[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20150238430A1 - Pharmaceutical composition - Google Patents

Pharmaceutical composition Download PDF

Info

Publication number
US20150238430A1
US20150238430A1 US14/699,719 US201514699719A US2015238430A1 US 20150238430 A1 US20150238430 A1 US 20150238430A1 US 201514699719 A US201514699719 A US 201514699719A US 2015238430 A1 US2015238430 A1 US 2015238430A1
Authority
US
United States
Prior art keywords
gelatin
capsule
capsules
formulation
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/699,719
Inventor
Jean-Pierre Sachetto
Roly Bufton
Thomas Buser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chrysalis Pharma AG
Original Assignee
Chrysalis Pharma AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32011882&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20150238430(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chrysalis Pharma AG filed Critical Chrysalis Pharma AG
Priority to US14/699,719 priority Critical patent/US20150238430A1/en
Publication of US20150238430A1 publication Critical patent/US20150238430A1/en
Priority to US15/350,238 priority patent/US20170056354A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/201Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having one or two double bonds, e.g. oleic, linoleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/202Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/23Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4816Wall or shell material
    • A61K9/4825Proteins, e.g. gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4891Coated capsules; Multilayered drug free capsule shells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids

Definitions

  • the present invention relates to a soft gelatin capsule and, in particular, to a soft gelatin capsule containing a pharmaceutical formulation comprising at least one omega-3 polyunsaturated fatty acid in free acid form or a pharmacologically acceptable derivative thereof.
  • Gelatin is a heterogeneous mixture of water-soluble proteins of high molecular weight extracted from a number of sources of collagen such bovine bones and hide, pig skin or fish skin. Broadly speaking, there are two types of gelatin, Type A gelatin and Type B gelatin, depending on the method of extraction.
  • Type A gelatin is extracted following an acid pre-treatment process and porcine gelatin is usually extracted in this way.
  • Pigskins are dehaired and degreased and the resultant skin is passed through a chopper or macerator to cut the skin into uniform sizes.
  • the skin is then soaked at a pH of 1 to 4 with a food-grade mineral acid such as hydrochloric acid, phosphoric acid or sulphuric acid for 8 to 30 hours.
  • the acid-treated pigskin is then washed with water to remove impurities and extracted with hot water.
  • the extract is filtered through an anion-cation exchange column to reduce ash or mineral levels.
  • the gelatin extract is vacuum concentrated or ultra filtered to a concentration between 15 to 35%, filtered, pH adjusted to between 3.5 and 6, and evaporated to 50% solids.
  • the residue is chilled, extruded, dried and milled to the required particle size and then packaged. It is also known to pre-treat bovine ossein (de-mineralized bone) with acid prior to extraction of the gelatin although bovine ossein is more commonly pre-treated with alkali.
  • Type B gelatin is extracted following an alkali pre-treatment process and bovine gelatin is usually extracted in this way (ibid). Bones are crushed, cooked, centrifuged and dried. The extracted bone is degreased prior to gelatin extraction and de-mineralized with 4 to 6% hydrochloric acid for a period of 5 to 7 days.
  • the ossein is washed repeatedly With water to remove impurities and then treated with 1 to 4% lime (calcium hydroxide) slurry to adjust the pH to about 12 for periods of 35 to 70 days with agitation and weekly lime changes to remove non-collagen components. The ossein is then washed and mineral acid is added to neutralize excess lime and adjust the pH to 3. The final pH after all wash operations is between 5 and 7.
  • De-mineralized hot water is then used to extract the gelatin.
  • the liquid gelatin solution may be filtered through a cellulose/diatomaceous earth plate and frame filter and deionised using an anionic-cationic resin bed.
  • the resin solution is evaporated to a concentration between 15 to 45%.
  • the concentrated gelatin is filtered, pH adjusted to between 5 and 7, sterilised, cooled and air-dried. It is then milled to the required size and packaged.
  • the alkaline process may take up to 20 weeks.
  • Gelatin is used, for example, to encapsulate various foods and nutritional supplements but especially medicines for oral administration to treat a number of conditions.
  • Plasticizers such as glycerine may be added to gelatin to produce soft gelatin capsules.
  • Formaldehyde and other aldehydes may be used to harden gelatin capsules and enable them to pass from the stomach to the intestines.
  • Type B e.g. bovine, gelatin.
  • Omega-3 polyunsaturated fatty acids such as 5, 8, 11, 14, 17-eicosapentaenoic acid (or “EPA”) or 4, 7, 10, 13, 16, 19-docosahexaenoic acid (or “DHA”) are well known to be useful in the treatment of inflammatory bowel disease (or “IBD”) (see, for example, EP-A-0244832, EP-A-0289204, EP-A-0311091 and WO-A-93/21912, the disclosures of which are incorporated herein by reference).
  • WO-A-96/36329 (Buser et al; published on 21 Nov. 1996) discloses a treatment of IBD involving oral administration of hard gelatin capsules containing a formulation that comprises a mixture of EPA and DHA.
  • Each capsule is film coated with EudragitTMNE 30-D which is an enteric material comprising poly(ethylacrylate-methylmethacrylate) having an average molecular weight of about 800,000.
  • EudragitTMNE 30-D is an enteric material comprising poly(ethylacrylate-methylmethacrylate) having an average molecular weight of about 800,000.
  • the capsules pass through the stomach and then disintegrate and release the contents in the small intestine. Results indicate that clinical relapses in Crohn's disease may be prevented by the oral administration of such coated capsules.
  • EP-A-0100052 discloses soft gelatin capsules containing PGE-type prostaglandin fatty acid compositions. Comparative studies appear to indicate that soft gelatin capsules made from Type B gelatin accelerate degradation of the prostaglandin composition whereas soft gelatin capsules made from Type A gelatin retain the stabilising effect of the solvent in which the prostaglandin fatty acids are dissolved.
  • U.S. Pat. No. 6,234,464 discloses microencapsulated unsaturated fatty acids or fatty acid compounds or mixtures thereof.
  • the wall of the microcapsules comprises two layers.
  • the inner layer is composed of bone gelatin (gelatin A or gelatin B), casein or an alginate or by a derivative or salt thereof and the outer layer is composed of gelatin B, gum arabic, pectin or chitosan or a derivative or salt thereof.
  • the unsaturated fatty acid may be an omega-3 fatty acid or and ethyl ester or glyceride thereof.
  • 6,234,464 exemplifies microencapsulated 95% EPA ethyl ester in which the wall of each microcapsule comprises an inner/outer layer combination of gelatin A/gum arabic, gelatin A/pectin or gelatin A/gelatin B.
  • the inventors have discovered that, under certain conditions, soft gelatin capsules made from Type B gelatin and containing a pharmaceutical formulation comprising omega-3 polyunsaturated fatty acids can harden over time, even in the presence of plasticizers in the gelatin and have concluded that the hardening is due to chemical interaction between the omega-3 polyunsaturated fatty acid formulation and the gelatin itself.
  • Such a hardening effect can reduce the shelf life of the capsules as, when the hardened capsules are administered orally, they pass not only through the stomach but also though the small intestine and may even pass through a substantial part of the large intestine before the capsule disintegrates and the pharmaceutical formulation is released.
  • an object of preferred embodiments of the present invention to provide a soft gelatin capsule containing an omega-3 polyunsaturated fatty acid formulation that displays a reduced hardening rate and thereby has an increased shelf life when compared to existing soft gelatin capsules containing omega-3 polyunsaturated fatty acids.
  • Disintegration of a soft gelatin capsule in vivo occurs not only though dissolution in an aqueous medium but also through the action of proteases on the gelatin.
  • the chemical interaction between the omega-3 polyunsaturated fatty acid and the gelatin is uncontrolled and may continue throughout the shelf life of the product.
  • a coating on the capsule will usually hinder the action of the proteases thereby reducing their effectiveness.
  • a soft gelatin capsule containing a pharmaceutical formulation comprising at least one omega-3 polyunsaturated fatty acid (“PUFA”) in free acid form or a pharmacologically acceptable derivative thereof characterised in that the capsule comprises gelatin extracted by an extraction process comprising acid pre-treatment of a collagen source.
  • PUFA omega-3 polyunsaturated fatty acid
  • Another advantage of this type of soft gelatin capsule is that the rate of hardening is significantly less than that for existing soft gelatin capsules (containing an omega-3 polyunsaturated fatty acid formulation) comprising gelatin extracted by an extraction process comprising alkali pre-treatment of a collagen source.
  • the reduced rate of hardening translates into an increased shelf life for the capsules.
  • a further advantage is that it is possible to move away from gelatin made from bovine bones and hides. In recent years, there has been some concern regarding the possible transmission of spongiform encephalopathies such as bovine spongiform encephalopathy (or “BSE”) to humans.
  • BSE bovine spongiform encephalopathy
  • Type A gelatin or gelatin extracted by an extraction process comprising acid pre-treatment of a collagen source, is usually made from pig skin and, thus, the use of such gelatin for the manufacture of soft gelatin capsules avoids any risk of contracting BSE from bovine Type B gelatin.
  • porcine gelatin usually Type A gelatin
  • bovine gelatin usually Type B gelatin
  • the omega-3 polyunsaturated fatty acid is preferably present in the form of the free acid.
  • pharmacologically acceptable derivatives may also be used.
  • suitable derivatives include-triglycerides, esters (such as ethyl ester), amides, complexes (e.g. with bile salts, cholesterol or chitosan) and salts (such as sodium or potassium salts).
  • the formulation consists essentially of at least one omega-3 polyunsaturated fatty acid in free acid form or a pharmacologically acceptable derivative thereof but usually further comprises additives such as antioxidants, e.g. ⁇ -tocopherol.
  • the formulation comprises 5, 8, 11, 14, 17-eicospentenoic acid (or “EPA”).
  • EPA may present in an amount of at least about 50 wt % and preferably between from about 50 wt % to about 60 wt % of the formulation although it may also be desirable to have EPA present in an amount of at least about 90 wt % of the formulation for certain applications and/or to minimise the number of capsules needed to be taken to provide a therapeutically active dose.
  • the formulation may comprise 4, 7, 10, 13, 16, 19-docosahexaenoic acid (or “DHA”).
  • DHA may be present in an amount of between from about 20 wt % to about 30 wt % of the formulation.
  • the soft gelatin capsule preferably comprises between from about 100 mg to about 2000 mg of said formulation. At present, two embodiments of the capsule are preferred, the first embodiment comprising about 500 mg of said formulation and intended for use, for example, with children and the second embodiment comprising about 1000 mg intended for adult use.
  • the gelatin used is preferably at least one selected from the group consisting of porcine gelatin, bovine gelatin and fish gelatin, provided that the gelatin has been extracted by an extraction process comprising acid pre-treatment of the relevant collagen source. Mixtures of these gelatins may also be used.
  • each of the soft gelatin capsules of the present invention usually consists of only one layer.
  • Soft gelatin capsules of the present invention may be used in the treatment or prophylaxis of chronic inflammatory conditions such as inflammatory bowel disease, Crohn's disease, ulcerative colitis, rheumatoid arthritis, psoriasis or Behçet's syndrome; hyperlipidaemia or hypertriglyceridaemia; asthma; bipolar disorder, and neoplastic disease such as prostate cancer or bowel cancer.
  • chronic inflammatory conditions such as inflammatory bowel disease, Crohn's disease, ulcerative colitis, rheumatoid arthritis, psoriasis or Behçet's syndrome
  • hyperlipidaemia or hypertriglyceridaemia such as prostate cancer or bowel cancer.
  • the soft gelatin capsule will be used to treat or prevent IBD or Crohn's disease.
  • the capsules may be used to prevent post-operative recurrence of Crohn's disease.
  • immunosuppressants e.g. methotrexate or cyclosporin
  • antineoplastic agents e.g. methotrexate
  • GB0413729.5 describes the use of PUFA or a pharmacologically acceptable salt or derivative thereof in combination with at least one of an immunosuppressant and an antineoplastic agent, said agent(s) having at least one amino acid residue, or a pharmacologically acceptable salt or derivative thereof in the manufacture of a medicament for the treatment of intestinal conditions.
  • GB0413730.3 (filed on 18 Jun.
  • PUFA or a pharmacologically acceptable salt or derivative thereof in combination with at least one of an immunosuppressant and an antineoplastic agent or a pharmacologically acceptable salt or derivative thereof in the manufacture of a medicament for the topical treatment of intestinal conditions.
  • the effect of the PUFA in the uses disclosed in GB0413730.3 and GB0413729.5 is to increase the oral bioavailability of the immunosuppressant and antineoplastic agent, thereby allowing less agent(s) to be administered and reducing the side effects.
  • the disclosures of GB0413729.5 and GB0413730.3 are incorporated herein by reference.
  • the soft gelatin capsules of the present invention may be used to provide the PUFA to achieve this sparing effect for immunosuppressants such as methotrexate, cyclosporin, dactinomycin, 6-mercaptopurine, cyclophosphamide, mycophenolae, daclizumab, muromotiab, predisolone, sirolimus, dexamethasone, rapamycin, FK506, mizonribine, azathioprine, tacrolimus and infliximab and for antineoplastic agents such as methotrexate, dactinomycin, fluorouracil, bleomycin, etoposide, taxol, vincristine, doxorubicin, cisplatin, daunorubicin and VP-16.
  • immunosuppressants such as methotrexate, cyclosporin, dactinomycin, 6-mercaptopurine, cyclophosphamide, my
  • EP-A-1054678 discloses the use of PUFAs as steroid sparing agents.
  • the soft gelatin capsule of the present invention could be used to provide the PUFA to spare steroids such as budesonide or prednisolone.
  • steroids such as budesonide or prednisolone.
  • the disclosure of EP-A-1054678 is incorporated herein by reference.
  • the capsule preferably delays release of the formulation until after passage through the stomach. Release preferably occurs after passage beyond the pancreatic duct in the duodenum and, more preferably, in the ileum. Preferably, release should not occur after the mid-jejunum. Release is typically delayed for at least 30 minutes after oral administration and preferably for between 30 to 60 minutes at pH 5.5. Release of the formulation begins after the integrity of the capsule wall is compromised, i.e. after dissolution or perforation of the gelatin wall. If release occurs due to the gelatin capsule becoming porous, then release may also be sustained which may be advantageous, especially in the treatment of IBD or Crohn's disease.
  • Release may be delayed by coating the capsule with at least one enteric material that is resistant to dissolution in a time dependent and/or pH dependent manner.
  • at least one such enteric material is integrated within the gelatin of the capsule.
  • a time but not pH dependent release coating material is used.
  • a preferred enteric material is a neutral polyacrylate such as poly(ethylacrylate-methylmethacrylate), especially Eudragit NE 30-D (Röhm Pharma GmbH) which has an average molecular weight of about 800,000 and is an example of a time but not pH dependent release coating material.
  • gelatin extracted by an extraction process comprising acid pre-treatment of a collagen source in the manufacture of a medicament comprising at least one soft gelatin capsule as defined in the first aspect for the oral treatment or prophylaxis of a condition selected from chronic inflammatory conditions, hyperlipidaemia, hypetriglyceridaemia, asthma, bipolar disorder and neoplastic disease.
  • the medicament has particular application in the treatment or prophylaxis of inflammatory bowel disease (“IBD”) or Crohn's disease.
  • the medicament may comprise at least one soft gelatin capsule having any of the preferred features discussed above in any appropriate combination.
  • a process for the manufacture of a soft gelatin capsule containing a pharmaceutical formulation comprising at least one omega-3 polyunsaturated fatty acid in free acid form or a pharmacologically acceptable derivative thereof comprising encapsulating said pharmaceutical formulation in gelatin extracted by an extraction process comprising acid pre-treatment of a collagen source.
  • gelatin extracted by an extraction process comprising acid pre-treatment of a collagen source in a soft gelatin capsule containing a pharmaceutical formulation comprising at least one omega-3 polyunsaturated fatty acid in free acid form or a pharmacologically acceptable derivative thereof to improve resistance of the soft gelatin capsule to chemical interaction with the formulation.
  • said resistance is greater than that of a soft gelatin capsule containing a pharmaceutical formulation comprising at least one omega-3 polyunsaturated fatty acid in free acid form or a pharmacologically acceptable derivative thereof in which the gelatin consists essentially of gelatin extracted by an extraction process comprising alkali pre-treatment of a collagen source.
  • gelatin extracted by an extraction process comprising acid pre-treatment of a collagen source in a soft gelatin capsule containing a pharmaceutical formulation comprising at least one omega-3 polyunsaturated fatty acid in free acid form or a pharmacologically acceptable derivative thereof to improve shelf life of the soft gelatin capsule.
  • said shelf life is greater than that for a soft gelatin capsule containing a pharmaceutical formulation comprising at least one omega-3 polyunsaturated fatty acid in free acid form or a pharmacologically acceptable derivative thereof in which the gelatin consists essentially of gelatin extracted by an extraction process comprising alkali pre-treatment of a collagen source.
  • the soft gelatin capsule may be used in the treatment or prophylaxis of IBD and, in particular, Crohn's disease.
  • the daily dosage of the formulation would be set by the doctor in charge of the patient and would depend on a number of factors such as age.
  • Administration may be in the form of a plurality of soft gelatin capsules according to the first aspect of the present invention.
  • the total number of capsules administered daily will depend on the amount of the formulation in each capsule.
  • a daily dose of 4 g of formulation might be administered in the form of either 8 500 mg capsules or 4 1000 mg capsules and a daily dose of 8 g of formulation might be administered in the form of 8 1000 mg capsules.
  • a method of treatment or prophylaxis of a condition selected from chronic inflammatory conditions, hyperlipidaemia, hypertriglyceridaemia, asthma, bipolar disorder and neoplastic disease comprising administering a therapeutically effective amount of a pharmaceutical formulation comprising at least one omega-3 polyunsaturated fatty acid in free acid form or a pharmacologically acceptable salt thereof per day in the form of a plurality of soft gelatin capsules according to the first aspect of the present invention.
  • the therapeutically effective amount is usually from about 1 g to about 8 g.
  • the capsules may have any of the preferred features discussed above in any appropriate combination.
  • Type A gelatin capsules were formed and simultaneously filled with an omega-3 polyunsaturated fatty acid formulation in a known manner.
  • Type A porcine gelatin powder was mixed with water and plasticizer and then heated to form a molten gelatin mass.
  • Two thin ribbons of the molten gelatin were produced and passed between two die rolls which determined the shape of the capsules.
  • the formulation was injected between the two gelatin ribbons just before the die rolls sealed the capsules together by application of heat and pressure. The resulting capsule was then dried to the required moisture content.
  • Type A gelatin capsules produced in this manner was compared with that for the Type B gelatin capsules produced using the same process. Batches of both capsules were stored for different periods (3 months, 6 months, 9 months and 12 months) and at different temperatures (25° C., 30° C. and 40° C.) and then the disintegration times of the capsules in purified water at 37° C. according to Ph. Eur. were measured. The results are indicated in Table 1.
  • disinegration time is not substantially increased for the Type A (porcine) gelatin capsules as either the storage time or storage temperature increases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Psychiatry (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)
  • Dermatology (AREA)
  • Immunology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

A pharmaceutical formulation comprising at least one omega-3 polyunsaturated fatty acid in free acid form or a pharmacologically acceptable derivative thereof is contained in a soft gelatin capsule characterised in that the capsule comprises gelatin extracted by an extraction process comprising acid pre-treatment of a collagen source. One advantage of the present invention over a soft gelatin capsule containing the same formulation but comprising gelatin extracted by an extraction process comprising alkali pre-treatment of the collagen source is that the present invention does not harden significantly over time and thus has a longer shelf life.

Description

  • The present invention relates to a soft gelatin capsule and, in particular, to a soft gelatin capsule containing a pharmaceutical formulation comprising at least one omega-3 polyunsaturated fatty acid in free acid form or a pharmacologically acceptable derivative thereof.
  • Gelatin is a heterogeneous mixture of water-soluble proteins of high molecular weight extracted from a number of sources of collagen such bovine bones and hide, pig skin or fish skin. Broadly speaking, there are two types of gelatin, Type A gelatin and Type B gelatin, depending on the method of extraction.
  • According to “Gelatin Processing” (US National Organic Standards Board Technical Advisory Panel Review; 1 Mar. 2002), Type A gelatin is extracted following an acid pre-treatment process and porcine gelatin is usually extracted in this way. Pigskins are dehaired and degreased and the resultant skin is passed through a chopper or macerator to cut the skin into uniform sizes. The skin is then soaked at a pH of 1 to 4 with a food-grade mineral acid such as hydrochloric acid, phosphoric acid or sulphuric acid for 8 to 30 hours. The acid-treated pigskin is then washed with water to remove impurities and extracted with hot water. The extract is filtered through an anion-cation exchange column to reduce ash or mineral levels. The gelatin extract is vacuum concentrated or ultra filtered to a concentration between 15 to 35%, filtered, pH adjusted to between 3.5 and 6, and evaporated to 50% solids. The residue is chilled, extruded, dried and milled to the required particle size and then packaged. It is also known to pre-treat bovine ossein (de-mineralized bone) with acid prior to extraction of the gelatin although bovine ossein is more commonly pre-treated with alkali.
  • Type B gelatin is extracted following an alkali pre-treatment process and bovine gelatin is usually extracted in this way (ibid). Bones are crushed, cooked, centrifuged and dried. The extracted bone is degreased prior to gelatin extraction and de-mineralized with 4 to 6% hydrochloric acid for a period of 5 to 7 days. The ossein is washed repeatedly With water to remove impurities and then treated with 1 to 4% lime (calcium hydroxide) slurry to adjust the pH to about 12 for periods of 35 to 70 days with agitation and weekly lime changes to remove non-collagen components. The ossein is then washed and mineral acid is added to neutralize excess lime and adjust the pH to 3. The final pH after all wash operations is between 5 and 7. De-mineralized hot water is then used to extract the gelatin. The liquid gelatin solution may be filtered through a cellulose/diatomaceous earth plate and frame filter and deionised using an anionic-cationic resin bed. The resin solution is evaporated to a concentration between 15 to 45%. The concentrated gelatin is filtered, pH adjusted to between 5 and 7, sterilised, cooled and air-dried. It is then milled to the required size and packaged. The alkaline process may take up to 20 weeks.
  • Gelatin is used, for example, to encapsulate various foods and nutritional supplements but especially medicines for oral administration to treat a number of conditions. Plasticizers such as glycerine may be added to gelatin to produce soft gelatin capsules. Formaldehyde and other aldehydes may be used to harden gelatin capsules and enable them to pass from the stomach to the intestines. The vast majority of soft gelatin capsules are manufactured from Type B, e.g. bovine, gelatin.
  • Omega-3 polyunsaturated fatty acids such as 5, 8, 11, 14, 17-eicosapentaenoic acid (or “EPA”) or 4, 7, 10, 13, 16, 19-docosahexaenoic acid (or “DHA”) are well known to be useful in the treatment of inflammatory bowel disease (or “IBD”) (see, for example, EP-A-0244832, EP-A-0289204, EP-A-0311091 and WO-A-93/21912, the disclosures of which are incorporated herein by reference). WO-A-96/36329 (Buser et al; published on 21 Nov. 1996) discloses a treatment of IBD involving oral administration of hard gelatin capsules containing a formulation that comprises a mixture of EPA and DHA. Each capsule is film coated with Eudragit™NE 30-D which is an enteric material comprising poly(ethylacrylate-methylmethacrylate) having an average molecular weight of about 800,000. The capsules pass through the stomach and then disintegrate and release the contents in the small intestine. Results indicate that clinical relapses in Crohn's disease may be prevented by the oral administration of such coated capsules.
  • It is disclosed in U.S. Pat. No. 2,870,062 (Scherer et al; published on 20 Jan. 1959) that “standard gelatin capsules” disintegrate in contact with deliquescent or hygroscopic chemicals, such as liquid non-ionic detergents, salts of strong acids and bases, choline chloride and chloral hydrate, encapsulated within. U.S. Pat. No. 2,870,062 discloses the use of capsules made from specially selected low viscosity, high Bloom strength gelatin prepared from acid treated bone precursor. Such capsules do not appear to disintegrate when left in contact with deliquescent or hygroscopic chemicals.
  • EP-A-0100052 (Yu; published on 8 Feb. 1984) discloses soft gelatin capsules containing PGE-type prostaglandin fatty acid compositions. Comparative studies appear to indicate that soft gelatin capsules made from Type B gelatin accelerate degradation of the prostaglandin composition whereas soft gelatin capsules made from Type A gelatin retain the stabilising effect of the solvent in which the prostaglandin fatty acids are dissolved.
  • U.S. Pat. No. 6,234,464 (Krumbholz et al; published on 22 May 2001) discloses microencapsulated unsaturated fatty acids or fatty acid compounds or mixtures thereof. The wall of the microcapsules comprises two layers. The inner layer is composed of bone gelatin (gelatin A or gelatin B), casein or an alginate or by a derivative or salt thereof and the outer layer is composed of gelatin B, gum arabic, pectin or chitosan or a derivative or salt thereof. The unsaturated fatty acid may be an omega-3 fatty acid or and ethyl ester or glyceride thereof. U.S. Pat. No. 6,234,464 exemplifies microencapsulated 95% EPA ethyl ester in which the wall of each microcapsule comprises an inner/outer layer combination of gelatin A/gum arabic, gelatin A/pectin or gelatin A/gelatin B.
  • The inventors have discovered that, under certain conditions, soft gelatin capsules made from Type B gelatin and containing a pharmaceutical formulation comprising omega-3 polyunsaturated fatty acids can harden over time, even in the presence of plasticizers in the gelatin and have concluded that the hardening is due to chemical interaction between the omega-3 polyunsaturated fatty acid formulation and the gelatin itself. Such a hardening effect can reduce the shelf life of the capsules as, when the hardened capsules are administered orally, they pass not only through the stomach but also though the small intestine and may even pass through a substantial part of the large intestine before the capsule disintegrates and the pharmaceutical formulation is released. If the capsules are being administered as a treatment of IBD then release of the omega-3 polyunsaturated fatty acid formulation beyond the small intestine will not be effective in this treatment. It is, therefore, an object of preferred embodiments of the present invention to provide a soft gelatin capsule containing an omega-3 polyunsaturated fatty acid formulation that displays a reduced hardening rate and thereby has an increased shelf life when compared to existing soft gelatin capsules containing omega-3 polyunsaturated fatty acids.
  • Disintegration of a soft gelatin capsule in vivo occurs not only though dissolution in an aqueous medium but also through the action of proteases on the gelatin. However, the chemical interaction between the omega-3 polyunsaturated fatty acid and the gelatin is uncontrolled and may continue throughout the shelf life of the product. In addition, a coating on the capsule will usually hinder the action of the proteases thereby reducing their effectiveness.
  • According to a first aspect of the present invention, there is provided a soft gelatin capsule containing a pharmaceutical formulation comprising at least one omega-3 polyunsaturated fatty acid (“PUFA”) in free acid form or a pharmacologically acceptable derivative thereof characterised in that the capsule comprises gelatin extracted by an extraction process comprising acid pre-treatment of a collagen source.
  • One advantage of this type of soft gelatin capsule is that the rate of hardening is significantly less than that for existing soft gelatin capsules (containing an omega-3 polyunsaturated fatty acid formulation) comprising gelatin extracted by an extraction process comprising alkali pre-treatment of a collagen source. The reduced rate of hardening translates into an increased shelf life for the capsules. A further advantage is that it is possible to move away from gelatin made from bovine bones and hides. In recent years, there has been some concern regarding the possible transmission of spongiform encephalopathies such as bovine spongiform encephalopathy (or “BSE”) to humans. Type A gelatin, or gelatin extracted by an extraction process comprising acid pre-treatment of a collagen source, is usually made from pig skin and, thus, the use of such gelatin for the manufacture of soft gelatin capsules avoids any risk of contracting BSE from bovine Type B gelatin.
  • The decrease in hardening rate is surprising and unexpected as porcine gelatin (usually Type A gelatin) and bovine gelatin (usually Type B gelatin) have basically the same chemical structure in that the amino acid residues in both types of gelatin are essentially identical. Therefore, the skilled person would not expect the two types of gelatin to interact differently with the same omega-3 polyunsaturated fatty acid.
  • The omega-3 polyunsaturated fatty acid is preferably present in the form of the free acid. However, pharmacologically acceptable derivatives may also be used. Examples of suitable derivatives include-triglycerides, esters (such as ethyl ester), amides, complexes (e.g. with bile salts, cholesterol or chitosan) and salts (such as sodium or potassium salts). In preferred embodiments, the formulation consists essentially of at least one omega-3 polyunsaturated fatty acid in free acid form or a pharmacologically acceptable derivative thereof but usually further comprises additives such as antioxidants, e.g. α-tocopherol.
  • Preferably, the formulation comprises 5, 8, 11, 14, 17-eicospentenoic acid (or “EPA”). EPA may present in an amount of at least about 50 wt % and preferably between from about 50 wt % to about 60 wt % of the formulation although it may also be desirable to have EPA present in an amount of at least about 90 wt % of the formulation for certain applications and/or to minimise the number of capsules needed to be taken to provide a therapeutically active dose.
  • The formulation may comprise 4, 7, 10, 13, 16, 19-docosahexaenoic acid (or “DHA”). DHA may be present in an amount of between from about 20 wt % to about 30 wt % of the formulation.
  • The soft gelatin capsule preferably comprises between from about 100 mg to about 2000 mg of said formulation. At present, two embodiments of the capsule are preferred, the first embodiment comprising about 500 mg of said formulation and intended for use, for example, with children and the second embodiment comprising about 1000 mg intended for adult use.
  • The gelatin used is preferably at least one selected from the group consisting of porcine gelatin, bovine gelatin and fish gelatin, provided that the gelatin has been extracted by an extraction process comprising acid pre-treatment of the relevant collagen source. Mixtures of these gelatins may also be used.
  • The wall of each of the soft gelatin capsules of the present invention usually consists of only one layer.
  • Soft gelatin capsules of the present invention may be used in the treatment or prophylaxis of chronic inflammatory conditions such as inflammatory bowel disease, Crohn's disease, ulcerative colitis, rheumatoid arthritis, psoriasis or Behçet's syndrome; hyperlipidaemia or hypertriglyceridaemia; asthma; bipolar disorder, and neoplastic disease such as prostate cancer or bowel cancer. In certain preferred embodiments, the soft gelatin capsule will be used to treat or prevent IBD or Crohn's disease. In addition, the capsules may be used to prevent post-operative recurrence of Crohn's disease.
  • If administered parenterally, immunosuppressants (e.g. methotrexate or cyclosporin) or antineoplastic agents (e.g. methotrexate) often have adverse systemic side effects. GB0413729.5 (filed on 18 Jun. 2004) describes the use of PUFA or a pharmacologically acceptable salt or derivative thereof in combination with at least one of an immunosuppressant and an antineoplastic agent, said agent(s) having at least one amino acid residue, or a pharmacologically acceptable salt or derivative thereof in the manufacture of a medicament for the treatment of intestinal conditions. GB0413730.3 (filed on 18 Jun. 2004) describes the use of PUFA or a pharmacologically acceptable salt or derivative thereof in combination with at least one of an immunosuppressant and an antineoplastic agent or a pharmacologically acceptable salt or derivative thereof in the manufacture of a medicament for the topical treatment of intestinal conditions. The effect of the PUFA in the uses disclosed in GB0413730.3 and GB0413729.5 is to increase the oral bioavailability of the immunosuppressant and antineoplastic agent, thereby allowing less agent(s) to be administered and reducing the side effects. The disclosures of GB0413729.5 and GB0413730.3 are incorporated herein by reference.
  • The soft gelatin capsules of the present invention may be used to provide the PUFA to achieve this sparing effect for immunosuppressants such as methotrexate, cyclosporin, dactinomycin, 6-mercaptopurine, cyclophosphamide, mycophenolae, daclizumab, muromotiab, predisolone, sirolimus, dexamethasone, rapamycin, FK506, mizonribine, azathioprine, tacrolimus and infliximab and for antineoplastic agents such as methotrexate, dactinomycin, fluorouracil, bleomycin, etoposide, taxol, vincristine, doxorubicin, cisplatin, daunorubicin and VP-16.
  • EP-A-1054678 discloses the use of PUFAs as steroid sparing agents. The soft gelatin capsule of the present invention could be used to provide the PUFA to spare steroids such as budesonide or prednisolone. The disclosure of EP-A-1054678 is incorporated herein by reference.
  • The capsule preferably delays release of the formulation until after passage through the stomach. Release preferably occurs after passage beyond the pancreatic duct in the duodenum and, more preferably, in the ileum. Preferably, release should not occur after the mid-jejunum. Release is typically delayed for at least 30 minutes after oral administration and preferably for between 30 to 60 minutes at pH 5.5. Release of the formulation begins after the integrity of the capsule wall is compromised, i.e. after dissolution or perforation of the gelatin wall. If release occurs due to the gelatin capsule becoming porous, then release may also be sustained which may be advantageous, especially in the treatment of IBD or Crohn's disease.
  • Release may be delayed by coating the capsule with at least one enteric material that is resistant to dissolution in a time dependent and/or pH dependent manner. Alternatively or additionally, at least one such enteric material is integrated within the gelatin of the capsule. Preferably, a time but not pH dependent release coating material is used. A preferred enteric material is a neutral polyacrylate such as poly(ethylacrylate-methylmethacrylate), especially Eudragit NE 30-D (Röhm Pharma GmbH) which has an average molecular weight of about 800,000 and is an example of a time but not pH dependent release coating material.
  • According to a second aspect of the present invention, there is provided use of gelatin extracted by an extraction process comprising acid pre-treatment of a collagen source in the manufacture of a medicament comprising at least one soft gelatin capsule as defined in the first aspect for the oral treatment or prophylaxis of a condition selected from chronic inflammatory conditions, hyperlipidaemia, hypetriglyceridaemia, asthma, bipolar disorder and neoplastic disease. The medicament has particular application in the treatment or prophylaxis of inflammatory bowel disease (“IBD”) or Crohn's disease. The medicament may comprise at least one soft gelatin capsule having any of the preferred features discussed above in any appropriate combination.
  • According to a third aspect of the present invention, there is provided a process for the manufacture of a soft gelatin capsule containing a pharmaceutical formulation comprising at least one omega-3 polyunsaturated fatty acid in free acid form or a pharmacologically acceptable derivative thereof, said process comprising encapsulating said pharmaceutical formulation in gelatin extracted by an extraction process comprising acid pre-treatment of a collagen source.
  • According to a fourth aspect of the present invention, there is provided use of gelatin extracted by an extraction process comprising acid pre-treatment of a collagen source in a soft gelatin capsule containing a pharmaceutical formulation comprising at least one omega-3 polyunsaturated fatty acid in free acid form or a pharmacologically acceptable derivative thereof to improve resistance of the soft gelatin capsule to chemical interaction with the formulation. Preferably, said resistance is greater than that of a soft gelatin capsule containing a pharmaceutical formulation comprising at least one omega-3 polyunsaturated fatty acid in free acid form or a pharmacologically acceptable derivative thereof in which the gelatin consists essentially of gelatin extracted by an extraction process comprising alkali pre-treatment of a collagen source.
  • According to a fifth aspect of the present invention, there is provided use of gelatin extracted by an extraction process comprising acid pre-treatment of a collagen source in a soft gelatin capsule containing a pharmaceutical formulation comprising at least one omega-3 polyunsaturated fatty acid in free acid form or a pharmacologically acceptable derivative thereof to improve shelf life of the soft gelatin capsule. Preferably, said shelf life is greater than that for a soft gelatin capsule containing a pharmaceutical formulation comprising at least one omega-3 polyunsaturated fatty acid in free acid form or a pharmacologically acceptable derivative thereof in which the gelatin consists essentially of gelatin extracted by an extraction process comprising alkali pre-treatment of a collagen source.
  • The soft gelatin capsule may be used in the treatment or prophylaxis of IBD and, in particular, Crohn's disease. In such treatment or the other treatments listed above, the daily dosage of the formulation would be set by the doctor in charge of the patient and would depend on a number of factors such as age. Usually, between from about 1 g to about 8 g of the formulation is administered to the patient per day, particularly in the treatment of IBD or Crohn's disease. Administration may be in the form of a plurality of soft gelatin capsules according to the first aspect of the present invention. The total number of capsules administered daily will depend on the amount of the formulation in each capsule. Thus, for example, a daily dose of 4 g of formulation might be administered in the form of either 8 500 mg capsules or 4 1000 mg capsules and a daily dose of 8 g of formulation might be administered in the form of 8 1000 mg capsules.
  • According to a sixth aspect of the present invention, there is provided a method of treatment or prophylaxis of a condition selected from chronic inflammatory conditions, hyperlipidaemia, hypertriglyceridaemia, asthma, bipolar disorder and neoplastic disease comprising administering a therapeutically effective amount of a pharmaceutical formulation comprising at least one omega-3 polyunsaturated fatty acid in free acid form or a pharmacologically acceptable salt thereof per day in the form of a plurality of soft gelatin capsules according to the first aspect of the present invention. Where the condition to be treated or prevented is IBD or Crohn's disease, the therapeutically effective amount is usually from about 1 g to about 8 g. The capsules may have any of the preferred features discussed above in any appropriate combination.
  • The following is a description, by way of example only, of a presently preferred embodiment of the present invention.
  • Type A gelatin capsules were formed and simultaneously filled with an omega-3 polyunsaturated fatty acid formulation in a known manner. Type A porcine gelatin powder was mixed with water and plasticizer and then heated to form a molten gelatin mass. Two thin ribbons of the molten gelatin were produced and passed between two die rolls which determined the shape of the capsules. The formulation was injected between the two gelatin ribbons just before the die rolls sealed the capsules together by application of heat and pressure. The resulting capsule was then dried to the required moisture content.
  • The stability of the Type A gelatin capsules produced in this manner was compared with that for the Type B gelatin capsules produced using the same process. Batches of both capsules were stored for different periods (3 months, 6 months, 9 months and 12 months) and at different temperatures (25° C., 30° C. and 40° C.) and then the disintegration times of the capsules in purified water at 37° C. according to Ph. Eur. were measured. The results are indicated in Table 1.
  • TABLE 1
    Storage Temp
    Capsule (° C.) 0 months 3 months 6 months 9 months 12 months
    Type B gelatin
    (Bovine)
    25 7 min 9 min  9 min 6 min 10 min
    30 7 min 9 min 20 min n.p. Insoluble
    40 7 min Insoluble Insoluble n.p. n.p.
    Type A gelatin
    (Porcine)
    25 6 min 6 min  7 min 6 min  7 min
    30 6 min 7 min  8 min n.p. 10 min
    40 6 min 8 min 10 min n.p. n.p.
  • It should take no longer than 30 min for a soft gelatin capsule to disintegrate if it is to release its contents effectively. Therefore, if a capsule failed to disintegrate in 30 min, it was deemed “insoluble”. The term “n.p.” indicated that the test was “not performed”.
  • The results indicate that, for the Type B (bovine) gelatin capsules stored at a given temperature, there is a general increase in disintegration time as the storage time increases. In addition, for the Type B (bovine) gelatin capsules stored for a given time, there is a general increase in disintegration time as the storage temperature increases. These results are consistent with the omega-3 polyunsaturated fatty acid interacting chemically with the Type B gelatin resulting in a hardening of the capsule wall.
  • In contrast, disinegration time is not substantially increased for the Type A (porcine) gelatin capsules as either the storage time or storage temperature increases. These results would appear to indicate that the degree of hardening is significantly to less for Type A (porcine) gelatin capsules than for Type B (bovine) gelatin capsules. In particular, attention is drawn to the disintegration results for the Type B (bovine) gelatin capsules stored at 30° C. for 12 months and at 40° C. for 3 months and 6 months as these capsules have been classified as “insoluble” whereas the corresponding Type A (porcine) gelatin capsules took no more than 10 minutes to dissolve.
  • It will be appreciated that the invention is not restricted to the details described above with reference to the preferred embodiments but that numerous modifications and variations can be made without departing from the spirit or scope of the invention as defined by the following claims.

Claims (2)

1. A pharmaceutical dosage form, comprising:
a) a pharmaceutical formulation comprising at least one omega-3 polyunsaturated fatty acid in free acid form;
b) a soft gelatin capsule containing the formulation inside the capsule; and
c) a coating on the outside of the capsule;
wherein the capsule comprises sufficient porcine Type A gelatin such that, when containing the formulation, the uncoated capsule disintegrates within a time period of no longer than 30 min in purified water at 37° C. after storage for 3 months at 40° C.
2-34. (canceled)
US14/699,719 2004-02-13 2015-04-29 Pharmaceutical composition Abandoned US20150238430A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/699,719 US20150238430A1 (en) 2004-02-13 2015-04-29 Pharmaceutical composition
US15/350,238 US20170056354A1 (en) 2004-02-13 2016-11-14 Type a gelatin capsule containing pufa in free acid form

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
GB0403247 2004-02-13
GB0403247A GB0403247D0 (en) 2004-02-13 2004-02-13 A pharmaceutical composition
PCT/GB2005/000415 WO2005079853A2 (en) 2004-02-13 2005-02-07 Soft gelatin capsule comprising omega-3 polyunsaturated fatty acid
US58720107A 2007-05-15 2007-05-15
US12/984,994 US8383678B2 (en) 2004-02-13 2011-01-05 Type a gelatin capsule containing PUFA in free acid form
US13/734,643 US9012501B2 (en) 2004-02-13 2013-01-04 Type A gelatin capsule containing PUFA in free acid form
US14/258,523 US9132112B2 (en) 2004-02-13 2014-04-22 Type A gelatin capsule containing PUFA in free acid form
US14/699,719 US20150238430A1 (en) 2004-02-13 2015-04-29 Pharmaceutical composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/258,523 Continuation US9132112B2 (en) 2004-02-13 2014-04-22 Type A gelatin capsule containing PUFA in free acid form

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/350,238 Continuation US20170056354A1 (en) 2004-02-13 2016-11-14 Type a gelatin capsule containing pufa in free acid form

Publications (1)

Publication Number Publication Date
US20150238430A1 true US20150238430A1 (en) 2015-08-27

Family

ID=32011882

Family Applications (6)

Application Number Title Priority Date Filing Date
US10/587,201 Expired - Fee Related US7960370B2 (en) 2004-02-13 2005-02-07 Type A gelatin capsule containing PUFA in free acid form
US12/984,994 Active 2025-04-16 US8383678B2 (en) 2004-02-13 2011-01-05 Type a gelatin capsule containing PUFA in free acid form
US13/734,643 Expired - Fee Related US9012501B2 (en) 2004-02-13 2013-01-04 Type A gelatin capsule containing PUFA in free acid form
US14/258,523 Expired - Fee Related US9132112B2 (en) 2004-02-13 2014-04-22 Type A gelatin capsule containing PUFA in free acid form
US14/699,719 Abandoned US20150238430A1 (en) 2004-02-13 2015-04-29 Pharmaceutical composition
US15/350,238 Abandoned US20170056354A1 (en) 2004-02-13 2016-11-14 Type a gelatin capsule containing pufa in free acid form

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US10/587,201 Expired - Fee Related US7960370B2 (en) 2004-02-13 2005-02-07 Type A gelatin capsule containing PUFA in free acid form
US12/984,994 Active 2025-04-16 US8383678B2 (en) 2004-02-13 2011-01-05 Type a gelatin capsule containing PUFA in free acid form
US13/734,643 Expired - Fee Related US9012501B2 (en) 2004-02-13 2013-01-04 Type A gelatin capsule containing PUFA in free acid form
US14/258,523 Expired - Fee Related US9132112B2 (en) 2004-02-13 2014-04-22 Type A gelatin capsule containing PUFA in free acid form

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/350,238 Abandoned US20170056354A1 (en) 2004-02-13 2016-11-14 Type a gelatin capsule containing pufa in free acid form

Country Status (23)

Country Link
US (6) US7960370B2 (en)
EP (1) EP1755565B2 (en)
JP (3) JP5435842B2 (en)
KR (1) KR101198458B1 (en)
CN (1) CN1929824B (en)
AR (1) AR047799A1 (en)
AT (1) ATE457720T2 (en)
AU (1) AU2005215198B2 (en)
BR (1) BRPI0507473B8 (en)
CA (1) CA2555064C (en)
CY (1) CY1110030T1 (en)
DE (1) DE602005019402D1 (en)
DK (1) DK1755565T4 (en)
ES (1) ES2344208T5 (en)
GB (1) GB0403247D0 (en)
IL (1) IL177462A (en)
MX (1) MXPA06008352A (en)
NO (1) NO341821B1 (en)
PL (1) PL1755565T5 (en)
PT (1) PT1755565E (en)
SI (1) SI1755565T2 (en)
WO (1) WO2005079853A2 (en)
ZA (1) ZA200606229B (en)

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1660047B1 (en) 2003-08-13 2013-11-27 Biocon Limited Micro-particle fatty acid salt solid dosage formulations for therapeutic agents
GB0403247D0 (en) 2004-02-13 2004-03-17 Tillotts Pharma Ag A pharmaceutical composition
NZ582576A (en) * 2007-06-29 2012-05-25 Takeda Pharmaceutical Seamless capsule comprising gelatin and a plasticizer
US9763989B2 (en) 2007-08-03 2017-09-19 Shaklee Corporation Nutritional supplement system
CA2695366C (en) 2007-08-03 2016-10-04 Shaklee Corporation Nutritional supplement system
JP5924834B2 (en) 2008-09-02 2016-05-25 アマリン ファーマシューティカルズ アイルランド リミテッド Pharmaceutical composition comprising eicosapentaenoic acid and nicotinic acid and method of using this pharmaceutical composition
US20100130608A1 (en) * 2008-10-01 2010-05-27 Martek Biosciences Corporation Compositions and methods for reducing triglyceride levels
US9006288B2 (en) 2009-01-12 2015-04-14 Biokier, Inc. Composition and method for treatment of diabetes
US9314444B2 (en) 2009-01-12 2016-04-19 Biokier, Inc. Composition and method for treatment of NASH
KR101841756B1 (en) * 2009-03-09 2018-03-23 프로노바 바이오파마 너지 에이에스 Compositions comprising a fatty acid oil mixture and a surfactant, and methods and uses thereof
US8207363B2 (en) * 2009-03-19 2012-06-26 Martek Biosciences Corporation Thraustochytrids, fatty acid compositions, and methods of making and uses thereof
CN102413825A (en) 2009-04-29 2012-04-11 阿马里纳股份公司 Pharmaceutical compositions comprising EPA and a cardiovascular agent and methods of using the same
DK3278665T3 (en) 2009-04-29 2020-11-30 Amarin Pharmaceuticals Ie Ltd STABLE PHARMACEUTICAL COMPOSITION AND PROCEDURES FOR USE
HUE054298T2 (en) 2009-06-15 2021-08-30 Amarin Pharmaceuticals Ie Ltd Compositions and methods for treating stroke in a subject on concomitant statin therapy
US20110071176A1 (en) 2009-09-23 2011-03-24 Amarin Pharma, Inc. Pharmaceutical composition comprising omega-3 fatty acid and hydroxy-derivative of a statin and methods of using same
CN102724972A (en) * 2009-10-23 2012-10-10 普罗诺瓦生物医药挪威公司 Coated capsules and tablets of a fatty acid oil mixture
JP2011136927A (en) * 2009-12-28 2011-07-14 Pfizer Inc Gelatin capsule and gelatin composition for forming capsule coating film
CN102884201B (en) 2010-01-19 2016-04-13 帝斯曼知识产权资产管理有限公司 Produce microorganism, lipid acid constituent and preparation method thereof and the purposes of timnodonic acid
WO2012032415A2 (en) * 2010-09-08 2012-03-15 Pronova Biopharma Norge As Compositions comprising a fatty acid oil mixture comprising epa and dha in free acid form, a surfactant, and a statin
WO2012037311A1 (en) 2010-09-17 2012-03-22 Maine Natural Health, Inc. Compositions containing omega-3 oil and uses thereof
WO2012037328A2 (en) * 2010-09-17 2012-03-22 Maine Natural Health, Inc. Compositions containing omega-3 oil with an anti-inflammatory agent and uses thereof
US11712429B2 (en) 2010-11-29 2023-08-01 Amarin Pharmaceuticals Ireland Limited Low eructation composition and methods for treating and/or preventing cardiovascular disease in a subject with fish allergy/hypersensitivity
NZ727980A (en) 2010-11-29 2018-08-31 Amarin Pharmaceuticals Ie Ltd Low eructation composition and methods for treating and/or preventing cardiovascular disease in a subject with fish allergy/hypersensitivity
US8951514B2 (en) 2011-02-16 2015-02-10 Pivotal Therapeutics Inc. Statin and omega 3 fatty acids for reduction of apolipoprotein-B levels
US8952000B2 (en) 2011-02-16 2015-02-10 Pivotal Therapeutics Inc. Cholesterol absorption inhibitor and omega 3 fatty acids for the reduction of cholesterol and for the prevention or reduction of cardiovascular, cardiac and vascular events
US9119826B2 (en) 2011-02-16 2015-09-01 Pivotal Therapeutics, Inc. Omega 3 fatty acid for use as a prescription medical food and omega 3 fatty acid diagniostic assay for the dietary management of cardiovascular patients with cardiovascular disease (CVD) who are deficient in blood EPA and DHA levels
US8715648B2 (en) 2011-02-16 2014-05-06 Pivotal Therapeutics Inc. Method for treating obesity with anti-obesity formulations and omega 3 fatty acids for the reduction of body weight in cardiovascular disease patients (CVD) and diabetics
BR112014001126B1 (en) 2011-07-21 2022-05-10 Dsm Ip Assets B.V Composition containing refined microbial oil and oral dosage form
CN103957903A (en) * 2011-09-15 2014-07-30 翁特拉制药公司 Methods and compositions for treating, reversing, inhibiting or preventing resistance to antiplatelet therapy
WO2013070735A1 (en) 2011-11-07 2013-05-16 Amarin Pharmaceuticals Ireland Limited Methods of treating hypertriglyceridemia
US11291643B2 (en) 2011-11-07 2022-04-05 Amarin Pharmaceuticals Ireland Limited Methods of treating hypertriglyceridemia
AU2013207368A1 (en) 2012-01-06 2014-07-24 Amarin Pharmaceuticals Ireland Limited Compositions and methods for lowering levels of high-sensitivity (hs-CRP) in a subject
EP2800563B1 (en) * 2012-01-06 2018-07-11 Omthera Pharmaceuticals Inc. Dpa-enriched compositions of omega-3 polyunsaturated fatty acids in free acid form
DK2833740T3 (en) * 2012-04-04 2017-01-02 Pronova Biopharma Norge As Compositions comprising omega-3 fatty acids and vitamin D for acne vulgaris and / or eczema and methods and uses thereof
CA2868326A1 (en) * 2012-04-13 2013-10-17 Banner Pharmacaps, Inc. Soft elastic capsules containing tablets and liquid or semisolid fills and methods for their manufacture
SI2659881T1 (en) 2012-04-30 2018-03-30 Tillotts Pharma Ag A delayed release drug formulation
EP2846779A4 (en) 2012-05-07 2015-12-16 Omthera Pharmaceuticals Inc Compositions of statins and omega-3 fatty acids
RS61557B1 (en) 2012-06-29 2021-04-29 Amarin Pharmaceuticals Ie Ltd Methods of reducing the risk of a cardiovascular event in a subject on statin therapy using eicosapentaenoic acid ethyl ester
GB201216385D0 (en) * 2012-09-13 2012-10-31 Chrysalis Pharma Ag A pharmaceutical composition
WO2014074552A2 (en) 2012-11-06 2014-05-15 Amarin Pharmaceuticals Ireland Limited Compositions and methods for lowering triglycerides without raising ldl-c levels in a subject on concomitant statin therapy
US9814733B2 (en) 2012-12-31 2017-11-14 A,arin Pharmaceuticals Ireland Limited Compositions comprising EPA and obeticholic acid and methods of use thereof
US20140187633A1 (en) 2012-12-31 2014-07-03 Amarin Pharmaceuticals Ireland Limited Methods of treating or preventing nonalcoholic steatohepatitis and/or primary biliary cirrhosis
US9452151B2 (en) 2013-02-06 2016-09-27 Amarin Pharmaceuticals Ireland Limited Methods of reducing apolipoprotein C-III
US9624492B2 (en) 2013-02-13 2017-04-18 Amarin Pharmaceuticals Ireland Limited Compositions comprising eicosapentaenoic acid and mipomersen and methods of use thereof
US9662307B2 (en) 2013-02-19 2017-05-30 The Regents Of The University Of Colorado Compositions comprising eicosapentaenoic acid and a hydroxyl compound and methods of use thereof
US9283201B2 (en) 2013-03-14 2016-03-15 Amarin Pharmaceuticals Ireland Limited Compositions and methods for treating or preventing obesity in a subject in need thereof
US20140271841A1 (en) 2013-03-15 2014-09-18 Amarin Pharmaceuticals Ireland Limited Pharmaceutical composition comprising eicosapentaenoic acid and derivatives thereof and a statin
US10966968B2 (en) 2013-06-06 2021-04-06 Amarin Pharmaceuticals Ireland Limited Co-administration of rosiglitazone and eicosapentaenoic acid or a derivative thereof
US20150065572A1 (en) 2013-09-04 2015-03-05 Amarin Pharmaceuticals Ireland Limited Methods of treating or preventing prostate cancer
US9585859B2 (en) 2013-10-10 2017-03-07 Amarin Pharmaceuticals Ireland Limited Compositions and methods for lowering triglycerides without raising LDL-C levels in a subject on concomitant statin therapy
NZ747731A (en) 2013-10-29 2020-02-28 Tillotts Pharma Ag A delayed release drug formulation
WO2015066176A1 (en) * 2013-10-30 2015-05-07 Banner Life Sciences, LLC Enteric soft capsules comprising polyunsaturated fatty acids
US10098863B2 (en) 2014-02-28 2018-10-16 Banner Life Sciences Llc Fumarate esters
WO2015130998A1 (en) 2014-02-28 2015-09-03 Banner Life Sciences Llc Controlled release enteric soft capsules of fumarate esters
US9326947B1 (en) 2014-02-28 2016-05-03 Banner Life Sciences Llc Controlled release fumarate esters
US9636318B2 (en) 2015-08-31 2017-05-02 Banner Life Sciences Llc Fumarate ester dosage forms
CA2947741A1 (en) 2014-05-05 2015-11-12 Thetis Pharmaceuticals Llc Compositions and methods relating to ionic salts of peptides
US10561631B2 (en) 2014-06-11 2020-02-18 Amarin Pharmaceuticals Ireland Limited Methods of reducing RLP-C
US10172818B2 (en) 2014-06-16 2019-01-08 Amarin Pharmaceuticals Ireland Limited Methods of reducing or preventing oxidation of small dense LDL or membrane polyunsaturated fatty acids
US9242008B2 (en) 2014-06-18 2016-01-26 Thetis Pharmaceuticals Llc Mineral amino-acid complexes of fatty acids
AU2015277509A1 (en) 2014-06-18 2017-01-05 Thetis Pharmaceuticals Llc Mineral amino-acid complexes of active agents
WO2015200563A1 (en) * 2014-06-26 2015-12-30 Banner Life Sciences Llc Enhanced bioavailability of polysaturated fatty acids
US9895333B2 (en) 2014-06-26 2018-02-20 Patheon Softgels Inc. Enhanced bioavailability of polyunsaturated fatty acids
KR20220143773A (en) * 2014-08-28 2022-10-25 뉴암스테르담 파마 비.브이. PHARMACEUTICAL COMPOSITION AND THERAPEUTIC COMBINATION COMPRISING A CHOLESTERYL ESTER TRANSFER PROTEIN INHIBITOR AND HMG CoA REDUCTASE INHIBITORS
CN105434393B (en) * 2014-09-25 2019-07-09 四川国为制药有限公司 A kind of soft gelatin pharmaceutical composition comprising high-content omega-3 polyunsaturated fatty acids
MA41611A (en) * 2015-02-23 2018-01-02 Omthera Pharmaceuticals Inc MILLI-CAPSULE PREPARATIONS CONTAINING FREE POLYINSATURATED FATTY ACIDS
US10406130B2 (en) 2016-03-15 2019-09-10 Amarin Pharmaceuticals Ireland Limited Methods of reducing or preventing oxidation of small dense LDL or membrane polyunsaturated fatty acids
CA3026264A1 (en) 2016-06-03 2017-12-07 Thetis Pharmaceuticals Llc Compositions and methods relating to salts of specialized pro-resolving mediators
TW201900160A (en) 2017-05-19 2019-01-01 愛爾蘭商艾瑪琳製藥愛爾蘭有限公司 Compositions and Methods for Lowering Triglycerides in a Subject Having Reduced Kidney Function
US11058661B2 (en) 2018-03-02 2021-07-13 Amarin Pharmaceuticals Ireland Limited Compositions and methods for lowering triglycerides in a subject on concomitant statin therapy and having hsCRP levels of at least about 2 mg/L
GB2571749A (en) * 2018-03-07 2019-09-11 Anabio Tech Limited A method inducing satiety in a mammal
CN112218630A (en) 2018-09-24 2021-01-12 阿马里纳药物爱尔兰有限公司 Method of reducing the risk of a cardiovascular event in a subject
CN109567180B (en) * 2019-02-02 2022-03-22 北京振东光明药物研究院有限公司 A nutritional product for female in menstrual period, pregnancy period, parturition period, and lactation period, and its preparation method
US11903918B2 (en) 2020-01-10 2024-02-20 Banner Life Sciences Llc Fumarate ester dosage forms with enhanced gastrointestinal tolerability
CN113559079B (en) * 2020-04-28 2023-10-20 江苏恒瑞医药股份有限公司 Soft capsule and preparation method and application thereof
US11986452B2 (en) 2021-04-21 2024-05-21 Amarin Pharmaceuticals Ireland Limited Methods of reducing the risk of heart failure
KR20240080551A (en) 2022-11-30 2024-06-07 주식회사 에이치씨바이오랩 Coating method of oil-containing powder using fluidized bed process and the oil-containing powder prepared by the same method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012501B2 (en) * 2004-02-13 2015-04-21 Chrysalis Pharma Ag Type A gelatin capsule containing PUFA in free acid form

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2868661A (en) * 1954-08-04 1959-01-13 Wilson & Co Inc Sensitizing photographic gelatin
US2870062A (en) 1956-04-27 1959-01-20 Scherer Corp R P Gelatin composition for capsules
US2888661A (en) 1956-12-13 1959-05-26 Radio Frequency Lab Adapter for magnet charger
US3108995A (en) 1957-03-01 1963-10-29 Charles B Knox Gelatine Co Inc Method of modifying type a gelatin and product thereof
AU527784B2 (en) 1978-05-26 1983-03-24 Bang, Hans Olaf Dr. Treatment of thromboembolic conditions withall-z)-5, 8, 11, 14, 17-eicosapentaenoic acid
JPS55154533A (en) 1979-05-18 1980-12-02 Kawasaki Steel Corp Stacking method for starting material such as ore
JPS5735512A (en) 1980-06-27 1982-02-26 Nippon Oil & Fats Co Ltd Preventive and remedy for thrombosis
JPS609011B2 (en) 1981-10-09 1985-03-07 富士カプセル株式会社 Soft capsule membrane
NZ204924A (en) 1982-07-19 1986-09-10 Syntex Inc Pge-type prostaglandins in stabilising solvent encapsulated in type a gelatin
JPS5939834A (en) 1982-08-31 1984-03-05 Morishita Jintan Kk Film composition for pharmaceutical
DE3438291A1 (en) 1984-10-19 1986-04-24 Röhm GmbH, 6100 Darmstadt METHOD FOR PRODUCING AN AQUEOUS COATING DISPERSION AND THE USE THEREOF FOR COATING MEDICINAL PRODUCTS
EP0212746B1 (en) 1985-08-16 1991-04-10 The Procter & Gamble Company Drug particles having constant release
SE8505569D0 (en) 1985-11-25 1985-11-25 Aco Laekemedel Ab ENTERAL PREPARATION
IL77186A0 (en) 1985-11-29 1986-04-29 Touitou Elka Pharmaceutical insulin composition
JPS62201823A (en) 1986-02-28 1987-09-05 Freunt Ind Co Ltd Material containing beneficial enterobacterium and production thereof
DE3615710A1 (en) 1986-05-09 1987-11-26 Hoechst Ag PREPARATIONS FOR THE SYNTHESIS OF PROSTAGLANDINES AND HYDROXY FATTY ACIDS IN BIOLOGICAL SYSTEMS
GB8707421D0 (en) 1987-03-27 1987-04-29 Wellcome Found Pharmaceutical formulations
GB8719988D0 (en) 1987-08-25 1987-09-30 Efamol Ltd Chemical compounds
US5252333A (en) 1987-04-27 1993-10-12 Scotia Holdings Plc Lithium salt-containing pharmaceutical compositions
DE3863678D1 (en) * 1987-04-27 1991-08-22 Efamol Holdings PHARMACEUTICAL PREPARATIONS CONTAINING LITHIUM SALTS.
JPH0774150B2 (en) * 1987-07-31 1995-08-09 新田ゼラチン株式会社 Soft capsule for liver oil
US4895725A (en) 1987-08-24 1990-01-23 Clinical Technologies Associates, Inc. Microencapsulation of fish oil
DE3734147C2 (en) 1987-10-09 1998-10-29 Braun Melsungen Ag Isotonic omega-3 fatty acid-containing fat emulsion and its use
GB8819110D0 (en) * 1988-08-11 1988-09-14 Norsk Hydro As Antihypertensive drug & method for production
GB2223943A (en) 1988-10-21 1990-04-25 Tillotts Pharma Ag Oral disage forms of omega-3 polyunsaturated acids
US4935243A (en) * 1988-12-19 1990-06-19 Pharmacaps, Inc. Chewable, edible soft gelatin capsule
PT93637A (en) 1989-04-20 1990-11-20 Procter & Gamble METHOD FOR THE TREATMENT OF INTESTINAL / COLONIC FUNCTIONAL DISORDERS, ESPECIALLY THE INTESTINAL IRRITATION SYNDROME
US5292522A (en) 1989-06-20 1994-03-08 Rohm Gmbh Aqueous film coating agent for solid medicaments
JP2836206B2 (en) 1990-07-02 1998-12-14 味の素株式会社 Oil composition for inflammatory bowel disease
DK0540613T3 (en) 1990-07-20 1996-04-01 Tillotts Pharma Ag Digestive tract products and methods
GB2253346A (en) 1991-02-22 1992-09-09 John Rhodes Delayed release oral dosage forms for treatment of intestinal disorders
ES2107663T3 (en) 1992-04-28 1997-12-01 Fresenius Ag USE OF AN EMULSION CONTAINING OMEGA-3 FATTY ACIDS IN THE MANUFACTURE OF A MEDICINAL PRODUCT TO BE ADMINISTERED BY THE PARENTERAL WAY FOR THE TREATMENT OF INFLAMMATORY DISEASES.
US5496718A (en) 1992-06-26 1996-03-05 Seikagaku Kogyo Kabushiki Kaisha (Seikagaku Corporation) Chondroitinase ABC isolated from proteus vulgaris ATCC 6896
JP3895782B2 (en) 1992-10-26 2007-03-22 生化学工業株式会社 Chondroitinase composition and injectable preparation containing the same
JP2847326B2 (en) 1992-11-30 1999-01-20 ファイザー・インク. Supported liquid membrane delivery device
JPH0741421A (en) 1993-05-28 1995-02-10 Suntory Ltd Preventive agent or improver for medical symptom using leukotriene b4 (ltb4)
DK66493D0 (en) 1993-06-08 1993-06-08 Ferring A S PREPARATIONS FOR USE IN TREATMENT OF INFLAMMATORY GAS DISORDERS OR TO IMPROVE IMPROVED HEALTH
DE4422938A1 (en) 1993-06-30 1995-01-12 Siegfried Ag Pharma Soft gelatin capsules
US5411988A (en) 1993-10-27 1995-05-02 Bockow; Barry I. Compositions and methods for inhibiting inflammation and adhesion formation
US5641512A (en) * 1995-03-29 1997-06-24 The Procter & Gamble Company Soft gelatin capsule compositions
GB9509764D0 (en) 1995-05-15 1995-07-05 Tillotts Pharma Ag Treatment of inflammatory bowel disease using oral dosage forms of omega-3 polyunsaturated acids
JPH11106333A (en) * 1997-09-30 1999-04-20 Kuraray Co Ltd Production of powder containing fat-soluble vitamin and/ or carotenoid
DE19830375A1 (en) 1998-07-08 2000-01-13 K D Pharma Bexbach Gmbh Microencapsulated unsaturated fatty acid or fatty acid compound or mixture of fatty acids and / or fatty acid compounds
AU2878801A (en) * 1999-10-01 2001-05-10 Natco Pharma Limited An improved pharmaceutical composition and a process for its preparation
US6555316B1 (en) * 1999-10-12 2003-04-29 Genset S.A. Schizophrenia associated gene, proteins and biallelic markers
CA2390995A1 (en) * 1999-11-12 2001-05-17 Fibrogen, Inc. Recombinant gelatin in vaccines
JP2001335481A (en) 2000-03-22 2001-12-04 Eisai Co Ltd Soft capsule containing vitamin e at high concentration
ITMI20012384A1 (en) 2001-11-12 2003-05-12 Quatex Nv USE OF POLYUNSATURATED FATTY ACIDS FOR THE PRIMARY PREVENTION OF MAJOR CARDIOVASCULAR EVENTS
US20030161872A1 (en) * 2002-01-04 2003-08-28 Gan-Lin Chen Capsule for holding liquid-containing compositions and method for making the same
US6663900B2 (en) * 2002-02-01 2003-12-16 Kemin Foods, Lc Microcapsules having high carotenoid content
ITMI20020269A1 (en) 2002-02-12 2003-08-12 Victorix Assets Ltd USE OF OMEGA-3 POLYUNSATURATED ACID ETHYL STERES IN PATIENTS WITH HEART INSUFFICIENCY
DE10214002A1 (en) 2002-03-27 2003-10-09 Roehm Gmbh Pharmaceutical formulation for the active substance budesonide
ITMI20020731A1 (en) 2002-04-08 2003-10-08 Ibsa Inst Biochimique Sa PHARMACEUTICAL COMPOSITIONS FOR ACETYLSALICYLIC ACID AND OMEGA-3 OILS
US6974592B2 (en) * 2002-04-11 2005-12-13 Ocean Nutrition Canada Limited Encapsulated agglomeration of microcapsules and method for the preparation thereof
GB2388776B (en) 2002-05-21 2004-08-25 Croda Int Plc Succinylated fish gelatin for use as a blood plasma expander
WO2003103582A2 (en) 2002-06-05 2003-12-18 Ivax Corporation Reduction of gelatin cross-linking
JP2006523642A (en) * 2003-04-17 2006-10-19 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Multi-vitamin and mineral supplements for pregnant women
GB0413729D0 (en) 2004-06-18 2004-07-21 Tillotts Pharma Ag A pharmaceutical composition and its use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012501B2 (en) * 2004-02-13 2015-04-21 Chrysalis Pharma Ag Type A gelatin capsule containing PUFA in free acid form
US9132112B2 (en) * 2004-02-13 2015-09-15 Chysalis Pharma Ag Type A gelatin capsule containing PUFA in free acid form

Also Published As

Publication number Publication date
JP2012149073A (en) 2012-08-09
US20110097394A1 (en) 2011-04-28
ES2344208T5 (en) 2018-05-17
ES2344208T3 (en) 2010-08-20
US7960370B2 (en) 2011-06-14
US20130123362A1 (en) 2013-05-16
KR20070011307A (en) 2007-01-24
ZA200606229B (en) 2009-12-30
CY1110030T1 (en) 2015-01-14
NO341821B1 (en) 2018-01-29
PL1755565T5 (en) 2018-06-29
NO20064146L (en) 2006-11-10
US8383678B2 (en) 2013-02-26
DK1755565T4 (en) 2018-05-22
KR101198458B1 (en) 2012-11-06
PL1755565T3 (en) 2010-09-30
IL177462A (en) 2015-09-24
BRPI0507473B8 (en) 2021-05-25
US20070269507A1 (en) 2007-11-22
CA2555064C (en) 2011-07-05
US20140228437A1 (en) 2014-08-14
US20170056354A1 (en) 2017-03-02
BRPI0507473B1 (en) 2018-06-19
SI1755565T2 (en) 2018-04-30
EP1755565A2 (en) 2007-02-28
WO2005079853A3 (en) 2006-01-12
SI1755565T1 (en) 2010-08-31
AR047799A1 (en) 2006-02-22
GB0403247D0 (en) 2004-03-17
EP1755565B1 (en) 2010-02-17
US9012501B2 (en) 2015-04-21
CN1929824A (en) 2007-03-14
US9132112B2 (en) 2015-09-15
WO2005079853A2 (en) 2005-09-01
PT1755565E (en) 2010-04-26
IL177462A0 (en) 2006-12-10
DK1755565T3 (en) 2010-05-03
EP1755565B2 (en) 2018-02-07
MXPA06008352A (en) 2007-05-23
AU2005215198B2 (en) 2010-01-14
ATE457720T2 (en) 2010-03-15
DE602005019402D1 (en) 2010-04-01
JP2014139216A (en) 2014-07-31
JP2007522192A (en) 2007-08-09
BRPI0507473A (en) 2007-07-10
AU2005215198A1 (en) 2005-09-01
JP5435842B2 (en) 2014-03-05
CA2555064A1 (en) 2005-09-01
CN1929824B (en) 2011-03-23

Similar Documents

Publication Publication Date Title
US9132112B2 (en) Type A gelatin capsule containing PUFA in free acid form
US20190167599A1 (en) Soft gelatin encapsulated pharmaceutical composition of cis-5,8,11,14,17-eicosapentaenoic acid in free acid form and cis-7,10,13,16,19-docosapentaenoic acid in free acid form
AU2008231847B2 (en) Use of a masked or coated copper salt for the treatment of macular degeneration
US20170281554A1 (en) System for upper intestinal delivery of active ingredients
EP1974733A1 (en) Use of a masked or coated copper salt for the treatment of macular degeneration

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION