersion cooling platform |
US10617032B1 (en) | 2018-09-19 | 2020-04-07 | TMGCore, LLC | Robot for a liquid immersion cooling system |
MX2021003178A (en) * | 2018-09-19 | 2021-08-11 | Tmgcore Llc | Liquid immersion cooling platform. |
CN109254922B (en) * | 2018-09-19 | 2021-10-22 | 郑州云海信息技术有限公司 | Automatic testing method and device for BMC Redfish function of server |
US10653043B2 (en) | 2018-09-19 | 2020-05-12 | TMGCore, LLC | Vapor management system for a liquid immersion cooling system |
US10694643B2 (en) | 2018-09-19 | 2020-06-23 | TMGCore, LLC | Ballast blocks for a liquid immersion cooling system |
US11012423B2 (en) | 2018-09-25 | 2021-05-18 | International Business Machines Corporation | Maximizing resource utilization through efficient component communication in disaggregated datacenters |
US11182322B2 (en) | 2018-09-25 | 2021-11-23 | International Business Machines Corporation | Efficient component communication through resource rewiring in disaggregated datacenters |
US11163713B2 (en) | 2018-09-25 | 2021-11-02 | International Business Machines Corporation | Efficient component communication through protocol switching in disaggregated datacenters |
US10637733B2 (en) | 2018-09-25 | 2020-04-28 | International Business Machines Corporation | Dynamic grouping and repurposing of general purpose links in disaggregated datacenters |
US10802988B2 (en) | 2018-09-25 | 2020-10-13 | International Business Machines Corporation | Dynamic memory-based communication in disaggregated datacenters |
US10671557B2 (en) | 2018-09-25 | 2020-06-02 | International Business Machines Corporation | Dynamic component communication using general purpose links between respectively pooled together of like typed devices in disaggregated datacenters |
US10915493B2 (en) | 2018-09-25 | 2021-02-09 | International Business Machines Corporation | Component building blocks and optimized compositions thereof in disaggregated datacenters |
US10831698B2 (en) | 2018-09-25 | 2020-11-10 | International Business Machines Corporation | Maximizing high link bandwidth utilization through efficient component communication in disaggregated datacenters |
US11650849B2 (en) * | 2018-09-25 | 2023-05-16 | International Business Machines Corporation | Efficient component communication through accelerator switching in disaggregated datacenters |
US10831580B2 (en) | 2018-09-26 | 2020-11-10 | International Business Machines Corporation | Diagnostic health checking and replacement of resources in disaggregated data centers |
US11050637B2 (en) | 2018-09-26 | 2021-06-29 | International Business Machines Corporation | Resource lifecycle optimization in disaggregated data centers |
US10754720B2 (en) | 2018-09-26 | 2020-08-25 | International Business Machines Corporation | Health check diagnostics of resources by instantiating workloads in disaggregated data centers |
US10838803B2 (en) | 2018-09-26 | 2020-11-17 | International Business Machines Corporation | Resource provisioning and replacement according to a resource failure analysis in disaggregated data centers |
US10761915B2 (en) | 2018-09-26 | 2020-09-01 | International Business Machines Corporation | Preemptive deep diagnostics and health checking of resources in disaggregated data centers |
US11188408B2 (en) | 2018-09-26 | 2021-11-30 | International Business Machines Corporation | Preemptive resource replacement according to failure pattern analysis in disaggregated data centers |
US10922413B2 (en) * | 2018-09-27 | 2021-02-16 | Intel Corporation | Methods and apparatus to apply a firmware update to a host processor |
US11579951B2 (en) | 2018-09-27 | 2023-02-14 | Oracle International Corporation | Disk drive failure prediction with neural networks |
US11212124B2 (en) * | 2018-09-30 | 2021-12-28 | Intel Corporation | Multi-access edge computing (MEC) billing and charging tracking enhancements |
US11423327B2 (en) * | 2018-10-10 | 2022-08-23 | Oracle International Corporation | Out of band server utilization estimation and server workload characterization for datacenter resource optimization and forecasting |
US10803087B2 (en) * | 2018-10-19 | 2020-10-13 | Oracle International Corporation | Language interoperable runtime adaptable data collections |
US11138090B2 (en) | 2018-10-23 | 2021-10-05 | Oracle International Corporation | Systems and methods for forecasting time series with variable seasonality |
US12001926B2 (en) | 2018-10-23 | 2024-06-04 | Oracle International Corporation | Systems and methods for detecting long term seasons |
CN111104057B (en) * | 2018-10-25 | 2022-03-29 | 华为技术有限公司 | Node capacity expansion method in storage system and storage system |
US11113232B2 (en) * | 2018-10-26 | 2021-09-07 | Super Micro Computer, Inc. | Disaggregated computer system |
US11157322B2 (en) * | 2018-10-29 | 2021-10-26 | Dell Products L.P. | Hyper-converged infrastructure (HCI) ephemeral workload/data provisioning system |
US11443166B2 (en) | 2018-10-29 | 2022-09-13 | Oracle International Corporation | Datacenter level utilization prediction without operating system involvement |
CN111114241B (en) * | 2018-10-31 | 2022-06-21 | 浙江三花智能控制股份有限公司 | Control system and control method |
US10936295B2 (en) * | 2018-11-01 | 2021-03-02 | Dell Products L.P. | Software update system |
US11216314B2 (en) * | 2018-11-02 | 2022-01-04 | EMC IP Holding Company LLC | Dynamic reallocation of resources in accelerator-as-a-service computing environment |
EP3874625A4 (en) | 2018-11-02 | 2022-07-06 | Go!Foton Holdings, Inc. | Cable termination assembly with disengagement prevention structures |
KR102718827B1 (en) * | 2018-11-05 | 2024-10-18 | 삼성전자주식회사 | Food management system, server, and refrigerator |
US10862781B2 (en) * | 2018-11-07 | 2020-12-08 | Saudi Arabian Oil Company | Identifying network issues using an agentless probe and end-point network locations |
KR102655094B1 (en) | 2018-11-16 | 2024-04-08 | 삼성전자주식회사 | Storage device including heterogeneous processors which shares memory and method of operating the same |
US10944622B2 (en) | 2018-11-16 | 2021-03-09 | Saudi Arabian Oil Company | Root cause analysis for unified communications performance issues |
US10924328B2 (en) | 2018-11-16 | 2021-02-16 | Saudi Arabian Oil Company | Root cause analysis for unified communications performance issues |
US10929175B2 (en) | 2018-11-21 | 2021-02-23 | Fungible, Inc. | Service chaining hardware accelerators within a data stream processing integrated circuit |
US11309908B2 (en) * | 2018-11-26 | 2022-04-19 | Fungible, Inc. | Static dictionary-based compression hardware pipeline for data compression accelerator of a data processing unit |
CN109542469B (en) * | 2018-11-26 | 2022-07-01 | 中国兵器装备集团自动化研究所有限公司 | BIOS chip substitution circuit implementation method |
US10942769B2 (en) * | 2018-11-28 | 2021-03-09 | International Business Machines Corporation | Elastic load balancing prioritization |
US11531170B2 (en) | 2018-11-28 | 2022-12-20 | Go!Foton Holdings, Inc. | Intelligent patch panel |
US10831975B2 (en) | 2018-11-29 | 2020-11-10 | International Business Machines Corporation | Debug boundaries in a hardware accelerator |
US11782605B2 (en) | 2018-11-29 | 2023-10-10 | Micron Technology, Inc. | Wear leveling for non-volatile memory using data write counters |
US10757041B2 (en) | 2018-12-03 | 2020-08-25 | Hewlett Packard Enterprise Development Lp | Full server-level redundancy using a single network interface controller(NIC) and a single NIC card |
US11112972B2 (en) | 2018-12-05 | 2021-09-07 | Samsung Electronics Co., Ltd. | System and method for accelerated data processing in SSDs |
JP7150585B2 (en) * | 2018-12-06 | 2022-10-11 | エヌ・ティ・ティ・コミュニケーションズ株式会社 | Data retrieval device, its data retrieval method and program, edge server and its program |
JP7150584B2 (en) | 2018-12-06 | 2022-10-11 | エヌ・ティ・ティ・コミュニケーションズ株式会社 | Edge server and its program |
JP7175731B2 (en) | 2018-12-06 | 2022-11-21 | エヌ・ティ・ティ・コミュニケーションズ株式会社 | Storage management device, method and program |
CN111290849A (en) * | 2018-12-07 | 2020-06-16 | 中国移动通信集团福建有限公司 | Method, device, equipment and medium for dynamically adjusting service resources |
US11669372B2 (en) * | 2018-12-13 | 2023-06-06 | Intel Corporation | Flexible allocation of compute resources |
US11394543B2 (en) * | 2018-12-13 | 2022-07-19 | Coinbase, Inc. | System and method for secure sensitive data storage and recovery |
US10756795B2 (en) | 2018-12-18 | 2020-08-25 | XCOM Labs, Inc. | User equipment with cellular link and peer-to-peer link |
US11063645B2 (en) * | 2018-12-18 | 2021-07-13 | XCOM Labs, Inc. | Methods of wirelessly communicating with a group of devices |
US11579908B2 (en) | 2018-12-18 | 2023-02-14 | Vmware, Inc. | Containerized workload scheduling |
GB2580151B (en) * | 2018-12-21 | 2021-02-24 | Graphcore Ltd | Identifying processing units in a processor |
JP7139939B2 (en) * | 2018-12-26 | 2022-09-21 | 日本電信電話株式会社 | Scheduling system and method |
CN109714423A (en) * | 2018-12-29 | 2019-05-03 | 浪潮电子信息产业股份有限公司 | A kind of OpenStack dispositions method, device, equipment and medium |
US11693970B2 (en) | 2019-01-04 | 2023-07-04 | Baidu Usa Llc | Method and system for managing memory of data processing accelerators |
CN112352220B (en) | 2019-01-04 | 2024-05-10 | 百度时代网络技术(北京)有限公司 | Method and system for protecting data processed by data processing accelerator |
WO2020140265A1 (en) | 2019-01-04 | 2020-07-09 | Baidu.Com Times Technology (Beijing) Co., Ltd. | Data processing accelerator having security unit to provide root trust services |
CN112236972B (en) | 2019-01-04 | 2023-06-16 | 百度时代网络技术(北京)有限公司 | Method and system for deriving session keys to ensure an information exchange channel between a host system and a data processing accelerator |
WO2020140268A1 (en) | 2019-01-04 | 2020-07-09 | Baidu.Com Times Technology (Beijing) Co., Ltd. | Method and system for providing secure communications between a host system and a data processing accelerator |
CN112262546B (en) * | 2019-01-04 | 2024-04-23 | 百度时代网络技术(北京)有限公司 | Method and system for key distribution and exchange for data processing accelerator |
EP3794493A4 (en) | 2019-01-04 | 2022-01-12 | Baidu.com Times Technology (Beijing) Co., Ltd. | Method for establishing a secure information exchange channel between a host system and a data processing accelerator |
EP3811271B1 (en) | 2019-01-04 | 2023-02-15 | Baidu.com Times Technology (Beijing) Co., Ltd. | A data processing accelerator having a local time unit to generate timestamps |
WO2020140257A1 (en) | 2019-01-04 | 2020-07-09 | Baidu.Com Times Technology (Beijing) Co., Ltd. | Method and system for validating kernel objects to be executed by a data processing accelerator of a host system |
US11409534B2 (en) | 2019-01-04 | 2022-08-09 | Baidu Usa Llc | Attestation protocol between a host system and a data processing accelerator |
US20200218566A1 (en) * | 2019-01-07 | 2020-07-09 | Entit Software Llc | Workload migration |
US11157323B2 (en) * | 2019-01-10 | 2021-10-26 | International Business Machines Corporation | Multiple metric based load prediction and resource allocation in an active stream processing job |
EP3912239A1 (en) | 2019-01-14 | 2021-11-24 | Synopsys, Inc. | Robotic systems and corresponding methods for engaging server back-plane connectors |
US10802944B2 (en) | 2019-01-23 | 2020-10-13 | Salesforce.Com, Inc. | Dynamically maintaining alarm thresholds for software application performance management |
US10747551B2 (en) * | 2019-01-23 | 2020-08-18 | Salesforce.Com, Inc. | Software application optimization |
US11194591B2 (en) | 2019-01-23 | 2021-12-07 | Salesforce.Com, Inc. | Scalable software resource loader |
CN109788061B (en) * | 2019-01-23 | 2021-02-26 | 中科驭数(北京)科技有限公司 | Computing task deployment method and device |
US11330649B2 (en) | 2019-01-25 | 2022-05-10 | XCOM Labs, Inc. | Methods and systems of multi-link peer-to-peer communications |
US10606786B2 (en) * | 2019-01-29 | 2020-03-31 | Intel Corporation | Upgradable vehicular computing methods and apparatuses |
JP7178916B2 (en) | 2019-01-29 | 2022-11-28 | キオクシア株式会社 | Memory system and control method |
US11410475B2 (en) | 2019-01-31 | 2022-08-09 | Micron Technology, Inc. | Autonomous vehicle data recorders |
US11169856B2 (en) * | 2019-01-31 | 2021-11-09 | Hewlett Packard Enterprise Development Lp | Container management |
US20200250863A1 (en) * | 2019-01-31 | 2020-08-06 | Dell Products, Lp | System and Method for Wiring Management of Multi-chassis Systems in a Datacenter using Augmented Reality and Available Sensor Data |
US11373466B2 (en) | 2019-01-31 | 2022-06-28 | Micron Technology, Inc. | Data recorders of autonomous vehicles |
US11429440B2 (en) * | 2019-02-04 | 2022-08-30 | Hewlett Packard Enterprise Development Lp | Intelligent orchestration of disaggregated applications based on class of service |
JPWO2020162177A1 (en) * | 2019-02-05 | 2021-12-02 | 東京応化工業株式会社 | Method of generating certified object, certification system, and certification medium |
US10855548B2 (en) * | 2019-02-15 | 2020-12-01 | Oracle International Corporation | Systems and methods for automatically detecting, summarizing, and responding to anomalies |
US11902092B2 (en) | 2019-02-15 | 2024-02-13 | Samsung Electronics Co., Ltd. | Systems and methods for latency-aware edge computing |
US10949101B2 (en) * | 2019-02-25 | 2021-03-16 | Micron Technology, Inc. | Storage device operation orchestration |
CN118606237A (en) * | 2019-02-28 | 2024-09-06 | 拉姆伯斯公司 | Four-channel DRAM |
US11042416B2 (en) * | 2019-03-06 | 2021-06-22 | Google Llc | Reconfigurable computing pods using optical networks |
CN111367844B (en) * | 2019-03-13 | 2020-12-15 | 苏州库瀚信息科技有限公司 | System, method and apparatus for a storage controller having multiple heterogeneous network interface ports |
CN112905240A (en) | 2019-03-15 | 2021-06-04 | 英特尔公司 | Architecture for block sparse operations on systolic arrays |
BR112021016111A2 (en) | 2019-03-15 | 2021-11-09 | Intel Corp | Computing device, parallel processing unit, general-purpose graphics processing unit core, and graphics multiprocessor |
EP3938893A1 (en) | 2019-03-15 | 2022-01-19 | INTEL Corporation | Systems and methods for cache optimization |
US11934342B2 (en) | 2019-03-15 | 2024-03-19 | Intel Corporation | Assistance for hardware prefetch in cache access |
EP3942487B1 (en) * | 2019-03-19 | 2024-05-01 | Telefonaktiebolaget LM Ericsson (publ) | Methods and apparatus for internet of things resource management |
KR20200112439A (en) * | 2019-03-22 | 2020-10-05 | 삼성전자주식회사 | An electronic device comprising multi-cores and method for processing packet in the same |
US11651128B2 (en) * | 2019-03-25 | 2023-05-16 | Aurora Labs Ltd. | Verifying integrity of controller software updates |
US10742322B1 (en) * | 2019-03-28 | 2020-08-11 | Ncr Corporation | Infrared (IR) transmission verification and relay |
US11550635B1 (en) * | 2019-03-28 | 2023-01-10 | Amazon Technologies, Inc. | Using delayed autocorrelation to improve the predictive scaling of computing resources |
US11360795B2 (en) | 2019-03-28 | 2022-06-14 | Amazon Technologies, Inc. | Determining configuration parameters to provide recommendations for optimizing workloads |
US11068312B2 (en) * | 2019-03-28 | 2021-07-20 | Amazon Technologies, Inc. | Optimizing hardware platform utilization for heterogeneous workloads in a distributed computing environment |
US11372663B2 (en) * | 2019-03-28 | 2022-06-28 | Amazon Technologies, Inc. | Compute platform recommendations for new workloads in a distributed computing environment |
US11128696B2 (en) | 2019-03-28 | 2021-09-21 | Amazon Technologies, Inc. | Compute platform optimization across heterogeneous hardware in a distributed computing environment |
US11385920B2 (en) | 2019-03-28 | 2022-07-12 | Amazon Technologies, Inc. | Compute platform optimization over the life of a workload in a distributed computing environment |
US11036275B2 (en) * | 2019-03-29 | 2021-06-15 | Intel Corporation | Detection of known workload patterns |
US11243817B2 (en) * | 2019-03-29 | 2022-02-08 | Intel Corporation | Technologies for data migration between edge accelerators hosted on different edge locations |
US11171831B2 (en) * | 2019-03-30 | 2021-11-09 | Intel Corporation | Technologies for autonomous edge compute instance optimization and auto-healing using local hardware platform QoS services |
KR20200116372A (en) * | 2019-04-01 | 2020-10-12 | 에스케이하이닉스 주식회사 | Storage device, controller and operating method of controller thereof |
CN110175051B (en) * | 2019-04-11 | 2022-03-29 | 上海卫星工程研究所 | Satellite-ground integrated remote measurement configuration management method |
US10922095B2 (en) | 2019-04-15 | 2021-02-16 | Salesforce.Com, Inc. | Software application performance regression analysis |
US10922062B2 (en) | 2019-04-15 | 2021-02-16 | Salesforce.Com, Inc. | Software application optimization |
CN110008154B (en) * | 2019-04-16 | 2020-08-21 | 北京智芯微电子科技有限公司 | Method for improving time sequence of processor and access bus and memory attribute predictor |
CN110021083A (en) * | 2019-04-16 | 2019-07-16 | 重庆佳家通科技有限公司 | Automotive safety monitoring system |
CN114026476A (en) * | 2019-04-16 | 2022-02-08 | 康宁研究与开发公司 | Pre-patch cable assembly for indoor/outdoor/data center applications |
US11079559B2 (en) * | 2019-04-23 | 2021-08-03 | Ciena Corporation | Universal sub slot architecture for networking modules |
US11736195B2 (en) | 2019-04-23 | 2023-08-22 | Ciena Corporation | Universal sub slot architecture for networking modules |
CN110049380B (en) * | 2019-04-24 | 2022-02-22 | 苏州浪潮智能科技有限公司 | BMC-based switch temperature control method, system and readable medium |
US20190253518A1 (en) * | 2019-04-26 | 2019-08-15 | Intel Corporation | Technologies for providing resource health based node composition and management |
CN114073055B (en) * | 2019-04-26 | 2023-11-17 | 三菱电机株式会社 | network controller |
US11650837B2 (en) * | 2019-04-26 | 2023-05-16 | Hewlett Packard Enterprise Development Lp | Location-based virtualization workload placement |
US11265369B2 (en) * | 2019-04-30 | 2022-03-01 | Verizon Patent And Licensing Inc. | Methods and systems for intelligent distribution of workloads to multi-access edge compute nodes on a communication network |
US11711268B2 (en) * | 2019-04-30 | 2023-07-25 | Intel Corporation | Methods and apparatus to execute a workload in an edge environment |
US11004476B2 (en) * | 2019-04-30 | 2021-05-11 | Cisco Technology, Inc. | Multi-column interleaved DIMM placement and routing topology |
US10853082B1 (en) * | 2019-04-30 | 2020-12-01 | Splunk Inc. | Pipeline set selection based on duty cycle estimation of pipeline threads |
US11416295B2 (en) * | 2019-04-30 | 2022-08-16 | Intel Corporation | Technologies for providing efficient access to data in an edge infrastructure |
US11474700B2 (en) * | 2019-04-30 | 2022-10-18 | Intel Corporation | Technologies for compressing communication for accelerator devices |
US11533326B2 (en) | 2019-05-01 | 2022-12-20 | Oracle International Corporation | Systems and methods for multivariate anomaly detection in software monitoring |
WO2020226880A1 (en) * | 2019-05-03 | 2020-11-12 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Method and apparatus for adaptive page migration and pinning for oversubscribed irregular applications |
US11567877B2 (en) * | 2019-05-03 | 2023-01-31 | Intel Corporation | Memory utilized as both system memory and near memory |
WO2020226878A1 (en) * | 2019-05-03 | 2020-11-12 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Method and apparatus for replacing data from near to far memory over a slow interconnect for oversubscribed irregular applications |
CN110113614B (en) * | 2019-05-13 | 2022-04-12 | 格兰菲智能科技有限公司 | Image processing method and image processing apparatus |
US11537940B2 (en) | 2019-05-13 | 2022-12-27 | Oracle International Corporation | Systems and methods for unsupervised anomaly detection using non-parametric tolerance intervals over a sliding window of t-digests |
CN110175150B (en) * | 2019-05-15 | 2023-02-24 | 重庆大学 | Welcome robot data storage monitoring system based on data compression |
US11082525B2 (en) * | 2019-05-17 | 2021-08-03 | Intel Corporation | Technologies for managing sensor and telemetry data on an edge networking platform |
US11073888B2 (en) * | 2019-05-31 | 2021-07-27 | Advanced Micro Devices, Inc. | Platform power manager for rack level power and thermal constraints |
US10979316B2 (en) * | 2019-05-31 | 2021-04-13 | Juniper Networks, Inc. | Dynamic application SLA metric generation, distribution, and intent-based SD-WAN link selection |
EP3981130A1 (en) * | 2019-06-07 | 2022-04-13 | Intergraph Corporation | Data sharing control methods and systems |
WO2020252142A1 (en) * | 2019-06-11 | 2020-12-17 | Burlywood, Inc. | Telemetry capture system for storage systems |
US11481117B2 (en) | 2019-06-17 | 2022-10-25 | Hewlett Packard Enterprise Development Lp | Storage volume clustering based on workload fingerprints |
US11520634B2 (en) * | 2019-06-21 | 2022-12-06 | Kyndryl, Inc. | Requirement-based resource sharing in computing environment |
US11055809B2 (en) * | 2019-06-28 | 2021-07-06 | Intel Corporation | Apparatus and method for provisioning virtualized multi-tile graphics processing hardware |
US10949362B2 (en) * | 2019-06-28 | 2021-03-16 | Intel Corporation | Technologies for facilitating remote memory requests in accelerator devices |
US20210004675A1 (en) * | 2019-07-02 | 2021-01-07 | Teradata Us, Inc. | Predictive apparatus and method for predicting workload group metrics of a workload management system of a database system |
US11556382B1 (en) * | 2019-07-10 | 2023-01-17 | Meta Platforms, Inc. | Hardware accelerated compute kernels for heterogeneous compute environments |
US11256595B2 (en) * | 2019-07-11 | 2022-02-22 | Dell Products L.P. | Predictive storage management system |
US11431480B2 (en) * | 2019-07-11 | 2022-08-30 | EMC IP Holding Company LLC | Smart compressor based on adaptive CPU/QAT scheduling method |
CN112242915B (en) * | 2019-07-19 | 2023-12-15 | 诺基亚通信公司 | Method and device for overload control of ONU (optical network Unit) equipment |
CN114051715B (en) * | 2019-07-22 | 2024-07-16 | 华为技术有限公司 | Control device, switching device and method |
US11064055B2 (en) * | 2019-07-22 | 2021-07-13 | Anacode Labs, Inc. | Accelerated data center transfers |
US10925166B1 (en) * | 2019-08-07 | 2021-02-16 | Quanta Computer Inc. | Protection fixture |
US11228539B2 (en) * | 2019-08-14 | 2022-01-18 | Intel Corporation | Technologies for managing disaggregated accelerator networks based on remote direct memory access |
US11561797B2 (en) * | 2019-08-19 | 2023-01-24 | Ati Technologies Ulc | Decompression engine for decompressing compressed input data that includes multiple streams of data |
US11996166B2 (en) * | 2019-08-29 | 2024-05-28 | Advanced Micro Devices, Inc. | Adaptable allocation of SRAM based on power |
CN110515882A (en) * | 2019-08-29 | 2019-11-29 | 山东浪潮人工智能研究院有限公司 | A kind of PXIE case system and method obtaining peripheral slot board temperature |
US10917110B1 (en) * | 2019-09-02 | 2021-02-09 | Ati Technologies Ulc | Multiple symbol decoder |
US20210075863A1 (en) * | 2019-09-06 | 2021-03-11 | Evangelos Achillopoulos | Edge computing deployment and management |
US11348043B2 (en) * | 2019-09-10 | 2022-05-31 | International Business Machines Corporation | Collective-aware task distribution manager using a computer |
US10992534B2 (en) * | 2019-09-11 | 2021-04-27 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Forming groups of nodes for assignment to a system management server |
US11727262B2 (en) * | 2019-09-12 | 2023-08-15 | International Business Machines Corporation | Configuration of an optical switch fabric using machine learning |
US11887015B2 (en) | 2019-09-13 | 2024-01-30 | Oracle International Corporation | Automatically-generated labels for time series data and numerical lists to use in analytic and machine learning systems |
US11151150B2 (en) * | 2019-09-13 | 2021-10-19 | Salesforce.Com, Inc. | Adjustable connection pool mechanism |
US11410027B2 (en) * | 2019-09-16 | 2022-08-09 | SambaNova Systems, Inc. | Performance estimation-based resource allocation for reconfigurable architectures |
CN110646905B (en) * | 2019-09-19 | 2021-01-05 | 烽火通信科技股份有限公司 | Method and system for calculating fiber running distance between ODF frames |
US11108574B2 (en) * | 2019-09-26 | 2021-08-31 | Intel Corporation | Technologies for switch link and ply management for variable oversubscription ratios |
CN112565325B (en) * | 2019-09-26 | 2022-09-23 | 华为云计算技术有限公司 | Mirror image file management method, device and system, computer equipment and storage medium |
US20200136921A1 (en) * | 2019-09-28 | 2020-04-30 | Intel Corporation | Methods, system, articles of manufacture, and apparatus to manage telemetry data in an edge environment |
US11513842B2 (en) | 2019-10-03 | 2022-11-29 | International Business Machines Corporation | Performance biased resource scheduling based on runtime performance |
US11636067B2 (en) | 2019-10-04 | 2023-04-25 | Salesforce.Com, Inc. | Performance measurement mechanism |
US11159407B2 (en) | 2019-10-15 | 2021-10-26 | At&T Intellectual Property I, L.P. | Detection of unauthorized cryptomining |
US10848179B1 (en) * | 2019-10-15 | 2020-11-24 | EMC IP Holding Company LLC | Performance optimization and support compatibility of data compression with hardware accelerator |
US11582036B1 (en) * | 2019-10-18 | 2023-02-14 | Splunk Inc. | Scaled authentication of endpoint devices |
US10996340B1 (en) * | 2019-10-18 | 2021-05-04 | The Aerospace Corporation | Tracking system |
US12063068B2 (en) | 2019-10-18 | 2024-08-13 | The Aerospace Corporation | Tracking system |
US11165857B2 (en) | 2019-10-23 | 2021-11-02 | Salesforce.Com, Inc. | Connection pool anomaly detection mechanism |
US11032163B2 (en) | 2019-10-25 | 2021-06-08 | Verizon Patent And Licensing Inc. | Method and system for selection and orchestration of multi-access edge computing resources |
EP3817236B1 (en) * | 2019-11-04 | 2024-10-16 | Samsung Electronics Co., Ltd. | Neural network data processing method and apparatus |
WO2021097283A1 (en) * | 2019-11-15 | 2021-05-20 | The Regents Of The University Of California | Methods, systems, and devices for bandwidth steering using photonic devices |
US11861761B2 (en) | 2019-11-15 | 2024-01-02 | Intel Corporation | Graphics processing unit processing and caching improvements |
US11663746B2 (en) | 2019-11-15 | 2023-05-30 | Intel Corporation | Systolic arithmetic on sparse data |
WO2021102077A1 (en) * | 2019-11-19 | 2021-05-27 | NetWolves Network Services, LLC | Centralized analytical monitoring of ip connected devices |
EP4066121A4 (en) * | 2019-11-25 | 2023-12-20 | Advanced Micro Devices, Inc. | Pattern-based cache block compression |
US11316713B2 (en) * | 2019-11-25 | 2022-04-26 | International Business Machines Corporation | Virtual drawers in a server |
US11782755B2 (en) * | 2019-12-02 | 2023-10-10 | Intel Corporation | Methods, systems, articles of manufacture, and apparatus to optimize thread scheduling |
US11698879B2 (en) * | 2019-12-06 | 2023-07-11 | Intel Corporation | Flexible on-die fabric interface |
US11561836B2 (en) * | 2019-12-11 | 2023-01-24 | Sap Se | Optimizing distribution of heterogeneous software process workloads |
US11704192B2 (en) | 2019-12-12 | 2023-07-18 | Pure Storage, Inc. | Budgeting open blocks based on power loss protection |
US11416144B2 (en) | 2019-12-12 | 2022-08-16 | Pure Storage, Inc. | Dynamic use of segment or zone power loss protection in a flash device |
US11502905B1 (en) * | 2019-12-19 | 2022-11-15 | Wells Fargo Bank, N.A. | Computing infrastructure standards assay |
CN111176564B (en) * | 2019-12-25 | 2024-02-27 | 三星(中国)半导体有限公司 | Method and device for determining data placement strategy in SSD |
CN111274174B (en) * | 2020-01-17 | 2021-05-18 | 浙江中控技术股份有限公司 | Data transmission system and method |
US11422721B2 (en) * | 2020-01-31 | 2022-08-23 | Dropbox, Inc. | Data storage scheme switching in a distributed data storage system |
US11800676B2 (en) | 2020-01-31 | 2023-10-24 | Hewlett Packard Enterprise Development Lp | System and method for secure management of a rack |
US11561815B1 (en) * | 2020-02-24 | 2023-01-24 | Amazon Technologies, Inc. | Power aware load placement |
US11526784B2 (en) * | 2020-03-12 | 2022-12-13 | Bank Of America Corporation | Real-time server capacity optimization tool using maximum predicted value of resource utilization determined based on historica data and confidence interval |
CN111400045B (en) * | 2020-03-16 | 2023-09-05 | 杭州海康威视系统技术有限公司 | Load balancing method and device |
US11751360B2 (en) * | 2020-03-17 | 2023-09-05 | International Business Machines Corporation | Intelligently deployed cooling fins |
US20210294661A1 (en) * | 2020-03-19 | 2021-09-23 | Entertainment Technologists, Inc. | TASK MANAGEMENT OF LARGE COMPUTING WORKLOADS in A CLOUD SERVICE AGGREGATED FROM DISPARATE, RESOURCE-LIMITED, PRIVATELY CONTROLLED SERVER FARMS |
US11522804B2 (en) * | 2020-03-20 | 2022-12-06 | Cornami, Inc. | Method and system for robust streaming of data |
US11372697B2 (en) * | 2020-03-20 | 2022-06-28 | Netapp, Inc. | Message based code execution using key-value storage |
US11115497B2 (en) * | 2020-03-25 | 2021-09-07 | Intel Corporation | Technologies for providing advanced resource management in a disaggregated environment |
CN111314182A (en) * | 2020-03-25 | 2020-06-19 | 漳州麻吉网络信息服务有限公司 | Internet of things function detection equipment for Internet of things household appliances |
US11720364B2 (en) * | 2020-03-27 | 2023-08-08 | Intel Corporation | Methods and apparatus to dynamically enable and/or disable prefetchers |
US11037269B1 (en) * | 2020-03-27 | 2021-06-15 | Intel Corporation | High-speed resume for GPU applications |
US12026546B2 (en) | 2020-04-16 | 2024-07-02 | Tom Herbert | Parallelism in serial pipeline processing |
US11109498B1 (en) | 2020-04-21 | 2021-08-31 | Jpmorgan Chase Bank, N.A. | Systems and methods for modular cabinet cable pass-through |
EP4142988A1 (en) * | 2020-04-27 | 2023-03-08 | Abb Schweiz Ag | A robot controller |
US20210342761A1 (en) * | 2020-04-30 | 2021-11-04 | Hexagon Technology Center Gmbh | System for mapping model, cost, and schedule of large-scale capital project |
US20210351989A1 (en) * | 2020-05-06 | 2021-11-11 | Verizon Patent And Licensing Inc. | Self-managed networks and services with artificial intelligence and machine learning |
EP4150882A1 (en) * | 2020-05-12 | 2023-03-22 | Telefonaktiebolaget LM ERICSSON (PUBL) | Optimized model transmission |
US11394660B2 (en) * | 2020-05-13 | 2022-07-19 | Google Llc | Processing allocation in data center fleets |
US11177618B1 (en) * | 2020-05-14 | 2021-11-16 | Dell Products L.P. | Server blind-mate power and signal connector dock |
CN111409997B (en) * | 2020-05-20 | 2021-06-01 | 大连海事大学 | Transfer robot picking task scheduling method for mobile shelf warehousing system |
US11237605B2 (en) | 2020-05-20 | 2022-02-01 | Core Scientific, Inc. | System and method for cooling computing devices |
US11216201B2 (en) * | 2020-05-26 | 2022-01-04 | EMC IP Holding Company LLC | Caching and data promotion techniques |
US11962518B2 (en) | 2020-06-02 | 2024-04-16 | VMware LLC | Hardware acceleration techniques using flow selection |
US11575626B2 (en) * | 2020-06-10 | 2023-02-07 | Snap Inc. | Bidirectional bridge for web view |
US11704145B1 (en) | 2020-06-12 | 2023-07-18 | Amazon Technologies, Inc. | Infrastructure-based risk diverse placement of virtualized computing resources |
US11972303B2 (en) * | 2020-06-26 | 2024-04-30 | Intel Corporation | Methods, apparatus, and systems to dynamically schedule workloads among compute resources based on temperature |
US11290339B2 (en) * | 2020-06-30 | 2022-03-29 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Estimating physical disparity for data locality in software-defined infrastructures |
US11297404B2 (en) * | 2020-07-16 | 2022-04-05 | Hewlett Packard Enterprise Development Lp | Optical network having combined circuit-packet switch architecture |
US11640377B2 (en) * | 2020-07-16 | 2023-05-02 | Dell Products, L.P. | Event-based generation of context-aware telemetry reports |
US11394141B2 (en) * | 2020-07-22 | 2022-07-19 | Dell Products L.P. | System and method for stacking compression dual in-line memory module scalability |
CN111817724B (en) * | 2020-07-22 | 2022-03-22 | 山东云海国创云计算装备产业创新中心有限公司 | Data compression circuit |
KR20220013122A (en) * | 2020-07-24 | 2022-02-04 | 한국전자통신연구원 | Apparatus and method for controlling memory access in parallel processing system |
US12001932B2 (en) * | 2020-07-27 | 2024-06-04 | Intel Corporation | Hierarchical reinforcement learning algorithm for NFV server power management |
US11202378B1 (en) * | 2020-07-30 | 2021-12-14 | Baidu Usa Llc | Modular infrastructure for compute and storage clusters |
CN111918517A (en) * | 2020-07-31 | 2020-11-10 | 邢台职业技术学院 | Stack type installation structure of server for computer network architecture |
US20220035684A1 (en) * | 2020-08-03 | 2022-02-03 | Nvidia Corporation | Dynamic load balancing of operations for real-time deep learning analytics |
KR20220021753A (en) | 2020-08-14 | 2022-02-22 | 삼성전자주식회사 | Storage device performing read operation by restoring on cell count (OCC) from power loss protection area of non-volatile memory |
US11853798B2 (en) * | 2020-09-03 | 2023-12-26 | Microsoft Technology Licensing, Llc | Disaggregated memory pool assignment |
CN112100109B (en) * | 2020-09-06 | 2022-06-21 | 苏州浪潮智能科技有限公司 | Cable connection fault-tolerant connection device and method |
US11294582B2 (en) * | 2020-09-08 | 2022-04-05 | Micron Technology, Inc. | Customer-specific activation of functionality in a semiconductor device |
CN112165437B (en) * | 2020-09-14 | 2021-08-06 | 梁拥军 | Automatic opening and closing energy-saving environment-friendly heat dissipation device of switch |
US11714615B2 (en) * | 2020-09-18 | 2023-08-01 | International Business Machines Corporation | Application migration using cost-aware code dependency graph |
CN112181294A (en) * | 2020-09-21 | 2021-01-05 | 宜鼎国际股份有限公司 | Data storage device with system operation capability |
TWI755068B (en) * | 2020-09-21 | 2022-02-11 | 宜鼎國際股份有限公司 | Data storage device with system operation capability |
US11500649B2 (en) * | 2020-09-24 | 2022-11-15 | Dell Products L.P. | Coordinated initialization system |
US11392184B2 (en) | 2020-09-25 | 2022-07-19 | Microsoft Technology Licensing, Llc | Disaggregated computer systems |
US12021759B2 (en) | 2020-09-28 | 2024-06-25 | VMware LLC | Packet processing with hardware offload units |
US11875172B2 (en) | 2020-09-28 | 2024-01-16 | VMware LLC | Bare metal computer for booting copies of VM images on multiple computing devices using a smart NIC |
US11716383B2 (en) | 2020-09-28 | 2023-08-01 | Vmware, Inc. | Accessing multiple external storages to present an emulated local storage through a NIC |
US11307902B1 (en) * | 2020-09-30 | 2022-04-19 | Kyndryl, Inc. | Preventing deployment failures of information technology workloads |
US12019898B2 (en) * | 2020-09-30 | 2024-06-25 | Seagate Technology Llc | Data storage system with workload-based dynamic power consumption |
US11513982B2 (en) * | 2020-09-30 | 2022-11-29 | EMC IP Holding Company LLC | Techniques for recommending configuration changes using a decision tree |
US11943294B1 (en) * | 2020-09-30 | 2024-03-26 | Amazon Technologies, Inc. | Storage medium and compression for object stores |
US12041747B2 (en) | 2020-10-16 | 2024-07-16 | Core Scientific, Inc. | Rack for cooling computing devices in a hyperboloid configuration |
US11516942B1 (en) | 2020-10-16 | 2022-11-29 | Core Scientific, Inc. | Helical-configured shelving for cooling computing devices |
CN112286451B (en) * | 2020-10-20 | 2021-07-06 | 深圳大学 | Hierarchical scheduling method and system suitable for multi-level storage system |
US11455262B2 (en) * | 2020-10-20 | 2022-09-27 | Micron Technology, Inc. | Reducing latency for memory operations in a memory controller |
US11615782B2 (en) * | 2020-11-12 | 2023-03-28 | Sony Interactive Entertainment Inc. | Semi-sorted batching with variable length input for efficient training |
CN112288904B (en) * | 2020-11-23 | 2022-04-01 | 武汉大学 | Vehicle-mounted terminal, distributed vehicle-mounted terminal integrated management method and system |
JP7119053B2 (en) * | 2020-11-25 | 2022-08-16 | 株式会社東芝 | Storage unit and information processing equipment |
CN112328289B (en) * | 2020-11-26 | 2023-08-25 | 新华三信息技术有限公司 | Firmware upgrading method, device, equipment and storage medium |
GB2601509A (en) * | 2020-12-02 | 2022-06-08 | British Telecomm | Computer orchestration |
US20210194828A1 (en) * | 2020-12-07 | 2021-06-24 | Intel Corporation | Architecture for smart switch centered next generation cloud infrastructure |
US12112249B2 (en) | 2020-12-08 | 2024-10-08 | International Business Machines Corporation | Multi-objective automated machine learning |
US11934875B2 (en) | 2020-12-09 | 2024-03-19 | Dell Products L.P. | Method and system for maintaining composed systems |
US11928515B2 (en) | 2020-12-09 | 2024-03-12 | Dell Products L.P. | System and method for managing resource allocations in composed systems |
US11886926B1 (en) * | 2020-12-10 | 2024-01-30 | Amazon Technologies, Inc. | Migrating workloads between computing platforms according to resource utilization |
US11886315B2 (en) * | 2020-12-10 | 2024-01-30 | Amazon Technologies, Inc. | Managing computing capacity in radio-based networks |
CN112615919B (en) * | 2020-12-16 | 2021-11-26 | 中国联合网络通信集团有限公司 | Resource allocation method, resource allocation device and block chain |
US12130688B2 (en) | 2020-12-23 | 2024-10-29 | Intel Corporation | Methods and apparatus to optimize a guard band of a hardware resource |
US20210183737A1 (en) * | 2020-12-23 | 2021-06-17 | Intel Corporation | Loading frame for high i/o count packaged semiconductor chip |
CN112328185B (en) * | 2020-12-28 | 2021-03-23 | 烽火通信科技股份有限公司 | Intelligent pre-reading method based on distributed storage |
US20220210048A1 (en) * | 2020-12-28 | 2022-06-30 | Nokia Solutions And Networks Oy | Packet forwarding on non-coherent paths |
US20220083383A1 (en) * | 2021-01-08 | 2022-03-17 | Intel Corporation | Computing system resource usage accounting and usage limit enforcement |
US11816498B2 (en) * | 2021-01-21 | 2023-11-14 | Nutanix, Inc. | Early event-based notification for VM swapping |
US20220237570A1 (en) * | 2021-01-22 | 2022-07-28 | Dell Products L.P. | Method and System for Determining Computer Fan Usage and Maintenance |
US20220237050A1 (en) * | 2021-01-28 | 2022-07-28 | Dell Products L.P. | System and method for management of composed systems using operation data |
US11714683B1 (en) * | 2021-01-29 | 2023-08-01 | Splunk Inc. | Information technology and security application automation architecture |
US11803216B2 (en) * | 2021-02-03 | 2023-10-31 | Hewlett Packard Enterprise Development Lp | Contiguous plane infrastructure for computing systems |
US11785735B2 (en) * | 2021-02-19 | 2023-10-10 | CyberSecure IPS, LLC | Intelligent cable patching of racks to facilitate cable installation |
US20220276914A1 (en) * | 2021-03-01 | 2022-09-01 | Nvidia Corporation | Interface for multiple processors |
US11503743B2 (en) * | 2021-03-12 | 2022-11-15 | Baidu Usa Llc | High availability fluid connector for liquid cooling |
US20220308927A1 (en) * | 2021-03-26 | 2022-09-29 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Composed compute system with energy aware orchestration |
WO2022220789A1 (en) * | 2021-04-12 | 2022-10-20 | Telescent Inc. | Automated physical network management system utilizing high resolution rfid, optical scans and mobile robotic actuator |
US20220326994A1 (en) * | 2021-04-12 | 2022-10-13 | Dell Products L.P. | Computing resource sharing system |
US12124729B2 (en) * | 2021-04-13 | 2024-10-22 | Micron Technology, Inc. | Controller to alter systems based on metrics and telemetry |
US20220342655A1 (en) * | 2021-04-22 | 2022-10-27 | STMicroelectronics (Grand Ouest) SAS | Microcontroller, computer program product, and method for adding an additional function to a computer program |
US11789649B2 (en) * | 2021-04-22 | 2023-10-17 | Nvidia Corporation | Combined on-package and off-package memory system |
US12072823B2 (en) | 2021-04-30 | 2024-08-27 | Hewlett Packard Enterprise Development Lp | Flexible high-availability computing with parallel configurable fabrics |
US20220360580A1 (en) * | 2021-05-04 | 2022-11-10 | A5G Networks, Inc. | Private networks sharing sliced resources with public network |
US20220357980A1 (en) * | 2021-05-06 | 2022-11-10 | Dell Products L.P. | Selectively offloading the compression and decompression of files to a hardware controller |
US11783595B2 (en) * | 2021-05-17 | 2023-10-10 | Micron Technology, Inc. | Autonomous vehicle object detection |
US20220378012A1 (en) * | 2021-05-27 | 2022-12-01 | Allentown Llc | Method and System for Connecting An Animal Cage Monitoring System to An Animal Cage Rack |
CN113316033B (en) * | 2021-05-31 | 2022-07-22 | 宁波迦南智能电气股份有限公司 | Wireless meter reading method based on LORA hierarchical topological network |
US12045643B1 (en) | 2021-06-03 | 2024-07-23 | Amazon Technologies, Inc. | Power aware load placement for sub-lineups |
US11893254B2 (en) * | 2021-06-04 | 2024-02-06 | International Business Machines Corporation | Dynamic permission management of storage blocks |
US11700187B2 (en) | 2021-06-04 | 2023-07-11 | Verizon Patent And Licensing Inc. | Systems and methods for configuring and deploying multi-access edge computing applications |
CN113391985A (en) * | 2021-06-09 | 2021-09-14 | 北京猿力未来科技有限公司 | Resource allocation method and device |
US11252036B1 (en) | 2021-06-10 | 2022-02-15 | Bank Of America Corporation | System for evaluating and tuning resources for anticipated demands |
US11704609B2 (en) | 2021-06-10 | 2023-07-18 | Bank Of America Corporation | System for automatically balancing anticipated infrastructure demands |
US20220405133A1 (en) * | 2021-06-18 | 2022-12-22 | International Business Machines Corporation | Dynamic renewable runtime resource management |
US20220413931A1 (en) * | 2021-06-23 | 2022-12-29 | Quanta Cloud Technology Inc. | Intelligent resource management |
US11789642B2 (en) * | 2021-06-28 | 2023-10-17 | Micron Technology, Inc. | Loading data from memory during dispatch |
CN113259006B (en) * | 2021-07-14 | 2021-11-26 | 北京国科天迅科技有限公司 | Optical fiber network communication system, method and device |
US11947697B2 (en) | 2021-07-22 | 2024-04-02 | Dell Products L.P. | Method and system to place resources in a known state to be used in a composed information handling system |
US12013768B2 (en) | 2021-07-22 | 2024-06-18 | Dell Products L.P. | Method and system for automated healing of hardware resources in a composed information handling system |
US12026557B2 (en) | 2021-07-22 | 2024-07-02 | Dell Products L.P. | Method and system for a utilizing a proxy service to generate a composed information handling system |
US12026554B2 (en) | 2021-07-27 | 2024-07-02 | Bank Of America Corporation | Query-response system for identifying application priority |
US12014210B2 (en) | 2021-07-27 | 2024-06-18 | Bank Of America Corporation | Dynamic resource allocation in a distributed system |
US12008412B2 (en) | 2021-07-28 | 2024-06-11 | Dell Products | Resource selection for complex solutions |
US11928506B2 (en) | 2021-07-28 | 2024-03-12 | Dell Products L.P. | Managing composition service entities with complex networks |
US11888938B2 (en) * | 2021-07-29 | 2024-01-30 | Elasticflash, Inc. | Systems and methods for optimizing distributed computing systems including server architectures and client drivers |
US12074962B2 (en) | 2021-08-10 | 2024-08-27 | Samsung Electronics Co., Ltd. | Systems, methods, and apparatus for dividing and encrypting data |
US20230046403A1 (en) * | 2021-08-11 | 2023-02-16 | International Business Machines Corporation | Multi-device processing activity allocation |
US20230058310A1 (en) * | 2021-08-19 | 2023-02-23 | Sterlite Technologies Limited | Method and system for deploying intelligent edge cluster model |
CN113434284B (en) * | 2021-08-27 | 2021-11-16 | 华控清交信息科技(北京)有限公司 | Privacy computation server side equipment, system and task scheduling method |
JP7512984B2 (en) | 2021-08-30 | 2024-07-09 | トヨタ自動車株式会社 | Collision avoidance support device for vehicles and collision avoidance support program for vehicles |
CN113707192B (en) * | 2021-09-01 | 2023-02-28 | 合肥兆芯电子有限公司 | Memory temperature control frequency modulation method and memory temperature control frequency modulation system |
WO2023032121A1 (en) | 2021-09-02 | 2023-03-09 | キオクシア株式会社 | Storage system |
US11868109B2 (en) | 2021-09-03 | 2024-01-09 | Apple Inc. | Sensor interface circuit controller for multiple sensor types in an integrated circuit device |
TWI783673B (en) * | 2021-09-09 | 2022-11-11 | 英業達股份有限公司 | Server system with bandwidth switching function |
US12074724B2 (en) | 2021-09-13 | 2024-08-27 | Honeywell International Inc. | System and method for servicing assets in a building |
US20220014551A1 (en) * | 2021-09-24 | 2022-01-13 | Intel Corporation | Method and apparatus to reduce risk of denial of service resource acquisition attacks in a data center |
CN113934533A (en) * | 2021-09-26 | 2022-01-14 | 度小满科技(北京)有限公司 | Service deployment method and device, storage medium and electronic equipment |
CN113973049B (en) * | 2021-10-13 | 2022-08-02 | 中国科学院计算技术研究所 | Method for managing and deploying bit stream of FPGA (field programmable Gate array) cluster |
CN113971143B (en) * | 2021-10-22 | 2023-12-05 | 展讯半导体(成都)有限公司 | Memory controller, internet of things chip and electronic equipment |
US12099426B2 (en) * | 2021-10-27 | 2024-09-24 | Oracle International Corporation | Telemetry data filter for allocating storage resources |
JP7411616B2 (en) * | 2021-11-02 | 2024-01-11 | 株式会社日立製作所 | Storage system and its control method |
KR102612841B1 (en) * | 2021-11-12 | 2023-12-12 | 한국전자기술연구원 | Method for applying workload prediction model by operation service in micro data center |
US11502971B1 (en) | 2021-11-15 | 2022-11-15 | Oracle International Corporation | Using multi-phase constraint programming to assign resource guarantees of consumers to hosts |
US20230168929A1 (en) * | 2021-11-30 | 2023-06-01 | Rakuten Mobile, Inc. | Resource optimization for reclamation of resources |
US11995024B2 (en) | 2021-12-22 | 2024-05-28 | VMware LLC | State sharing between smart NICs |
US12042941B2 (en) | 2022-01-07 | 2024-07-23 | Khaled Elbehiery | Robotic datacenter assembly |
US20230251785A1 (en) * | 2022-02-09 | 2023-08-10 | Hewlett Packard Enterprise Development Lp | Storage system selection for storage volume deployment |
CN114442792A (en) * | 2022-02-09 | 2022-05-06 | 北京小米移动软件有限公司 | Method and device for adjusting operating frequency of processor and storage medium |
US12047253B2 (en) * | 2022-02-11 | 2024-07-23 | Nutanix, Inc. | System and method to provide priority based quality of service for telemetry data |
CN114546062B (en) * | 2022-02-18 | 2023-07-14 | 苏州浪潮智能科技有限公司 | Board card slot joint element installation control method, device and storage medium |
EP4235422A1 (en) * | 2022-02-23 | 2023-08-30 | Siemens Healthcare GmbH | Method for determining an optimum execution location of an application |
CN115062290A (en) * | 2022-02-28 | 2022-09-16 | 华为技术有限公司 | Component authentication method and device |
US20230281053A1 (en) * | 2022-03-01 | 2023-09-07 | Nvidia Corporation | Application programing interface to indicate concurrent wireless cell capability |
US20230289079A1 (en) * | 2022-03-10 | 2023-09-14 | Kyndryl, Inc. | Rapid data replication and data storage |
US20230333912A1 (en) * | 2022-04-15 | 2023-10-19 | Dell Products L.P. | Method and system for managing a distributed multi-tiered computing environment based on load predictions |
US11847089B2 (en) * | 2022-04-27 | 2023-12-19 | Mellanox Technologies Ltd. | Electronic device and method for sharing data lanes of a network interface device between two or more computing devices |
US11921582B2 (en) | 2022-04-29 | 2024-03-05 | Microsoft Technology Licensing, Llc | Out of band method to change boot firmware configuration |
US12101239B2 (en) | 2022-05-09 | 2024-09-24 | Mellanox Technologies, Ltd. | Execution offset rate limiter |
US11928367B2 (en) * | 2022-06-21 | 2024-03-12 | VMware LLC | Logical memory addressing for network devices |
US11899594B2 (en) | 2022-06-21 | 2024-02-13 | VMware LLC | Maintenance of data message classification cache on smart NIC |
US11928062B2 (en) | 2022-06-21 | 2024-03-12 | VMware LLC | Accelerating data message classification with smart NICs |
US11996992B2 (en) * | 2022-06-28 | 2024-05-28 | Intel Corporation | Opportunistic placement of compute in an edge network |
US11892963B2 (en) * | 2022-07-07 | 2024-02-06 | Infineon Technologies Ag | Communication using a comparison result value |
US12079477B2 (en) * | 2022-07-20 | 2024-09-03 | Dell Products, L.P. | Optimizing backend workload processing in a storage system |
US20240095184A1 (en) * | 2022-09-21 | 2024-03-21 | Advanced Micro Devices, Inc. | Address Translation Service Management |
JP2024044793A (en) * | 2022-09-21 | 2024-04-02 | キオクシア株式会社 | Memory system, control device, and method |
US11966597B1 (en) | 2022-09-29 | 2024-04-23 | Amazon Technologies, Inc. | Multi-domain configurable data compressor/de-compressor |
CN115695187B (en) * | 2022-10-24 | 2024-05-24 | 中国工商银行股份有限公司 | Communication resource acquisition method, device, computer equipment and storage medium |
US20240237297A9 (en) * | 2022-10-24 | 2024-07-11 | Strategic Thermal Labs, Llc | Smart rack liquid cooling manifold system having integrated controller(s) providing server-level liquid telemetry monitoring, rack liquid flow control, and datacenter communicaton |
US20240146614A1 (en) * | 2022-11-01 | 2024-05-02 | Cisco Technology, Inc. | Distributed virtualization of telemetry processing with ip anycast |
WO2024097402A1 (en) * | 2022-11-05 | 2024-05-10 | Aviatrix Systems, Inc. | Systems and methods for autonomous network scaling using artificial intelligence |
CN115766526B (en) * | 2022-11-18 | 2024-06-21 | 苏州浪潮智能科技有限公司 | Method and device for testing physical layer chip of switch and electronic equipment |
TWI835428B (en) * | 2022-11-26 | 2024-03-11 | 國立臺北科技大學 | Chilled warehouse laminar flow system |
CN115955396A (en) * | 2022-12-07 | 2023-04-11 | 篆芯半导体(南京)有限公司 | Method, system, equipment and storage medium for generating Ethernet switching network flow |
CN116225639B (en) * | 2022-12-13 | 2023-10-27 | 深圳市迈科龙电子有限公司 | Task allocation method and device, electronic equipment and readable storage medium |
US12007915B1 (en) | 2023-08-10 | 2024-06-11 | Morgan Stanley Services Group Inc. | Field programmable gate array-based low latency disaggregated system orchestrator |
US11977760B1 (en) * | 2023-09-08 | 2024-05-07 | Idaho Scientific Llc | Secure data and instruction loading |
CN117312222B (en) * | 2023-11-29 | 2024-05-21 | 博思数采科技股份有限公司 | SPI-based government purchasing method, system, equipment and medium |
CN117667718B (en) * | 2023-12-07 | 2024-07-23 | 中电云计算技术有限公司 | Automatic test method and system based on task scheduling |
CN117955868B (en) * | 2024-03-26 | 2024-06-07 | 苏州元脑智能科技有限公司 | Node management method of server chassis and related device |
CN117978682B (en) * | 2024-04-02 | 2024-06-07 | 南京荧火泰讯信息科技有限公司 | Baseband signal monitoring system based on FPGA |
CN118394529B (en) * | 2024-06-24 | 2024-08-23 | 长沙瑞腾信息技术有限公司 | Method and system for distributing server computing resources of edge collaborative computing |
Family Cites Families (1042)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US55228A (en) * | 1866-06-05 | Improved dredge-roller for oyster-boats | ||
US3821709A (en) * | 1972-10-05 | 1974-06-28 | Honeywell Inf Systems | Memory storage sequencer |
US4151580A (en) * | 1977-11-21 | 1979-04-24 | Allen-Bradley Company | Circuit board assembly with disconnect arm |
US4442476A (en) * | 1981-08-17 | 1984-04-10 | Westinghouse Electric Corp. | Versatile printed circuit board termination rack |
US4656559A (en) * | 1984-05-10 | 1987-04-07 | Ultima Electronics Ltd. | Holder and heat sink for electronic components |
US4699455A (en) * | 1985-02-19 | 1987-10-13 | Allen-Bradley Company | Fiber optic connector |
US4695872A (en) * | 1986-08-01 | 1987-09-22 | Texas Instruments Incorporated | High density micropackage for IC chips |
JPH0336614A (en) * | 1989-07-03 | 1991-02-18 | Mitsumi Electric Co Ltd | Circuit module |
US5396635A (en) * | 1990-06-01 | 1995-03-07 | Vadem Corporation | Power conservation apparatus having multiple power reduction levels dependent upon the activity of the computer system |
US5051745A (en) * | 1990-08-21 | 1991-09-24 | Pkware, Inc. | String searcher, and compressor using same |
GB2256735B (en) * | 1991-06-12 | 1995-06-21 | Intel Corp | Non-volatile disk cache |
US5277615A (en) * | 1992-09-24 | 1994-01-11 | Compaq Computer Corporation | Apparatus for removably supporting a plurality of hot plug-connected hard disk drives |
US5347428A (en) * | 1992-12-03 | 1994-09-13 | Irvine Sensors Corporation | Module comprising IC memory stack dedicated to and structurally combined with an IC microprocessor chip |
US5303121A (en) * | 1992-12-28 | 1994-04-12 | Ncr Corporation | Multi-chip module board |
US5535399A (en) * | 1993-09-30 | 1996-07-09 | Quantum Corporation | Solid state disk drive unit having on-board backup non-volatile memory |
US5579204A (en) * | 1994-08-05 | 1996-11-26 | Emc Corporation | Disk carrier assembly |
JPH08119371A (en) * | 1994-10-25 | 1996-05-14 | Matsushita Electric Ind Co Ltd | Magazine rack for printed circuit board |
JPH08148870A (en) | 1994-11-16 | 1996-06-07 | Hitachi Ltd | Hat radiation structure of electronic equipment |
US5784291A (en) * | 1994-12-22 | 1998-07-21 | Texas Instruments, Incorporated | CPU, memory controller, bus bridge integrated circuits, layout structures, system and methods |
US5642349A (en) * | 1994-12-30 | 1997-06-24 | Lucent Technologies Inc. | Terabit per second ATM packet switch having distributed out-of-band control |
GB2297398B (en) * | 1995-01-17 | 1999-11-24 | Advanced Risc Mach Ltd | Accessing cache memories |
JP3426385B2 (en) * | 1995-03-09 | 2003-07-14 | 富士通株式会社 | Disk controller |
US5838683A (en) * | 1995-03-13 | 1998-11-17 | Selsius Systems Inc. | Distributed interactive multimedia system architecture |
TW299439B (en) * | 1995-04-11 | 1997-03-01 | Discovision Ass | |
US5799200A (en) * | 1995-09-28 | 1998-08-25 | Emc Corporation | Power failure responsive apparatus and method having a shadow dram, a flash ROM, an auxiliary battery, and a controller |
US5652697A (en) | 1995-11-13 | 1997-07-29 | Ast Research, Inc. | Computer system backplane having ground tabs for interconnecting the backplane ground to the computer system chassis |
US5757295A (en) * | 1995-12-28 | 1998-05-26 | Philips Electronics North America Corporation | Variable length decoder with enhanced throughput due to parallel processing of contiguous code words of identical type |
US6175902B1 (en) * | 1997-12-18 | 2001-01-16 | Advanced Micro Devices, Inc. | Method and apparatus for maintaining a time order by physical ordering in a memory |
US6952705B2 (en) * | 1997-03-25 | 2005-10-04 | Mci, Inc. | Method, system and program product that utilize a hierarchical conceptual framework to model an environment containing a collection of items |
US6003115A (en) * | 1997-07-29 | 1999-12-14 | Quarterdeck Corporation | Method and apparatus for predictive loading of a cache |
US6231732B1 (en) * | 1997-08-26 | 2001-05-15 | Scivac | Cylindrical carriage sputtering system |
US6785888B1 (en) | 1997-08-29 | 2004-08-31 | International Business Machines Corporation | Memory allocator for a multiprocessor computer system |
JP3028794B2 (en) * | 1997-09-12 | 2000-04-04 | 日本電気株式会社 | Printed circuit board ejector and printed circuit board retaining structure |
US6043765A (en) * | 1997-09-26 | 2000-03-28 | Silicon Engineering, Inc. | Method and apparatus for performing a parallel speculative Huffman decoding using both partial and full decoders |
US5870309A (en) * | 1997-09-26 | 1999-02-09 | Xilinx, Inc. | HDL design entry with annotated timing |
US6047363A (en) * | 1997-10-14 | 2000-04-04 | Advanced Micro Devices, Inc. | Prefetching data using profile of cache misses from earlier code executions |
US6085295A (en) | 1997-10-20 | 2000-07-04 | International Business Machines Corporation | Method of maintaining data coherency in a computer system having a plurality of interconnected nodes |
US6137793A (en) * | 1997-12-05 | 2000-10-24 | Com21, Inc. | Reverse path multiplexer for use in high speed data transmissions |
US6115372A (en) * | 1998-02-04 | 2000-09-05 | Newcom Technologies, Inc. | Synchronous packet switching |
US6367018B1 (en) | 1998-02-05 | 2002-04-02 | 3Com Corporation | Method for detecting dedicated link between an end station and a network device |
US6226628B1 (en) * | 1998-06-24 | 2001-05-01 | Microsoft Corporation | Cross-file pattern-matching compression |
US6154446A (en) | 1998-07-08 | 2000-11-28 | Broadcom Corporation | Network switching architecture utilizing cell based and packet based per class-of-service head-of-line blocking prevention |
US6201404B1 (en) * | 1998-07-14 | 2001-03-13 | Altera Corporation | Programmable logic device with redundant circuitry |
US6424034B1 (en) * | 1998-08-31 | 2002-07-23 | Micron Technology, Inc. | High performance packaging for microprocessors and DRAM chips which minimizes timing skews |
US20020152060A1 (en) * | 1998-08-31 | 2002-10-17 | Tseng Ping-Sheng | Inter-chip communication system |
KR100317251B1 (en) * | 1998-12-14 | 2002-02-19 | 서평원 | Apparatus for multiplexing line |
US6714549B1 (en) | 1998-12-23 | 2004-03-30 | Worldcom, Inc. | High resiliency network infrastructure |
US6353885B1 (en) * | 1999-01-26 | 2002-03-05 | Dell Usa, L.P. | System and method for providing bios-level user configuration of a computer system |
JP2000269671A (en) * | 1999-03-19 | 2000-09-29 | Toshiba Corp | Electronic apparatus |
US6565163B2 (en) | 1999-04-12 | 2003-05-20 | Inclose Design, Inc. | Rack for memory storage devices |
US6650620B1 (en) | 1999-05-04 | 2003-11-18 | Tut Systems, Inc. | Resource constrained routing in active networks |
WO2001023974A2 (en) * | 1999-09-28 | 2001-04-05 | International Business Machines Corporation | Workload management in a computing environment |
US7181608B2 (en) * | 2000-02-03 | 2007-02-20 | Realtime Data Llc | Systems and methods for accelerated loading of operating systems and application programs |
US8095508B2 (en) * | 2000-04-07 | 2012-01-10 | Washington University | Intelligent data storage and processing using FPGA devices |
US6220456B1 (en) * | 2000-04-19 | 2001-04-24 | Dell Products, L.P. | Method and apparatus for supporting a computer chassis |
US6305848B1 (en) * | 2000-06-19 | 2001-10-23 | Corona Optical Systems, Inc. | High density optoelectronic transceiver module |
US6738670B1 (en) * | 2000-06-19 | 2004-05-18 | Medtronic, Inc. | Implantable medical device telemetry processor |
US7565680B1 (en) * | 2000-06-30 | 2009-07-21 | Comcast Ip Holdings I, Llc | Advanced set top terminal having a video call feature |
US6981070B1 (en) * | 2000-07-12 | 2005-12-27 | Shun Hang Luk | Network storage device having solid-state non-volatile memory |
US6325636B1 (en) * | 2000-07-20 | 2001-12-04 | Rlx Technologies, Inc. | Passive midplane for coupling web server processing cards with a network interface(s) |
JP4299958B2 (en) | 2000-07-31 | 2009-07-22 | 富士通株式会社 | Communication device and plug-in unit |
US7032119B2 (en) * | 2000-09-27 | 2006-04-18 | Amphus, Inc. | Dynamic power and workload management for multi-server system |
US7064489B2 (en) * | 2000-09-28 | 2006-06-20 | Roke Manor Research Limited | Huffman data compression method |
US7275646B2 (en) * | 2000-11-07 | 2007-10-02 | Innovation First, Inc. | Apparatus and method for adapting two-post rack systems to support four-post rack mounted equipment |
US7082549B2 (en) * | 2000-11-17 | 2006-07-25 | Bitfone Corporation | Method for fault tolerant updating of an electronic device |
JP3431015B2 (en) * | 2000-11-17 | 2003-07-28 | 日本電気株式会社 | System and method for changing link layer protocol of line termination device |
US20020069318A1 (en) * | 2000-12-01 | 2002-06-06 | Chow Yan Chiew | Real time application accelerator and method of operating the same |
IES20010015A2 (en) * | 2001-01-09 | 2002-04-17 | Menlo Park Res Teoranta | Content management and distribution system |
US6990667B2 (en) * | 2001-01-29 | 2006-01-24 | Adaptec, Inc. | Server-independent object positioning for load balancing drives and servers |
US6738779B1 (en) * | 2001-02-21 | 2004-05-18 | Telecom Italia S.P.A. | Apparatus for and method of multiple parallel string searching |
US6871150B2 (en) * | 2001-02-23 | 2005-03-22 | Power Measurement Ltd. | Expandable intelligent electronic device |
US6745138B2 (en) * | 2001-02-23 | 2004-06-01 | Power Measurement, Ltd. | Intelligent electronic device with assured data storage on powerdown |
US6813571B2 (en) * | 2001-02-23 | 2004-11-02 | Power Measurement, Ltd. | Apparatus and method for seamlessly upgrading the firmware of an intelligent electronic device |
US6973229B1 (en) * | 2001-02-28 | 2005-12-06 | Lambda Opticalsystems Corporation | Node architecture for modularized and reconfigurable optical networks, and methods and apparatus therefor |
US20030091267A1 (en) * | 2001-02-28 | 2003-05-15 | Alvarez Mario F. | Node management architecture with customized line card handlers for a modular optical network, and methods and apparatus therefor |
US6731832B2 (en) | 2001-02-28 | 2004-05-04 | Lambda Opticalsystems Corporation | Detection of module insertion/removal in a modular optical network, and methods and apparatus therefor |
US6864896B2 (en) * | 2001-05-15 | 2005-03-08 | Rambus Inc. | Scalable unified memory architecture |
US6721195B2 (en) * | 2001-07-12 | 2004-04-13 | Micron Technology, Inc. | Reversed memory module socket and motherboard incorporating same |
US20030028594A1 (en) | 2001-07-31 | 2003-02-06 | International Business Machines Corporation | Managing intended group membership using domains |
US20090210081A1 (en) * | 2001-08-10 | 2009-08-20 | Rockwell Automation Technologies, Inc. | System and method for dynamic multi-objective optimization of machine selection, integration and utilization |
US7065599B2 (en) * | 2001-08-10 | 2006-06-20 | Sun Microsystems, Inc. | Multiprocessor systems |
US6606322B2 (en) * | 2001-08-17 | 2003-08-12 | Mcdata Corporation | Route lookup caching for a fiber channel switch |
US20030046339A1 (en) * | 2001-09-05 | 2003-03-06 | Ip Johnny Chong Ching | System and method for determining location and status of computer system server |
US7145903B2 (en) * | 2001-09-06 | 2006-12-05 | Meshnetworks, Inc. | Multi-master bus architecture for system-on-chip designs |
US7483433B2 (en) * | 2001-09-17 | 2009-01-27 | Foundry Networks, Inc. | System and method for router data distribution |
US6938133B2 (en) * | 2001-09-28 | 2005-08-30 | Hewlett-Packard Development Company, L.P. | Memory latency and bandwidth optimizations |
TWI237759B (en) * | 2001-10-04 | 2005-08-11 | Via Tech Inc | Method for data accessing in a computer and the computer thereof |
US20050002405A1 (en) * | 2001-10-29 | 2005-01-06 | Hanzhong Gao | Method system and data structure for multimedia communications |
US20050002388A1 (en) * | 2001-10-29 | 2005-01-06 | Hanzhong Gao | Data structure method, and system for multimedia communications |
US7958199B2 (en) * | 2001-11-02 | 2011-06-07 | Oracle America, Inc. | Switching systems and methods for storage management in digital networks |
US7137004B2 (en) * | 2001-11-16 | 2006-11-14 | Microsoft Corporation | Manifest-based trusted agent management in a trusted operating system environment |
US6833995B1 (en) * | 2001-11-21 | 2004-12-21 | 3Pardata, Inc. | Enclosure having a divider wall for removable electronic devices |
JP3810681B2 (en) * | 2001-12-20 | 2006-08-16 | シャープ株式会社 | Thin film transistor substrate and liquid crystal display device |
US20030200548A1 (en) * | 2001-12-27 | 2003-10-23 | Paul Baran | Method and apparatus for viewer control of digital TV program start time |
US6644481B2 (en) * | 2002-02-11 | 2003-11-11 | Hewlett-Packard Development Company, L.P. | Apparatus and method for rackmounting a chassis |
US7266823B2 (en) * | 2002-02-21 | 2007-09-04 | International Business Machines Corporation | Apparatus and method of dynamically repartitioning a computer system in response to partition workloads |
US6816376B2 (en) * | 2002-03-06 | 2004-11-09 | Tyco Electronics Corporation | Pluggable electronic module and receptacle with heat sink |
US6851014B2 (en) * | 2002-03-22 | 2005-02-01 | Programmable Microelectronics Corp. | Memory device having automatic protocol detection |
EP1357690B1 (en) * | 2002-03-27 | 2005-07-06 | Lightmaze Solutions AG | Intelligent optical network element |
US20130016682A1 (en) * | 2002-05-21 | 2013-01-17 | Russell Jesse E | Advanced multi-network client device that utilizes multiple digital radio processors for implementing frequency channel aggregation within different spectrum bands |
US20050060608A1 (en) * | 2002-05-23 | 2005-03-17 | Benoit Marchand | Maximizing processor utilization and minimizing network bandwidth requirements in throughput compute clusters |
AU2003243365A1 (en) * | 2002-05-31 | 2003-12-19 | Racksaver Inc. | Methods and apparatus for mounting computer components |
US6909611B2 (en) * | 2002-05-31 | 2005-06-21 | Verari System, Inc. | Rack mountable computer component and method of making same |
CN1266887C (en) * | 2002-07-10 | 2006-07-26 | 华为技术有限公司 | Virtual switch for supplying virtual LAN service and method |
US8837161B2 (en) * | 2002-07-16 | 2014-09-16 | Nvidia Corporation | Multi-configuration processor-memory substrate device |
US7363546B2 (en) * | 2002-07-31 | 2008-04-22 | Sun Microsystems, Inc. | Latent fault detector |
US8386797B1 (en) | 2002-08-07 | 2013-02-26 | Nvidia Corporation | System and method for transparent disk encryption |
MXPA05002390A (en) | 2002-09-03 | 2005-05-27 | Thomson Licensing Sa | Mechanism for providing quality of service in a network utilizing priority and reserved bandwidth protocols. |
US6917658B2 (en) * | 2002-09-16 | 2005-07-12 | Silicon Labs Cp, Inc. | Clock recovery method for bursty communications |
US6895476B2 (en) * | 2002-10-03 | 2005-05-17 | Hewlett-Packard Development Company, L.P. | Retry-based late race resolution mechanism for a computer system |
US7034387B2 (en) * | 2003-04-04 | 2006-04-25 | Chippac, Inc. | Semiconductor multipackage module including processor and memory package assemblies |
US7266598B2 (en) * | 2002-10-22 | 2007-09-04 | Hewlett-Packard Development Company, L.P. | Programmable data center |
US20040153844A1 (en) * | 2002-10-28 | 2004-08-05 | Gautam Ghose | Failure analysis method and system for storage area networks |
US6963959B2 (en) * | 2002-10-31 | 2005-11-08 | International Business Machines Corporation | Storage system and method for reorganizing data to improve prefetch effectiveness and reduce seek distance |
KR20050085155A (en) * | 2002-12-02 | 2005-08-29 | 오페락스 아베 | Arrangements and method for hierarchical resource management in a layered network architecture |
AU2003296988A1 (en) | 2002-12-19 | 2004-07-29 | Matrix Semiconductor, Inc | An improved method for making high-density nonvolatile memory |
US7800932B2 (en) * | 2005-09-28 | 2010-09-21 | Sandisk 3D Llc | Memory cell comprising switchable semiconductor memory element with trimmable resistance |
US7012808B2 (en) * | 2002-12-20 | 2006-03-14 | Hewlett-Packard Development Company, L.P. | Multi-configurable telecommunications rack mounting system and method incorporating same |
US6932696B2 (en) | 2003-01-08 | 2005-08-23 | Sun Microsystems, Inc. | Cooling system including redundant fan controllers |
US20030108030A1 (en) * | 2003-01-21 | 2003-06-12 | Henry Gao | System, method, and data structure for multimedia communications |
GB2398651A (en) * | 2003-02-21 | 2004-08-25 | Picochip Designs Ltd | Automatical task allocation in a processor array |
US7522614B1 (en) * | 2003-02-28 | 2009-04-21 | 3Com Corporation | Multi-service access platform for telecommunications and data networks |
US7350186B2 (en) * | 2003-03-10 | 2008-03-25 | International Business Machines Corporation | Methods and apparatus for managing computing deployment in presence of variable workload |
EP1462913A2 (en) * | 2003-03-28 | 2004-09-29 | SharkRack, Inc. | Universal computer enclosure |
US7298973B2 (en) * | 2003-04-16 | 2007-11-20 | Intel Corporation | Architecture, method and system of multiple high-speed servers to network in WDM based photonic burst-switched networks |
US7076605B1 (en) * | 2003-04-25 | 2006-07-11 | Network Appliance, Inc. | Method and apparatus for writing data to a storage device |
US20050005018A1 (en) * | 2003-05-02 | 2005-01-06 | Anindya Datta | Method and apparatus for performing application virtualization |
US20130167198A1 (en) * | 2003-06-16 | 2013-06-27 | Lawrence MacLennan | Protocol for sequential rights transactions |
US20040267897A1 (en) * | 2003-06-24 | 2004-12-30 | Sychron Inc. | Distributed System Providing Scalable Methodology for Real-Time Control of Server Pools and Data Centers |
US20050015430A1 (en) * | 2003-06-25 | 2005-01-20 | Rothman Michael A. | OS agnostic resource sharing across multiple computing platforms |
KR100585095B1 (en) * | 2003-06-26 | 2006-05-30 | 삼성전자주식회사 | Method and apparatus for protecting data in data transmission system |
JP2005018510A (en) * | 2003-06-27 | 2005-01-20 | Hitachi Ltd | Data center system and its control method |
US6889908B2 (en) * | 2003-06-30 | 2005-05-10 | International Business Machines Corporation | Thermal analysis in a data processing system |
EP1927921A1 (en) * | 2003-08-08 | 2008-06-04 | Teamon Systems, Inc. | Communications system providing server load balancing based upon weighted health metrics and related method |
US7136958B2 (en) | 2003-08-28 | 2006-11-14 | Micron Technology, Inc. | Multiple processor system and method including multiple memory hub modules |
US8838772B2 (en) * | 2003-08-29 | 2014-09-16 | Ineoquest Technologies, Inc. | System and method for analyzing the performance of multiple transportation streams of streaming media in packet-based networks |
US20050036742A1 (en) * | 2003-08-29 | 2005-02-17 | Dean David L. | Molded fiber optic ferrule with integrally formed geometry features |
US7127625B2 (en) * | 2003-09-04 | 2006-10-24 | Hewlett-Packard Development Company, L.P. | Application management based on power consumption |
US6854984B1 (en) * | 2003-09-11 | 2005-02-15 | Super Talent Electronics, Inc. | Slim USB connector with spring-engaging depressions, stabilizing dividers and wider end rails for flash-memory drive |
US7107403B2 (en) | 2003-09-30 | 2006-09-12 | International Business Machines Corporation | System and method for dynamically allocating cache space among different workload classes that can have different quality of service (QoS) requirements where the system and method may maintain a history of recently evicted pages for each class and may determine a future cache size for the class based on the history and the QoS requirements |
EP1678617A4 (en) | 2003-10-08 | 2008-03-26 | Unisys Corp | Computer system para-virtualization using a hypervisor that is implemented in a partition of the host system |
US20050132089A1 (en) * | 2003-12-12 | 2005-06-16 | Octigabay Systems Corporation | Directly connected low latency network and interface |
US7302593B2 (en) * | 2003-12-18 | 2007-11-27 | Intel Corporation | Method for remotely querying a blade server's physical location within a rack of blade servers |
US7409538B2 (en) * | 2003-12-18 | 2008-08-05 | International Business Machines Corporation | Update in-use flash memory without external interfaces |
US6919826B1 (en) * | 2003-12-19 | 2005-07-19 | Sun Microsystems, Inc. | Systems and methods for efficient and compact encoding |
US7756008B2 (en) * | 2003-12-19 | 2010-07-13 | At&T Intellectual Property Ii, L.P. | Routing protocols with predicted outrage notification |
JP2005190297A (en) | 2003-12-26 | 2005-07-14 | Toshiba Corp | Server, information processor and casing |
DE102004004796B4 (en) * | 2004-01-30 | 2007-11-29 | Infineon Technologies Ag | Device for data transmission between memories |
US20050195629A1 (en) * | 2004-03-02 | 2005-09-08 | Leddige Michael W. | Interchangeable connection arrays for double-sided memory module placement |
US20050207134A1 (en) * | 2004-03-16 | 2005-09-22 | Belady Christian L | Cell board interconnection architecture |
US9047094B2 (en) * | 2004-03-31 | 2015-06-02 | Icera Inc. | Apparatus and method for separate asymmetric control processing and data path processing in a dual path processor |
US7533190B2 (en) | 2004-04-08 | 2009-05-12 | Intel Corporation | Network storage target boot and network connectivity through a common network device |
TWI272815B (en) * | 2004-04-16 | 2007-02-01 | Via Tech Inc | Apparatus and method for performing transparent output feedback mode cryptographic functions |
US7370163B2 (en) * | 2004-05-03 | 2008-05-06 | Gemini Storage | Adaptive cache engine for storage area network including systems and methods related thereto |
US7460375B2 (en) | 2004-05-07 | 2008-12-02 | Rackable Systems, Inc. | Interface assembly |
US20070266388A1 (en) * | 2004-06-18 | 2007-11-15 | Cluster Resources, Inc. | System and method for providing advanced reservations in a compute environment |
US20050281014A1 (en) * | 2004-06-21 | 2005-12-22 | Carullo Thomas J | Surrogate card for printed circuit board assembly |
JP2006023963A (en) * | 2004-07-07 | 2006-01-26 | Fujitsu Ltd | Wireless ic tag reader/writer, wireless ic tag system and wireless ic tag data writing method |
US7712102B2 (en) * | 2004-07-30 | 2010-05-04 | Hewlett-Packard Development Company, L.P. | System and method for dynamically configuring a plurality of load balancers in response to the analyzed performance data |
ATE414949T1 (en) * | 2004-08-12 | 2008-12-15 | Telecom Italia Spa | SYSTEM, METHOD AND DEVICE FOR UPDATE A DATA SET THROUGH A COMMUNICATIONS NETWORK |
US8249106B2 (en) * | 2004-08-23 | 2012-08-21 | Alcatel Lucent | Extended cellular telephony protocol |
US7712100B2 (en) | 2004-09-14 | 2010-05-04 | International Business Machines Corporation | Determining a capacity of a grid environment to handle a required workload for a virtual grid job request |
US8417814B1 (en) * | 2004-09-22 | 2013-04-09 | Symantec Corporation | Application quality of service envelope |
US7711942B2 (en) | 2004-09-23 | 2010-05-04 | Hewlett-Packard Development Company, L.P. | Computer security system and method |
US8001294B2 (en) * | 2004-09-28 | 2011-08-16 | Sony Computer Entertainment Inc. | Methods and apparatus for providing a compressed network in a multi-processing system |
US20060072879A1 (en) * | 2004-09-30 | 2006-04-06 | Lizhang Yang | Optical fiber polishing method |
EP1643506B1 (en) * | 2004-10-04 | 2006-12-06 | Research In Motion Limited | System and method for automatically saving memory contents of a data processing device on power failure |
US7257655B1 (en) * | 2004-10-13 | 2007-08-14 | Altera Corporation | Embedded PCI-Express implementation |
JP4376750B2 (en) | 2004-10-14 | 2009-12-02 | 株式会社日立製作所 | Computer system |
US7318143B2 (en) * | 2004-10-20 | 2008-01-08 | Arm Limited | Reuseable configuration data |
US7675922B2 (en) * | 2004-10-29 | 2010-03-09 | Microsoft Corporation | System and method for providing a universal communications port with computer-telephony interface |
JP4496061B2 (en) * | 2004-11-11 | 2010-07-07 | パナソニック株式会社 | Confidential information processing device |
KR20060044259A (en) * | 2004-11-11 | 2006-05-16 | 삼성전자주식회사 | Mounting guide of rack for communication apparatus |
US7657578B1 (en) * | 2004-12-20 | 2010-02-02 | Symantec Operating Corporation | System and method for volume replication in a storage environment employing distributed block virtualization |
US20060155843A1 (en) * | 2004-12-30 | 2006-07-13 | Glass Richard J | Information transportation scheme from high functionality probe to logic analyzer |
US7502946B2 (en) | 2005-01-20 | 2009-03-10 | Panasonic Corporation | Using hardware to secure areas of long term storage in CE devices |
CN1816003A (en) | 2005-02-06 | 2006-08-09 | 华为技术有限公司 | Telecommunication method and apparatus of dissimilar chain protocol |
US20060177922A1 (en) * | 2005-02-10 | 2006-08-10 | Velocity 11 | Environmental control incubator with removable drawer and robot |
JP4399497B2 (en) * | 2005-02-25 | 2010-01-13 | 富士通株式会社 | Plug-in unit and communication device |
US7613595B2 (en) * | 2005-03-01 | 2009-11-03 | The Math Works, Inc. | Execution and real-time implementation of a temporary overrun scheduler |
US7398278B2 (en) * | 2005-03-04 | 2008-07-08 | Nec Electronics Corporation | Prefix processing technique for faster IP routing |
US8271807B2 (en) * | 2008-04-21 | 2012-09-18 | Adaptive Computing Enterprises, Inc. | System and method for managing energy consumption in a compute environment |
US7870256B2 (en) * | 2005-03-25 | 2011-01-11 | Hewlett-Packard Development Company, L.P. | Remote desktop performance model for assigning resources |
US20060242380A1 (en) | 2005-04-20 | 2006-10-26 | Anuja Korgaonkar | Virtually unlimited storage |
US8059660B2 (en) * | 2005-04-22 | 2011-11-15 | Nextel Communications Inc. | Communications routing systems and methods |
US20060253472A1 (en) * | 2005-05-03 | 2006-11-09 | Wasserman Theodore J | System, method, and service for automatically determining an initial sizing of a hardware configuration for a database system running a business intelligence workload |
US8112756B2 (en) | 2006-07-20 | 2012-02-07 | Hewlett-Packard Development Company, L.P. | System and method for evaluating a workload and its impact on performance of a workload manager |
US7739677B1 (en) | 2005-05-27 | 2010-06-15 | Symantec Operating Corporation | System and method to prevent data corruption due to split brain in shared data clusters |
US7836284B2 (en) * | 2005-06-09 | 2010-11-16 | Qualcomm Incorporated | Microprocessor with automatic selection of processing parallelism mode based on width data of instructions |
US7953980B2 (en) * | 2005-06-30 | 2011-05-31 | Intel Corporation | Signed manifest for run-time verification of software program identity and integrity |
US7489923B2 (en) * | 2005-08-05 | 2009-02-10 | Research In Motion Limited | Methods and systems for handling software operations associated with startup and shutdown of handheld devices |
US20070176782A1 (en) * | 2005-08-08 | 2007-08-02 | Mohalik Swarup K | Device location system and method |
US7865570B2 (en) * | 2005-08-30 | 2011-01-04 | Illinois Institute Of Technology | Memory server |
US7424666B2 (en) * | 2005-09-26 | 2008-09-09 | Intel Corporation | Method and apparatus to detect/manage faults in a system |
US7971042B2 (en) * | 2005-09-28 | 2011-06-28 | Synopsys, Inc. | Microprocessor system and method for instruction-initiated recording and execution of instruction sequences in a dynamically decoupleable extended instruction pipeline |
US10282440B2 (en) * | 2015-03-31 | 2019-05-07 | International Business Machines Corporation | Prioritizing rebuilding of encoded data slices |
US7296135B2 (en) * | 2005-10-05 | 2007-11-13 | Hewlett-Packard Development Company, L.P. | Data misalignment detection and correction in a computer system utilizing a mass storage subsystem |
US7356638B2 (en) * | 2005-10-12 | 2008-04-08 | International Business Machines Corporation | Using out-of-band signaling to provide communication between storage controllers in a computer storage system |
US7725212B2 (en) | 2005-10-21 | 2010-05-25 | Hewlett-Packard Development Company, L.P. | Datacenter with automated robotic maintenance |
US7298612B2 (en) * | 2005-10-25 | 2007-11-20 | Hewlett-Packard Development Company, L.P. | Server with vertical drive arrangement |
US7545630B2 (en) * | 2005-11-01 | 2009-06-09 | Dell Products L.P. | Method and apparatus for thermal dissipation |
US7634585B2 (en) * | 2005-11-04 | 2009-12-15 | Sandisk Corporation | In-line cache using nonvolatile memory between host and disk device |
US8407424B2 (en) | 2005-11-07 | 2013-03-26 | Silicon Graphics International Corp. | Data coherence method and apparatus for multi-node computer system |
US7493419B2 (en) * | 2005-12-13 | 2009-02-17 | International Business Machines Corporation | Input/output workload fingerprinting for input/output schedulers |
CA2633366C (en) * | 2005-12-22 | 2015-04-28 | Vidyo, Inc. | System and method for videoconferencing using scalable video coding and compositing scalable video conferencing servers |
WO2007079534A1 (en) * | 2006-01-12 | 2007-07-19 | Para Kanagasabai Segaram | A subsystem for computing devices |
EP1977635A2 (en) * | 2006-01-13 | 2008-10-08 | Sun Microsystems, Inc. | Modular blade server |
US20070165618A1 (en) * | 2006-01-18 | 2007-07-19 | Eren Niazi | Vertical Network Switch |
CN100571202C (en) | 2006-01-27 | 2009-12-16 | 华为技术有限公司 | A kind of transfer approach and transfer system that carries the data of routing iinformation |
US7904894B2 (en) * | 2006-03-29 | 2011-03-08 | Microsoft Corporation | Automatically optimize performance of package execution |
US20070230109A1 (en) | 2006-03-31 | 2007-10-04 | Spectra Logic Corporation | High density array system with active storage blades |
US10026255B2 (en) * | 2006-04-13 | 2018-07-17 | Igt | Presentation of remotely-hosted and locally rendered content for gaming systems |
US9899312B2 (en) * | 2006-04-13 | 2018-02-20 | Rambus Inc. | Isolating electric paths in semiconductor device packages |
US9128766B1 (en) * | 2006-04-24 | 2015-09-08 | Hewlett-Packard Development Company, L.P. | Computer workload redistribution schedule |
US8555288B2 (en) * | 2006-05-17 | 2013-10-08 | Teradata Us, Inc. | Managing database utilities to improve throughput and concurrency |
US7461229B2 (en) * | 2006-05-23 | 2008-12-02 | Dataram, Inc. | Software program for managing and protecting data written to a hybrid solid-state disk drive |
US7613809B2 (en) | 2006-05-30 | 2009-11-03 | Intel Corporation | Supporting ephemeral ports in a virtualized environment |
US8239869B2 (en) * | 2006-06-19 | 2012-08-07 | Condusiv Technologies Corporation | Method, system and apparatus for scheduling computer micro-jobs to execute at non-disruptive times and modifying a minimum wait time between the utilization windows for monitoring the resources |
US8046765B2 (en) | 2006-07-25 | 2011-10-25 | Hewlett-Packard Development Company, L.P. | System and method for determining allocation of resource access demands to different classes of service based at least in part on permitted degraded performance |
US8146079B2 (en) * | 2006-07-26 | 2012-03-27 | Hewlett-Packard Development Company, L.P. | Systems and methods for controlling resource usage by a driver domain on behalf of a virtual machine |
US7769942B2 (en) * | 2006-07-27 | 2010-08-03 | Rambus, Inc. | Cross-threaded memory system |
US8209695B1 (en) | 2006-07-28 | 2012-06-26 | Hewlett-Packard Development Company, L.P. | Reserving resources in a resource-on-demand system for user desktop utility demand |
US7644051B1 (en) * | 2006-07-28 | 2010-01-05 | Hewlett-Packard Development Company, L.P. | Management of data centers using a model |
US8099583B2 (en) * | 2006-08-23 | 2012-01-17 | Axis Semiconductor, Inc. | Method of and apparatus and architecture for real time signal processing by switch-controlled programmable processor configuring and flexible pipeline and parallel processing |
BRPI0716718A2 (en) | 2006-09-01 | 2013-09-03 | Adc Gmbh | cross-connect active signal system |
CN101206618A (en) * | 2006-09-08 | 2008-06-25 | 三星电子株式会社 | Fusion memory device and method |
JP5076418B2 (en) * | 2006-09-19 | 2012-11-21 | ソニー株式会社 | Shared memory device |
US8428071B2 (en) | 2006-09-25 | 2013-04-23 | Rockstar Consortium Us Lp | Scalable optical-core network |
US8510859B2 (en) | 2006-09-26 | 2013-08-13 | Intel Corporation | Methods and arrangements to launch trusted, co-existing environments |
US20080079715A1 (en) * | 2006-09-28 | 2008-04-03 | Shearer Robert A | Updating Spatial Index Partitions Based on Ray Tracing Image Processing System Performance |
US8089481B2 (en) * | 2006-09-28 | 2012-01-03 | International Business Machines Corporation | Updating frame divisions based on ray tracing image processing system performance |
US20080079714A1 (en) * | 2006-09-28 | 2008-04-03 | Shearer Robert A | Workload Distribution Through Frame Division in a Ray Tracing Image Processing System |
US7962736B1 (en) * | 2006-10-03 | 2011-06-14 | American Megatrends, Inc. | Interactive pre-OS firmware update with repeated disabling of interrupts |
US7553091B2 (en) * | 2006-10-19 | 2009-06-30 | Avago Technologies Fiber Ip (Singapore) Pte. Ltd. | Stackable multi-optical fiber connector modules and devices for aligning sets of the stackable multi-optical fiber connector modules and coupling optical signals between them |
US8838674B2 (en) * | 2006-10-26 | 2014-09-16 | International Business Machines Corporation | Plug-in accelerator |
JP4241802B2 (en) * | 2006-10-27 | 2009-03-18 | 株式会社東芝 | Component placement support apparatus, method, and program |
US8489817B2 (en) * | 2007-12-06 | 2013-07-16 | Fusion-Io, Inc. | Apparatus, system, and method for caching data |
KR20090087498A (en) * | 2006-12-06 | 2009-08-17 | 퓨전 멀티시스템즈, 인크.(디비에이 퓨전-아이오) | Apparatus, system and method for solid-state storage as cache for high-capacity, non-volatile storage |
US20080144293A1 (en) * | 2006-12-19 | 2008-06-19 | International Business Machines Corporation | Cable Management System and Method for Rack Mountable Equipment |
US7751918B2 (en) * | 2007-01-05 | 2010-07-06 | International Business Machines Corporation | Methods for configuring tubing for interconnecting in-series multiple liquid-cooled cold plates |
US8429389B2 (en) | 2007-01-16 | 2013-04-23 | Bally Gaming, Inc. | ROM BIOS based trusted encrypted operating system |
US7710731B2 (en) * | 2007-01-25 | 2010-05-04 | Mitac International Corp. | Chassis partition framework for personal cluster computer |
US7452236B2 (en) * | 2007-02-01 | 2008-11-18 | Aprius, Inc. | Cabling for rack-mount devices |
KR101453581B1 (en) * | 2007-02-02 | 2014-10-22 | 사이마스트, 인크. | Processor chip architecture having integrated high-speed packet switched serial interface |
JP5026102B2 (en) * | 2007-02-07 | 2012-09-12 | 株式会社日立製作所 | Storage control device and data management method |
US7680982B2 (en) * | 2007-02-20 | 2010-03-16 | International Business Machines Corporation | Preservation of cache data following failover |
US20080209213A1 (en) * | 2007-02-23 | 2008-08-28 | Sony Ericsson Mobile Communications Ab | Authorizing secure resources |
US8848722B2 (en) | 2007-03-14 | 2014-09-30 | Zonit Structured Solutions, Llc | Data center network distribution system |
US8205205B2 (en) | 2007-03-16 | 2012-06-19 | Sap Ag | Multi-objective allocation of computational jobs in client-server or hosting environments |
WO2008127672A2 (en) | 2007-04-11 | 2008-10-23 | Slt Logic Llc | Modular blade for providing scalable mechanical, electrical and environmental functionality in the enterprise using advanced tca boards |
US9367465B2 (en) * | 2007-04-12 | 2016-06-14 | Hewlett Packard Enterprise Development Lp | Method and system for improving memory access performance |
US7957132B2 (en) * | 2007-04-16 | 2011-06-07 | Fried Stephen S | Efficiently cool data centers and electronic enclosures using loop heat pipes |
JP5094193B2 (en) * | 2007-04-16 | 2012-12-12 | 株式会社日立製作所 | Storage system and control method thereof |
US7857214B2 (en) * | 2007-04-26 | 2010-12-28 | Liebert Corporation | Intelligent track system for mounting electronic equipment |
US8739162B2 (en) * | 2007-04-27 | 2014-05-27 | Hewlett-Packard Development Company, L.P. | Accurate measurement of multithreaded processor core utilization and logical processor utilization |
US8539164B2 (en) * | 2007-04-30 | 2013-09-17 | Hewlett-Packard Development Company, L.P. | Cache coherency within multiprocessor computer system |
US8543711B2 (en) * | 2007-04-30 | 2013-09-24 | Hewlett-Packard Development Company, L.P. | System and method for evaluating a pattern of resource demands of a workload |
US9405585B2 (en) * | 2007-04-30 | 2016-08-02 | International Business Machines Corporation | Management of heterogeneous workloads |
US8046767B2 (en) * | 2007-04-30 | 2011-10-25 | Hewlett-Packard Development Company, L.P. | Systems and methods for providing capacity management of resource pools for servicing workloads |
US7738386B2 (en) * | 2007-05-18 | 2010-06-15 | Welch Allyn, Inc. | Method to ensure that life-critical data is transported effectively and safely |
US20080294728A1 (en) * | 2007-05-22 | 2008-11-27 | Microsoft Corporation | Service Discovery for Electronic Messaging Clients |
US20080307426A1 (en) * | 2007-06-05 | 2008-12-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Dynamic load management in high availability systems |
CN101743732A (en) * | 2007-07-13 | 2010-06-16 | 汤姆森特许公司 | Data transmission and encapsulation |
US8756307B1 (en) | 2007-07-30 | 2014-06-17 | Hewlett-Packard Development Company, L.P. | Translating service level objectives to system metrics |
US20090041412A1 (en) * | 2007-08-07 | 2009-02-12 | Jeffrey Dean Danley | Laser erosion processes for fiber optic ferrules |
US7623365B2 (en) * | 2007-08-29 | 2009-11-24 | Micron Technology, Inc. | Memory device interface methods, apparatus, and systems |
US8090027B2 (en) | 2007-08-29 | 2012-01-03 | Red Hat, Inc. | Data compression using an arbitrary-sized dictionary |
US8516172B1 (en) * | 2007-08-30 | 2013-08-20 | Virident Systems, Inc. | Methods for early write termination and power failure with non-volatile memory |
JP5061797B2 (en) | 2007-08-31 | 2012-10-31 | ソニー株式会社 | Transmission system and method, transmission device and method, reception device and method, program, and recording medium |
GB2452524A (en) * | 2007-09-06 | 2009-03-11 | Cambridge Silicon Radio Ltd | A jitter insensitive sigma-delta modulator |
US8248928B1 (en) * | 2007-10-09 | 2012-08-21 | Foundry Networks, Llc | Monitoring server load balancing |
US7639903B2 (en) * | 2007-10-15 | 2009-12-29 | Hewlett-Packard Development Company, L.P. | Daisy chain optical interconnect |
US8410602B2 (en) * | 2007-10-15 | 2013-04-02 | Intel Corporation | Cooling system for semiconductor devices |
US7895348B2 (en) | 2007-10-17 | 2011-02-22 | Dispersive Networks Inc. | Virtual dispersive routing |
US9143406B2 (en) * | 2007-10-17 | 2015-09-22 | Verizon Patent And Licensing Inc. | Apparatus, method and computer-readable storage medium for calculating throughput requirements of a network |
IL187042A0 (en) * | 2007-10-30 | 2008-02-09 | Sandisk Il Ltd | Write failure protection for hierarchical integrity schemes |
US9141154B2 (en) * | 2007-11-07 | 2015-09-22 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Data communications and power distribution in a computer equipment rack |
US20090138732A1 (en) * | 2007-11-26 | 2009-05-28 | Herlin Chang | Network Type Power Distribution Device |
US7872483B2 (en) * | 2007-12-12 | 2011-01-18 | Samsung Electronics Co., Ltd. | Circuit board having bypass pad |
US7639486B2 (en) * | 2007-12-13 | 2009-12-29 | International Business Machines Corporation | Rack system providing flexible configuration of computer systems with front access |
US7603428B2 (en) | 2008-02-05 | 2009-10-13 | Raptor Networks Technology, Inc. | Software application striping |
US7979652B1 (en) * | 2007-12-20 | 2011-07-12 | Amazon Technologies, Inc. | System and method for M-synchronous replication |
US8127363B2 (en) | 2007-12-26 | 2012-02-28 | Intel Corporation | Method and apparatus for booting a processing system |
US8086825B2 (en) | 2007-12-31 | 2011-12-27 | Advanced Micro Devices, Inc. | Processing pipeline having stage-specific thread selection and method thereof |
US8180888B2 (en) * | 2008-01-02 | 2012-05-15 | Oracle International Corporation | Network mass operation infrastructure |
US20090204718A1 (en) * | 2008-02-08 | 2009-08-13 | Lawton Kevin P | Using memory equivalency across compute clouds for accelerated virtual memory migration and memory de-duplication |
US7797578B2 (en) * | 2008-02-25 | 2010-09-14 | Kingston Technology Corp. | Fault diagnosis of serially-addressed memory chips on a test adaptor board to a middle memory-module slot on a PC motherboard |
US8082400B1 (en) | 2008-02-26 | 2011-12-20 | Hewlett-Packard Development Company, L.P. | Partitioning a memory pool among plural computing nodes |
US20090222686A1 (en) * | 2008-03-03 | 2009-09-03 | Sun Microsystems, Inc. | Self maintained computer system utilizing robotics |
JP5153392B2 (en) * | 2008-03-11 | 2013-02-27 | 株式会社日立製作所 | Storage control apparatus and method |
US8402468B2 (en) | 2008-03-17 | 2013-03-19 | Ca, Inc. | Capacity planning based on resource utilization as a function of workload |
US8125984B2 (en) * | 2008-03-21 | 2012-02-28 | International Business Machines Corporation | Method, system, and computer program product for implementing stream processing using a reconfigurable optical switch |
US8208532B2 (en) * | 2008-03-31 | 2012-06-26 | Oracle America, Inc. | Method and apparatus for data compression and decompression |
US20090254705A1 (en) * | 2008-04-07 | 2009-10-08 | International Business Machines Corporation | Bus attached compressed random access memory |
US7948196B2 (en) * | 2008-04-09 | 2011-05-24 | International Business Machines Corporation | Plurality of configurable independent compute nodes sharing a fan assembly |
CN102057367A (en) * | 2008-04-10 | 2011-05-11 | 惠普开发有限公司 | Virtual machine migration according to environmental data |
US8959182B1 (en) * | 2008-04-15 | 2015-02-17 | Crimson Corporation | Systems and methods for computer data recovery and destruction |
US9405348B2 (en) * | 2008-04-21 | 2016-08-02 | Adaptive Computing Enterprises, Inc | System and method for managing energy consumption in a compute environment |
US20140298349A1 (en) * | 2008-04-21 | 2014-10-02 | Adaptive Computing Enterprises, Inc. | System and Method for Managing Energy Consumption in a Compute Environment |
US8078862B2 (en) * | 2008-04-25 | 2011-12-13 | Intel Corporation | Method for assigning physical data address range in multiprocessor system |
CN201185533Y (en) * | 2008-04-28 | 2009-01-21 | 青岛海信电器股份有限公司 | Fixed structure for key-press circuit board of an electronic device |
US8688654B2 (en) * | 2009-10-06 | 2014-04-01 | International Business Machines Corporation | Data compression algorithm selection and tiering |
JP5053179B2 (en) | 2008-05-30 | 2012-10-17 | 株式会社日立製作所 | Verification server, program, and verification method |
US7747712B2 (en) * | 2008-06-12 | 2010-06-29 | Telefonaktiebolaget Lm Ericsson | Managed node initial operational state |
US20090327741A1 (en) | 2008-06-30 | 2009-12-31 | Zimmer Vincent J | System and method to secure boot uefi firmware and uefi-aware operating systems on a mobile internet device (mid) |
US8161493B2 (en) * | 2008-07-15 | 2012-04-17 | International Business Machines Corporation | Weighted-region cycle accounting for multi-threaded processor cores |
US8218580B2 (en) * | 2008-07-15 | 2012-07-10 | Intel Corporation | Managing timing of a protocol stack |
US8706863B2 (en) * | 2008-07-18 | 2014-04-22 | Apple Inc. | Systems and methods for monitoring data and bandwidth usage |
WO2010010515A1 (en) * | 2008-07-23 | 2010-01-28 | Nxp B.V. | Adjustment of a processor frequency |
US8015343B2 (en) * | 2008-08-08 | 2011-09-06 | Amazon Technologies, Inc. | Providing executing programs with reliable access to non-local block data storage |
CN101383190A (en) * | 2008-08-11 | 2009-03-11 | 湖南源科创新科技股份有限公司 | Flash memory loss equalizing algorithm applied in solid hard disk |
US7856544B2 (en) * | 2008-08-18 | 2010-12-21 | International Business Machines Corporation | Stream processing in super node clusters of processors assigned with stream computation graph kernels and coupled by stream traffic optical links |
US7719449B2 (en) * | 2008-08-21 | 2010-05-18 | Agate Logic, Inc. | System and method for flexible physical layout in a heterogeneous configurable integrated circuit |
US8175425B2 (en) * | 2008-08-21 | 2012-05-08 | Verizon Patent And Licensing Inc. | Method and apparatus for providing an automated patch panel |
US8261273B2 (en) * | 2008-09-02 | 2012-09-04 | International Business Machines Corporation | Assigning threads and data of computer program within processor having hardware locality groups |
US8265071B2 (en) | 2008-09-11 | 2012-09-11 | Juniper Networks, Inc. | Methods and apparatus related to a flexible data center security architecture |
US8316196B1 (en) * | 2008-09-30 | 2012-11-20 | Emc Corporation | Systems, methods and computer readable media for improving synchronization performance after partially completed writes |
US8225074B2 (en) * | 2008-10-02 | 2012-07-17 | Nec Laboratories America, Inc. | Methods and systems for managing computations on a hybrid computing platform including a parallel accelerator |
US8200771B2 (en) * | 2008-10-10 | 2012-06-12 | International Business Machines Corporation | Workload migration using on demand remote paging |
US8365174B2 (en) * | 2008-10-14 | 2013-01-29 | Chetan Kumar Gupta | System and method for modifying scheduling of queries in response to the balancing average stretch and maximum stretch of scheduled queries |
CN102265269A (en) * | 2008-10-28 | 2011-11-30 | 惠普开发有限公司 | Data center manager |
US20100115095A1 (en) * | 2008-10-31 | 2010-05-06 | Xiaoyun Zhu | Automatically managing resources among nodes |
US8811619B2 (en) | 2008-10-31 | 2014-08-19 | Dell Products, Lp | Encryption key management system and methods thereof |
US20100125696A1 (en) * | 2008-11-17 | 2010-05-20 | Prasanth Kumar | Memory Controller For Controlling The Wear In A Non-volatile Memory Device And A Method Of Operation Therefor |
US20100131959A1 (en) * | 2008-11-26 | 2010-05-27 | Spiers Adam Z | Proactive application workload management |
US8127940B2 (en) | 2008-12-08 | 2012-03-06 | Dell Products L.P. | Rail including a shelf for supporting an information handling system |
US20100161926A1 (en) * | 2008-12-23 | 2010-06-24 | Hong Li | Data protection by segmented storage |
CN101452406B (en) * | 2008-12-23 | 2011-05-18 | 北京航空航天大学 | Cluster load balance method transparent for operating system |
US8856512B2 (en) | 2008-12-30 | 2014-10-07 | Intel Corporation | Method and system for enterprise network single-sign-on by a manageability engine |
US8180995B2 (en) * | 2009-01-21 | 2012-05-15 | Micron Technology, Inc. | Logical address offset in response to detecting a memory formatting operation |
US9170864B2 (en) | 2009-01-29 | 2015-10-27 | International Business Machines Corporation | Data processing in a hybrid computing environment |
CA2756267A1 (en) * | 2009-02-13 | 2010-08-19 | Adc Telecommunications, Inc. | Network management systems for use with physical layer information |
US8086359B2 (en) * | 2009-02-23 | 2011-12-27 | Novell, Inc. | Dynamic thermal load balancing |
JP5714564B2 (en) * | 2009-03-30 | 2015-05-07 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | Integrated circuit chip using top post-passivation technology and bottom structure technology |
US9024972B1 (en) * | 2009-04-01 | 2015-05-05 | Microsoft Technology Licensing, Llc | Augmented reality computing with inertial sensors |
US20100257294A1 (en) * | 2009-04-06 | 2010-10-07 | Greg Regnier | Configurable provisioning of computer system resources |
US20100266245A1 (en) * | 2009-04-16 | 2010-10-21 | Hon Hai Precision Ind. Co., Ltd. | Fiber termination for fiber optic connection system |
US8881157B2 (en) | 2009-09-11 | 2014-11-04 | Empire Technology Development Llc | Allocating threads to cores based on threads falling behind thread completion target deadline |
JP2012525627A (en) * | 2009-04-29 | 2012-10-22 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | Optical memory expansion |
US8271818B2 (en) | 2009-04-30 | 2012-09-18 | Hewlett-Packard Development Company, L.P. | Managing under-utilized resources in a computer |
WO2010128958A1 (en) | 2009-05-06 | 2010-11-11 | Hewlett-Packard Development Company, L.P. | Bus-based scalable optical fabrics |
US20100289620A1 (en) * | 2009-05-14 | 2010-11-18 | International Buisness Machines Corporation | Connectionless location identification within a server system |
US9270683B2 (en) * | 2009-05-15 | 2016-02-23 | Amazon Technologies, Inc. | Storage device authentication |
US8140655B1 (en) * | 2009-05-18 | 2012-03-20 | Lockheed Martin Corporation | Dynamic enclave computing system |
KR101600951B1 (en) * | 2009-05-18 | 2016-03-08 | 삼성전자주식회사 | Solid state drive device |
US9497039B2 (en) | 2009-05-28 | 2016-11-15 | Microsoft Technology Licensing, Llc | Agile data center network architecture |
US8719831B2 (en) | 2009-06-18 | 2014-05-06 | Microsoft Corporation | Dynamically change allocation of resources to schedulers based on feedback and policies from the schedulers and availability of the resources |
US8144506B2 (en) * | 2009-06-23 | 2012-03-27 | Micron Technology, Inc. | Cross-point memory devices, electronic systems including cross-point memory devices and methods of accessing a plurality of memory cells in a cross-point memory array |
US20100332622A1 (en) * | 2009-06-25 | 2010-12-30 | Sun Microsystems, Inc. | Distributed Resource and Service Management System and Method for Managing Distributed Resources and Services |
US8839254B2 (en) * | 2009-06-26 | 2014-09-16 | Microsoft Corporation | Precomputation for data center load balancing |
US8819359B2 (en) * | 2009-06-29 | 2014-08-26 | Oracle America, Inc. | Hybrid interleaving in memory modules by interleaving physical addresses for a page across ranks in a memory module |
US8910153B2 (en) * | 2009-07-13 | 2014-12-09 | Hewlett-Packard Development Company, L. P. | Managing virtualized accelerators using admission control, load balancing and scheduling |
US8514637B2 (en) * | 2009-07-13 | 2013-08-20 | Seagate Technology Llc | Systems and methods of cell selection in three-dimensional cross-point array memory devices |
US8687356B2 (en) | 2010-02-02 | 2014-04-01 | Teradyne, Inc. | Storage device testing system cooling |
US8527697B2 (en) * | 2009-07-20 | 2013-09-03 | Netapp, Inc. | Virtualized data storage in a network computing environment |
US8397088B1 (en) * | 2009-07-21 | 2013-03-12 | The Research Foundation Of State University Of New York | Apparatus and method for efficient estimation of the energy dissipation of processor based systems |
US8559333B2 (en) * | 2009-07-24 | 2013-10-15 | Broadcom Corporation | Method and system for scalable switching architecture |
US8089863B2 (en) * | 2009-07-28 | 2012-01-03 | Motorola Solutions, Inc. | RF site resilience using multiple visitor location registers simultaneously |
US8341130B2 (en) * | 2009-08-12 | 2012-12-25 | International Business Machines Corporation | Scalable file management for a shared file system |
US8321616B2 (en) * | 2009-08-12 | 2012-11-27 | Dell Products L.P. | System and method for enabling interchangeable dedicated management network interface card access via fabric controller |
US7982636B2 (en) * | 2009-08-20 | 2011-07-19 | International Business Machines Corporation | Data compression using a nested hierachy of fixed phrase length static and dynamic dictionaries |
WO2011021909A2 (en) * | 2009-08-21 | 2011-02-24 | Samsung Electronics Co., Ltd. | Method and apparatus for providing contents via network, method and apparatus for receiving contents via network, and method and apparatus for backing up data via network, backup data providing device, and backup system |
US20110055276A1 (en) * | 2009-08-26 | 2011-03-03 | Brocade Communications Systems, Inc. | Systems and methods for automatic inclusion of entities into management resource groups |
US9442540B2 (en) * | 2009-08-28 | 2016-09-13 | Advanced Green Computing Machines-Ip, Limited | High density multi node computer with integrated shared resources |
US10031750B2 (en) * | 2009-09-03 | 2018-07-24 | C3Dna Inc. | Apparatus and methods for cognitive containters to optimize managed computations and computing resources |
US9210040B2 (en) * | 2009-09-03 | 2015-12-08 | C3Dna | Apparatus and methods for cognitive containters to optimize managed computations and computing resources |
TWI428074B (en) * | 2009-09-22 | 2014-02-21 | Hon Hai Prec Ind Co Ltd | Server cabinet |
US20110103391A1 (en) | 2009-10-30 | 2011-05-05 | Smooth-Stone, Inc. C/O Barry Evans | System and method for high-performance, low-power data center interconnect fabric |
US8806094B2 (en) * | 2009-09-25 | 2014-08-12 | Analogix Semiconductor, Inc. | Transfer of uncompressed multimedia contents or data communications |
US7987143B2 (en) * | 2009-09-29 | 2011-07-26 | Livermore Software Technology Corporation | Methods and systems for multi-objective evolutionary algorithm based engineering desgin optimization |
US8190850B1 (en) * | 2009-10-01 | 2012-05-29 | Emc Corporation | Virtual block mapping for relocating compressed and/or encrypted file data block blocks |
US8264354B2 (en) * | 2009-10-14 | 2012-09-11 | Attend Systems, Llc | Data center equipment location and monitoring system |
US8630087B1 (en) * | 2009-10-22 | 2014-01-14 | Juniper Networks, Inc. | Airflow system, cable access system, and cable management system based on midplane having holes, side access of chassis, and card configuration |
US8634240B2 (en) * | 2009-10-28 | 2014-01-21 | SanDisk Technologies, Inc. | Non-volatile memory and method with accelerated post-write read to manage errors |
US8578126B1 (en) * | 2009-10-29 | 2013-11-05 | Netapp, Inc. | Mapping of logical start addresses to physical start addresses in a system having misalignment between logical and physical data blocks |
US8762930B2 (en) * | 2009-10-30 | 2014-06-24 | Realization Technologies, Inc. | Post facto identification and prioritization of causes of buffer consumption |
US8171253B2 (en) * | 2009-10-30 | 2012-05-01 | Brocade Communications Systems, Inc. | Virtual disk mapping |
CN201654651U (en) | 2009-11-09 | 2010-11-24 | 鸿富锦精密工业(深圳)有限公司 | Fixing device assembly of radiator |
US8370605B2 (en) * | 2009-11-11 | 2013-02-05 | Sunman Engineering, Inc. | Computer architecture for a mobile communication platform |
US9021185B2 (en) * | 2009-11-23 | 2015-04-28 | Amir Ban | Memory controller and methods for enhancing write performance of a flash device |
US9081621B2 (en) * | 2009-11-25 | 2015-07-14 | Microsoft Technology Licensing, Llc | Efficient input/output-aware multi-processor virtual machine scheduling |
US8533440B2 (en) | 2009-12-15 | 2013-09-10 | Microsoft Corporation | Accelerating parallel transactions using cache resident transactions |
WO2011082998A1 (en) * | 2009-12-15 | 2011-07-14 | Airbus Operations Gmbh | Supply module for passenger transport vehicles |
US8869160B2 (en) | 2009-12-24 | 2014-10-21 | International Business Machines Corporation | Goal oriented performance management of workload utilizing accelerators |
GB2488636B (en) | 2009-12-28 | 2014-01-08 | Hewlett Packard Development Co | A system for providing physically separated compute and I/O resources in the datacenter to enable space and power savings |
US8310950B2 (en) * | 2009-12-28 | 2012-11-13 | Oracle America, Inc. | Self-configuring networking devices for providing services in a nework |
US8589554B2 (en) * | 2009-12-30 | 2013-11-19 | Bmc Software, Inc. | Intelligent and elastic resource pools for heterogeneous datacenter environments |
US8541749B2 (en) * | 2010-01-12 | 2013-09-24 | Landauer, Inc. | Portable reader for a dosimeter |
US8710369B2 (en) * | 2010-01-17 | 2014-04-29 | Chatsworth Products, Inc. | Horizontal cable manager |
US20110183546A1 (en) | 2010-01-25 | 2011-07-28 | Wael William Diab | Method And Apparatus For An Ethernet Connector Comprising An Integrated PHY |
KR100989920B1 (en) * | 2010-01-27 | 2010-10-26 | 인텔라 주식회사 | Ethernet switch |
US8380915B2 (en) * | 2010-01-27 | 2013-02-19 | Fusion-Io, Inc. | Apparatus, system, and method for managing solid-state storage media |
US8195883B2 (en) | 2010-01-27 | 2012-06-05 | Oracle America, Inc. | Resource sharing to reduce implementation costs in a multicore processor |
US8650299B1 (en) * | 2010-02-03 | 2014-02-11 | Citrix Systems, Inc. | Scalable cloud computing |
US8886602B2 (en) * | 2010-02-09 | 2014-11-11 | Google Inc. | Location assignment daemon (LAD) for a distributed storage system |
US20110206063A1 (en) | 2010-02-23 | 2011-08-25 | Wael William Diab | Method And System For Ethernet Converter And/Or Adapter That Enables Conversion Between A Plurality Of Different Ethernet Interfaces |
KR20110097240A (en) * | 2010-02-25 | 2011-08-31 | 삼성전자주식회사 | Optical serializer, optical deserializer, and data processing system having the same |
US8489745B2 (en) * | 2010-02-26 | 2013-07-16 | International Business Machines Corporation | Optimizing power consumption by dynamic workload adjustment |
US8819208B2 (en) * | 2010-03-05 | 2014-08-26 | Solidfire, Inc. | Data deletion in a distributed data storage system |
DE112011100140B4 (en) * | 2010-03-08 | 2019-07-11 | International Business Machines Corporation | DIMM liquid cooling unit |
US8442064B2 (en) * | 2010-03-19 | 2013-05-14 | Juniper Networks, Inc. | Virtual link aggregation of network traffic in an aggregation switch |
US8755192B1 (en) * | 2010-03-31 | 2014-06-17 | Amazon Technologies, Inc. | Rack-mounted computer system with shock-absorbing chassis |
US9183134B2 (en) * | 2010-04-22 | 2015-11-10 | Seagate Technology Llc | Data segregation in a storage device |
US20110264925A1 (en) | 2010-04-23 | 2011-10-27 | Russo Leonard E | Securing data on a self-encrypting storage device |
US8217813B2 (en) * | 2010-04-29 | 2012-07-10 | Advanced Micro Devices, Inc. | System and method for low-latency data compression/decompression |
US9160668B2 (en) * | 2010-05-03 | 2015-10-13 | Pluribus Networks Inc. | Servers, switches, and systems with switching module implementing a distributed network operating system |
US8688792B2 (en) * | 2010-05-06 | 2014-04-01 | Nec Laboratories America, Inc. | Methods and systems for discovering configuration data |
US8386855B2 (en) | 2010-05-25 | 2013-02-26 | Red Hat, Inc. | Distributed healthchecking mechanism |
US10187353B2 (en) * | 2010-06-02 | 2019-01-22 | Symantec Corporation | Behavioral classification of network data flows |
US8423998B2 (en) * | 2010-06-04 | 2013-04-16 | International Business Machines Corporation | System and method for virtual machine multiplexing for resource provisioning in compute clouds |
US8395900B2 (en) * | 2010-06-09 | 2013-03-12 | Amazon Technologies, Inc. | Power routing device for expansion slot of computer system |
US9063715B2 (en) * | 2010-06-10 | 2015-06-23 | Hewlett-Packard Development Company, L. P. | Management of a virtual power infrastructure |
JP5686424B2 (en) * | 2010-06-16 | 2015-03-18 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | Computer rack |
CN102289268A (en) * | 2010-06-17 | 2011-12-21 | 英业达股份有限公司 | rack server |
US8788783B1 (en) * | 2010-06-18 | 2014-07-22 | Disney Enterprises, Inc. | Dynamically tuning the size of a cache stored in a shared memory |
US8954490B2 (en) * | 2010-06-24 | 2015-02-10 | International Business Machines Corporation | Speculative and coordinated data access in a hybrid memory server |
US8832461B2 (en) | 2010-06-25 | 2014-09-09 | Microsoft Corporation | Trusted sensors |
US8838707B2 (en) * | 2010-06-25 | 2014-09-16 | Twilio, Inc. | System and method for enabling real-time eventing |
KR20120001405A (en) * | 2010-06-29 | 2012-01-04 | 삼성전자주식회사 | Memory system and wear leveling method thereof |
US8171142B2 (en) * | 2010-06-30 | 2012-05-01 | Vmware, Inc. | Data center inventory management using smart racks |
US8358932B2 (en) * | 2010-07-06 | 2013-01-22 | Prasanna Adhikari | All-optical data center network |
US9741436B2 (en) * | 2010-07-09 | 2017-08-22 | Seagate Technology Llc | Dynamically controlling an operation execution time for a storage device |
US8386841B1 (en) * | 2010-07-21 | 2013-02-26 | Symantec Corporation | Systems and methods for improving redundant storage fault tolerance |
US8725934B2 (en) | 2011-12-22 | 2014-05-13 | Fusion-Io, Inc. | Methods and appratuses for atomic storage operations |
US8554917B2 (en) * | 2010-08-20 | 2013-10-08 | International Business Machines Corporation | Performance isolation for storage clouds |
JP5520747B2 (en) * | 2010-08-25 | 2014-06-11 | 株式会社日立製作所 | Information device equipped with cache and computer-readable storage medium |
US8739171B2 (en) | 2010-08-31 | 2014-05-27 | International Business Machines Corporation | High-throughput-computing in a hybrid computing environment |
CN101938416B (en) * | 2010-09-01 | 2012-08-08 | 华南理工大学 | Cloud computing resource scheduling method based on dynamic reconfiguration virtual resources |
US8365009B2 (en) * | 2010-09-10 | 2013-01-29 | Microsoft Corporation | Controlled automatic healing of data-center services |
US8732426B2 (en) | 2010-09-15 | 2014-05-20 | Pure Storage, Inc. | Scheduling of reactive I/O operations in a storage environment |
US8477491B1 (en) * | 2010-09-20 | 2013-07-02 | Amazon Technologies, Inc. | System with rack-mounted AC fans |
US8472183B1 (en) * | 2010-09-20 | 2013-06-25 | Amazon Technologies, Inc. | Rack-mounted computer system with front-facing power supply unit |
US8400765B2 (en) | 2010-09-20 | 2013-03-19 | Amazon Technologies, Inc. | System with air flow under data storage devices |
US8595289B2 (en) | 2010-09-21 | 2013-11-26 | Telefonaktiebolaget L M Ericsson (Publ) | Cloud phone with distributed processing |
US9124383B1 (en) | 2010-09-23 | 2015-09-01 | Ciena Corporation | High capacity fiber-optic integrated transmission and switching systems |
US8751714B2 (en) * | 2010-09-24 | 2014-06-10 | Intel Corporation | Implementing quickpath interconnect protocol over a PCIe interface |
US20120079500A1 (en) | 2010-09-29 | 2012-03-29 | International Business Machines Corporation | Processor usage accounting using work-rate measurements |
US8612989B1 (en) * | 2010-10-04 | 2013-12-17 | Teradata Us, Inc. | Assigning resources among multiple groups of workloads in a database system |
US8738846B2 (en) * | 2010-10-15 | 2014-05-27 | Arkologic Limited | File system-aware solid-state storage management system |
US9787608B2 (en) * | 2010-10-19 | 2017-10-10 | International Business Machines Corporation | Unified fabric port |
WO2012053015A2 (en) * | 2010-10-22 | 2012-04-26 | Jana, Tejaswini, Ramesh | Compression and decompression of data at high speed in solid state storage |
US8503879B2 (en) | 2010-10-25 | 2013-08-06 | Nec Laboratories America, Inc. | Hybrid optical/electrical switching system for data center networks |
US20120102291A1 (en) * | 2010-10-26 | 2012-04-26 | Dell Products, Lp | System and Method for Storage Allocation in a Cloud Environment |
US8621477B2 (en) * | 2010-10-29 | 2013-12-31 | International Business Machines Corporation | Real-time monitoring of job resource consumption and prediction of resource deficiency based on future availability |
US8824289B2 (en) * | 2010-11-02 | 2014-09-02 | Opanga Networks Inc. | System and method for autonomous discovery of peak channel capacity in a wireless communication network |
US8838286B2 (en) * | 2010-11-04 | 2014-09-16 | Dell Products L.P. | Rack-level modular server and storage framework |
US20120117318A1 (en) * | 2010-11-05 | 2012-05-10 | Src Computers, Inc. | Heterogeneous computing system comprising a switch/network adapter port interface utilizing load-reduced dual in-line memory modules (lr-dimms) incorporating isolation memory buffers |
CN102004671B (en) * | 2010-11-15 | 2013-03-13 | 北京航空航天大学 | Resource management method of data center based on statistic model in cloud computing environment |
US8984519B2 (en) | 2010-11-17 | 2015-03-17 | Nec Laboratories America, Inc. | Scheduler and resource manager for coprocessor-based heterogeneous clusters |
US8869161B2 (en) * | 2010-11-18 | 2014-10-21 | Fujitsu Limited | Characterization and assignment of workload requirements to resources based on predefined categories of resource utilization and resource availability |
IT1403031B1 (en) * | 2010-11-19 | 2013-09-27 | Eurotech S P A | UNIFIED NETWORK EQUIPMENT FOR SCALABLE SUPERCALCOLO SYSTEMS |
KR20120054699A (en) * | 2010-11-22 | 2012-05-31 | 삼성전자주식회사 | Memory controller, data storage system including the same and method thereof |
US20120144170A1 (en) * | 2010-12-06 | 2012-06-07 | International Business Machines Corporation | Dynamically scalable per-cpu counters |
US8566574B2 (en) | 2010-12-09 | 2013-10-22 | International Business Machines Corporation | Secure encrypted boot with simplified firmware update |
US9326414B2 (en) * | 2010-12-10 | 2016-04-26 | Commscope Technologies Llc | Method and apparatus for mounting rack components on racks |
US9218278B2 (en) * | 2010-12-13 | 2015-12-22 | SanDisk Technologies, Inc. | Auto-commit memory |
US9208071B2 (en) * | 2010-12-13 | 2015-12-08 | SanDisk Technologies, Inc. | Apparatus, system, and method for accessing memory |
US10033585B2 (en) | 2010-12-15 | 2018-07-24 | Juniper Networks, Inc. | Methods and apparatus related to a switch fabric system having a multi-hop distributed control plane and a single-hop data plane |
US8674218B2 (en) | 2010-12-15 | 2014-03-18 | General Electric Company | Restraint system for an energy storage device |
US8239584B1 (en) * | 2010-12-16 | 2012-08-07 | Emc Corporation | Techniques for automated storage management |
US8676397B2 (en) * | 2010-12-20 | 2014-03-18 | International Business Machines Corporation | Regulating the temperature of a datacenter |
US8849758B1 (en) * | 2010-12-28 | 2014-09-30 | Amazon Technologies, Inc. | Dynamic data set replica management |
CN102541222A (en) * | 2010-12-31 | 2012-07-04 | 鸿富锦精密工业(深圳)有限公司 | Rack-mounted server system |
US20120192200A1 (en) * | 2011-01-21 | 2012-07-26 | Rao Jayanth N | Load Balancing in Heterogeneous Computing Environments |
TW201232237A (en) * | 2011-01-28 | 2012-08-01 | Hon Hai Prec Ind Co Ltd | Heat dissipation apparatus and assembly |
US9098257B2 (en) * | 2011-02-03 | 2015-08-04 | Dell Products L.P. | Information handling system server architecture for improved management communication |
US9251087B2 (en) * | 2011-02-11 | 2016-02-02 | SanDisk Technologies, Inc. | Apparatus, system, and method for virtual memory management |
US9317334B2 (en) * | 2011-02-12 | 2016-04-19 | Microsoft Technology Licensing Llc | Multilevel multipath widely distributed computational node scenarios |
US8638767B2 (en) * | 2011-02-14 | 2014-01-28 | Qualcomm Incorporated | Multi-communication mode packet routing mechanism for wireless communications systems |
US20120215359A1 (en) * | 2011-02-21 | 2012-08-23 | Amir Meir Michael | Adaptive fan control based on server configuration |
WO2012113807A1 (en) | 2011-02-22 | 2012-08-30 | Dacentec Be Bvba | A data centre rack comprising a power bar |
US9202059B2 (en) | 2011-03-01 | 2015-12-01 | Apurva M. Bhansali | Methods, systems, and apparatuses for managing a hard drive security system |
US9025603B2 (en) * | 2011-03-08 | 2015-05-05 | Qualcomm Incorporated | Addressing scheme for hybrid communication networks |
US9055690B2 (en) * | 2011-03-22 | 2015-06-09 | Amazon Technologies, Inc. | Shelf-mounted modular computing unit |
US8724322B2 (en) | 2011-03-23 | 2014-05-13 | Rackspace Us, Inc. | Targeted liquid cooling for a system |
US9361044B2 (en) * | 2011-03-28 | 2016-06-07 | Western Digital Technologies, Inc. | Power-safe data management system |
KR20120110448A (en) * | 2011-03-29 | 2012-10-10 | 삼성전자주식회사 | Semiconductor memory device and method for manufacturing the same |
WO2012135520A2 (en) * | 2011-03-30 | 2012-10-04 | University Of Houston | Methods and apparatus for traffic management in multi-mode switching dwdm netwrks |
US8843804B2 (en) * | 2011-04-01 | 2014-09-23 | Cleversafe, Inc. | Adjusting a dispersal parameter of dispersedly stored data |
US9164679B2 (en) * | 2011-04-06 | 2015-10-20 | Patents1, Llc | System, method and computer program product for multi-thread operation involving first memory of a first memory class and second memory of a second memory class |
US8695009B2 (en) * | 2011-04-18 | 2014-04-08 | Microsoft Corporation | Allocating tasks to machines in computing clusters |
US8990351B2 (en) * | 2011-04-20 | 2015-03-24 | Mobitv, Inc. | Real-time processing capability based quality adaptation |
US8761955B2 (en) * | 2011-04-27 | 2014-06-24 | Hitachi, Ltd. | Management computer, computer system including the same, and method for providing allocating plan for it equipment |
WO2012147087A1 (en) * | 2011-04-29 | 2012-11-01 | Tata Consultancy Services Limited | Archival storage and retrieval system |
US8539008B2 (en) * | 2011-04-29 | 2013-09-17 | Netapp, Inc. | Extent-based storage architecture |
US8508956B2 (en) * | 2011-05-05 | 2013-08-13 | Carefusion 303, Inc. | Modular shielded electronics enclosure |
WO2012154751A1 (en) * | 2011-05-08 | 2012-11-15 | Infinetics Technologies, Inc. | Flexible radix switching network |
US9042402B1 (en) | 2011-05-10 | 2015-05-26 | Juniper Networks, Inc. | Methods and apparatus for control protocol validation of a switch fabric system |
US8391663B2 (en) | 2011-05-24 | 2013-03-05 | Methode Electronics, Inc. | Rack cabling system |
CN103562817A (en) * | 2011-05-25 | 2014-02-05 | 惠普发展公司,有限责任合伙企业 | Blade computer system |
US8386286B2 (en) * | 2011-05-26 | 2013-02-26 | Xerox Corporation | System and method for the dynamic allocation of resources |
US20120317337A1 (en) * | 2011-06-09 | 2012-12-13 | Microsoft Corporation | Managing data placement on flash-based storage by use |
WO2013006157A1 (en) * | 2011-07-01 | 2013-01-10 | Hewlett-Packard Development Company, L.P. | Method of and system for managing computing resources |
US8868869B2 (en) * | 2011-08-08 | 2014-10-21 | International Business Machines Corporation | Enhanced copy-on-write operation for solid state drives |
US9052899B2 (en) * | 2011-08-10 | 2015-06-09 | Intel Corporation | Idle power reduction for memory subsystems |
US8909996B2 (en) | 2011-08-12 | 2014-12-09 | Oracle International Corporation | Utilizing multiple storage devices to reduce write latency for database logging |
WO2013028241A1 (en) * | 2011-08-25 | 2013-02-28 | The Trustees Of Columbia University In The City Of New York | Systems and methods for a cross-layer optical network node |
US8812830B2 (en) | 2011-08-31 | 2014-08-19 | Microsoft Corporation | Attestation protocol for securely booting a guest operating system |
TWI422310B (en) | 2011-09-02 | 2014-01-01 | Giga Byte Tech Co Ltd | Server rank |
JP2013061799A (en) * | 2011-09-13 | 2013-04-04 | Toshiba Corp | Memory device, control method for memory device and controller |
CN103023936B (en) * | 2011-09-23 | 2015-03-18 | 中国科学院声学研究所 | Multi-hierarchy network system and task executing method based on same |
EP2761479A4 (en) | 2011-09-30 | 2015-04-15 | Intel Corp | Mechanism for facilitating customization of multipurpose interconnect agents at computing devices |
US10042674B2 (en) * | 2011-09-30 | 2018-08-07 | Teradata Us, Inc. | Regulating capacity and managing services of computing environments and systems that include a database |
US9026717B2 (en) * | 2011-09-30 | 2015-05-05 | SanDisk Technologies, Inc. | Apparatus, system, and method for a persistent object store |
CN103827811A (en) | 2011-09-30 | 2014-05-28 | 惠普发展公司,有限责任合伙企业 | Managing basic input/output system (BIOS) access |
US9042229B2 (en) | 2011-10-06 | 2015-05-26 | International Business Machines Corporation | Partitioning a network switch into multiple switching domains |
US8964601B2 (en) * | 2011-10-07 | 2015-02-24 | International Business Machines Corporation | Network switching domains with a virtualized control plane |
US20130098593A1 (en) | 2011-10-19 | 2013-04-25 | International Business Machines Corporation | Independent computer system zone cooling responsive to zone power consumption |
US8914515B2 (en) * | 2011-10-28 | 2014-12-16 | International Business Machines Corporation | Cloud optimization using workload analysis |
US9288555B2 (en) * | 2011-11-01 | 2016-03-15 | Plexxi Inc. | Data center network architecture |
US8610604B2 (en) * | 2011-11-24 | 2013-12-17 | International Business Machines Corporation | Compression algorithm incorporating a feedback loop for dynamic selection of a predefined Huffman dictionary |
US9582284B2 (en) | 2011-12-01 | 2017-02-28 | International Business Machines Corporation | Performance of processors is improved by limiting number of branch prediction levels |
US9095070B2 (en) * | 2011-12-05 | 2015-07-28 | Amazon Technologies, Inc. | Partial-width rack-mounted computing devices |
US8984174B2 (en) * | 2011-12-06 | 2015-03-17 | Qualcomm Incorporated | Method and a portable computing device (PCD) for exposing a peripheral component interface express (PCIE) coupled device to an operating system operable on the PCD |
US9135269B2 (en) * | 2011-12-07 | 2015-09-15 | Egnyte, Inc. | System and method of implementing an object storage infrastructure for cloud-based services |
US8824569B2 (en) * | 2011-12-07 | 2014-09-02 | International Business Machines Corporation | High bandwidth decompression of variable length encoded data streams |
JP5542788B2 (en) | 2011-12-13 | 2014-07-09 | 株式会社日立製作所 | Virtual computer system and virtual computer migration control method |
US9304570B2 (en) * | 2011-12-15 | 2016-04-05 | Intel Corporation | Method, apparatus, and system for energy efficiency and energy conservation including power and performance workload-based balancing between multiple processing elements |
US8867214B2 (en) * | 2011-12-15 | 2014-10-21 | Amazon Technologies, Inc. | Modular server design for use in reconfigurable server shelf |
JP5573829B2 (en) | 2011-12-20 | 2014-08-20 | 富士通株式会社 | Information processing apparatus and memory access method |
US8788663B1 (en) | 2011-12-20 | 2014-07-22 | Amazon Technologies, Inc. | Managing resource dependent workflows |
US9274838B2 (en) * | 2011-12-22 | 2016-03-01 | Netapp, Inc. | Dynamic instantiation and management of virtual caching appliances |
US8656130B2 (en) | 2011-12-23 | 2014-02-18 | International Business Machines Corporation | Low latency and persistent data storage |
US9565132B2 (en) | 2011-12-27 | 2017-02-07 | Intel Corporation | Multi-protocol I/O interconnect including a switching fabric |
US9727511B2 (en) * | 2011-12-30 | 2017-08-08 | Bedrock Automation Platforms Inc. | Input/output module with multi-channel switching capability |
US9811288B1 (en) * | 2011-12-30 | 2017-11-07 | EMC IP Holding Company LLC | Managing data placement based on flash drive wear level |
CN104025198B (en) * | 2011-12-30 | 2017-06-13 | 英特尔公司 | Phase transition storage and switch(PCMS)Wrongly write error detection |
US8867915B1 (en) * | 2012-01-03 | 2014-10-21 | Google Inc. | Dynamic data center network with optical circuit switch |
US9360904B2 (en) | 2012-01-05 | 2016-06-07 | Dell Products L.P. | Mapped fan zone cooling system |
JP6083687B2 (en) | 2012-01-06 | 2017-02-22 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | Distributed calculation method, program, host computer, and distributed calculation system (distributed parallel calculation using accelerator device) |
US8875124B2 (en) * | 2012-01-11 | 2014-10-28 | Dell Products L.P. | In-band hypervisor-managed firmware updates |
US8732291B2 (en) * | 2012-01-13 | 2014-05-20 | Accenture Global Services Limited | Performance interference model for managing consolidated workloads in QOS-aware clouds |
US20130185729A1 (en) * | 2012-01-13 | 2013-07-18 | Rutgers, The State University Of New Jersey | Accelerating resource allocation in virtualized environments using workload classes and/or workload signatures |
KR20130084469A (en) * | 2012-01-17 | 2013-07-25 | 삼성전자주식회사 | Method for compressing and storing data and storage device using method thereof |
US9467512B2 (en) * | 2012-01-17 | 2016-10-11 | Intel Corporation | Techniques for remote client access to a storage medium coupled with a server |
CN102609378B (en) * | 2012-01-18 | 2016-03-30 | 中国科学院计算技术研究所 | A kind of message type internal storage access device and access method thereof |
WO2013112634A1 (en) * | 2012-01-23 | 2013-08-01 | The Regents Of The University Of California | System and method for implementing transactions using storage device support for atomic updates and flexible interface for managing data logging |
US9251086B2 (en) * | 2012-01-24 | 2016-02-02 | SanDisk Technologies, Inc. | Apparatus, system, and method for managing a cache |
US10359972B2 (en) | 2012-08-31 | 2019-07-23 | Sandisk Technologies Llc | Systems, methods, and interfaces for adaptive persistence |
US9356793B1 (en) * | 2012-02-09 | 2016-05-31 | Google Inc. | System and method for managing load on a downstream server in a distributed storage system |
CN104169766B (en) * | 2012-02-13 | 2016-09-28 | 康宁光电通信有限责任公司 | Fiber optic cables sub-component and the method being used for making described sub-component |
US8949473B1 (en) * | 2012-02-16 | 2015-02-03 | Inphi Corporation | Hybrid memory blade |
US9996394B2 (en) | 2012-03-01 | 2018-06-12 | Microsoft Technology Licensing, Llc | Scheduling accelerator tasks on accelerators using graphs |
US20130230272A1 (en) * | 2012-03-01 | 2013-09-05 | Oracle International Corporation | Chip assembly configuration with densely packed optical interconnects |
US20130232215A1 (en) * | 2012-03-05 | 2013-09-05 | Riverbed Technology, Inc. | Virtualized data storage system architecture using prefetching agent |
US9417811B2 (en) * | 2012-03-07 | 2016-08-16 | International Business Machines Corporation | Efficient inline data de-duplication on a storage system |
CN104081691A (en) * | 2012-03-08 | 2014-10-01 | 惠普发展公司,有限责任合伙企业 | Diagnostic module |
US9335948B1 (en) * | 2012-03-27 | 2016-05-10 | Emc Corporation | Method and apparatus for enabling access to tiered shared storage using dynamic tier partitioning |
US20130268940A1 (en) * | 2012-04-04 | 2013-10-10 | Daniel Juergen Gmach | Automating workload virtualization |
US8838871B2 (en) * | 2012-04-09 | 2014-09-16 | Dell Products L.P. | Methods and systems for virtualization of storage services in an integrated chassis |
US8954698B2 (en) * | 2012-04-13 | 2015-02-10 | International Business Machines Corporation | Switching optically connected memory |
US8995381B2 (en) | 2012-04-16 | 2015-03-31 | Ofinno Technologies, Llc | Power control in a wireless device |
JP5797329B2 (en) * | 2012-04-19 | 2015-10-21 | 株式会社日立製作所 | Electronic computer with cooling system |
US9223634B2 (en) | 2012-05-02 | 2015-12-29 | Cisco Technology, Inc. | System and method for simulating virtual machine migration in a network environment |
US9875204B2 (en) * | 2012-05-18 | 2018-01-23 | Dell Products, Lp | System and method for providing a processing node with input/output functionality provided by an I/O complex switch |
CN104380274B (en) * | 2012-05-22 | 2017-10-24 | 英特尔公司 | Apparatus and method for optimized link training and management |
US8446903B1 (en) * | 2012-05-22 | 2013-05-21 | Intel Corporation | Providing a load/store communication protocol with a low power physical unit |
KR102015565B1 (en) * | 2012-06-04 | 2019-08-28 | 삼성전자주식회사 | Electronic device and method for controlling temperature thereof |
US8954985B2 (en) * | 2012-06-05 | 2015-02-10 | International Business Machines Corporation | Dependency management in task scheduling |
US20140201329A1 (en) * | 2012-06-11 | 2014-07-17 | Intel Corporation | Distribution of layered multi-media streams over multiple radio links |
US20130339784A1 (en) * | 2012-06-15 | 2013-12-19 | International Business Machines Corporation | Error recovery in redundant storage systems |
US20130339510A1 (en) | 2012-06-15 | 2013-12-19 | Digital River, Inc | Fast provisioning service for cloud computing |
US9846641B2 (en) * | 2012-06-18 | 2017-12-19 | International Business Machines Corporation | Variability aware wear leveling |
US8804313B2 (en) * | 2012-06-22 | 2014-08-12 | Microsoft Corporation | Enclosure power distribution architectures |
US9282898B2 (en) | 2012-06-25 | 2016-03-15 | Sprint Communications Company L.P. | End-to-end trusted communications infrastructure |
US9342376B2 (en) * | 2012-06-27 | 2016-05-17 | Intel Corporation | Method, system, and device for dynamic energy efficient job scheduling in a cloud computing environment |
US8972640B2 (en) * | 2012-06-27 | 2015-03-03 | Intel Corporation | Controlling a physical link of a first protocol using an extended capability structure of a second protocol |
US9454199B2 (en) * | 2012-06-28 | 2016-09-27 | Intel Corporation | Power management control of remote servers |
US20140006536A1 (en) | 2012-06-29 | 2014-01-02 | Intel Corporation | Techniques to accelerate lossless compression |
GB2513826A (en) | 2012-06-29 | 2014-11-12 | Ibm | Trusted boot of a virtual machine |
US8854819B2 (en) | 2012-07-03 | 2014-10-07 | Dong Guan Yung Teng Electronic Products Co., Ltd. | Cooling device |
US9391841B2 (en) * | 2012-07-03 | 2016-07-12 | Solarflare Communications, Inc. | Fast linkup arbitration |
TWI478652B (en) * | 2012-07-04 | 2015-03-21 | Hon Hai Prec Ind Co Ltd | Cabinet |
US8959272B2 (en) * | 2012-07-06 | 2015-02-17 | Blackberry Limited | Interposer and intelligent multiplexer to provide a plurality of peripherial buses |
US9087163B2 (en) | 2012-07-11 | 2015-07-21 | Silicon Image, Inc. | Transmission of multiple protocol data elements via an interface utilizing a data tunnel |
US20140025890A1 (en) * | 2012-07-19 | 2014-01-23 | Lsi Corporation | Methods and structure for improved flexibility in shared storage caching by multiple systems operating as multiple virtual machines |
US10002021B2 (en) * | 2012-07-20 | 2018-06-19 | Qualcomm Incorporated | Deferred preemption techniques for scheduling graphics processing unit command streams |
US9003037B2 (en) * | 2012-07-25 | 2015-04-07 | Vmware, Inc. | Dynamic allocation of physical computing resources amongst virtual machines |
US9513950B2 (en) | 2012-07-25 | 2016-12-06 | Vmware, Inc. | Dynamic resource configuration based on context |
EP2878139B1 (en) | 2012-07-27 | 2017-04-19 | Nokia Technologies Oy | Methods and apparatuses for facilitating utilization of cloud services |
CN103577266B (en) | 2012-07-31 | 2017-06-23 | 国际商业机器公司 | For the method and system being allocated to field programmable gate array resource |
US8887056B2 (en) | 2012-08-07 | 2014-11-11 | Advanced Micro Devices, Inc. | System and method for configuring cloud computing systems |
US9152532B2 (en) | 2012-08-07 | 2015-10-06 | Advanced Micro Devices, Inc. | System and method for configuring a cloud computing system with a synthetic test workload |
KR20140021780A (en) * | 2012-08-10 | 2014-02-20 | 삼성전자주식회사 | Nonvolatile memory device and control method thereof |
CN103634330A (en) | 2012-08-20 | 2014-03-12 | 曙光信息产业(北京)有限公司 | Automatic resource distribution method in cloud calculation environment |
US8801297B2 (en) | 2012-08-24 | 2014-08-12 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Methods and systems for blind mating multi-optical fiber connector modules |
US9331940B2 (en) * | 2012-08-28 | 2016-05-03 | Alcatel Lucent | System and method providing distributed virtual routing and switching (DVRS) |
US9116660B1 (en) * | 2012-08-31 | 2015-08-25 | Extreme Networks, Inc. | Midplane for orthogonal direct connection |
CN102902589B (en) * | 2012-08-31 | 2016-06-29 | 浪潮电子信息产业股份有限公司 | The management of a kind of cluster MIC operation and dispatching method |
US9424098B2 (en) | 2012-08-31 | 2016-08-23 | Silicon Graphics International Corp. | Dynamic resource scheduling |
US9003220B2 (en) * | 2012-09-07 | 2015-04-07 | National Instruments Corporation | Switch for clock synchronization over a switched fabric |
US10013261B2 (en) * | 2012-09-10 | 2018-07-03 | Intel Corporation | Techniques for managing or controlling computing devices |
US9026765B1 (en) * | 2012-09-11 | 2015-05-05 | Emc Corporation | Performing write operations in a multi-tiered storage environment |
US9892798B2 (en) * | 2012-09-11 | 2018-02-13 | Seagate Technology Llc | Data protection for unexpected power loss |
US8837734B2 (en) | 2012-09-14 | 2014-09-16 | Red Hat, Inc. | Managing encrypted data and encryption keys |
US9390278B2 (en) * | 2012-09-14 | 2016-07-12 | Freescale Semiconductor, Inc. | Systems and methods for code protection in non-volatile memory systems |
CN103677179A (en) | 2012-09-21 | 2014-03-26 | 英业达科技有限公司 | Server |
US9043632B2 (en) | 2012-09-25 | 2015-05-26 | Apple Inc. | Security enclave processor power control |
US9047471B2 (en) | 2012-09-25 | 2015-06-02 | Apple Inc. | Security enclave processor boot control |
US9253053B2 (en) | 2012-10-11 | 2016-02-02 | International Business Machines Corporation | Transparently enforcing policies in hadoop-style processing infrastructures |
EP2887223A4 (en) * | 2012-10-12 | 2015-08-19 | Huawei Tech Co Ltd | Memory system, memory module, memory module access method and computer system |
US9116703B2 (en) * | 2012-10-15 | 2015-08-25 | Advanced Micro Devices, Inc. | Semi-static power and performance optimization of data centers |
US8791843B2 (en) * | 2012-10-15 | 2014-07-29 | Lsi Corporation | Optimized bitstream encoding for compression |
US9191313B2 (en) | 2012-10-15 | 2015-11-17 | International Business Machines Corporation | Communications over multiple protocol interfaces in a computing environment |
EP2909716B1 (en) * | 2012-10-16 | 2021-02-17 | Citrix Systems, Inc. | Systems and methods for bridging between public and private clouds through multi-level api integration |
US9083531B2 (en) * | 2012-10-16 | 2015-07-14 | Symantec Corporation | Performing client authentication using certificate store on mobile device |
US9491114B2 (en) * | 2012-10-24 | 2016-11-08 | Messageone, Inc. | System and method for optimizing resource utilization in a clustered or cloud environment |
US9136779B2 (en) * | 2012-10-30 | 2015-09-15 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Dynamically modified fan speed table for cooling a computer |
WO2014067470A1 (en) * | 2012-10-31 | 2014-05-08 | Hangzhou H3C Technologies Co., Ltd. | Port mode synchronization between switches |
US9032250B1 (en) * | 2012-11-05 | 2015-05-12 | Google Inc. | Online testing of secondary power unit |
US9167705B2 (en) | 2012-11-07 | 2015-10-20 | Dell Products L.P. | Chassis drawer for modular information handling resources |
US8880446B2 (en) * | 2012-11-15 | 2014-11-04 | Purepredictive, Inc. | Predictive analytics factory |
WO2014077823A2 (en) * | 2012-11-15 | 2014-05-22 | Empire Technology Development Llc | A scalable storage system having multiple storage channels |
US9209901B2 (en) | 2012-11-20 | 2015-12-08 | Telefonaktiebolaget L M Ericsson (Publ) | Configurable single-fiber or dual-fiber optical transceiver |
US9122652B2 (en) * | 2012-12-17 | 2015-09-01 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Cascading failover of blade servers in a data center |
US9037898B2 (en) * | 2012-12-18 | 2015-05-19 | International Business Machines Corporation | Communication channel failover in a high performance computing (HPC) network |
CN103002044B (en) * | 2012-12-18 | 2016-05-11 | 武汉大学 | A kind of method that improves multi-platform intelligent terminal disposal ability |
US10076050B2 (en) * | 2012-12-21 | 2018-09-11 | Nathan R. Roberts | Storage and charging station system for portable electronic devices |
US9098402B2 (en) * | 2012-12-21 | 2015-08-04 | Intel Corporation | Techniques to configure a solid state drive to operate in a storage mode or a memory mode |
US9245496B2 (en) * | 2012-12-21 | 2016-01-26 | Qualcomm Incorporated | Multi-mode memory access techniques for performing graphics processing unit-based memory transfer operations |
US9477627B2 (en) | 2012-12-26 | 2016-10-25 | Intel Corporation | Interconnect to communicate information uni-directionally |
US9501398B2 (en) * | 2012-12-26 | 2016-11-22 | Sandisk Technologies Llc | Persistent storage device with NVRAM for staging writes |
US9329900B2 (en) | 2012-12-28 | 2016-05-03 | Intel Corporation | Hetergeneous processor apparatus and method |
US20140189249A1 (en) * | 2012-12-28 | 2014-07-03 | Futurewei Technologies, Inc. | Software and Hardware Coordinated Prefetch |
US8949483B1 (en) * | 2012-12-28 | 2015-02-03 | Emc Corporation | Techniques using I/O classifications in connection with determining data movements |
US10268526B1 (en) * | 2012-12-28 | 2019-04-23 | EMC IP Holding Company LLC | Using response time objectives in a storage system |
US20140188996A1 (en) | 2012-12-31 | 2014-07-03 | Advanced Micro Devices, Inc. | Raw fabric interface for server system with virtualized interfaces |
TWI568335B (en) * | 2013-01-15 | 2017-01-21 | 英特爾股份有限公司 | A rack assembly structure |
EP2946296A4 (en) * | 2013-01-17 | 2016-11-16 | Xockets Ip Llc | Offload processor modules for connection to system memory |
US20140206271A1 (en) * | 2013-01-22 | 2014-07-24 | Roland M. Ignacio | Electronics rack cooling duct |
US9124655B2 (en) * | 2013-01-30 | 2015-09-01 | Dell Products L.P. | Information handling system operational management through near field communication device interaction |
WO2014120209A1 (en) * | 2013-01-31 | 2014-08-07 | Empire Technology Development, Llc | Masking power usage of co-processors on field-programmable gate arrays |
US9645950B2 (en) * | 2013-01-31 | 2017-05-09 | Vmware, Inc. | Low-cost backup and edge caching using unused disk blocks |
US9203699B2 (en) | 2014-02-11 | 2015-12-01 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Constructing and verifying switch fabric cabling schemes |
TWI614670B (en) * | 2013-02-12 | 2018-02-11 | Lsi公司 | Chained, scalable storage system and method of accessing data in a chained, scalable storage system |
US9124498B2 (en) * | 2013-02-14 | 2015-09-01 | Xerox Corporation | System and method for identifying optimal cloud configuration in black-box environments to achieve target throughput with best price based on performance capability benchmarking |
US8762916B1 (en) * | 2013-02-25 | 2014-06-24 | Xilinx, Inc. | Automatic generation of a data transfer network |
US9936603B2 (en) | 2013-02-28 | 2018-04-03 | Oracle International Corporation | Backplane nodes for blind mate adapting field replaceable units to bays in storage rack |
US9268730B2 (en) * | 2013-02-28 | 2016-02-23 | Oracle International Corporation | Computing rack-based virtual backplane for field replaceable units |
US9335786B2 (en) * | 2013-02-28 | 2016-05-10 | Oracle International Corporation | Adapter facilitating blind-mate electrical connection of field replaceable units with virtual backplane of computing rack |
US20140250440A1 (en) * | 2013-03-01 | 2014-09-04 | Adaptive Computing Enterprises, Inc. | System and method for managing storage input/output for a compute environment |
US9251115B2 (en) * | 2013-03-07 | 2016-02-02 | Citrix Systems, Inc. | Dynamic configuration in cloud computing environments |
US9864417B2 (en) | 2013-03-08 | 2018-01-09 | International Business Machines Corporation | Server rack for improved data center management |
US9201837B2 (en) | 2013-03-13 | 2015-12-01 | Futurewei Technologies, Inc. | Disaggregated server architecture for data centers |
KR102044023B1 (en) * | 2013-03-14 | 2019-12-02 | 삼성전자주식회사 | Data Storage System based on a key-value and Operating Method thereof |
US9723069B1 (en) * | 2013-03-15 | 2017-08-01 | Kaazing Corporation | Redistributing a connection |
US9202547B2 (en) * | 2013-03-15 | 2015-12-01 | Intel Corporation | Managing disturbance induced errors |
US8766827B1 (en) * | 2013-03-15 | 2014-07-01 | Intel Corporation | Parallel apparatus for high-speed, highly compressed LZ77 tokenization and Huffman encoding for deflate compression |
US10026136B2 (en) * | 2013-03-15 | 2018-07-17 | Haggle Shopping Pty Ltd | Automated discounting and negotiation |
US10073626B2 (en) | 2013-03-15 | 2018-09-11 | Virident Systems, Llc | Managing the write performance of an asymmetric memory system |
GB2513987B (en) | 2013-03-15 | 2016-01-06 | Intel Corp | Parallel apparatus for high-speed, highly compressed LZ77 tokenization and huffman encoding for deflate compression |
US9778885B2 (en) * | 2013-03-15 | 2017-10-03 | Skyera, Llc | Compressor resources for high density storage units |
US20140304513A1 (en) * | 2013-04-01 | 2014-10-09 | Nexenta Systems, Inc. | Storage drive processing multiple commands from multiple servers |
EP2981892B1 (en) | 2013-04-01 | 2020-05-06 | OC Acquisition LLC | Update management for a distributed computing system |
US10452316B2 (en) * | 2013-04-17 | 2019-10-22 | Apeiron Data Systems | Switched direct attached shared storage architecture |
KR101553649B1 (en) | 2013-05-13 | 2015-09-16 | 삼성전자 주식회사 | Multicore apparatus and job scheduling method thereof |
US20140337496A1 (en) * | 2013-05-13 | 2014-11-13 | Advanced Micro Devices, Inc. | Embedded Management Controller for High-Density Servers |
US9081622B2 (en) * | 2013-05-13 | 2015-07-14 | Vmware, Inc. | Automated scaling of applications in virtual data centers |
WO2014188642A1 (en) * | 2013-05-22 | 2014-11-27 | 日本電気株式会社 | Scheduling system, scheduling method, and recording medium |
US20140351811A1 (en) * | 2013-05-24 | 2014-11-27 | Empire Technology Development Llc | Datacenter application packages with hardware accelerators |
US9274951B2 (en) * | 2013-05-31 | 2016-03-01 | Altera Corporation | Cache memory controller for accelerated data transfer |
JP6215931B2 (en) * | 2013-06-03 | 2017-10-18 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | Graphic display processing device, graphic display processing method, and vehicle including graphic display processing device |
US9639459B2 (en) * | 2013-06-04 | 2017-05-02 | Globalfoundries Inc. | I/O latency and IOPs performance in thin provisioned volumes |
US9207729B2 (en) * | 2013-06-07 | 2015-12-08 | Apple Inc. | Computer Architecture |
US9548940B2 (en) | 2013-06-09 | 2017-01-17 | Apple Inc. | Master election among resource managers |
KR20140144520A (en) * | 2013-06-11 | 2014-12-19 | 삼성전자주식회사 | Processor module, server system and method for controlling processor module |
US9468126B2 (en) | 2013-06-11 | 2016-10-11 | Seagate Technology Llc | Multi-device storage enclosure with extendable device support sleds |
US9858181B2 (en) * | 2013-06-20 | 2018-01-02 | Hitachi, Ltd. | Memory module having different types of memory mounted together thereon, and information processing device having memory module mounted therein |
US9218221B2 (en) * | 2013-06-25 | 2015-12-22 | Amazon Technologies, Inc. | Token sharing mechanisms for burst-mode operations |
KR20150001188A (en) * | 2013-06-26 | 2015-01-06 | 한국전자통신연구원 | Double data rate synchronous dynamic random access memory module and method for configuring thereof |
US9424079B2 (en) | 2013-06-27 | 2016-08-23 | Microsoft Technology Licensing, Llc | Iteration support in a heterogeneous dataflow engine |
US9311110B2 (en) * | 2013-07-08 | 2016-04-12 | Intel Corporation | Techniques to initialize from a remotely accessible storage device |
US11132300B2 (en) * | 2013-07-11 | 2021-09-28 | Advanced Micro Devices, Inc. | Memory hierarchy using page-based compression |
US9460049B2 (en) * | 2013-07-18 | 2016-10-04 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Dynamic formation of symmetric multi-processor (SMP) domains |
US10353631B2 (en) * | 2013-07-23 | 2019-07-16 | Intel Corporation | Techniques for moving data between a network input/output device and a storage device |
US9310427B2 (en) * | 2013-07-24 | 2016-04-12 | Advantest Corporation | High speed tester communication interface between test slice and trays |
US20150028940A1 (en) * | 2013-07-26 | 2015-01-29 | Mediatek Inc. | Integrated circuit having at least one functional circuit block operating in multi-source power domain and related system with power management |
US9544399B2 (en) * | 2013-07-26 | 2017-01-10 | International Business Machines Corporation | Visually depicting cloud resource utilization during execution of an application |
US10419305B2 (en) * | 2013-07-26 | 2019-09-17 | International Business Machines Corporation | Visualization of workload distribution on server resources |
US9229496B2 (en) | 2013-08-08 | 2016-01-05 | Dell Products, L.P. | Supplemental storage tray for increasing storage capacity within an information handling system |
CN111522652B (en) | 2013-08-13 | 2024-02-13 | 英特尔公司 | Power balancing for increased load density and improved energy efficiency |
EP3037979A4 (en) * | 2013-08-19 | 2017-05-17 | Shanghai Xinhao Micro-Electronics Co. Ltd. | High-performance processor system and method based on a common unit |
US9727355B2 (en) * | 2013-08-23 | 2017-08-08 | Vmware, Inc. | Virtual Hadoop manager |
CN104424048A (en) * | 2013-08-29 | 2015-03-18 | 国际商业机器公司 | Data storage method and equipment |
TWI536767B (en) * | 2013-09-03 | 2016-06-01 | 緯創資通股份有限公司 | Server system and redundant management method thereof |
CN105612471A (en) * | 2013-09-04 | 2016-05-25 | 微电子中心德累斯顿有限公司 | Fpga power management system |
US9396359B2 (en) | 2013-09-09 | 2016-07-19 | Whitecanyon Software, Inc. | System and method for encrypted disk drive sanitizing |
US9307018B2 (en) * | 2013-09-11 | 2016-04-05 | International Business Machines Corporation | Workload deployment with real-time consideration of global network congestion |
US9311207B1 (en) * | 2013-09-12 | 2016-04-12 | Emc Corporation | Data storage system optimizations in a multi-tiered environment |
US10181117B2 (en) * | 2013-09-12 | 2019-01-15 | Intel Corporation | Methods and arrangements for a personal point of sale device |
US9563385B1 (en) * | 2013-09-16 | 2017-02-07 | Amazon Technologies, Inc. | Profile-guided data preloading for virtualized resources |
US20150082063A1 (en) * | 2013-09-18 | 2015-03-19 | Lenovo (Singapore) Pte. Ltd. | Baseboard management controller state transitions |
US10318473B2 (en) | 2013-09-24 | 2019-06-11 | Facebook, Inc. | Inter-device data-transport via memory channels |
US10261813B2 (en) * | 2013-09-25 | 2019-04-16 | Arm Limited | Data processing system for dispatching tasks from a plurality of applications to a shared resource provided by an accelerator |
US9021154B2 (en) | 2013-09-27 | 2015-04-28 | Intel Corporation | Read training a memory controller |
US20150095553A1 (en) * | 2013-10-01 | 2015-04-02 | International Business Machines Corporation | Selective software-based data compression in a storage system based on data heat |
WO2015051023A1 (en) | 2013-10-03 | 2015-04-09 | Coadna Photonics Inc. | Distributed optical switching architecture for data center networking |
US9647941B2 (en) * | 2013-10-04 | 2017-05-09 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Hierarchical hashing for longest prefix matching |
WO2015049789A1 (en) * | 2013-10-04 | 2015-04-09 | 株式会社日立製作所 | Resource management system and resource management method |
US9785455B2 (en) * | 2013-10-13 | 2017-10-10 | Nicira, Inc. | Logical router |
CN104123186B (en) * | 2013-10-15 | 2015-09-16 | 腾讯科技(深圳)有限公司 | Method for distributing business and device |
US20150106660A1 (en) * | 2013-10-16 | 2015-04-16 | Lenovo (Singapore) Pte. Ltd. | Controller access to host memory |
CN103560967B (en) * | 2013-10-17 | 2016-06-01 | 电子科技大学 | The virtual data center mapping method of a kind of business demand perception |
US9059731B2 (en) * | 2013-10-21 | 2015-06-16 | International Business Machines Corporation | Boosting decompression in the presence of reoccurring Huffman trees |
US10390463B2 (en) | 2013-10-30 | 2019-08-20 | Dell Products, L.P. | Backflow prevention for computing devices |
CN103533086B (en) * | 2013-10-31 | 2017-02-01 | 中国科学院计算机网络信息中心 | Uniform resource scheduling method in cloud computing system |
US9946664B2 (en) * | 2013-11-08 | 2018-04-17 | Samsung Electronics Co., Ltd. | Socket interposer having a multi-modal I/O interface |
US9553822B2 (en) * | 2013-11-12 | 2017-01-24 | Microsoft Technology Licensing, Llc | Constructing virtual motherboards and virtual storage devices |
US9870568B2 (en) * | 2013-11-19 | 2018-01-16 | Xerox Corporation | Methods and systems to price customized virtual machines |
TW201524314A (en) | 2013-11-22 | 2015-06-16 | Hon Hai Prec Ind Co Ltd | Fastening apparatus for data storage device |
US9647904B2 (en) * | 2013-11-25 | 2017-05-09 | Amazon Technologies, Inc. | Customer-directed networking limits in distributed systems |
US9674042B2 (en) * | 2013-11-25 | 2017-06-06 | Amazon Technologies, Inc. | Centralized resource usage visualization service for large-scale network topologies |
US9336504B2 (en) * | 2013-11-25 | 2016-05-10 | International Business Machines Corporation | Eliminating execution of jobs-based operational costs of related reports |
CN104684330A (en) * | 2013-11-26 | 2015-06-03 | 鸿富锦精密工业(深圳)有限公司 | Circuit board fixing structure and electronic device using same |
US9331058B2 (en) * | 2013-12-05 | 2016-05-03 | Apple Inc. | Package with SoC and integrated memory |
US10708392B2 (en) * | 2013-12-07 | 2020-07-07 | Appex Networks Holding Limited | System and method for compression and decompression of data containing redundancies |
US10254987B2 (en) * | 2013-12-12 | 2019-04-09 | Samsung Electronics Co., Ltd. | Disaggregated memory appliance having a management processor that accepts request from a plurality of hosts for management, configuration and provisioning of memory |
US9798485B2 (en) * | 2013-12-13 | 2017-10-24 | Netapp Inc. | Path management techniques for storage networks |
US20150172204A1 (en) * | 2013-12-13 | 2015-06-18 | International Business Machines Corporation | Dynamically Change Cloud Environment Configurations Based on Moving Workloads |
DE102013114289B4 (en) * | 2013-12-18 | 2023-09-07 | Juvema Ag | Shelving system with electrical supply |
US9602392B2 (en) * | 2013-12-18 | 2017-03-21 | Nicira, Inc. | Connectivity segment coloring |
US9390877B2 (en) * | 2013-12-19 | 2016-07-12 | Google Inc. | RF MEMS based large scale cross point electrical switch |
US9841791B2 (en) * | 2013-12-20 | 2017-12-12 | Rambus Inc. | Circuit board assembly configuration |
US9292449B2 (en) * | 2013-12-20 | 2016-03-22 | Intel Corporation | Cache memory data compression and decompression |
US9456519B2 (en) | 2013-12-23 | 2016-09-27 | Dell Products, L.P. | Single unit height storage sled with lateral storage device assembly supporting hot-removal of storage devices and slidable insertion and extraction from an information handling system rack |
US9788451B2 (en) * | 2013-12-23 | 2017-10-10 | Dell Products, L.P. | Block chassis sled having one-third width computing and storage nodes for increased processing and storage configuration flexibility within a modular, scalable and/or expandable rack-based information handling system |
US10915468B2 (en) * | 2013-12-26 | 2021-02-09 | Intel Corporation | Sharing memory and I/O services between nodes |
US9396109B2 (en) * | 2013-12-27 | 2016-07-19 | Qualcomm Incorporated | Method and apparatus for DRAM spatial coalescing within a single channel |
US9232678B2 (en) | 2013-12-30 | 2016-01-05 | Dell Products L.P. | Modular, scalable, expandable, rack-based information handling system |
US10185499B1 (en) * | 2014-01-07 | 2019-01-22 | Rambus Inc. | Near-memory compute module |
US9251064B2 (en) | 2014-01-08 | 2016-02-02 | Netapp, Inc. | NVRAM caching and logging in a storage system |
US9383797B2 (en) | 2014-01-09 | 2016-07-05 | Wisconsin Alumni Research Foundation | Electronic computer providing power/performance management |
US9268653B2 (en) * | 2014-01-17 | 2016-02-23 | Netapp, Inc. | Extent metadata update logging and checkpointing |
US9786578B2 (en) * | 2014-01-27 | 2017-10-10 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Orthogonally hinged individualized memory module cooling |
US9368197B2 (en) * | 2014-01-29 | 2016-06-14 | Kabushiki Kaisha Toshiba | Memory system |
US9600389B2 (en) * | 2014-01-29 | 2017-03-21 | International Business Machines Corporation | Generating performance and capacity statistics |
US9602311B2 (en) * | 2014-02-06 | 2017-03-21 | The Board Of Trustees Of The Leland Stanford Junior University | Dual-mode network |
US10089172B2 (en) * | 2014-02-07 | 2018-10-02 | Texas Instruments Incorporated | Package on package memory interface and configuration with error code correction |
US9329780B2 (en) * | 2014-02-11 | 2016-05-03 | International Business Machines Corporation | Combining virtual mapping metadata and physical space mapping metadata |
US10423596B2 (en) * | 2014-02-11 | 2019-09-24 | International Business Machines Corporation | Efficient caching of Huffman dictionaries |
US9433119B2 (en) | 2014-02-12 | 2016-08-30 | International Business Machines Corporation | Positive pressure-applying latch mechanism |
US9785547B2 (en) * | 2014-02-13 | 2017-10-10 | Hitachi, Ltd. | Data management apparatus and method |
CN103806704B (en) * | 2014-02-13 | 2016-08-17 | 深圳市共济科技有限公司 | A kind of modular data center machine room with closed channel |
EP3104737A4 (en) * | 2014-02-14 | 2017-10-11 | Thalmic Labs Inc. | Systems, articles, and methods for elastic electrical cables and wearable electronic devices employing same |
US9270469B2 (en) * | 2014-02-20 | 2016-02-23 | Xilinx, Inc. | Authentication using public keys and session keys |
US10404547B2 (en) * | 2014-02-27 | 2019-09-03 | Intel Corporation | Workload optimization, scheduling, and placement for rack-scale architecture computing systems |
KR20160138448A (en) | 2014-03-08 | 2016-12-05 | 다이아만티 인코포레이티드 | Methods and systems for converged networking and storage |
US9294347B2 (en) * | 2014-03-20 | 2016-03-22 | Dell Products Lp | Systems and methods for automatic access layer configuration |
US9838476B2 (en) * | 2014-03-26 | 2017-12-05 | Rockwell Automation Technologies, Inc. | On-premise data collection and ingestion using industrial cloud agents |
US9893988B2 (en) * | 2014-03-27 | 2018-02-13 | Nicira, Inc. | Address resolution using multiple designated instances of a logical router |
US9294304B2 (en) * | 2014-03-31 | 2016-03-22 | Juniper Networks, Inc. | Host network accelerator for data center overlay network |
US9841931B2 (en) * | 2014-03-31 | 2017-12-12 | Vmware, Inc. | Systems and methods of disk storage allocation for virtual machines |
US9813258B2 (en) * | 2014-03-31 | 2017-11-07 | Tigera, Inc. | Data center networks |
US10846257B2 (en) | 2014-04-01 | 2020-11-24 | Endance Technology Limited | Intelligent load balancing and high speed intelligent network recorders |
US10361924B2 (en) * | 2014-04-04 | 2019-07-23 | International Business Machines Corporation | Forecasting computer resources demand |
US9582012B2 (en) * | 2014-04-08 | 2017-02-28 | Qualcomm Incorporated | Energy efficiency aware thermal management in a multi-processor system on a chip |
GB2525003B (en) * | 2014-04-09 | 2021-06-09 | Advanced Risc Mach Ltd | Data Processing Systems |
US9448599B2 (en) * | 2014-04-09 | 2016-09-20 | Facebook, Inc. | High-density storage server chassis |
KR102262102B1 (en) * | 2014-04-09 | 2021-06-09 | 삼성전자 주식회사 | Method and apparatus for application execution |
US10114784B2 (en) * | 2014-04-25 | 2018-10-30 | Liqid Inc. | Statistical power handling in a scalable storage system |
US9606316B1 (en) * | 2014-05-01 | 2017-03-28 | Amazon Technologies, Inc. | Data center infrastructure |
US10133572B2 (en) | 2014-05-02 | 2018-11-20 | Qualcomm Incorporated | Techniques for serialized execution in a SIMD processing system |
US9619164B2 (en) | 2014-05-06 | 2017-04-11 | Nimble Storage, Inc. | Cluster solid state drives |
US9858060B2 (en) * | 2014-05-09 | 2018-01-02 | International Business Machines Corporation | Automated deployment of a private modular cloud-computing environment |
US10002048B2 (en) * | 2014-05-15 | 2018-06-19 | International Business Machines Corporation | Point-in-time snap copy management in a deduplication environment |
US9509434B2 (en) * | 2014-05-19 | 2016-11-29 | Ciena Corporation | Margin-based optimization systems and methods in optical networks by intentionally reducing margin |
US10268492B2 (en) * | 2014-05-20 | 2019-04-23 | Amazon Technologies, Inc. | Low latency connections to workspaces in a cloud computing environment |
US10659523B1 (en) * | 2014-05-23 | 2020-05-19 | Amazon Technologies, Inc. | Isolating compute clusters created for a customer |
US9529727B2 (en) | 2014-05-27 | 2016-12-27 | Qualcomm Incorporated | Reconfigurable fetch pipeline |
US9356883B1 (en) * | 2014-05-29 | 2016-05-31 | Amazon Technologies, Inc. | Allocating cloud-hosted application resources using end-user metrics |
US9612952B2 (en) * | 2014-06-04 | 2017-04-04 | Pure Storage, Inc. | Automatically reconfiguring a storage memory topology |
US12137140B2 (en) * | 2014-06-04 | 2024-11-05 | Pure Storage, Inc. | Scale out storage platform having active failover |
US9280476B2 (en) * | 2014-06-04 | 2016-03-08 | Oracle International Corporation | Hardware stream prefetcher with dynamically adjustable stride |
US9501110B2 (en) | 2014-06-05 | 2016-11-22 | Liqid Inc. | Adjustable data storage drive module carrier assembly |
EP3152659B1 (en) * | 2014-06-05 | 2021-11-10 | British Telecommunications public limited company | Scheduling access to resources for efficient utilisation of network capacity and infrastructure |
US9798636B2 (en) * | 2014-06-23 | 2017-10-24 | Liqid Inc. | Front end traffic handling in modular switched fabric based data storage systems |
US10382279B2 (en) * | 2014-06-30 | 2019-08-13 | Emc Corporation | Dynamically composed compute nodes comprising disaggregated components |
KR20170029542A (en) * | 2014-07-03 | 2017-03-15 | 에이비비 슈바이쯔 아게 | An apparatus and a method for processing data |
US9756404B2 (en) | 2014-07-03 | 2017-09-05 | Fiber Mountain, Inc. | Data center path switch with improved path interconnection architecture |
US20160006808A1 (en) | 2014-07-07 | 2016-01-07 | Samsung Electronics Co., Ltd. | Electronic system with memory network mechanism and method of operation thereof |
US9880754B2 (en) | 2014-07-09 | 2018-01-30 | Dell Products, Lp | System and method for enabling transportability of a non volatile dual inline memory module |
TWI540582B (en) * | 2014-07-10 | 2016-07-01 | 群聯電子股份有限公司 | Data management method, memory control circuit unit and memory storage apparatus |
US9973380B1 (en) * | 2014-07-10 | 2018-05-15 | Cisco Technology, Inc. | Datacenter workload deployment using cross-domain global service profiles and identifiers |
US10044795B2 (en) * | 2014-07-11 | 2018-08-07 | Vmware Inc. | Methods and apparatus for rack deployments for virtual computing environments |
US10198389B2 (en) | 2014-07-14 | 2019-02-05 | Cavium, Llc | Baseboard interconnection device, system and method |
TWM499030U (en) * | 2014-07-29 | 2015-04-11 | Pegatron Corp | Server |
US20160034210A1 (en) | 2014-07-31 | 2016-02-04 | International Business Machines Corporation | Committing data across multiple, heterogeneous storage devices |
US9665432B2 (en) * | 2014-08-07 | 2017-05-30 | Microsoft Technology Licensing, Llc | Safe data access following storage failure |
US10289604B2 (en) * | 2014-08-07 | 2019-05-14 | Wisconsin Alumni Research Foundation | Memory processing core architecture |
US20160041919A1 (en) * | 2014-08-08 | 2016-02-11 | Qualcomm Incorporated | System and method for selective sub-page decompression |
US20160050194A1 (en) * | 2014-08-18 | 2016-02-18 | Tawkur LLC | Web-based governance of messaging services |
US10437479B2 (en) * | 2014-08-19 | 2019-10-08 | Samsung Electronics Co., Ltd. | Unified addressing and hierarchical heterogeneous storage and memory |
US9742690B2 (en) * | 2014-08-20 | 2017-08-22 | At&T Intellectual Property I, L.P. | Load adaptation architecture framework for orchestrating and managing services in a cloud computing system |
US9712898B2 (en) | 2014-08-26 | 2017-07-18 | Intel Corporation | Network aggregation in a computing shelf/tray |
EP3187006B1 (en) * | 2014-08-28 | 2018-05-23 | Nokia Solutions and Networks Oy | System power management and optimization in telecommunication systems |
US9292210B1 (en) * | 2014-08-29 | 2016-03-22 | International Business Machines Corporation | Thermally sensitive wear leveling for a flash memory device that includes a plurality of flash memory modules |
US9351428B2 (en) * | 2014-08-29 | 2016-05-24 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Blind docking apparatus to enable liquid cooling in compute nodes |
US9653124B2 (en) * | 2014-09-04 | 2017-05-16 | Liqid Inc. | Dual-sided rackmount storage assembly |
US9769254B2 (en) * | 2014-09-15 | 2017-09-19 | Ca, Inc. | Productive spend metric based resource management for a portfolio of distributed computing systems |
US9743367B2 (en) | 2014-09-18 | 2017-08-22 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Link layer discovery protocol (LLDP) on multiple nodes of a distributed fabric |
US9740426B2 (en) * | 2014-09-19 | 2017-08-22 | Lenovo (Singapore) Pte. Ltd. | Drive array policy control |
US9643233B2 (en) * | 2014-09-22 | 2017-05-09 | Dell Products, L.P. | Bi-directional airflow heatsink |
US9699049B2 (en) * | 2014-09-23 | 2017-07-04 | Ebay Inc. | Predictive model for anomaly detection and feedback-based scheduling |
US10069749B1 (en) * | 2014-09-23 | 2018-09-04 | EMC IP Holding Company LLC | Method and apparatus for disaggregated overlays via application services profiles |
US9686143B2 (en) * | 2014-09-24 | 2017-06-20 | Intel Corporation | Mechanism for management controllers to learn the control plane hierarchy in a data center environment |
WO2016054028A1 (en) * | 2014-09-29 | 2016-04-07 | Fiber Mountain, Inc. | Data center network |
US10171371B2 (en) * | 2014-09-30 | 2019-01-01 | International Business Machines Corporation | Scalable metering for cloud service management based on cost-awareness |
US10467036B2 (en) * | 2014-09-30 | 2019-11-05 | International Business Machines Corporation | Dynamic metering adjustment for service management of computing platform |
SG11201701440SA (en) * | 2014-10-03 | 2017-04-27 | Agency Science Tech & Res | Distributed active hybrid storage system |
US9805335B2 (en) * | 2014-10-09 | 2017-10-31 | Dell Products L.P. | Distributed enterprise equipment inventory location system |
US9596181B1 (en) * | 2014-10-20 | 2017-03-14 | Juniper Networks, Inc. | Two stage bloom filter for longest prefix match |
US9597801B2 (en) * | 2014-10-21 | 2017-03-21 | Centurylink Intellectual Property Llc | Automated data center |
US9647684B2 (en) | 2014-10-21 | 2017-05-09 | Huawei Technologies Co., Ltd. | Memory-based history search |
US9721660B2 (en) * | 2014-10-24 | 2017-08-01 | Microsoft Technology Licensing, Llc | Configurable volatile memory without a dedicated power source for detecting a data save trigger condition |
WO2016069011A1 (en) | 2014-10-31 | 2016-05-06 | Hewlett Packard Enterprise Development Lp | Management controller |
US9774503B2 (en) | 2014-11-03 | 2017-09-26 | Intel Corporation | Method, apparatus and system for automatically discovering nodes and resources in a multi-node system |
KR20160056380A (en) | 2014-11-10 | 2016-05-20 | 삼성전자주식회사 | Storage device and operating method of storage device |
US9489542B2 (en) * | 2014-11-12 | 2016-11-08 | Seagate Technology Llc | Split-key arrangement in a multi-device storage enclosure |
US10423414B2 (en) * | 2014-11-12 | 2019-09-24 | Texas Instruments Incorporated | Parallel processing in hardware accelerators communicably coupled with a processor |
US10489145B2 (en) * | 2014-11-14 | 2019-11-26 | Hewlett Packard Enterprise Development Lp | Secure update of firmware and software |
US9800465B2 (en) * | 2014-11-14 | 2017-10-24 | International Business Machines Corporation | Application placement through multiple allocation domain agents and flexible cloud scheduler framework |
CN104331497A (en) * | 2014-11-19 | 2015-02-04 | 中国科学院自动化研究所 | Method and device using vector instruction to process file index in parallel mode |
US20160143178A1 (en) * | 2014-11-19 | 2016-05-19 | Dell Products L.P. | Baffle and Reinforcement System |
US9612765B2 (en) | 2014-11-19 | 2017-04-04 | International Business Machines Corporation | Context aware dynamic composition of migration plans to cloud |
EP3024199B1 (en) * | 2014-11-21 | 2019-12-11 | Facebook, Inc. | Method, storage media, system and program product for associating user data with a mobile device |
US9961170B2 (en) * | 2014-11-25 | 2018-05-01 | Qualcomm Incorporated | Ethertype packet discrimination data type |
US9749448B2 (en) | 2014-11-25 | 2017-08-29 | Intel Corporation | Header parity error handling |
CN105700956A (en) * | 2014-11-28 | 2016-06-22 | 国际商业机器公司 | Distributed job processing method and system |
US10009668B2 (en) * | 2014-12-01 | 2018-06-26 | The Royal Institution For The Advancement Of Learning / Mcgill University | Methods and systems for board level photonic bridges |
US9971719B2 (en) * | 2014-12-02 | 2018-05-15 | Mediatek Inc. | System and circuit using USB Type-C interface |
JP6147240B2 (en) * | 2014-12-05 | 2017-06-14 | キヤノン株式会社 | Information processing apparatus, method of controlling the apparatus, and program |
US10067741B1 (en) * | 2014-12-05 | 2018-09-04 | Amazon Technologies, Inc. | Systems and methods for I/O device logging |
US9684364B2 (en) * | 2014-12-09 | 2017-06-20 | Intel Corporation | Technologies for out-of-band power-based task scheduling for data centers |
US10355935B2 (en) * | 2014-12-09 | 2019-07-16 | Ciena Corporation | Reduced link bandwidth update systems and methods for improved scalability, efficiency, and performance |
US9740425B2 (en) * | 2014-12-16 | 2017-08-22 | Sandisk Technologies Llc | Tag-based wear leveling for a data storage device |
US9419647B2 (en) | 2014-12-16 | 2016-08-16 | Intel Corporation | Partitioned data compression using accelerator |
US10154023B1 (en) | 2014-12-18 | 2018-12-11 | EMC IP Holding Company LLC | Method and system for secure instantiation of an operation system within the cloud |
US9921768B2 (en) * | 2014-12-18 | 2018-03-20 | Intel Corporation | Low power entry in a shared memory link |
US10126950B2 (en) | 2014-12-22 | 2018-11-13 | Intel Corporation | Allocating and configuring persistent memory |
US9779053B2 (en) * | 2014-12-23 | 2017-10-03 | Intel Corporation | Physical interface for a serial interconnect |
US20160179582A1 (en) | 2014-12-23 | 2016-06-23 | Intel Corporation | Techniques to dynamically allocate resources for local service chains of configurable computing resources |
US9740610B2 (en) * | 2014-12-24 | 2017-08-22 | Intel Corporation | Polarity based data transfer function for volatile memory |
US9563431B2 (en) * | 2014-12-26 | 2017-02-07 | Intel Corporation | Techniques for cooperative execution between asymmetric processor cores |
US20160188455A1 (en) * | 2014-12-29 | 2016-06-30 | Sandisk Technologies Inc. | Systems and Methods for Choosing a Memory Block for the Storage of Data Based on a Frequency With Which the Data is Updated |
US9652391B2 (en) * | 2014-12-30 | 2017-05-16 | Arteris, Inc. | Compression of hardware cache coherent addresses |
US20160203014A1 (en) * | 2015-01-08 | 2016-07-14 | International Business Machines Corporaiton | Managing virtual machines using globally unique persistent virtual machine identifiers |
US20160210379A1 (en) * | 2015-01-21 | 2016-07-21 | International Business Machines Corporation | Aligning event data with a hierarchical declarative process model |
WO2016122631A1 (en) * | 2015-01-30 | 2016-08-04 | Hewlett Packard Enterprise Development Lp | Memory-driven out-of-band management |
US9720184B2 (en) * | 2015-02-04 | 2017-08-01 | International Business Machines Corporation | Blind mating strain relieved optical fiber connector |
US10198183B2 (en) * | 2015-02-06 | 2019-02-05 | Liqid Inc. | Tunneling of storage operations between storage nodes |
US20180025315A1 (en) * | 2015-02-06 | 2018-01-25 | Flowvision, Llc | Shipping rack item configuration |
US9648402B2 (en) * | 2015-02-10 | 2017-05-09 | Ciena Corporation | In-band communication channel in optical networks |
US9851945B2 (en) * | 2015-02-16 | 2017-12-26 | Advanced Micro Devices, Inc. | Bit remapping mechanism to enhance lossy compression in floating-point applications |
US20160241432A1 (en) * | 2015-02-17 | 2016-08-18 | Dell Products L.P. | System and method for remote configuration of nodes |
US9767067B2 (en) * | 2015-02-19 | 2017-09-19 | Dell Products, L.P. | Baseboard management systems and methods with distributed intelligence for multi-node platforms |
US10528272B2 (en) * | 2015-02-20 | 2020-01-07 | International Business Machines Corporation | RAID array systems and operations using mapping information |
US20160246842A1 (en) * | 2015-02-25 | 2016-08-25 | Futurewei Technologies, Inc. | Query optimization adaptive to system memory load for parallel database systems |
JP6699653B2 (en) | 2015-02-26 | 2020-05-27 | 日本電気株式会社 | Processing device, processing device control method, and recording medium |
US9535117B2 (en) * | 2015-03-06 | 2017-01-03 | Intel Corporation | System debug using an all-in-one connector |
US10404523B2 (en) * | 2015-03-09 | 2019-09-03 | Vapor IO Inc. | Data center management with rack-controllers |
JP6476018B2 (en) | 2015-03-10 | 2019-02-27 | 日本光電工業株式会社 | probe |
US10084648B2 (en) * | 2015-03-12 | 2018-09-25 | International Business Machines Corporation | Creating new cloud resource instruction set architecture |
US10243873B2 (en) * | 2015-03-19 | 2019-03-26 | International Business Machines Corporation | Dynamic management of computing platform resources |
CN107710702B (en) * | 2015-03-23 | 2020-09-01 | 艾易珀尼斯公司 | System for routing data in a data center network |
US9851996B2 (en) * | 2015-03-24 | 2017-12-26 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Applying firmware updates in a system with zero downtime by selectively offlining and onlining hardware using a scale-up hypervisor layer |
JP2016184658A (en) * | 2015-03-26 | 2016-10-20 | 日本電気株式会社 | Cooling device, and device |
US10972371B2 (en) * | 2015-03-27 | 2021-04-06 | Intel Corporation | Technologies for GPU assisted network traffic monitoring and analysis |
US10353745B1 (en) * | 2015-03-27 | 2019-07-16 | Amazon Technologies, Inc. | Assessing performance of disparate computing environments |
US9252805B1 (en) * | 2015-03-28 | 2016-02-02 | International Business Machines Corporation | Parallel huffman decoder |
US9760159B2 (en) * | 2015-04-08 | 2017-09-12 | Microsoft Technology Licensing, Llc | Dynamic power routing to hardware accelerators |
US20160306677A1 (en) * | 2015-04-14 | 2016-10-20 | Globalfoundries Inc. | Automatic Analytical Cloud Scaling of Hardware Using Resource Sub-Cloud |
US10268618B2 (en) * | 2015-04-16 | 2019-04-23 | Advanced Micro Devices, Inc. | Chip level switching for multiple computing device interfaces |
US9792154B2 (en) * | 2015-04-17 | 2017-10-17 | Microsoft Technology Licensing, Llc | Data processing system having a hardware acceleration plane and a software plane |
US9979662B2 (en) * | 2015-04-17 | 2018-05-22 | International Business Machines Corporation | Storage area network workload balancing |
US10019388B2 (en) * | 2015-04-28 | 2018-07-10 | Liqid Inc. | Enhanced initialization for data storage assemblies |
US10108422B2 (en) * | 2015-04-28 | 2018-10-23 | Liqid Inc. | Multi-thread network stack buffering of data frames |
US10129101B2 (en) * | 2015-04-30 | 2018-11-13 | Futurewei Technologies, Inc. | Application driven and adaptive unified resource management for data centers with Multi-Resource Schedulable Unit (MRSU) |
EP3089035A1 (en) * | 2015-04-30 | 2016-11-02 | Virtual Open Systems | Virtualization manager for reconfigurable hardware accelerators |
US10410155B2 (en) * | 2015-05-01 | 2019-09-10 | Microsoft Technology Licensing, Llc | Automatic demand-driven resource scaling for relational database-as-a-service |
US9948505B2 (en) * | 2015-05-05 | 2018-04-17 | Citrix Systems, Inc. | Systems and methods for integrating a device with a software-defined networking controller |
US10073806B2 (en) * | 2015-05-13 | 2018-09-11 | Qualcomm Incorporated | Apparatus and methods for providing a reconfigurable bidirectional front-end interface |
US10009438B2 (en) * | 2015-05-20 | 2018-06-26 | Sandisk Technologies Llc | Transaction log acceleration |
WO2016186583A1 (en) * | 2015-05-21 | 2016-11-24 | Agency For Science, Technology And Research | Cache architecture and algorithms for hybrid object storage devices |
US10402122B2 (en) * | 2015-05-29 | 2019-09-03 | Pure Storage, Inc. | Transferring encoded data slices in a dispersed storage network |
US20160350002A1 (en) * | 2015-05-29 | 2016-12-01 | Intel Corporation | Memory device specific self refresh entry and exit |
US10078803B2 (en) * | 2015-06-15 | 2018-09-18 | Google Llc | Screen-analysis based device security |
US9626116B1 (en) * | 2015-06-22 | 2017-04-18 | EMC IP Holding Company LLC | Distributed service level objective management in active-active environments |
US9703664B1 (en) * | 2015-06-24 | 2017-07-11 | EMC IP Holding Company LLC | Self adaptive workload classification and forecasting in multi-tiered storage system using ARIMA time series modeling |
US10397368B2 (en) * | 2015-06-25 | 2019-08-27 | International Business Machines Corporation | Data prefetching for large data systems |
US9858198B2 (en) * | 2015-06-26 | 2018-01-02 | Intel Corporation | 64KB page system that supports 4KB page operations |
US10021008B1 (en) * | 2015-06-29 | 2018-07-10 | Amazon Technologies, Inc. | Policy-based scaling of computing resource groups |
EP3116234B1 (en) * | 2015-07-09 | 2018-08-29 | Mitsubishi Electric R&D Centre Europe B.V. | Method for transmitting signalling information with reduced identfiying information in an optical communications network |
US10439886B2 (en) | 2015-07-13 | 2019-10-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Analytics-driven dynamic network design and configuration |
US9713215B2 (en) * | 2015-07-16 | 2017-07-18 | Quanta Computer Inc. | Identification of storage device for trouble shooting |
US10091087B2 (en) * | 2015-07-20 | 2018-10-02 | Cisco Technology, Inc. | Methods and systems for load balancing based on data shard leader |
US20170024224A1 (en) * | 2015-07-22 | 2017-01-26 | Cisco Technology, Inc. | Dynamic snapshots for sharing network boot volumes |
US10255287B2 (en) | 2015-07-31 | 2019-04-09 | Hiveio Inc. | Method and apparatus for on-disk deduplication metadata for a deduplication file system |
US10002104B2 (en) * | 2015-08-03 | 2018-06-19 | The Johns Hopkins University | Dual autonomous telemetry data acquisition system and real time opto-isolated receivers for use therewith |
US20170046152A1 (en) * | 2015-08-12 | 2017-02-16 | Quanta Computer Inc. | Firmware update |
US9891935B2 (en) | 2015-08-13 | 2018-02-13 | Altera Corporation | Application-based dynamic heterogeneous many-core systems and methods |
US10348574B2 (en) * | 2015-08-17 | 2019-07-09 | Vmware, Inc. | Hardware management systems for disaggregated rack architectures in virtual server rack deployments |
WO2017031126A1 (en) * | 2015-08-17 | 2017-02-23 | Brocade Communications Systems, Inc. | Pci express connected network switch |
US10481948B2 (en) * | 2015-08-25 | 2019-11-19 | Box, Inc. | Data transfer in a collaborative file sharing system |
US10083135B2 (en) * | 2015-08-28 | 2018-09-25 | Macronix International Co., Ltd. | Cooperative overlay |
US10264059B2 (en) * | 2015-08-28 | 2019-04-16 | International Business Machines Corporation | Determining server level availability and resource allocations based on workload level availability requirements |
US9929933B1 (en) * | 2015-09-01 | 2018-03-27 | Netronome Systems, Inc. | Loading a flow table with neural network determined information |
CN105183561B (en) | 2015-09-02 | 2018-09-14 | 浪潮(北京)电子信息产业有限公司 | A kind of resource allocation methods and system |
US10157112B2 (en) * | 2015-09-03 | 2018-12-18 | Toshiba Memory Corporation | Storage device |
US10530692B2 (en) * | 2015-09-04 | 2020-01-07 | Arista Networks, Inc. | Software FIB ARP FEC encoding |
US9484954B1 (en) * | 2015-09-10 | 2016-11-01 | Intel Corporation | Methods and apparatus to parallelize data decompression |
US20170076195A1 (en) | 2015-09-10 | 2017-03-16 | Intel Corporation | Distributed neural networks for scalable real-time analytics |
WO2017046789A1 (en) * | 2015-09-15 | 2017-03-23 | Gatekeeper Ltd. | System and method for securely connecting to a peripheral device |
US20170083339A1 (en) * | 2015-09-19 | 2017-03-23 | Microsoft Technology Licensing, Llc | Prefetching associated with predicated store instructions |
US9755964B2 (en) * | 2015-09-21 | 2017-09-05 | Advanced Micro Devices, Inc. | Multi-protocol header generation system |
US9778956B1 (en) * | 2015-09-24 | 2017-10-03 | EMC IP Holding Company LLC | Multi-dimensional scheduling in converged infrastructure |
CN105159617B (en) * | 2015-09-24 | 2018-09-07 | 浪潮(北京)电子信息产业有限公司 | A kind of pond storage system framework |
DE112015006944B4 (en) | 2015-09-25 | 2023-03-23 | Intel Corporation | Apparatus, system and method for facilitating communication over a link with a device external to an assembly |
US10120751B2 (en) * | 2015-09-25 | 2018-11-06 | Intel Corporation | Techniques to recover data using exclusive OR (XOR) parity information |
US9942631B2 (en) * | 2015-09-25 | 2018-04-10 | Intel Corporation | Out-of-band platform tuning and configuration |
US10320710B2 (en) | 2015-09-25 | 2019-06-11 | Intel Corporation | Reliable replication mechanisms based on active-passive HFI protocols built on top of non-reliable multicast fabric implementations |
CN105159753B (en) * | 2015-09-25 | 2018-09-28 | 华为技术有限公司 | The method, apparatus and pooling of resources manager of accelerator virtualization |
US9720439B2 (en) * | 2015-09-26 | 2017-08-01 | Intel Corporation | Methods, apparatuses, and systems for deskewing link splits |
US9888607B2 (en) | 2015-09-30 | 2018-02-06 | Seagate Technology Llc | Self-biasing storage device sled |
US9965218B1 (en) * | 2015-09-30 | 2018-05-08 | EMC IP Holding Company LLC | Techniques using multiple service level objectives in connection with a storage group |
US10126958B2 (en) * | 2015-10-05 | 2018-11-13 | Intel Corporation | Write suppression in non-volatile memory |
US10481655B2 (en) * | 2015-10-12 | 2019-11-19 | Dell Products L.P. | Systems and methods for dynamic and adaptive cooling fan shadowing in information handling systems |
US9568923B1 (en) * | 2015-10-27 | 2017-02-14 | International Business Machines Corporation | Determining a time for corrective action in a data center |
US20170116003A1 (en) | 2015-10-27 | 2017-04-27 | International Business Machines Corporation | Dynamic determination of the applicability of a hardware accelerator to a request |
KR20170049839A (en) * | 2015-10-29 | 2017-05-11 | 에스케이하이닉스 주식회사 | Semiconductor system and electronic device capable of capturing high speed signal |
US10013561B2 (en) | 2015-10-30 | 2018-07-03 | Ncr Corporation | Dynamic pre-boot storage encryption key |
US10037276B1 (en) * | 2015-11-04 | 2018-07-31 | Veritas Technologies Llc | Systems and methods for accelerating access to data by pre-warming the cache for virtual machines |
US9740867B2 (en) | 2015-11-16 | 2017-08-22 | Dell Products, L.P. | Securely passing user authentication data between a pre-boot authentication environment and an operating system |
US10375167B2 (en) * | 2015-11-20 | 2019-08-06 | Microsoft Technology Licensing, Llc | Low latency RDMA-based distributed storage |
US10206297B2 (en) | 2015-11-23 | 2019-02-12 | Liqid Inc. | Meshed architecture rackmount storage assembly |
US11263006B2 (en) * | 2015-11-24 | 2022-03-01 | Vmware, Inc. | Methods and apparatus to deploy workload domains in virtual server racks |
US10313479B2 (en) * | 2015-11-24 | 2019-06-04 | Vmware, Inc. | Methods and apparatus to manage workload domains in virtual server racks |
US10552234B2 (en) * | 2015-12-10 | 2020-02-04 | Microsoft Technology Licensing, Llc | Enhanced notification of editing events in shared documents |
US9430240B1 (en) * | 2015-12-10 | 2016-08-30 | International Business Machines Corporation | Pre-computation slice merging for prefetching in a computer processor |
US20170168729A1 (en) * | 2015-12-11 | 2017-06-15 | Netapp, Inc. | Methods and systems for managing resources of a networked storage environment |
US9642286B1 (en) * | 2015-12-14 | 2017-05-02 | Amazon Technologies, Inc. | Coordinated control using rack mountable cooling canisters |
US10476958B2 (en) * | 2015-12-16 | 2019-11-12 | Toshiba Memory Corporation | Hyper-converged flash array system |
US10425484B2 (en) * | 2015-12-16 | 2019-09-24 | Toshiba Memory Corporation | Just a bunch of flash (JBOF) appliance with physical access application program interface (API) |
US20170176688A1 (en) * | 2015-12-17 | 2017-06-22 | Hamid Mehrvar | Network Switch With Augmented Input and Output Capabilities |
US10339317B2 (en) | 2015-12-18 | 2019-07-02 | Intel Corporation | Computing devices |
US10423568B2 (en) * | 2015-12-21 | 2019-09-24 | Microsemi Solutions (U.S.), Inc. | Apparatus and method for transferring data and commands in a memory management environment |
CN105631196B (en) * | 2015-12-22 | 2018-04-17 | 中国科学院软件研究所 | A kind of container levels flexible resource feed system and method towards micro services framework |
WO2017111935A1 (en) | 2015-12-22 | 2017-06-29 | Halliburton Energy Services, Inc. | Selective nmr pulse for downhole measurements |
US10282107B1 (en) * | 2015-12-31 | 2019-05-07 | EMC IP Holding Company LLC | Controlling I/O response time to meet service levels |
US10108542B2 (en) * | 2016-01-04 | 2018-10-23 | Avalanche Technology, Inc. | Serial link storage interface (SLSI) hybrid block storage |
WO2017120270A1 (en) * | 2016-01-04 | 2017-07-13 | Gray Research LLC | Massively parallel computer, accelerated computing clusters, and two dimensional router and interconnection network for field programmable gate arrays, and applications |
US9851774B2 (en) * | 2016-01-04 | 2017-12-26 | Qualcomm Incorporated | Method and apparatus for dynamic clock and voltage scaling in a computer processor based on program phase |
WO2017119098A1 (en) * | 2016-01-07 | 2017-07-13 | 株式会社日立製作所 | Computer system and method for controlling computer |
CN105611778B (en) * | 2016-01-11 | 2018-05-25 | 泉州市港生利来进出口贸易有限公司 | A kind of communication apparatus that there is circuit board automatic plug and can prompt |
US10069682B2 (en) * | 2016-01-15 | 2018-09-04 | Dell Products L.P. | Systems and methods for proactively recommending input/output redirection using management controller |
WO2017127795A2 (en) * | 2016-01-21 | 2017-07-27 | Rf Code, Inc. | Asset tracking system for rack-based enclosures |
US10199715B2 (en) * | 2016-01-21 | 2019-02-05 | Rf Code, Inc. | Systems and methods for locating rack-based assets |
CN105526864A (en) * | 2016-01-21 | 2016-04-27 | 无锡联河光子技术有限公司 | Door-opening state intelligent detection device for optical cable cross-connecting box |
US9921880B2 (en) * | 2016-01-28 | 2018-03-20 | Oracle International Corporation | Dynamic performance isolation of competing workloads on CPUs with shared hardware components |
US9832548B2 (en) * | 2016-01-29 | 2017-11-28 | Ciena Corporation | Flexible behavior modification during restoration in optical networks |
KR102523141B1 (en) * | 2016-02-15 | 2023-04-20 | 삼성전자주식회사 | Nonvolatile memory module comprising volatile memory device and nonvolatile memory device |
US9933821B2 (en) * | 2016-02-17 | 2018-04-03 | Quanta Computer Inc. | Chassis with lock mechanism |
CN105760213B (en) * | 2016-02-22 | 2019-03-01 | 东北大学 | The early warning system and method for resources of virtual machine utilization rate under cloud environment |
US10140158B2 (en) * | 2016-02-23 | 2018-11-27 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and modules relating to allocation of host machines |
US9817586B2 (en) * | 2016-02-23 | 2017-11-14 | Samsung Electronics Co., Ltd. | Method of application aware IO completion mode changer for key value device |
US10778809B2 (en) * | 2016-02-26 | 2020-09-15 | Arista Networks, Inc. | Per-input port, per-control plane network data traffic class control plane policing |
US20170257970A1 (en) * | 2016-03-04 | 2017-09-07 | Radisys Corporation | Rack having uniform bays and an optical interconnect system for shelf-level, modular deployment of sleds enclosing information technology equipment |
US20170269666A1 (en) * | 2016-03-18 | 2017-09-21 | Apple Inc. | Smart Dynamic Voltage and Frequency Scaling of Electronic Components |
US20170272343A1 (en) * | 2016-03-21 | 2017-09-21 | Ca, Inc. | Systems and methods for monitoring servers for overloading conditions |
US10187290B2 (en) * | 2016-03-24 | 2019-01-22 | Juniper Networks, Inc. | Method, system, and apparatus for preventing tromboning in inter-subnet traffic within data center architectures |
US10203884B2 (en) * | 2016-03-30 | 2019-02-12 | Intel Corporation | Methods and apparatus to perform erase-suspend operations in memory devices |
US10318843B2 (en) * | 2016-03-30 | 2019-06-11 | Rakuten Kobo, Inc. | Method and apparatus for image processing and comparison based on spatial relationships between image features |
US20170289002A1 (en) * | 2016-03-31 | 2017-10-05 | Mrittika Ganguli | Technologies for deploying dynamic underlay networks in cloud computing infrastructures |
US9852060B2 (en) * | 2016-03-31 | 2017-12-26 | Dell Products L.P. | Storage class memory (SCM) memory mode cache system |
US9922689B2 (en) * | 2016-04-01 | 2018-03-20 | Intel Corporation | Memory mapping |
US10310893B2 (en) * | 2016-04-05 | 2019-06-04 | Microsoft Technology Licensing, Llc | Managing container pause and resume |
US10129169B2 (en) * | 2016-04-07 | 2018-11-13 | International Business Machines Corporation | Specifying a highly-resilient system in a disaggregated compute environment |
US11153223B2 (en) * | 2016-04-07 | 2021-10-19 | International Business Machines Corporation | Specifying a disaggregated compute system |
US9798363B1 (en) * | 2016-04-07 | 2017-10-24 | Facebook, Inc. | Computer module with double-sided memory |
US9811281B2 (en) * | 2016-04-07 | 2017-11-07 | International Business Machines Corporation | Multi-tenant memory service for memory pool architectures |
US9916636B2 (en) * | 2016-04-08 | 2018-03-13 | International Business Machines Corporation | Dynamically provisioning and scaling graphic processing units for data analytic workloads in a hardware cloud |
US10055255B2 (en) * | 2016-04-14 | 2018-08-21 | International Business Machines Corporation | Performance optimization of hardware accelerators |
US10171375B2 (en) * | 2016-04-21 | 2019-01-01 | International Business Machines Corporation | Constructing computing systems with flexible capacity of resources using disaggregated systems |
US10419303B2 (en) * | 2016-04-29 | 2019-09-17 | Cisco Technology, Inc. | Real-time ranking of monitored entities |
US10305815B2 (en) | 2016-04-29 | 2019-05-28 | Huawei Technologies Co., Ltd. | System and method for distributed resource management |
US10063493B2 (en) * | 2016-05-16 | 2018-08-28 | International Business Machines Corporation | Application-based elastic resource provisioning in disaggregated computing systems |
US11681770B2 (en) | 2016-05-16 | 2023-06-20 | International Business Machines Corporation | Determining whether to process identified uniform resource locators |
US9942323B2 (en) * | 2016-05-23 | 2018-04-10 | Velostrata Ltd. | Workload migration across a hybrid network |
NL2016812B1 (en) * | 2016-05-23 | 2017-11-30 | Aecorsis B V | A device comprising server modules |
US10620840B2 (en) * | 2016-05-27 | 2020-04-14 | Intel Corporation | Computer product, method, and system to dynamically manage storage devices accessed remotely over a network |
US20170371785A1 (en) * | 2016-06-28 | 2017-12-28 | Intel Corporation | Techniques for Write Commands to a Storage Device |
US10247435B2 (en) * | 2016-06-29 | 2019-04-02 | International Business Machines Corporation | Real-time control of highly variable thermal loads |
US20180004835A1 (en) | 2016-06-30 | 2018-01-04 | Facebook, Inc. | Data classification workflows implemented with dynamically modifiable directed graphs |
US10254970B1 (en) * | 2016-06-30 | 2019-04-09 | EMC IP Holding Company LLC | System, method and computer readable medium for obtaining consistent read performance for a plurality of flash drives or raid groups using workload and capacity limits |
US10701141B2 (en) * | 2016-06-30 | 2020-06-30 | International Business Machines Corporation | Managing software licenses in a disaggregated environment |
CN105979007B (en) | 2016-07-04 | 2020-06-02 | 华为技术有限公司 | Method and device for accelerating resource processing and network function virtualization system |
US10491701B2 (en) * | 2016-07-14 | 2019-11-26 | Cisco Technology, Inc. | Interconnect method for implementing scale-up servers |
US10404800B2 (en) | 2016-07-15 | 2019-09-03 | Hewlett Packard Enterprise Development Lp | Caching network fabric for high performance computing |
US11861188B2 (en) * | 2016-07-19 | 2024-01-02 | Pure Storage, Inc. | System having modular accelerators |
US9984004B1 (en) * | 2016-07-19 | 2018-05-29 | Nutanix, Inc. | Dynamic cache balancing |
US10698732B2 (en) * | 2016-07-19 | 2020-06-30 | Sap Se | Page ranking in operating system virtual pages in hybrid memory systems |
US10873521B2 (en) | 2016-07-22 | 2020-12-22 | Intel Corporation | Methods and apparatus for SDI support for fast startup |
US10234833B2 (en) | 2016-07-22 | 2019-03-19 | Intel Corporation | Technologies for predicting power usage of a data center |
US10334334B2 (en) | 2016-07-22 | 2019-06-25 | Intel Corporation | Storage sled and techniques for a data center |
US10791174B2 (en) * | 2016-07-28 | 2020-09-29 | Intel Corporation | Mechanism for efficient discovery of storage resources in a rack scale architecture system |
US20180032429A1 (en) * | 2016-07-29 | 2018-02-01 | Intel Corporation | Techniques to allocate regions of a multi-level, multi-technology system memory to appropriate memory access initiators |
US10241906B1 (en) * | 2016-07-30 | 2019-03-26 | EMC IP Holding Company LLC | Memory subsystem to augment physical memory of a computing system |
US10467195B2 (en) | 2016-09-06 | 2019-11-05 | Samsung Electronics Co., Ltd. | Adaptive caching replacement manager with dynamic updating granulates and partitions for shared flash-based storage system |
US10277677B2 (en) * | 2016-09-12 | 2019-04-30 | Intel Corporation | Mechanism for disaggregated storage class memory over fabric |
US10089014B2 (en) * | 2016-09-22 | 2018-10-02 | Advanced Micro Devices, Inc. | Memory-sampling based migrating page cache |
US20180123922A1 (en) * | 2016-10-31 | 2018-05-03 | AppDynamics, LLC | Correlating performance outliers and network performance impacting event metric |
US10417134B2 (en) * | 2016-11-10 | 2019-09-17 | Oracle International Corporation | Cache memory architecture and policies for accelerating graph algorithms |
US10228860B2 (en) * | 2016-11-14 | 2019-03-12 | Open Drives LLC | Storage optimization based I/O pattern modeling |
US20180150256A1 (en) | 2016-11-29 | 2018-05-31 | Intel Corporation | Technologies for data deduplication in disaggregated architectures |
US11016832B2 (en) | 2016-11-29 | 2021-05-25 | Intel Corporation | Cloud-based scale-up system composition |
US10599590B2 (en) | 2016-11-30 | 2020-03-24 | International Business Machines Corporation | Uniform memory access architecture |
US10282296B2 (en) | 2016-12-12 | 2019-05-07 | Intel Corporation | Zeroing a cache line |
WO2018111228A1 (en) | 2016-12-12 | 2018-06-21 | Intel Corporation | Apparatuses and methods for a processor architecture |
US10216596B1 (en) * | 2016-12-31 | 2019-02-26 | Bitmicro Networks, Inc. | Fast consistent write in a distributed system |
US10229065B2 (en) * | 2016-12-31 | 2019-03-12 | Intel Corporation | Unified hardware and software two-level memory |
KR20180106202A (en) | 2017-03-17 | 2018-10-01 | 주식회사 만도 | Shock absober for vehicle |
US11094029B2 (en) | 2017-04-10 | 2021-08-17 | Intel Corporation | Abstraction layers for scalable distributed machine learning |
US10795842B2 (en) * | 2017-05-08 | 2020-10-06 | Liqid Inc. | Fabric switched graphics modules within storage enclosures |
US20190068466A1 (en) | 2017-08-30 | 2019-02-28 | Intel Corporation | Technologies for auto-discovery of fault domains |
US20190065253A1 (en) | 2017-08-30 | 2019-02-28 | Intel Corporation | Technologies for pre-configuring accelerators by predicting bit-streams |
US20190044809A1 (en) | 2017-08-30 | 2019-02-07 | Intel Corporation | Technologies for managing a flexible host interface of a network interface controller |
US11119835B2 (en) | 2017-08-30 | 2021-09-14 | Intel Corporation | Technologies for providing efficient reprovisioning in an accelerator device |
US10963171B2 (en) * | 2017-10-16 | 2021-03-30 | Red Hat, Inc. | Compressibility instrumented dynamic volume provisioning |
US10231036B1 (en) * | 2017-11-14 | 2019-03-12 | International Business Machines Corporation | Hysteresis-based optical circuit switch scheduler |
US11263162B2 (en) | 2017-12-20 | 2022-03-01 | Intel Corporation | System decoder for training accelerators |
US11270201B2 (en) | 2017-12-29 | 2022-03-08 | Intel Corporation | Communication optimizations for distributed machine learning |
US11223606B2 (en) | 2018-06-29 | 2022-01-11 | Intel Corporation | Technologies for attesting a deployed workload using blockchain |
US11507430B2 (en) | 2018-09-27 | 2022-11-22 | Intel Corporation | Accelerated resource allocation techniques |
US11003539B2 (en) | 2019-01-15 | 2021-05-11 | EMC IP Holding Company LLC | Offload processing using a storage slot |
US20200241926A1 (en) | 2019-01-24 | 2020-07-30 | Intel Corporation | Selection and management of disaggregated computing resources |
BR112021016111A2 (en) | 2019-03-15 | 2021-11-09 | Intel Corp | Computing device, parallel processing unit, general-purpose graphics processing unit core, and graphics multiprocessor |
US20200341810A1 (en) | 2019-04-24 | 2020-10-29 | Intel Corporation | Technologies for providing an accelerator device discovery service |
US11269395B2 (en) * | 2019-04-25 | 2022-03-08 | Intel Corporation | Technologies for providing adaptive power management in an accelerator sled |
US20190253518A1 (en) * | 2019-04-26 | 2019-08-15 | Intel Corporation | Technologies for providing resource health based node composition and management |
US11711268B2 (en) * | 2019-04-30 | 2023-07-25 | Intel Corporation | Methods and apparatus to execute a workload in an edge environment |
US12073255B2 (en) * | 2019-07-02 | 2024-08-27 | Intel Corporation | Technologies for providing latency-aware consensus management in a disaggregated architecture |
US11573900B2 (en) * | 2019-09-11 | 2023-02-07 | Intel Corporation | Proactive data prefetch with applied quality of service |
US12111775B2 (en) | 2020-12-26 | 2024-10-08 | Intel Corporation | Memory hub providing cache coherency protocol system method for multiple processor sockets comprising multiple XPUs |
-
2016
- 2016-12-29 US US15/394,338 patent/US10334334B2/en active Active
- 2016-12-29 US US15/394,321 patent/US10091904B2/en active Active
- 2016-12-29 US US15/394,392 patent/US10034407B2/en active Active
- 2016-12-29 US US15/394,281 patent/US10390114B2/en active Active
- 2016-12-30 US US15/395,084 patent/US20180027057A1/en not_active Abandoned
- 2016-12-30 US US15/395,179 patent/US10567855B2/en active Active
- 2016-12-30 US US15/395,192 patent/US20180027058A1/en not_active Abandoned
- 2016-12-30 US US15/395,572 patent/US20180027059A1/en not_active Abandoned
- 2016-12-30 US US15/396,173 patent/US20180027063A1/en not_active Abandoned
- 2016-12-30 US US15/395,995 patent/US11233712B2/en active Active
- 2016-12-30 US US15/395,443 patent/US10823920B2/en active Active
- 2016-12-30 US US15/395,566 patent/US20180026910A1/en not_active Abandoned
- 2016-12-30 US US15/395,273 patent/US10461774B2/en not_active Expired - Fee Related
- 2016-12-30 US US15/396,063 patent/US20180024756A1/en not_active Abandoned
- 2016-12-30 US US15/395,550 patent/US10411729B2/en active Active
- 2016-12-30 US US15/395,174 patent/US10687127B2/en active Active
- 2016-12-30 US US15/395,765 patent/US20180024764A1/en not_active Abandoned
- 2016-12-30 US US15/396,187 patent/US10349152B2/en active Active
- 2016-12-30 US US15/396,035 patent/US10070207B2/en active Active
- 2016-12-30 US US15/396,017 patent/US20180024752A1/en not_active Abandoned
- 2016-12-30 US US15/395,988 patent/US20180024864A1/en not_active Abandoned
- 2016-12-30 US US15/396,151 patent/US10757487B2/en active Active
- 2016-12-30 US US15/396,039 patent/US20180024838A1/en not_active Abandoned
- 2016-12-30 US US15/395,482 patent/US10735835B2/en active Active
- 2016-12-30 US US15/395,692 patent/US20180024775A1/en not_active Abandoned
- 2016-12-30 US US15/395,183 patent/US10771870B2/en active Active
- 2016-12-30 US US15/396,284 patent/US10313769B2/en active Active
- 2016-12-30 US US15/395,494 patent/US10616668B2/en active Active
- 2016-12-30 US US15/395,702 patent/US9929747B2/en active Active
- 2016-12-30 US US15/396,028 patent/US10542333B2/en active Active
- 2016-12-30 US US15/396,014 patent/US20180026835A1/en not_active Abandoned
- 2016-12-30 US US15/395,679 patent/US20180024740A1/en not_active Abandoned
- 2016-12-30 US US15/395,203 patent/US10045098B2/en active Active
- 2016-12-30 US US15/396,041 patent/US10788630B2/en not_active Expired - Fee Related
- 2016-12-30 US US15/396,338 patent/US10368148B2/en active Active
- 2016-12-31 US US15/396,473 patent/US11184261B2/en active Active
- 2016-12-31 US US15/396,653 patent/US10356495B2/en active Active
- 2016-12-31 US US15/396,501 patent/US10884195B2/en active Active
- 2016-12-31 US US15/396,646 patent/US10085358B2/en active Active
- 2016-12-31 US US15/396,652 patent/US10348327B2/en not_active Expired - Fee Related
- 2016-12-31 EP EP16909442.2A patent/EP3488338B1/en active Active
- 2016-12-31 CN CN201680087013.4A patent/CN109416630B/en active Active
- 2016-12-31 WO PCT/CN2016/114023 patent/WO2018014515A1/en unknown
- 2016-12-31 US US16/311,231 patent/US10944656B2/en active Active
- 2016-12-31 US US15/396,647 patent/US9936613B2/en active Active
-
2017
- 2017-01-17 US US15/407,330 patent/US20180027060A1/en not_active Abandoned
- 2017-01-17 US US15/407,329 patent/US20180024861A1/en not_active Abandoned
- 2017-02-02 US US15/423,467 patent/US10674238B2/en not_active Expired - Fee Related
- 2017-02-06 US US15/425,916 patent/US10397670B2/en active Active
- 2017-03-30 US US15/473,748 patent/US9954552B2/en active Active
- 2017-03-30 US US15/473,778 patent/US9859918B1/en active Active
- 2017-03-31 US US15/476,896 patent/US20180024958A1/en not_active Abandoned
- 2017-03-31 US US15/476,910 patent/US10917321B2/en active Active
- 2017-03-31 US US15/476,891 patent/US20180024957A1/en not_active Abandoned
- 2017-03-31 US US15/476,915 patent/US10616669B2/en active Active
- 2017-03-31 US US15/476,939 patent/US20180024932A1/en not_active Abandoned
- 2017-06-02 TW TW106118344A patent/TWI759307B/en active
- 2017-06-14 EP EP17831476.1A patent/EP3488352A4/en not_active Ceased
- 2017-06-14 EP EP21168844.5A patent/EP3879410A1/en not_active Ceased
- 2017-06-14 CN CN202110280664.8A patent/CN113254381B/en active Active
- 2017-06-14 WO PCT/US2017/037408 patent/WO2018017208A1/en unknown
- 2017-06-14 CN CN201780038679.5A patent/CN109416677B/en active Active
- 2017-06-19 WO PCT/US2017/038150 patent/WO2018017230A1/en active Application Filing
- 2017-06-20 WO PCT/US2017/038297 patent/WO2018017235A1/en active Application Filing
- 2017-06-20 WO PCT/US2017/038323 patent/WO2018017244A1/en active Application Filing
- 2017-06-20 WO PCT/US2017/038321 patent/WO2018017243A1/en active Application Filing
- 2017-06-20 CN CN201780038367.4A patent/CN109328342A/en active Pending
- 2017-06-20 WO PCT/US2017/038319 patent/WO2018017242A1/en active Application Filing
- 2017-06-20 DE DE112017003704.2T patent/DE112017003704T5/en active Pending
- 2017-06-20 CN CN201780038664.9A patent/CN109716659B/en active Active
- 2017-06-20 WO PCT/US2017/038313 patent/WO2018017239A1/en active Application Filing
- 2017-06-20 WO PCT/US2017/038304 patent/WO2018017238A1/en unknown
- 2017-06-20 WO PCT/US2017/038301 patent/WO2018017237A1/en active Application Filing
- 2017-06-20 EP EP17831495.1A patent/EP3488360B1/en active Active
- 2017-06-20 DE DE112017003708.5T patent/DE112017003708T5/en not_active Withdrawn
- 2017-06-20 WO PCT/US2017/038318 patent/WO2018017241A1/en active Application Filing
- 2017-06-20 WO PCT/US2017/038317 patent/WO2018017240A1/en active Application Filing
- 2017-06-20 CN CN201780038381.4A patent/CN109416670B/en active Active
- 2017-06-21 WO PCT/US2017/038540 patent/WO2018017253A1/en active Application Filing
- 2017-06-21 WO PCT/US2017/038518 patent/WO2018017250A1/en unknown
- 2017-06-21 WO PCT/US2017/038513 patent/WO2018017248A1/en active Application Filing
- 2017-06-21 EP EP17831510.7A patent/EP3488619B1/en active Active
- 2017-06-21 CN CN201780038317.6A patent/CN109417861B/en active Active
- 2017-06-21 CN CN201780038785.3A patent/CN109314672B/en active Active
- 2017-06-21 DE DE112017003696.8T patent/DE112017003696T5/en active Pending
- 2017-06-21 CN CN201780038793.8A patent/CN109314804B/en active Active
- 2017-06-21 EP EP17831509.9A patent/EP3488674A4/en not_active Withdrawn
- 2017-06-21 CN CN201780038806.1A patent/CN109313584B/en active Active
- 2017-06-21 WO PCT/US2017/038512 patent/WO2018017247A1/en active Application Filing
- 2017-06-21 DE DE112017003703.4T patent/DE112017003703T5/en active Pending
- 2017-06-21 CN CN202211194590.7A patent/CN115695337A/en active Pending
- 2017-06-21 WO PCT/US2017/038546 patent/WO2018017255A1/en unknown
- 2017-06-21 WO PCT/US2017/038516 patent/WO2018017249A1/en active Application Filing
- 2017-06-21 CN CN201780038740.6A patent/CN109315079B/en active Active
- 2017-06-21 EP EP17831511.5A patent/EP3488351A4/en not_active Withdrawn
- 2017-06-21 DE DE112017003684.4T patent/DE112017003684T5/en active Pending
- 2017-06-21 CN CN201780038852.1A patent/CN109379903B/en active Active
- 2017-06-21 WO PCT/US2017/038538 patent/WO2018017252A1/en unknown
- 2017-06-21 CN CN201780038318.0A patent/CN109313624B/en active Active
- 2017-06-21 WO PCT/US2017/038551 patent/WO2018017257A1/en unknown
- 2017-06-21 EP EP17831512.3A patent/EP3488345A4/en not_active Withdrawn
- 2017-06-21 WO PCT/US2017/038548 patent/WO2018017256A1/en unknown
- 2017-06-21 CN CN201780038329.9A patent/CN109313580B/en active Active
- 2017-06-21 EP EP17831505.7A patent/EP3488670A4/en not_active Withdrawn
- 2017-06-21 DE DE112017003693.3T patent/DE112017003693T5/en active Pending
- 2017-06-21 WO PCT/US2017/038552 patent/WO2018017258A1/en active Application Filing
- 2017-06-21 WO PCT/US2017/038544 patent/WO2018017254A1/en unknown
- 2017-06-21 EP EP17831507.3A patent/EP3488673A4/en not_active Withdrawn
- 2017-06-22 CN CN201780038941.6A patent/CN109328338A/en active Pending
- 2017-06-22 WO PCT/US2017/038688 patent/WO2018017269A1/en active Application Filing
- 2017-06-22 WO PCT/US2017/038646 patent/WO2018017260A1/en active Application Filing
- 2017-06-22 WO PCT/US2017/038871 patent/WO2018017281A1/en unknown
- 2017-06-22 DE DE112017003707.7T patent/DE112017003707T5/en active Pending
- 2017-06-22 DE DE112017003690.9T patent/DE112017003690T5/en active Pending
- 2017-06-22 DE DE112017003688.7T patent/DE112017003688T5/en active Pending
- 2017-06-22 DE DE112017003702.6T patent/DE112017003702T5/en active Pending
- 2017-06-22 WO PCT/US2017/038750 patent/WO2018017275A1/en active Application Filing
- 2017-06-22 WO PCT/US2017/038686 patent/WO2018017268A1/en active Application Filing
- 2017-06-22 WO PCT/US2017/038725 patent/WO2018017271A1/en active Application Filing
- 2017-06-22 EP EP17831534.7A patent/EP3488316A4/en active Pending
- 2017-06-22 DE DE112017003699.2T patent/DE112017003699T5/en active Pending
- 2017-06-22 DE DE112017003682.8T patent/DE112017003682T5/en active Pending
- 2017-06-22 WO PCT/US2017/038672 patent/WO2018017266A1/en active Application Filing
- 2017-06-22 DE DE112017003710.7T patent/DE112017003710T5/en active Pending
- 2017-06-22 WO PCT/US2017/038644 patent/WO2018017259A1/en active Application Filing
- 2017-06-22 WO PCT/US2017/038731 patent/WO2018017274A1/en active Application Filing
- 2017-06-22 CN CN201780039632.0A patent/CN109416648A/en active Pending
- 2017-06-22 CN CN201780038842.8A patent/CN109313585B/en active Active
- 2017-06-22 WO PCT/US2017/038872 patent/WO2018017282A1/en active Application Filing
- 2017-06-22 CN CN201780038680.8A patent/CN109314677B/en active Active
- 2017-06-22 DE DE112017003691.7T patent/DE112017003691T5/en active Pending
- 2017-06-22 WO PCT/US2017/038667 patent/WO2018017265A1/en active Application Filing
- 2017-06-22 CN CN201780038322.7A patent/CN109314671B/en active Active
- 2017-06-22 CN CN201780038291.5A patent/CN109417518B/en active Active
- 2017-06-22 CN CN201780038670.4A patent/CN109313582B/en active Active
- 2017-06-22 WO PCT/US2017/038874 patent/WO2018017283A1/en active Application Filing
- 2017-06-22 WO PCT/US2017/038728 patent/WO2018017273A1/en active Application Filing
- 2017-06-22 WO PCT/US2017/038660 patent/WO2018017263A1/en active Application Filing
- 2017-06-22 WO PCT/US2017/038652 patent/WO2018017261A1/en unknown
- 2017-06-22 DE DE112017003711.5T patent/DE112017003711T5/en active Pending
- 2017-06-22 CN CN201780038698.8A patent/CN109417564B/en active Active
- 2017-06-22 DE DE112017003701.8T patent/DE112017003701T5/en active Pending
- 2017-06-22 CN CN201780038401.8A patent/CN109416564B/en active Active
- 2017-06-22 WO PCT/US2017/038665 patent/WO2018017264A1/en active Application Filing
- 2017-06-22 WO PCT/US2017/038753 patent/WO2018017277A1/en active Application Filing
- 2017-06-22 CN CN201780038843.2A patent/CN109416561A/en active Pending
- 2017-06-22 EP EP17831516.4A patent/EP3488573A4/en active Pending
- 2017-06-22 WO PCT/US2017/038756 patent/WO2018017278A1/en active Application Filing
- 2017-06-22 CN CN201780038899.8A patent/CN109313625B/en active Active
- 2017-06-22 WO PCT/US2017/038726 patent/WO2018017272A1/en active Application Filing
- 2017-06-22 WO PCT/US2017/038751 patent/WO2018017276A1/en active Application Filing
- 2017-06-30 US US15/639,037 patent/US10448126B2/en active Active
- 2017-06-30 US US15/639,289 patent/US10033404B2/en active Active
- 2017-06-30 US US15/638,855 patent/US10986005B2/en active Active
- 2017-06-30 US US15/639,602 patent/US9973207B2/en active Active
- 2017-06-30 US US15/638,842 patent/US10116327B2/en active Active
- 2017-07-19 US US15/654,615 patent/US20180025299A1/en not_active Abandoned
- 2017-07-20 DE DE112017003713.1T patent/DE112017003713T5/en active Pending
- 2017-07-20 WO PCT/US2017/043182 patent/WO2018017905A1/en active Application Filing
- 2017-07-20 TW TW106124373A patent/TWI832805B/en active
- 2017-07-20 CN CN201780038802.3A patent/CN109416675A/en active Pending
- 2017-07-21 DE DE112017003705.0T patent/DE112017003705T5/en active Pending
- 2017-07-21 CN CN201780038794.2A patent/CN109328351B/en active Active
- 2017-07-21 US US15/656,798 patent/US10489156B2/en active Active
- 2017-07-21 US US15/656,830 patent/US10931550B2/en active Active
- 2017-07-21 WO PCT/US2017/043343 patent/WO2018017986A1/en active Application Filing
- 2017-12-26 US US15/854,261 patent/US10263637B2/en active Active
-
2018
- 2018-05-30 CN CN201810538045.2A patent/CN109213437A/en active Pending
- 2018-08-06 US US16/055,602 patent/US10802229B2/en active Active
- 2018-09-03 US US16/120,419 patent/US10474460B2/en active Active
-
2019
- 2019-07-09 US US16/506,457 patent/US11349734B2/en active Active
- 2019-07-16 US US16/513,371 patent/US10785549B2/en active Active
- 2019-07-16 US US16/513,345 patent/US10791384B2/en active Active
- 2019-10-17 US US16/656,009 patent/US11838113B2/en active Active
-
2020
- 2020-09-09 US US17/015,479 patent/US11128553B2/en active Active
- 2020-10-30 US US17/086,206 patent/US11695668B2/en active Active
- 2020-11-18 US US16/951,723 patent/US11245604B2/en active Active
-
2021
- 2021-04-20 US US17/235,135 patent/US11336547B2/en active Active
- 2021-08-17 US US17/404,749 patent/US11595277B2/en active Active
- 2021-11-19 US US17/531,494 patent/US11689436B2/en active Active
-
2022
- 2022-04-29 US US17/733,086 patent/US11855766B2/en active Active
- 2022-12-06 US US18/076,104 patent/US12040889B2/en active Active
-
2023
- 2023-03-03 US US18/116,957 patent/US12081323B2/en active Active
- 2023-11-09 US US18/388,461 patent/US20240113954A1/en active Pending
-
2024
- 2024-07-19 US US18/778,493 patent/US20240372792A1/en active Pending
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11595277B2 (en) | 2016-07-22 | 2023-02-28 | Intel Corporation | Technologies for switching network traffic in a data center |
US11128553B2 (en) | 2016-07-22 | 2021-09-21 | Intel Corporation | Technologies for switching network traffic in a data center |
US12040889B2 (en) | 2016-07-22 | 2024-07-16 | Intel Corporation | Technologies for switching network traffic in a data center |
US12081323B2 (en) | 2016-07-22 | 2024-09-03 | Intel Corporation | Techniques to control system updates and configuration changes via the cloud |
US10785549B2 (en) | 2016-07-22 | 2020-09-22 | Intel Corporation | Technologies for switching network traffic in a data center |
US10802229B2 (en) | 2016-07-22 | 2020-10-13 | Intel Corporation | Technologies for switching network traffic in a data center |
US10791384B2 (en) | 2016-07-22 | 2020-09-29 | Intel Corporation | Technologies for switching network traffic in a data center |
US11995330B2 (en) | 2016-11-29 | 2024-05-28 | Intel Corporation | Technologies for providing accelerated functions as a service in a disaggregated architecture |
US11137922B2 (en) | 2016-11-29 | 2021-10-05 | Intel Corporation | Technologies for providing accelerated functions as a service in a disaggregated architecture |
US11907557B2 (en) | 2016-11-29 | 2024-02-20 | Intel Corporation | Technologies for dividing work across accelerator devices |
US11977923B2 (en) | 2016-11-29 | 2024-05-07 | Intel Corporation | Cloud-based scale-up system composition |
US10848432B2 (en) * | 2016-12-18 | 2020-11-24 | Cisco Technology, Inc. | Switch fabric based load balancing |
US20190363900A1 (en) * | 2016-12-21 | 2019-11-28 | British Telecommunications Public Limited Company | Network node |
US10680843B2 (en) * | 2016-12-21 | 2020-06-09 | British Telecommunications Public Limited Company | Network node |
US11055149B2 (en) | 2017-08-30 | 2021-07-06 | Intel Corporation | Technologies for providing workload-based sled position adjustment |
US20190258523A1 (en) * | 2018-02-21 | 2019-08-22 | Anki, Inc. | Character-Driven Computing During Unengaged Time |
US10765026B2 (en) | 2018-08-17 | 2020-09-01 | Microsoft Technology Licensing, Llc | Automated data center |
US10795758B2 (en) * | 2018-11-20 | 2020-10-06 | Acronis International Gmbh | Proactive disaster recovery based on external event monitoring |
US11354185B2 (en) * | 2018-11-20 | 2022-06-07 | Acronis International Gmbh | Proactive disaster recovery based on external event monitoring |
US20200159609A1 (en) * | 2018-11-20 | 2020-05-21 | Acronis International Gmbh | Proactive disaster recovery based on external event monitoring |
US11052541B1 (en) * | 2018-12-05 | 2021-07-06 | Facebook, Inc. | Autonomous robot telerobotic interface |
CN110091337A (en) * | 2019-04-24 | 2019-08-06 | 北京百度网讯科技有限公司 | Robot cooperated method, apparatus, intelligent robot and robot management platform |
US11126501B2 (en) * | 2019-04-30 | 2021-09-21 | EMC IP Holding Company LLC | Method, device and program product for avoiding a fault event of a disk array |
US11470019B2 (en) * | 2019-09-05 | 2022-10-11 | Infinera Corporation | Dynamically switching queueing schemes for network switches |
US20220210083A1 (en) * | 2019-09-20 | 2022-06-30 | Huawei Technologies Co., Ltd. | Packet forwarding method and apparatus, system, device, and storage medium |
US11831554B2 (en) * | 2019-09-20 | 2023-11-28 | Huawei Technologies Co., Ltd. | Packet forwarding method and apparatus, system, device, and storage medium |
US10747281B1 (en) * | 2019-11-19 | 2020-08-18 | International Business Machines Corporation | Mobile thermal balancing of data centers |
US20210157701A1 (en) * | 2019-11-22 | 2021-05-27 | Dell Products, L.P. | Systems and methods for automated field replacement component configuration |
US11782810B2 (en) * | 2019-11-22 | 2023-10-10 | Dell Products, L.P. | Systems and methods for automated field replacement component configuration |
WO2021199075A1 (en) * | 2020-04-02 | 2021-10-07 | Lightspeedai Labs Private Limited | A system and method for enabling reconfigurable and flexible modular compute |
US11658899B2 (en) * | 2021-01-22 | 2023-05-23 | Vmware, Inc. | Routing configuration for data center fabric maintenance |
US20220239586A1 (en) * | 2021-01-22 | 2022-07-28 | Vmware, Inc. | Routing configuration for data center fabric maintenance |
US20230023869A1 (en) * | 2021-07-23 | 2023-01-26 | Dell Products, L.P. | System and method for providing intelligent assistance using a warranty bot |
US20230067201A1 (en) * | 2021-08-20 | 2023-03-02 | Nvidia Corporation | Cooling line monitoring and repair |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180025299A1 (en) | Automated data center maintenance | |
US20210365199A1 (en) | Technologies for coordinating disaggregated accelerator device resources | |
US10833969B2 (en) | Methods and apparatus for composite node malleability for disaggregated architectures | |
EP3847781B1 (en) | Application of machine learning for building predictive models enabling smart fail over between different network media types | |
EP3422188B1 (en) | Technologies for producing proactive notifications of storage device performance | |
US10234833B2 (en) | Technologies for predicting power usage of a data center | |
US11625277B2 (en) | Dynamically augmenting edge resources | |
JP2017534222A (en) | Cloud-based access network | |
CN112788088B (en) | Network communication control method of multi-edge cloud and edge operation system | |
KR102661279B1 (en) | Method and device for providing services from edge data network (EDN) to edge application server (EAS) | |
US20160308707A1 (en) | Method for managing multiple bandwidth boost solutions co-existing in an electronic device | |
US20240022479A1 (en) | CU-UP Node Selection Based on Endpoints Discovery | |
US11716254B2 (en) | Methods and systems for management of shared network slice instance (NSI) in a wireless network | |
WO2024062273A1 (en) | Method and system for resource allocation using reinforcement learning | |
US20240243796A1 (en) | Methods and Apparatus for Controlling One or More Transmission Parameters Used by a Wireless Communication Network for a Population of Devices Comprising a Cyber-Physical System | |
CN111245938B (en) | Robot cluster management method, robot cluster, robot and related equipment | |
WO2024225950A1 (en) | Methods and apparatuses for supporting internet of things device with intermittent receiver activity | |
WO2023209577A1 (en) | Ml model support and model id handling by ue and network | |
Mostafa | The Role of Autonomous Computing, Cloud Computing, and Multimedia in IoT | |
CN118303087A (en) | Connection mode discontinuous reception in a wireless communication network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCT | Information on status: administrative procedure adjustment |
Free format text: PROSECUTION SUSPENDED |
|
AS | Assignment |
Owner name: INTEL CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUMAR, MOHAN J.;NACHIMUTHU, MURUGASAMY K.;GORIUS, AARON;AND OTHERS;SIGNING DATES FROM 20170728 TO 20180411;REEL/FRAME:047689/0844 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |