[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20150311396A1 - Light emitting device package - Google Patents

Light emitting device package Download PDF

Info

Publication number
US20150311396A1
US20150311396A1 US14/794,563 US201514794563A US2015311396A1 US 20150311396 A1 US20150311396 A1 US 20150311396A1 US 201514794563 A US201514794563 A US 201514794563A US 2015311396 A1 US2015311396 A1 US 2015311396A1
Authority
US
United States
Prior art keywords
light emitting
cavity
electrode
emitting device
package body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/794,563
Inventor
Jun Seok Park
Wan Ho Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Innotek Co Ltd
Original Assignee
LG Innotek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/512,148 priority Critical patent/US10134953B2/en
Application filed by LG Innotek Co Ltd filed Critical LG Innotek Co Ltd
Priority to US14/794,563 priority patent/US20150311396A1/en
Publication of US20150311396A1 publication Critical patent/US20150311396A1/en
Priority to US15/589,544 priority patent/US10847680B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/385Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending at least partially onto a side surface of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Definitions

  • Embodiments of the invention relate to a light emitting device package.
  • Group III-V nitride semiconductors have been in the spotlight as a core material for light emitting devices, such as light emitting diodes (LEDs), laser diodes (LDs), and the like, because of their excellent physical and chemical properties.
  • Group III-V nitride semiconductors are composed of a semiconductor material having the chemical formula of In x Al y Ga 1-x-y N (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1). LEDs are a kind of semiconductor device that converts electricity into infrared rays or light by using characteristics of a compound semiconductor to transmit and receive a signal, and they are used as light sources.
  • LEDs or LDs made of nitride semiconductor materials are widely adopted in light emitting devices for obtaining light, and are applied as light sources for various products, for example, a light emission part for a keypad of a mobile phone, an electrical sign board, and a lighting device.
  • Embodiments provide a light emitting device package in which a wire and a light emitting device are disposed within one cavity.
  • Embodiments provide a light emitting device package in which a light emitting device and one wire are disposed in a phosphor layer disposed within a cavity.
  • Embodiments provide a light emitting device package in which a lead electrode is formed by one cavity of a multi-layered cavity.
  • Embodiments provide a light emitting device package in which at least one lead electrode is exposed to a bottom surface of a package body.
  • An embodiment provides a light emitting device package including a package body comprising a first cavity, and a second cavity connected to the first cavity; a first lead electrode, at least a portion of which is disposed within the second cavity; a second lead electrode, at least a portion of which is disposed within the first cavity; a light emitting device disposed within the second cavity; a first wire disposed within the second cavity, the first wire electrically connecting the light emitting device to the first lead electrode; and a second wire electrically connecting the light emitting device to the second lead electrode.
  • An embodiment provides a light emitting device package including a package body comprising a first cavity having an opened upper portion and a second cavity connected to the first cavity; a first lead electrode, a first portion of the first lead electrode extending along a bottom of the package body within the second cavity and a second portion of the first lead electrode extending along a lower portion of the first cavity; a portion of a second lead electrode disposed within the first cavity; and a light emitting device disposed on the first lead electrode.
  • An embodiment provides a light emitting device package including a package body comprising a first cavity having an opened upper portion, and a second cavity connected to the first cavity at a lower portion thereof; a first lead electrode having a portion which cups the second cavity, the first lead electrode extending from the package body toward a first direction; a second lead electrode having a surface exposed to the first cavity; a light emitting device disposed within the second cavity; a first wire which electrically connects the first lead electrode to the light emitting device and disposed within the second cavity; and a phosphor layer disposed within the second cavity.
  • FIG. 1 is a plan view of a light emitting device package according to a first embodiment.
  • FIG. 2 is a side sectional view taken along line A-A of FIG. 1 .
  • FIG. 3 is a side sectional view taken along line B-B of FIG. 1 .
  • FIG. 4 is a plan view of a light emitting device according to a second embodiment.
  • FIG. 5 is a plan view of a light emitting device according to a third embodiment.
  • FIG. 6 is a plan view of a light emitting device according to a fourth embodiment.
  • FIG. 7A is a side view of a light emitting device according to a fifth embodiment
  • FIG. 7B is a plan view of a light emitting device according to the fifth embodiment.
  • FIG. 8 is a plan view of a light emitting device according to a sixth embodiment.
  • FIG. 1 is a plan view of a light emitting device package according to a first embodiment.
  • FIG. 2 is a side sectional view taken along line A-A of FIG. 1
  • FIG. 3 is a side sectional view taken along line B-B of FIG. 1 .
  • a light emitting package 100 including a package body 110 , a first cavity 112 , a second cavity 115 , lead electrodes 121 and 123 , at least one light emitting device 130 (e.g., a plurality of light emitting devices 130 ), a phosphor layer 140 , and a resin layer 150 .
  • the package body 110 may include one of a printed circuit board (PCB) type substrate, a ceramic type substrate, and a lead frame type substrate.
  • the package body 110 may have an injection molding structure using a resin material or a stacked structure, but is not limited thereto.
  • the lead frame type substrate will be described in the following embodiments as an example.
  • the package body 110 may be integrally injection-molded using the resin material (e.g., polyphthalamide (PPA)) or a material having a high reflective characteristic.
  • PPA polyphthalamide
  • the package body 110 may be formed of the resin material such as polycarbonate (PC) and PPA, a silicon material, or a ceramic material.
  • the package body 110 may have the injection molding structure or the stacked structure.
  • a plurality of lead electrodes 121 and 123 is disposed on the package body 110 .
  • the lead electrodes 121 and 123 may include at least one of a PCB type electrode, a ceramic type electrode, a lead frame type electrode, and a via type electrode.
  • the lead frame type electrode will be described in the following embodiments as an example.
  • the first cavity 112 and the second cavity 115 are formed in the package body 110 .
  • the first cavity 112 has an opened upper side, and the second cavity 115 is defined at a predetermined position under the first cavity 112 .
  • a portion of the bottom of the first cavity 112 is defined by an annular surface of the package body with an opening in a central portion thereof.
  • a surface of the first cavity 112 may have a circular shape, a polygonal shape, an oval shape, or any other shape, and the first cavity 112 may have a predetermined depth.
  • a circumferential surface of the first cavity 112 may be perpendicular to a bottom surface thereof or inclined outwardly (or inwardly) at a predetermined angle.
  • the second cavity 115 is formed under a central portion of the first cavity 112 in the central portion to the annular surface of the package body that defines the bottom of the first cavity, at approximately the line B-B of FIG. 1 , but such is not required.
  • the size of the second cavity 115 may be smaller than the size of the first cavity 112 .
  • a surface of the second cavity 115 may have a circular shape, an oval shape, a polygonal shape, or other shapes.
  • the second cavity 115 has a diameter less than that of the first cavity 112 and a predetermined depth.
  • the first and second cavities 112 and 115 may have the same surface configuration, for example, a reflective cup having a circular shape or a polygonal shape, but the shape of the reflective cup is not limited thereto.
  • the second cavity 115 is located in approximately a central portion of the package body 110 .
  • a first side of the first cavity 112 about the line B-B may be referred to, which contains both a portion of the second lead electrode 123 and a portion of the first lead electrode 121 .
  • the opposite side of the first cavity 112 about the line B-B from the first side may be referred to as a second side, which contains the first lead electrode 121 , but not the second lead electrode 123 .
  • the second cavity 115 straddles both the first and second sides of the first cavity 112 .
  • the second cavity 115 contains a portion of a first lead electrode 121 so that a first lead electrode 121 has a portion which cups the second cavity 115 .
  • the portion of the first lead electrode 121 cups the second cavity 115 by entirely covering a side surface and a bottom of the second cavity 121 , but not the exposed top.
  • the first lead electrode 121 extends from one side of a bottom surface of the first cavity 112 to the other side thereof.
  • a second cavity 115 is defined between one side and the other side of the first cavity 112 and has a predetermined depth.
  • the first lead electrode 121 is formed in a side of the bottom surface of the first cavity 112 , i.e., either an entire surface or a majority surface of the side of the bottom surface of the first cavity 112 .
  • the first lead electrode 121 is spaced from the second lead electrode 123 at the other side of the first cavity 112 .
  • the first lead electrode 121 defines a bottom surface and a circumferential surface of the second cavity 115 . That is, the first lead electrode 121 forms the second cavity 115 .
  • the second cavity 115 formed by the first lead electrode 121 may have a vessel or cup shape having a smooth curvature.
  • the first lead electrode 121 may be perpendicular or inclined to a circumferential surface of the second cavity 115 in the bottom surface 111 of the package body 110 .
  • the first lead electrode 121 may have the other end P 1 exposed to one side of the package body 110 and bent downwardly from the package body 110 or bent toward a bottom surface of the package body 110 .
  • the other end P 1 of the first lead electrode 121 may be used as an external electrode.
  • a portion of the first lead electrode 121 constitutes or formed along a bottom surface and a circumferential surface of the second cavity 115 , and a bottom surface 121 A of the second cavity 115 is disposed on a bottom surface 111 of the package body 110 , but such is not required.
  • the first lead electrode 121 is disposed under the light emitting device 130 within the second cavity 115 . Heat transferred from the light emitting device 130 may be radiated to the outside through a bottom surface of the first lead electrode 121 . Thus, heat may be effectively radiated through the first lead electrode 121 .
  • the bottom surface of the first lead electrode 121 disposed within the second cavity 115 may be flush with the bottom surface of the package body 110 .
  • the other end P 1 of the first lead electrode 121 is spaced from one end of the second lead electrode 123 .
  • the first lead electrode 121 constitutes a portion of the bottom surface of the first cavity 112 or an entire surface of the second cavity 115 .
  • the second lead electrode 123 has one end disposed on a portion of the first cavity 112 of the package body 110 and spaced a predetermined distance from the first lead electrode 121 .
  • the second lead electrode 123 may have the other end P 2 exposed to the other side of the package body 110 and bent downwardly from the package body 110 or bent toward the bottom surface of the package body 110 .
  • the other end P 2 of the second lead electrode 123 may be used as a lead electrode.
  • the other end P 1 of the first lead electrode 121 may be provided in one or plurality and the other end P 2 of the second lead electrode 123 may be provided in one or plurality. That is, the other end P 1 of the first lead electrode 121 may be divided into a plurality of pieces, and the other end P 2 of the second lead electrode 123 may be divided into a plurality pieces. As a result, electronic reliability may be improved.
  • the first and second lead electrodes 121 and 123 are separated from each other at a portion of the first cavity 112 to form an opened structure.
  • At least one light emitting device 130 is disposed on the first lead electrode 121 , and the light emitting device 130 is attached to the first lead electrode 121 using an adhesive.
  • the light emitting device 130 is connected to the first lead electrode 121 using a first wire 132 and connected to the second lead electrode 123 using a second wire 134 .
  • the first wire 132 is bonded to the first lead electrode 121 and the light emitting device 130 within the second cavity 115 .
  • the second wire 134 has one end bonded to the light emitting device 130 disposed within the second cavity 115 and the other end bonded to the second lead electrode 123 disposed within the first cavity 112 .
  • the first wire 132 may be disposed within the phosphor layer 140 .
  • the first wire 132 since the first wire 132 is disposed within the phosphor layer 140 , defect occurrence and efficiency drooping due to the resin layer 150 or the formation thereof may be reduced or prevented.
  • the first wire 132 may be disposed at a position higher or lower than that of a surface of the phosphor layer 140 , but is not limited thereto.
  • the first wire 132 since the first wire 132 is disposed within the second cavity 115 or the phosphor layer 140 , a wire bonding defect may be reduced or prevented, and also, light efficiency may be improved.
  • the light emitting device 130 may include at least one blue LED chip.
  • a colored LED chip such as a green LED chip or a red LED chip or an ultraviolet (UV) LED chip may be used as the light emitting device 130 .
  • a lateral-type semiconductor light emitting device will be described below as an example of the LED chip.
  • the first wire 132 may be disposed further close to the light emitting device 130 and disposed on a layer different from the second wire 134 .
  • the phosphor layer 140 is disposed within the second cavity 115 , and the resin layer 150 is disposed within the first cavity 112 .
  • the phosphor layer 140 may include a layer in which a yellow phosphor is added to a resin material such as silicon or epoxy.
  • the phosphor layer 140 absorbs a portion of light emitted from the blue LED chip to emit yellow light.
  • the light emitting package 100 emits white light by mixing blue light with yellow light.
  • a surface of the phosphor layer 140 may have a flat shape, a concave shape, or a convex shape, but is not limited thereto.
  • the first wire 132 When the first wire 132 is disposed within the second cavity 115 , it may reduce or prevent a portion of a phosphor layer 140 dispensed or disposed into the second cavity 115 from ascending along the first wire 132 and the second wire 134 . As a result, a color-coordinate distribution of light emitted from the light emitting device 130 may be reduced.
  • the phosphor layer 140 disposed in the second cavity 115 may ascend along the first and second wires 132 and 134 during the dispensing or disposing process for the phosphor layer 140 .
  • the color-coordinate distribution through the phosphor layer 140 is wide to cause a non-uniform color-coordinate distribution of a white LED. Therefore, brightness and manufacturing yield may be reduced.
  • the first wire 132 may be disposed within the second cavity 115 to improve the color-coordinate distribution, the brightness, and the manufacturing yield.
  • the second cavity 115 may be formed using the first lead electrode 121 to increase a light reflection amount.
  • the resin layer 150 may be disposed within the first cavity 112 and formed of the resin material such as the silicon (or silicon containing) or the epoxy, and in addition, the phosphor may be added or not be added to the resin layer 150 , but is not limited thereto.
  • a surface of the resin layer 150 may have one of a flat shape, a concave shape, a convex shape, an irregular shape, or other shapes.
  • FIG. 4 is a plan view of a light emitting device according to a second embodiment.
  • components and operations equal to those of the first embodiment will be described with reference to the first embodiment, and duplicated descriptions will be omitted.
  • a light emitting device package 101 includes a package body 110 having a lower groove 111 B, a first cavity 112 , a second cavity 115 , lead electrodes 121 and 123 , a light emitting device 130 , a phosphor layer 140 , and a resin layer 150 .
  • the lower groove 111 B of the package body 110 may be stepped with respect to an outer bottom surface 111 A of the package body 110 .
  • the lower groove 111 B of the package body 110 may be concave to a predetermined depth with respect to the outer bottom surface 111 A of the package body 110 .
  • the lower groove 111 B and the outer bottom surface 111 A of the package body 110 have thicknesses different from each other. Due to such a thickness difference D 1 , a space is defined in the lower groove 111 B of the package body 110 . As a result, a bottom surface 121 A of the first lead electrode 121 disposed within the second cavity 115 is exposed to the lower groove 111 B of the package body 110 .
  • the lower groove 111 B of the package body 110 may reduce or prevent the package body 110 from being short-circuited due to solder failure when the package body 110 is mounted on a board PCB 105 .
  • a heat sink plate may be disposed in the lower groove 111 B of the package body 110 .
  • the first lead electrode 121 has one end P 3 disposed on the outer bottom surface 111 A of the package body 110
  • the second lead electrode 123 has the other end P 4 disposed on the opposite outer bottom surface 111 A of the package body 110 .
  • FIG. 5 is a plan view of a light emitting device according to a third embodiment.
  • components and operations equal to those of the first embodiment will be described with reference to the first embodiment, and duplicated descriptions will be omitted.
  • a light emitting device package 100 A includes a package body 110 , a first cavity 112 , a second cavity 115 , lead electrodes 121 and 123 , a light emitting device 130 , a phosphor layer, a resin layer 150 , and a lens layer 160 .
  • An injection molded part having a predetermined shape is disposed on the package body 110 , and then, a transparent resin material is injected thereon to form the lens layer 160 having a shape equal to that of an inner surface of the injection molded part.
  • the lens layer 160 has a structure that convexly protrudes in hemisphere shapes toward the outer sides of the package body 110 about the center or a center portion of the package body 110 (when viewed from the package body).
  • the lens layer 160 may be formed in a parabolic shape having a smoothly bent or curved surface. In other embodiments, an abruptly changing surface or a step surface is also possible.
  • the lens layer 160 condenses light emitted from the first cavity 112 into a predetermined region.
  • the configuration of the lens layer 160 is just one example and is not limited to the parabolic shape.
  • FIG. 6 is a plan view of a light emitting device according to a fourth embodiment.
  • a fourth embodiment components and operations equal to those of the first embodiment will be described with reference to the first embodiment, and duplicated descriptions will be omitted.
  • a light emitting device package 100 B includes a package body 110 , a first cavity 112 , a second cavity 115 , lead electrodes 121 and 123 , a light emitting device 130 , a phosphor layer 140 , a resin layer 150 , and a lens layer 160 A.
  • the lens layer 160 A is formed in a convex hemisphere shape on the package body 110 .
  • the lens layer 160 A may be formed by an injection molded part and/or separately attached.
  • the lens layer 160 or 106 A disposed on the package body 110 may be variously modified in configuration and is not limited to the above-described structure.
  • FIG. 7A is a side view of a light emitting device according to a fifth embodiment
  • FIG. 7B is a plan view of a light emitting device according to the fifth embodiment.
  • components and operations equal to those of the first embodiment will be described with reference to the first embodiment, and duplicated descriptions will be omitted.
  • a light emitting device package 200 includes a package body 210 , a first cavity 212 , a second cavity 215 , lead electrodes 221 and 223 , a light emitting device 230 , a phosphor layer 240 , and a resin layer 250 .
  • the first cavity 212 having a predetermined depth is defined within the package body 210 .
  • the second cavity 215 having a predetermined depth is defined in a central region of the first cavity 212 .
  • a portion 216 A of a lateral surface of the second cavity 215 may be defined by the package body 210 , and remaining portions of the second cavity 215 may be defined by the first lead electrode 221 and the package body 210 . That is, a side of the first lead electrode 221 may be stepped to constitute a bottom surface of the second cavity 215 , and most of the lateral surface of the second cavity 215 may be defined by the package body 210 . Also, a portion of the first lead electrode 221 disposed within the second cavity 215 may be exposed to a bottom surface of the package body 210 to effectively radiate heat.
  • a groove 211 of the first cavity 212 is formed by an injection modeling to expose a portion of the second lead electrode 223 .
  • most of a bottom surface of the first cavity 212 may be defined by the package body 210 .
  • the light emitting device 230 adheres to a top surface of the first lead electrode 221 using an adhesive.
  • the first wire 232 electrically connects the first lead electrode 221 to the light emitting device 230 within the second cavity 215
  • the second wire 234 electrically connects the second lead electrode 223 exposed to the groove 211 defined in the other side of the first cavity 212 to the light emitting device 230 .
  • the light emitting device 230 may include various color LED chips.
  • the phosphor layer 240 to which a yellow phosphor is added is disposed within the second cavity 215 .
  • the package body 210 may constitute all lateral surfaces 216 A and 216 of the first cavity 212 and the second cavity 215 .
  • the resin layer 250 is disposed within the first cavity 212 .
  • the resin layer 250 may be formed of a resin material such as a silicon resin or an epoxy resin, and in addition, the phosphor may be added or not be added to the resin material, but is not limited thereto.
  • a lens layer may be disposed on the package body 210 , but is not limited thereto. Also, an outer bottom surface of the package body 210 may be stepped, like the second embodiment shown in FIG. 4 .
  • FIG. 8 is a plan view of a light emitting device according to a sixth embodiment.
  • components and operations equal to those of the first embodiment will be described with reference to the first embodiment, and duplicated descriptions will be omitted.
  • a light emitting device package 300 includes a package body 310 , a first cavity 312 , a second cavity 315 , a light emitting device 330 , first and second lead electrodes 321 and 323 , a phosphor layer 340 , and a resin layer 350 .
  • the package body 310 may be formed of a silicon material, for example, the package body 310 may be formed using a wafer level package (WLP) technology and have a polyhedral shape (e.g., hexahedral shape).
  • the first cavity 312 is defined inside an upper portion of the package body 310 , and a surface of the first cavity 312 may have a polygonal shape, a circular shape, an oval shape, an irregular shape, or other shapes.
  • the first cavity 312 may be formed with a predetermined depth using a dry etching process and/or a wet etching process, but is not limited thereto.
  • a lateral surface 313 of the first cavity 312 may be perpendicular to or inclined to a bottom surface thereof, and the lateral surface 313 may improve a light reflection amount.
  • the second cavity 315 having a predetermined depth is defined under a central region of the first cavity 312 .
  • the second cavity 315 may have a polygonal shape, a circular shape, an oval shape, an irregular shape, or other shapes.
  • the second cavity 315 may be formed with a predetermined depth using a dry etching process and/or a wet etching process.
  • a dielectric may be disposed on a surface of the package body 310 , but is not limited thereto.
  • the first lead electrode 321 and the second lead electrode 323 are disposed on the surface of the package body 310 .
  • the first lead electrode 321 is disposed on the other side surface of the package body 310 , and the second lead electrode 323 is disposed on one side surface of the package body 310 .
  • the first lead electrode 321 is disposed along a bottom surface and a lateral surface of the first cavity 312 and along an outer surface of the other side of the package body 310 to extend up to a portion of a bottom surface of the package body 310 .
  • the second lead electrode 323 is integrally disposed along a portion of the bottom surface of the first cavity 312 , a lateral surface and a bottom surface of the second cavity 315 , and the outer surface of the package body 310 to extend up to a portion of the bottom surface of the package body 310 .
  • a mask pattern may be disposed on the first lead electrode 321 and the second lead electrode 323 to form a metal electrode layer using sputter equipment, but is not limited thereto.
  • the light emitting device 330 adheres to the first lead electrode 321 within the first cavity 312 using an adhesive.
  • a first wire 332 electrically connects the light emitting device 330 to the second lead electrode 323 .
  • the first wire 332 since a bonding portion of the first wire 332 is connected to the second lead electrode 323 within the second cavity 315 , the first wire 332 may be disposed within the second cavity 315 . Thus, it may reduce or prevent the phosphor layer 340 molded to the second cavity 315 from ascending along the first wire 332 and a second wire 334 .
  • the second wire 334 electrically connects the light emitting device 330 to the second lead electrode 321 within the first cavity 312 .
  • the phosphor layer 340 is disposed within the second cavity 315 , and a colored phosphor, for example, a yellow phosphor may be added to a resin material such as silicon, silicon resin, or an epoxy to form the phosphor layer 340 .
  • a resin material such as silicon, silicon resin, or an epoxy to form the phosphor layer 340 .
  • the resin layer 350 may be disposed before or after the phosphor layer 340 is hardened.
  • the transparent resin layer 350 is disposed within the first cavity 312 .
  • the resin layer 350 may be formed of a resin material such as silicon or epoxy, and in addition, the phosphor may be added or not added to the resin material, but is not limited thereto.
  • the first wire 332 is disposed within the second cavity 315 including the phosphor layer 340 , it may reduce or prevent the phosphor layer 340 from ascending along the wires 332 and 334 to a predetermined height.
  • the phosphor layer 340 may have a flat shape, and the resin layer 350 may have one of a flat shape, concave shape, and a convex shape.
  • the light emitting device package according to the first to fifth embodiments may be realized in a top view or side view type. Also, the light emitting device package may be disposed in an array form in a portable terminal, a notebook computer, etc. Thus, the light emitting device package may be provided as a lighting unit or variously applicable to devices such as an illumination device, an indication device, etc.
  • the color-coordinate distribution of the white light of the light emitting device package may be minimized.
  • the light emitting device package may improve the color-coordinate yield of the white light.
  • the color-coordinate yield may be improved, and the heat may be effectively radiated to improve the reliability of the light emitting device package.
  • Embodiments may provide the light emitting device package using the LED.
  • Embodiments may be applicable to the lighting unit such as display devices, illumination devices, and indication devices, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

A light emitting device including a package body having a cavity; a first electrode and a second electrode in the package body; a plurality of light emitting chips on the first electrode; and a resin material in the cavity. Further, wherein the first electrode and the second electrode are separated by the package body, the package body includes a stepped portion exposed between the first electrode and the second electrode, the first electrode includes a bottom surface, a top surface and an inclined surface between the bottom surface and the top surface, and the top surface of the first electrode comprises an end portion in contact with the stepped portion.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a Continuation of co-pending U.S. patent application Ser. No. 14/512,148 filed on Oct. 10, 2014 which is a Continuation of co-pending U.S. patent application Ser. No. 13/114,957 filed on May 24, 2011 which is a Continuation of U.S. patent application Ser. No. 12/622,613 filed on Nov. 20, 2009 (now U.S. Pat. No. 8,188,498) which claims priority under 35 U.S.C. 119 to Korean Patent Application No. 10-2008-0117579 filed on Nov. 25, 2008, the entire contents of which are hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • Embodiments of the invention relate to a light emitting device package.
  • Group III-V nitride semiconductors have been in the spotlight as a core material for light emitting devices, such as light emitting diodes (LEDs), laser diodes (LDs), and the like, because of their excellent physical and chemical properties. Group III-V nitride semiconductors are composed of a semiconductor material having the chemical formula of InxAlyGa1-x-yN (where 0≦x≦1, 0≦y≦1, 0≦x+y≦1). LEDs are a kind of semiconductor device that converts electricity into infrared rays or light by using characteristics of a compound semiconductor to transmit and receive a signal, and they are used as light sources.
  • LEDs or LDs made of nitride semiconductor materials are widely adopted in light emitting devices for obtaining light, and are applied as light sources for various products, for example, a light emission part for a keypad of a mobile phone, an electrical sign board, and a lighting device.
  • SUMMARY OF THE INVENTION
  • Embodiments provide a light emitting device package in which a wire and a light emitting device are disposed within one cavity.
  • Embodiments provide a light emitting device package in which a light emitting device and one wire are disposed in a phosphor layer disposed within a cavity.
  • Embodiments provide a light emitting device package in which a lead electrode is formed by one cavity of a multi-layered cavity.
  • Embodiments provide a light emitting device package in which at least one lead electrode is exposed to a bottom surface of a package body.
  • An embodiment provides a light emitting device package including a package body comprising a first cavity, and a second cavity connected to the first cavity; a first lead electrode, at least a portion of which is disposed within the second cavity; a second lead electrode, at least a portion of which is disposed within the first cavity; a light emitting device disposed within the second cavity; a first wire disposed within the second cavity, the first wire electrically connecting the light emitting device to the first lead electrode; and a second wire electrically connecting the light emitting device to the second lead electrode.
  • An embodiment provides a light emitting device package including a package body comprising a first cavity having an opened upper portion and a second cavity connected to the first cavity; a first lead electrode, a first portion of the first lead electrode extending along a bottom of the package body within the second cavity and a second portion of the first lead electrode extending along a lower portion of the first cavity; a portion of a second lead electrode disposed within the first cavity; and a light emitting device disposed on the first lead electrode.
  • An embodiment provides a light emitting device package including a package body comprising a first cavity having an opened upper portion, and a second cavity connected to the first cavity at a lower portion thereof; a first lead electrode having a portion which cups the second cavity, the first lead electrode extending from the package body toward a first direction; a second lead electrode having a surface exposed to the first cavity; a light emitting device disposed within the second cavity; a first wire which electrically connects the first lead electrode to the light emitting device and disposed within the second cavity; and a phosphor layer disposed within the second cavity.
  • The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view of a light emitting device package according to a first embodiment.
  • FIG. 2 is a side sectional view taken along line A-A of FIG. 1.
  • FIG. 3 is a side sectional view taken along line B-B of FIG. 1.
  • FIG. 4 is a plan view of a light emitting device according to a second embodiment.
  • FIG. 5 is a plan view of a light emitting device according to a third embodiment.
  • FIG. 6 is a plan view of a light emitting device according to a fourth embodiment.
  • FIG. 7A is a side view of a light emitting device according to a fifth embodiment, and FIG. 7B is a plan view of a light emitting device according to the fifth embodiment.
  • FIG. 8 is a plan view of a light emitting device according to a sixth embodiment.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Reference will now be made in detail to the embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings. In the description, a size and a thickness of each layer in the accompanying drawings is illustrated as an example, and thus, are not limited thereto.
  • FIG. 1 is a plan view of a light emitting device package according to a first embodiment. FIG. 2 is a side sectional view taken along line A-A of FIG. 1, and FIG. 3 is a side sectional view taken along line B-B of FIG. 1.
  • Referring to FIGS. 1 to 3, a light emitting package 100 including a package body 110, a first cavity 112, a second cavity 115, lead electrodes 121 and 123, at least one light emitting device 130 (e.g., a plurality of light emitting devices 130), a phosphor layer 140, and a resin layer 150.
  • The package body 110 may include one of a printed circuit board (PCB) type substrate, a ceramic type substrate, and a lead frame type substrate. The package body 110 may have an injection molding structure using a resin material or a stacked structure, but is not limited thereto. Hereinafter, for convenience of description, the lead frame type substrate will be described in the following embodiments as an example. The package body 110 may be integrally injection-molded using the resin material (e.g., polyphthalamide (PPA)) or a material having a high reflective characteristic.
  • The package body 110 may be formed of the resin material such as polycarbonate (PC) and PPA, a silicon material, or a ceramic material. The package body 110 may have the injection molding structure or the stacked structure.
  • A plurality of lead electrodes 121 and 123 is disposed on the package body 110. The lead electrodes 121 and 123 may include at least one of a PCB type electrode, a ceramic type electrode, a lead frame type electrode, and a via type electrode. Hereinafter, for convenience of description, the lead frame type electrode will be described in the following embodiments as an example.
  • The first cavity 112 and the second cavity 115 are formed in the package body 110. The first cavity 112 has an opened upper side, and the second cavity 115 is defined at a predetermined position under the first cavity 112. As shown, a portion of the bottom of the first cavity 112 is defined by an annular surface of the package body with an opening in a central portion thereof.
  • A surface of the first cavity 112 may have a circular shape, a polygonal shape, an oval shape, or any other shape, and the first cavity 112 may have a predetermined depth. A circumferential surface of the first cavity 112 may be perpendicular to a bottom surface thereof or inclined outwardly (or inwardly) at a predetermined angle.
  • The second cavity 115 is formed under a central portion of the first cavity 112 in the central portion to the annular surface of the package body that defines the bottom of the first cavity, at approximately the line B-B of FIG. 1, but such is not required. The size of the second cavity 115 may be smaller than the size of the first cavity 112. A surface of the second cavity 115 may have a circular shape, an oval shape, a polygonal shape, or other shapes. The second cavity 115 has a diameter less than that of the first cavity 112 and a predetermined depth. Here, the first and second cavities 112 and 115 may have the same surface configuration, for example, a reflective cup having a circular shape or a polygonal shape, but the shape of the reflective cup is not limited thereto.
  • As shown in FIG. 1, the second cavity 115 is located in approximately a central portion of the package body 110. With respect to the line B-B of FIG. 1 that approximately bisects the second cavity 115. Therein, a first side of the first cavity 112 about the line B-B may be referred to, which contains both a portion of the second lead electrode 123 and a portion of the first lead electrode 121. The opposite side of the first cavity 112 about the line B-B from the first side may be referred to as a second side, which contains the first lead electrode 121, but not the second lead electrode 123. The second cavity 115 straddles both the first and second sides of the first cavity 112.
  • The second cavity 115 contains a portion of a first lead electrode 121 so that a first lead electrode 121 has a portion which cups the second cavity 115. The portion of the first lead electrode 121 cups the second cavity 115 by entirely covering a side surface and a bottom of the second cavity 121, but not the exposed top.
  • The first lead electrode 121 extends from one side of a bottom surface of the first cavity 112 to the other side thereof. A second cavity 115 is defined between one side and the other side of the first cavity 112 and has a predetermined depth. The first lead electrode 121 is formed in a side of the bottom surface of the first cavity 112, i.e., either an entire surface or a majority surface of the side of the bottom surface of the first cavity 112.
  • The first lead electrode 121 is spaced from the second lead electrode 123 at the other side of the first cavity 112.
  • The first lead electrode 121 defines a bottom surface and a circumferential surface of the second cavity 115. That is, the first lead electrode 121 forms the second cavity 115.
  • The second cavity 115 formed by the first lead electrode 121 may have a vessel or cup shape having a smooth curvature. The first lead electrode 121 may be perpendicular or inclined to a circumferential surface of the second cavity 115 in the bottom surface 111 of the package body 110.
  • The first lead electrode 121 may have the other end P1 exposed to one side of the package body 110 and bent downwardly from the package body 110 or bent toward a bottom surface of the package body 110. The other end P1 of the first lead electrode 121 may be used as an external electrode.
  • Referring to FIG. 2, a portion of the first lead electrode 121 constitutes or formed along a bottom surface and a circumferential surface of the second cavity 115, and a bottom surface 121A of the second cavity 115 is disposed on a bottom surface 111 of the package body 110, but such is not required. The first lead electrode 121 is disposed under the light emitting device 130 within the second cavity 115. Heat transferred from the light emitting device 130 may be radiated to the outside through a bottom surface of the first lead electrode 121. Thus, heat may be effectively radiated through the first lead electrode 121.
  • The bottom surface of the first lead electrode 121 disposed within the second cavity 115 may be flush with the bottom surface of the package body 110.
  • Referring to FIG. 1, the other end P1 of the first lead electrode 121 is spaced from one end of the second lead electrode 123. The first lead electrode 121 constitutes a portion of the bottom surface of the first cavity 112 or an entire surface of the second cavity 115.
  • The second lead electrode 123 has one end disposed on a portion of the first cavity 112 of the package body 110 and spaced a predetermined distance from the first lead electrode 121. The second lead electrode 123 may have the other end P2 exposed to the other side of the package body 110 and bent downwardly from the package body 110 or bent toward the bottom surface of the package body 110. The other end P2 of the second lead electrode 123 may be used as a lead electrode.
  • The other end P1 of the first lead electrode 121 may be provided in one or plurality and the other end P2 of the second lead electrode 123 may be provided in one or plurality. That is, the other end P1 of the first lead electrode 121 may be divided into a plurality of pieces, and the other end P2 of the second lead electrode 123 may be divided into a plurality pieces. As a result, electronic reliability may be improved.
  • The first and second lead electrodes 121 and 123 are separated from each other at a portion of the first cavity 112 to form an opened structure. At least one light emitting device 130 is disposed on the first lead electrode 121, and the light emitting device 130 is attached to the first lead electrode 121 using an adhesive. The light emitting device 130 is connected to the first lead electrode 121 using a first wire 132 and connected to the second lead electrode 123 using a second wire 134. Here, the first wire 132 is bonded to the first lead electrode 121 and the light emitting device 130 within the second cavity 115. The second wire 134 has one end bonded to the light emitting device 130 disposed within the second cavity 115 and the other end bonded to the second lead electrode 123 disposed within the first cavity 112.
  • The first wire 132 may be disposed within the phosphor layer 140. In this case, since the first wire 132 is disposed within the phosphor layer 140, defect occurrence and efficiency drooping due to the resin layer 150 or the formation thereof may be reduced or prevented. Also, the first wire 132 may be disposed at a position higher or lower than that of a surface of the phosphor layer 140, but is not limited thereto. Here, since the first wire 132 is disposed within the second cavity 115 or the phosphor layer 140, a wire bonding defect may be reduced or prevented, and also, light efficiency may be improved.
  • The light emitting device 130 may include at least one blue LED chip. Alternatively, a colored LED chip such as a green LED chip or a red LED chip or an ultraviolet (UV) LED chip may be used as the light emitting device 130. A lateral-type semiconductor light emitting device will be described below as an example of the LED chip.
  • Since the first wire 132 is disposed within the second cavity 115, the first wire 132 may be disposed further close to the light emitting device 130 and disposed on a layer different from the second wire 134.
  • The phosphor layer 140 is disposed within the second cavity 115, and the resin layer 150 is disposed within the first cavity 112. For example, the phosphor layer 140 may include a layer in which a yellow phosphor is added to a resin material such as silicon or epoxy. The phosphor layer 140 absorbs a portion of light emitted from the blue LED chip to emit yellow light. For example, when the light emitting device 130 includes the blue LED chip, and the phosphor layer 140 contains the yellow phosphor, the light emitting package 100 emits white light by mixing blue light with yellow light.
  • A surface of the phosphor layer 140 may have a flat shape, a concave shape, or a convex shape, but is not limited thereto.
  • When the first wire 132 is disposed within the second cavity 115, it may reduce or prevent a portion of a phosphor layer 140 dispensed or disposed into the second cavity 115 from ascending along the first wire 132 and the second wire 134. As a result, a color-coordinate distribution of light emitted from the light emitting device 130 may be reduced.
  • When the first and second wires 132 and 134 are disposed within the first cavity 112, the phosphor layer 140 disposed in the second cavity 115 may ascend along the first and second wires 132 and 134 during the dispensing or disposing process for the phosphor layer 140. As a result, the color-coordinate distribution through the phosphor layer 140 is wide to cause a non-uniform color-coordinate distribution of a white LED. Therefore, brightness and manufacturing yield may be reduced. According to embodiments, the first wire 132 may be disposed within the second cavity 115 to improve the color-coordinate distribution, the brightness, and the manufacturing yield.
  • According to the first embodiment, the second cavity 115 may be formed using the first lead electrode 121 to increase a light reflection amount.
  • The resin layer 150 may be disposed within the first cavity 112 and formed of the resin material such as the silicon (or silicon containing) or the epoxy, and in addition, the phosphor may be added or not be added to the resin layer 150, but is not limited thereto. A surface of the resin layer 150 may have one of a flat shape, a concave shape, a convex shape, an irregular shape, or other shapes.
  • FIG. 4 is a plan view of a light emitting device according to a second embodiment. In the description of a second embodiment, components and operations equal to those of the first embodiment will be described with reference to the first embodiment, and duplicated descriptions will be omitted.
  • Referring to FIG. 4, a light emitting device package 101 includes a package body 110 having a lower groove 111B, a first cavity 112, a second cavity 115, lead electrodes 121 and 123, a light emitting device 130, a phosphor layer 140, and a resin layer 150.
  • The lower groove 111B of the package body 110 may be stepped with respect to an outer bottom surface 111A of the package body 110. The lower groove 111B of the package body 110 may be concave to a predetermined depth with respect to the outer bottom surface 111A of the package body 110. The lower groove 111B and the outer bottom surface 111A of the package body 110 have thicknesses different from each other. Due to such a thickness difference D1, a space is defined in the lower groove 111B of the package body 110. As a result, a bottom surface 121A of the first lead electrode 121 disposed within the second cavity 115 is exposed to the lower groove 111B of the package body 110.
  • Thus, heat is effectively radiated through the bottom surface 121A of the first lead electrode 121 disposed within the second cavity 115. Also, the lower groove 111B of the package body 110 may reduce or prevent the package body 110 from being short-circuited due to solder failure when the package body 110 is mounted on a board PCB 105. A heat sink plate may be disposed in the lower groove 111B of the package body 110.
  • The first lead electrode 121 has one end P3 disposed on the outer bottom surface 111A of the package body 110, and the second lead electrode 123 has the other end P4 disposed on the opposite outer bottom surface 111A of the package body 110.
  • FIG. 5 is a plan view of a light emitting device according to a third embodiment. In the description of a third embodiment, components and operations equal to those of the first embodiment will be described with reference to the first embodiment, and duplicated descriptions will be omitted.
  • Referring to FIG. 5, a light emitting device package 100A includes a package body 110, a first cavity 112, a second cavity 115, lead electrodes 121 and 123, a light emitting device 130, a phosphor layer, a resin layer 150, and a lens layer 160.
  • An injection molded part having a predetermined shape is disposed on the package body 110, and then, a transparent resin material is injected thereon to form the lens layer 160 having a shape equal to that of an inner surface of the injection molded part.
  • The lens layer 160 has a structure that convexly protrudes in hemisphere shapes toward the outer sides of the package body 110 about the center or a center portion of the package body 110 (when viewed from the package body). For example, the lens layer 160 may be formed in a parabolic shape having a smoothly bent or curved surface. In other embodiments, an abruptly changing surface or a step surface is also possible.
  • The lens layer 160 condenses light emitted from the first cavity 112 into a predetermined region. The configuration of the lens layer 160 is just one example and is not limited to the parabolic shape.
  • FIG. 6 is a plan view of a light emitting device according to a fourth embodiment. In the description of a fourth embodiment, components and operations equal to those of the first embodiment will be described with reference to the first embodiment, and duplicated descriptions will be omitted.
  • Referring to FIG. 6, a light emitting device package 100B includes a package body 110, a first cavity 112, a second cavity 115, lead electrodes 121 and 123, a light emitting device 130, a phosphor layer 140, a resin layer 150, and a lens layer 160A.
  • The lens layer 160A is formed in a convex hemisphere shape on the package body 110. The lens layer 160A may be formed by an injection molded part and/or separately attached.
  • Referring to FIGS. 5 and 6, the lens layer 160 or 106A disposed on the package body 110 may be variously modified in configuration and is not limited to the above-described structure.
  • FIG. 7A is a side view of a light emitting device according to a fifth embodiment, and FIG. 7B is a plan view of a light emitting device according to the fifth embodiment. In the description of a fifth embodiment, components and operations equal to those of the first embodiment will be described with reference to the first embodiment, and duplicated descriptions will be omitted.
  • Referring to FIG. 7A and FIG. 7B, a light emitting device package 200 includes a package body 210, a first cavity 212, a second cavity 215, lead electrodes 221 and 223, a light emitting device 230, a phosphor layer 240, and a resin layer 250.
  • The first cavity 212 having a predetermined depth is defined within the package body 210. The second cavity 215 having a predetermined depth is defined in a central region of the first cavity 212.
  • A portion 216A of a lateral surface of the second cavity 215 may be defined by the package body 210, and remaining portions of the second cavity 215 may be defined by the first lead electrode 221 and the package body 210. That is, a side of the first lead electrode 221 may be stepped to constitute a bottom surface of the second cavity 215, and most of the lateral surface of the second cavity 215 may be defined by the package body 210. Also, a portion of the first lead electrode 221 disposed within the second cavity 215 may be exposed to a bottom surface of the package body 210 to effectively radiate heat.
  • A groove 211 of the first cavity 212 is formed by an injection modeling to expose a portion of the second lead electrode 223. Here, most of a bottom surface of the first cavity 212 may be defined by the package body 210.
  • The light emitting device 230 adheres to a top surface of the first lead electrode 221 using an adhesive. The first wire 232 electrically connects the first lead electrode 221 to the light emitting device 230 within the second cavity 215, and the second wire 234 electrically connects the second lead electrode 223 exposed to the groove 211 defined in the other side of the first cavity 212 to the light emitting device 230.
  • The light emitting device 230 may include various color LED chips. For a case in which the light emitting device 230 is at least one blue LED chip, the phosphor layer 240 to which a yellow phosphor is added is disposed within the second cavity 215. At this time, since the first wire 232 is disposed within the second cavity 215, it may reduce or prevent a portion of the phosphor layer 240 from ascending along the wires 232 and 234. Also, in the fifth embodiment, the package body 210 may constitute all lateral surfaces 216A and 216 of the first cavity 212 and the second cavity 215.
  • The resin layer 250 is disposed within the first cavity 212. The resin layer 250 may be formed of a resin material such as a silicon resin or an epoxy resin, and in addition, the phosphor may be added or not be added to the resin material, but is not limited thereto.
  • A lens layer may be disposed on the package body 210, but is not limited thereto. Also, an outer bottom surface of the package body 210 may be stepped, like the second embodiment shown in FIG. 4.
  • FIG. 8 is a plan view of a light emitting device according to a sixth embodiment. In the description of the sixth embodiment, components and operations equal to those of the first embodiment will be described with reference to the first embodiment, and duplicated descriptions will be omitted.
  • Referring to FIG. 8, a light emitting device package 300 includes a package body 310, a first cavity 312, a second cavity 315, a light emitting device 330, first and second lead electrodes 321 and 323, a phosphor layer 340, and a resin layer 350.
  • The package body 310 may be formed of a silicon material, for example, the package body 310 may be formed using a wafer level package (WLP) technology and have a polyhedral shape (e.g., hexahedral shape). The first cavity 312 is defined inside an upper portion of the package body 310, and a surface of the first cavity 312 may have a polygonal shape, a circular shape, an oval shape, an irregular shape, or other shapes. The first cavity 312 may be formed with a predetermined depth using a dry etching process and/or a wet etching process, but is not limited thereto.
  • A lateral surface 313 of the first cavity 312 may be perpendicular to or inclined to a bottom surface thereof, and the lateral surface 313 may improve a light reflection amount.
  • The second cavity 315 having a predetermined depth is defined under a central region of the first cavity 312. The second cavity 315 may have a polygonal shape, a circular shape, an oval shape, an irregular shape, or other shapes. The second cavity 315 may be formed with a predetermined depth using a dry etching process and/or a wet etching process.
  • A dielectric may be disposed on a surface of the package body 310, but is not limited thereto. The first lead electrode 321 and the second lead electrode 323 are disposed on the surface of the package body 310.
  • The first lead electrode 321 is disposed on the other side surface of the package body 310, and the second lead electrode 323 is disposed on one side surface of the package body 310. The first lead electrode 321 is disposed along a bottom surface and a lateral surface of the first cavity 312 and along an outer surface of the other side of the package body 310 to extend up to a portion of a bottom surface of the package body 310.
  • The second lead electrode 323 is integrally disposed along a portion of the bottom surface of the first cavity 312, a lateral surface and a bottom surface of the second cavity 315, and the outer surface of the package body 310 to extend up to a portion of the bottom surface of the package body 310.
  • A mask pattern may be disposed on the first lead electrode 321 and the second lead electrode 323 to form a metal electrode layer using sputter equipment, but is not limited thereto.
  • Outer ends P1 and P2 of the first lead electrode 321 and the second lead electrode 323, which are disposed on the outer surface of the package body 310, may be used as external electrodes.
  • The light emitting device 330 adheres to the first lead electrode 321 within the first cavity 312 using an adhesive. A first wire 332 electrically connects the light emitting device 330 to the second lead electrode 323. Here, since a bonding portion of the first wire 332 is connected to the second lead electrode 323 within the second cavity 315, the first wire 332 may be disposed within the second cavity 315. Thus, it may reduce or prevent the phosphor layer 340 molded to the second cavity 315 from ascending along the first wire 332 and a second wire 334.
  • The second wire 334 electrically connects the light emitting device 330 to the second lead electrode 321 within the first cavity 312.
  • The phosphor layer 340 is disposed within the second cavity 315, and a colored phosphor, for example, a yellow phosphor may be added to a resin material such as silicon, silicon resin, or an epoxy to form the phosphor layer 340. Here, the resin layer 350 may be disposed before or after the phosphor layer 340 is hardened.
  • The transparent resin layer 350 is disposed within the first cavity 312. The resin layer 350 may be formed of a resin material such as silicon or epoxy, and in addition, the phosphor may be added or not added to the resin material, but is not limited thereto.
  • Since the first wire 332 is disposed within the second cavity 315 including the phosphor layer 340, it may reduce or prevent the phosphor layer 340 from ascending along the wires 332 and 334 to a predetermined height.
  • The phosphor layer 340 may have a flat shape, and the resin layer 350 may have one of a flat shape, concave shape, and a convex shape.
  • Technical characteristics of the first to fifth embodiments are not limited to each embodiment, but may be applicable to other embodiments. Such a selective application will be included in technical scopes of the embodiments.
  • The light emitting device package according to the first to fifth embodiments may be realized in a top view or side view type. Also, the light emitting device package may be disposed in an array form in a portable terminal, a notebook computer, etc. Thus, the light emitting device package may be provided as a lighting unit or variously applicable to devices such as an illumination device, an indication device, etc.
  • According to the embodiments, the color-coordinate distribution of the white light of the light emitting device package may be minimized.
  • According to the embodiments, the light emitting device package may improve the color-coordinate yield of the white light.
  • According to the embodiments, the color-coordinate yield may be improved, and the heat may be effectively radiated to improve the reliability of the light emitting device package.
  • Embodiments may provide the light emitting device package using the LED.
  • Embodiments may be applicable to the lighting unit such as display devices, illumination devices, and indication devices, etc.
  • Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.

Claims (20)

What is claimed is:
1. A light emitting device, comprising:
a package body having a cavity;
a first electrode and a second electrode in the package body;
a plurality of light emitting chips on the first electrode; and
a resin material in the cavity,
wherein the first electrode and the second electrode are separated by the package body,
wherein the package body comprises a stepped portion exposed between the first electrode and the second electrode,
wherein the first electrode comprises a bottom surface, a top surface and an inclined surface between the bottom surface and the top surface, and
wherein the top surface of the first electrode comprises an end portion in contact with the stepped portion.
2. The light emitting device according to claim 1, wherein the package body comprises a side inclined surface in contact with the inclined surface of the first electrode.
3. The light emitting device according to claim 1, wherein the package body comprises a top surface in contact with a bottom portion of the end portion of the first electrode.
4. The light emitting device according to claim 1, wherein a side portion of the end portion of the first electrode is directly contacted with the stepped portion.
5. The light emitting device according to claim 1, wherein a bottom surface of the at least one of the first electrode or the second electrode is substantially flush with a bottom surface of the package body.
6. The light emitting device according to claim 1, wherein the first lead electrode and the second lead electrode comprise at least two protruding portions through side surfaces of the package body.
7. The light emitting device according to claim 6, wherein a depth of the cavity is greater than a length of each of the at least two protruding portions.
8. The light emitting device according to claim 6, wherein a top surface of the plurality of light emitting chips is higher than a bottom surface of the at least two protruding portions.
9. The light emitting device according to claim 1, wherein the first lead electrode comprises a first protruding portion, a second protruding portion and a third protruding portion.
10. The light emitting device according to claim 9, wherein the second lead electrode comprises a fourth protruding portion, a fifth protruding portion and a sixth protruding portion.
11. A light emitting device, comprising:
a package body having a cavity;
a first electrode and a second electrode in the package body;
at least one light emitting chip on the first electrode;
a resin material in the cavity; and
a lens on the package body and the at least one light emitting chip,
wherein the first electrode and the second electrode are separated by the package body,
wherein the package body comprises a stepped portion exposed between the first electrode and the second electrode, and
wherein the lens is in contact with the stepped portion.
12. The light emitting device according to claim 11, wherein the first electrode comprises a bottom surface, a top surface and an inclined surface between the bottom surface and the top surface, and
wherein the top surface of the first electrode comprises an end portion in contact with the stepped portion.
13. The light emitting device according to claim 12, wherein the package body comprises a side inclined surface in contact with the inclined surface of the first electrode.
14. The light emitting device according to claim 12, wherein the package body comprises a top surface in contact with a bottom portion of the end portion of the first electrode.
15. The light emitting device according to claim 12, wherein a side portion of the end portion of the first electrode is directly contacted with the stepped portion.
16. The light emitting device according to claim 11, wherein the cavity comprises a groove in the cavity, and
wherein a bottom surface of the groove is higher than a top surface of the at least one light emitting chip.
17. The light emitting device according to claim 16, wherein a depth of the cavity is greater than a depth of the groove.
18. The light emitting device according to claim 16, wherein the groove is vertically overlapped with at least one of the first electrode or the second electrode.
19. The light emitting device according to claim 11, wherein the first lead electrode and the second lead electrode comprise at least two protruding portions through side surfaces of the package body.
20. The light emitting device according to claim 19, wherein a top surface of the at least one light emitting chip is higher than a bottom surface of the at least two protruding portions.
US14/794,563 2008-11-25 2015-07-08 Light emitting device package Abandoned US20150311396A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/512,148 US10134953B2 (en) 2008-11-25 2014-10-10 Light-emitting device package including lead frame and using lead terminal as a reflective cavity
US14/794,563 US20150311396A1 (en) 2008-11-25 2015-07-08 Light emitting device package
US15/589,544 US10847680B2 (en) 2008-11-25 2017-05-08 Light emitting device package

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2008-0117579 2008-11-25
KR1020080117579A KR101007131B1 (en) 2008-11-25 2008-11-25 Light emitting device package
US12/622,613 US8188498B2 (en) 2008-11-25 2009-11-20 Light emitting device package
US13/114,957 US9425360B2 (en) 2008-11-25 2011-05-24 Light emitting device package
US14/512,148 US10134953B2 (en) 2008-11-25 2014-10-10 Light-emitting device package including lead frame and using lead terminal as a reflective cavity
US14/794,563 US20150311396A1 (en) 2008-11-25 2015-07-08 Light emitting device package

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/512,148 Continuation US10134953B2 (en) 2008-11-25 2014-10-10 Light-emitting device package including lead frame and using lead terminal as a reflective cavity

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/589,544 Continuation US10847680B2 (en) 2008-11-25 2017-05-08 Light emitting device package

Publications (1)

Publication Number Publication Date
US20150311396A1 true US20150311396A1 (en) 2015-10-29

Family

ID=42221961

Family Applications (8)

Application Number Title Priority Date Filing Date
US12/622,613 Expired - Fee Related US8188498B2 (en) 2008-11-25 2009-11-20 Light emitting device package
US13/114,962 Active US8324638B2 (en) 2008-11-25 2011-05-24 Light emitting device package
US13/114,946 Active US8928008B2 (en) 2008-11-25 2011-05-24 Light emitting device package comprising a lead electrode exposed to a recessed bottom portion of the package body
US13/114,957 Active US9425360B2 (en) 2008-11-25 2011-05-24 Light emitting device package
US13/114,996 Active US8436385B2 (en) 2008-11-25 2011-05-24 Light emitting device package
US14/512,148 Active US10134953B2 (en) 2008-11-25 2014-10-10 Light-emitting device package including lead frame and using lead terminal as a reflective cavity
US14/794,563 Abandoned US20150311396A1 (en) 2008-11-25 2015-07-08 Light emitting device package
US15/589,544 Active US10847680B2 (en) 2008-11-25 2017-05-08 Light emitting device package

Family Applications Before (6)

Application Number Title Priority Date Filing Date
US12/622,613 Expired - Fee Related US8188498B2 (en) 2008-11-25 2009-11-20 Light emitting device package
US13/114,962 Active US8324638B2 (en) 2008-11-25 2011-05-24 Light emitting device package
US13/114,946 Active US8928008B2 (en) 2008-11-25 2011-05-24 Light emitting device package comprising a lead electrode exposed to a recessed bottom portion of the package body
US13/114,957 Active US9425360B2 (en) 2008-11-25 2011-05-24 Light emitting device package
US13/114,996 Active US8436385B2 (en) 2008-11-25 2011-05-24 Light emitting device package
US14/512,148 Active US10134953B2 (en) 2008-11-25 2014-10-10 Light-emitting device package including lead frame and using lead terminal as a reflective cavity

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/589,544 Active US10847680B2 (en) 2008-11-25 2017-05-08 Light emitting device package

Country Status (6)

Country Link
US (8) US8188498B2 (en)
EP (2) EP2258001B1 (en)
JP (2) JP2012510153A (en)
KR (1) KR101007131B1 (en)
CN (1) CN101981716B (en)
WO (1) WO2010062079A2 (en)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5464825B2 (en) * 2008-07-23 2014-04-09 ローム株式会社 LED module
KR101007131B1 (en) * 2008-11-25 2011-01-10 엘지이노텍 주식회사 Light emitting device package
TW201020643A (en) * 2008-11-25 2010-06-01 Chi Mei Lighting Tech Corp Side view type light-emitting diode package structure, and manufacturing method and application thereof
US8101955B2 (en) * 2009-04-17 2012-01-24 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. PLCC package with a reflector cup surrounded by an encapsulant
US8089075B2 (en) * 2009-04-17 2012-01-03 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. LFCC package with a reflector cup surrounded by a single encapsulant
KR101114150B1 (en) * 2009-10-19 2012-03-09 엘지이노텍 주식회사 Lighting Device
KR101811885B1 (en) * 2009-10-29 2017-12-22 니치아 카가쿠 고교 가부시키가이샤 Light emitting device and method for manufacturing same
KR101094127B1 (en) 2010-02-17 2011-12-14 일진반도체 주식회사 Light Emitting Diode Package
US8525213B2 (en) * 2010-03-30 2013-09-03 Lg Innotek Co., Ltd. Light emitting device having multiple cavities and light unit having the same
KR101125437B1 (en) * 2010-08-09 2012-03-27 엘지이노텍 주식회사 Light emitting device and lighing system
TW201220555A (en) * 2010-11-02 2012-05-16 Hon Hai Prec Ind Co Ltd Light emitting diode lead frame
US8735739B2 (en) * 2011-01-13 2014-05-27 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
KR20120096216A (en) * 2011-02-22 2012-08-30 삼성전자주식회사 Light emitting device package
US9209373B2 (en) * 2011-02-23 2015-12-08 Intellectual Discovery Co., Ltd. High power plastic leaded chip carrier with integrated metal reflector cup and direct heat sink
KR101812761B1 (en) * 2011-03-02 2017-12-28 서울반도체 주식회사 Light emitting diode package
KR20120105146A (en) * 2011-03-15 2012-09-25 삼성전자주식회사 Light emitting device package manufacturing apparatus and light emitting device manufacturing method using the same
KR101852388B1 (en) 2011-04-28 2018-04-26 엘지이노텍 주식회사 Light emitting device package
CN102769088B (en) * 2011-05-05 2015-05-06 光宝新加坡有限公司 Packaging structure of surface mounted light emitting diode and method for manufacturing packaging structure
US8497519B2 (en) * 2011-05-24 2013-07-30 Tsmc Solid State Lighting Ltd. Batwing LED with remote phosphor configuration
KR20120137865A (en) * 2011-06-13 2012-12-24 엘지이노텍 주식회사 Light emitting device and light emitting device package
KR101886068B1 (en) * 2011-06-23 2018-09-06 엘지이노텍 주식회사 Light emitting device package
KR101886073B1 (en) * 2011-06-23 2018-09-06 엘지이노텍 주식회사 Light emitting device and light unit having thereof
KR101873997B1 (en) * 2011-06-24 2018-08-02 엘지이노텍 주식회사 Light emitting device package and lighting system including the same
US20130009191A1 (en) * 2011-07-04 2013-01-10 Lite-On Singapore Pte. Ltd. Surface mounted led package and manufacturing method therefor
US8497558B2 (en) * 2011-07-14 2013-07-30 Infineon Technologies Ag System and method for wafer level packaging
CN102903829B (en) * 2011-07-26 2015-01-07 展晶科技(深圳)有限公司 Light-emitting diode light source device
KR101824011B1 (en) * 2011-07-29 2018-01-31 엘지이노텍 주식회사 Light-emitting device
KR101714073B1 (en) * 2011-08-10 2017-03-08 엘지이노텍 주식회사 The light emitting device package and the light emitting system
US9397274B2 (en) * 2011-08-24 2016-07-19 Lg Innotek Co., Ltd. Light emitting device package
KR20130022052A (en) * 2011-08-24 2013-03-06 엘지이노텍 주식회사 The light emitting device package and the light emitting system
KR101243638B1 (en) * 2011-08-31 2013-03-27 우리이앤엘 주식회사 Semiconductor light emitting device
KR101896661B1 (en) * 2011-10-28 2018-09-07 엘지이노텍 주식회사 Light emitting device package, back light unit and display unit
USRE47444E1 (en) 2011-11-17 2019-06-18 Lumens Co., Ltd. Light emitting device package and backlight unit comprising the same
US20130161670A1 (en) * 2011-12-23 2013-06-27 Sheng-Yang Peng Light emitting diode packages and methods of making
CN102569279A (en) * 2011-12-29 2012-07-11 广州市鸿利光电股份有限公司 LED (light-emitting diode) with improved color rendering index and light emitting efficiency and method for improving color rendering index and light emitting efficiency of LED
US20160274318A1 (en) 2012-03-05 2016-09-22 Nanoprecision Products, Inc. Optical bench subassembly having integrated photonic device
ES2726541T3 (en) * 2012-03-05 2019-10-07 Nanoprecision Products Inc Coupling device that has a structured reflective surface to couple the input / output of an optical fiber
WO2013152234A1 (en) * 2012-04-04 2013-10-10 Axlen, Inc. Optically efficient solid-state lighting device packaging
US9983414B2 (en) * 2012-10-23 2018-05-29 Nanoprecision Products, Inc. Optoelectronic module having a stamped metal optic
CN103887398B (en) * 2012-12-22 2017-06-20 展晶科技(深圳)有限公司 Package structure for LED
TWI557947B (en) * 2012-12-24 2016-11-11 鴻海精密工業股份有限公司 Led unit
US20150357527A1 (en) * 2013-01-31 2015-12-10 Sharp Kabushiki Kaisha Method for manufacturing light-emitting device, and light-emitting device
JP6476567B2 (en) * 2013-03-29 2019-03-06 日亜化学工業株式会社 Light emitting device
US9105825B2 (en) * 2013-06-03 2015-08-11 Avago Technologies General Ip (Singapore) Pte. Ltd. Light source package and method of manufacturing the same
KR101619982B1 (en) * 2013-11-13 2016-05-12 엘지이노텍 주식회사 Bluish green phosphor, lighit emitting device package and lighting apparatus including the same
JP6522622B2 (en) 2013-12-17 2019-05-29 ルミレッズ ホールディング ベーフェー Low and high beam LED lamp
US9680073B2 (en) * 2014-05-30 2017-06-13 Seoul Semiconductor Co., Ltd. Light emitting module
CN103994359B (en) * 2014-06-10 2016-04-27 吴锦星 A kind of processing method of Modular LED lamp bar
CN104134743A (en) * 2014-06-17 2014-11-05 京东方光科技有限公司 LED packaging structure and method, display device and illuminating device
KR102237112B1 (en) * 2014-07-30 2021-04-08 엘지이노텍 주식회사 Light emitting device and light suource module
KR102344533B1 (en) * 2015-02-12 2021-12-29 엘지이노텍 주식회사 Lighting emitting device package
JP6206442B2 (en) * 2015-04-30 2017-10-04 日亜化学工業株式会社 Package, method for manufacturing the same, and light emitting device
CN104835900B (en) * 2015-05-22 2017-08-15 深圳莱特光电股份有限公司 A kind of infrared LEDs support
WO2017010851A1 (en) 2015-07-16 2017-01-19 엘지이노텍(주) Light-emitting element package
CN106571383B (en) * 2015-10-08 2020-04-28 联华电子股份有限公司 Semiconductor element and manufacturing method thereof
JP6862141B2 (en) 2015-10-14 2021-04-21 エルジー イノテック カンパニー リミテッド Light emitting element package and lighting equipment
CN105826453A (en) * 2016-05-09 2016-08-03 广州硅能照明有限公司 Preparation method of COB optical module and COB optical module
JP6729254B2 (en) * 2016-09-30 2020-07-22 日亜化学工業株式会社 Light emitting device and display device
JP6579138B2 (en) * 2017-03-17 2019-09-25 日亜化学工業株式会社 Light emitting device
US10062822B1 (en) * 2017-12-01 2018-08-28 Lite-On Singapore Pte. Ltd. Light-emitting diode package structure with an improved structure, light-emitting device using the same, and method of making the same
CN108305926B (en) * 2018-02-08 2020-02-07 开发晶照明(厦门)有限公司 LED support, LED module and manufacturing method of LED support
TWI753431B (en) * 2020-05-19 2022-01-21 光感動股份有限公司 Packaging component
CN114335298A (en) * 2021-11-27 2022-04-12 江西晶众腾光电科技有限公司 6050LED packaging support and LED lamp bead

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020163001A1 (en) * 2001-05-04 2002-11-07 Shaddock David Mulford Surface mount light emitting device package and fabrication method
US20050236639A1 (en) * 2004-04-27 2005-10-27 Sharp Kabushiki Kaisha Semiconductor light emitting device and fabrication method thereof
US20050280017A1 (en) * 2004-06-11 2005-12-22 Kabushiki Kaisha Toshiba Semiconductor light emitting device and semiconductor light emitting unit
US7199454B2 (en) * 1995-09-29 2007-04-03 Osram Gmbh Optoelectronic semiconductor component
US20080224162A1 (en) * 2007-03-14 2008-09-18 Samsung Electro-Mechanics Co., Ltd. Light emitting diode package
US20100001306A1 (en) * 2008-07-03 2010-01-07 Samsung Electro-Mechanics Co.,Ltd. Light emitting diode package

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9314487D0 (en) * 1993-07-12 1993-08-25 Secr Defence Sensor system
JP3137823B2 (en) 1994-02-25 2001-02-26 シャープ株式会社 Chip component type LED and method of manufacturing the same
WO1996026424A1 (en) * 1995-02-24 1996-08-29 Lucas Novasensor Pressure sensor with transducer mounted on a metal base
KR100214463B1 (en) * 1995-12-06 1999-08-02 구본준 Lead frame of clip type and method manufacture of the package
JP2924961B1 (en) * 1998-01-16 1999-07-26 サンケン電気株式会社 Semiconductor light emitting device and method of manufacturing the same
TW414924B (en) * 1998-05-29 2000-12-11 Rohm Co Ltd Semiconductor device of resin package
JP3546812B2 (en) * 1999-10-07 2004-07-28 株式会社デンソー Surface mount type light emitting diode
JP2001168400A (en) * 1999-12-09 2001-06-22 Rohm Co Ltd Chip type light emitting device with case and its manufacturing method
JP4432275B2 (en) 2000-07-13 2010-03-17 パナソニック電工株式会社 Light source device
CN1212676C (en) 2001-04-12 2005-07-27 松下电工株式会社 Light source device using LED, and method of producing same
US7264378B2 (en) * 2002-09-04 2007-09-04 Cree, Inc. Power surface mount light emitting die package
TWI292961B (en) * 2002-09-05 2008-01-21 Nichia Corp Semiconductor device and an optical device using the semiconductor device
US7149118B2 (en) 2002-09-16 2006-12-12 Impinj, Inc. Method and apparatus for programming single-poly pFET-based nonvolatile memory cells
JP3910144B2 (en) 2003-01-06 2007-04-25 シャープ株式会社 Semiconductor light emitting device and manufacturing method thereof
TWI237546B (en) 2003-01-30 2005-08-01 Osram Opto Semiconductors Gmbh Semiconductor-component sending and/or receiving electromagnetic radiation and housing-basebody for such a component
KR100574557B1 (en) 2003-08-12 2006-04-27 엘지이노텍 주식회사 Light emitting diode package and method for manufacturing light emitting diode package
KR100580765B1 (en) * 2003-09-22 2006-05-15 엘지이노텍 주식회사 Light emitting diode package and method for manufacturing light emitting diode package
JP2005197329A (en) * 2004-01-05 2005-07-21 Stanley Electric Co Ltd Surface-mounting semiconductor device and its lead-frame structure
JP2005294736A (en) * 2004-04-05 2005-10-20 Stanley Electric Co Ltd Manufacturing method for semiconductor light emitting device
JP2006049442A (en) * 2004-08-02 2006-02-16 Sharp Corp Semiconductor light emission device and its manufacturing method
JP2006093672A (en) 2004-08-26 2006-04-06 Toshiba Corp Semiconductor light emitting device
US20060121941A1 (en) * 2004-12-03 2006-06-08 Shiflett Jamie C SIM card retaining device
US20060124941A1 (en) * 2004-12-13 2006-06-15 Lee Jae S Thin gallium nitride light emitting diode device
KR100593945B1 (en) 2005-05-30 2006-06-30 삼성전기주식회사 High power led package and fabrication method thereof
KR100631992B1 (en) * 2005-07-19 2006-10-09 삼성전기주식회사 Light emitting diode package having dual lens structure for laterally emitting light
JP4739851B2 (en) * 2005-07-29 2011-08-03 スタンレー電気株式会社 Surface mount semiconductor device
KR100691441B1 (en) 2005-11-15 2007-03-09 삼성전기주식회사 Light emitting diode package
USD573113S1 (en) 2005-12-09 2008-07-15 Nichia Corporation Light emitting diode
JP2007177160A (en) * 2005-12-28 2007-07-12 General Technology Kk Oil-based ink for inkjet recording
KR100819883B1 (en) 2006-02-17 2008-04-07 삼성전자주식회사 Package of light emitting device and manufacturing method thereof
JP4952233B2 (en) 2006-04-19 2012-06-13 日亜化学工業株式会社 Semiconductor device
JP4830768B2 (en) 2006-05-10 2011-12-07 日亜化学工業株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP4857938B2 (en) 2006-06-16 2012-01-18 日亜化学工業株式会社 Light emitting device
JP5057707B2 (en) 2006-06-16 2012-10-24 日亜化学工業株式会社 Light emitting device
KR20080008767A (en) * 2006-07-21 2008-01-24 (주) 아모센스 Electron parts package and lighting fixtures using the electron parts package
KR100772433B1 (en) 2006-08-23 2007-11-01 서울반도체 주식회사 Light emitting diode package employing lead terminal with reflecting surface
KR101220038B1 (en) 2006-09-11 2013-01-18 엘지이노텍 주식회사 Lighting device
JP4858032B2 (en) 2006-09-15 2012-01-18 日亜化学工業株式会社 Light emitting device
JP4306772B2 (en) 2006-10-05 2009-08-05 日亜化学工業株式会社 Light emitting device
JP4840185B2 (en) 2007-02-17 2011-12-21 日亜化学工業株式会社 Lighting device
KR20080079745A (en) * 2007-02-28 2008-09-02 주식회사 옵토필 Led package base having double heat sink structure of lead-flame and heat sink plate and method of fabricating thereof
KR100877775B1 (en) * 2007-07-19 2009-01-16 서울반도체 주식회사 Light emitting diode package employing lead terminal with reflecting surface
US8030839B2 (en) 2007-11-30 2011-10-04 Nichia Corporation Phosphor activated with europium, light emitting device using the same and method of manufacturing the phosphor
KR101007131B1 (en) * 2008-11-25 2011-01-10 엘지이노텍 주식회사 Light emitting device package

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7199454B2 (en) * 1995-09-29 2007-04-03 Osram Gmbh Optoelectronic semiconductor component
US20020163001A1 (en) * 2001-05-04 2002-11-07 Shaddock David Mulford Surface mount light emitting device package and fabrication method
US20050236639A1 (en) * 2004-04-27 2005-10-27 Sharp Kabushiki Kaisha Semiconductor light emitting device and fabrication method thereof
US20050280017A1 (en) * 2004-06-11 2005-12-22 Kabushiki Kaisha Toshiba Semiconductor light emitting device and semiconductor light emitting unit
US20080224162A1 (en) * 2007-03-14 2008-09-18 Samsung Electro-Mechanics Co., Ltd. Light emitting diode package
US20100001306A1 (en) * 2008-07-03 2010-01-07 Samsung Electro-Mechanics Co.,Ltd. Light emitting diode package

Also Published As

Publication number Publication date
US20110220950A1 (en) 2011-09-15
KR101007131B1 (en) 2011-01-10
JP2012510153A (en) 2012-04-26
US20120080701A1 (en) 2012-04-05
EP2899762A1 (en) 2015-07-29
US20160104828A1 (en) 2016-04-14
US8324638B2 (en) 2012-12-04
JP2014241443A (en) 2014-12-25
EP2258001B1 (en) 2015-05-06
US8188498B2 (en) 2012-05-29
US20110220949A1 (en) 2011-09-15
US8436385B2 (en) 2013-05-07
US10847680B2 (en) 2020-11-24
WO2010062079A2 (en) 2010-06-03
US9425360B2 (en) 2016-08-23
EP2258001A4 (en) 2011-04-27
US10134953B2 (en) 2018-11-20
US8928008B2 (en) 2015-01-06
WO2010062079A3 (en) 2010-08-12
EP2258001A2 (en) 2010-12-08
US20100133560A1 (en) 2010-06-03
CN101981716A (en) 2011-02-23
CN101981716B (en) 2014-11-12
US20110220951A1 (en) 2011-09-15
US20170244014A1 (en) 2017-08-24
KR20100058978A (en) 2010-06-04
EP2899762B1 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
US10847680B2 (en) Light emitting device package
US8525213B2 (en) Light emitting device having multiple cavities and light unit having the same
US10454003B2 (en) Light emitting device and manufacturing method thereof
US8044423B2 (en) Light emitting device package
US8357948B2 (en) Light emitting device and lighting system
US8735933B2 (en) Light emitting diode package and method of manufacturing the same
EP3018720B1 (en) Light emitting device package
EP2813758B1 (en) Light emitting module
US8587016B2 (en) Light emitting device package having light emitting device on inclined side surface and lighting system including the same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION