US20210365199A1 - Technologies for coordinating disaggregated accelerator device resources - Google Patents
Technologies for coordinating disaggregated accelerator device resources Download PDFInfo
- Publication number
- US20210365199A1 US20210365199A1 US17/221,541 US202117221541A US2021365199A1 US 20210365199 A1 US20210365199 A1 US 20210365199A1 US 202117221541 A US202117221541 A US 202117221541A US 2021365199 A1 US2021365199 A1 US 2021365199A1
- Authority
- US
- United States
- Prior art keywords
- accelerator
- workload
- accelerator device
- compute
- request
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005516 engineering process Methods 0.000 title description 6
- 238000012545 processing Methods 0.000 claims abstract description 143
- 238000000034 method Methods 0.000 claims description 72
- 230000008569 process Effects 0.000 claims description 19
- 230000004044 response Effects 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 description 63
- 238000004891 communication Methods 0.000 description 36
- 230000006870 function Effects 0.000 description 22
- 238000007726 management method Methods 0.000 description 22
- 238000010586 diagram Methods 0.000 description 15
- 239000004744 fabric Substances 0.000 description 15
- 230000036541 health Effects 0.000 description 13
- 238000001816 cooling Methods 0.000 description 12
- 230000011664 signaling Effects 0.000 description 11
- 238000013500 data storage Methods 0.000 description 9
- 238000012423 maintenance Methods 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004883 computer application Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 101100498818 Arabidopsis thaliana DDR4 gene Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000005387 chalcogenide glass Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000010624 twisted pair cabling Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0895—Configuration of virtualised networks or elements, e.g. virtualised network function or OpenFlow elements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0638—Organizing or formatting or addressing of data
- G06F3/064—Management of blocks
- G06F3/0641—De-duplication techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
- G06F11/0706—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
- G06F11/0709—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment in a distributed system consisting of a plurality of standalone computer nodes, e.g. clusters, client-server systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
- G06F11/0751—Error or fault detection not based on redundancy
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
- G06F11/079—Root cause analysis, i.e. error or fault diagnosis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/3003—Monitoring arrangements specially adapted to the computing system or computing system component being monitored
- G06F11/3006—Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system is distributed, e.g. networked systems, clusters, multiprocessor systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/3003—Monitoring arrangements specially adapted to the computing system or computing system component being monitored
- G06F11/3034—Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system component is a storage system, e.g. DASD based or network based
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/3055—Monitoring arrangements for monitoring the status of the computing system or of the computing system component, e.g. monitoring if the computing system is on, off, available, not available
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/3065—Monitoring arrangements determined by the means or processing involved in reporting the monitored data
- G06F11/3072—Monitoring arrangements determined by the means or processing involved in reporting the monitored data where the reporting involves data filtering, e.g. pattern matching, time or event triggered, adaptive or policy-based reporting
- G06F11/3079—Monitoring arrangements determined by the means or processing involved in reporting the monitored data where the reporting involves data filtering, e.g. pattern matching, time or event triggered, adaptive or policy-based reporting the data filtering being achieved by reporting only the changes of the monitored data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
- G06F11/3409—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/0223—User address space allocation, e.g. contiguous or non contiguous base addressing
- G06F12/0284—Multiple user address space allocation, e.g. using different base addresses
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/06—Addressing a physical block of locations, e.g. base addressing, module addressing, memory dedication
- G06F12/0646—Configuration or reconfiguration
- G06F12/0692—Multiconfiguration, e.g. local and global addressing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/1605—Handling requests for interconnection or transfer for access to memory bus based on arbitration
- G06F13/1652—Handling requests for interconnection or transfer for access to memory bus based on arbitration in a multiprocessor architecture
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/40—Bus structure
- G06F13/4004—Coupling between buses
- G06F13/4022—Coupling between buses using switching circuits, e.g. switching matrix, connection or expansion network
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/40—Bus structure
- G06F13/4004—Coupling between buses
- G06F13/4027—Coupling between buses using bus bridges
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
- G06F15/161—Computing infrastructure, e.g. computer clusters, blade chassis or hardware partitioning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/10—File systems; File servers
- G06F16/17—Details of further file system functions
- G06F16/174—Redundancy elimination performed by the file system
- G06F16/1744—Redundancy elimination performed by the file system using compression, e.g. sparse files
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/30—Authentication, i.e. establishing the identity or authorisation of security principals
- G06F21/44—Program or device authentication
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/50—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
- G06F21/57—Certifying or maintaining trusted computer platforms, e.g. secure boots or power-downs, version controls, system software checks, secure updates or assessing vulnerabilities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/62—Protecting access to data via a platform, e.g. using keys or access control rules
- G06F21/6218—Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/70—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/70—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
- G06F21/71—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
- G06F21/73—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information by creating or determining hardware identification, e.g. serial numbers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/70—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
- G06F21/71—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
- G06F21/76—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information in application-specific integrated circuits [ASIC] or field-programmable devices, e.g. field-programmable gate arrays [FPGA] or programmable logic devices [PLD]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/0604—Improving or facilitating administration, e.g. storage management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/0608—Saving storage space on storage systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/061—Improving I/O performance
- G06F3/0611—Improving I/O performance in relation to response time
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/061—Improving I/O performance
- G06F3/0613—Improving I/O performance in relation to throughput
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/0614—Improving the reliability of storage systems
- G06F3/0617—Improving the reliability of storage systems in relation to availability
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0646—Horizontal data movement in storage systems, i.e. moving data in between storage devices or systems
- G06F3/0647—Migration mechanisms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0646—Horizontal data movement in storage systems, i.e. moving data in between storage devices or systems
- G06F3/065—Replication mechanisms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0653—Monitoring storage devices or systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0668—Interfaces specially adapted for storage systems adopting a particular infrastructure
- G06F3/067—Distributed or networked storage systems, e.g. storage area networks [SAN], network attached storage [NAS]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/06—Arrangements for sorting, selecting, merging, or comparing data on individual record carriers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/60—Software deployment
- G06F8/65—Updates
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/60—Software deployment
- G06F8/65—Updates
- G06F8/654—Updates using techniques specially adapted for alterable solid state memories, e.g. for EEPROM or flash memories
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/60—Software deployment
- G06F8/65—Updates
- G06F8/656—Updates while running
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/60—Software deployment
- G06F8/65—Updates
- G06F8/658—Incremental updates; Differential updates
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline or look ahead
- G06F9/3836—Instruction issuing, e.g. dynamic instruction scheduling or out of order instruction execution
- G06F9/3851—Instruction issuing, e.g. dynamic instruction scheduling or out of order instruction execution from multiple instruction streams, e.g. multistreaming
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline or look ahead
- G06F9/3885—Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units
- G06F9/3889—Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units controlled by multiple instructions, e.g. MIMD, decoupled access or execute
- G06F9/3891—Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units controlled by multiple instructions, e.g. MIMD, decoupled access or execute organised in groups of units sharing resources, e.g. clusters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/4401—Bootstrapping
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Program initiating; Program switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Program initiating; Program switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/4881—Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
- G06F9/5038—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the execution order of a plurality of tasks, e.g. taking priority or time dependency constraints into consideration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
- G06F9/5044—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering hardware capabilities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
- G06F9/505—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5083—Techniques for rebalancing the load in a distributed system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/54—Interprogram communication
- G06F9/544—Buffers; Shared memory; Pipes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/20—Processor architectures; Processor configuration, e.g. pipelining
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/60—Memory management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding
- G06T9/005—Statistical coding, e.g. Huffman, run length coding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/44—Means for preventing access to live contacts
- H01R13/447—Shutter or cover plate
- H01R13/453—Shutter or cover plate opened by engagement of counterpart
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/44—Means for preventing access to live contacts
- H01R13/447—Shutter or cover plate
- H01R13/453—Shutter or cover plate opened by engagement of counterpart
- H01R13/4536—Inwardly pivoting shutter
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/44—Means for preventing access to live contacts
- H01R13/447—Shutter or cover plate
- H01R13/453—Shutter or cover plate opened by engagement of counterpart
- H01R13/4538—Covers sliding or withdrawing in the direction of engagement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/62—Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
- H01R13/629—Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure electrical locking indicators, manufacturing tolerances
- H01R13/631—Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure electrical locking indicators, manufacturing tolerances for engagement only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/173—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
- H03K19/1731—Optimisation thereof
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/3084—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction using adaptive string matching, e.g. the Lempel-Ziv method
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/40—Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/40—Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code
- H03M7/42—Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code using table look-up for the coding or decoding process, e.g. using read-only memory
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/60—General implementation details not specific to a particular type of compression
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/60—General implementation details not specific to a particular type of compression
- H03M7/6011—Encoder aspects
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/60—General implementation details not specific to a particular type of compression
- H03M7/6017—Methods or arrangements to increase the throughput
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/60—General implementation details not specific to a particular type of compression
- H03M7/6017—Methods or arrangements to increase the throughput
- H03M7/6029—Pipelining
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2854—Wide area networks, e.g. public data networks
- H04L12/2856—Access arrangements, e.g. Internet access
- H04L12/2869—Operational details of access network equipments
- H04L12/2878—Access multiplexer, e.g. DSLAM
- H04L12/2879—Access multiplexer, e.g. DSLAM characterised by the network type on the uplink side, i.e. towards the service provider network
- H04L12/2881—IP/Ethernet DSLAM
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/46—Interconnection of networks
- H04L12/4633—Interconnection of networks using encapsulation techniques, e.g. tunneling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/04—Network management architectures or arrangements
- H04L41/044—Network management architectures or arrangements comprising hierarchical management structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0803—Configuration setting
- H04L41/0813—Configuration setting characterised by the conditions triggering a change of settings
- H04L41/0816—Configuration setting characterised by the conditions triggering a change of settings the condition being an adaptation, e.g. in response to network events
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/085—Retrieval of network configuration; Tracking network configuration history
- H04L41/0853—Retrieval of network configuration; Tracking network configuration history by actively collecting configuration information or by backing up configuration information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/12—Discovery or management of network topologies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/40—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using virtualisation of network functions or resources, e.g. SDN or NFV entities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/04—Processing captured monitoring data, e.g. for logfile generation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/06—Generation of reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0876—Network utilisation, e.g. volume of load or congestion level
- H04L43/0894—Packet rate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/20—Traffic policing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/24—Traffic characterised by specific attributes, e.g. priority or QoS
- H04L47/2441—Traffic characterised by specific attributes, e.g. priority or QoS relying on flow classification, e.g. using integrated services [IntServ]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/83—Admission control; Resource allocation based on usage prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/10—Packet switching elements characterised by the switching fabric construction
- H04L49/104—Asynchronous transfer mode [ATM] switching fabrics
-
- H04L61/2007—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L61/00—Network arrangements, protocols or services for addressing or naming
- H04L61/50—Address allocation
- H04L61/5007—Internet protocol [IP] addresses
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
- H04L67/1004—Server selection for load balancing
- H04L67/1014—Server selection for load balancing based on the content of a request
-
- H04L67/327—
-
- H04L67/36—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/60—Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
- H04L67/63—Routing a service request depending on the request content or context
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/75—Indicating network or usage conditions on the user display
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/0819—Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
- H04L9/0822—Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) using key encryption key
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1438—Back panels or connecting means therefor; Terminals; Coding means to avoid wrong insertion
- H05K7/1452—Mounting of connectors; Switching; Reinforcing of back panels
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1485—Servers; Data center rooms, e.g. 19-inch computer racks
- H05K7/1487—Blade assemblies, e.g. blade cases or inner arrangements within a blade
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1485—Servers; Data center rooms, e.g. 19-inch computer racks
- H05K7/1488—Cabinets therefor, e.g. chassis or racks or mechanical interfaces between blades and support structures
- H05K7/1491—Cabinets therefor, e.g. chassis or racks or mechanical interfaces between blades and support structures having cable management arrangements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1485—Servers; Data center rooms, e.g. 19-inch computer racks
- H05K7/1488—Cabinets therefor, e.g. chassis or racks or mechanical interfaces between blades and support structures
- H05K7/1492—Cabinets therefor, e.g. chassis or racks or mechanical interfaces between blades and support structures having electrical distribution arrangements, e.g. power supply or data communications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/14—Error detection or correction of the data by redundancy in operation
- G06F11/1402—Saving, restoring, recovering or retrying
- G06F11/1446—Point-in-time backing up or restoration of persistent data
- G06F11/1448—Management of the data involved in backup or backup restore
- G06F11/1453—Management of the data involved in backup or backup restore using de-duplication of the data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/0223—User address space allocation, e.g. contiguous or non contiguous base addressing
- G06F12/023—Free address space management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/76—Architectures of general purpose stored program computers
- G06F15/80—Architectures of general purpose stored program computers comprising an array of processing units with common control, e.g. single instruction multiple data processors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/28—Databases characterised by their database models, e.g. relational or object models
- G06F16/284—Relational databases
- G06F16/285—Clustering or classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/40—Specific encoding of data in memory or cache
- G06F2212/401—Compressed data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/40—Specific encoding of data in memory or cache
- G06F2212/402—Encrypted data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2221/00—Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/21—Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/2107—File encryption
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/04—Network management architectures or arrangements
- H04L41/046—Network management architectures or arrangements comprising network management agents or mobile agents therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0896—Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/142—Network analysis or design using statistical or mathematical methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/78—Architectures of resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1408—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
- H04L63/1425—Traffic logging, e.g. anomaly detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1438—Back panels or connecting means therefor; Terminals; Coding means to avoid wrong insertion
- H05K7/1447—External wirings; Wiring ducts; Laying cables
Definitions
- compute devices In modern cloud environments, compute devices (sometimes referred to as compute sleds) host many computer applications (e.g., workloads) that each perform specific functions. Each application requires processing power to complete various application tasks (e.g., functions, processes, operations within a workload), such as data processing but also input and output tasks such as displaying data, receiving data, or the like. Many of the abovementioned tasks are processed using computer programs that embody complex logic sequences. Such logic sequences often execute faster when carried out by a specialized component, such as a field programmable gate array, an application specific integrated circuit (ASIC), or other device specifically configured for performing such computation (e.g., an accelerator device).
- An accelerator device may be configured using, for example, a hardware definition language, to perform tasks assigned by a computer application.
- accelerator devices typically specialize in executing a particular type of task (e.g., encryption, compression, etc.)
- an operating system of the compute device, or the application executing on the compute device typically must identify the available features of the accelerator device(s) and manage communications with the accelerator device(s), taking away from compute resources (e.g., processor cycles) that could otherwise be spent on executing the application.
- compute resources e.g., processor cycles
- FIG. 1 is a diagram of a conceptual overview of a data center in which one or more techniques described herein may be implemented according to various embodiments;
- FIG. 2 is a diagram of an example embodiment of a logical configuration of a rack of the data center of FIG. 1 ;
- FIG. 3 is a diagram of an example embodiment of another data center in which one or more techniques described herein may be implemented according to various embodiments;
- FIG. 4 is a diagram of another example embodiment of a data center in which one or more techniques described herein may be implemented according to various embodiments;
- FIG. 5 is a diagram of a connectivity scheme representative of link-layer connectivity that may be established among various sleds of the data centers of FIGS. 1, 3, and 4 ;
- FIG. 6 is a diagram of a rack architecture that may be representative of an architecture of any particular one of the racks depicted in FIGS. 1-4 according to some embodiments;
- FIG. 7 is a diagram of an example embodiment of a sled that may be used with the rack architecture of FIG. 6 ;
- FIG. 8 is a diagram of an example embodiment of a rack architecture to provide support for sleds featuring expansion capabilities
- FIG. 9 is a diagram of an example embodiment of a rack implemented according to the rack architecture of FIG. 8 ;
- FIG. 10 is a diagram of an example embodiment of a sled designed for use in conjunction with the rack of FIG. 9 ;
- FIG. 11 is a diagram of an example embodiment of a data center in which one or more techniques described herein may be implemented according to various embodiments;
- FIG. 12 is a simplified block diagram of at least one embodiment of a system for managing disaggregated accelerator resources using a pooled system management engine (PSME) device;
- PSME system management engine
- FIG. 13 is a simplified block diagram of at least one embodiment of a compute sled of the system of FIG. 12 ;
- FIG. 14 is a simplified block diagram of at least one embodiment of an environment that may be established by the compute sled of FIGS. 12 and 13 ;
- FIGS. 15-18 are a simplified flow diagram of at least one embodiment of a method for managing disaggregated accelerator resources that may be performed by the compute sled of FIGS. 12 and 13 .
- references in the specification to “one embodiment,” “an embodiment,” “an illustrative embodiment,” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may or may not necessarily include that particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
- items included in a list in the form of “at least one A, B, and C” can mean (A); (B); (C); (A and B); (A and C); (B and C); or (A, B, and C).
- items listed in the form of “at least one of A, B, or C” can mean (A); (B); (C); (A and B); (A and C); (B and C); or (A, B, and C).
- the disclosed embodiments may be implemented, in some cases, in hardware, firmware, software, or any combination thereof.
- the disclosed embodiments may also be implemented as instructions carried by or stored on a transitory or non-transitory machine-readable (e.g., computer-readable) storage medium, which may be read and executed by one or more processors.
- a machine-readable storage medium may be embodied as any storage device, mechanism, or other physical structure for storing or transmitting information in a form readable by a machine (e.g., a volatile or non-volatile memory, a media disc, or other media device).
- FIG. 1 illustrates a conceptual overview of a data center 100 that may generally be representative of a data center or other type of computing network in/for which one or more techniques described herein may be implemented according to various embodiments.
- data center 100 may generally contain a plurality of racks, each of which may house computing equipment comprising a respective set of physical resources.
- data center 100 contains four racks 102 A to 102 D, which house computing equipment comprising respective sets of physical resources (PCRs) 105 A to 105 D.
- PCRs physical resources
- a collective set of physical resources 106 of data center 100 includes the various sets of physical resources 105 A to 105 D that are distributed among racks 102 A to 102 D.
- Physical resources 106 may include resources of multiple types, such as—for example—processors, co-processors, accelerators, field programmable gate arrays (FPGAs), memory, and storage. The embodiments are not limited to these examples.
- the illustrative data center 100 differs from typical data centers in many ways.
- the circuit boards (“sleds”) on which components such as CPUs, memory, and other components are placed are designed for increased thermal performance.
- the sleds are shallower than typical boards. In other words, the sleds are shorter from the front to the back, where cooling fans are located. This decreases the length of the path that air must to travel across the components on the board.
- the components on the sled are spaced further apart than in typical circuit boards, and the components are arranged to reduce or eliminate shadowing (i.e., one component in the air flow path of another component).
- processing components such as the processors are located on a top side of a sled while near memory, such as DIMMs, are located on a bottom side of the sled.
- near memory such as DIMMs
- the components may operate at higher frequencies and power levels than in typical systems, thereby increasing performance.
- the sleds are configured to blindly mate with power and data communication cables in each rack 102 A, 102 B, 102 C, 102 D, enhancing their ability to be quickly removed, upgraded, reinstalled, and/or replaced.
- individual components located on the sleds such as processors, accelerators, memory, and data storage drives, are configured to be easily upgraded due to their increased spacing from each other.
- the components additionally include hardware attestation features to prove their authenticity.
- the data center 100 utilizes a single network architecture (“fabric”) that supports multiple other network architectures including Ethernet and Omni-Path.
- the sleds in the illustrative embodiment, are coupled to switches via optical fibers, which provide higher bandwidth and lower latency than typical twisted pair cabling (e.g., Category 5, Category 5e, Category 6, etc.).
- the data center 100 may, in use, pool resources, such as memory, accelerators (e.g., graphics accelerators, FPGAs, ASICs, etc.), and data storage drives that are physically disaggregated, and provide them to compute resources (e.g., processors) on an as needed basis, enabling the compute resources to access the pooled resources as if they were local.
- the illustrative data center 100 additionally receives utilization information for the various resources, predicts resource utilization for different types of workloads based on past resource utilization, and dynamically reallocates the resources based on this information.
- the racks 102 A, 102 B, 102 C, 102 D of the data center 100 may include physical design features that facilitate the automation of a variety of types of maintenance tasks.
- data center 100 may be implemented using racks that are designed to be robotically-accessed, and to accept and house robotically-manipulatable resource sleds.
- the racks 102 A, 102 B, 102 C, 102 D include integrated power sources that receive a greater voltage than is typical for power sources. The increased voltage enables the power sources to provide additional power to the components on each sled, enabling the components to operate at higher than typical frequencies.
- FIG. 2 illustrates an exemplary logical configuration of a rack 202 of the data center 100 .
- rack 202 may generally house a plurality of sleds, each of which may comprise a respective set of physical resources.
- rack 202 houses sleds 204 - 1 to 204 - 4 comprising respective sets of physical resources 205 - 1 to 205 - 4 , each of which constitutes a portion of the collective set of physical resources 206 comprised in rack 202 .
- rack 202 is representative of—for example—rack 102 A
- physical resources 206 may correspond to the physical resources 105 A comprised in rack 102 A.
- physical resources 105 A may thus be made up of the respective sets of physical resources, including physical storage resources 205 - 1 , physical accelerator resources 205 - 2 , physical memory resources 205 - 3 , and physical compute resources 205 - 5 comprised in the sleds 204 - 1 to 204 - 4 of rack 202 .
- the embodiments are not limited to this example.
- Each sled may contain a pool of each of the various types of physical resources (e.g., compute, memory, accelerator, storage).
- robotically accessible and robotically manipulatable sleds comprising disaggregated resources, each type of resource can be upgraded independently of each other and at their own optimized refresh rate.
- FIG. 3 illustrates an example of a data center 300 that may generally be representative of one in/for which one or more techniques described herein may be implemented according to various embodiments.
- data center 300 comprises racks 302 - 1 to 302 - 32 .
- the racks of data center 300 may be arranged in such fashion as to define and/or accommodate various access pathways.
- the racks of data center 300 may be arranged in such fashion as to define and/or accommodate access pathways 311 A, 311 B, 311 C, and 311 D.
- the presence of such access pathways may generally enable automated maintenance equipment, such as robotic maintenance equipment, to physically access the computing equipment housed in the various racks of data center 300 and perform automated maintenance tasks (e.g., replace a failed sled, upgrade a sled).
- automated maintenance equipment such as robotic maintenance equipment
- the dimensions of access pathways 311 A, 311 B, 311 C, and 311 D, the dimensions of racks 302 - 1 to 302 - 32 , and/or one or more other aspects of the physical layout of data center 300 may be selected to facilitate such automated operations. The embodiments are not limited in this context.
- FIG. 4 illustrates an example of a data center 400 that may generally be representative of one in/for which one or more techniques described herein may be implemented according to various embodiments.
- data center 400 may feature an optical fabric 412 .
- Optical fabric 412 may generally comprise a combination of optical signaling media (such as optical cabling) and optical switching infrastructure via which any particular sled in data center 400 can send signals to (and receive signals from) each of the other sleds in data center 400 .
- the signaling connectivity that optical fabric 412 provides to any given sled may include connectivity both to other sleds in a same rack and sleds in other racks. In the particular non-limiting example depicted in FIG.
- data center 400 includes four racks 402 A to 402 D.
- Racks 402 A to 402 D house respective pairs of sleds 404 A- 1 and 404 A- 2 , 404 B- 1 and 404 B- 2 , 404 C- 1 and 404 C- 2 , and 404 D- 1 and 404 D- 2 .
- data center 400 comprises a total of eight sleds. Via optical fabric 412 , each such sled may possess signaling connectivity with each of the seven other sleds in data center 400 .
- sled 404 A- 1 in rack 402 A may possess signaling connectivity with sled 404 A- 2 in rack 402 A, as well as the six other sleds 404 B- 1 , 404 B- 2 , 404 C- 1 , 404 C- 2 , 404 D- 1 , and 404 D- 2 that are distributed among the other racks 402 B, 402 C, and 402 D of data center 400 .
- the embodiments are not limited to this example.
- FIG. 5 illustrates an overview of a connectivity scheme 500 that may generally be representative of link-layer connectivity that may be established in some embodiments among the various sleds of a data center, such as any of example data centers 100 , 300 , and 400 of FIGS. 1, 3, and 4 .
- Connectivity scheme 500 may be implemented using an optical fabric that features a dual-mode optical switching infrastructure 514 .
- Dual-mode optical switching infrastructure 514 may generally comprise a switching infrastructure that is capable of receiving communications according to multiple link-layer protocols via a same unified set of optical signaling media, and properly switching such communications.
- dual-mode optical switching infrastructure 514 may be implemented using one or more dual-mode optical switches 515 .
- dual-mode optical switches 515 may generally comprise high-radix switches.
- dual-mode optical switches 515 may comprise multi-ply switches, such as four-ply switches. In various embodiments, dual-mode optical switches 515 may feature integrated silicon photonics that enable them to switch communications with significantly reduced latency in comparison to conventional switching devices. In some embodiments, dual-mode optical switches 515 may constitute leaf switches 530 in a leaf-spine architecture additionally including one or more dual-mode optical spine switches 520 .
- dual-mode optical switches may be capable of receiving both Ethernet protocol communications carrying Internet Protocol (IP packets) and communications according to a second, high-performance computing (HPC) link-layer protocol (e.g., Intel's Omni-Path Architecture's, Infiniband) via optical signaling media of an optical fabric.
- HPC high-performance computing
- connectivity scheme 500 may thus provide support for link-layer connectivity via both Ethernet links and HPC links.
- both Ethernet and HPC communications can be supported by a single high-bandwidth, low-latency switch fabric.
- the embodiments are not limited to this example.
- FIG. 6 illustrates a general overview of a rack architecture 600 that may be representative of an architecture of any particular one of the racks depicted in FIGS. 1 to 4 according to some embodiments.
- rack architecture 600 may generally feature a plurality of sled spaces into which sleds may be inserted, each of which may be robotically-accessible via a rack access region 601 .
- rack architecture 600 features five sled spaces 603 - 1 to 603 - 5 .
- Sled spaces 603 - 1 to 603 - 5 feature respective multi-purpose connector modules (MPCMs) 616 - 1 to 616 - 5 .
- MPCMs multi-purpose connector modules
- FIG. 7 illustrates an example of a sled 704 that may be representative of a sled of such a type.
- sled 704 may comprise a set of physical resources 705 , as well as an MPCM 716 designed to couple with a counterpart MPCM when sled 704 is inserted into a sled space such as any of sled spaces 603 - 1 to 603 - 5 of FIG. 6 .
- Sled 704 may also feature an expansion connector 717 .
- Expansion connector 717 may generally comprise a socket, slot, or other type of connection element that is capable of accepting one or more types of expansion modules, such as an expansion sled 718 .
- expansion connector 717 may provide physical resources 705 with access to supplemental computing resources 705 B residing on expansion sled 718 .
- the embodiments are not limited in this context.
- FIG. 8 illustrates an example of a rack architecture 800 that may be representative of a rack architecture that may be implemented in order to provide support for sleds featuring expansion capabilities, such as sled 704 of FIG. 7 .
- rack architecture 800 includes seven sled spaces 803 - 1 to 803 - 7 , which feature respective MPCMs 816 - 1 to 816 - 7 .
- Sled spaces 803 - 1 to 803 - 7 include respective primary regions 803 - 1 A to 803 - 7 A and respective expansion regions 803 - 1 B to 803 - 7 B.
- the primary region may generally constitute a region of the sled space that physically accommodates the inserted sled.
- the expansion region may generally constitute a region of the sled space that can physically accommodate an expansion module, such as expansion sled 718 of FIG. 7 , in the event that the inserted sled is configured with such a module.
- FIG. 9 illustrates an example of a rack 902 that may be representative of a rack implemented according to rack architecture 800 of FIG. 8 according to some embodiments.
- rack 902 features seven sled spaces 903 - 1 to 903 - 7 , which include respective primary regions 903 - 1 A to 903 - 7 A and respective expansion regions 903 - 1 B to 903 - 7 B.
- temperature control in rack 902 may be implemented using an air cooling system.
- rack 902 may feature a plurality of fans 919 that are generally arranged to provide air cooling within the various sled spaces 903 - 1 to 903 - 7 .
- the height of the sled space is greater than the conventional “1U” server height.
- fans 919 may generally comprise relatively slow, large diameter cooling fans as compared to fans used in conventional rack configurations. Running larger diameter cooling fans at lower speeds may increase fan lifetime relative to smaller diameter cooling fans running at higher speeds while still providing the same amount of cooling.
- the sleds are physically shallower than conventional rack dimensions. Further, components are arranged on each sled to reduce thermal shadowing (i.e., not arranged serially in the direction of air flow).
- the wider, shallower sleds allow for an increase in device performance because the devices can be operated at a higher thermal envelope (e.g., 250 W) due to improved cooling (i.e., no thermal shadowing, more space between devices, more room for larger heat sinks, etc.).
- a higher thermal envelope e.g. 250 W
- improved cooling i.e., no thermal shadowing, more space between devices, more room for larger heat sinks, etc.
- MPCMs 916 - 1 to 916 - 7 may be configured to provide inserted sleds with access to power sourced by respective power modules 920 - 1 to 920 - 7 , each of which may draw power from an external power source 921 .
- external power source 921 may deliver alternating current (AC) power to rack 902
- power modules 920 - 1 to 920 - 7 may be configured to convert such AC power to direct current (DC) power to be sourced to inserted sleds.
- power modules 920 - 1 to 920 - 7 may be configured to convert 277-volt AC power into 12-volt DC power for provision to inserted sleds via respective MPCMs 916 - 1 to 916 - 7 .
- the embodiments are not limited to this example.
- MPCMs 916 - 1 to 916 - 7 may also be arranged to provide inserted sleds with optical signaling connectivity to a dual-mode optical switching infrastructure 914 , which may be the same as—or similar to—dual-mode optical switching infrastructure 514 of FIG. 5 .
- optical connectors contained in MPCMs 916 - 1 to 916 - 7 may be designed to couple with counterpart optical connectors contained in MPCMs of inserted sleds to provide such sleds with optical signaling connectivity to dual-mode optical switching infrastructure 914 via respective lengths of optical cabling 922 - 1 to 922 - 7 .
- each such length of optical cabling may extend from its corresponding MPCM to an optical interconnect loom 923 that is external to the sled spaces of rack 902 .
- optical interconnect loom 923 may be arranged to pass through a support post or other type of load-bearing element of rack 902 . The embodiments are not limited in this context. Because inserted sleds connect to an optical switching infrastructure via MPCMs, the resources typically spent in manually configuring the rack cabling to accommodate a newly inserted sled can be saved.
- FIG. 10 illustrates an example of a sled 1004 that may be representative of a sled designed for use in conjunction with rack 902 of FIG. 9 according to some embodiments.
- Sled 1004 may feature an MPCM 1016 that comprises an optical connector 1016 A and a power connector 1016 B, and that is designed to couple with a counterpart MPCM of a sled space in conjunction with insertion of MPCM 1016 into that sled space. Coupling MPCM 1016 with such a counterpart MPCM may cause power connector 1016 to couple with a power connector comprised in the counterpart MPCM. This may generally enable physical resources 1005 of sled 1004 to source power from an external source, via power connector 1016 and power transmission media 1024 that conductively couples power connector 1016 to physical resources 1005 .
- Dual-mode optical network interface circuitry 1026 may generally comprise circuitry that is capable of communicating over optical signaling media according to each of multiple link-layer protocols supported by dual-mode optical switching infrastructure 914 of FIG. 9 .
- dual-mode optical network interface circuitry 1026 may be capable both of Ethernet protocol communications and of communications according to a second, high-performance protocol.
- dual-mode optical network interface circuitry 1026 may include one or more optical transceiver modules 1027 , each of which may be capable of transmitting and receiving optical signals over each of one or more optical channels. The embodiments are not limited in this context.
- Coupling MPCM 1016 with a counterpart MPCM of a sled space in a given rack may cause optical connector 1016 A to couple with an optical connector comprised in the counterpart MPCM.
- This may generally establish optical connectivity between optical cabling of the sled and dual-mode optical network interface circuitry 1026 , via each of a set of optical channels 1025 .
- Dual-mode optical network interface circuitry 1026 may communicate with the physical resources 1005 of sled 1004 via electrical signaling media 1028 .
- a relatively higher thermal envelope e.g. 250 W
- a sled may include one or more additional features to facilitate air cooling, such as a heatpipe and/or heat sinks arranged to dissipate heat generated by physical resources 1005 .
- additional features such as a heatpipe and/or heat sinks arranged to dissipate heat generated by physical resources 1005 .
- any given sled that features the design elements of sled 1004 may also feature an expansion connector according to some embodiments. The embodiments are not limited in this context.
- FIG. 11 illustrates an example of a data center 1100 that may generally be representative of one in/for which one or more techniques described herein may be implemented according to various embodiments.
- a physical infrastructure management framework 1150 A may be implemented to facilitate management of a physical infrastructure 1100 A of data center 1100 .
- one function of physical infrastructure management framework 1150 A may be to manage automated maintenance functions within data center 1100 , such as the use of robotic maintenance equipment to service computing equipment within physical infrastructure 1100 A.
- physical infrastructure 1100 A may feature an advanced telemetry system that performs telemetry reporting that is sufficiently robust to support remote automated management of physical infrastructure 1100 A.
- telemetry information provided by such an advanced telemetry system may support features such as failure prediction/prevention capabilities and capacity planning capabilities.
- physical infrastructure management framework 1150 A may also be configured to manage authentication of physical infrastructure components using hardware attestation techniques. For example, robots may verify the authenticity of components before installation by analyzing information collected from a radio frequency identification (RFID) tag associated with each component to be installed.
- RFID radio frequency identification
- the physical infrastructure 1100 A of data center 1100 may comprise an optical fabric 1112 , which may include a dual-mode optical switching infrastructure 1114 .
- Optical fabric 1112 and dual-mode optical switching infrastructure 1114 may be the same as—or similar to—optical fabric 412 of FIG. 4 and dual-mode optical switching infrastructure 514 of FIG. 5 , respectively, and may provide high-bandwidth, low-latency, multi-protocol connectivity among sleds of data center 1100 .
- the availability of such connectivity may make it feasible to disaggregate and dynamically pool resources such as accelerators, memory, and storage.
- one or more pooled accelerator sleds 1130 may be included among the physical infrastructure 1100 A of data center 1100 , each of which may comprise a pool of accelerator resources—such as co-processors and/or FPGAs, for example—that is globally accessible to other sleds via optical fabric 1112 and dual-mode optical switching infrastructure 1114 .
- accelerator resources such as co-processors and/or FPGAs, for example
- one or more pooled storage sleds 1132 may be included among the physical infrastructure 1100 A of data center 1100 , each of which may comprise a pool of storage resources that is globally accessible to other sleds via optical fabric 1112 and dual-mode optical switching infrastructure 1114 .
- such pooled storage sleds 1132 may comprise pools of solid-state storage devices such as solid-state drives (SSDs).
- SSDs solid-state drives
- one or more high-performance processing sleds 1134 may be included among the physical infrastructure 1100 A of data center 1100 .
- high-performance processing sleds 1134 may comprise pools of high-performance processors, as well as cooling features that enhance air cooling to yield a higher thermal envelope of up to 250 W or more.
- any given high-performance processing sled 1134 may feature an expansion connector 1117 that can accept a far memory expansion sled, such that the far memory that is locally available to that high-performance processing sled 1134 is disaggregated from the processors and near memory comprised on that sled.
- such a high-performance processing sled 1134 may be configured with far memory using an expansion sled that comprises low-latency SSD storage.
- the optical infrastructure allows for compute resources on one sled to utilize remote accelerator/FPGA, memory, and/or SSD resources that are disaggregated on a sled located on the same rack or any other rack in the data center.
- the remote resources can be located one switch jump away or two-switch jumps away in the spine-leaf network architecture described above with reference to FIG. 5 .
- the embodiments are not limited in this context.
- one or more layers of abstraction may be applied to the physical resources of physical infrastructure 1100 A in order to define a virtual infrastructure, such as a software-defined infrastructure 1100 B.
- virtual computing resources 1136 of software-defined infrastructure 1100 /B may be allocated to support the provision of cloud services 1140 .
- particular sets of virtual computing resources 1136 may be grouped for provision to cloud services 1140 in the form of SDI services 1138 .
- cloud services 1140 may include—without limitation—software as a service (SaaS) services 1142 , platform as a service (PaaS) services 1144 , and infrastructure as a service (IaaS) services 1146 .
- management of software-defined infrastructure 1100 B may be conducted using a virtual infrastructure management framework 1150 B.
- virtual infrastructure management framework 1150 B may be designed to implement workload fingerprinting techniques and/or machine-learning techniques in conjunction with managing allocation of virtual computing resources 1136 and/or SDI services 1138 to cloud services 1140 .
- virtual infrastructure management framework 1150 B may use/consult telemetry data in conjunction with performing such resource allocation.
- an application/service management framework 1150 C may be implemented in order to provide QoS management capabilities for cloud services 1140 . The embodiments are not limited in this context.
- a system 1210 for managing disaggregated accelerator resources in a disaggregated architecture may be implemented in accordance with the data centers 100 , 300 , 400 , 1100 described above with reference to FIGS. 1, 3, 4, and 11 .
- managing disaggregated accelerator resources means facilitating application workload processing by receiving workload processing requests from an application and distributing all or part of the workload to accelerator devices. These accelerator devices are selected based on configuration and capacity to efficiently process an application workload (e.g., cryptographic operations, compression operations, image processing operations, packet inspection operations, etc.).
- the accelerator devices may be located on the same compute device (e.g., compute sled) that is executing the application and/or on one or more remote compute devices (e.g., remote accelerator sleds) which may be otherwise inaccessible to the application.
- the workload processing requests are received and fulfilled by a pooled system management engine (PSME) that may be locally installed on the same host compute device as the application requesting workload processing.
- PSME pooled system management engine
- the term “PSME” is nomenclature used by Intel Corporation and is used herein merely for convenience. It should be understood that the PSME may be embodied as any sled-, rack-, or tray-level management engine.
- the out-of-box functions of the PSME are extended to provide the disaggregated accelerator management capability described herein, such that the application can leverage accelerator devices that may be otherwise inaccessible.
- the system 1210 includes an orchestrator server 1216 in communication with compute sleds 1230 , 1232 and accelerator sleds 1260 , 1262 .
- the orchestrator server 1216 is included within a compute sled 1218 .
- One or more of the sleds 1230 , 1232 , 1260 , or 1262 may be grouped into a managed node, such as by the orchestrator server 1216 , to collectively perform a workload, such as an application.
- a managed node may be embodied as an assembly of resources (e.g., physical resources 206 ), such as compute resources (e.g., physical compute resources 205 - 4 ), memory resources (e.g., physical memory resources 205 - 3 ), storage resources (e.g., physical storage resources 205 - 1 ), or other resources (e.g., physical accelerator resources 205 - 2 ), from the same or different sleds (e.g., the sleds 204 - 1 , 204 - 2 , 204 - 3 , 204 - 4 , etc.) or racks (e.g., one or more of racks 302 - 1 through 302 - 32 ).
- resources e.g., physical resources 206
- compute resources e.g., physical compute resources 205 - 4
- memory resources e.g., physical memory resources 205 - 3
- storage resources e.g., physical storage resources 205 - 1
- other resources e.
- a managed node may be established, defined, or “spun up” by the orchestrator server 1216 at the time a workload is to be assigned to the managed node or at any other time, and may exist regardless of whether any workloads are presently assigned to the managed node.
- the system 1210 may be located in a data center and provide storage and compute services (e.g., cloud services) to a client device 1214 that is in communication with the system 1210 through a network 1212 .
- the orchestrator server 1216 may support a cloud operating environment, such as OpenStack, and managed nodes established by the orchestrator server 1216 may execute one or more applications or processes (i.e., workloads), such as in virtual machines or containers, on behalf of a user of the client device 1214 .
- the compute sled 1230 executes a workload 1234 (e.g., an application) with one or more processors 1250
- the compute sled 1232 executes another workload 1236 (e.g., another application) with one or more processors 1252
- one or more of compute sleds 1230 and 1232 may host a PSME 1270 , configured to perform the disaggregated accelerator resource management functions described above.
- the accelerator sled 1260 includes one or more accelerator devices 1264 (e.g., physical accelerator resources 205 - 2 ) and the accelerator sled 1266 also includes one or more accelerator devices 1266 (e.g., physical accelerator resources 205 - 2 ).
- a sled e.g., the compute sled 1230
- a PSME 1270 may detect accelerator devices within the data center (e.g., the system 1210 ), including discovering information about each detected accelerator device (e.g., processing power, configuration, specialized functionality, average utilization, or the like), receive requests from the application for assistance in accelerating the execution of application, and based on the discovery process and an analysis of the request from the application, the sled, using the PSME 1270 , may schedule one or more portions (e.g., tasks) of the application to be accelerated by a corresponding accelerator device available in the system 1210 that is suited to accelerating the task (e.g., scheduling a cryptography-related task on an accelerator device that includes specialized circuitry for performing cryptographic operations).
- the PSME 1270 performs the above functions out-of-band (e.g., without consuming compute capacity of the sled that would otherwise be used to execute the application
- the compute sled 1230 may be embodied as any type of compute device capable of performing the functions described herein, including executing a workload (e.g., the workload 1234 ), obtaining a request from the workload 1234 to accelerate the execution of the workload, identifying the accelerator devices available in the system 1210 (e.g., on the compute sled 1230 and/or in other sleds 1232 , 1260 , 1262 ) within the system 1210 , including their features (e.g., types of functions each accelerator device is able to accelerate) and availability (e.g., present load), and selecting one or more of the accelerator devices to execute one or more portions (e.g., tasks) of the workload to increase the speed of execution of the workload.
- the compute sled 1230 performs the above functions without consuming compute capacity that would otherwise be used by the application (e.g., the workload) and/or an operating system supporting the application.
- the illustrative compute sled 1230 includes a compute engine 1302 , an input/output (I/O) subsystem 1308 , communication circuitry 1310 , and one or more data storage devices 1314 .
- the compute sled 1230 may also include one or more accelerators, depicted as accelerators 1320 and 1322 .
- the compute sled 1230 may include other or additional components, such as those commonly found in a computer (e.g., display, peripheral devices, etc.). Additionally, in some embodiments, one or more of the illustrative components may be incorporated in, or otherwise form a portion of, another component.
- the compute engine 1302 may be embodied as any type of device or collection of devices capable of performing various compute functions described below.
- the compute engine 1302 may be embodied as a single device such as an integrated circuit, an embedded system, a field-programmable gate array (FPGA), a system-on-a-chip (SOC), or other integrated system or device.
- the compute engine 1302 includes or is embodied as a processor 1304 (e.g., similar to the processor(s) 1250 ) and a memory 1306 .
- the processor 1304 may be embodied as any type of processor capable of executing a workload (e.g., the application 1234 ).
- the processor 1304 may be embodied as a single or multi-core processor(s), a microcontroller, or other processor or processing/controlling circuit.
- the processor 1304 may be embodied as, include, or be coupled to an FPGA, an application specific integrated circuit (ASIC), reconfigurable hardware or hardware circuitry, or other specialized hardware to facilitate performance of the functions described herein.
- the PSME 1270 may, in some embodiments, be included within a dedicated processor 1305 that is separate from the processor 1304 that performs other computing functions of the compute engine 1302 (e.g., executing applications).
- the PSME 1270 may be embodied as a specialized device, such as a co-processor, an FPGA, a graphics processing unit (GPU), or an ASIC, for performing the accelerator resource management operations described above.
- the PSME 1270 is configured to manage disaggregated accelerator resources (e.g., by responding to workload processing requests with an accelerator service request to, for example, the orchestrator 1216 for accelerator services from remote accelerators, such as on accelerator sleds 1260 , 1262 ).
- the compute sled 1230 includes accelerators 1320 and 1322 that may be configured to perform acceleration tasks (e.g., cryptographic operations on an accelerator specially configured to perform cryptographic operations).
- the PSME 1270 is configured to direct all or part of a workload from a workload processing request to accelerator 1320 and/or accelerator 1322 (i.e., accelerators hosted by the same compute sled as that running the application and the PSME 1270 ) in an out-of-band capacity (e.g., without consuming compute capacity of the sled that would otherwise be used to execute the application and/or an underlying operating system).
- the PSME 1270 is configured to direct all or part of a workload from a workload processing request to accelerator 1320 and/or accelerator 1322 in an in-band capacity as well if secure and authenticated channels are used (e.g., by consuming compute capacity of the sled that would otherwise be used to execute the application and/or an underlying operating system).
- the main memory 1306 may be embodied as any type of volatile (e.g., dynamic random access memory (DRAM), etc.) or non-volatile memory or data storage capable of performing the functions described herein.
- Volatile memory may be a storage medium that requires power to maintain the state of data stored by the medium.
- Non-limiting examples of volatile memory may include various types of random access memory (RAM), such as dynamic random access memory (DRAM) or static random access memory (SRAM).
- RAM random access memory
- DRAM dynamic random access memory
- SRAM static random access memory
- SDRAM synchronous dynamic random access memory
- DRAM of a memory component may comply with a standard promulgated by JEDEC, such as JESD79F for DDR SDRAM, JESD79-2F for DDR2 SDRAM, JESD 79 - 3 F for DDR 3 SDRAM, JESD 79 - 4 A for DDR 4 SDRAM, JESD 209 for Low Power DDR (LPDDR), JESD209-2 for LPDDR2, JESD209-3 for LPDDR3, and JESD209-4 for LPDDR4 (these standards are available at www.jedec.org).
- LPDDR Low Power DDR
- JESD209-2 for LPDDR2
- JESD209-3 for LPDDR3
- JESD209-4 for LPDDR4
- the memory device is a block addressable memory device, such as those based on NAND or NOR technologies.
- a memory device may also include future generation nonvolatile devices, such as a three dimensional crosspoint memory device, or other byte addressable write-in-place nonvolatile memory devices.
- the memory device may be or may include memory devices that use chalcogenide glass, multi-threshold level NAND flash memory, NOR flash memory, single or multi-level Phase Change Memory (PCM), a resistive memory, nanowire memory, ferroelectric transistor random access memory (FeTRAM), anti-ferroelectric memory, magnetoresistive random access memory (MRAM) memory that incorporates memristor technology, resistive memory including the metal oxide base, the oxygen vacancy base and the conductive bridge Random Access Memory (CB-RAM), or spin transfer torque (STT)-MRAM, a spintronic magnetic junction memory based device, a magnetic tunneling junction (MTJ) based device, a DW (Domain Wall) and SOT (Spin Orbit Transfer) based device, a thyristor based memory device, or a combination of any of the above, or other memory.
- the memory device may refer to the die itself and/or to a packaged memory product.
- 3D crosspoint memory may comprise a transistor-less stackable cross point architecture in which memory cells sit at the intersection of word lines and bit lines and are individually addressable and in which bit storage is based on a change in bulk resistance.
- all or a portion of the main memory 1306 may be integrated into the processor 1304 .
- the main memory 1306 may store various software and data used during operation such as accelerator configuration data, accelerator directory data, application data, applications, programs, libraries, and drivers.
- the compute engine 1302 is communicatively coupled to other components of the compute sled 1230 via the I/O subsystem 1308 , which may be embodied as circuitry and/or components to facilitate input/output operations with the compute engine 1302 (e.g., with the processor 1304 and/or the main memory 1306 ) and other components of the compute sled 1230 .
- the I/O subsystem 1308 may be embodied as, or otherwise include, memory controller hubs, input/output control hubs, integrated sensor hubs, firmware devices, communication links (e.g., point-to-point links, bus links, wires, cables, light guides, printed circuit board traces, etc.), and/or other components and subsystems to facilitate the input/output operations.
- the I/O subsystem 1308 may form a portion of a system-on-a-chip (SoC) and be incorporated, along with one or more of the processor 1304 , the main memory 1306 , and other components of the compute sled 1230 , into the compute engine 1302 .
- SoC system-on-a-chip
- the communication circuitry 1310 may be embodied as any communication circuit, device, or collection thereof, capable of enabling communications over the network 1212 between the compute sled 1230 and another compute device (e.g., the orchestrator server 1216 , and/or one or more sleds 1230 , 1232 , 1260 , 1262 ).
- the communication circuitry 1310 may be configured to use any one or more communication technology (e.g., wired or wireless communications) and associated protocols (e.g., Ethernet, Bluetooth®, Wi-Fi®, WiMAX, etc.) to effect such communication.
- the illustrative communication circuitry 1310 includes a network interface controller (NIC) 1312 .
- the NIC 1312 may be embodied as one or more add-in-boards, daughter cards, network interface cards, controller chips, chipsets, or other devices that may be used by the compute sled 1230 to connect with another compute device (e.g., the orchestrator server 1216 and/or the sleds 1232 , 1260 , 1262 ).
- the NIC 1312 may be embodied as part of a system-on-a-chip (SoC) that includes one or more processors, or included on a multichip package that also contains one or more processors.
- SoC system-on-a-chip
- the NIC 1312 may include a local processor (not shown) and/or a local memory (not shown) that are both local to the NIC 1312 .
- the local processor of the NIC 1312 may be capable of performing one or more of the functions of the compute engine 1302 described herein.
- the local memory of the NIC 1312 may be integrated into one or more components of the compute sled 1230 at the board level, socket level, chip level, and/or other levels.
- the PSME 1270 may be included in the NIC 1312 .
- the one or more illustrative data storage devices 1314 may be embodied as any type of devices configured for short-term or long-term storage of data such as, for example, memory devices and circuits, memory cards, hard disk drives, solid-state drives, or other data storage devices.
- Each data storage device 1314 may include a system partition that stores data and firmware code for the data storage device 1314 .
- Each data storage device 1314 may also include an operating system partition that stores data files and executables for an operating system.
- the compute sled 1230 may include one or more peripheral devices 1316 .
- peripheral devices 1316 may include any type of peripheral device commonly found in a compute device such as a display, speakers, a mouse, a keyboard, and/or other input/output devices, interface devices, and/or other peripheral devices.
- the client device 1214 , the orchestrator server 1216 , and the compute sled 1232 may have components similar to those described in FIG. 13 .
- the description of those components of the compute sled 1230 is equally applicable to the description of components of those devices and is not repeated herein for clarity of the description, with the exception that the client device 1214 and the orchestrator server 1216 do not include the PSME 1270 and, in the illustrative embodiment, may not include accelerators 1320 , 1322 .
- any of the client device 1214 , the orchestrator server 1216 , and the compute sleds 1230 , 1232 may include other components, sub-components, and devices commonly found in a computing device, which are not discussed above in reference to the compute sled 1230 and not discussed herein for clarity of the description.
- the accelerator sleds 1260 , 1262 include components similar to those described above, and it should be understood that the accelerator(s) 1264 , 1266 shown in FIG. 12 may be similar to the accelerators 1320 , 1322 described above with reference to FIG. 13 .
- the compute sled 1230 , the orchestrator server 1216 , and the sleds 1230 , 1232 , 1260 , 1262 are illustratively in communication via the network 1212 , which may be embodied as any type of wired or wireless communication network, including global networks (e.g., the Internet), local area networks (LANs) or wide area networks (WANs), cellular networks (e.g., Global System for Mobile Communications (GSM), 3 G, Long Term Evolution (LTE), Worldwide Interoperability for Microwave Access (WiMAX), etc.), digital subscriber line (DSL) networks, cable networks (e.g., coaxial networks, fiber networks, etc.), or any combination thereof.
- GSM Global System for Mobile Communications
- LTE Long Term Evolution
- WiMAX Worldwide Interoperability for Microwave Access
- DSL digital subscriber line
- cable networks e.g., coaxial networks, fiber networks, etc.
- the compute sled 1230 may establish an environment 1400 during operation.
- the illustrative environment 1400 includes a network communicator 1420 , and a PSME manager 1430 .
- Each of the components of the environment 1400 may be embodied as hardware, firmware, software, or a combination thereof.
- one or more of the components of the environment 1400 may be embodied as circuitry or a collection of electrical devices (e.g., network communicator circuitry 1420 , PSME manager circuitry 1430 , etc.).
- one or more of the network communicator circuitry 1420 or the PSME manager circuitry 1430 may form a portion of one or more of the compute engine 1302 , the PSME 1270 , the communication circuitry 1310 , the I/O subsystem 1308 , and/or other components of the compute sled 1230 .
- the illustrative environment 1400 includes accelerator configuration data 1404 which may be embodied as any data indicative of the accelerator configuration, including accelerator processing speed, types of functions that each accelerator is capable of accelerating (e.g., cryptographic operations, compression operations, etc.), parallel processing capacity, specialized configuration modes, accelerator architecture data (e.g., number of cores), associated sled identifier (e.g., associated accelerator sled identifiers), or the like.
- accelerator configuration data 1404 may be embodied as any data indicative of the accelerator configuration, including accelerator processing speed, types of functions that each accelerator is capable of accelerating (e.g., cryptographic operations, compression operations, etc.), parallel processing capacity, specialized configuration modes, accelerator architecture data (e.g., number of cores), associated sled identifier (e.g., associated accelerator sled identifiers), or the like.
- the illustrative environment 1400 includes accelerator directory data 1406 , which may be embodied as any data indicative of a data structure holding lists of accelerator devices, accelerator device types (e.g., FPGA, GPU, ASIC, or the like).
- the accelerator directory data 1406 may store accelerator device identifiers in correlation with the corresponding accelerator sled identifiers.
- the accelerator directory 1406 may also include accelerator usage history data (e.g., applications that most frequently used the accelerator, specialized usages or configurations for the accelerator, like graphics processing or audio processing, or the like), accelerator performance metrics, accelerator age data (e.g., how long the accelerator has been connected to the orchestrator server 1216 , whether the accelerator is a newer or older accelerator, whether it was previously removed from commission) or the like.
- accelerator usage history data e.g., applications that most frequently used the accelerator, specialized usages or configurations for the accelerator, like graphics processing or audio processing, or the like
- accelerator performance metrics e.g., how long the accelerator has been connected to the orchestrator server 1216 , whether the accelerator is a newer or older accelerator, whether it was previously removed from commission
- the environment 1400 includes application data 1408 , which may be embodied as any data indicative of applications requesting workload processing from the PSME 1270 .
- Application data 1408 may also be embodied as any data indicative of application workload processing requests, schedules of workload processing requests (e.g., repetitive requests), or the like.
- the network communicator 1420 which may be embodied as hardware, firmware, software, virtualized hardware, emulated architecture, and/or a combination thereof as discussed above, is configured to facilitate inbound and outbound network communications (e.g., network traffic, network packets, network flows, etc.) to and from the compute sled 1230 , respectively.
- the network communicator 1420 is configured to receive and process data packets from one system or computing device (e.g., a compute sled 1230 , 1232 ) and to prepare and send data packets to another computing device or system (e.g., an accelerator sled 1260 , 1262 ).
- at least a portion of the functionality of the network communicator 1420 may be performed by the communication circuitry 1310 , and, in the illustrative embodiment, by the NIC 1312 .
- the PSME manager 1430 which may be embodied as hardware, firmware, software, virtualized hardware, emulated architecture, and/or a combination thereof, is configured to provide efficient disaggregated accelerator management across the system 1210 . To do so, in the illustrative embodiment, the PSME manager 1430 includes a request analyzer interface 1432 , an accelerator selection manager 1434 , an accelerator query manager 1436 , and an accelerator directory manager 1438 .
- the request analyzer interface 1432 in the illustrative embodiment, is configured to process application workload processing requests (e.g., from a compute sled 1230 ) by receiving a workload processing request (e.g., one that originates from the application 1234 ), determining whether to analyze the workload processing request, analyzing the workload processing request for request metadata, such as one or more request parameters, identifying each request parameter transmitted with the workload processing request, and identifying the workload submitted by the application.
- the request analyzer interface 1442 may generate an accelerator service request that is specifically formatted for consumption by the orchestrator server 1216 .
- the accelerator service request is configured to include the one or more request parameters, the workload transmitted by the application, and the selected accelerators (e.g., the accelerator 1264 ) along with associated accelerator sled identifiers (e.g., for the accelerator sled 1260 ).
- the accelerator selection manager 1434 in the illustrative embodiment, is configured to query the accelerator directory (e.g., as represented by the accelerator directory data 1406 ) in order to identify accelerator devices that would be best suited to process the workload as defined by the request parameters extracted from the workload processing request. More specifically, and as indicated in the illustrative embodiment, the accelerator selection manager 1434 is configured to query the accelerator directory using the request parameters in order to locate accelerator devices that have a configuration matching the request parameters. As described in more detail herein, the query performed by the accelerator selection manager 1434 will return search results including identifiers for one or more accelerators whose configuration is a match for one or more request parameters. Based on the returned results, the accelerator selection manager 1434 is configured to collect a set of one or more accelerator device identifiers that is then included within the accelerator service request sent to the orchestrator server 1216 as described above.
- the accelerator directory e.g., as represented by the accelerator directory data 1406
- the accelerator selection manager 1434 is configured to query the accelerator directory using the request parameters in
- the accelerator query manager 1436 in the illustrative embodiment, is configured to query an orchestrator (e.g., the orchestrator server 1216 ) for updated information regarding accelerator devices that are accessible to or in communication with the orchestrator server 1216 , to maintain and keep current the accelerator directory (e.g., as represented by accelerator directory data 1406 or collectively by accelerator directory data 1406 and accelerator configuration data 1404 ). Accordingly, the accelerator query manager 1436 periodically (or on demand) transmits environment discovery queries to the orchestrator server 1216 for accelerator updates. Accelerator updates may include lists of accelerator identifiers for newly connected accelerators, removed accelerators, or the like. The accelerator query manager 1436 will also transmit accelerator configuration update queries to the orchestrator server 1216 .
- an orchestrator e.g., the orchestrator server 1216
- the accelerator configuration update queries may request the orchestrator server 1216 to return accelerator configuration data (e.g., to review any recent accelerator configuration changes) for each identified accelerator.
- the accelerator query manager 1436 is also configured to transmit accelerator health queries to the orchestrator server 1216 .
- the accelerator health queries in the illustrative embodiment, request data regarding accelerator health metrics, including accelerator uptime statistics, accelerator downtime statistics, time elapsed since accelerator start, time elapsed since accelerator reconfiguration, accelerator error statistics, or the like.
- the accelerator directory manager 1438 in the illustrative embodiment, is configured to maintain a current and continuously updated directory of all accelerators that are in communication with the orchestrator server 1216 .
- the accelerator directory manager 1438 receives results of the queries transmitted by the accelerator query manager 1436 .
- the accelerator directory manager 1438 uses the query results to update the accelerator directory (e.g., as embodied by the accelerator directory data 1406 ).
- each of the request analyzer interface 1432 , the accelerator selection manager 1434 , the accelerator query manager 1436 , and the accelerator directory manager 1438 may be separately embodied as hardware, firmware, software, virtualized hardware, emulated architecture, and/or a combination thereof.
- the request analyzer interface 1432 may be embodied as a hardware component
- the accelerator selection manager 1434 , the accelerator query manager 1436 , and the accelerator directory manager 1438 are embodied as virtualized hardware components or as some other combination of hardware, firmware, software, virtualized hardware, emulated architecture, and/or a combination thereof.
- a sled 1230 , 1232 , 1260 , 1262 containing the PSME 1270 may establish an environment similar to the environment 1400 described above.
- a compute device may execute a method 1500 for managing disaggregated accelerator device resources.
- the method 1500 is described below as being performed by the PSME 1270 .
- the method 1500 may be performed by one or more other compute devices (e.g., a sled 1232 , 1260 , 1262 including the PSME 1270 ).
- the method 1500 begins with block 1501 , in which the PSME 1270 receives a workload processing request from an application.
- the compute sled 1230 may receive and process the workload processing request from the application.
- the PSME 1270 receives the workload processing request from an application and processes the workload processing request in an out-of-band capacity (e.g., without use of the host compute sled's processor or operating system).
- the PSME 1270 may direct all or part of a workload from a workload processing request to accelerator 1320 and/or accelerator 1322 in an in-band capacity, with secure and authenticated channels (e.g., by consuming compute capacity of the sled that would otherwise be used to execute the application and/or an underlying operating system).
- the PSME 1270 receives the processing request from an application that is executing on the same compute sled as the PSME.
- the PSME 1270 may receive workload processing requests from applications executing on other compute sleds (e.g., via the orchestrator server 1216 ).
- the method 1500 advances to block 1502 .
- the PSME 1270 determines whether to analyze the workload processing request, the method 1500 advances to block 1504 . Otherwise the method returns to block 1501 .
- the PSME 1270 analyzes the workload processing request.
- the workload processing request will include a defined workload (e.g., data that is to be processed by one or more accelerator devices).
- the PSME 1270 retrieves request metadata from the workload processing request.
- the PSME 1270 is configured to parse the workload processing request in order to identify request metadata that further includes one or more request parameters.
- the PSME 1270 determines any service level agreement (SLA) requirements included within the workload processing request.
- the request parameters may include specific workload processing requirements such as a maximum processing time (e.g., a target latency), a minimum throughput requirement (e.g., a target throughput), a threshold level of logical integrity required during processing, a predefined error-checking mechanism or error rate envelope, or the like.
- the metadata may additionally or alternatively indicate whether two or more portions of the workload may be accelerated concurrently (e.g., in parallel).
- the method 1500 advances to block 1510 , in which the PSME 1270 queries an accelerator directory (e.g., the accelerator directory 1406 ) to determine the accelerator device(s) that would be best fit for the workload processing request.
- the query may, for example, use one of the request parameters as a key.
- the PSME 1270 may query the accelerator directory for all accelerator devices that can satisfy a certain request parameter (e.g., a specific SLA requirement such as completion of processing within a maximum processing time).
- a certain request parameter e.g., a specific SLA requirement such as completion of processing within a maximum processing time.
- the PSME 1270 retrieves an accelerator instance from the directory using an accelerator identifier.
- the accelerator identifier may be part of a set of search results generated as a result of querying the accelerator directory.
- the PSME 1270 reviews the accelerator configuration.
- the accelerator configuration may include data such as accelerator processing speed, types of functions that the accelerator is capable of accelerating, parallel processing capacity, specialized configuration modes, accelerator architecture data (e.g., number of cores), associated sled identified (e.g., associated accelerator sled identifiers), or the like.
- the method 1500 advances to block 1516 , in which the PSME 1270 matches request metadata to the accelerator based on the accelerator configuration. For example, the PSME 1270 may determine that the identified accelerator instance is capable of satisfying each request parameter in the workload processing request. As another example, the PSME 1270 may determine that the single accelerator instance cannot satisfy each request parameter. Accordingly, the PSME 1270 will retrieve another accelerator instance from the accelerator directory (e.g., by re-executing the query as described with respect to block 1510 . As a result, the PSME 1270 determines a combination of accelerator resources that can together satisfy all of the request parameters in the workload processing request.
- the method 1500 advances to block 1518 , in which the PSME 1270 determines whether the accelerator or accelerators retrieved as a result of the query in block 1510 are able to satisfy all request parameters. If the retrieved accelerator or accelerators are not able to satisfy all request parameters, the method 1500 returns to block 1510 to continue to query the accelerator directory for accelerators that satisfy all request parameters.
- the compute sled 1230 may send the request with the request parameter(s) to the orchestrator server 1216 and receive, in response, an identification of the accelerator(s) that are capable of processing the workload in accordance with the request parameter(s). The method 1500 advances to block 1520 .
- the PSME 1270 determines to transmit the workload from the workload processing request to the selected accelerator(s).
- the method 1500 advances to block 1522 , in which the PSME 1270 retrieves, from the accelerator directory, the accelerator sled identifier for the selected accelerator(s).
- the method 1500 advances to block 1524 .
- the compute sled 1230 is configured to transmit outgoing messages from the orchestrator server 1216 .
- the PSME 1270 provides the accelerator sled identifier(s) for the selected accelerator(s) to the orchestrator server 1216 (e.g., in an accelerator service request).
- the method 1500 advances to block 1526 .
- the compute sled 1230 is configured to receive incoming messages from the orchestrator server 1216 .
- the PSME 1270 receives an approval from the orchestrator server 1216 representing that the orchestrator server 1216 approves the transmission of the workload from the PSME 1270 to the one or more accelerators identified to process the workload.
- the accelerators may be hosted by accelerator sleds that are not hosts of the PSME 1270 .
- the accelerator(s) may be local to the compute sled 1230 that also hosts the PSME 1270 .
- the method 1500 advances to block 1528 , in which the PSME 1270 transmits the workload from the application to the orchestrator.
- the identified accelerators will process the workload as provided from the PSME 1270 .
- this work product could take the form of processed data.
- the processed data may be encrypted data, decrypted data, compressed data, decompressed data, search function results, processed audio or video data, or the like.
- the work product may also be message codes or notifications.
- the work product may be a notification that the provided workload resulted in a certain audio or visual state on an audio or visual display device, a specific network state, confirmation of a remote wireless or wired communication, a receipt or transmission of a signal, a test result, or the like.
- the method 1500 advances to block 1530 , in which the PSME 1270 receives the work product back from the orchestrator server 1216 . More specifically, the identified accelerator(s) will process the provided workload and return the resulting work product to the orchestrator server 1216 . The orchestrator server 1216 then transmits the work product to the PSME 1270 . The method 1500 advances to block 1532 , in which the PSME 1270 sends the work product to the application.
- a compute device may execute a method 1700 for managing disaggregated accelerator device resources. More specifically, the method 1700 pertains to querying an orchestrator (e.g., the orchestrator server 1216 ) for updated information regarding accelerator devices that are accessible to or in communication with the orchestrator server 1216 .
- the objective is to maintain and keep current the accelerator directory (e.g., as represented by accelerator directory data 1406 or collectively by accelerator directory data 1406 and accelerator configuration data 1404 ).
- the method 1700 begins at block 1702 , in which the PSME 1270 determines whether to query orchestrator for accelerator updates.
- the PSME 1270 may have a regularly scheduled process to query the orchestrator server 1216 for accelerator updates.
- the PSME 1270 is configured to query the orchestrator server 1216 on demand by an operator (e.g., a human supervisor of the compute sled 1230 ).
- the method 1700 advances to block 1704 , in which the PSME 1270 queries the orchestrator server 1216 for accelerator updates. For example, and as indicated in block 1706 , the PSME 1270 queries for any new accelerators that have entered into communication with the orchestrator server 1216 . In a related embodiment, the PSME 1270 may query the orchestrator server 1216 for accelerator identifiers for all accelerators connected to the orchestrator server 1216 . The PSME 1270 will then compare the list of accelerators returned by the orchestrator server 1216 to the accelerator directory maintained by the PSME 1270 . The PSME 1270 uses the comparison to identify new accelerators. Additionally, and as indicated in block 1708 , the PSME 1270 queries the orchestrator server 1216 for removed accelerators.
- the PSME 1270 queries the orchestrator server 1216 for removed accelerators.
- the orchestrator may return a list of accelerator identifiers for removed accelerators that the PSME 1270 then uses to remove accelerator entries in its accelerator directory.
- the PSME 1270 may query the orchestrator server 1216 for all accelerators connected to the orchestrator server 1216 . The PSME 1270 will then compare the list of accelerators returned by the orchestrator server 1216 to the accelerator directory maintained by the PSME 1270 . The PSME 1270 uses the comparison to identify removed accelerators.
- the PSME 1270 will determine whether an accelerator configuration has changed for any accelerator in the accelerator directory. More specifically, the PSME 1270 queries the orchestrator server 1216 for accelerator configuration data in addition to accelerator identifiers as described above with respect to blocks 1706 and 1708 . For example, the PSME 1270 will transmit one or more accelerator identifiers along with a request for accelerator configuration data for the identified accelerators. The method 1700 advances to block 1712 , in which the PSME 1270 receives accelerator updates from the orchestrator. In other words, the orchestrator server 1216 will return accelerator configuration data in response to the query. Using the returned configuration data, the PSME 1270 will determine whether to update the accelerator configuration data stored within the accelerator directory for the identified accelerator. For example, and as indicated in block 1714 , the PSME 1270 updates the accelerator directory entry for the identified accelerator in response to a notification from the orchestrator server 1216 of a changed configuration for the identified accelerator.
- a compute device may execute a method 1800 for managing disaggregated accelerator device resources. More specifically, the method 1800 pertains to querying an orchestrator (e.g., the orchestrator server 1216 ) for health data (or status data) regarding accelerator devices that are accessible to or in communication with the orchestrator server 1216 .
- an orchestrator e.g., the orchestrator server 1216
- health data or status data
- the method 1800 begins at block 1802 , in which the PSME 1270 determines to query the orchestrator server 1216 for one or more accelerator health metrics.
- the method 1800 advances to block 1804 , in which the PSME 1270 queries the orchestrator server 1216 using a particular accelerator identifier (e.g., an accelerator identifier for one of the accelerators 1264 ).
- the PSME 1270 may receive, from the orchestrator server 1216 , an accelerator health metric.
- an accelerator health metric may include one or more of accelerator uptime statistics, accelerator downtime statistics, time elapsed since accelerator start, time elapsed since accelerator reconfiguration, accelerator error statistics, or the like.
- the PSME 1270 may receive an accelerator throughput metric.
- an accelerator throughput metric may include or more of a present accelerator processing speed, an accelerator processing speed history, or the like.
- the PSME 1270 may receive an accelerator operational status.
- an accelerator operational status may include one or more of an accelerator temperature, net accelerator processing load, or the like.
- the method 1800 advances to block 1812 , in which the PSME 1270 determines whether the accelerator is presently satisfying (or is projected to satisfy) one or more request parameters as defined by the workload processing request (e.g., the workload processing request described above with respect to FIGS. 15 and 16 ). For example, the PSME 1270 may determine that an identified accelerator is not satisfying a throughput requirement (or the accelerator's defined portion of the throughput requirement) as defined by the request parameters of the workload processing request. Based on this determination, the method 1800 advances to block 1814 , in which the PSME 1270 queries the accelerator directory for a replacement accelerator. More specifically, the PSME 1270 queries the accelerator directory using the accelerator configuration data of the previously identified accelerator (or failing accelerator) that is no longer satisfying one or more request parameters.
- the workload processing request e.g., the workload processing request described above with respect to FIGS. 15 and 16 .
- the PSME 1270 may determine that an identified accelerator is not satisfying a throughput requirement (or the accelerator's defined portion of the throughput requirement) as defined by the
- querying the accelerator directory using the abovementioned accelerator configuration data returns at least one result in the form of a replacement accelerator.
- the identified replacement accelerator is capable of performing the workload that was being performed by the failing accelerator that is no longer satisfying request parameters.
- the method 1800 advances to block 1816 , in which the PSME 1270 routes the workload away from the failing accelerator and toward the replacement accelerator. More specifically, the PSME 1270 performs the method blocks 1522 to 1532 of FIG. 16 using the accelerator identifier in order to have the replacement accelerator process the workload.
- the method 1800 advances to block 1818 , in which the PSME 1270 determines whether the orchestrator server 1216 is to be queried regarding the health of more accelerators. For example, the PSME 1270 may have a scheduled task to periodically check for accelerator health during the time an accelerator is processing a workload assigned by the PSME 1270 .
- the method 1800 advances to block 1820 , in which the PSME 1270 determines whether the orchestrator server 1216 should be queried for more accelerator health metrics. If the PSME 1270 determines that health data is required for more accelerators, the method 1800 returns to block 1804 . If the PSME 1270 determines that no more accelerator health data is required for the present time period, the method 1800 advances to block 1822 , in which the PSME 1270 updates the accelerator directory at the PSME 1270 with the updated accelerator health data as provided by the orchestrator server 1216 .
- An embodiment of the technologies disclosed herein may include any one or more, and any combination of, the examples described below.
- Example 1 includes a compute device to manage workflow to disaggregated computing resources, the compute device comprising a compute engine to receive a workload processing request, the workload processing request defined by at least one request parameter; determine at least one accelerator device capable of processing a workload in accordance with the at least one request parameter; transmit a workload to the at least one accelerator device; receive a work product produced by the at least one accelerator device from the workload; and provide the work product to an application.
- Example 2 includes the subject matter of Example 1, and wherein the compute engine comprises a pooled system management engine (PSME), wherein the PSME operates in an out-of-band capacity with respect to the compute device, and wherein to receive the workload processing request comprises to receive the workload processing request without utilizing a host processor and without utilizing a host operating system of the compute device, to determine the at least one accelerator device capable of processing the workload comprises to determine the at least one accelerator device without utilizing the host processor and without utilizing the host operating system of the compute device, to transmit the workload to the at least one accelerator device comprises to transmit the workload without utilizing the host processor and without utilizing the host operating system of the compute device, to receive the work product produced by the at least one accelerator device comprises to receive the work product without utilizing the host processor and without utilizing the host operating system of the compute device, and to provide the work product to the application comprises to provide the work product to the application without utilizing the host processor and without utilizing the host operating system of the compute device.
- PSME pooled system management engine
- Example 3 includes the subject matter of any of Examples 1 and 2, and wherein to determine the at least one accelerator device capable of processing the workload comprises to determine at least one other accelerator device, the at least one other accelerator device being hosted on the compute device that also hosts the PSME.
- Example 4 includes the subject matter of any of Examples 1-3, and wherein to receive the workload processing request comprises to receive the workload processing request from an application executed on the compute device.
- Example 5 includes the subject matter of any of Examples 1-4, and wherein the plurality of instructions, when executed by the one or more processors, further cause the compute device to parse the workload processing request for the at least one request parameter, wherein the at least one request parameter corresponds to a service-level agreement (SLA) requirement.
- SLA service-level agreement
- Example 6 includes the subject matter of any of Examples 1-5, and wherein the compute engine is further to generate an accelerator device directory, wherein the accelerator device directory stores an accelerator device identifier identifying the at least one accelerator device in correlation with configuration data and an accelerator sled identifier for the at least one accelerator device, and wherein the configuration data is indicative of a number of operations per second that the at least one accelerator device is capable of performing, a function that the at least one accelerator device is capable of accelerating, and a present utilization of the at least one accelerator device.
- Example 7 includes the subject matter of any of Examples 1-6, and wherein the compute engine is further to identify a configuration parameter of the at least one accelerator device from the accelerator device directory; and determine that the configuration parameter represents a capability of the at least one accelerator device to process the workload.
- Example 8 includes the subject matter of any of Examples 1-7, and wherein the compute engine is further to retrieve an accelerator sled identifier for the at least one accelerator device; and transmit an accelerator device request to an orchestrator, wherein the accelerator device request includes a request to transmit the workload to the at least one accelerator device associated with the accelerator sled identifier.
- Example 9 includes the subject matter of any of Examples 1-8, and wherein the compute engine is further to receive the work product from the orchestrator, the work product representing a completion of processing of the workload by the at least one accelerator device.
- Example 10 includes the subject matter of any of Examples 1-9, and wherein to transmit a workload to the at least one accelerator device comprises to transmit the workload in-band, through a secure and authenticated channel.
- Example 11 includes the subject matter of any of Examples 1-10, and wherein to determine at least one accelerator device capable of processing a workload in accordance with the at least one request parameter comprises to determine, based on an accelerator device directory, the at least one accelerator device capable of processing a workload in accordance with the at least one request parameter.
- Example 12 includes the subject matter of any of Examples 1-11, and wherein the determined accelerator device is hosted on a remote device different from the compute device.
- Example 13 includes the subject matter of any of Examples 1-12, and wherein to determine the at least one accelerator device capable of processing a workload in accordance with the at least one request parameter comprises to send the workload processing request to an orchestrator server; and receive, from the orchestrator server, an identification of the at least one accelerator device capable of processing the workload.
- Example 14 includes the subject matter of any of Examples 1-13, and wherein the at least one request parameter includes metadata indicative of whether two or more portions of the workload can be accelerated concurrently.
- Example 15 includes the subject matter of any of Examples 1-14, and wherein the at least one request parameter includes metadata indicative of a target quality of service associated with the workload.
- Example 16 includes the subject matter of any of Examples 1-15, and wherein the metadata is indicative of at least one of a target latency or a target throughput associated with the workload.
- Example 17 includes a method for managing workflow to disaggregated computing resources, the method comprising receiving, by a compute device, a workload processing request, the workload processing request defined by at least one request parameter; determining, by the compute device, at least one accelerator device capable of processing a workload in accordance with the at least one request parameter; transmitting, by the compute device, a workload to the at least one accelerator device; receiving, by the compute device, a work product produced by the at least one accelerator device from the workload; and providing, by the compute device, the work product to an application.
- Example 18 includes the subject matter of Example 17, and wherein the compute device includes a pooled system management engine (PSME), wherein the PSME operates in an out-of-band capacity with respect to the compute device, and wherein receiving the workload processing request comprises receiving the workload processing request without utilizing a host processor and without utilizing a host operating system of the compute device, determining the at least one accelerator device capable of processing the workload comprises determining the at least one accelerator device without utilizing the host processor and without utilizing the host operating system of the compute device, transmitting the workload to the at least one accelerator device comprises transmitting the workload without utilizing the host processor and without utilizing the host operating system of the compute device, receiving the work product produced by the at least one accelerator device comprises receiving the work product without utilizing the host processor and without utilizing the host operating system of the compute device, and providing the work product to the application comprises providing the work product to the application without utilizing the host processor and without utilizing the host operating system of the compute device.
- PSME pooled system management engine
- Example 19 includes the subject matter of any of Examples 17 and 18, and wherein determining the at least one accelerator device capable of processing the workload comprises determining at least one other accelerator device, the at least one other accelerator device being hosted on the compute device that also hosts the PSME device.
- Example 20 includes the subject matter of any of Examples 17-19, and wherein receiving the workload processing request comprises receiving the workload processing request from an application executing on the compute device.
- Example 21 includes the subject matter of any of Examples 17-20, and further including parsing, by the compute device, the workload processing request for the at least one request parameter, wherein the at least one request parameter corresponds to a service-level agreement (SLA) requirement.
- SLA service-level agreement
- Example 22 includes the subject matter of any of Examples 17-21, and further including generating an accelerator device directory, wherein the accelerator device directory stores an accelerator device identifier identifying the at least one accelerator device in correlation with configuration data and an accelerator sled identifier for the at least one accelerator device, and wherein the configuration data is indicative of a number of operations per second that the at least one accelerator device is capable of performing, a function that the at least one accelerator device is capable of accelerating, and a present utilization of the at least one accelerator device.
- Example 23 includes the subject matter of any of Examples 17-22, and further including identifying, by the compute device, a configuration parameter of the at least one accelerator device from the accelerator device directory; and determining, by the compute device, that the configuration parameter represents a capability of the at least one accelerator device to process the workload.
- Example 24 includes the subject matter of any of Examples 17-23, and further including retrieving, by the compute device, an accelerator sled identifier for the at least one accelerator device; and transmitting, by the compute device, an accelerator device request to an orchestrator, wherein the accelerator device request includes a request to transmit the workload to the at least one accelerator device associated with the accelerator sled identifier.
- Example 25 includes the subject matter of any of Examples 17-24, and further including receiving the work product from the orchestrator, wherein the work product represents a completion of processing of the workload by the at least one accelerator device.
- Example 26 includes the subject matter of any of Examples 17-25, and wherein transmitting a workload to the at least one accelerator device comprises transmitting the workload in-band, through a secure and authenticated channel.
- Example 27 includes the subject matter of any of Examples 17-26, and wherein determining at least one accelerator device capable of processing a workload in accordance with the at least one request parameter comprises determining, based on an accelerator device directory, the at least one accelerator device capable of processing a workload in accordance with the at least one request parameter.
- Example 28 includes the subject matter of any of Examples 17-27, and wherein the determined accelerator device is hosted on a remote device different from the compute device.
- Example 29 includes the subject matter of any of Examples 17-28, and wherein determining the at least one accelerator device capable of processing a workload in accordance with the at least one request parameter comprises sending the workload processing request to an orchestrator server; and receiving, from the orchestrator server, an identification of the at least one accelerator device capable of processing the workload.
- Example 30 includes the subject matter of any of Examples 17-29, and wherein the at least one request parameter includes metadata indicative of whether two or more portions of the workload can be accelerated concurrently.
- Example 31 includes the subject matter of any of Examples 17-30, and wherein the at least one request parameter includes metadata indicative of a target quality of service associated with the workload.
- Example 32 includes the subject matter of any of Examples 17-31, and wherein the metadata is indicative of at least one of a target latency or a target throughput associated with the workload.
- Example 33 includes one or more machine-readable storage media comprising a plurality of instructions stored thereon that, in response to being executed, cause a compute device to perform the method of any of Examples 17-32.
- Example 34 includes a compute device comprising means for performing the method of any of Examples 17-32.
- Example 35 includes a compute device comprising manager circuitry to receive a workload processing request, the workload processing request defined by at least one request parameter; determine at least one accelerator device capable of processing a workload in accordance with the at least one request parameter; transmit a workload to the at least one accelerator device; receive a work product produced by the at least one accelerator device from the workload; and provide the work product to an application.
- Example 36 includes the subject matter of Example 35, and wherein the compute device includes a pooled system management engine (PSME), wherein the PSME operates in an out-of-band capacity with respect to the compute device, and the management circuitry is to operate in an out-of-band capacity with respect to the compute device, and wherein to receive the workload processing request comprises to receive the workload processing request without utilizing a host processor and without utilizing a host operating system of the compute device, to determine the at least one accelerator device capable of processing the workload comprises to determine the at least one accelerator device without utilizing the host processor and without utilizing the host operating system of the compute device, to transmit the workload to the at least one accelerator device comprises to transmit the workload without utilizing the host processor and without utilizing the host operating system of the compute device, to receive the work product produced by the at least one accelerator device comprises to receive the work product without utilizing the host processor and without utilizing the host operating system of the compute device, and to provide the work product to the application comprises to provide the work product to the application without utilizing the host processor and without utilizing the host
- Example 37 includes the subject matter of any of Examples 35 and 36, and wherein to determine the at least one accelerator device capable of processing the workload comprises to determine at least one other accelerator device, the at least one other accelerator device being hosted on the compute device that also hosts the PSME.
- Example 38 includes the subject matter of any of Examples 35-37, and wherein to receive the workload processing request comprises to receive the workload processing request from an application executed on the compute device.
- Example 39 includes the subject matter of any of Examples 35-38, and wherein the manager circuitry is further to parse the workload processing request for the at least one request parameter, and wherein the at least one request parameter corresponds to a service-level agreement (SLA) requirement.
- SLA service-level agreement
- Example 40 includes the subject matter of any of Examples 35-39, and wherein the manager circuitry is further to generate an accelerator device directory, wherein the accelerator device directory stores an accelerator device identifier identifying the at least one accelerator device in correlation with configuration data and an accelerator sled identifier for the at least one accelerator device, and wherein the configuration data is indicative of a number of operations per second that the at least one accelerator device is capable of performing, a function that the at least one accelerator device is capable of accelerating, and a present utilization of the at least one accelerator device.
- the manager circuitry is further to generate an accelerator device directory, wherein the accelerator device directory stores an accelerator device identifier identifying the at least one accelerator device in correlation with configuration data and an accelerator sled identifier for the at least one accelerator device, and wherein the configuration data is indicative of a number of operations per second that the at least one accelerator device is capable of performing, a function that the at least one accelerator device is capable of accelerating, and a present utilization of the at least one accelerator device.
- Example 41 includes the subject matter of any of Examples 35-40, and wherein the manager circuitry is further to identify a configuration parameter of the at least one accelerator device from the accelerator device directory; and determine that the configuration parameter represents a capability of the at least one accelerator device to process the workload.
- Example 42 includes the subject matter of any of Examples 35-41, and wherein the manager circuitry is further to retrieve an accelerator sled identifier for the at least one accelerator device; further comprising network communication circuitry to transmit an accelerator device request to an orchestrator, wherein the accelerator device request includes a request to transmit the workload to the at least one accelerator device associated with the accelerator sled identifier.
- Example 43 includes the subject matter of any of Examples 35-42, and wherein the network communication circuitry is further to receive the work product from the orchestrator, the work product representing a completion of processing of the workload by the at least one accelerator device.
- Example 44 includes the subject matter of any of Examples 35-43, and wherein to transmit a workload to the at least one accelerator device comprises to transmit the workload in-band, through a secure and authenticated channel.
- Example 45 includes the subject matter of any of Examples 35-44, and wherein to determine at least one accelerator device capable of processing a workload in accordance with the at least one request parameter comprises to determine, based on an accelerator device directory, the at least one accelerator device capable of processing a workload in accordance with the at least one request parameter.
- Example 46 includes the subject matter of any of Examples 35-45, and wherein the determined accelerator device is hosted on a remote device different from the compute device.
- Example 47 includes the subject matter of any of Examples 35-46, and wherein to determine the at least one accelerator device capable of processing a workload in accordance with the at least one request parameter comprises to send the workload processing request to an orchestrator server; and receive, from the orchestrator server, an identification of the at least one accelerator device capable of processing the workload.
- Example 48 includes the subject matter of any of Examples 35-47, and wherein the at least one request parameter includes metadata indicative of whether two or more portions of the workload can be accelerated concurrently.
- Example 49 includes the subject matter of any of Examples 35-48, and wherein the at least one request parameter includes metadata indicative of a target quality of service associated with the workload.
- Example 50 includes the subject matter of any of Examples 35-49, and wherein the metadata is indicative of at least one of a target latency or a target throughput associated with the workload.
- Example 51 includes a compute device comprising circuitry for receiving a workload processing request, the workload processing request defined by at least one request parameter; means for determining at least one accelerator device capable of processing a workload in accordance with the at least one request parameter; circuitry for transmitting a workload to the at least one accelerator device; circuitry for receiving a work product produced by the at least one accelerator device from the workload; and circuitry for providing the work product to an application.
- Example 52 includes the subject matter of Example 51, and wherein the circuitry for receiving the workload processing request comprises circuitry for receiving the workload processing request without utilizing a host processor and without utilizing a host operating system of the compute device, the means for determining the at least one accelerator device capable of processing the workload comprises circuitry for determining the at least one accelerator device without utilizing the host processor and without utilizing the host operating system of the compute device, the circuitry for transmitting the workload to the at least one accelerator device comprises circuitry for transmitting the workload without utilizing the host processor and without utilizing the host operating system of the compute device, the circuitry for receiving the work product produced by the at least one accelerator device comprises circuitry for receiving the work product without utilizing the host processor and without utilizing the host operating system of the compute device, and the circuitry for providing the work product to the application comprises circuitry for providing the work product to the application without utilizing the host processor and without utilizing the host operating system of the compute device.
- the circuitry for receiving the workload processing request comprises circuitry for receiving the workload processing request without utilizing a host processor and
- Example 53 includes the subject matter of any of Examples 51 and 52, and wherein the means for determining the at least one accelerator device capable of processing the workload comprises circuitry for determining at least one other accelerator device, the at least one other accelerator device being hosted on the compute device that also hosts the PSME device.
- Example 54 includes the subject matter of any of Examples 51-53, and wherein the circuitry for receiving the workload processing request comprises circuitry for receiving the workload processing request from an application executing on the compute device.
- Example 55 includes the subject matter of any of Examples 51-54, and further including circuitry for parsing the workload processing request for the at least one request parameter, wherein the at least one request parameter corresponds to a service-level agreement (SLA) requirement.
- SLA service-level agreement
- Example 56 includes the subject matter of any of Examples 51-55, and further including circuitry for generating an accelerator device directory, wherein the accelerator device directory stores an accelerator device identifier identifying the at least one accelerator device in correlation with configuration data and an accelerator sled identifier for the at least one accelerator device, and wherein the configuration data is indicative of a number of operations per second that the at least one accelerator device is capable of performing, a function that the at least one accelerator device is capable of accelerating, and a present utilization of the at least one accelerator device.
- Example 57 includes the subject matter of any of Examples 51-56, and further including circuitry for identifying a configuration parameter of the at least one accelerator device from the accelerator device directory; and determining that the configuration parameter represents a capability of the at least one accelerator device to process the workload.
- Example 58 includes the subject matter of any of Examples 51-57, and further including circuitry for retrieving an accelerator sled identifier for the at least one accelerator device; and transmitting an accelerator device request to an orchestrator, wherein the accelerator device request includes a request to transmit the workload to the at least one accelerator device associated with the accelerator sled identifier.
- Example 59 includes the subject matter of any of Examples 51-58, and further including circuitry for receiving the work product from the orchestrator, wherein the work product represents a completion of processing of the workload by the at least one accelerator device.
- Example 60 includes the subject matter of any of Examples 51-59, and wherein the circuitry for transmitting a workload to the at least one accelerator device comprises circuitry for transmitting the workload in-band, through a secure and authenticated channel.
- Example 61 includes the subject matter of any of Examples 51-60, and wherein the means for determining at least one accelerator device capable of processing a workload in accordance with the at least one request parameter comprises means for determining, based on an accelerator device directory, the at least one accelerator device capable of processing a workload in accordance with the at least one request parameter.
- Example 62 includes the subject matter of any of Examples 51-61, and wherein the determined accelerator device is hosted on a remote device different from the compute device.
- Example 63 includes the subject matter of any of Examples 51-62, and wherein the means for determining the at least one accelerator device capable of processing a workload in accordance with the at least one request parameter comprises circuitry for sending the workload processing request to an orchestrator server; and circuitry for receiving, from the orchestrator server, an identification of the at least one accelerator device capable of processing the workload.
- Example 64 includes the subject matter of any of Examples 51-63, and wherein the at least one request parameter includes metadata indicative of whether two or more portions of the workload can be accelerated concurrently.
- Example 65 includes the subject matter of any of Examples 51-64, and wherein the at least one request parameter includes metadata indicative of a target quality of service associated with the workload.
- Example 66 includes the subject matter of any of Examples 51-65, and wherein the metadata is indicative of at least one of a target latency or a target throughput associated with the workload.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Hardware Design (AREA)
- Computer Security & Cryptography (AREA)
- Quality & Reliability (AREA)
- Human Computer Interaction (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Biomedical Technology (AREA)
- Bioethics (AREA)
- General Health & Medical Sciences (AREA)
- Multi Processors (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Small-Scale Networks (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Optical Communication System (AREA)
- Debugging And Monitoring (AREA)
- Computer And Data Communications (AREA)
- Mobile Radio Communication Systems (AREA)
- Hardware Redundancy (AREA)
- Stored Programmes (AREA)
- Memory System Of A Hierarchy Structure (AREA)
- Optics & Photonics (AREA)
- Power Sources (AREA)
- Memory System (AREA)
Abstract
A compute device to manage workflow to disaggregated computing resources is provided. The compute device comprises a compute engine receive a workload processing request, the workload processing request defined by at least one request parameter, determine at least one accelerator device capable of processing a workload in accordance with the at least one request parameter, transmit a workload to the at least one accelerator device, receive a work product produced by the at least one accelerator device from the workload, and provide the work product to an application.
Description
- This present application is a continuation of U.S. patent application Ser. No. 15/721,833, filed Sep. 30, 2017, and claims the benefit of U.S. Provisional Patent Application No. 62/427,268, filed Nov. 29, 2016, and Indian Provisional Patent Application No. 201741030632, filed Aug. 30, 2017.
- In modern cloud environments, compute devices (sometimes referred to as compute sleds) host many computer applications (e.g., workloads) that each perform specific functions. Each application requires processing power to complete various application tasks (e.g., functions, processes, operations within a workload), such as data processing but also input and output tasks such as displaying data, receiving data, or the like. Many of the abovementioned tasks are processed using computer programs that embody complex logic sequences. Such logic sequences often execute faster when carried out by a specialized component, such as a field programmable gate array, an application specific integrated circuit (ASIC), or other device specifically configured for performing such computation (e.g., an accelerator device). An accelerator device may be configured using, for example, a hardware definition language, to perform tasks assigned by a computer application.
- Given that accelerator devices typically specialize in executing a particular type of task (e.g., encryption, compression, etc.), an operating system of the compute device, or the application executing on the compute device, typically must identify the available features of the accelerator device(s) and manage communications with the accelerator device(s), taking away from compute resources (e.g., processor cycles) that could otherwise be spent on executing the application.
- The concepts described herein are illustrated by way of example and not by way of limitation in the accompanying figures. For simplicity and clarity of illustration, elements illustrated in the figures are not necessarily drawn to scale. Where considered appropriate, reference labels have been repeated among the figures to indicate corresponding or analogous elements.
-
FIG. 1 is a diagram of a conceptual overview of a data center in which one or more techniques described herein may be implemented according to various embodiments; -
FIG. 2 is a diagram of an example embodiment of a logical configuration of a rack of the data center ofFIG. 1 ; -
FIG. 3 is a diagram of an example embodiment of another data center in which one or more techniques described herein may be implemented according to various embodiments; -
FIG. 4 is a diagram of another example embodiment of a data center in which one or more techniques described herein may be implemented according to various embodiments; -
FIG. 5 is a diagram of a connectivity scheme representative of link-layer connectivity that may be established among various sleds of the data centers ofFIGS. 1, 3, and 4 ; -
FIG. 6 is a diagram of a rack architecture that may be representative of an architecture of any particular one of the racks depicted inFIGS. 1-4 according to some embodiments; -
FIG. 7 is a diagram of an example embodiment of a sled that may be used with the rack architecture ofFIG. 6 ; -
FIG. 8 is a diagram of an example embodiment of a rack architecture to provide support for sleds featuring expansion capabilities; -
FIG. 9 is a diagram of an example embodiment of a rack implemented according to the rack architecture ofFIG. 8 ; -
FIG. 10 is a diagram of an example embodiment of a sled designed for use in conjunction with the rack ofFIG. 9 ; -
FIG. 11 is a diagram of an example embodiment of a data center in which one or more techniques described herein may be implemented according to various embodiments; -
FIG. 12 is a simplified block diagram of at least one embodiment of a system for managing disaggregated accelerator resources using a pooled system management engine (PSME) device; -
FIG. 13 is a simplified block diagram of at least one embodiment of a compute sled of the system ofFIG. 12 ; -
FIG. 14 is a simplified block diagram of at least one embodiment of an environment that may be established by the compute sled ofFIGS. 12 and 13 ; and -
FIGS. 15-18 are a simplified flow diagram of at least one embodiment of a method for managing disaggregated accelerator resources that may be performed by the compute sled ofFIGS. 12 and 13 . - While the concepts of the present disclosure are susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and will be described herein in detail. It should be understood, however, that there is no intent to limit the concepts of the present disclosure to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives consistent with the present disclosure and the appended claims.
- References in the specification to “one embodiment,” “an embodiment,” “an illustrative embodiment,” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may or may not necessarily include that particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. Additionally, it should be appreciated that items included in a list in the form of “at least one A, B, and C” can mean (A); (B); (C); (A and B); (A and C); (B and C); or (A, B, and C). Similarly, items listed in the form of “at least one of A, B, or C” can mean (A); (B); (C); (A and B); (A and C); (B and C); or (A, B, and C).
- The disclosed embodiments may be implemented, in some cases, in hardware, firmware, software, or any combination thereof. The disclosed embodiments may also be implemented as instructions carried by or stored on a transitory or non-transitory machine-readable (e.g., computer-readable) storage medium, which may be read and executed by one or more processors. A machine-readable storage medium may be embodied as any storage device, mechanism, or other physical structure for storing or transmitting information in a form readable by a machine (e.g., a volatile or non-volatile memory, a media disc, or other media device).
- In the drawings, some structural or method features may be shown in specific arrangements and/or orderings. However, it should be appreciated that such specific arrangements and/or orderings may not be required. Rather, in some embodiments, such features may be arranged in a different manner and/or order than shown in the illustrative figures. Additionally, the inclusion of a structural or method feature in a particular figure is not meant to imply that such feature is required in all embodiments and, in some embodiments, may not be included or may be combined with other features.
-
FIG. 1 illustrates a conceptual overview of adata center 100 that may generally be representative of a data center or other type of computing network in/for which one or more techniques described herein may be implemented according to various embodiments. As shown inFIG. 1 ,data center 100 may generally contain a plurality of racks, each of which may house computing equipment comprising a respective set of physical resources. In the particular non-limiting example depicted inFIG. 1 ,data center 100 contains fourracks 102A to 102D, which house computing equipment comprising respective sets of physical resources (PCRs) 105A to 105D. According to this example, a collective set ofphysical resources 106 ofdata center 100 includes the various sets ofphysical resources 105A to 105D that are distributed amongracks 102A to 102D.Physical resources 106 may include resources of multiple types, such as—for example—processors, co-processors, accelerators, field programmable gate arrays (FPGAs), memory, and storage. The embodiments are not limited to these examples. - The
illustrative data center 100 differs from typical data centers in many ways. For example, in the illustrative embodiment, the circuit boards (“sleds”) on which components such as CPUs, memory, and other components are placed are designed for increased thermal performance. In particular, in the illustrative embodiment, the sleds are shallower than typical boards. In other words, the sleds are shorter from the front to the back, where cooling fans are located. This decreases the length of the path that air must to travel across the components on the board. Further, the components on the sled are spaced further apart than in typical circuit boards, and the components are arranged to reduce or eliminate shadowing (i.e., one component in the air flow path of another component). In the illustrative embodiment, processing components such as the processors are located on a top side of a sled while near memory, such as DIMMs, are located on a bottom side of the sled. As a result of the enhanced airflow provided by this design, the components may operate at higher frequencies and power levels than in typical systems, thereby increasing performance. Furthermore, the sleds are configured to blindly mate with power and data communication cables in eachrack - Furthermore, in the illustrative embodiment, the
data center 100 utilizes a single network architecture (“fabric”) that supports multiple other network architectures including Ethernet and Omni-Path. The sleds, in the illustrative embodiment, are coupled to switches via optical fibers, which provide higher bandwidth and lower latency than typical twisted pair cabling (e.g., Category 5, Category 5e, Category 6, etc.). Due to the high bandwidth, low latency interconnections and network architecture, thedata center 100 may, in use, pool resources, such as memory, accelerators (e.g., graphics accelerators, FPGAs, ASICs, etc.), and data storage drives that are physically disaggregated, and provide them to compute resources (e.g., processors) on an as needed basis, enabling the compute resources to access the pooled resources as if they were local. Theillustrative data center 100 additionally receives utilization information for the various resources, predicts resource utilization for different types of workloads based on past resource utilization, and dynamically reallocates the resources based on this information. - The
racks data center 100 may include physical design features that facilitate the automation of a variety of types of maintenance tasks. For example,data center 100 may be implemented using racks that are designed to be robotically-accessed, and to accept and house robotically-manipulatable resource sleds. Furthermore, in the illustrative embodiment, theracks -
FIG. 2 illustrates an exemplary logical configuration of arack 202 of thedata center 100. As shown inFIG. 2 ,rack 202 may generally house a plurality of sleds, each of which may comprise a respective set of physical resources. In the particular non-limiting example depicted inFIG. 2 , rack 202 houses sleds 204-1 to 204-4 comprising respective sets of physical resources 205-1 to 205-4, each of which constitutes a portion of the collective set ofphysical resources 206 comprised inrack 202. With respect toFIG. 1 , ifrack 202 is representative of—for example—rack 102A, thenphysical resources 206 may correspond to thephysical resources 105A comprised inrack 102A. In the context of this example,physical resources 105A may thus be made up of the respective sets of physical resources, including physical storage resources 205-1, physical accelerator resources 205-2, physical memory resources 205-3, and physical compute resources 205-5 comprised in the sleds 204-1 to 204-4 ofrack 202. The embodiments are not limited to this example. Each sled may contain a pool of each of the various types of physical resources (e.g., compute, memory, accelerator, storage). By having robotically accessible and robotically manipulatable sleds comprising disaggregated resources, each type of resource can be upgraded independently of each other and at their own optimized refresh rate. -
FIG. 3 illustrates an example of adata center 300 that may generally be representative of one in/for which one or more techniques described herein may be implemented according to various embodiments. In the particular non-limiting example depicted inFIG. 3 ,data center 300 comprises racks 302-1 to 302-32. In various embodiments, the racks ofdata center 300 may be arranged in such fashion as to define and/or accommodate various access pathways. For example, as shown inFIG. 3 , the racks ofdata center 300 may be arranged in such fashion as to define and/or accommodateaccess pathways data center 300 and perform automated maintenance tasks (e.g., replace a failed sled, upgrade a sled). In various embodiments, the dimensions ofaccess pathways data center 300 may be selected to facilitate such automated operations. The embodiments are not limited in this context. -
FIG. 4 illustrates an example of adata center 400 that may generally be representative of one in/for which one or more techniques described herein may be implemented according to various embodiments. As shown inFIG. 4 ,data center 400 may feature an optical fabric 412. Optical fabric 412 may generally comprise a combination of optical signaling media (such as optical cabling) and optical switching infrastructure via which any particular sled indata center 400 can send signals to (and receive signals from) each of the other sleds indata center 400. The signaling connectivity that optical fabric 412 provides to any given sled may include connectivity both to other sleds in a same rack and sleds in other racks. In the particular non-limiting example depicted inFIG. 4 ,data center 400 includes fourracks 402A to 402D.Racks 402A to 402D house respective pairs ofsleds 404A-1 and 404A-2, 404B-1 and 404B-2, 404C-1 and 404C-2, and 404D-1 and 404D-2. Thus, in this example,data center 400 comprises a total of eight sleds. Via optical fabric 412, each such sled may possess signaling connectivity with each of the seven other sleds indata center 400. For example, via optical fabric 412,sled 404A-1 inrack 402A may possess signaling connectivity withsled 404A-2 inrack 402A, as well as the sixother sleds 404B-1, 404B-2, 404C-1, 404C-2, 404D-1, and 404D-2 that are distributed among theother racks data center 400. The embodiments are not limited to this example. -
FIG. 5 illustrates an overview of aconnectivity scheme 500 that may generally be representative of link-layer connectivity that may be established in some embodiments among the various sleds of a data center, such as any ofexample data centers FIGS. 1, 3, and 4 .Connectivity scheme 500 may be implemented using an optical fabric that features a dual-modeoptical switching infrastructure 514. Dual-modeoptical switching infrastructure 514 may generally comprise a switching infrastructure that is capable of receiving communications according to multiple link-layer protocols via a same unified set of optical signaling media, and properly switching such communications. In various embodiments, dual-modeoptical switching infrastructure 514 may be implemented using one or more dual-modeoptical switches 515. In various embodiments, dual-modeoptical switches 515 may generally comprise high-radix switches. In some embodiments, dual-modeoptical switches 515 may comprise multi-ply switches, such as four-ply switches. In various embodiments, dual-modeoptical switches 515 may feature integrated silicon photonics that enable them to switch communications with significantly reduced latency in comparison to conventional switching devices. In some embodiments, dual-modeoptical switches 515 may constituteleaf switches 530 in a leaf-spine architecture additionally including one or more dual-mode optical spine switches 520. - In various embodiments, dual-mode optical switches may be capable of receiving both Ethernet protocol communications carrying Internet Protocol (IP packets) and communications according to a second, high-performance computing (HPC) link-layer protocol (e.g., Intel's Omni-Path Architecture's, Infiniband) via optical signaling media of an optical fabric. As reflected in
FIG. 5 , with respect to any particular pair ofsleds connectivity scheme 500 may thus provide support for link-layer connectivity via both Ethernet links and HPC links. Thus, both Ethernet and HPC communications can be supported by a single high-bandwidth, low-latency switch fabric. The embodiments are not limited to this example. -
FIG. 6 illustrates a general overview of arack architecture 600 that may be representative of an architecture of any particular one of the racks depicted inFIGS. 1 to 4 according to some embodiments. As reflected inFIG. 6 ,rack architecture 600 may generally feature a plurality of sled spaces into which sleds may be inserted, each of which may be robotically-accessible via arack access region 601. In the particular non-limiting example depicted inFIG. 6 ,rack architecture 600 features five sled spaces 603-1 to 603-5. Sled spaces 603-1 to 603-5 feature respective multi-purpose connector modules (MPCMs) 616-1 to 616-5. -
FIG. 7 illustrates an example of asled 704 that may be representative of a sled of such a type. As shown inFIG. 7 ,sled 704 may comprise a set ofphysical resources 705, as well as anMPCM 716 designed to couple with a counterpart MPCM whensled 704 is inserted into a sled space such as any of sled spaces 603-1 to 603-5 ofFIG. 6 .Sled 704 may also feature anexpansion connector 717.Expansion connector 717 may generally comprise a socket, slot, or other type of connection element that is capable of accepting one or more types of expansion modules, such as anexpansion sled 718. By coupling with a counterpart connector onexpansion sled 718,expansion connector 717 may providephysical resources 705 with access tosupplemental computing resources 705B residing onexpansion sled 718. The embodiments are not limited in this context. -
FIG. 8 illustrates an example of arack architecture 800 that may be representative of a rack architecture that may be implemented in order to provide support for sleds featuring expansion capabilities, such assled 704 ofFIG. 7 . In the particular non-limiting example depicted inFIG. 8 ,rack architecture 800 includes seven sled spaces 803-1 to 803-7, which feature respective MPCMs 816-1 to 816-7. Sled spaces 803-1 to 803-7 include respective primary regions 803-1A to 803-7A and respective expansion regions 803-1B to 803-7B. With respect to each such sled space, when the corresponding MPCM is coupled with a counterpart MPCM of an inserted sled, the primary region may generally constitute a region of the sled space that physically accommodates the inserted sled. The expansion region may generally constitute a region of the sled space that can physically accommodate an expansion module, such asexpansion sled 718 ofFIG. 7 , in the event that the inserted sled is configured with such a module. -
FIG. 9 illustrates an example of arack 902 that may be representative of a rack implemented according torack architecture 800 ofFIG. 8 according to some embodiments. In the particular non-limiting example depicted inFIG. 9 , rack 902 features seven sled spaces 903-1 to 903-7, which include respective primary regions 903-1A to 903-7A and respective expansion regions 903-1B to 903-7B. In various embodiments, temperature control inrack 902 may be implemented using an air cooling system. For example, as reflected inFIG. 9 ,rack 902 may feature a plurality of fans 919 that are generally arranged to provide air cooling within the various sled spaces 903-1 to 903-7. In some embodiments, the height of the sled space is greater than the conventional “1U” server height. In such embodiments, fans 919 may generally comprise relatively slow, large diameter cooling fans as compared to fans used in conventional rack configurations. Running larger diameter cooling fans at lower speeds may increase fan lifetime relative to smaller diameter cooling fans running at higher speeds while still providing the same amount of cooling. The sleds are physically shallower than conventional rack dimensions. Further, components are arranged on each sled to reduce thermal shadowing (i.e., not arranged serially in the direction of air flow). As a result, the wider, shallower sleds allow for an increase in device performance because the devices can be operated at a higher thermal envelope (e.g., 250W) due to improved cooling (i.e., no thermal shadowing, more space between devices, more room for larger heat sinks, etc.). - MPCMs 916-1 to 916-7 may be configured to provide inserted sleds with access to power sourced by respective power modules 920-1 to 920-7, each of which may draw power from an
external power source 921. In various embodiments,external power source 921 may deliver alternating current (AC) power to rack 902, and power modules 920-1 to 920-7 may be configured to convert such AC power to direct current (DC) power to be sourced to inserted sleds. In some embodiments, for example, power modules 920-1 to 920-7 may be configured to convert 277-volt AC power into 12-volt DC power for provision to inserted sleds via respective MPCMs 916-1 to 916-7. The embodiments are not limited to this example. - MPCMs 916-1 to 916-7 may also be arranged to provide inserted sleds with optical signaling connectivity to a dual-mode
optical switching infrastructure 914, which may be the same as—or similar to—dual-modeoptical switching infrastructure 514 ofFIG. 5 . In various embodiments, optical connectors contained in MPCMs 916-1 to 916-7 may be designed to couple with counterpart optical connectors contained in MPCMs of inserted sleds to provide such sleds with optical signaling connectivity to dual-modeoptical switching infrastructure 914 via respective lengths of optical cabling 922-1 to 922-7. In some embodiments, each such length of optical cabling may extend from its corresponding MPCM to an optical interconnect loom 923 that is external to the sled spaces ofrack 902. In various embodiments, optical interconnect loom 923 may be arranged to pass through a support post or other type of load-bearing element ofrack 902. The embodiments are not limited in this context. Because inserted sleds connect to an optical switching infrastructure via MPCMs, the resources typically spent in manually configuring the rack cabling to accommodate a newly inserted sled can be saved. -
FIG. 10 illustrates an example of asled 1004 that may be representative of a sled designed for use in conjunction withrack 902 ofFIG. 9 according to some embodiments.Sled 1004 may feature anMPCM 1016 that comprises anoptical connector 1016A and apower connector 1016B, and that is designed to couple with a counterpart MPCM of a sled space in conjunction with insertion ofMPCM 1016 into that sled space.Coupling MPCM 1016 with such a counterpart MPCM may causepower connector 1016 to couple with a power connector comprised in the counterpart MPCM. This may generally enablephysical resources 1005 ofsled 1004 to source power from an external source, viapower connector 1016 andpower transmission media 1024 that conductively couplespower connector 1016 tophysical resources 1005. -
Sled 1004 may also include dual-mode opticalnetwork interface circuitry 1026. Dual-mode opticalnetwork interface circuitry 1026 may generally comprise circuitry that is capable of communicating over optical signaling media according to each of multiple link-layer protocols supported by dual-modeoptical switching infrastructure 914 ofFIG. 9 . In some embodiments, dual-mode opticalnetwork interface circuitry 1026 may be capable both of Ethernet protocol communications and of communications according to a second, high-performance protocol. In various embodiments, dual-mode opticalnetwork interface circuitry 1026 may include one or more optical transceiver modules 1027, each of which may be capable of transmitting and receiving optical signals over each of one or more optical channels. The embodiments are not limited in this context. -
Coupling MPCM 1016 with a counterpart MPCM of a sled space in a given rack may causeoptical connector 1016A to couple with an optical connector comprised in the counterpart MPCM. This may generally establish optical connectivity between optical cabling of the sled and dual-mode opticalnetwork interface circuitry 1026, via each of a set ofoptical channels 1025. Dual-mode opticalnetwork interface circuitry 1026 may communicate with thephysical resources 1005 ofsled 1004 via electrical signaling media 1028. In addition to the dimensions of the sleds and arrangement of components on the sleds to provide improved cooling and enable operation at a relatively higher thermal envelope (e.g., 250 W), as described above with reference toFIG. 9 , in some embodiments, a sled may include one or more additional features to facilitate air cooling, such as a heatpipe and/or heat sinks arranged to dissipate heat generated byphysical resources 1005. It is worthy of note that although theexample sled 1004 depicted inFIG. 10 does not feature an expansion connector, any given sled that features the design elements ofsled 1004 may also feature an expansion connector according to some embodiments. The embodiments are not limited in this context. -
FIG. 11 illustrates an example of adata center 1100 that may generally be representative of one in/for which one or more techniques described herein may be implemented according to various embodiments. As reflected inFIG. 11 , a physicalinfrastructure management framework 1150A may be implemented to facilitate management of aphysical infrastructure 1100A ofdata center 1100. In various embodiments, one function of physicalinfrastructure management framework 1150A may be to manage automated maintenance functions withindata center 1100, such as the use of robotic maintenance equipment to service computing equipment withinphysical infrastructure 1100A. In some embodiments,physical infrastructure 1100A may feature an advanced telemetry system that performs telemetry reporting that is sufficiently robust to support remote automated management ofphysical infrastructure 1100A. In various embodiments, telemetry information provided by such an advanced telemetry system may support features such as failure prediction/prevention capabilities and capacity planning capabilities. In some embodiments, physicalinfrastructure management framework 1150A may also be configured to manage authentication of physical infrastructure components using hardware attestation techniques. For example, robots may verify the authenticity of components before installation by analyzing information collected from a radio frequency identification (RFID) tag associated with each component to be installed. The embodiments are not limited in this context. - As shown in
FIG. 11 , thephysical infrastructure 1100A ofdata center 1100 may comprise anoptical fabric 1112, which may include a dual-modeoptical switching infrastructure 1114.Optical fabric 1112 and dual-modeoptical switching infrastructure 1114 may be the same as—or similar to—optical fabric 412 ofFIG. 4 and dual-modeoptical switching infrastructure 514 ofFIG. 5 , respectively, and may provide high-bandwidth, low-latency, multi-protocol connectivity among sleds ofdata center 1100. As discussed above, with reference toFIG. 1 , in various embodiments, the availability of such connectivity may make it feasible to disaggregate and dynamically pool resources such as accelerators, memory, and storage. In some embodiments, for example, one or more pooledaccelerator sleds 1130 may be included among thephysical infrastructure 1100A ofdata center 1100, each of which may comprise a pool of accelerator resources—such as co-processors and/or FPGAs, for example—that is globally accessible to other sleds viaoptical fabric 1112 and dual-modeoptical switching infrastructure 1114. - In another example, in various embodiments, one or more pooled
storage sleds 1132 may be included among thephysical infrastructure 1100A ofdata center 1100, each of which may comprise a pool of storage resources that is globally accessible to other sleds viaoptical fabric 1112 and dual-modeoptical switching infrastructure 1114. In some embodiments, such pooledstorage sleds 1132 may comprise pools of solid-state storage devices such as solid-state drives (SSDs). In various embodiments, one or more high-performance processing sleds 1134 may be included among thephysical infrastructure 1100A ofdata center 1100. In some embodiments, high-performance processing sleds 1134 may comprise pools of high-performance processors, as well as cooling features that enhance air cooling to yield a higher thermal envelope of up to 250 W or more. In various embodiments, any given high-performance processing sled 1134 may feature anexpansion connector 1117 that can accept a far memory expansion sled, such that the far memory that is locally available to that high-performance processing sled 1134 is disaggregated from the processors and near memory comprised on that sled. In some embodiments, such a high-performance processing sled 1134 may be configured with far memory using an expansion sled that comprises low-latency SSD storage. The optical infrastructure allows for compute resources on one sled to utilize remote accelerator/FPGA, memory, and/or SSD resources that are disaggregated on a sled located on the same rack or any other rack in the data center. The remote resources can be located one switch jump away or two-switch jumps away in the spine-leaf network architecture described above with reference toFIG. 5 . The embodiments are not limited in this context. - In various embodiments, one or more layers of abstraction may be applied to the physical resources of
physical infrastructure 1100A in order to define a virtual infrastructure, such as a software-definedinfrastructure 1100B. In some embodiments, virtual computing resources 1136 of software-definedinfrastructure 1100/B may be allocated to support the provision ofcloud services 1140. In various embodiments, particular sets of virtual computing resources 1136 may be grouped for provision to cloudservices 1140 in the form ofSDI services 1138. Examples ofcloud services 1140 may include—without limitation—software as a service (SaaS)services 1142, platform as a service (PaaS)services 1144, and infrastructure as a service (IaaS) services 1146. - In some embodiments, management of software-defined
infrastructure 1100B may be conducted using a virtualinfrastructure management framework 1150B. In various embodiments, virtualinfrastructure management framework 1150B may be designed to implement workload fingerprinting techniques and/or machine-learning techniques in conjunction with managing allocation of virtual computing resources 1136 and/orSDI services 1138 tocloud services 1140. In some embodiments, virtualinfrastructure management framework 1150B may use/consult telemetry data in conjunction with performing such resource allocation. In various embodiments, an application/service management framework 1150C may be implemented in order to provide QoS management capabilities forcloud services 1140. The embodiments are not limited in this context. - Referring now to
FIG. 12 , asystem 1210 for managing disaggregated accelerator resources in a disaggregated architecture may be implemented in accordance with thedata centers FIGS. 1, 3, 4, and 11 . In the illustrative embodiment, managing disaggregated accelerator resources means facilitating application workload processing by receiving workload processing requests from an application and distributing all or part of the workload to accelerator devices. These accelerator devices are selected based on configuration and capacity to efficiently process an application workload (e.g., cryptographic operations, compression operations, image processing operations, packet inspection operations, etc.). The accelerator devices may be located on the same compute device (e.g., compute sled) that is executing the application and/or on one or more remote compute devices (e.g., remote accelerator sleds) which may be otherwise inaccessible to the application. The workload processing requests are received and fulfilled by a pooled system management engine (PSME) that may be locally installed on the same host compute device as the application requesting workload processing. The term “PSME” is nomenclature used by Intel Corporation and is used herein merely for convenience. It should be understood that the PSME may be embodied as any sled-, rack-, or tray-level management engine. The out-of-box functions of the PSME are extended to provide the disaggregated accelerator management capability described herein, such that the application can leverage accelerator devices that may be otherwise inaccessible. - In the illustrative embodiment, the
system 1210 includes anorchestrator server 1216 in communication withcompute sleds accelerator sleds orchestrator server 1216 is included within acompute sled 1218. One or more of thesleds orchestrator server 1216, to collectively perform a workload, such as an application. A managed node may be embodied as an assembly of resources (e.g., physical resources 206), such as compute resources (e.g., physical compute resources 205-4), memory resources (e.g., physical memory resources 205-3), storage resources (e.g., physical storage resources 205-1), or other resources (e.g., physical accelerator resources 205-2), from the same or different sleds (e.g., the sleds 204-1, 204-2, 204-3, 204-4, etc.) or racks (e.g., one or more of racks 302-1 through 302-32). Further, a managed node may be established, defined, or “spun up” by theorchestrator server 1216 at the time a workload is to be assigned to the managed node or at any other time, and may exist regardless of whether any workloads are presently assigned to the managed node. Thesystem 1210 may be located in a data center and provide storage and compute services (e.g., cloud services) to aclient device 1214 that is in communication with thesystem 1210 through anetwork 1212. Theorchestrator server 1216 may support a cloud operating environment, such as OpenStack, and managed nodes established by theorchestrator server 1216 may execute one or more applications or processes (i.e., workloads), such as in virtual machines or containers, on behalf of a user of theclient device 1214. In the illustrative embodiment, thecompute sled 1230 executes a workload 1234 (e.g., an application) with one ormore processors 1250, and thecompute sled 1232 executes another workload 1236 (e.g., another application) with one ormore processors 1252. Further, one or more ofcompute sleds PSME 1270, configured to perform the disaggregated accelerator resource management functions described above. Additionally, theaccelerator sled 1260 includes one or more accelerator devices 1264 (e.g., physical accelerator resources 205-2) and theaccelerator sled 1266 also includes one or more accelerator devices 1266 (e.g., physical accelerator resources 205-2). - As described in more detail herein, a sled (e.g., the compute sled 1230) equipped with a
PSME 1270 may detect accelerator devices within the data center (e.g., the system 1210), including discovering information about each detected accelerator device (e.g., processing power, configuration, specialized functionality, average utilization, or the like), receive requests from the application for assistance in accelerating the execution of application, and based on the discovery process and an analysis of the request from the application, the sled, using thePSME 1270, may schedule one or more portions (e.g., tasks) of the application to be accelerated by a corresponding accelerator device available in thesystem 1210 that is suited to accelerating the task (e.g., scheduling a cryptography-related task on an accelerator device that includes specialized circuitry for performing cryptographic operations). Further, in the illustrative embodiment, thePSME 1270 performs the above functions out-of-band (e.g., without consuming compute capacity of the sled that would otherwise be used to execute the application and/or an underlying operating system). - Referring now to
FIG. 13 , thecompute sled 1230 may be embodied as any type of compute device capable of performing the functions described herein, including executing a workload (e.g., the workload 1234), obtaining a request from theworkload 1234 to accelerate the execution of the workload, identifying the accelerator devices available in the system 1210 (e.g., on thecompute sled 1230 and/or inother sleds system 1210, including their features (e.g., types of functions each accelerator device is able to accelerate) and availability (e.g., present load), and selecting one or more of the accelerator devices to execute one or more portions (e.g., tasks) of the workload to increase the speed of execution of the workload. In the illustrative embodiment, thecompute sled 1230 performs the above functions without consuming compute capacity that would otherwise be used by the application (e.g., the workload) and/or an operating system supporting the application. - As shown in
FIG. 13 , theillustrative compute sled 1230 includes acompute engine 1302, an input/output (I/O)subsystem 1308,communication circuitry 1310, and one or moredata storage devices 1314. Thecompute sled 1230 may also include one or more accelerators, depicted asaccelerators compute sled 1230 may include other or additional components, such as those commonly found in a computer (e.g., display, peripheral devices, etc.). Additionally, in some embodiments, one or more of the illustrative components may be incorporated in, or otherwise form a portion of, another component. - The
compute engine 1302 may be embodied as any type of device or collection of devices capable of performing various compute functions described below. In some embodiments, thecompute engine 1302 may be embodied as a single device such as an integrated circuit, an embedded system, a field-programmable gate array (FPGA), a system-on-a-chip (SOC), or other integrated system or device. Additionally, in some embodiments, thecompute engine 1302 includes or is embodied as a processor 1304 (e.g., similar to the processor(s) 1250) and amemory 1306. Theprocessor 1304 may be embodied as any type of processor capable of executing a workload (e.g., the application 1234). For example, theprocessor 1304 may be embodied as a single or multi-core processor(s), a microcontroller, or other processor or processing/controlling circuit. In some embodiments, theprocessor 1304 may be embodied as, include, or be coupled to an FPGA, an application specific integrated circuit (ASIC), reconfigurable hardware or hardware circuitry, or other specialized hardware to facilitate performance of the functions described herein. ThePSME 1270 may, in some embodiments, be included within adedicated processor 1305 that is separate from theprocessor 1304 that performs other computing functions of the compute engine 1302 (e.g., executing applications). ThePSME 1270 may be embodied as a specialized device, such as a co-processor, an FPGA, a graphics processing unit (GPU), or an ASIC, for performing the accelerator resource management operations described above. - As described in more detail herein, the
PSME 1270 is configured to manage disaggregated accelerator resources (e.g., by responding to workload processing requests with an accelerator service request to, for example, theorchestrator 1216 for accelerator services from remote accelerators, such as onaccelerator sleds 1260, 1262). In addition, and as described above, thecompute sled 1230 includesaccelerators PSME 1270 is configured to direct all or part of a workload from a workload processing request toaccelerator 1320 and/or accelerator 1322 (i.e., accelerators hosted by the same compute sled as that running the application and the PSME 1270) in an out-of-band capacity (e.g., without consuming compute capacity of the sled that would otherwise be used to execute the application and/or an underlying operating system). In some embodiments, thePSME 1270 is configured to direct all or part of a workload from a workload processing request toaccelerator 1320 and/oraccelerator 1322 in an in-band capacity as well if secure and authenticated channels are used (e.g., by consuming compute capacity of the sled that would otherwise be used to execute the application and/or an underlying operating system). - The
main memory 1306 may be embodied as any type of volatile (e.g., dynamic random access memory (DRAM), etc.) or non-volatile memory or data storage capable of performing the functions described herein. Volatile memory may be a storage medium that requires power to maintain the state of data stored by the medium. Non-limiting examples of volatile memory may include various types of random access memory (RAM), such as dynamic random access memory (DRAM) or static random access memory (SRAM). One particular type of DRAM that may be used in a memory module is synchronous dynamic random access memory (SDRAM). In particular embodiments, DRAM of a memory component may comply with a standard promulgated by JEDEC, such as JESD79F for DDR SDRAM, JESD79-2F for DDR2 SDRAM, JESD79-3F for DDR3 SDRAM, JESD79-4A for DDR4 SDRAM, JESD209 for Low Power DDR (LPDDR), JESD209-2 for LPDDR2, JESD209-3 for LPDDR3, and JESD209-4 for LPDDR4 (these standards are available at www.jedec.org). Such standards (and similar standards) may be referred to as DDR-based standards and communication interfaces of the storage devices that implement such standards may be referred to as DDR-based interfaces. - In one embodiment, the memory device is a block addressable memory device, such as those based on NAND or NOR technologies. A memory device may also include future generation nonvolatile devices, such as a three dimensional crosspoint memory device, or other byte addressable write-in-place nonvolatile memory devices. In one embodiment, the memory device may be or may include memory devices that use chalcogenide glass, multi-threshold level NAND flash memory, NOR flash memory, single or multi-level Phase Change Memory (PCM), a resistive memory, nanowire memory, ferroelectric transistor random access memory (FeTRAM), anti-ferroelectric memory, magnetoresistive random access memory (MRAM) memory that incorporates memristor technology, resistive memory including the metal oxide base, the oxygen vacancy base and the conductive bridge Random Access Memory (CB-RAM), or spin transfer torque (STT)-MRAM, a spintronic magnetic junction memory based device, a magnetic tunneling junction (MTJ) based device, a DW (Domain Wall) and SOT (Spin Orbit Transfer) based device, a thyristor based memory device, or a combination of any of the above, or other memory. The memory device may refer to the die itself and/or to a packaged memory product.
- In some embodiments, 3D crosspoint memory may comprise a transistor-less stackable cross point architecture in which memory cells sit at the intersection of word lines and bit lines and are individually addressable and in which bit storage is based on a change in bulk resistance. In some embodiments, all or a portion of the
main memory 1306 may be integrated into theprocessor 1304. In operation, themain memory 1306 may store various software and data used during operation such as accelerator configuration data, accelerator directory data, application data, applications, programs, libraries, and drivers. - The
compute engine 1302 is communicatively coupled to other components of thecompute sled 1230 via the I/O subsystem 1308, which may be embodied as circuitry and/or components to facilitate input/output operations with the compute engine 1302 (e.g., with theprocessor 1304 and/or the main memory 1306) and other components of thecompute sled 1230. For example, the I/O subsystem 1308 may be embodied as, or otherwise include, memory controller hubs, input/output control hubs, integrated sensor hubs, firmware devices, communication links (e.g., point-to-point links, bus links, wires, cables, light guides, printed circuit board traces, etc.), and/or other components and subsystems to facilitate the input/output operations. In some embodiments, the I/O subsystem 1308 may form a portion of a system-on-a-chip (SoC) and be incorporated, along with one or more of theprocessor 1304, themain memory 1306, and other components of thecompute sled 1230, into thecompute engine 1302. - The
communication circuitry 1310 may be embodied as any communication circuit, device, or collection thereof, capable of enabling communications over thenetwork 1212 between thecompute sled 1230 and another compute device (e.g., theorchestrator server 1216, and/or one ormore sleds communication circuitry 1310 may be configured to use any one or more communication technology (e.g., wired or wireless communications) and associated protocols (e.g., Ethernet, Bluetooth®, Wi-Fi®, WiMAX, etc.) to effect such communication. - The
illustrative communication circuitry 1310 includes a network interface controller (NIC) 1312. TheNIC 1312 may be embodied as one or more add-in-boards, daughter cards, network interface cards, controller chips, chipsets, or other devices that may be used by thecompute sled 1230 to connect with another compute device (e.g., theorchestrator server 1216 and/or thesleds NIC 1312 may be embodied as part of a system-on-a-chip (SoC) that includes one or more processors, or included on a multichip package that also contains one or more processors. In some embodiments, theNIC 1312 may include a local processor (not shown) and/or a local memory (not shown) that are both local to theNIC 1312. In such embodiments, the local processor of theNIC 1312 may be capable of performing one or more of the functions of thecompute engine 1302 described herein. Additionally or alternatively, in such embodiments, the local memory of theNIC 1312 may be integrated into one or more components of thecompute sled 1230 at the board level, socket level, chip level, and/or other levels. In some embodiments, thePSME 1270 may be included in theNIC 1312. - The one or more illustrative
data storage devices 1314, may be embodied as any type of devices configured for short-term or long-term storage of data such as, for example, memory devices and circuits, memory cards, hard disk drives, solid-state drives, or other data storage devices. Eachdata storage device 1314 may include a system partition that stores data and firmware code for thedata storage device 1314. Eachdata storage device 1314 may also include an operating system partition that stores data files and executables for an operating system. - Additionally or alternatively, the
compute sled 1230 may include one or moreperipheral devices 1316. Suchperipheral devices 1316 may include any type of peripheral device commonly found in a compute device such as a display, speakers, a mouse, a keyboard, and/or other input/output devices, interface devices, and/or other peripheral devices. - The
client device 1214, theorchestrator server 1216, and thecompute sled 1232, may have components similar to those described inFIG. 13 . The description of those components of thecompute sled 1230 is equally applicable to the description of components of those devices and is not repeated herein for clarity of the description, with the exception that theclient device 1214 and theorchestrator server 1216 do not include thePSME 1270 and, in the illustrative embodiment, may not includeaccelerators client device 1214, theorchestrator server 1216, and the compute sleds 1230, 1232, may include other components, sub-components, and devices commonly found in a computing device, which are not discussed above in reference to thecompute sled 1230 and not discussed herein for clarity of the description. In addition, the accelerator sleds 1260, 1262 include components similar to those described above, and it should be understood that the accelerator(s) 1264, 1266 shown inFIG. 12 may be similar to theaccelerators FIG. 13 . - As described above, the
compute sled 1230, theorchestrator server 1216, and thesleds network 1212, which may be embodied as any type of wired or wireless communication network, including global networks (e.g., the Internet), local area networks (LANs) or wide area networks (WANs), cellular networks (e.g., Global System for Mobile Communications (GSM), 3G, Long Term Evolution (LTE), Worldwide Interoperability for Microwave Access (WiMAX), etc.), digital subscriber line (DSL) networks, cable networks (e.g., coaxial networks, fiber networks, etc.), or any combination thereof. - Referring now to
FIG. 14 , thecompute sled 1230 may establish anenvironment 1400 during operation. Theillustrative environment 1400 includes anetwork communicator 1420, and aPSME manager 1430. Each of the components of theenvironment 1400 may be embodied as hardware, firmware, software, or a combination thereof. As such, in some embodiments, one or more of the components of theenvironment 1400 may be embodied as circuitry or a collection of electrical devices (e.g.,network communicator circuitry 1420,PSME manager circuitry 1430, etc.). It should be appreciated that, in such embodiments, one or more of thenetwork communicator circuitry 1420 or thePSME manager circuitry 1430 may form a portion of one or more of thecompute engine 1302, thePSME 1270, thecommunication circuitry 1310, the I/O subsystem 1308, and/or other components of thecompute sled 1230. - Additionally, the
illustrative environment 1400 includesaccelerator configuration data 1404 which may be embodied as any data indicative of the accelerator configuration, including accelerator processing speed, types of functions that each accelerator is capable of accelerating (e.g., cryptographic operations, compression operations, etc.), parallel processing capacity, specialized configuration modes, accelerator architecture data (e.g., number of cores), associated sled identifier (e.g., associated accelerator sled identifiers), or the like. - Additionally, the
illustrative environment 1400 includesaccelerator directory data 1406, which may be embodied as any data indicative of a data structure holding lists of accelerator devices, accelerator device types (e.g., FPGA, GPU, ASIC, or the like). In addition, theaccelerator directory data 1406 may store accelerator device identifiers in correlation with the corresponding accelerator sled identifiers. Theaccelerator directory 1406 may also include accelerator usage history data (e.g., applications that most frequently used the accelerator, specialized usages or configurations for the accelerator, like graphics processing or audio processing, or the like), accelerator performance metrics, accelerator age data (e.g., how long the accelerator has been connected to theorchestrator server 1216, whether the accelerator is a newer or older accelerator, whether it was previously removed from commission) or the like. - Additionally, in the illustrative embodiment, the
environment 1400 includesapplication data 1408, which may be embodied as any data indicative of applications requesting workload processing from thePSME 1270.Application data 1408 may also be embodied as any data indicative of application workload processing requests, schedules of workload processing requests (e.g., repetitive requests), or the like. - In the
illustrative environment 1400, thenetwork communicator 1420, which may be embodied as hardware, firmware, software, virtualized hardware, emulated architecture, and/or a combination thereof as discussed above, is configured to facilitate inbound and outbound network communications (e.g., network traffic, network packets, network flows, etc.) to and from thecompute sled 1230, respectively. To do so, thenetwork communicator 1420 is configured to receive and process data packets from one system or computing device (e.g., acompute sled 1230, 1232) and to prepare and send data packets to another computing device or system (e.g., anaccelerator sled 1260, 1262). Accordingly, in some embodiments, at least a portion of the functionality of thenetwork communicator 1420 may be performed by thecommunication circuitry 1310, and, in the illustrative embodiment, by theNIC 1312. - The
PSME manager 1430, which may be embodied as hardware, firmware, software, virtualized hardware, emulated architecture, and/or a combination thereof, is configured to provide efficient disaggregated accelerator management across thesystem 1210. To do so, in the illustrative embodiment, thePSME manager 1430 includes arequest analyzer interface 1432, anaccelerator selection manager 1434, anaccelerator query manager 1436, and anaccelerator directory manager 1438. Therequest analyzer interface 1432, in the illustrative embodiment, is configured to process application workload processing requests (e.g., from a compute sled 1230) by receiving a workload processing request (e.g., one that originates from the application 1234), determining whether to analyze the workload processing request, analyzing the workload processing request for request metadata, such as one or more request parameters, identifying each request parameter transmitted with the workload processing request, and identifying the workload submitted by the application. In some embodiments, the request analyzer interface 1442 may generate an accelerator service request that is specifically formatted for consumption by theorchestrator server 1216. The accelerator service request is configured to include the one or more request parameters, the workload transmitted by the application, and the selected accelerators (e.g., the accelerator 1264) along with associated accelerator sled identifiers (e.g., for the accelerator sled 1260). - The
accelerator selection manager 1434, in the illustrative embodiment, is configured to query the accelerator directory (e.g., as represented by the accelerator directory data 1406) in order to identify accelerator devices that would be best suited to process the workload as defined by the request parameters extracted from the workload processing request. More specifically, and as indicated in the illustrative embodiment, theaccelerator selection manager 1434 is configured to query the accelerator directory using the request parameters in order to locate accelerator devices that have a configuration matching the request parameters. As described in more detail herein, the query performed by theaccelerator selection manager 1434 will return search results including identifiers for one or more accelerators whose configuration is a match for one or more request parameters. Based on the returned results, theaccelerator selection manager 1434 is configured to collect a set of one or more accelerator device identifiers that is then included within the accelerator service request sent to theorchestrator server 1216 as described above. - The
accelerator query manager 1436, in the illustrative embodiment, is configured to query an orchestrator (e.g., the orchestrator server 1216) for updated information regarding accelerator devices that are accessible to or in communication with theorchestrator server 1216, to maintain and keep current the accelerator directory (e.g., as represented byaccelerator directory data 1406 or collectively byaccelerator directory data 1406 and accelerator configuration data 1404). Accordingly, theaccelerator query manager 1436 periodically (or on demand) transmits environment discovery queries to theorchestrator server 1216 for accelerator updates. Accelerator updates may include lists of accelerator identifiers for newly connected accelerators, removed accelerators, or the like. Theaccelerator query manager 1436 will also transmit accelerator configuration update queries to theorchestrator server 1216. The accelerator configuration update queries may request theorchestrator server 1216 to return accelerator configuration data (e.g., to review any recent accelerator configuration changes) for each identified accelerator. Theaccelerator query manager 1436 is also configured to transmit accelerator health queries to theorchestrator server 1216. The accelerator health queries, in the illustrative embodiment, request data regarding accelerator health metrics, including accelerator uptime statistics, accelerator downtime statistics, time elapsed since accelerator start, time elapsed since accelerator reconfiguration, accelerator error statistics, or the like. - The
accelerator directory manager 1438, in the illustrative embodiment, is configured to maintain a current and continuously updated directory of all accelerators that are in communication with theorchestrator server 1216. In the illustrative embodiment, theaccelerator directory manager 1438 receives results of the queries transmitted by theaccelerator query manager 1436. Theaccelerator directory manager 1438 uses the query results to update the accelerator directory (e.g., as embodied by the accelerator directory data 1406). - It should be appreciated that each of the
request analyzer interface 1432, theaccelerator selection manager 1434, theaccelerator query manager 1436, and theaccelerator directory manager 1438 may be separately embodied as hardware, firmware, software, virtualized hardware, emulated architecture, and/or a combination thereof. For example, therequest analyzer interface 1432 may be embodied as a hardware component, while theaccelerator selection manager 1434, theaccelerator query manager 1436, and theaccelerator directory manager 1438 are embodied as virtualized hardware components or as some other combination of hardware, firmware, software, virtualized hardware, emulated architecture, and/or a combination thereof. Further it should be appreciated that in some embodiments, asled PSME 1270 may establish an environment similar to theenvironment 1400 described above. - Referring now to
FIG. 15 , in use, a compute device (e.g., thecompute sled 1230 including the PSME 1270) may execute amethod 1500 for managing disaggregated accelerator device resources. For simplicity, themethod 1500 is described below as being performed by thePSME 1270. However, it should be understood that in other embodiments, themethod 1500 may be performed by one or more other compute devices (e.g., asled method 1500 begins with block 1501, in which thePSME 1270 receives a workload processing request from an application. In embodiments, the compute sled 1230 (or some sub-component of the compute sled 1230) may receive and process the workload processing request from the application. In the illustrative embodiment, thePSME 1270 receives the workload processing request from an application and processes the workload processing request in an out-of-band capacity (e.g., without use of the host compute sled's processor or operating system). As described above, in some embodiments thePSME 1270 may direct all or part of a workload from a workload processing request toaccelerator 1320 and/oraccelerator 1322 in an in-band capacity, with secure and authenticated channels (e.g., by consuming compute capacity of the sled that would otherwise be used to execute the application and/or an underlying operating system). - More specifically, the
PSME 1270 receives the processing request from an application that is executing on the same compute sled as the PSME. In other embodiments, thePSME 1270 may receive workload processing requests from applications executing on other compute sleds (e.g., via the orchestrator server 1216). Themethod 1500 advances to block 1502. - In
block 1502, if thePSME 1270 determines whether to analyze the workload processing request, themethod 1500 advances to block 1504. Otherwise the method returns to block 1501. In block 1504, thePSME 1270 analyzes the workload processing request. In the illustrative embodiment, the workload processing request will include a defined workload (e.g., data that is to be processed by one or more accelerator devices). In addition, and as illustrated inblock 1506, thePSME 1270 retrieves request metadata from the workload processing request. In the illustrative embodiment, thePSME 1270 is configured to parse the workload processing request in order to identify request metadata that further includes one or more request parameters. More specifically, and as illustrated inblock 1508, thePSME 1270 determines any service level agreement (SLA) requirements included within the workload processing request. For example, the request parameters may include specific workload processing requirements such as a maximum processing time (e.g., a target latency), a minimum throughput requirement (e.g., a target throughput), a threshold level of logical integrity required during processing, a predefined error-checking mechanism or error rate envelope, or the like. The metadata may additionally or alternatively indicate whether two or more portions of the workload may be accelerated concurrently (e.g., in parallel). - The
method 1500 advances to block 1510, in which thePSME 1270 queries an accelerator directory (e.g., the accelerator directory 1406) to determine the accelerator device(s) that would be best fit for the workload processing request. In the illustrative embodiment, the query may, for example, use one of the request parameters as a key. More specifically, thePSME 1270 may query the accelerator directory for all accelerator devices that can satisfy a certain request parameter (e.g., a specific SLA requirement such as completion of processing within a maximum processing time). For example, and as indicated in block 1512, thePSME 1270 retrieves an accelerator instance from the directory using an accelerator identifier. The accelerator identifier may be part of a set of search results generated as a result of querying the accelerator directory. For example, and as indicated inblock 1514, thePSME 1270 reviews the accelerator configuration. As described earlier with respect toaccelerator configuration data 1404, the accelerator configuration may include data such as accelerator processing speed, types of functions that the accelerator is capable of accelerating, parallel processing capacity, specialized configuration modes, accelerator architecture data (e.g., number of cores), associated sled identified (e.g., associated accelerator sled identifiers), or the like. - The
method 1500 advances to block 1516, in which thePSME 1270 matches request metadata to the accelerator based on the accelerator configuration. For example, thePSME 1270 may determine that the identified accelerator instance is capable of satisfying each request parameter in the workload processing request. As another example, thePSME 1270 may determine that the single accelerator instance cannot satisfy each request parameter. Accordingly, thePSME 1270 will retrieve another accelerator instance from the accelerator directory (e.g., by re-executing the query as described with respect to block 1510. As a result, thePSME 1270 determines a combination of accelerator resources that can together satisfy all of the request parameters in the workload processing request. - Referring now to
FIG. 16 , in use, themethod 1500 advances to block 1518, in which thePSME 1270 determines whether the accelerator or accelerators retrieved as a result of the query inblock 1510 are able to satisfy all request parameters. If the retrieved accelerator or accelerators are not able to satisfy all request parameters, themethod 1500 returns to block 1510 to continue to query the accelerator directory for accelerators that satisfy all request parameters. In some embodiments, rather than locally determining the accelerator(s) capable of satisfying the request, thecompute sled 1230 may send the request with the request parameter(s) to theorchestrator server 1216 and receive, in response, an identification of the accelerator(s) that are capable of processing the workload in accordance with the request parameter(s). Themethod 1500 advances to block 1520. In the illustrative embodiment, thePSME 1270 determines to transmit the workload from the workload processing request to the selected accelerator(s). Themethod 1500 advances to block 1522, in which thePSME 1270 retrieves, from the accelerator directory, the accelerator sled identifier for the selected accelerator(s). - Using the accelerator sled identifier(s), the
method 1500 advances to block 1524. Thecompute sled 1230 is configured to transmit outgoing messages from theorchestrator server 1216. In the illustrative embodiment, thePSME 1270 provides the accelerator sled identifier(s) for the selected accelerator(s) to the orchestrator server 1216 (e.g., in an accelerator service request). Themethod 1500 advances to block 1526. Thecompute sled 1230 is configured to receive incoming messages from theorchestrator server 1216. In the illustrative embodiment, thePSME 1270 receives an approval from theorchestrator server 1216 representing that theorchestrator server 1216 approves the transmission of the workload from thePSME 1270 to the one or more accelerators identified to process the workload. As described earlier, the accelerators may be hosted by accelerator sleds that are not hosts of thePSME 1270. In a related embodiment, the accelerator(s) may be local to thecompute sled 1230 that also hosts thePSME 1270. Themethod 1500 advances to block 1528, in which thePSME 1270 transmits the workload from the application to the orchestrator. In the illustrative embodiment (not shown), the identified accelerators will process the workload as provided from thePSME 1270. The accelerators will complete processing to generate a work product. In the illustrative embodiment, this work product could take the form of processed data. For example, the processed data may be encrypted data, decrypted data, compressed data, decompressed data, search function results, processed audio or video data, or the like. The work product may also be message codes or notifications. For example, the work product may be a notification that the provided workload resulted in a certain audio or visual state on an audio or visual display device, a specific network state, confirmation of a remote wireless or wired communication, a receipt or transmission of a signal, a test result, or the like. - The
method 1500 advances to block 1530, in which thePSME 1270 receives the work product back from theorchestrator server 1216. More specifically, the identified accelerator(s) will process the provided workload and return the resulting work product to theorchestrator server 1216. Theorchestrator server 1216 then transmits the work product to thePSME 1270. Themethod 1500 advances to block 1532, in which thePSME 1270 sends the work product to the application. - Referring now to
FIG. 17 , in use, a compute device (e.g., thecompute sled 1230 and/or anothersled method 1700 for managing disaggregated accelerator device resources. More specifically, themethod 1700 pertains to querying an orchestrator (e.g., the orchestrator server 1216) for updated information regarding accelerator devices that are accessible to or in communication with theorchestrator server 1216. The objective is to maintain and keep current the accelerator directory (e.g., as represented byaccelerator directory data 1406 or collectively byaccelerator directory data 1406 and accelerator configuration data 1404). Themethod 1700 begins atblock 1702, in which thePSME 1270 determines whether to query orchestrator for accelerator updates. For example, and in the illustrative embodiment, thePSME 1270 may have a regularly scheduled process to query theorchestrator server 1216 for accelerator updates. As another example, thePSME 1270 is configured to query theorchestrator server 1216 on demand by an operator (e.g., a human supervisor of the compute sled 1230). - The
method 1700 advances to block 1704, in which thePSME 1270 queries theorchestrator server 1216 for accelerator updates. For example, and as indicated inblock 1706, thePSME 1270 queries for any new accelerators that have entered into communication with theorchestrator server 1216. In a related embodiment, thePSME 1270 may query theorchestrator server 1216 for accelerator identifiers for all accelerators connected to theorchestrator server 1216. ThePSME 1270 will then compare the list of accelerators returned by theorchestrator server 1216 to the accelerator directory maintained by thePSME 1270. ThePSME 1270 uses the comparison to identify new accelerators. Additionally, and as indicated inblock 1708, thePSME 1270 queries theorchestrator server 1216 for removed accelerators. Similar to block 1706, the orchestrator may return a list of accelerator identifiers for removed accelerators that thePSME 1270 then uses to remove accelerator entries in its accelerator directory. In a related embodiment, thePSME 1270 may query theorchestrator server 1216 for all accelerators connected to theorchestrator server 1216. ThePSME 1270 will then compare the list of accelerators returned by theorchestrator server 1216 to the accelerator directory maintained by thePSME 1270. ThePSME 1270 uses the comparison to identify removed accelerators. - Additionally, and as indicated in
block 1710, thePSME 1270 will determine whether an accelerator configuration has changed for any accelerator in the accelerator directory. More specifically, thePSME 1270 queries theorchestrator server 1216 for accelerator configuration data in addition to accelerator identifiers as described above with respect toblocks PSME 1270 will transmit one or more accelerator identifiers along with a request for accelerator configuration data for the identified accelerators. Themethod 1700 advances to block 1712, in which thePSME 1270 receives accelerator updates from the orchestrator. In other words, theorchestrator server 1216 will return accelerator configuration data in response to the query. Using the returned configuration data, thePSME 1270 will determine whether to update the accelerator configuration data stored within the accelerator directory for the identified accelerator. For example, and as indicated inblock 1714, thePSME 1270 updates the accelerator directory entry for the identified accelerator in response to a notification from theorchestrator server 1216 of a changed configuration for the identified accelerator. - Referring now to
FIG. 18 , in use, the, a compute device (e.g., thecompute sled 1230 and/or anothersled method 1800 for managing disaggregated accelerator device resources. More specifically, themethod 1800 pertains to querying an orchestrator (e.g., the orchestrator server 1216) for health data (or status data) regarding accelerator devices that are accessible to or in communication with theorchestrator server 1216. - The
method 1800 begins atblock 1802, in which thePSME 1270 determines to query theorchestrator server 1216 for one or more accelerator health metrics. Themethod 1800 advances to block 1804, in which thePSME 1270 queries theorchestrator server 1216 using a particular accelerator identifier (e.g., an accelerator identifier for one of the accelerators 1264). As indicated inblock 1806, thePSME 1270 may receive, from theorchestrator server 1216, an accelerator health metric. As used herein, an accelerator health metric may include one or more of accelerator uptime statistics, accelerator downtime statistics, time elapsed since accelerator start, time elapsed since accelerator reconfiguration, accelerator error statistics, or the like. Additionally, and as indicated inblock 1808, thePSME 1270 may receive an accelerator throughput metric. As used herein, an accelerator throughput metric may include or more of a present accelerator processing speed, an accelerator processing speed history, or the like. Additionally, and as indicated inblock 1810, thePSME 1270 may receive an accelerator operational status. As used herein, an accelerator operational status may include one or more of an accelerator temperature, net accelerator processing load, or the like. - The
method 1800 advances to block 1812, in which thePSME 1270 determines whether the accelerator is presently satisfying (or is projected to satisfy) one or more request parameters as defined by the workload processing request (e.g., the workload processing request described above with respect toFIGS. 15 and 16 ). For example, thePSME 1270 may determine that an identified accelerator is not satisfying a throughput requirement (or the accelerator's defined portion of the throughput requirement) as defined by the request parameters of the workload processing request. Based on this determination, themethod 1800 advances to block 1814, in which thePSME 1270 queries the accelerator directory for a replacement accelerator. More specifically, thePSME 1270 queries the accelerator directory using the accelerator configuration data of the previously identified accelerator (or failing accelerator) that is no longer satisfying one or more request parameters. In the illustrative embodiment, querying the accelerator directory using the abovementioned accelerator configuration data returns at least one result in the form of a replacement accelerator. The identified replacement accelerator is capable of performing the workload that was being performed by the failing accelerator that is no longer satisfying request parameters. Themethod 1800 advances to block 1816, in which thePSME 1270 routes the workload away from the failing accelerator and toward the replacement accelerator. More specifically, thePSME 1270 performs the method blocks 1522 to 1532 ofFIG. 16 using the accelerator identifier in order to have the replacement accelerator process the workload. Themethod 1800 advances to block 1818, in which thePSME 1270 determines whether theorchestrator server 1216 is to be queried regarding the health of more accelerators. For example, thePSME 1270 may have a scheduled task to periodically check for accelerator health during the time an accelerator is processing a workload assigned by thePSME 1270. - The
method 1800 advances to block 1820, in which thePSME 1270 determines whether theorchestrator server 1216 should be queried for more accelerator health metrics. If thePSME 1270 determines that health data is required for more accelerators, themethod 1800 returns to block 1804. If thePSME 1270 determines that no more accelerator health data is required for the present time period, themethod 1800 advances to block 1822, in which thePSME 1270 updates the accelerator directory at thePSME 1270 with the updated accelerator health data as provided by theorchestrator server 1216. - Illustrative examples of the technologies disclosed herein are provided below. An embodiment of the technologies may include any one or more, and any combination of, the examples described below.
- Example 1 includes a compute device to manage workflow to disaggregated computing resources, the compute device comprising a compute engine to receive a workload processing request, the workload processing request defined by at least one request parameter; determine at least one accelerator device capable of processing a workload in accordance with the at least one request parameter; transmit a workload to the at least one accelerator device; receive a work product produced by the at least one accelerator device from the workload; and provide the work product to an application.
- Example 2 includes the subject matter of Example 1, and wherein the compute engine comprises a pooled system management engine (PSME), wherein the PSME operates in an out-of-band capacity with respect to the compute device, and wherein to receive the workload processing request comprises to receive the workload processing request without utilizing a host processor and without utilizing a host operating system of the compute device, to determine the at least one accelerator device capable of processing the workload comprises to determine the at least one accelerator device without utilizing the host processor and without utilizing the host operating system of the compute device, to transmit the workload to the at least one accelerator device comprises to transmit the workload without utilizing the host processor and without utilizing the host operating system of the compute device, to receive the work product produced by the at least one accelerator device comprises to receive the work product without utilizing the host processor and without utilizing the host operating system of the compute device, and to provide the work product to the application comprises to provide the work product to the application without utilizing the host processor and without utilizing the host operating system of the compute device.
- Example 3 includes the subject matter of any of Examples 1 and 2, and wherein to determine the at least one accelerator device capable of processing the workload comprises to determine at least one other accelerator device, the at least one other accelerator device being hosted on the compute device that also hosts the PSME.
- Example 4 includes the subject matter of any of Examples 1-3, and wherein to receive the workload processing request comprises to receive the workload processing request from an application executed on the compute device.
- Example 5 includes the subject matter of any of Examples 1-4, and wherein the plurality of instructions, when executed by the one or more processors, further cause the compute device to parse the workload processing request for the at least one request parameter, wherein the at least one request parameter corresponds to a service-level agreement (SLA) requirement.
- Example 6 includes the subject matter of any of Examples 1-5, and wherein the compute engine is further to generate an accelerator device directory, wherein the accelerator device directory stores an accelerator device identifier identifying the at least one accelerator device in correlation with configuration data and an accelerator sled identifier for the at least one accelerator device, and wherein the configuration data is indicative of a number of operations per second that the at least one accelerator device is capable of performing, a function that the at least one accelerator device is capable of accelerating, and a present utilization of the at least one accelerator device.
- Example 7 includes the subject matter of any of Examples 1-6, and wherein the compute engine is further to identify a configuration parameter of the at least one accelerator device from the accelerator device directory; and determine that the configuration parameter represents a capability of the at least one accelerator device to process the workload.
- Example 8 includes the subject matter of any of Examples 1-7, and wherein the compute engine is further to retrieve an accelerator sled identifier for the at least one accelerator device; and transmit an accelerator device request to an orchestrator, wherein the accelerator device request includes a request to transmit the workload to the at least one accelerator device associated with the accelerator sled identifier.
- Example 9 includes the subject matter of any of Examples 1-8, and wherein the compute engine is further to receive the work product from the orchestrator, the work product representing a completion of processing of the workload by the at least one accelerator device.
- Example 10 includes the subject matter of any of Examples 1-9, and wherein to transmit a workload to the at least one accelerator device comprises to transmit the workload in-band, through a secure and authenticated channel.
- Example 11 includes the subject matter of any of Examples 1-10, and wherein to determine at least one accelerator device capable of processing a workload in accordance with the at least one request parameter comprises to determine, based on an accelerator device directory, the at least one accelerator device capable of processing a workload in accordance with the at least one request parameter.
- Example 12 includes the subject matter of any of Examples 1-11, and wherein the determined accelerator device is hosted on a remote device different from the compute device.
- Example 13 includes the subject matter of any of Examples 1-12, and wherein to determine the at least one accelerator device capable of processing a workload in accordance with the at least one request parameter comprises to send the workload processing request to an orchestrator server; and receive, from the orchestrator server, an identification of the at least one accelerator device capable of processing the workload.
- Example 14 includes the subject matter of any of Examples 1-13, and wherein the at least one request parameter includes metadata indicative of whether two or more portions of the workload can be accelerated concurrently.
- Example 15 includes the subject matter of any of Examples 1-14, and wherein the at least one request parameter includes metadata indicative of a target quality of service associated with the workload.
- Example 16 includes the subject matter of any of Examples 1-15, and wherein the metadata is indicative of at least one of a target latency or a target throughput associated with the workload.
- Example 17 includes a method for managing workflow to disaggregated computing resources, the method comprising receiving, by a compute device, a workload processing request, the workload processing request defined by at least one request parameter; determining, by the compute device, at least one accelerator device capable of processing a workload in accordance with the at least one request parameter; transmitting, by the compute device, a workload to the at least one accelerator device; receiving, by the compute device, a work product produced by the at least one accelerator device from the workload; and providing, by the compute device, the work product to an application.
- Example 18 includes the subject matter of Example 17, and wherein the compute device includes a pooled system management engine (PSME), wherein the PSME operates in an out-of-band capacity with respect to the compute device, and wherein receiving the workload processing request comprises receiving the workload processing request without utilizing a host processor and without utilizing a host operating system of the compute device, determining the at least one accelerator device capable of processing the workload comprises determining the at least one accelerator device without utilizing the host processor and without utilizing the host operating system of the compute device, transmitting the workload to the at least one accelerator device comprises transmitting the workload without utilizing the host processor and without utilizing the host operating system of the compute device, receiving the work product produced by the at least one accelerator device comprises receiving the work product without utilizing the host processor and without utilizing the host operating system of the compute device, and providing the work product to the application comprises providing the work product to the application without utilizing the host processor and without utilizing the host operating system of the compute device.
- Example 19 includes the subject matter of any of Examples 17 and 18, and wherein determining the at least one accelerator device capable of processing the workload comprises determining at least one other accelerator device, the at least one other accelerator device being hosted on the compute device that also hosts the PSME device.
- Example 20 includes the subject matter of any of Examples 17-19, and wherein receiving the workload processing request comprises receiving the workload processing request from an application executing on the compute device.
- Example 21 includes the subject matter of any of Examples 17-20, and further including parsing, by the compute device, the workload processing request for the at least one request parameter, wherein the at least one request parameter corresponds to a service-level agreement (SLA) requirement.
- Example 22 includes the subject matter of any of Examples 17-21, and further including generating an accelerator device directory, wherein the accelerator device directory stores an accelerator device identifier identifying the at least one accelerator device in correlation with configuration data and an accelerator sled identifier for the at least one accelerator device, and wherein the configuration data is indicative of a number of operations per second that the at least one accelerator device is capable of performing, a function that the at least one accelerator device is capable of accelerating, and a present utilization of the at least one accelerator device.
- Example 23 includes the subject matter of any of Examples 17-22, and further including identifying, by the compute device, a configuration parameter of the at least one accelerator device from the accelerator device directory; and determining, by the compute device, that the configuration parameter represents a capability of the at least one accelerator device to process the workload.
- Example 24 includes the subject matter of any of Examples 17-23, and further including retrieving, by the compute device, an accelerator sled identifier for the at least one accelerator device; and transmitting, by the compute device, an accelerator device request to an orchestrator, wherein the accelerator device request includes a request to transmit the workload to the at least one accelerator device associated with the accelerator sled identifier.
- Example 25 includes the subject matter of any of Examples 17-24, and further including receiving the work product from the orchestrator, wherein the work product represents a completion of processing of the workload by the at least one accelerator device.
- Example 26 includes the subject matter of any of Examples 17-25, and wherein transmitting a workload to the at least one accelerator device comprises transmitting the workload in-band, through a secure and authenticated channel.
- Example 27 includes the subject matter of any of Examples 17-26, and wherein determining at least one accelerator device capable of processing a workload in accordance with the at least one request parameter comprises determining, based on an accelerator device directory, the at least one accelerator device capable of processing a workload in accordance with the at least one request parameter.
- Example 28 includes the subject matter of any of Examples 17-27, and wherein the determined accelerator device is hosted on a remote device different from the compute device.
- Example 29 includes the subject matter of any of Examples 17-28, and wherein determining the at least one accelerator device capable of processing a workload in accordance with the at least one request parameter comprises sending the workload processing request to an orchestrator server; and receiving, from the orchestrator server, an identification of the at least one accelerator device capable of processing the workload.
- Example 30 includes the subject matter of any of Examples 17-29, and wherein the at least one request parameter includes metadata indicative of whether two or more portions of the workload can be accelerated concurrently.
- Example 31 includes the subject matter of any of Examples 17-30, and wherein the at least one request parameter includes metadata indicative of a target quality of service associated with the workload.
- Example 32 includes the subject matter of any of Examples 17-31, and wherein the metadata is indicative of at least one of a target latency or a target throughput associated with the workload.
- Example 33 includes one or more machine-readable storage media comprising a plurality of instructions stored thereon that, in response to being executed, cause a compute device to perform the method of any of Examples 17-32.
- Example 34 includes a compute device comprising means for performing the method of any of Examples 17-32.
- Example 35 includes a compute device comprising manager circuitry to receive a workload processing request, the workload processing request defined by at least one request parameter; determine at least one accelerator device capable of processing a workload in accordance with the at least one request parameter; transmit a workload to the at least one accelerator device; receive a work product produced by the at least one accelerator device from the workload; and provide the work product to an application.
- Example 36 includes the subject matter of Example 35, and wherein the compute device includes a pooled system management engine (PSME), wherein the PSME operates in an out-of-band capacity with respect to the compute device, and the management circuitry is to operate in an out-of-band capacity with respect to the compute device, and wherein to receive the workload processing request comprises to receive the workload processing request without utilizing a host processor and without utilizing a host operating system of the compute device, to determine the at least one accelerator device capable of processing the workload comprises to determine the at least one accelerator device without utilizing the host processor and without utilizing the host operating system of the compute device, to transmit the workload to the at least one accelerator device comprises to transmit the workload without utilizing the host processor and without utilizing the host operating system of the compute device, to receive the work product produced by the at least one accelerator device comprises to receive the work product without utilizing the host processor and without utilizing the host operating system of the compute device, and to provide the work product to the application comprises to provide the work product to the application without utilizing the host processor and without utilizing the host operating system of the compute device.
- Example 37 includes the subject matter of any of Examples 35 and 36, and wherein to determine the at least one accelerator device capable of processing the workload comprises to determine at least one other accelerator device, the at least one other accelerator device being hosted on the compute device that also hosts the PSME.
- Example 38 includes the subject matter of any of Examples 35-37, and wherein to receive the workload processing request comprises to receive the workload processing request from an application executed on the compute device.
- Example 39 includes the subject matter of any of Examples 35-38, and wherein the manager circuitry is further to parse the workload processing request for the at least one request parameter, and wherein the at least one request parameter corresponds to a service-level agreement (SLA) requirement.
- Example 40 includes the subject matter of any of Examples 35-39, and wherein the manager circuitry is further to generate an accelerator device directory, wherein the accelerator device directory stores an accelerator device identifier identifying the at least one accelerator device in correlation with configuration data and an accelerator sled identifier for the at least one accelerator device, and wherein the configuration data is indicative of a number of operations per second that the at least one accelerator device is capable of performing, a function that the at least one accelerator device is capable of accelerating, and a present utilization of the at least one accelerator device.
- Example 41 includes the subject matter of any of Examples 35-40, and wherein the manager circuitry is further to identify a configuration parameter of the at least one accelerator device from the accelerator device directory; and determine that the configuration parameter represents a capability of the at least one accelerator device to process the workload.
- Example 42 includes the subject matter of any of Examples 35-41, and wherein the manager circuitry is further to retrieve an accelerator sled identifier for the at least one accelerator device; further comprising network communication circuitry to transmit an accelerator device request to an orchestrator, wherein the accelerator device request includes a request to transmit the workload to the at least one accelerator device associated with the accelerator sled identifier.
- Example 43 includes the subject matter of any of Examples 35-42, and wherein the network communication circuitry is further to receive the work product from the orchestrator, the work product representing a completion of processing of the workload by the at least one accelerator device.
- Example 44 includes the subject matter of any of Examples 35-43, and wherein to transmit a workload to the at least one accelerator device comprises to transmit the workload in-band, through a secure and authenticated channel.
- Example 45 includes the subject matter of any of Examples 35-44, and wherein to determine at least one accelerator device capable of processing a workload in accordance with the at least one request parameter comprises to determine, based on an accelerator device directory, the at least one accelerator device capable of processing a workload in accordance with the at least one request parameter.
- Example 46 includes the subject matter of any of Examples 35-45, and wherein the determined accelerator device is hosted on a remote device different from the compute device.
- Example 47 includes the subject matter of any of Examples 35-46, and wherein to determine the at least one accelerator device capable of processing a workload in accordance with the at least one request parameter comprises to send the workload processing request to an orchestrator server; and receive, from the orchestrator server, an identification of the at least one accelerator device capable of processing the workload.
- Example 48 includes the subject matter of any of Examples 35-47, and wherein the at least one request parameter includes metadata indicative of whether two or more portions of the workload can be accelerated concurrently.
- Example 49 includes the subject matter of any of Examples 35-48, and wherein the at least one request parameter includes metadata indicative of a target quality of service associated with the workload.
- Example 50 includes the subject matter of any of Examples 35-49, and wherein the metadata is indicative of at least one of a target latency or a target throughput associated with the workload.
- Example 51 includes a compute device comprising circuitry for receiving a workload processing request, the workload processing request defined by at least one request parameter; means for determining at least one accelerator device capable of processing a workload in accordance with the at least one request parameter; circuitry for transmitting a workload to the at least one accelerator device; circuitry for receiving a work product produced by the at least one accelerator device from the workload; and circuitry for providing the work product to an application.
- Example 52 includes the subject matter of Example 51, and wherein the circuitry for receiving the workload processing request comprises circuitry for receiving the workload processing request without utilizing a host processor and without utilizing a host operating system of the compute device, the means for determining the at least one accelerator device capable of processing the workload comprises circuitry for determining the at least one accelerator device without utilizing the host processor and without utilizing the host operating system of the compute device, the circuitry for transmitting the workload to the at least one accelerator device comprises circuitry for transmitting the workload without utilizing the host processor and without utilizing the host operating system of the compute device, the circuitry for receiving the work product produced by the at least one accelerator device comprises circuitry for receiving the work product without utilizing the host processor and without utilizing the host operating system of the compute device, and the circuitry for providing the work product to the application comprises circuitry for providing the work product to the application without utilizing the host processor and without utilizing the host operating system of the compute device.
- Example 53 includes the subject matter of any of Examples 51 and 52, and wherein the means for determining the at least one accelerator device capable of processing the workload comprises circuitry for determining at least one other accelerator device, the at least one other accelerator device being hosted on the compute device that also hosts the PSME device.
- Example 54 includes the subject matter of any of Examples 51-53, and wherein the circuitry for receiving the workload processing request comprises circuitry for receiving the workload processing request from an application executing on the compute device.
- Example 55 includes the subject matter of any of Examples 51-54, and further including circuitry for parsing the workload processing request for the at least one request parameter, wherein the at least one request parameter corresponds to a service-level agreement (SLA) requirement.
- Example 56 includes the subject matter of any of Examples 51-55, and further including circuitry for generating an accelerator device directory, wherein the accelerator device directory stores an accelerator device identifier identifying the at least one accelerator device in correlation with configuration data and an accelerator sled identifier for the at least one accelerator device, and wherein the configuration data is indicative of a number of operations per second that the at least one accelerator device is capable of performing, a function that the at least one accelerator device is capable of accelerating, and a present utilization of the at least one accelerator device.
- Example 57 includes the subject matter of any of Examples 51-56, and further including circuitry for identifying a configuration parameter of the at least one accelerator device from the accelerator device directory; and determining that the configuration parameter represents a capability of the at least one accelerator device to process the workload.
- Example 58 includes the subject matter of any of Examples 51-57, and further including circuitry for retrieving an accelerator sled identifier for the at least one accelerator device; and transmitting an accelerator device request to an orchestrator, wherein the accelerator device request includes a request to transmit the workload to the at least one accelerator device associated with the accelerator sled identifier.
- Example 59 includes the subject matter of any of Examples 51-58, and further including circuitry for receiving the work product from the orchestrator, wherein the work product represents a completion of processing of the workload by the at least one accelerator device.
- Example 60 includes the subject matter of any of Examples 51-59, and wherein the circuitry for transmitting a workload to the at least one accelerator device comprises circuitry for transmitting the workload in-band, through a secure and authenticated channel.
- Example 61 includes the subject matter of any of Examples 51-60, and wherein the means for determining at least one accelerator device capable of processing a workload in accordance with the at least one request parameter comprises means for determining, based on an accelerator device directory, the at least one accelerator device capable of processing a workload in accordance with the at least one request parameter.
- Example 62 includes the subject matter of any of Examples 51-61, and wherein the determined accelerator device is hosted on a remote device different from the compute device.
- Example 63 includes the subject matter of any of Examples 51-62, and wherein the means for determining the at least one accelerator device capable of processing a workload in accordance with the at least one request parameter comprises circuitry for sending the workload processing request to an orchestrator server; and circuitry for receiving, from the orchestrator server, an identification of the at least one accelerator device capable of processing the workload.
- Example 64 includes the subject matter of any of Examples 51-63, and wherein the at least one request parameter includes metadata indicative of whether two or more portions of the workload can be accelerated concurrently.
- Example 65 includes the subject matter of any of Examples 51-64, and wherein the at least one request parameter includes metadata indicative of a target quality of service associated with the workload.
- Example 66 includes the subject matter of any of Examples 51-65, and wherein the metadata is indicative of at least one of a target latency or a target throughput associated with the workload.
Claims (12)
1. A system comprising:
a compute device to:
receive a workload processing request, the workload processing request defined by at least one request parameter;
determine at least one accelerator device capable of processing a workload in accordance with the at least one request parameter;
transmit a workload to the at least one accelerator device;
receive a work product produced by the at least one accelerator device from the workload; and
provide the work product [[to]] for access by a virtual machine or container.
2. The system of claim 1 , wherein:
to receive the workload processing request comprises to receive the workload processing request without utilizing a host processor and without utilizing a host operating system of the compute device
3. The system of claim 1 , wherein:
to determine the at least one accelerator device capable of processing the workload comprises to determine the at least one accelerator device without utilizing the host processor and without utilizing the host operating system of the compute device.
4. The system of claim 1 , wherein:
to transmit the workload to the at least one accelerator device comprises to transmit the workload without utilizing the host processor and without utilizing the host operating system of the compute device.
5. The system of claim 1 , wherein:
to receive the work product produced by the at least one accelerator device comprises to receive the work product without utilizing the host processor and without utilizing the host operating system of the compute device.
6. The system of claim 1 , wherein:
to provide the work product to the application comprises to provide the work product to the application without utilizing the host processor and without utilizing the host operating system of the compute device.
7. The system of claim 1 , wherein the at least one request parameter corresponds to a service-level agreement (SLA) requirement.
8. The system of claim 1 , wherein:
the compute device is further to generate an accelerator device directory, wherein the accelerator device directory stores an accelerator device identifier identifying the at least one accelerator device in correlation with configuration data and the accelerator sled identifier for the at least one accelerator device, and wherein the configuration data is indicative of a number of operations per second that the at least one accelerator device is capable of performing, a function that the at least one accelerator device is capable of accelerating, and a present utilization of the at least one accelerator device.
9. The system of claim 8 , wherein the compute device is further to:
identify a configuration parameter of the at least one accelerator device from the accelerator device directory; and
determine that the configuration parameter represents a capability of the at least one accelerator device to process the workload.
10. The system of claim 1 , wherein to determine at least one accelerator device capable of processing a workload in accordance with the at least one request parameter comprises to determine, based on an accelerator device directory, the at least one accelerator device capable of processing a workload in accordance with the at least one request parameter.
11. One or more non-transitory machine-readable storage media comprising a plurality of instructions stored thereon that, in response to being executed, cause a compute device to:
receive a workload processing request, the workload processing request defined by at least one request parameter;
determine at least one accelerator device capable of processing a workload in accordance with the at least one request parameter;
transmit a workload to the at least one accelerator device;
receive a work product produced by the at least one accelerator device from the workload; and
provide the work product for access by a virtual machine or container.
12. The one or more non-transitory machine-readable storage media of claim 11 , wherein the at least one request parameter corresponds to a service-level agreement (SLA) requirement.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/221,541 US20210365199A1 (en) | 2016-11-29 | 2021-04-02 | Technologies for coordinating disaggregated accelerator device resources |
US18/109,774 US20230195346A1 (en) | 2016-11-29 | 2023-02-14 | Technologies for coordinating disaggregated accelerator device resources |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662427268P | 2016-11-29 | 2016-11-29 | |
IN201741030632 | 2017-08-30 | ||
IN201741030632 | 2017-08-30 | ||
US15/721,833 US10990309B2 (en) | 2016-11-29 | 2017-09-30 | Technologies for coordinating disaggregated accelerator device resources |
US17/221,541 US20210365199A1 (en) | 2016-11-29 | 2021-04-02 | Technologies for coordinating disaggregated accelerator device resources |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/721,833 Continuation US10990309B2 (en) | 2016-11-29 | 2017-09-30 | Technologies for coordinating disaggregated accelerator device resources |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/109,774 Continuation US20230195346A1 (en) | 2016-11-29 | 2023-02-14 | Technologies for coordinating disaggregated accelerator device resources |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210365199A1 true US20210365199A1 (en) | 2021-11-25 |
Family
ID=62190163
Family Applications (34)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/716,790 Abandoned US20180150256A1 (en) | 2016-11-29 | 2017-09-27 | Technologies for data deduplication in disaggregated architectures |
US15/721,053 Active 2038-08-18 US11687264B2 (en) | 2016-11-29 | 2017-09-29 | Technologies for accelerator interface |
US15/720,390 Active 2038-04-25 US10747457B2 (en) | 2016-11-29 | 2017-09-29 | Technologies for processing network packets in agent-mesh architectures |
US15/719,770 Active 2038-12-20 US11137922B2 (en) | 2016-11-29 | 2017-09-29 | Technologies for providing accelerated functions as a service in a disaggregated architecture |
US15/720,162 Active 2038-07-11 US10635338B2 (en) | 2016-11-29 | 2017-09-29 | Technologies for a high-ratio compression accelerator with heterogeneous history buffers |
US15/720,653 Active 2038-06-05 US10824358B2 (en) | 2016-11-29 | 2017-09-29 | Technologies for dynamically managing the reliability of disaggregated resources in a managed node |
US15/719,735 Active US10191684B2 (en) | 2016-11-29 | 2017-09-29 | Technologies for flexibly compressing and decompressing data |
US15/720,920 Active US10268412B2 (en) | 2016-11-29 | 2017-09-29 | Technologies for deterministic constant-time data compression |
US15/719,774 Active 2038-06-14 US10628068B2 (en) | 2016-11-29 | 2017-09-29 | Technologies for big data analytics accelerator |
US15/720,236 Abandoned US20180150240A1 (en) | 2016-11-29 | 2017-09-29 | Technologies for offloading i/o intensive operations to a data storage sled |
US15/721,825 Active 2038-04-25 US10768842B2 (en) | 2016-11-29 | 2017-09-30 | Technologies for providing shared memory for accelerator sleds |
US15/721,817 Expired - Fee Related US10768841B2 (en) | 2016-11-29 | 2017-09-30 | Technologies for managing network statistic counters |
US15/721,829 Active 2038-06-20 US11029870B2 (en) | 2016-11-29 | 2017-09-30 | Technologies for dividing work across accelerator devices |
US15/721,814 Active 2038-07-08 US10712963B2 (en) | 2016-11-29 | 2017-09-30 | Technologies for secure encrypted external memory for field-programmable gate arrays (FPGAS) |
US15/721,815 Active 2038-04-27 US10732879B2 (en) | 2016-11-29 | 2017-09-30 | Technologies for processing network packets by an intelligent network interface controller |
US15/721,833 Active 2038-07-21 US10990309B2 (en) | 2016-11-29 | 2017-09-30 | Technologies for coordinating disaggregated accelerator device resources |
US15/721,821 Active 2038-06-22 US10963176B2 (en) | 2016-11-29 | 2017-09-30 | Technologies for offloading acceleration task scheduling operations to accelerator sleds |
US15/824,604 Active 2038-05-26 US10795595B2 (en) | 2016-11-29 | 2017-11-28 | Technologies for lifecycle management with remote firmware |
US16/346,341 Active US11200104B2 (en) | 2016-11-29 | 2017-11-29 | Technolgies for millimeter wave rack interconnects |
US15/826,523 Active 2038-07-02 US10824360B2 (en) | 2016-11-29 | 2017-11-29 | Data connector with movable cover |
US15/826,051 Active 2038-11-20 US11307787B2 (en) | 2016-11-29 | 2017-11-29 | Technologies for providing manifest-based asset representation |
US16/943,221 Active 2038-03-10 US11579788B2 (en) | 2016-11-29 | 2020-07-30 | Technologies for providing shared memory for accelerator sleds |
US17/005,879 Active 2037-12-03 US11354053B2 (en) | 2016-11-29 | 2020-08-28 | Technologies for lifecycle management with remote firmware |
US17/125,420 Active 2038-11-25 US11995330B2 (en) | 2016-11-29 | 2020-12-17 | Technologies for providing accelerated functions as a service in a disaggregated architecture |
US17/214,605 Pending US20210318823A1 (en) | 2016-11-29 | 2021-03-26 | Technologies for offloading acceleration task scheduling operations to accelerator sleds |
US17/221,541 Abandoned US20210365199A1 (en) | 2016-11-29 | 2021-04-02 | Technologies for coordinating disaggregated accelerator device resources |
US17/321,186 Active US11429297B2 (en) | 2016-11-29 | 2021-05-14 | Technologies for dividing work across accelerator devices |
US17/549,713 Abandoned US20220107741A1 (en) | 2016-11-29 | 2021-12-13 | Technolgies for millimeter wave rack interconnects |
US17/681,025 Active US11907557B2 (en) | 2016-11-29 | 2022-02-25 | Technologies for dividing work across accelerator devices |
US17/724,379 Abandoned US20220317906A1 (en) | 2016-11-29 | 2022-04-19 | Technologies for providing manifest-based asset representation |
US18/103,739 Active US11977923B2 (en) | 2016-11-29 | 2023-01-31 | Cloud-based scale-up system composition |
US18/109,774 Pending US20230195346A1 (en) | 2016-11-29 | 2023-02-14 | Technologies for coordinating disaggregated accelerator device resources |
US18/405,679 Pending US20240143410A1 (en) | 2016-11-29 | 2024-01-05 | Technologies for dividing work across accelerator devices |
US18/618,901 Pending US20240241761A1 (en) | 2016-11-29 | 2024-03-27 | Cloud-based scale-up system composition |
Family Applications Before (25)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/716,790 Abandoned US20180150256A1 (en) | 2016-11-29 | 2017-09-27 | Technologies for data deduplication in disaggregated architectures |
US15/721,053 Active 2038-08-18 US11687264B2 (en) | 2016-11-29 | 2017-09-29 | Technologies for accelerator interface |
US15/720,390 Active 2038-04-25 US10747457B2 (en) | 2016-11-29 | 2017-09-29 | Technologies for processing network packets in agent-mesh architectures |
US15/719,770 Active 2038-12-20 US11137922B2 (en) | 2016-11-29 | 2017-09-29 | Technologies for providing accelerated functions as a service in a disaggregated architecture |
US15/720,162 Active 2038-07-11 US10635338B2 (en) | 2016-11-29 | 2017-09-29 | Technologies for a high-ratio compression accelerator with heterogeneous history buffers |
US15/720,653 Active 2038-06-05 US10824358B2 (en) | 2016-11-29 | 2017-09-29 | Technologies for dynamically managing the reliability of disaggregated resources in a managed node |
US15/719,735 Active US10191684B2 (en) | 2016-11-29 | 2017-09-29 | Technologies for flexibly compressing and decompressing data |
US15/720,920 Active US10268412B2 (en) | 2016-11-29 | 2017-09-29 | Technologies for deterministic constant-time data compression |
US15/719,774 Active 2038-06-14 US10628068B2 (en) | 2016-11-29 | 2017-09-29 | Technologies for big data analytics accelerator |
US15/720,236 Abandoned US20180150240A1 (en) | 2016-11-29 | 2017-09-29 | Technologies for offloading i/o intensive operations to a data storage sled |
US15/721,825 Active 2038-04-25 US10768842B2 (en) | 2016-11-29 | 2017-09-30 | Technologies for providing shared memory for accelerator sleds |
US15/721,817 Expired - Fee Related US10768841B2 (en) | 2016-11-29 | 2017-09-30 | Technologies for managing network statistic counters |
US15/721,829 Active 2038-06-20 US11029870B2 (en) | 2016-11-29 | 2017-09-30 | Technologies for dividing work across accelerator devices |
US15/721,814 Active 2038-07-08 US10712963B2 (en) | 2016-11-29 | 2017-09-30 | Technologies for secure encrypted external memory for field-programmable gate arrays (FPGAS) |
US15/721,815 Active 2038-04-27 US10732879B2 (en) | 2016-11-29 | 2017-09-30 | Technologies for processing network packets by an intelligent network interface controller |
US15/721,833 Active 2038-07-21 US10990309B2 (en) | 2016-11-29 | 2017-09-30 | Technologies for coordinating disaggregated accelerator device resources |
US15/721,821 Active 2038-06-22 US10963176B2 (en) | 2016-11-29 | 2017-09-30 | Technologies for offloading acceleration task scheduling operations to accelerator sleds |
US15/824,604 Active 2038-05-26 US10795595B2 (en) | 2016-11-29 | 2017-11-28 | Technologies for lifecycle management with remote firmware |
US16/346,341 Active US11200104B2 (en) | 2016-11-29 | 2017-11-29 | Technolgies for millimeter wave rack interconnects |
US15/826,523 Active 2038-07-02 US10824360B2 (en) | 2016-11-29 | 2017-11-29 | Data connector with movable cover |
US15/826,051 Active 2038-11-20 US11307787B2 (en) | 2016-11-29 | 2017-11-29 | Technologies for providing manifest-based asset representation |
US16/943,221 Active 2038-03-10 US11579788B2 (en) | 2016-11-29 | 2020-07-30 | Technologies for providing shared memory for accelerator sleds |
US17/005,879 Active 2037-12-03 US11354053B2 (en) | 2016-11-29 | 2020-08-28 | Technologies for lifecycle management with remote firmware |
US17/125,420 Active 2038-11-25 US11995330B2 (en) | 2016-11-29 | 2020-12-17 | Technologies for providing accelerated functions as a service in a disaggregated architecture |
US17/214,605 Pending US20210318823A1 (en) | 2016-11-29 | 2021-03-26 | Technologies for offloading acceleration task scheduling operations to accelerator sleds |
Family Applications After (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/321,186 Active US11429297B2 (en) | 2016-11-29 | 2021-05-14 | Technologies for dividing work across accelerator devices |
US17/549,713 Abandoned US20220107741A1 (en) | 2016-11-29 | 2021-12-13 | Technolgies for millimeter wave rack interconnects |
US17/681,025 Active US11907557B2 (en) | 2016-11-29 | 2022-02-25 | Technologies for dividing work across accelerator devices |
US17/724,379 Abandoned US20220317906A1 (en) | 2016-11-29 | 2022-04-19 | Technologies for providing manifest-based asset representation |
US18/103,739 Active US11977923B2 (en) | 2016-11-29 | 2023-01-31 | Cloud-based scale-up system composition |
US18/109,774 Pending US20230195346A1 (en) | 2016-11-29 | 2023-02-14 | Technologies for coordinating disaggregated accelerator device resources |
US18/405,679 Pending US20240143410A1 (en) | 2016-11-29 | 2024-01-05 | Technologies for dividing work across accelerator devices |
US18/618,901 Pending US20240241761A1 (en) | 2016-11-29 | 2024-03-27 | Cloud-based scale-up system composition |
Country Status (3)
Country | Link |
---|---|
US (34) | US20180150256A1 (en) |
DE (6) | DE102018006894A1 (en) |
WO (5) | WO2018102416A1 (en) |
Families Citing this family (265)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9922099B2 (en) | 2014-09-30 | 2018-03-20 | Splunk Inc. | Event limited field picker |
US10235460B2 (en) | 2014-09-30 | 2019-03-19 | Splunk Inc. | Sharing configuration information for searches in data intake and query systems |
US9990423B2 (en) | 2014-09-30 | 2018-06-05 | Splunk Inc. | Hybrid cluster-based data intake and query |
CN107209663B (en) * | 2015-04-23 | 2020-03-10 | 华为技术有限公司 | Data format conversion device, buffer chip and method |
JP6701863B2 (en) * | 2016-03-24 | 2020-05-27 | 日本電気株式会社 | Firmware distribution system, distribution device, firmware distribution method, and firmware distribution program |
US10334334B2 (en) | 2016-07-22 | 2019-06-25 | Intel Corporation | Storage sled and techniques for a data center |
US10873521B2 (en) * | 2016-07-22 | 2020-12-22 | Intel Corporation | Methods and apparatus for SDI support for fast startup |
US11016832B2 (en) * | 2016-11-29 | 2021-05-25 | Intel Corporation | Cloud-based scale-up system composition |
US20180150256A1 (en) | 2016-11-29 | 2018-05-31 | Intel Corporation | Technologies for data deduplication in disaggregated architectures |
US11301144B2 (en) | 2016-12-28 | 2022-04-12 | Amazon Technologies, Inc. | Data storage system |
US10514847B2 (en) | 2016-12-28 | 2019-12-24 | Amazon Technologies, Inc. | Data storage system with multiple durability levels |
US10484015B2 (en) | 2016-12-28 | 2019-11-19 | Amazon Technologies, Inc. | Data storage system with enforced fencing |
US10771550B2 (en) * | 2016-12-28 | 2020-09-08 | Amazon Technologies, Inc. | Data storage system with redundant internal networks |
US11153164B2 (en) | 2017-01-04 | 2021-10-19 | International Business Machines Corporation | Live, in-line hardware component upgrades in disaggregated systems |
US10534598B2 (en) | 2017-01-04 | 2020-01-14 | International Business Machines Corporation | Rolling upgrades in disaggregated systems |
JP6880242B2 (en) * | 2017-02-14 | 2021-06-02 | モレックス エルエルシー | Breakout module system |
US10970119B2 (en) | 2017-03-28 | 2021-04-06 | Intel Corporation | Technologies for hybrid field-programmable gate array application-specific integrated circuit code acceleration |
WO2018183553A1 (en) | 2017-03-29 | 2018-10-04 | Fungible, Inc. | Non-blocking any-to-any data center network having multiplexed packet spraying within access node groups |
WO2018183526A1 (en) | 2017-03-29 | 2018-10-04 | Fungible, Inc. | Non-blocking, full-mesh data center network having optical permutors |
US10686729B2 (en) | 2017-03-29 | 2020-06-16 | Fungible, Inc. | Non-blocking any-to-any data center network with packet spraying over multiple alternate data paths |
CN117971715A (en) | 2017-04-10 | 2024-05-03 | 微软技术许可有限责任公司 | Relay coherent memory management in multiprocessor systems |
US10656987B1 (en) * | 2017-04-26 | 2020-05-19 | EMC IP Holding Company LLC | Analysis system and method |
US10853159B1 (en) * | 2017-04-26 | 2020-12-01 | EMC IP Holding Company, LLC | Analysis system and method |
NO343359B1 (en) * | 2017-05-02 | 2019-02-11 | Numascale As | Interconnect switch in multiprocessor systems |
US10958990B2 (en) * | 2017-05-03 | 2021-03-23 | Intel Corporation | Trusted platform telemetry mechanisms inaccessible to software |
US10656964B2 (en) * | 2017-05-16 | 2020-05-19 | Oracle International Corporation | Dynamic parallelization of a calculation process |
EP3625939A1 (en) | 2017-07-10 | 2020-03-25 | Fungible, Inc. | Access node for data centers |
EP3625679A1 (en) | 2017-07-10 | 2020-03-25 | Fungible, Inc. | Data processing unit for stream processing |
US11032144B2 (en) * | 2017-07-12 | 2021-06-08 | Nec Corporation | Network control system, method and program |
US11030126B2 (en) * | 2017-07-14 | 2021-06-08 | Intel Corporation | Techniques for managing access to hardware accelerator memory |
US10318461B2 (en) * | 2017-08-04 | 2019-06-11 | Dell Products L.P. | Systems and methods for interconnecting GPU accelerated compute nodes of an information handling system |
US10841246B2 (en) | 2017-08-30 | 2020-11-17 | Arista Networks, Inc. | Distributed core switching with orthogonal fabric card and line cards |
US11119835B2 (en) | 2017-08-30 | 2021-09-14 | Intel Corporation | Technologies for providing efficient reprovisioning in an accelerator device |
US20190068466A1 (en) * | 2017-08-30 | 2019-02-28 | Intel Corporation | Technologies for auto-discovery of fault domains |
US20190044809A1 (en) * | 2017-08-30 | 2019-02-07 | Intel Corporation | Technologies for managing a flexible host interface of a network interface controller |
US10963295B2 (en) * | 2017-09-08 | 2021-03-30 | Oracle International Corporation | Hardware accelerated data processing operations for storage data |
US10819649B2 (en) * | 2017-09-14 | 2020-10-27 | American Megatrends International, Llc | Pooled system management engine on service processor of computing blade |
CN107872545B (en) * | 2017-09-26 | 2022-12-06 | 中兴通讯股份有限公司 | Message transmission method and device and computer readable storage medium |
CN111164938A (en) | 2017-09-29 | 2020-05-15 | 芬基波尔有限责任公司 | Resilient network communication using selective multipath packet stream injection |
US10659390B2 (en) * | 2017-09-29 | 2020-05-19 | Xilinx, Inc. | Network interface device |
US11178262B2 (en) | 2017-09-29 | 2021-11-16 | Fungible, Inc. | Fabric control protocol for data center networks with packet spraying over multiple alternate data paths |
EP3692441A1 (en) * | 2017-10-06 | 2020-08-12 | Convida Wireless, LLC | Enabling a fog service layer with application to smart transport systems |
US10659531B2 (en) * | 2017-10-06 | 2020-05-19 | International Business Machines Corporation | Initiator aware data migration |
KR102602696B1 (en) * | 2017-10-13 | 2023-11-16 | 삼성전자주식회사 | Encryption device and decryption device, and method of operation thereof |
CN109725835B (en) * | 2017-10-27 | 2022-04-29 | 伊姆西Ip控股有限责任公司 | Method, apparatus and computer program product for managing disk array |
US10841245B2 (en) | 2017-11-21 | 2020-11-17 | Fungible, Inc. | Work unit stack data structures in multiple core processor system for stream data processing |
WO2019117767A1 (en) * | 2017-12-13 | 2019-06-20 | Telefonaktiebolaget Lm Ericsson (Publ) | Method, function manager and arrangement for handling function calls |
EP3729264A1 (en) * | 2017-12-20 | 2020-10-28 | Telefonaktiebolaget LM Ericsson (publ) | Method and resource scheduler for enabling a computing unit to use remote memory resources |
US10776160B2 (en) * | 2017-12-28 | 2020-09-15 | Mcgraw Hill Llc | Management of sequenced execution of service tasks in a multi-service system |
CN110109915B (en) * | 2018-01-18 | 2024-01-05 | 伊姆西Ip控股有限责任公司 | Method, apparatus and computer program product for managing hash tables |
US10942783B2 (en) * | 2018-01-19 | 2021-03-09 | Hypernet Labs, Inc. | Distributed computing using distributed average consensus |
US11244243B2 (en) | 2018-01-19 | 2022-02-08 | Hypernet Labs, Inc. | Coordinated learning using distributed average consensus |
US10878482B2 (en) | 2018-01-19 | 2020-12-29 | Hypernet Labs, Inc. | Decentralized recommendations using distributed average consensus |
US10909150B2 (en) | 2018-01-19 | 2021-02-02 | Hypernet Labs, Inc. | Decentralized latent semantic index using distributed average consensus |
WO2019152063A1 (en) | 2018-02-02 | 2019-08-08 | Fungible, Inc. | Efficient work unit processing in a multicore system |
US10635609B2 (en) | 2018-03-02 | 2020-04-28 | Samsung Electronics Co., Ltd. | Method for supporting erasure code data protection with embedded PCIE switch inside FPGA+SSD |
US10990554B2 (en) | 2018-03-02 | 2021-04-27 | Samsung Electronics Co., Ltd. | Mechanism to identify FPGA and SSD pairing in a multi-device environment |
TWI647615B (en) * | 2018-03-29 | 2019-01-11 | 緯創資通股份有限公司 | Boot method for firmware system using multiple embedded controller firmware |
US11429413B2 (en) * | 2018-03-30 | 2022-08-30 | Intel Corporation | Method and apparatus to manage counter sets in a network interface controller |
US11068876B2 (en) * | 2018-03-30 | 2021-07-20 | Norton LifeLock | Securing of internet of things devices based on monitoring of information concerning device purchases |
US10824584B1 (en) * | 2018-04-03 | 2020-11-03 | Xilinx, Inc. | Device with data processing engine array that enables partial reconfiguration |
US11194800B2 (en) * | 2018-04-26 | 2021-12-07 | Microsoft Technology Licensing, Llc | Parallel search in program synthesis |
US10990373B2 (en) * | 2018-05-18 | 2021-04-27 | Nutanix, Inc. | Service managers and firmware version selections in distributed computing systems |
US11144357B2 (en) * | 2018-05-25 | 2021-10-12 | International Business Machines Corporation | Selecting hardware accelerators based on score |
US10691529B2 (en) * | 2018-06-20 | 2020-06-23 | Intel Corporation | Supporting random access of compressed data |
US12099912B2 (en) | 2018-06-22 | 2024-09-24 | Samsung Electronics Co., Ltd. | Neural processor |
US11036651B2 (en) * | 2018-06-29 | 2021-06-15 | Micron Technology, Inc. | Host side caching security for flash memory |
CN109101347B (en) * | 2018-07-16 | 2021-07-20 | 北京理工大学 | Pulse compression processing method of FPGA heterogeneous computing platform based on OpenCL |
CN109086383A (en) * | 2018-07-26 | 2018-12-25 | 佛山市甜慕链客科技有限公司 | A kind of method and apparatus accelerated for database |
US20200045352A1 (en) * | 2018-08-02 | 2020-02-06 | Imagine Communications Corp. | System and process for generalized real-time transport protocol stream segmentation and reconstruction |
CN109325494B (en) * | 2018-08-27 | 2021-09-17 | 腾讯科技(深圳)有限公司 | Picture processing method, task data processing method and device |
US11797684B2 (en) * | 2018-08-28 | 2023-10-24 | Eclypsium, Inc. | Methods and systems for hardware and firmware security monitoring |
US11133076B2 (en) * | 2018-09-06 | 2021-09-28 | Pure Storage, Inc. | Efficient relocation of data between storage devices of a storage system |
CN113661035A (en) * | 2018-09-28 | 2021-11-16 | 艾利文Ai有限公司 | System and method for robotic agent management |
US10936370B2 (en) * | 2018-10-31 | 2021-03-02 | International Business Machines Corporation | Apparatus that generates optimal launch configurations |
US11216314B2 (en) * | 2018-11-02 | 2022-01-04 | EMC IP Holding Company LLC | Dynamic reallocation of resources in accelerator-as-a-service computing environment |
US11564327B2 (en) | 2018-11-05 | 2023-01-24 | Cisco Technology, Inc. | Connectors for a networking device with orthogonal switch bars |
CN111147927A (en) * | 2018-11-06 | 2020-05-12 | 中国电信股份有限公司 | Video response system and method and intelligent network card |
US10929175B2 (en) | 2018-11-21 | 2021-02-23 | Fungible, Inc. | Service chaining hardware accelerators within a data stream processing integrated circuit |
US10892944B2 (en) | 2018-11-29 | 2021-01-12 | International Business Machines Corporation | Selecting and using a cloud-based hardware accelerator |
DK3661339T3 (en) | 2018-11-30 | 2022-05-09 | Ovh | STAND FACILITATED FOR RECEIVING A COMPONENT AND SYSTEM INCLUDING THE STAND AND COMPONENT |
US11856724B2 (en) | 2018-11-30 | 2023-12-26 | Ovh | System comprising a rack, with support members and components insertable in the rack and connectable via liquid connectors |
EP3814902A1 (en) * | 2018-12-03 | 2021-05-05 | salesforce.com, inc. | Application programming interface for automated operations management |
US10908895B2 (en) * | 2018-12-21 | 2021-02-02 | Pensando Systems Inc. | State-preserving upgrade of an intelligent server adapter |
US11044099B2 (en) * | 2018-12-28 | 2021-06-22 | Intel Corporation | Technologies for providing certified telemetry data indicative of resources utilizations |
US10579547B2 (en) * | 2018-12-28 | 2020-03-03 | Intel Corporation | Technologies for providing I/O channel abstraction for accelerator device kernels |
US11750531B2 (en) * | 2019-01-17 | 2023-09-05 | Ciena Corporation | FPGA-based virtual fabric for data center computing |
US11625806B2 (en) * | 2019-01-23 | 2023-04-11 | Qualcomm Incorporated | Methods and apparatus for standardized APIs for split rendering |
US10831497B2 (en) * | 2019-01-31 | 2020-11-10 | International Business Machines Corporation | Compression/decompression instruction specifying a history buffer to be used in the compression/decompression of data |
US10795718B2 (en) * | 2019-02-08 | 2020-10-06 | Microsoft Technology Licensing, Llc | Updating hardware with reduced virtual machine downtime |
PL3697183T3 (en) | 2019-02-13 | 2021-09-06 | Ovh | Rack adapted for receiving a component, system including the rack and the component and method of delivering power to a component mounted in a rack |
US11153669B1 (en) * | 2019-02-22 | 2021-10-19 | Level 3 Communications, Llc | Dynamic optical switching in a telecommunications network |
US20190188111A1 (en) * | 2019-02-26 | 2019-06-20 | Intel Corporation | Methods and apparatus to improve performance data collection of a high performance computing application |
US20200274931A1 (en) * | 2019-02-27 | 2020-08-27 | Asahi Kasei Kabushiki Kaisha | Device management apparatus and system for remotely managing internet of things device |
CN110007855B (en) * | 2019-02-28 | 2020-04-28 | 华中科技大学 | Hardware-supported 3D stacked NVM (non-volatile memory) memory data compression method and system |
CA3126089C (en) * | 2019-03-01 | 2023-06-20 | Cyborg Inc. | System and method for statistics-based pattern searching of compressed data and encrypted data |
CN109934729A (en) * | 2019-03-25 | 2019-06-25 | 重庆大学 | Unstable state real time data acquisition data depth compression method |
US10963269B2 (en) * | 2019-03-28 | 2021-03-30 | Lenovo (Singapore) Pte. Ltd. | Apparatus, method, and program product for storing a hardware manifest |
US10534747B2 (en) * | 2019-03-29 | 2020-01-14 | Intel Corporation | Technologies for providing a scalable architecture for performing compute operations in memory |
FR3094865B1 (en) * | 2019-04-04 | 2021-10-29 | Bull Sas | COMPUTER CABINET INCLUDING INTERCONNECTION DEVICES OF INTERCONNECTION SWITCHES AND BUILT-MOUNT ELEMENTS |
US10986423B2 (en) | 2019-04-11 | 2021-04-20 | Arista Networks, Inc. | Network device with compact chassis |
US11671111B2 (en) | 2019-04-17 | 2023-06-06 | Samsung Electronics Co., Ltd. | Hardware channel-parallel data compression/decompression |
US11211944B2 (en) | 2019-04-17 | 2021-12-28 | Samsung Electronics Co., Ltd. | Mixed-precision compression with random access |
US11269395B2 (en) * | 2019-04-25 | 2022-03-08 | Intel Corporation | Technologies for providing adaptive power management in an accelerator sled |
US20200341824A1 (en) * | 2019-04-26 | 2020-10-29 | Intel Corporation | Technologies for providing inter-kernel communication abstraction to support scale-up and scale-out |
US20190253518A1 (en) * | 2019-04-26 | 2019-08-15 | Intel Corporation | Technologies for providing resource health based node composition and management |
US10909054B2 (en) * | 2019-04-26 | 2021-02-02 | Samsung Electronics Co., Ltd. | Method for status monitoring of acceleration kernels in a storage device and storage device employing the same |
CN111858016A (en) * | 2019-04-29 | 2020-10-30 | 阿里巴巴集团控股有限公司 | Computing job processing method and system, mobile device and acceleration device |
US11003479B2 (en) * | 2019-04-29 | 2021-05-11 | Intel Corporation | Device, system and method to communicate a kernel binary via a network |
CN109995508B (en) * | 2019-04-30 | 2021-02-02 | 上海安路信息科技有限公司 | Encryption and decryption device and method for FPGA code stream |
US11474700B2 (en) * | 2019-04-30 | 2022-10-18 | Intel Corporation | Technologies for compressing communication for accelerator devices |
WO2020226880A1 (en) * | 2019-05-03 | 2020-11-12 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Method and apparatus for adaptive page migration and pinning for oversubscribed irregular applications |
US11381526B2 (en) * | 2019-05-08 | 2022-07-05 | Cisco Technology, Inc. | Multi-tenant optimized serverless placement using smart network interface cards and commodity storage |
CN110311948B (en) * | 2019-05-17 | 2022-07-15 | 深圳致星科技有限公司 | Communication method between container groups and container cloud network system based on same |
US11615052B1 (en) * | 2019-05-23 | 2023-03-28 | Xilinx, Inc. | Packet identification (ID) assignment for routing network |
EP3942747A4 (en) | 2019-05-23 | 2023-05-24 | Hewlett Packard Enterprise Development LP | Systems and methods for on the fly routing in the presence of errors |
US11398899B2 (en) | 2019-05-28 | 2022-07-26 | Shanghai Zhaoxin Semiconductor Co., Ltd. | Data processing device and data processing method |
CN110138556A (en) * | 2019-05-28 | 2019-08-16 | 上海兆芯集成电路有限公司 | Data processing equipment and data processing method |
US11012315B2 (en) * | 2019-05-29 | 2021-05-18 | Cisco Technology, Inc. | Retroactively detecting state change in a network fabric across times |
KR20200140560A (en) | 2019-06-07 | 2020-12-16 | 삼성전자주식회사 | Electronic device and system for the same |
CN110166240B (en) * | 2019-06-25 | 2024-05-03 | 南方电网科学研究院有限责任公司 | Network isolation password board card |
US10949362B2 (en) * | 2019-06-28 | 2021-03-16 | Intel Corporation | Technologies for facilitating remote memory requests in accelerator devices |
JP7238643B2 (en) * | 2019-06-28 | 2023-03-14 | 株式会社リコー | ELECTRONIC DEVICE, INFORMATION PROCESSING SYSTEM AND INFORMATION PROCESSING METHOD |
US11169723B2 (en) | 2019-06-28 | 2021-11-09 | Amazon Technologies, Inc. | Data storage system with metadata check-pointing |
US12073255B2 (en) * | 2019-07-02 | 2024-08-27 | Intel Corporation | Technologies for providing latency-aware consensus management in a disaggregated architecture |
US11556382B1 (en) * | 2019-07-10 | 2023-01-17 | Meta Platforms, Inc. | Hardware accelerated compute kernels for heterogeneous compute environments |
US11146663B2 (en) * | 2019-07-18 | 2021-10-12 | EMC IP Holding Company LLC | Facilitating improved overall performance of remote data facility replication systems |
US11151682B2 (en) * | 2019-07-22 | 2021-10-19 | Verizon Patent And Licensing Inc. | System and methods for distributed GPU using multi-access edge compute services |
US11792078B2 (en) * | 2019-07-26 | 2023-10-17 | Verizon Patent And Licensing Inc. | Multi-access Edge Computing cloud discovery and communications |
US12061971B2 (en) | 2019-08-12 | 2024-08-13 | Micron Technology, Inc. | Predictive maintenance of automotive engines |
US11853863B2 (en) | 2019-08-12 | 2023-12-26 | Micron Technology, Inc. | Predictive maintenance of automotive tires |
US11586943B2 (en) | 2019-08-12 | 2023-02-21 | Micron Technology, Inc. | Storage and access of neural network inputs in automotive predictive maintenance |
US11748626B2 (en) | 2019-08-12 | 2023-09-05 | Micron Technology, Inc. | Storage devices with neural network accelerators for automotive predictive maintenance |
US11586194B2 (en) | 2019-08-12 | 2023-02-21 | Micron Technology, Inc. | Storage and access of neural network models of automotive predictive maintenance |
US11635893B2 (en) | 2019-08-12 | 2023-04-25 | Micron Technology, Inc. | Communications between processors and storage devices in automotive predictive maintenance implemented via artificial neural networks |
US11775816B2 (en) | 2019-08-12 | 2023-10-03 | Micron Technology, Inc. | Storage and access of neural network outputs in automotive predictive maintenance |
US11228539B2 (en) * | 2019-08-14 | 2022-01-18 | Intel Corporation | Technologies for managing disaggregated accelerator networks based on remote direct memory access |
US11126236B2 (en) * | 2019-08-14 | 2021-09-21 | Dell Products L.P. | System and method for the redirection of trapped power in a shared infrastructure environment |
US11702086B2 (en) | 2019-08-21 | 2023-07-18 | Micron Technology, Inc. | Intelligent recording of errant vehicle behaviors |
US11498388B2 (en) | 2019-08-21 | 2022-11-15 | Micron Technology, Inc. | Intelligent climate control in vehicles |
LU101361B1 (en) * | 2019-08-26 | 2021-03-11 | Microsoft Technology Licensing Llc | Computer device including nested network interface controller switches |
US11477163B2 (en) * | 2019-08-26 | 2022-10-18 | At&T Intellectual Property I, L.P. | Scrubbed internet protocol domain for enhanced cloud security |
EP3884375B1 (en) * | 2019-09-03 | 2023-11-01 | Google LLC | Accelerating application and sub-package installations |
US11409654B2 (en) | 2019-09-05 | 2022-08-09 | Micron Technology, Inc. | Intelligent optimization of caching operations in a data storage device |
US11650746B2 (en) | 2019-09-05 | 2023-05-16 | Micron Technology, Inc. | Intelligent write-amplification reduction for data storage devices configured on autonomous vehicles |
US11436076B2 (en) | 2019-09-05 | 2022-09-06 | Micron Technology, Inc. | Predictive management of failing portions in a data storage device |
US11693562B2 (en) | 2019-09-05 | 2023-07-04 | Micron Technology, Inc. | Bandwidth optimization for different types of operations scheduled in a data storage device |
US11184191B1 (en) * | 2019-09-12 | 2021-11-23 | Trend Micro Incorporated | Inspection of network traffic on accelerated platforms |
US11144290B2 (en) * | 2019-09-13 | 2021-10-12 | Huawei Technologies Co., Ltd. | Method and apparatus for enabling autonomous acceleration of dataflow AI applications |
US11266007B2 (en) | 2019-09-18 | 2022-03-01 | Arista Networks, Inc. | Linecard system using riser printed circuit boards (PCBS) |
US20200136921A1 (en) * | 2019-09-28 | 2020-04-30 | Intel Corporation | Methods, system, articles of manufacture, and apparatus to manage telemetry data in an edge environment |
US11436193B2 (en) * | 2019-09-30 | 2022-09-06 | Dell Products L.P. | System and method for managing data using an enumerator |
US11151011B2 (en) | 2019-10-01 | 2021-10-19 | International Business Machines Corporation | Uncore input/output latency analysis |
US11651209B1 (en) | 2019-10-02 | 2023-05-16 | Google Llc | Accelerated embedding layer computations |
US11748174B2 (en) * | 2019-10-02 | 2023-09-05 | Intel Corporation | Method for arbitration and access to hardware request ring structures in a concurrent environment |
CN112631954A (en) * | 2019-10-09 | 2021-04-09 | 联想企业解决方案(新加坡)有限公司 | Expandable dual inline memory module |
US11210162B2 (en) * | 2019-10-11 | 2021-12-28 | EMC IP Holding Company LLC | Approach to improve decompression performance by scatter gather compression units and also updating checksum mechanism |
US11093283B2 (en) * | 2019-10-15 | 2021-08-17 | EMC IP Holding Company LLC | System and method of dynamically allocating compression jobs |
US11429573B2 (en) * | 2019-10-16 | 2022-08-30 | Dell Products L.P. | Data deduplication system |
US20210117441A1 (en) * | 2019-10-17 | 2021-04-22 | Dell Products L.P. | Data replication system |
EP3816781A1 (en) * | 2019-10-30 | 2021-05-05 | Sunlight.io Limited | Storage area network controller |
US11580233B1 (en) * | 2019-11-13 | 2023-02-14 | Meta Platforms, Inc. | Baseboard-management-controller storage module |
US11734038B1 (en) | 2019-11-21 | 2023-08-22 | Amazon Technologies, Inc | Multiple simultaneous volume attachments for live migration between cloud regions and edge locations |
US11573839B1 (en) * | 2019-11-21 | 2023-02-07 | Amazon Technologies, Inc. | Dynamic scheduling for live migration between cloud regions and edge locations |
US11461123B1 (en) | 2019-11-21 | 2022-10-04 | Amazon Technologies, Inc. | Dynamic pre-copy and post-copy determination for live migration between cloud regions and edge locations |
US11782810B2 (en) * | 2019-11-22 | 2023-10-10 | Dell Products, L.P. | Systems and methods for automated field replacement component configuration |
US11610102B1 (en) * | 2019-11-27 | 2023-03-21 | Amazon Technologies, Inc. | Time-based memory allocation for neural network inference |
US11250648B2 (en) | 2019-12-18 | 2022-02-15 | Micron Technology, Inc. | Predictive maintenance of automotive transmission |
US20200133649A1 (en) * | 2019-12-23 | 2020-04-30 | Intel Corporation | Processor controlled programmable logic device modification |
US11182150B2 (en) | 2020-01-14 | 2021-11-23 | Pensando Systems Inc. | Zero packet loss upgrade of an IO device |
US11243890B2 (en) * | 2020-01-14 | 2022-02-08 | EMC IP Holding Company LLC | Compressed data verification |
US11487592B2 (en) * | 2020-01-22 | 2022-11-01 | EMC IP Holding Company LLC | Dynamic application migration across storage platforms |
US11372180B2 (en) | 2020-01-31 | 2022-06-28 | Ciena Corporation | Modular networking hardware platform |
US11709625B2 (en) | 2020-02-14 | 2023-07-25 | Micron Technology, Inc. | Optimization of power usage of data storage devices |
US11531339B2 (en) | 2020-02-14 | 2022-12-20 | Micron Technology, Inc. | Monitoring of drive by wire sensors in vehicles |
US11856736B1 (en) * | 2020-03-02 | 2023-12-26 | Core Scientific Operating Company | Computing device system and method with racks connected together to form a sled |
US11650965B2 (en) * | 2020-03-05 | 2023-05-16 | Zscaler, Inc. | Systems and methods for efficiently maintaining records in a cloud-based system |
US20210294904A1 (en) * | 2020-03-20 | 2021-09-23 | 5thColumn LLC | Generation of an asset evaluation regarding a system aspect of a system |
US11115497B2 (en) * | 2020-03-25 | 2021-09-07 | Intel Corporation | Technologies for providing advanced resource management in a disaggregated environment |
EP4120077A4 (en) * | 2020-03-31 | 2023-04-05 | Huawei Technologies Co., Ltd. | Method for scheduling hardware accelerator, and task scheduler |
US11616859B2 (en) * | 2020-03-31 | 2023-03-28 | Microsoft Technology Licensing, Llc | Unified counting platform |
US11570808B2 (en) * | 2020-04-08 | 2023-01-31 | Qualcomm Incorporated | Two-step random access procedure in wireless communication |
US11741319B2 (en) * | 2020-04-27 | 2023-08-29 | Carrier Corporation | Configuration of building automation system controllers using near field communication |
US11483943B2 (en) * | 2020-04-30 | 2022-10-25 | Hewlett Packard Enterprise Development Lp | Computing device |
US11934330B2 (en) * | 2020-05-08 | 2024-03-19 | Intel Corporation | Memory allocation for distributed processing devices |
US11182096B1 (en) | 2020-05-18 | 2021-11-23 | Amazon Technologies, Inc. | Data storage system with configurable durability |
US11360681B2 (en) * | 2020-05-27 | 2022-06-14 | Xiaoliang Zhao | Systems and methods for scalable shared memory among networked devices comprising IP addressable memory blocks |
CN113742028A (en) * | 2020-05-28 | 2021-12-03 | 伊姆西Ip控股有限责任公司 | Resource using method, electronic device and computer program product |
US11962518B2 (en) | 2020-06-02 | 2024-04-16 | VMware LLC | Hardware acceleration techniques using flow selection |
US11563745B2 (en) | 2020-06-12 | 2023-01-24 | Baidu Usa Llc | Method for data protection in a data processing cluster with policy-based partition |
US11687376B2 (en) | 2020-06-12 | 2023-06-27 | Baidu Usa Llc | Method for data protection in a data processing cluster with dynamic partition |
US11847501B2 (en) | 2020-06-12 | 2023-12-19 | Baidu Usa Llc | Method for data protection in a data processing cluster with partition |
US11687629B2 (en) * | 2020-06-12 | 2023-06-27 | Baidu Usa Llc | Method for data protection in a data processing cluster with authentication |
US11800554B2 (en) * | 2020-06-17 | 2023-10-24 | Lg Electronics Inc. | Method and apparatus for handling tasks in parallel |
US11212219B1 (en) * | 2020-06-26 | 2021-12-28 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | In-band telemetry packet size optimization |
CN112019589B (en) * | 2020-06-30 | 2023-09-05 | 浙江远望信息股份有限公司 | Multi-level load balancing data packet processing method |
CN114090274A (en) | 2020-07-31 | 2022-02-25 | 华为技术有限公司 | Network interface card, storage device, message receiving method and message sending method |
US20220035684A1 (en) * | 2020-08-03 | 2022-02-03 | Nvidia Corporation | Dynamic load balancing of operations for real-time deep learning analytics |
US11681443B1 (en) | 2020-08-28 | 2023-06-20 | Amazon Technologies, Inc. | Durable data storage with snapshot storage space optimization |
CA3195228A1 (en) * | 2020-09-18 | 2022-03-24 | Nubis Communications Inc. | Data processing systems including optical communication modules |
US10997106B1 (en) | 2020-09-22 | 2021-05-04 | Pensando Sytems Inc. | Inter-smartNIC virtual-link for control and datapath connectivity |
US20210011787A1 (en) * | 2020-09-25 | 2021-01-14 | Francesc Guim Bernat | Technologies for scaling inter-kernel technologies for accelerator device kernels |
US11704151B2 (en) * | 2020-09-28 | 2023-07-18 | International Business Machines Corporation | Estimate and control execution time of a utility command |
US11792134B2 (en) | 2020-09-28 | 2023-10-17 | Vmware, Inc. | Configuring PNIC to perform flow processing offload using virtual port identifiers |
US11875172B2 (en) | 2020-09-28 | 2024-01-16 | VMware LLC | Bare metal computer for booting copies of VM images on multiple computing devices using a smart NIC |
US12021759B2 (en) | 2020-09-28 | 2024-06-25 | VMware LLC | Packet processing with hardware offload units |
US11636053B2 (en) | 2020-09-28 | 2023-04-25 | Vmware, Inc. | Emulating a local storage by accessing an external storage through a shared port of a NIC |
US11716383B2 (en) | 2020-09-28 | 2023-08-01 | Vmware, Inc. | Accessing multiple external storages to present an emulated local storage through a NIC |
US11593278B2 (en) | 2020-09-28 | 2023-02-28 | Vmware, Inc. | Using machine executing on a NIC to access a third party storage not supported by a NIC or host |
US20210117242A1 (en) * | 2020-10-03 | 2021-04-22 | Intel Corporation | Infrastructure processing unit |
KR20220045758A (en) * | 2020-10-06 | 2022-04-13 | 에스케이하이닉스 주식회사 | Storage device and operating method thereof |
CA3198375A1 (en) | 2020-10-07 | 2022-04-14 | Nubis Communications, Inc. | Data processing systems including optical communication modules |
US11914903B2 (en) * | 2020-10-12 | 2024-02-27 | Samsung Electronics Co., Ltd. | Systems, methods, and devices for accelerators with virtualization and tiered memory |
US11829798B2 (en) * | 2020-10-21 | 2023-11-28 | Dell Products L.P. | System and method to improve data compression ratios for fixed block sizes in a smart data accelerator interface device |
KR20220056986A (en) * | 2020-10-29 | 2022-05-09 | 삼성전자주식회사 | Memory expander, heterogeneous computing device, and operation method of heterogeneous computing device |
US11477267B2 (en) | 2020-11-09 | 2022-10-18 | Microsoft Technology Licensing, Llc | Operating cloud-managed remote edge sites at reduced disk capacity |
US11516087B2 (en) * | 2020-11-30 | 2022-11-29 | Google Llc | Connecting processors using twisted torus configurations |
US11544116B2 (en) * | 2020-11-30 | 2023-01-03 | Hewlett Packard Enterprise Development Lp | Method and system for facilitating dynamic hardware resource allocation in an active switch |
US11182221B1 (en) * | 2020-12-18 | 2021-11-23 | SambaNova Systems, Inc. | Inter-node buffer-based streaming for reconfigurable processor-as-a-service (RPaaS) |
US12130738B2 (en) * | 2020-12-22 | 2024-10-29 | Intel Corporation | Compressed cache memory with decompress on fault |
US20220004330A1 (en) * | 2020-12-26 | 2022-01-06 | Intel Corporation | Memory pool data placement technologies |
TWI760036B (en) * | 2020-12-30 | 2022-04-01 | 技嘉科技股份有限公司 | Data transmission method of server firmware via http/https and server |
US11281453B1 (en) | 2021-01-06 | 2022-03-22 | Pensando Systems, Inc. | Methods and systems for a hitless rollback mechanism during software upgrade of a network appliance |
US20220236870A1 (en) * | 2021-01-26 | 2022-07-28 | EMC IP Holding Company LLC | Method and system for compression in block-based storage systems |
US11726827B2 (en) * | 2021-02-19 | 2023-08-15 | Vast Data Ltd. | Hierarchical workload allocation in a storage system |
US11641681B2 (en) * | 2021-03-02 | 2023-05-02 | Micron Technology, Inc. | Data transmission and remote activity monitoring |
US11973655B2 (en) * | 2021-03-05 | 2024-04-30 | VMware LLC | SDL cache for O-RAN |
CN115202854A (en) * | 2021-04-08 | 2022-10-18 | 富泰华工业(深圳)有限公司 | Data control method, data processing method and related equipment |
US12066653B2 (en) | 2021-04-22 | 2024-08-20 | Nubis Communications, Inc. | Communication systems having optical power supplies |
US11507285B1 (en) | 2021-05-12 | 2022-11-22 | TORmem Inc. | Systems and methods for providing high-performance access to shared computer memory via different interconnect fabrics |
EP4095705A1 (en) * | 2021-05-28 | 2022-11-30 | Cetitec GmbH | Communication node for data networks and busses |
WO2022266376A1 (en) * | 2021-06-17 | 2022-12-22 | Nubis Communications, Inc. | Communication systems having pluggable modules |
US12135629B2 (en) * | 2021-06-28 | 2024-11-05 | Dell Products L.P. | Workload placement based on special purpose accelerator requirements and performance metrics |
JP2023007800A (en) * | 2021-07-02 | 2023-01-19 | 富士通株式会社 | Computer system and control method |
US20230004414A1 (en) * | 2021-07-05 | 2023-01-05 | VNware, Inc. | Automated instantiation and management of mobile networks |
US11755489B2 (en) * | 2021-08-31 | 2023-09-12 | Apple Inc. | Configurable interface circuit |
US20210406091A1 (en) * | 2021-09-07 | 2021-12-30 | Intel Corporation | Technologies to offload workload execution |
US20230075667A1 (en) * | 2021-09-09 | 2023-03-09 | Intel Corporation | Verifying compressed stream fused with copy or transform operations |
US11588750B1 (en) * | 2021-09-16 | 2023-02-21 | International Business Machines Corporation | Dynamic orchestration of disaggregated resources |
EP4152065A1 (en) | 2021-09-16 | 2023-03-22 | Nubis Communications, Inc. | Communication systems having co-packaged optical modules |
US11750581B1 (en) * | 2021-09-17 | 2023-09-05 | Graphiant, Inc. | Secure communication network |
US20220014551A1 (en) * | 2021-09-24 | 2022-01-13 | Intel Corporation | Method and apparatus to reduce risk of denial of service resource acquisition attacks in a data center |
US11567873B1 (en) * | 2021-09-27 | 2023-01-31 | Sap Se | Extended cache for efficient object store access by a database |
CN113595807B (en) * | 2021-09-28 | 2022-03-01 | 阿里云计算有限公司 | Computer system, RDMA network card and data communication method |
CN115883458A (en) * | 2021-09-28 | 2023-03-31 | 阿里云计算有限公司 | Data transmission method, system, equipment and storage medium |
US11553038B1 (en) * | 2021-10-22 | 2023-01-10 | Kyndryl, Inc. | Optimizing device-to-device communication protocol selection in an edge computing environment |
US20230145253A1 (en) * | 2021-11-11 | 2023-05-11 | Advanced Micro Devices, Inc. | Reducing latency in highly scalable hpc applications via accelerator-resident runtime management |
US20230153168A1 (en) * | 2021-11-18 | 2023-05-18 | International Business Machines Corporation | Accelerator trustworthiness |
US12020063B2 (en) | 2021-12-01 | 2024-06-25 | Google Llc | Preflight checks for hardware accelerators in a distributed system |
US11863376B2 (en) | 2021-12-22 | 2024-01-02 | Vmware, Inc. | Smart NIC leader election |
US11995024B2 (en) | 2021-12-22 | 2024-05-28 | VMware LLC | State sharing between smart NICs |
US20230214337A1 (en) * | 2022-01-06 | 2023-07-06 | Vmware, Inc. | Methods and systems for extablishing direct communications between a server computer and a smart network interface controller |
US12056035B2 (en) * | 2022-01-13 | 2024-08-06 | Dell Products L.P. | System and method for enhanced container deployment |
US11971990B2 (en) | 2022-01-13 | 2024-04-30 | Dell Products L.P. | System and method for container validation |
US20230236889A1 (en) * | 2022-01-27 | 2023-07-27 | Microsoft Technology Licensing, Llc | Distributed accelerator |
US20230244664A1 (en) * | 2022-02-02 | 2023-08-03 | Samsung Electronics Co., Ltd. | Hybrid database scan acceleration system |
US11906800B2 (en) * | 2022-03-25 | 2024-02-20 | Arista Networks, Inc. | High speed network device with orthogonal pluggable optics modules |
US20230305247A1 (en) * | 2022-03-25 | 2023-09-28 | Arista Networks, Inc. | High speed network device with orthogonal pluggable optics modules |
CN114625347A (en) * | 2022-03-29 | 2022-06-14 | 中国工商银行股份有限公司 | Storage system SDK docking method, device, equipment and storage medium |
WO2023215315A1 (en) | 2022-05-02 | 2023-11-09 | Nubis Communications, Inc. | Communication systems having pluggable optical modules |
US11747980B1 (en) | 2022-05-19 | 2023-09-05 | International Business Machines Corporation | Decompression of a file |
US11899594B2 (en) | 2022-06-21 | 2024-02-13 | VMware LLC | Maintenance of data message classification cache on smart NIC |
US11928062B2 (en) | 2022-06-21 | 2024-03-12 | VMware LLC | Accelerating data message classification with smart NICs |
US11928367B2 (en) | 2022-06-21 | 2024-03-12 | VMware LLC | Logical memory addressing for network devices |
US11977505B2 (en) * | 2022-07-29 | 2024-05-07 | Dell Products L.P. | Data center asset client bridging via a passthrough device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105979007A (en) * | 2016-07-04 | 2016-09-28 | 华为技术有限公司 | Acceleration resource processing method and device and network function virtualization system |
US20160306663A1 (en) * | 2012-07-31 | 2016-10-20 | International Business Machines Corporation | Method and system for allocating fpga resources |
US20170046179A1 (en) * | 2015-08-13 | 2017-02-16 | Altera Corporation | Application-based dynamic heterogeneous many-core systems and methods |
Family Cites Families (315)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2458153A (en) * | 1946-06-07 | 1949-01-04 | Festge Charles | Safety device for electric plugs |
US3651444A (en) * | 1970-06-23 | 1972-03-21 | Amp Inc | Printed circuit board connector |
US4176897A (en) * | 1976-11-19 | 1979-12-04 | Bunker Ramo Corporation | EMI protected connector assembly |
JPH0418226Y2 (en) * | 1987-01-26 | 1992-04-23 | ||
US4890894A (en) * | 1988-06-16 | 1990-01-02 | Northern Telecom Limited | Optical connector |
US4863232A (en) * | 1988-06-16 | 1989-09-05 | Northern Telecom Limited | Optical connector |
JPH02222087A (en) * | 1989-02-23 | 1990-09-04 | Toshiba Corp | Recording medium connecting device |
US5467087A (en) * | 1992-12-18 | 1995-11-14 | Apple Computer, Inc. | High speed lossless data compression system |
US5372515A (en) * | 1993-06-10 | 1994-12-13 | Martin Marietta Corporation | Mechanical ESD protector |
JPH08138785A (en) * | 1994-11-10 | 1996-05-31 | Yazaki Corp | Connector equipped with shutter mechanism |
US6785888B1 (en) | 1997-08-29 | 2004-08-31 | International Business Machines Corporation | Memory allocator for a multiprocessor computer system |
US6085295A (en) | 1997-10-20 | 2000-07-04 | International Business Machines Corporation | Method of maintaining data coherency in a computer system having a plurality of interconnected nodes |
US6115372A (en) | 1998-02-04 | 2000-09-05 | Newcom Technologies, Inc. | Synchronous packet switching |
US6367018B1 (en) | 1998-02-05 | 2002-04-02 | 3Com Corporation | Method for detecting dedicated link between an end station and a network device |
US6058356A (en) * | 1998-04-30 | 2000-05-02 | Cooper Instrument Corporation | Hand-held electronic instrument |
US6154446A (en) | 1998-07-08 | 2000-11-28 | Broadcom Corporation | Network switching architecture utilizing cell based and packet based per class-of-service head-of-line blocking prevention |
US6714549B1 (en) | 1998-12-23 | 2004-03-30 | Worldcom, Inc. | High resiliency network infrastructure |
US6353885B1 (en) | 1999-01-26 | 2002-03-05 | Dell Usa, L.P. | System and method for providing bios-level user configuration of a computer system |
US6650620B1 (en) * | 1999-05-04 | 2003-11-18 | Tut Systems, Inc. | Resource constrained routing in active networks |
FR2801432B1 (en) * | 1999-11-19 | 2001-12-21 | Marechal Sepm | SOCKET BASE PROVIDED WITH A BELLOWS SEAL |
US6368129B1 (en) * | 1999-12-24 | 2002-04-09 | Delta Electronics, Inc. | Electrical connector with outer and inner sleeves |
US6678746B1 (en) | 2000-08-01 | 2004-01-13 | Hewlett-Packard Development Company, L.P. | Processing network packets |
JP3431015B2 (en) | 2000-11-17 | 2003-07-28 | 日本電気株式会社 | System and method for changing link layer protocol of line termination device |
US7055148B2 (en) * | 2000-12-07 | 2006-05-30 | Hewlett-Packard Development Company, L.P. | System and method for updating firmware |
US6731832B2 (en) | 2001-02-28 | 2004-05-04 | Lambda Opticalsystems Corporation | Detection of module insertion/removal in a modular optical network, and methods and apparatus therefor |
US20030028594A1 (en) | 2001-07-31 | 2003-02-06 | International Business Machines Corporation | Managing intended group membership using domains |
US6454580B1 (en) * | 2001-08-22 | 2002-09-24 | Hon Hai Precision Ind. Co., Ltd. | Guide rail for receiving a GBIC module |
JP2003296022A (en) * | 2002-04-01 | 2003-10-17 | Pioneer Electronic Corp | Touch panel integrated display device |
US8284844B2 (en) * | 2002-04-01 | 2012-10-09 | Broadcom Corporation | Video decoding system supporting multiple standards |
US7181531B2 (en) * | 2002-04-30 | 2007-02-20 | Microsoft Corporation | Method to synchronize and upload an offloaded network stack connection with a network stack |
US7007103B2 (en) * | 2002-04-30 | 2006-02-28 | Microsoft Corporation | Method to offload a network stack |
DE60223653T2 (en) | 2002-05-07 | 2008-10-30 | Abb Research Ltd. | Microwave conductor bus for digital devices |
US8005966B2 (en) * | 2002-06-11 | 2011-08-23 | Pandya Ashish A | Data processing system using internet protocols |
CN1266887C (en) | 2002-07-10 | 2006-07-26 | 华为技术有限公司 | Virtual switch for supplying virtual LAN service and method |
US8850223B1 (en) * | 2002-07-19 | 2014-09-30 | F5 Networks, Inc. | Method and system for hard disk emulation and cryptographic acceleration on a blade server |
MXPA05002390A (en) | 2002-09-03 | 2005-05-27 | Thomson Licensing Sa | Mechanism for providing quality of service in a network utilizing priority and reserved bandwidth protocols. |
KR20050085155A (en) | 2002-12-02 | 2005-08-29 | 오페락스 아베 | Arrangements and method for hierarchical resource management in a layered network architecture |
US7231512B2 (en) * | 2002-12-18 | 2007-06-12 | Intel Corporation | Technique for reconstituting a pre-boot firmware environment after launch of an operating system |
US7987449B1 (en) * | 2003-05-22 | 2011-07-26 | Hewlett-Packard Development Company, L.P. | Network for lifecycle management of firmware and software in electronic devices |
WO2005013137A1 (en) * | 2003-08-04 | 2005-02-10 | Fujitsu Limited | Data transfer method |
US7136958B2 (en) | 2003-08-28 | 2006-11-14 | Micron Technology, Inc. | Multiple processor system and method including multiple memory hub modules |
US8838772B2 (en) | 2003-08-29 | 2014-09-16 | Ineoquest Technologies, Inc. | System and method for analyzing the performance of multiple transportation streams of streaming media in packet-based networks |
US7689738B1 (en) * | 2003-10-01 | 2010-03-30 | Advanced Micro Devices, Inc. | Peripheral devices and methods for transferring incoming data status entries from a peripheral to a host |
US7826614B1 (en) * | 2003-11-05 | 2010-11-02 | Globalfoundries Inc. | Methods and apparatus for passing initialization vector information from software to hardware to perform IPsec encryption operation |
US7236588B2 (en) * | 2003-12-12 | 2007-06-26 | Nokia Corporation | Interlocking cover for mobile terminals |
US6952530B2 (en) * | 2003-12-19 | 2005-10-04 | The Aerospace Corporation | Integrated glass ceramic systems |
US7756008B2 (en) | 2003-12-19 | 2010-07-13 | At&T Intellectual Property Ii, L.P. | Routing protocols with predicted outrage notification |
KR100693663B1 (en) * | 2003-12-30 | 2007-03-14 | 엘지엔시스(주) | System and Method for detecting obstacle of node |
KR20060123442A (en) * | 2004-01-07 | 2006-12-01 | 다우 글로벌 테크놀로지스 인크. | Impact-resistant case with sealable opening |
US7475174B2 (en) * | 2004-03-17 | 2009-01-06 | Super Talent Electronics, Inc. | Flash / phase-change memory in multi-ring topology using serial-link packet interface |
US7724532B2 (en) * | 2004-07-02 | 2010-05-25 | Apple Inc. | Handheld computing device |
US7712100B2 (en) | 2004-09-14 | 2010-05-04 | International Business Machines Corporation | Determining a capacity of a grid environment to handle a required workload for a virtual grid job request |
EP1643710A1 (en) * | 2004-09-30 | 2006-04-05 | Nagravision S.A. | Method of updating a lookup table of addresses and identification numbers |
CN101305334B (en) * | 2004-12-29 | 2012-01-11 | 辉达公司 | Intelligent storage engine for disk drive operations with reduced local bus traffic |
CN1816003A (en) | 2005-02-06 | 2006-08-09 | 华为技术有限公司 | Telecommunication method and apparatus of dissimilar chain protocol |
US20060176524A1 (en) * | 2005-02-08 | 2006-08-10 | Willrich Scott Consulting Group, Inc. | Compact portable document digitizer and organizer with integral display |
US8526881B2 (en) * | 2005-04-18 | 2013-09-03 | The Boeing Company | Mechanically isolated wireless communications system and method |
US8059660B2 (en) | 2005-04-22 | 2011-11-15 | Nextel Communications Inc. | Communications routing systems and methods |
US7739677B1 (en) | 2005-05-27 | 2010-06-15 | Symantec Operating Corporation | System and method to prevent data corruption due to split brain in shared data clusters |
US7368307B2 (en) * | 2005-06-07 | 2008-05-06 | Eastman Kodak Company | Method of manufacturing an OLED device with a curved light emitting surface |
US9813283B2 (en) * | 2005-08-09 | 2017-11-07 | Oracle International Corporation | Efficient data transfer between servers and remote peripherals |
US7884315B2 (en) * | 2006-07-11 | 2011-02-08 | Apple Inc. | Invisible, light-transmissive display system |
US8407424B2 (en) | 2005-11-07 | 2013-03-26 | Silicon Graphics International Corp. | Data coherence method and apparatus for multi-node computer system |
JP4770446B2 (en) * | 2005-12-20 | 2011-09-14 | サンケン電気株式会社 | Overheat protection circuit for power supply and DC power supply |
US7694160B2 (en) * | 2006-08-31 | 2010-04-06 | Ati Technologies Ulc | Method and apparatus for optimizing power consumption in a multiprocessor environment |
JP4172807B2 (en) * | 2006-09-08 | 2008-10-29 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Technology that supports the discovery of the cause of failure |
CN101518168B (en) * | 2006-09-22 | 2011-12-07 | 日本写真印刷株式会社 | Housing case, method for manufacturing the housing case and glass insert forming die used in the method |
US8428071B2 (en) | 2006-09-25 | 2013-04-23 | Rockstar Consortium Us Lp | Scalable optical-core network |
US7962736B1 (en) | 2006-10-03 | 2011-06-14 | American Megatrends, Inc. | Interactive pre-OS firmware update with repeated disabling of interrupts |
KR100930576B1 (en) * | 2006-12-04 | 2009-12-09 | 한국전자통신연구원 | How to Manage Failures in Virtualization-Based High Availability Cluster Systems and High Availability Cluster Systems |
KR20090087498A (en) * | 2006-12-06 | 2009-08-17 | 퓨전 멀티시스템즈, 인크.(디비에이 퓨전-아이오) | Apparatus, system and method for solid-state storage as cache for high-capacity, non-volatile storage |
US7987469B2 (en) * | 2006-12-14 | 2011-07-26 | Intel Corporation | RDMA (remote direct memory access) data transfer in a virtual environment |
US7870316B1 (en) * | 2006-12-29 | 2011-01-11 | Unisys Corporation | System and method for providing an inline data conversion for multiplexed data streams |
US7668984B2 (en) | 2007-01-10 | 2010-02-23 | International Business Machines Corporation | Low latency send queues in I/O adapter hardware |
US8205205B2 (en) | 2007-03-16 | 2012-06-19 | Sap Ag | Multi-objective allocation of computational jobs in client-server or hosting environments |
US8341611B2 (en) * | 2007-04-11 | 2012-12-25 | Apple Inc. | Application interface on multiple processors |
US8897184B2 (en) | 2007-06-22 | 2014-11-25 | Vubiq Networks, Inc. | System and method for wireless communication in a backplane fabric architecture |
WO2009002464A2 (en) * | 2007-06-22 | 2008-12-31 | Vubiq Incorporated | System and method for wireless communication in a backplane fabric architecture |
US8037272B2 (en) * | 2007-06-27 | 2011-10-11 | International Business Machines Corporation | Structure for memory chip for high capacity memory subsystem supporting multiple speed bus |
US7996641B2 (en) * | 2007-06-27 | 2011-08-09 | International Business Machines Corporation | Structure for hub for supporting high capacity memory subsystem |
US7921264B2 (en) * | 2007-06-27 | 2011-04-05 | International Business Machines Corporation | Dual-mode memory chip for high capacity memory subsystem |
US8248928B1 (en) | 2007-10-09 | 2012-08-21 | Foundry Networks, Llc | Monitoring server load balancing |
US9143406B2 (en) | 2007-10-17 | 2015-09-22 | Verizon Patent And Licensing Inc. | Apparatus, method and computer-readable storage medium for calculating throughput requirements of a network |
US9003054B2 (en) * | 2007-10-25 | 2015-04-07 | Microsoft Technology Licensing, Llc | Compressing null columns in rows of the tabular data stream protocol |
KR100956638B1 (en) * | 2007-12-11 | 2010-05-11 | 한국전자통신연구원 | Large Scale Cluster Monitoring System, And Automatic Building And Restoration Method Thereof |
US7603428B2 (en) | 2008-02-05 | 2009-10-13 | Raptor Networks Technology, Inc. | Software application striping |
US8082418B2 (en) * | 2007-12-17 | 2011-12-20 | Intel Corporation | Method and apparatus for coherent device initialization and access |
US7953912B2 (en) * | 2008-02-22 | 2011-05-31 | International Business Machines Corporation | Guided attachment of accelerators to computer systems |
US8306652B2 (en) * | 2008-03-14 | 2012-11-06 | International Business Machines Corporation | Dual-band communication of management traffic in a blade server system |
US9391921B1 (en) * | 2008-03-18 | 2016-07-12 | Packeteer, Inc. | Virtual bandwidth management deployment architectures |
US8238087B2 (en) * | 2010-01-06 | 2012-08-07 | Apple Inc. | Display module |
JP5044510B2 (en) * | 2008-06-03 | 2012-10-10 | 株式会社東芝 | Housing, electronic device, and manufacturing method of housing |
US7697281B2 (en) * | 2008-09-05 | 2010-04-13 | Apple Inc. | Handheld computing device |
JP2010103982A (en) | 2008-09-25 | 2010-05-06 | Sony Corp | Millimeter wave transmission device, millimeter wave transmission method, and millimeter wave transmission system |
US8687359B2 (en) * | 2008-10-13 | 2014-04-01 | Apple Inc. | Portable computer unified top case |
US8713312B2 (en) * | 2008-12-07 | 2014-04-29 | Trend Micrio Incorporated | Method and system for detecting data modification within computing device |
US9170864B2 (en) | 2009-01-29 | 2015-10-27 | International Business Machines Corporation | Data processing in a hybrid computing environment |
EP2404228B1 (en) * | 2009-03-02 | 2020-01-15 | Apple Inc. | Techniques for strengthening glass covers for portable electronic devices |
US8493364B2 (en) * | 2009-04-30 | 2013-07-23 | Motorola Mobility Llc | Dual sided transparent display module and portable electronic device incorporating the same |
US8479220B2 (en) * | 2009-06-04 | 2013-07-02 | International Business Machines Corporation | Automatically correlating transaction events |
US20100312962A1 (en) * | 2009-06-09 | 2010-12-09 | Dekoning Rodney A | N-way directly connected any to any controller architecture |
US8554892B2 (en) * | 2009-06-22 | 2013-10-08 | Citrix Systems, Inc. | Systems and methods for n-core statistics aggregation |
US20110103391A1 (en) * | 2009-10-30 | 2011-05-05 | Smooth-Stone, Inc. C/O Barry Evans | System and method for high-performance, low-power data center interconnect fabric |
US8832142B2 (en) | 2010-08-30 | 2014-09-09 | Oracle International Corporation | Query and exadata support for hybrid columnar compressed data |
US8776066B2 (en) * | 2009-11-30 | 2014-07-08 | International Business Machines Corporation | Managing task execution on accelerators |
WO2011083505A1 (en) * | 2010-01-05 | 2011-07-14 | Hitachi, Ltd. | Method and server system for testing and executing migration between virtual servers |
US9455937B2 (en) * | 2010-01-07 | 2016-09-27 | Force10 Networks, Inc. | Distributed packet switch having a wireless control plane |
KR101727130B1 (en) * | 2010-01-20 | 2017-04-14 | 인트린직 아이디 비브이 | Device and method for obtaining a cryptographic key |
US8195883B2 (en) * | 2010-01-27 | 2012-06-05 | Oracle America, Inc. | Resource sharing to reduce implementation costs in a multicore processor |
US8463865B2 (en) * | 2010-03-09 | 2013-06-11 | Texas Instruments Incorporated | Video synchronization with distributed modules |
US8869138B2 (en) * | 2011-11-11 | 2014-10-21 | Wyse Technology L.L.C. | Robust firmware update with recovery logic |
US8442064B2 (en) | 2010-03-19 | 2013-05-14 | Juniper Networks, Inc. | Virtual link aggregation of network traffic in an aggregation switch |
US8264837B2 (en) * | 2010-04-19 | 2012-09-11 | Apple Inc. | Systems and methods for cover assembly retention of a portable electronic device |
US9300576B2 (en) | 2010-05-03 | 2016-03-29 | Pluribus Networks Inc. | Methods, systems, and fabrics implementing a distributed network operating system |
US8386855B2 (en) | 2010-05-25 | 2013-02-26 | Red Hat, Inc. | Distributed healthchecking mechanism |
US8898324B2 (en) * | 2010-06-24 | 2014-11-25 | International Business Machines Corporation | Data access management in a hybrid memory server |
US8914805B2 (en) * | 2010-08-31 | 2014-12-16 | International Business Machines Corporation | Rescheduling workload in a hybrid computing environment |
US8739171B2 (en) | 2010-08-31 | 2014-05-27 | International Business Machines Corporation | High-throughput-computing in a hybrid computing environment |
FR2964501B1 (en) * | 2010-09-07 | 2013-05-17 | Schneider Electric Ind Sas | ASSEMBLY OF ELECTRICAL OUTLET |
US8824140B2 (en) * | 2010-09-17 | 2014-09-02 | Apple Inc. | Glass enclosure |
US8782339B2 (en) * | 2010-10-11 | 2014-07-15 | Open Invention Network, Llc | Storage system having cross node data redundancy and method and computer readable medium for same |
US8503879B2 (en) | 2010-10-25 | 2013-08-06 | Nec Laboratories America, Inc. | Hybrid optical/electrical switching system for data center networks |
US20120099591A1 (en) * | 2010-10-26 | 2012-04-26 | Dell Products, Lp | System and Method for Scalable Flow Aware Network Architecture for Openflow Based Network Virtualization |
US20120137289A1 (en) * | 2010-11-30 | 2012-05-31 | International Business Machines Corporation | Protecting high priority workloads in a virtualized datacenter |
US8996644B2 (en) * | 2010-12-09 | 2015-03-31 | Solarflare Communications, Inc. | Encapsulated accelerator |
US9600429B2 (en) * | 2010-12-09 | 2017-03-21 | Solarflare Communications, Inc. | Encapsulated accelerator |
US10033585B2 (en) | 2010-12-15 | 2018-07-24 | Juniper Networks, Inc. | Methods and apparatus related to a switch fabric system having a multi-hop distributed control plane and a single-hop data plane |
US8638767B2 (en) | 2011-02-14 | 2014-01-28 | Qualcomm Incorporated | Multi-communication mode packet routing mechanism for wireless communications systems |
US8892788B2 (en) * | 2011-02-22 | 2014-11-18 | Red Hat Israel, Ltd. | Exposing a DMA engine to guests in a virtual machine system |
US8861369B2 (en) * | 2011-03-07 | 2014-10-14 | Oracle International Corporation | Virtual network interface with packet filtering hooks |
US9025603B2 (en) | 2011-03-08 | 2015-05-05 | Qualcomm Incorporated | Addressing scheme for hybrid communication networks |
US20120240125A1 (en) * | 2011-03-18 | 2012-09-20 | Qnx Software Systems Co | System Resource Management In An Electronic Device |
US8462780B2 (en) * | 2011-03-30 | 2013-06-11 | Amazon Technologies, Inc. | Offload device-based stateless packet processing |
US9405550B2 (en) * | 2011-03-31 | 2016-08-02 | International Business Machines Corporation | Methods for the transmission of accelerator commands and corresponding command structure to remote hardware accelerator engines over an interconnect link |
US8825900B1 (en) * | 2011-04-05 | 2014-09-02 | Nicira, Inc. | Method and apparatus for stateless transport layer tunneling |
US9645628B1 (en) * | 2011-05-09 | 2017-05-09 | EMC IP Holding Company LLC | Combined data storage and computing appliance that provides scalable storage in a clustered computing environment |
US9042402B1 (en) | 2011-05-10 | 2015-05-26 | Juniper Networks, Inc. | Methods and apparatus for control protocol validation of a switch fabric system |
US8745614B2 (en) * | 2011-05-13 | 2014-06-03 | Lsi Corporation | Method and system for firmware upgrade of a storage subsystem hosted in a storage virtualization environment |
US20120311127A1 (en) * | 2011-05-31 | 2012-12-06 | Microsoft Corporation | Flyway Generation in Data Centers |
US8400335B2 (en) * | 2011-07-21 | 2013-03-19 | International Business Machines Corporation | Using variable length code tables to compress an input data stream to a compressed output data stream |
EP2737718B1 (en) | 2011-07-29 | 2019-09-04 | Vubiq Networks Inc. | System and method for wireless communication in a backplane fabric architecture |
US9240900B2 (en) * | 2011-09-06 | 2016-01-19 | Texas Instruments Incorporated | Wireless router system |
US8943227B2 (en) * | 2011-09-21 | 2015-01-27 | Kevin Mark Klughart | Data storage architecture extension system and method |
US8825964B1 (en) * | 2011-09-26 | 2014-09-02 | Emc Corporation | Adaptive integration of cloud data services with a data storage system |
CN102439577B (en) * | 2011-10-31 | 2014-01-22 | 华为技术有限公司 | Method and device for constructing memory access model |
US20130151725A1 (en) * | 2011-12-13 | 2013-06-13 | B | Method and System for Handling a Domain Name Service Request |
US8788663B1 (en) | 2011-12-20 | 2014-07-22 | Amazon Technologies, Inc. | Managing resource dependent workflows |
JP5573829B2 (en) | 2011-12-20 | 2014-08-20 | 富士通株式会社 | Information processing apparatus and memory access method |
JP6083687B2 (en) | 2012-01-06 | 2017-02-22 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | Distributed calculation method, program, host computer, and distributed calculation system (distributed parallel calculation using accelerator device) |
US20150019800A1 (en) * | 2012-02-23 | 2015-01-15 | Hewlett-Packard Development Company L.P. | Firmware Package to Modify Active Firmware |
US9996394B2 (en) | 2012-03-01 | 2018-06-12 | Microsoft Technology Licensing, Llc | Scheduling accelerator tasks on accelerators using graphs |
ITRM20120094A1 (en) * | 2012-03-14 | 2013-09-14 | Istituto Naz Di Fisica Nuclea Re | NETWORK INTERFACE CARD FOR PARALLEL CALCULATION NETWORK KNOT ON GPU, AND RELATIVE INTERNODAL COMMUNICATION METHOD |
JP5884578B2 (en) * | 2012-03-16 | 2016-03-15 | 富士通株式会社 | Accelerator management device, accelerator management method, and input / output device |
US9158686B2 (en) * | 2012-03-30 | 2015-10-13 | Altera Corporation | Processing system and method including data compression API |
EP2831750A4 (en) * | 2012-03-30 | 2016-05-11 | Intel Corp | Mechanism for issuing requests to an accelerator from multiple threads |
EP2836979A4 (en) * | 2012-04-06 | 2018-08-08 | Live Nation Entertainment Inc. | Methods and systems of inhibiting automated scripts from accessing a ticket site |
US8995381B2 (en) | 2012-04-16 | 2015-03-31 | Ofinno Technologies, Llc | Power control in a wireless device |
US8983293B2 (en) | 2012-04-25 | 2015-03-17 | Ciena Corporation | Electro-optical switching fabric systems and methods |
US9223634B2 (en) | 2012-05-02 | 2015-12-29 | Cisco Technology, Inc. | System and method for simulating virtual machine migration in a network environment |
US9875204B2 (en) | 2012-05-18 | 2018-01-23 | Dell Products, Lp | System and method for providing a processing node with input/output functionality provided by an I/O complex switch |
US9110761B2 (en) * | 2012-06-27 | 2015-08-18 | Microsoft Technology Licensing, Llc | Resource data structures for firmware updates |
US9391841B2 (en) | 2012-07-03 | 2016-07-12 | Solarflare Communications, Inc. | Fast linkup arbitration |
US8838577B2 (en) * | 2012-07-24 | 2014-09-16 | International Business Machines Corporation | Accelerated row decompression |
US9152532B2 (en) * | 2012-08-07 | 2015-10-06 | Advanced Micro Devices, Inc. | System and method for configuring a cloud computing system with a synthetic test workload |
US8887056B2 (en) | 2012-08-07 | 2014-11-11 | Advanced Micro Devices, Inc. | System and method for configuring cloud computing systems |
CN103634330A (en) | 2012-08-20 | 2014-03-12 | 曙光信息产业(北京)有限公司 | Automatic resource distribution method in cloud calculation environment |
CN102882811B (en) | 2012-09-10 | 2016-04-13 | 西安电子科技大学 | Based on data center light interconnection network system and the communication means of array waveguide grating |
US9026765B1 (en) | 2012-09-11 | 2015-05-05 | Emc Corporation | Performing write operations in a multi-tiered storage environment |
US9213649B2 (en) * | 2012-09-24 | 2015-12-15 | Oracle International Corporation | Distributed page-table lookups in a shared-memory system |
US9253053B2 (en) | 2012-10-11 | 2016-02-02 | International Business Machines Corporation | Transparently enforcing policies in hadoop-style processing infrastructures |
US10505747B2 (en) * | 2012-10-16 | 2019-12-10 | Solarflare Communications, Inc. | Feed processing |
TWI568335B (en) | 2013-01-15 | 2017-01-21 | 英特爾股份有限公司 | A rack assembly structure |
EP2946296A4 (en) | 2013-01-17 | 2016-11-16 | Xockets Ip Llc | Offload processor modules for connection to system memory |
US9203699B2 (en) | 2014-02-11 | 2015-12-01 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Constructing and verifying switch fabric cabling schemes |
US9817699B2 (en) * | 2013-03-13 | 2017-11-14 | Elasticbox Inc. | Adaptive autoscaling for virtualized applications |
US9335950B2 (en) * | 2013-03-15 | 2016-05-10 | Western Digital Technologies, Inc. | Multiple stream compression and formatting of data for data storage systems |
US8872677B2 (en) * | 2013-03-15 | 2014-10-28 | Dialogic Networks (Israel) Ltd. | Method and apparatus for compressing data-carrying signals |
US9306263B2 (en) * | 2013-03-19 | 2016-04-05 | Texas Instruments Incorporated | Interface between an integrated circuit and a dielectric waveguide using a dipole antenna and a reflector |
US9384204B2 (en) * | 2013-05-22 | 2016-07-05 | Amazon Technologies, Inc. | Efficient data compression and analysis as a service |
US9424079B2 (en) | 2013-06-27 | 2016-08-23 | Microsoft Technology Licensing, Llc | Iteration support in a heterogeneous dataflow engine |
US9652470B2 (en) * | 2013-07-01 | 2017-05-16 | International Business Machines Corporation | Storing data in a dispersed storage network |
CN104297871B (en) | 2013-07-19 | 2017-11-10 | 泰科电子(上海)有限公司 | Optical interconnection system and method |
US9613394B2 (en) * | 2013-08-28 | 2017-04-04 | Intel Corporation | Lossy color compression using adaptive quantization |
US9444914B2 (en) * | 2013-09-16 | 2016-09-13 | Annapurna Labs Ltd. | Configurable parser and a method for parsing information units |
US9785455B2 (en) | 2013-10-13 | 2017-10-10 | Nicira, Inc. | Logical router |
US9467399B2 (en) | 2013-10-17 | 2016-10-11 | Marvell World Trade Ltd. | Processing concurrency in a network device |
EP3084622A4 (en) * | 2013-12-20 | 2018-02-28 | Intel Corporation | Execution offloading |
US9619381B2 (en) * | 2013-12-24 | 2017-04-11 | International Business Machines Corporation | Collaborative health management in a storage system |
US9336056B2 (en) * | 2013-12-31 | 2016-05-10 | International Business Machines Corporation | Extendible input/output data mechanism for accelerators |
US20150205542A1 (en) * | 2014-01-22 | 2015-07-23 | Vmware, Inc. | Virtual machine migration in shared storage environment |
GB2522650A (en) * | 2014-01-31 | 2015-08-05 | Ibm | Computer system with groups of processor boards |
US9549196B2 (en) * | 2014-02-04 | 2017-01-17 | Microsoft Technology Licensing, Llc | Data unit identification for compressed video streams |
US9671857B2 (en) * | 2014-03-25 | 2017-06-06 | Qualcomm Incorporated | Apparatus, system and method for dynamic power management across heterogeneous processors in a shared power domain |
US9893988B2 (en) | 2014-03-27 | 2018-02-13 | Nicira, Inc. | Address resolution using multiple designated instances of a logical router |
US9496592B2 (en) * | 2014-03-27 | 2016-11-15 | Intel Corporation | Rack level pre-installed interconnect for enabling cableless server/storage/networking deployment |
US9813258B2 (en) | 2014-03-31 | 2017-11-07 | Tigera, Inc. | Data center networks |
US9294304B2 (en) * | 2014-03-31 | 2016-03-22 | Juniper Networks, Inc. | Host network accelerator for data center overlay network |
US10218645B2 (en) * | 2014-04-08 | 2019-02-26 | Mellanox Technologies, Ltd. | Low-latency processing in a network node |
CN104009941A (en) | 2014-05-16 | 2014-08-27 | 江苏鼎云信息科技有限公司 | Data center rack internal network structure based on arrayed waveguide grating |
US9509434B2 (en) | 2014-05-19 | 2016-11-29 | Ciena Corporation | Margin-based optimization systems and methods in optical networks by intentionally reducing margin |
US20170114625A1 (en) * | 2014-06-13 | 2017-04-27 | Lord Corporation | System and method for monitoring component service life |
US10382279B2 (en) * | 2014-06-30 | 2019-08-13 | Emc Corporation | Dynamically composed compute nodes comprising disaggregated components |
KR20170029542A (en) | 2014-07-03 | 2017-03-15 | 에이비비 슈바이쯔 아게 | An apparatus and a method for processing data |
US20160196131A1 (en) * | 2014-07-07 | 2016-07-07 | Symphony Teleca Corporation | Remote Embedded Device Update Platform Apparatuses, Methods and Systems |
US20160050194A1 (en) | 2014-08-18 | 2016-02-18 | Tawkur LLC | Web-based governance of messaging services |
US9367343B2 (en) * | 2014-08-29 | 2016-06-14 | Red Hat Israel, Ltd. | Dynamic batch management of shared buffers for virtual machines |
US9686143B2 (en) | 2014-09-24 | 2017-06-20 | Intel Corporation | Mechanism for management controllers to learn the control plane hierarchy in a data center environment |
USD810031S1 (en) * | 2014-09-26 | 2018-02-13 | Intel Corporation | Protective cover for an electronic connector |
US9425543B2 (en) * | 2014-09-26 | 2016-08-23 | Intel Corporation | Protective cover for a connector |
US9378461B1 (en) * | 2014-09-26 | 2016-06-28 | Oracle International Corporation | Rule based continuous drift and consistency management for complex systems |
US9721660B2 (en) | 2014-10-24 | 2017-08-01 | Microsoft Technology Licensing, Llc | Configurable volatile memory without a dedicated power source for detecting a data save trigger condition |
US9612651B2 (en) * | 2014-10-27 | 2017-04-04 | Futurewei Technologies, Inc. | Access based resources driven low power control and management for multi-core system on a chip |
WO2016069011A1 (en) | 2014-10-31 | 2016-05-06 | Hewlett Packard Enterprise Development Lp | Management controller |
US9774503B2 (en) | 2014-11-03 | 2017-09-26 | Intel Corporation | Method, apparatus and system for automatically discovering nodes and resources in a multi-node system |
US10489145B2 (en) | 2014-11-14 | 2019-11-26 | Hewlett Packard Enterprise Development Lp | Secure update of firmware and software |
EP3024175B1 (en) * | 2014-11-19 | 2019-07-31 | Tanaza S.p.A. | Method and system for remote management of network devices |
US9612765B2 (en) | 2014-11-19 | 2017-04-04 | International Business Machines Corporation | Context aware dynamic composition of migration plans to cloud |
US9749448B2 (en) | 2014-11-25 | 2017-08-29 | Intel Corporation | Header parity error handling |
JP6147240B2 (en) | 2014-12-05 | 2017-06-14 | キヤノン株式会社 | Information processing apparatus, method of controlling the apparatus, and program |
US10067741B1 (en) | 2014-12-05 | 2018-09-04 | Amazon Technologies, Inc. | Systems and methods for I/O device logging |
US10355935B2 (en) | 2014-12-09 | 2019-07-16 | Ciena Corporation | Reduced link bandwidth update systems and methods for improved scalability, efficiency, and performance |
KR20160070512A (en) * | 2014-12-10 | 2016-06-20 | 삼성전자주식회사 | Semiconductor device and operating method thereof |
US9846576B2 (en) * | 2014-12-27 | 2017-12-19 | Intel Corporation | Technologies for reprogramming network interface cards over a network |
US9507581B2 (en) * | 2015-01-14 | 2016-11-29 | Dell Products Lp | Systems and methods of device firmware delivery for pre-boot updates |
US10198183B2 (en) | 2015-02-06 | 2019-02-05 | Liqid Inc. | Tunneling of storage operations between storage nodes |
US9648402B2 (en) | 2015-02-10 | 2017-05-09 | Ciena Corporation | In-band communication channel in optical networks |
JP6476018B2 (en) | 2015-03-10 | 2019-02-27 | 日本光電工業株式会社 | probe |
US9734311B1 (en) * | 2015-03-17 | 2017-08-15 | American Megatrends, Inc. | Secure authentication of firmware configuration updates |
US20160306677A1 (en) * | 2015-04-14 | 2016-10-20 | Globalfoundries Inc. | Automatic Analytical Cloud Scaling of Hardware Using Resource Sub-Cloud |
US9753653B2 (en) * | 2015-04-14 | 2017-09-05 | Sandisk Technologies Llc | High-priority NAND operations management |
US9792154B2 (en) | 2015-04-17 | 2017-10-17 | Microsoft Technology Licensing, Llc | Data processing system having a hardware acceleration plane and a software plane |
IL238690B (en) * | 2015-05-07 | 2019-07-31 | Mellanox Technologies Ltd | Network-based computational accelerator |
US10244032B2 (en) * | 2015-06-04 | 2019-03-26 | Juniper Networks, Inc. | Reducing application detection notification traffic |
US10587935B2 (en) * | 2015-06-05 | 2020-03-10 | Quanta Computer Inc. | System and method for automatically determining server rack weight |
US9606836B2 (en) * | 2015-06-09 | 2017-03-28 | Microsoft Technology Licensing, Llc | Independently networkable hardware accelerators for increased workflow optimization |
US10733164B2 (en) * | 2015-06-23 | 2020-08-04 | Microsoft Technology Licensing, Llc | Updating a bit vector search index |
US10372914B2 (en) * | 2015-06-24 | 2019-08-06 | Lenovo (Singapore) Pte. Ltd. | Validating firmware on a computing device |
US9674090B2 (en) * | 2015-06-26 | 2017-06-06 | Microsoft Technology Licensing, Llc | In-line network accelerator |
US10061596B2 (en) * | 2015-07-10 | 2018-08-28 | Dell Products L.P. | Systems and methods for loading firmware modules |
US9715475B2 (en) * | 2015-07-21 | 2017-07-25 | BigStream Solutions, Inc. | Systems and methods for in-line stream processing of distributed dataflow based computations |
CN105183561B (en) | 2015-09-02 | 2018-09-14 | 浪潮(北京)电子信息产业有限公司 | A kind of resource allocation methods and system |
US10530692B2 (en) | 2015-09-04 | 2020-01-07 | Arista Networks, Inc. | Software FIB ARP FEC encoding |
US9484954B1 (en) * | 2015-09-10 | 2016-11-01 | Intel Corporation | Methods and apparatus to parallelize data decompression |
US20170076195A1 (en) * | 2015-09-10 | 2017-03-16 | Intel Corporation | Distributed neural networks for scalable real-time analytics |
DE112015006944B4 (en) | 2015-09-25 | 2023-03-23 | Intel Corporation | Apparatus, system and method for facilitating communication over a link with a device external to an assembly |
US10320710B2 (en) | 2015-09-25 | 2019-06-11 | Intel Corporation | Reliable replication mechanisms based on active-passive HFI protocols built on top of non-reliable multicast fabric implementations |
US10846411B2 (en) * | 2015-09-25 | 2020-11-24 | Mongodb, Inc. | Distributed database systems and methods with encrypted storage engines |
US9690488B2 (en) * | 2015-10-19 | 2017-06-27 | Intel Corporation | Data compression using accelerator with multiple search engines |
US20170116003A1 (en) | 2015-10-27 | 2017-04-27 | International Business Machines Corporation | Dynamic determination of the applicability of a hardware accelerator to a request |
US10127032B2 (en) * | 2015-11-05 | 2018-11-13 | Quanta Computer Inc. | System and method for unified firmware management |
US9996473B2 (en) * | 2015-11-13 | 2018-06-12 | Samsung Electronics., Ltd | Selective underlying exposure storage mapping |
US9946642B2 (en) * | 2015-11-13 | 2018-04-17 | Samsung Electronics Co., Ltd | Distributed multimode storage management |
US10206297B2 (en) | 2015-11-23 | 2019-02-12 | Liqid Inc. | Meshed architecture rackmount storage assembly |
US10169073B2 (en) * | 2015-12-20 | 2019-01-01 | Intel Corporation | Hardware accelerators and methods for stateful compression and decompression operations |
WO2017111935A1 (en) | 2015-12-22 | 2017-06-29 | Halliburton Energy Services, Inc. | Selective nmr pulse for downhole measurements |
US10445271B2 (en) * | 2016-01-04 | 2019-10-15 | Intel Corporation | Multi-core communication acceleration using hardware queue device |
KR20180102612A (en) | 2016-01-08 | 2018-09-17 | 블루 다뉴브 시스템스, 인크. | Antenna mapping and diversity |
WO2017131187A1 (en) * | 2016-01-29 | 2017-08-03 | 日本電気株式会社 | Accelerator control device, accelerator control method and program |
US9832548B2 (en) | 2016-01-29 | 2017-11-28 | Ciena Corporation | Flexible behavior modification during restoration in optical networks |
US10162682B2 (en) * | 2016-02-16 | 2018-12-25 | Red Hat, Inc. | Automatically scaling up physical resources in a computing infrastructure |
US10778809B2 (en) | 2016-02-26 | 2020-09-15 | Arista Networks, Inc. | Per-input port, per-control plane network data traffic class control plane policing |
US20170257970A1 (en) | 2016-03-04 | 2017-09-07 | Radisys Corporation | Rack having uniform bays and an optical interconnect system for shelf-level, modular deployment of sleds enclosing information technology equipment |
US9852040B1 (en) * | 2016-03-09 | 2017-12-26 | Altera Corporation | Methods for updating memory maps of a system-on-chip |
US10187290B2 (en) | 2016-03-24 | 2019-01-22 | Juniper Networks, Inc. | Method, system, and apparatus for preventing tromboning in inter-subnet traffic within data center architectures |
US10120582B1 (en) * | 2016-03-30 | 2018-11-06 | Amazon Technologies, Inc. | Dynamic cache management in storage devices |
JP2017187889A (en) * | 2016-04-04 | 2017-10-12 | 京セラドキュメントソリューションズ株式会社 | Setting execution system and setting execution program |
US10142397B2 (en) * | 2016-04-05 | 2018-11-27 | International Business Machines Corporation | Network file transfer including file obfuscation |
US10305815B2 (en) | 2016-04-29 | 2019-05-28 | Huawei Technologies Co., Ltd. | System and method for distributed resource management |
US11681770B2 (en) | 2016-05-16 | 2023-06-20 | International Business Machines Corporation | Determining whether to process identified uniform resource locators |
US20180004835A1 (en) * | 2016-06-30 | 2018-01-04 | Facebook, Inc. | Data classification workflows implemented with dynamically modifiable directed graphs |
US10404800B2 (en) * | 2016-07-15 | 2019-09-03 | Hewlett Packard Enterprise Development Lp | Caching network fabric for high performance computing |
US20180024964A1 (en) * | 2016-07-19 | 2018-01-25 | Pure Storage, Inc. | Disaggregated compute resources and storage resources in a storage system |
US10873521B2 (en) | 2016-07-22 | 2020-12-22 | Intel Corporation | Methods and apparatus for SDI support for fast startup |
US10234833B2 (en) | 2016-07-22 | 2019-03-19 | Intel Corporation | Technologies for predicting power usage of a data center |
US10334334B2 (en) | 2016-07-22 | 2019-06-25 | Intel Corporation | Storage sled and techniques for a data center |
US10387303B2 (en) * | 2016-08-16 | 2019-08-20 | Western Digital Technologies, Inc. | Non-volatile storage system with compute engine to accelerate big data applications |
US10467195B2 (en) | 2016-09-06 | 2019-11-05 | Samsung Electronics Co., Ltd. | Adaptive caching replacement manager with dynamic updating granulates and partitions for shared flash-based storage system |
US10277677B2 (en) * | 2016-09-12 | 2019-04-30 | Intel Corporation | Mechanism for disaggregated storage class memory over fabric |
US20180089324A1 (en) * | 2016-09-26 | 2018-03-29 | Splunk Inc. | Dynamic resource allocation for real-time search |
US10740468B2 (en) * | 2016-09-30 | 2020-08-11 | Hewlett Packard Enterprise Development Lp | Multiple roots of trust to verify integrity |
US11036552B2 (en) * | 2016-10-25 | 2021-06-15 | International Business Machines Corporation | Cognitive scheduler |
US10404614B2 (en) * | 2016-11-21 | 2019-09-03 | Vmware, Inc. | Multi-cloud resource allocation |
US11016832B2 (en) | 2016-11-29 | 2021-05-25 | Intel Corporation | Cloud-based scale-up system composition |
US20180150256A1 (en) | 2016-11-29 | 2018-05-31 | Intel Corporation | Technologies for data deduplication in disaggregated architectures |
US10599590B2 (en) | 2016-11-30 | 2020-03-24 | International Business Machines Corporation | Uniform memory access architecture |
US10114633B2 (en) * | 2016-12-08 | 2018-10-30 | International Business Machines Corporation | Concurrent I/O enclosure firmware/field-programmable gate array (FPGA) update in a multi-node environment |
US10282296B2 (en) * | 2016-12-12 | 2019-05-07 | Intel Corporation | Zeroing a cache line |
WO2018111228A1 (en) | 2016-12-12 | 2018-06-21 | Intel Corporation | Apparatuses and methods for a processor architecture |
US10404836B2 (en) * | 2016-12-26 | 2019-09-03 | Intel Corporation | Managing state data in a compression accelerator |
US20180191629A1 (en) * | 2016-12-30 | 2018-07-05 | Intel Corporation | Time-based flexible packet scheduling |
KR20180106202A (en) | 2017-03-17 | 2018-10-01 | 주식회사 만도 | Shock absober for vehicle |
US10630654B2 (en) * | 2017-03-22 | 2020-04-21 | Microsoft Technology Licensing, Llc | Hardware-accelerated secure communication management |
US11094029B2 (en) * | 2017-04-10 | 2021-08-17 | Intel Corporation | Abstraction layers for scalable distributed machine learning |
US10324706B1 (en) * | 2017-05-09 | 2019-06-18 | Amazon Technologies, Inc. | Automated software deployment for electromechanical systems |
US10311002B2 (en) * | 2017-05-15 | 2019-06-04 | International Business Machines Corporation | Selectable peripheral logic in programmable apparatus |
US20190068466A1 (en) | 2017-08-30 | 2019-02-28 | Intel Corporation | Technologies for auto-discovery of fault domains |
US11119835B2 (en) | 2017-08-30 | 2021-09-14 | Intel Corporation | Technologies for providing efficient reprovisioning in an accelerator device |
US20190065253A1 (en) | 2017-08-30 | 2019-02-28 | Intel Corporation | Technologies for pre-configuring accelerators by predicting bit-streams |
US20190044809A1 (en) | 2017-08-30 | 2019-02-07 | Intel Corporation | Technologies for managing a flexible host interface of a network interface controller |
US10841243B2 (en) * | 2017-11-08 | 2020-11-17 | Mellanox Technologies, Ltd. | NIC with programmable pipeline |
US11394666B2 (en) * | 2017-12-18 | 2022-07-19 | Intel Corporation | Scalable communication with a packet processing unit |
US11263162B2 (en) * | 2017-12-20 | 2022-03-01 | Intel Corporation | System decoder for training accelerators |
US11270201B2 (en) * | 2017-12-29 | 2022-03-08 | Intel Corporation | Communication optimizations for distributed machine learning |
US10613847B2 (en) * | 2018-02-13 | 2020-04-07 | Dell Products, L.P. | Information handling system to treat demoted firmware with replacement firmware |
US11630693B2 (en) * | 2018-04-12 | 2023-04-18 | Intel Corporation | Technologies for power-aware scheduling for network packet processing |
US11223606B2 (en) | 2018-06-29 | 2022-01-11 | Intel Corporation | Technologies for attesting a deployed workload using blockchain |
US11507430B2 (en) * | 2018-09-27 | 2022-11-22 | Intel Corporation | Accelerated resource allocation techniques |
US11301407B2 (en) * | 2019-01-08 | 2022-04-12 | Intel Corporation | Technologies for accelerator fabric protocol multipathing |
US11003539B2 (en) | 2019-01-15 | 2021-05-11 | EMC IP Holding Company LLC | Offload processing using a storage slot |
US20200241926A1 (en) | 2019-01-24 | 2020-07-30 | Intel Corporation | Selection and management of disaggregated computing resources |
US20190207868A1 (en) * | 2019-02-15 | 2019-07-04 | Intel Corporation | Processor related communications |
BR112021016111A2 (en) | 2019-03-15 | 2021-11-09 | Intel Corp | Computing device, parallel processing unit, general-purpose graphics processing unit core, and graphics multiprocessor |
US20200341810A1 (en) | 2019-04-24 | 2020-10-29 | Intel Corporation | Technologies for providing an accelerator device discovery service |
US10949362B2 (en) * | 2019-06-28 | 2021-03-16 | Intel Corporation | Technologies for facilitating remote memory requests in accelerator devices |
US12111775B2 (en) | 2020-12-26 | 2024-10-08 | Intel Corporation | Memory hub providing cache coherency protocol system method for multiple processor sockets comprising multiple XPUs |
-
2017
- 2017-09-27 US US15/716,790 patent/US20180150256A1/en not_active Abandoned
- 2017-09-29 US US15/721,053 patent/US11687264B2/en active Active
- 2017-09-29 US US15/720,390 patent/US10747457B2/en active Active
- 2017-09-29 US US15/719,770 patent/US11137922B2/en active Active
- 2017-09-29 US US15/720,162 patent/US10635338B2/en active Active
- 2017-09-29 US US15/720,653 patent/US10824358B2/en active Active
- 2017-09-29 US US15/719,735 patent/US10191684B2/en active Active
- 2017-09-29 US US15/720,920 patent/US10268412B2/en active Active
- 2017-09-29 US US15/719,774 patent/US10628068B2/en active Active
- 2017-09-29 US US15/720,236 patent/US20180150240A1/en not_active Abandoned
- 2017-09-30 US US15/721,825 patent/US10768842B2/en active Active
- 2017-09-30 US US15/721,817 patent/US10768841B2/en not_active Expired - Fee Related
- 2017-09-30 US US15/721,829 patent/US11029870B2/en active Active
- 2017-09-30 US US15/721,814 patent/US10712963B2/en active Active
- 2017-09-30 US US15/721,815 patent/US10732879B2/en active Active
- 2017-09-30 US US15/721,833 patent/US10990309B2/en active Active
- 2017-09-30 US US15/721,821 patent/US10963176B2/en active Active
- 2017-11-28 US US15/824,604 patent/US10795595B2/en active Active
- 2017-11-29 WO PCT/US2017/063718 patent/WO2018102416A1/en active Application Filing
- 2017-11-29 WO PCT/US2017/063756 patent/WO2018102441A1/en active Application Filing
- 2017-11-29 WO PCT/US2017/063708 patent/WO2018102414A1/en active Application Filing
- 2017-11-29 US US16/346,341 patent/US11200104B2/en active Active
- 2017-11-29 WO PCT/US2017/063783 patent/WO2018102456A1/en active Application Filing
- 2017-11-29 US US15/826,523 patent/US10824360B2/en active Active
- 2017-11-29 US US15/826,051 patent/US11307787B2/en active Active
- 2017-11-29 WO PCT/US2017/063759 patent/WO2018102443A1/en unknown
-
2018
- 2018-08-30 DE DE102018006894.4A patent/DE102018006894A1/en active Pending
- 2018-08-30 DE DE102018214775.2A patent/DE102018214775A1/en active Pending
- 2018-08-30 DE DE102018214776.0A patent/DE102018214776A1/en active Pending
- 2018-08-30 DE DE102018214774.4A patent/DE102018214774A1/en active Pending
- 2018-08-30 DE DE102018006890.1A patent/DE102018006890B4/en active Active
- 2018-08-30 DE DE102018006893.6A patent/DE102018006893A1/en active Pending
-
2020
- 2020-07-30 US US16/943,221 patent/US11579788B2/en active Active
- 2020-08-28 US US17/005,879 patent/US11354053B2/en active Active
- 2020-12-17 US US17/125,420 patent/US11995330B2/en active Active
-
2021
- 2021-03-26 US US17/214,605 patent/US20210318823A1/en active Pending
- 2021-04-02 US US17/221,541 patent/US20210365199A1/en not_active Abandoned
- 2021-05-14 US US17/321,186 patent/US11429297B2/en active Active
- 2021-12-13 US US17/549,713 patent/US20220107741A1/en not_active Abandoned
-
2022
- 2022-02-25 US US17/681,025 patent/US11907557B2/en active Active
- 2022-04-19 US US17/724,379 patent/US20220317906A1/en not_active Abandoned
-
2023
- 2023-01-31 US US18/103,739 patent/US11977923B2/en active Active
- 2023-02-14 US US18/109,774 patent/US20230195346A1/en active Pending
-
2024
- 2024-01-05 US US18/405,679 patent/US20240143410A1/en active Pending
- 2024-03-27 US US18/618,901 patent/US20240241761A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160306663A1 (en) * | 2012-07-31 | 2016-10-20 | International Business Machines Corporation | Method and system for allocating fpga resources |
US20170046179A1 (en) * | 2015-08-13 | 2017-02-16 | Altera Corporation | Application-based dynamic heterogeneous many-core systems and methods |
CN105979007A (en) * | 2016-07-04 | 2016-09-28 | 华为技术有限公司 | Acceleration resource processing method and device and network function virtualization system |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230195346A1 (en) | Technologies for coordinating disaggregated accelerator device resources | |
CN109426647B (en) | Techniques for coordinating deaggregated accelerator device resources | |
US11630702B2 (en) | Cloud-based scale-up system composition | |
US10313769B2 (en) | Technologies for performing partially synchronized writes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |