US20140052232A1 - Handle assemblies for stent graft delivery systems and associated systems and methods - Google Patents
Handle assemblies for stent graft delivery systems and associated systems and methods Download PDFInfo
- Publication number
- US20140052232A1 US20140052232A1 US13/963,912 US201313963912A US2014052232A1 US 20140052232 A1 US20140052232 A1 US 20140052232A1 US 201313963912 A US201313963912 A US 201313963912A US 2014052232 A1 US2014052232 A1 US 2014052232A1
- Authority
- US
- United States
- Prior art keywords
- stent
- lead screw
- stent graft
- delivery system
- handle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/962—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
- A61F2/966—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/954—Instruments specially adapted for placement or removal of stents or stent-grafts for placing stents or stent-grafts in a bifurcation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/9517—Instruments specially adapted for placement or removal of stents or stent-grafts handle assemblies therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2002/065—Y-shaped blood vessels
- A61F2002/067—Y-shaped blood vessels modular
Definitions
- the present technology relates to treatment of abdominal aortic aneurysms. More particularly, the present technology relates to handle assemblies for stent graft delivery systems and associated systems and methods.
- An aneurysm is a dilation of a blood vessel of at least 1.5 times above its normal diameter.
- the dilated vessel forms a bulge known as an aneurysmal sac that can weaken vessel walls and eventually rupture.
- Aneurysms are most common in the arteries at the base of the brain (i.e., the Circle of Willis) and in the largest artery in the human body, the aorta.
- the abdominal aorta spanning from the diaphragm to the aortoiliac bifurcation, is the most common site for aortic aneurysms.
- Such abdominal aortic aneurysms typically occur between the renal and iliac arteries, and are presently one of the leading causes of death in the United States.
- AAAs The two primary treatments for AAAs are open surgical repair and endovascular aneurysm repair (EVAR).
- Surgical repair typically includes opening the dilated portion of the aorta, inserting a synthetic tube, and closing the aneurysmal sac around the tube.
- EVAR endovascular aneurysm repair
- Such AAA surgical repairs are highly invasive, and are therefore associated with significant levels of morbidity and operative mortality.
- surgical repair is not a viable option for many patients due to their physical conditions.
- EVAR vascular endovascular aneurysm repair
- EVAR typically includes inserting a delivery catheter into the femoral artery, guiding the catheter to the site of the aneurysm via X-ray visualization, and delivering a synthetic stent graft to the AAA via the catheter.
- the stent graft reinforces the weakened section of the aorta to prevent rupture of the aneurysm, and directs the flow of blood through the stent graft away from the aneurismal region. Accordingly, the stent graft causes blood flow to bypass the aneurysm and allows the aneurysm to shrink over time.
- braided stent grafts are delivered in an elongated state.
- the stent graft Upon delivery from a delivery catheter, the stent graft will elastically shorten into its free state.
- the effective length of the stent graft changes as its diameter is forced smaller or larger. For example, a stent graft having a shallower, denser helix angle will result in a longer constrained length.
- Delivering a stent graft to an artery requires precise alignment of the distal edge of the stent graft relative to a target location in the destination artery.
- a misplaced stent graft can block flow to a branching artery.
- Some stent graft delivery systems utilize one or more markers (e.g., radiopaque markers) to establish the alignment of the stent graft distal edge relative to the artery wall.
- the location of the radiopaque markers on the stent graft can move relative to an initial marker position because of the change in the stent graft's effective length upon delivery, as described above. Accordingly, the stent graft will be deployed, but a distal edge of the stent graft may miss the target point in the artery. Therefore, there exists a need for improved and reliable placement of stent grafts.
- FIG. 1 is an isometric view of a stent graft delivery system configured in accordance with an embodiment of the present technology.
- FIG. 2 is a partially transparent, isometric view of a portion of a handle assembly system having dual lead screws configured in accordance with an embodiment of the present technology.
- FIG. 3 is an isometric view of a nested twin rack-and-pinion model of a portion of a handle assembly configured in accordance with embodiments of the present technology.
- FIG. 4 is an isometric view of a handle assembly configured in accordance with embodiments of the present technology.
- FIG. 5 is an isometric view of a handle assembly configured in accordance with further embodiments of the present technology.
- FIG. 6 is an isometric view of a handle assembly configured in accordance with still further embodiments of the present technology.
- FIG. 7 is a set of illustrations of collet portions of handle assemblies configured in accordance with embodiments of the present technology.
- FIG. 8A is an isometric, partial cut-away view of a handle assembly configured in accordance with another embodiment of the technology.
- FIG. 8B is an exploded, isometric view of the handle assembly of FIG. 8A .
- FIG. 9A is an isometric view of a handle assembly configured in accordance with another embodiment of the technology.
- FIG. 9B is an isometric, partial cut-away view of the handle assembly of FIG. 9A .
- FIG. 9C is an exploded, isometric view of the handle assembly of FIG. 9A .
- FIG. 10 is an exploded, isometric view of a handle assembly configured in accordance with another embodiment of the technology.
- FIGS. 11-16 illustrate handle assemblies or components of handle assemblies configured in accordance with further embodiments of the technology.
- FIGS. 17A-17C are isometric views of reverse deployment handle assemblies configured in accordance with embodiments of the technology.
- FIG. 18A is a partial cut-away view of a handle assembly for a stent graft delivery system configured in accordance with yet another embodiment of the technology.
- FIG. 18B is an enlarged partial cut-away view of travel lead screws of the handle assembly of FIG. 18A configured in accordance with an embodiment of the technology.
- FIG. 18C is a side view of housing features that drive linear movement of the travel lead screws of FIG. 18B in accordance with an embodiment of the present technology.
- FIG. 18D is an enlarged view of a distal portion of the handle assembly of FIG. 18A configured in accordance with an embodiment of the present technology.
- FIG. 18E is a side view of two lead screws with different pitches for use with the handle assembly of FIG. 18A .
- a handle assembly for a stent graft delivery system can include a movable pushing component configured to deliver a distal portion of the stent graft to an arterial target site, and a movable pulling component configured to interface with the pushing component and provide a compression force to the distal portion of the stent graft.
- the stent graft can include, for example, a helix angle and the pulling component may be configured to move relative to the pushing component at a ratio corresponding to the helix angle.
- FIGS. 1-18E Certain specific details are set forth in the following description and in FIGS. 1-18E to provide a thorough understanding of various embodiments of the technology. For example, many embodiments are described below with respect to the delivery of stent grafts that at least partially repair AAAs. In other applications and other embodiments, however, the technology can be used to repair aneurysms in other portions of the vasculature. Other details describing well-known structures and systems often associated with stent grafts and associated delivery devices and procedures have not been set forth in the following disclosure to avoid unnecessarily obscuring the description of the various embodiments of the technology. Many of the details, dimensions, angles, and other features shown in the Figures are merely illustrative of certain embodiments of the technology.
- distal and proximal can reference a relative position of the portions of an implantable stent graft device and/or a delivery device with reference to an operator. Proximal refers to a position closer to the operator of the device, and distal refers to a position that is more distant from the operator of the device. Also, for purposes of this disclosure, the term “helix angle” refers to an angle between any helix and a longitudinal axis of the stent graft.
- FIG. 1 is an isometric view of a stent graft delivery system 100 (“delivery system 100 ”) configured in accordance with an embodiment of the present technology.
- the delivery system 100 can include an outer sheath 150 , a distal delivery component 154 , and a stent cover 152 .
- a stent graft (not shown) can be held in place at both its proximal and distal end portions by the outer sheath 150 and the distal delivery component 154 , respectively.
- the outer sheath 150 and the distal delivery component 154 can be referred to collectively as the delivery device.
- the distal delivery component 154 can include a distal outer sheath (not shown) configured to cover a distal portion of the stent graft and/or a central wire 156 positioned through the stent graft to navigate the vasculature and/or manipulate the distal outer sheath.
- the stent graft includes a marker (e.g., a radiopaque marker) to establish alignment of the stent graft with a desired position relative to an arterial wall.
- a handle assembly 110 at a proximal portion of the delivery system 100 can be used to controllably release the stent graft from the outer sheath 150 .
- the handle assembly 110 is configured deliver the stent graft in a manner as to keep the initial marker positions relative to the arterial wall from changing upon final stent graft deployment.
- the stent graft can be delivered with a “push/pull” stroke of the handle assembly 110 during delivery.
- the proximal portion of the stent graft can be pushed out of the sheath 150 in a traditional manner, while simultaneously the distal end of the stent graft can be axially compressed.
- the handle assembly 110 can comprise a “double helix”, that provides for both unsheathing and resheathing a stent without having to swap handles.
- the handle assembly 110 can incorporate various mechanisms to achieve the desired push to pull ratio.
- these mechanisms maintain the axial position of the deployed portion of the stent graft by synchronizing the action of pulling back the sheath 150 simultaneous with pushing the stent graft forward.
- the ratio of these actions are matched to or correspond to the helix angle of the braided stent graft, the deployed stent graft will be stationary relative to a destination artery target location.
- FIGS. 2-17C illustrate various embodiments of handle assemblies or portions of handles assemblies that effect the push-pull movement described above.
- FIG. 2 is a partially transparent, isometric view of a portion of a handle assembly 210 configured in accordance with an embodiment of the present technology.
- the handle assembly 210 includes a first lead screw 212 having a first pitch and a second lead screw 214 having a second pitch different from the first pitch.
- FIG. 14 illustrates a close-up view of lead screws having differing pitches.
- the lead screws 212 , 214 are placed adjacent to and engaged with a lead shaft 216 .
- the two lead screws 212 , 214 can have threads with opposing pitch, such that when they are both engaged with the shaft 216 , a clockwise or counterclockwise rotation of the shaft 216 will cause the lead screws 212 , 214 to provide axial translation in opposite directions.
- the desired push/pull delivery of a stent graft can be achieved.
- one screw e.g., the first lead screw 212
- the other screw e.g., the second lead screw 214
- the handle assembly 210 may also include a keyway spline that engages an axial groove in the threaded lead screws 212 , 214 .
- the handle assembly 210 may have a different arrangement and/or include different features.
- FIG. 3 is an isometric view of a portion of a handle assembly 310 that includes a series of co-axial, nested racks 312 and pinions 314 that can be connected directly to catheters that push and pull a stent graft (not shown) to deliver the graft.
- a handle component (not shown) can be rotated and the rotational motion can be translated through gearing to the series of racks 312 , such that the same rotation causes one rack 312 to move in a distal direction to push the stent graft out of the delivery catheter.
- a second rack 312 is configured to move in a proximal direction to provide a compression force at the distal end of the stent graft.
- one tube could be manually driven and the rack and pinion mechanism could passively drive the opposing tube elements at the proper ratio, thus requiring no twisting motion.
- the handle assembly 310 may include other features and/or have a different arrangement.
- FIG. 4 is an isometric, partial cut-away view of a handle assembly 410 configured in accordance with another embodiment of the technology.
- the handle assembly 410 comprises a housing 412 through which a guidewire 414 and contrast/flush lumen 416 axially extend.
- the handle assembly 410 includes an unsheathing screw 418 coaxially surrounded by a position compensating screw 420 .
- the unsheathing screw 418 and position compensating screw 420 can have interfacing threads with different, opposing pitches, such that when the unsheathing screw 418 is rotated to push a proximal end of a stent graft from a catheter, the position compensating screw 420 provides a compensating compression force at a distal end of the stent graft.
- the stent can be incrementally deployed/unsheathed with a “jackhammer” type motion.
- the incremental deployment provides the stent with an opportunity to gradually reshape.
- the stent can comprise shape-memory material such as Nitinol.
- the stent can be straightened within the sheath for delivery, and then incrementally reshaped to its natural state upon deployment.
- the incremental reshaping allows a practitioner to partially deploy the stent, reposition the stent as necessary to best interface with the vasculature, and then fully deploy, allowing the stent to fully resume its natural state shape.
- a further example of this incremental deployment “jackhammer” feature is illustrated as a slider mechanism shown in FIGS. 11 and 12 .
- the jackhammer feature can include a tip-release screw configured to release the stent tip after the stent is in a compressed state; the tip-release screw can prevent accidental deployment by pushing.
- FIG. 5 is an isometric, partial cut-away view of a handle assembly 510 configured in accordance with another embodiment of the technology.
- the handle assembly 510 includes a housing 512 surrounding an unsheathing screw 518 coaxially surrounded by a position compensating screw 520 .
- the unsheathing screw 518 and position compensating screw 520 can have interfacing threads with different, opposing pitches, such that when the unsheathing screw 518 is rotated to push a proximal end of a stent graft from a catheter, the position compensating screw 520 provides a compensating compression force at a distal end of the graft.
- the handle assembly 510 can allow for partial/incremental deployment of a stent in the manner described above with reference to FIG. 4 .
- FIG. 6 is an isometric, partial cut-away view of a handle assembly 610 configured in accordance with another embodiment of the technology.
- the handle assembly 610 includes a housing 612 surrounding an unsheathing screw 618 coaxially surrounded by a position compensating screw 620 .
- the unsheathing screw 618 and position compensating screw 620 can have interfacing threads with different, opposing pitches, such that when the unsheathing screw 618 is rotated to push a proximal end of a stent graft from a catheter, the position compensating screw 620 provides a compensating compression force at a distal end of the graft.
- FIG. 7 illustrates various collet portions 710 a - 710 e (referred to collectively as “collets 710 ”) of handle assemblies in accordance with embodiments of the technology.
- a handle assembly includes a central lumen through which a push/pull wire or a guidewire extends.
- the lumen can include a leading collet (e.g., collet 710 a - 710 c ) at a distal portion of the handle assembly or a trailing collet (e.g., collet 710 d, 710 e ) at a proximal portion of the handle assembly.
- the collets 710 can have various features to improve deliverability of a stent graft.
- a collet can include an angled tip (e.g., collet 710 a or collet 710 d ) or a 5-point angled tip (e.g., collet 710 b ) to direct wire path, a rounded tip (e.g., collet 710 c ) to eliminate friction/catching, or a spring (e.g., a plastic spring on collet 710 e ) to push out wires during graft deployment. While the collets 710 illustrated in FIG. 7 have been designated as “leading” or trailing”, in other embodiments an individual collet may have alternate placement on a handle assembly.
- FIG. 8A is an isometric, partial cut-away view of a handle assembly 810 configured in accordance with another embodiment of the technology.
- FIG. 8B is an exploded, isometric view of the handle assembly 810 .
- the handle assembly 810 includes a housing 812 surrounding an unsheathing screw 818 at least partially coaxially surrounded by, or interfacing with, a position compensating screw 820 .
- the unsheathing screw 818 and position compensating screw 820 can have interfacing threads with different, opposing pitches, such that when the unsheathing screw 818 is rotated to push a proximal end of a stent graft from a catheter, the position compensating screw 820 provides a compensating compression force at a distal end of the graft.
- FIG. 9A is an isometric view of a handle assembly 910 configured in accordance with another embodiment of the technology.
- FIG. 9B is an isometric, partial cut-away view of the handle assembly 910 .
- FIG. 9C is an exploded, isometric view of the handle assembly 910 .
- the handle assembly 910 includes several features generally similar to the handle assemblies described above.
- the handle assembly 910 further includes a ratcheting system 930 configured to instigate interfacing movement of an unsheathing screw 918 and a position compensating screws 920 .
- the ratchet system 930 can operate by a compression or twisting movement.
- the ratchet system can provide tactile and/or auditory feedback (e.g., a “click” upon torquing).
- FIG. 10 is an exploded, isometric view of a handle assembly 1010 configured in accordance with another embodiment of the technology.
- the handle assembly 1010 includes several features generally similar to the handle assemblies described above.
- the handle assembly 1010 includes ratcheting system components 1030 , 1032 configured to torque an unsheathing screw 1018 interfaced with a position compensating screws 1020 in the manner described above.
- the ratchet system can operate by a compression or twisting movement.
- the ratchet system provides a tactile and/or auditory feedback (e.g., a “click” upon torquing).
- the handle assembly 1010 further includes a seal (e.g., a silicon disc) 1036 configured to block blood or other fluid from traveling into the handle assembly 1010 .
- the seal 1036 accordingly can prevent contamination and/or malfunction of the handle assembly 1010 .
- the seal 1036 can comprise other biocompatible materials.
- FIG. 15 illustrates another embodiment of a seal.
- FIGS. 11-16 illustrate additional handle assemblies or components of handle assemblies configured in accordance with embodiments of the technology.
- the handle assemblies illustrated in FIGS. 11-16 can include several features discussed above with reference to FIGS. 1-10 , and can further include features such as a thin, ergonomic profile which allows a user's hands to naturally fall into the thinnest sections of the handle.
- the handle assemblies described above with reference to FIG. 1-16 include various configurations of screws, ratchets, racks-and-pinions, and other mechanisms
- further embodiments can include additional or alternate features to control stent graft length during delivery.
- the push and pull forces can be driven by pneumatic or fluidic drives (e.g., push/pull pistons), strings or cable drives, metal or plastic bands, or metal or plastic belts wound against “drums”.
- FIGS. 17A-17C are isometric views of reverse deployment handle assemblies 1710 a - 1710 c (collectively handle assemblies 1710 ) configured in accordance with additional embodiments of the technology.
- the handle assemblies 1710 include several features of the handle assemblies described above with reference to FIGS. 1-16 .
- the handle assemblies 1710 can be configured to provide single-action stent graft deployment via unsheathing.
- the handle assemblies 1710 can employ synchronized push and compression forces to prevent implant movement during deployment. In some embodiments, these push and compression forces are effected by one or more rotation cuffs 1740 on the exterior of the handle assemblies 1710 .
- the handle assemblies 1710 can have one or more lockable positions to control placement and/or compression of the stent graft. By utilizing this synchronized deployment action, less mechanical force may be required as compared to traditional systems.
- the handle assemblies 1710 can deploy the stent graft using a lead screw to facilitate placement, and can accurately and smoothly deliver the stent graft without requiring an outer sheath or external screws on the handle assemblies 1710 .
- the handle assemblies 1710 can, further include a tip-release screw configured to control the release of the stent tip.
- the handle assemblies 1710 may also include audio feedback during unsheathing (e.g., “clicks” upon rotation of one or more of the handle assembly rotation cuffs 1740 or other suitable audio feedback mechanisms).
- the handle assemblies 1710 can further include a disengageable anti-rotation feature for re-docking or ease of sheath withdrawal.
- Contrast can be delivered via a system internal to the handle assemblies 1710 or via an introducer sheath. In still further embodiments, contrast can be delivered via other systems or mechanisms. In some embodiments, the mechanics of the handle assemblies 1710 make them easy to disassemble, e.g., in 15 seconds or less.
- stent graft delivery systems can be configured to continuously or simultaneously deploy and expand a stent graft at a treatment site, as opposed to the incremental deployment provided by the “jackhammer” type movement discussed above.
- the exposure of the stent graft from the sheath is synchronized with a forced diametric expansion of the stent graft (i.e., the stent graft is expanded as it is exposed).
- the simultaneous deployment and expansion of the stent graft is expected to enhance a clinical operator's ease of use.
- FIG. 18A is a partial cut-away view of a handle assembly 1810 of a stent graft delivery system configured to provide continuous and/or simultaneous stent graft deployment and expansion in accordance with an embodiment of the present technology.
- the handle assembly 1810 can include four main sections: (1) a stationary forward handle 1 , a rotating unsheathing center handle 2 (“the rotating handle 2 ”), a repositioning ring 3 , and a tip-release slider 4 .
- the handle assembly 1810 is expected to eliminate the need to manually compensate for stent shortening that occurs as a result of the braided nature of a stent frame, and is also expected to enhance the accuracy with which stents can be placed within a vessel.
- the handle assembly 1810 is expected to eliminate the need for the position compensating screws described above.
- the handle assembly 1810 can include a housing 1812 , two lead screws (identified individually as a first lead screw 1850 a and a second lead screw 1850 b, and referred to collectively as lead screws 1850 ) within the housing 1812 .
- the first and second lead screws 1850 a and 1850 b can be configured to travel in opposite directions at a selected fixed ratio (e.g., a pre-selected fixed ratio) that reduces (e.g., minimizes) movement of the stent at a target site during unsheathing to compensate for the stent transforming from a constrained state to its original expanded state.
- a selected fixed ratio e.g., a pre-selected fixed ratio
- the first travel lead screw 1850 a can be in mechanical communication with an outer sheath (e.g., via a coupling 1854 ) to enable longitudinal translation of the outer sheath for unsheathing and exposing the stent graft (not shown).
- the second travel lead screw 1850 b can be in mechanical communication with a dilator that can longitudinally advance the stent graft within the vasculature.
- the handle assembly 1810 can also include an internal lead screw 1858 positioned to be rotated by the clinical operator to deploy the stent.
- the internal lead screw 1858 can include a first engagement section and a second engagement section for engaging the first and second travel lead screws 1850 a and 1850 b, respectively.
- the internal lead screw 1858 may have a first pitch at the first engagement section and a second pitch different from the first pitch (e.g., a finer pitch) at the second engagement section.
- the first and second pitches of the internal lead screw 1858 may have opposing pitch angles (e.g., one having a left-hand pitch and the other having right-hand pitch) so that the first and second travel lead screws 1850 a and 1850 b move in opposite longitudinal directions upon rotation of the internal lead screw 1858 by the operator (e.g., via the rotating handle 2 ), thereby providing simultaneous advancement of the stent graft (via the second travel lead screw 1850 b ) and retraction of the outer sheath (via the first travel lead screw 1850 a ).
- FIG. 18C illustrates suitable features 1860 (e.g., protrusions) on the interior of the housing 1812 for driving linear movement of the travel lead screws 1850 when the housing 1812 is rotated.
- the internal lead screw 1858 , first and second travel lead screws 1850 a and 1850 b, and/or the features 1860 may have different arrangements and/or include different features.
- FIG. 18B is an enlarged side view of the first and second travel lead screws 1850 a and 1850 b of the handle assembly 1810 of FIG. 18A .
- the first travel lead screw 1850 a can be mechanically coupled to the outer sheath (e.g., as best seen in FIG. 18D ) to control unsheathing of the stent, and the second travel lead screw 1850 b can advance the stent as it transforms from an elongated delivery state to an expanded deployed state.
- the rate of unsheathing the stent graft and advancing the stent graft is determined by the ratio of movement between the first and second travel lead screws 1850 a and 1850 b, which is defined by the pitch or frequency of the first and second engagement sections of the internal lead screw 1858 .
- a course pitch for example, will result in a higher rate of longitudinal translation compared to a fine pitch.
- the screw pitch and the resultant motion rate can be selected or, optionally, predefined to control the deployed stent length and diameter.
- the stent may have a delivery state in which it is elongated approximately 100% when loaded into the outer sheath.
- the rate of retraction of the outer sheath is equal to the rate of advancing/pushing the stent (e.g., via a dilator)
- the 1:1 movement results in a deployment stent that is expanded to its original (i.e., uncompressed) length and diameter.
- Reducing the rate of stent advancement to less than the rate of outer sheath retraction results in a lengthened stent with a reduced diameter.
- the diameter and length of the deployed stent can be controlled and predicted based on the “payout” ratio of (1) the rate of outer sheath retraction to (2) the rate of stent advancement/push out.
- a payout ratio of about 1.5:1 results in a fully appositioned device with clinically and therapeutically appropriate length and diameter. Payout ratios ranging from about 1:1 to about 2:1 have also been shown to provide acceptable stent deployment. In other embodiments, the payout ratio may be higher or lower depending upon various clinical and/or anatomical considerations.
- a desired payout ratio can be achieved by coursing the pitch frequency of the first engagement section relative to the pitch frequency of the second engagement section at a degree proportional with the desired payout ratio.
- the handle assembly 1810 can include features that reduce the likelihood (e.g., prevent) unintentional or undesired rotation of the internal screw, which may occur when the rotating handle 2 of the handle assembly 1810 is turned by the operator.
- the travel lead screws 1850 can include a slot or recess 1856 that travels along a spine in the forward handle 1 to avoid rotation of the travel lead screws 1850 as the rotating handle 2 is turned by the operator.
- FIG. 18E is a side view of two travel lead screws (identified individually as a first travel lead screw 1851 a and a second travel lead screw 1851 b, and referred to collectively as travel lead screws 1851 ) with different pitches for use with the handle assembly 1810 of FIG. 18A in accordance with embodiments of the technology. More specifically, the first travel lead screw 1851 a has a courser pitch than the second travel lead screw 1851 b. In other embodiments, the handle assembly of FIG. 18A can include travel lead screws having coarser or finer pitches than those illustrated in FIGS. 18A and 18E to provide a desired rate of longitudinal translation.
- the handle assembly 1810 described with reference to FIGS. 18A-18E can provide simultaneous coordinated stent deployment by continuously/simultaneously unsheathing and expanding a stent graft.
- the handle assembly 1810 is configured to provide a fixed ratio for deployment that occurs automatically via manipulation of the rotating handle 2 to enable automated sheath retraction and stent advancement, which results in continuous/simultaneous deployment of the stent graft.
- the handle assembly 1810 can be adapted to allow a clinical operator to pre-select a desired payout ratio based on various clinical and/or anatomical considerations.
- the continuous/simultaneous deployment reduces (e.g., eliminates) the risk of neck down sections along the stent, which can occur during the process of manually exposing a segment of the stent followed by compression to expand the stent.
- the configuration of the screws (e.g., the travel lead screws 1850 and the internal lead screw 1858 ) in the handle assembly 1810 is expected to reduce the necessary force applied during stent deployment.
- the handle assembly 1810 may be controlled by rotation force, thereby reducing the likelihood of linear motion that could lead to position failure.
- the handle assembly 1810 is expected to provide improved axial positioning as compared with conventional devices. This ease of stent deployment provided by the handle assembly 1810 may allow the clinical operator to remain focused on a monitor (e.g., in a catheterization lab) during deployment because there is no need to look down at the handle assembly 1810 .
- a handle assembly configured in accordance with the present technology may include a communicating system to the paired device (e.g., via wire, RF link, magnetic link, etc.) to help ensure that speed and/or rate of change are uniform during initial through final treatment of the device function.
- This feature may be configured to be engaged/disengaged based upon the physician's/user's preference.
- One feature of this arrangement is to provide harmonization relating to the delivery of the intended implant during the procedure with more than one physician/user interfacing with the device(s).
- a handle assembly for a stent graft delivery system comprising:
- a reverse deployment handle assembly for a stent graft delivery system comprising:
- the handle assembly of claim 5 further comprising a lead screw coupled to the movable delivery component and configured to facilitate placement of the stent graft.
- the handle assembly of claim 5 further comprising a lumen extending axially through the handle assembly and configured to carry contrast or other fluid.
- a handle assembly for a stent graft delivery system comprising:
- the handle assembly of claim 10 wherein the unsheathing screw comprises threads of a first pitch and the position compensating screw comprises threads of a second pitch, and wherein the second pitch is different from and opposing the first pitch.
- a stent graft delivery system comprising:
- a handle assembly for housing, advancing, and unsheathing a stent graft, the housing assembly comprising:
- the handle assemblies shown and described herein offer several advantages over previous devices.
- the handle assemblies provide for straightforward delivery of a stent graft to an artery while maintaining initial stent graft marker positions relative to a destination arterial wall.
- Embodiments employing opposing screws provide a user with the ability to deliver a stent graft at a high force with relatively little mechanical effort. This allows a user to exercise improved control over the delivery process.
- the mechanisms disclosed herein provide effective push/pull motion while minimizing the number of parts, assembly time, and cost. The push/pull components allow the handle assemblies to maintain a low profile and minimize the overall bulk of the delivery device.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Prostheses (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/963,912 US20140052232A1 (en) | 2012-08-10 | 2013-08-09 | Handle assemblies for stent graft delivery systems and associated systems and methods |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261681907P | 2012-08-10 | 2012-08-10 | |
US201361799591P | 2013-03-15 | 2013-03-15 | |
US13/963,912 US20140052232A1 (en) | 2012-08-10 | 2013-08-09 | Handle assemblies for stent graft delivery systems and associated systems and methods |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140052232A1 true US20140052232A1 (en) | 2014-02-20 |
Family
ID=50066773
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/964,015 Abandoned US20140046429A1 (en) | 2012-08-10 | 2013-08-09 | Stent delivery systems and associated methods |
US13/963,912 Abandoned US20140052232A1 (en) | 2012-08-10 | 2013-08-09 | Handle assemblies for stent graft delivery systems and associated systems and methods |
US13/964,013 Active 2037-02-05 US10285833B2 (en) | 2012-08-10 | 2013-08-09 | Stent delivery systems and associated methods |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/964,015 Abandoned US20140046429A1 (en) | 2012-08-10 | 2013-08-09 | Stent delivery systems and associated methods |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/964,013 Active 2037-02-05 US10285833B2 (en) | 2012-08-10 | 2013-08-09 | Stent delivery systems and associated methods |
Country Status (7)
Country | Link |
---|---|
US (3) | US20140046429A1 (fr) |
EP (1) | EP2882381B1 (fr) |
JP (1) | JP6326648B2 (fr) |
CN (1) | CN105050549B (fr) |
AU (1) | AU2013299425A1 (fr) |
CA (1) | CA2881535A1 (fr) |
WO (1) | WO2014026173A1 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9737426B2 (en) | 2013-03-15 | 2017-08-22 | Altura Medical, Inc. | Endograft device delivery systems and associated methods |
US10285833B2 (en) | 2012-08-10 | 2019-05-14 | Lombard Medical Limited | Stent delivery systems and associated methods |
AU2019203004B1 (en) * | 2019-04-30 | 2019-09-12 | Cook Medical Technologies Llc | A line pull assembly for a prosthetic delivery device |
US10463517B2 (en) | 2017-01-16 | 2019-11-05 | Cook Medical Technologies Llc | Controlled expansion stent graft delivery system |
US11083606B2 (en) | 2017-12-05 | 2021-08-10 | Cook Medical Technologies Llc | Endograft delivery device assembly |
WO2022173790A1 (fr) * | 2021-02-10 | 2022-08-18 | Silara Medtech Inc. | Manche d'actionnement, appareil et procédé de récupération d'un implant |
US11672661B2 (en) | 2019-08-22 | 2023-06-13 | Silara Medtech Inc. | Annuloplasty systems and methods |
Families Citing this family (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11259945B2 (en) | 2003-09-03 | 2022-03-01 | Bolton Medical, Inc. | Dual capture device for stent graft delivery system and method for capturing a stent graft |
US20100305686A1 (en) * | 2008-05-15 | 2010-12-02 | Cragg Andrew H | Low-profile modular abdominal aortic aneurysm graft |
CN102076281B (zh) | 2008-06-30 | 2014-11-05 | 波顿医疗公司 | 用于腹主动脉瘤的系统和方法 |
CN103260548B (zh) * | 2009-12-01 | 2017-01-18 | 阿尔图拉医疗公司 | 模块化内移植物设备以及相关系统和方法 |
US9724223B2 (en) * | 2011-05-27 | 2017-08-08 | Abbotcardiovascular Systems Inc. | Delivery system for a self expanding stent |
EP3135249B1 (fr) | 2011-11-11 | 2018-04-18 | Bolton Medical, Inc. | Greffons endovasculaires universels |
EP2779940B3 (fr) | 2011-11-16 | 2017-09-27 | Bolton Medical Inc. | Dispositif pour la réparation de vaisseau branché aortique |
DE202012013754U1 (de) | 2011-12-06 | 2021-03-01 | Aortic Innovations Llc | Vorrichtung zur endovaskulären Aortenreparatur |
US9439751B2 (en) | 2013-03-15 | 2016-09-13 | Bolton Medical, Inc. | Hemostasis valve and delivery systems |
CN106102603B (zh) * | 2014-01-10 | 2019-06-11 | 波士顿科学医学有限公司 | 可扩展的篮子形取回装置 |
US9486350B2 (en) * | 2014-03-31 | 2016-11-08 | Medtronic Vascular, Inc. | Stent-graft delivery system having handle mechanism for two-stage tip release |
CN103961194B (zh) * | 2014-05-21 | 2016-05-18 | 苏州茵络医疗器械有限公司 | 一种高回缩性血管支架输送系统 |
EP3539507B1 (fr) | 2014-09-23 | 2023-11-22 | Bolton Medical, Inc. | Dispositifs de réparation vasculaire |
WO2016073497A1 (fr) * | 2014-11-03 | 2016-05-12 | Flexible Stenting Solutions, Inc. | Procédé et système de déploiement et de rétractation contrôlés de stent |
US10639181B2 (en) | 2014-11-04 | 2020-05-05 | Abbott Cardiovascular Systems Inc. | Methods and systems for delivering an implant |
JP2017533761A (ja) | 2014-11-04 | 2017-11-16 | アボット、カーディオバスキュラー、システムズ、インコーポレーテッドAbbott Cardiovascular Systems Inc. | インプラントを送達する方法及びシステム |
EP3242640B1 (fr) * | 2015-01-11 | 2019-11-13 | Ascyrus Medical, LLC | Dispositif hybride pour réparation chirurgicale d'aorte |
US10531954B2 (en) | 2015-03-20 | 2020-01-14 | St. Jude Medical, Cardiology Division, Inc. | Mitral valve loading tool |
PL3310305T3 (pl) | 2015-06-18 | 2022-09-26 | Ascyrus Medical, Llc | Rozgałęziony stentgraft aortalny |
AU2015215913B1 (en) | 2015-08-20 | 2016-02-25 | Cook Medical Technologies Llc | An endograft delivery device assembly |
US10322020B2 (en) * | 2015-09-18 | 2019-06-18 | Terumo Corporation | Pushable implant delivery system |
EP3167845A1 (fr) * | 2015-11-12 | 2017-05-17 | The Provost, Fellows, Foundation Scholars, & the other members of Board, of the College of Holy and Undiv. Trinity of Queen Elizabeth near Dublin | Extenseur biocompatible implantable permettant de traiter des étranglements de lumière corporelle |
CN105943212B (zh) * | 2015-12-23 | 2018-08-14 | 微创心脉医疗科技(上海)有限公司 | 支架输送系统及其手柄组件 |
US20170281379A1 (en) * | 2016-03-29 | 2017-10-05 | Veniti, Inc. | Mechanically assisted stent delivery system |
ES2830748T3 (es) | 2016-04-05 | 2021-06-04 | Bolton Medical Inc | Injerto de stent con túneles internos y fenestraciones |
WO2017176678A1 (fr) * | 2016-04-05 | 2017-10-12 | Bolton Medical, Inc. | Dispositif d'administration comprenant des tubes de comblement |
US10583005B2 (en) | 2016-05-13 | 2020-03-10 | Boston Scientific Scimed, Inc. | Medical device handle |
US10624740B2 (en) | 2016-05-13 | 2020-04-21 | St. Jude Medical, Cardiology Division, Inc. | Mitral valve delivery device |
US20170340462A1 (en) | 2016-05-25 | 2017-11-30 | Bolton Medical, Inc. | Stent grafts and methods of use for treating aneurysms |
EP3903732A1 (fr) | 2016-06-13 | 2021-11-03 | Aortica Corporation | Dispositifs de renforcement de fenêtres dans des implants prothétiques |
US10448938B2 (en) | 2016-06-16 | 2019-10-22 | Phillips Medical, LLC | Methods and systems for sealing a puncture of a vessel |
US10639147B2 (en) * | 2016-06-24 | 2020-05-05 | Edwards Lifesciences Corporation | System and method for crimping a prosthetic valve |
WO2018026768A1 (fr) | 2016-08-02 | 2018-02-08 | Aortica Corporation | Systèmes, dispositifs et procédés pour accoupler un implant prothétique à un corps fenêtré |
CN106236343B (zh) * | 2016-08-20 | 2018-02-16 | 科睿驰(深圳)医疗科技发展有限公司 | 记忆推送延长导管 |
US10603198B2 (en) | 2016-09-09 | 2020-03-31 | Cook Medical Technologies Llc | Prosthesis deployment system and method |
CN207871025U (zh) * | 2016-09-23 | 2018-09-18 | 杭州启明医疗器械有限公司 | 一种可回收及重复定位介入器械的输送系统 |
CN118304067A (zh) | 2016-10-04 | 2024-07-09 | 微仙美国有限公司 | 用于支架输送的方法及装置 |
RU2650038C1 (ru) * | 2016-12-30 | 2018-04-06 | Общество с ограниченной ответственностью "СЕВЕН САНС" | Устройство и способ для безопасного позиционирования коронарного стента в коронарных артериях |
RU2652732C1 (ru) * | 2016-12-30 | 2018-04-28 | Общество с ограниченной ответственностью "СЕВЕН САНС" | Устройство и способ для безопасного позиционирования коронарного стента в коронарных артериях |
WO2018156849A1 (fr) | 2017-02-24 | 2018-08-30 | Bolton Medical, Inc. | Prothèse vasculaire ayant une anneau de fenestration et procédés d'utilisation |
EP3585306B1 (fr) | 2017-02-24 | 2021-01-27 | Bolton Medical, Inc. | Système de constriction radiale d'une endoprothèse |
WO2018156853A1 (fr) | 2017-02-24 | 2018-08-30 | Bolton Medical, Inc. | Système de mise en place pour la constriction radiale d'une greffe de stent et procédé d'utilisation |
WO2018156851A1 (fr) | 2017-02-24 | 2018-08-30 | Bolton Medical, Inc. | Prothèse vasculaire à fenêtrage mobile |
CN110022795B (zh) | 2017-02-24 | 2023-03-14 | 波顿医疗公司 | 能够受约束的支架移植物、递送系统及使用方法 |
WO2018156847A1 (fr) | 2017-02-24 | 2018-08-30 | Bolton Medical, Inc. | Système de pose et procédé de constriction radiale d'une endoprothèse couverte |
WO2018156850A1 (fr) | 2017-02-24 | 2018-08-30 | Bolton Medical, Inc. | Endoprothèse couverte comprenant un verrou de fenestration |
WO2018156854A1 (fr) | 2017-02-24 | 2018-08-30 | Bolton Medical, Inc. | Système de pose d'endoprothèse à ajustement radial |
WO2018156848A1 (fr) | 2017-02-24 | 2018-08-30 | Bolton Medical, Inc. | Prothèse vasculaire à adaptateur serti et procédés d'utilisation |
WO2018156852A1 (fr) | 2017-02-24 | 2018-08-30 | Bolton Medical, Inc. | Système de mise en place de greffe d'endoprothèse présentant une gaine rétrécie et procédé d'utilisation |
WO2018175048A1 (fr) | 2017-03-24 | 2018-09-27 | Ascyrus Medical, Llc | Stent auto-expansible multi-spirale et ses procédés de fabrication et d'utilisation |
US10716551B2 (en) | 2017-05-12 | 2020-07-21 | Phillips Medical, LLC | Systems and methods for sealing a puncture of a vessel |
US10524820B2 (en) * | 2017-05-16 | 2020-01-07 | Biosense Webster (Israel) Ltd. | Deflectable shaver tool |
US10856982B2 (en) * | 2017-09-19 | 2020-12-08 | St. Jude Medical, Cardiology Division, Inc. | Transapical mitral valve delivery system |
CN115813605A (zh) | 2017-09-25 | 2023-03-21 | 波尔顿医疗公司 | 用于将假体植入物联接到开窗体的系统、装置和方法 |
US10751056B2 (en) | 2017-10-23 | 2020-08-25 | High Desert Radiology, P.C. | Methods and apparatus for percutaneous bypass graft |
EP3558175B1 (fr) | 2017-10-31 | 2022-01-12 | Bolton Medical, Inc. | Composant de couple distal, système d'administration et leur procédé d'utilisation |
EP3737343B1 (fr) * | 2018-01-10 | 2021-12-29 | Boston Scientific Scimed Inc. | Système de pose d'endoprothèse avec mécanisme de déploiement déplaçable |
CN110025415B (zh) * | 2018-01-12 | 2024-07-19 | 上海微创心脉医疗科技股份有限公司 | 一种医用植入物释放系统的手柄 |
US11058566B2 (en) * | 2018-04-11 | 2021-07-13 | Medtronic Vascular, Inc. | Variable rate prosthesis delivery system providing prosthesis alterations |
CN110786975B (zh) * | 2018-08-03 | 2022-07-05 | 先健科技(深圳)有限公司 | 输送器的手柄组件、输送器及输送系统 |
CN111067682B (zh) * | 2018-10-22 | 2022-06-07 | 东莞市先健医疗有限公司 | 用于控制植入式器械释放的组件及系统 |
CN111214310A (zh) * | 2018-11-23 | 2020-06-02 | 上海微创心通医疗科技有限公司 | 用于输送植入体的驱动手柄及输送系统 |
CN111772873A (zh) * | 2019-04-04 | 2020-10-16 | 上海微创心通医疗科技有限公司 | 用于输送植入体的驱动手柄及输送系统 |
WO2020212972A1 (fr) * | 2019-04-14 | 2020-10-22 | Perflow Medical Ltd. | Dispositif adaptable et procédé de pontage du col d'un anévrisme |
US11622858B2 (en) * | 2019-10-09 | 2023-04-11 | Medtronic CV Luxembourg S.a.r.l. | Valve delivery system including foreshortening compensator for improved positioning accuracy |
WO2021128940A1 (fr) * | 2019-12-24 | 2021-07-01 | 上海蓝脉医疗科技有限公司 | Système de pose d'implant |
CN113017953A (zh) * | 2019-12-25 | 2021-06-25 | 南微医学科技股份有限公司 | 支架分段输送装置和系统 |
CN111388158B (zh) * | 2020-01-20 | 2022-05-10 | 苏州恒瑞宏远医疗科技有限公司 | 一种输送装置 |
US20210282952A1 (en) * | 2020-03-13 | 2021-09-16 | Medtronic Vascular, Inc. | Endovascular catheter with delivery system separately assembled to stent graft system |
CN112013762A (zh) * | 2020-07-07 | 2020-12-01 | 辽宁省交通高等专科学校 | 一种大物件摄影定位扫描建模系统 |
CN113017947B (zh) * | 2021-03-19 | 2022-09-30 | 埃文斯科技(北京)有限公司 | 一种可分段释放的自膨式支架系统 |
WO2023107926A1 (fr) * | 2021-12-08 | 2023-06-15 | Silk Road Medical, Inc. | Systèmes de pose pour prothèses endoluminales et procédés d'utilisation |
CN116250970A (zh) * | 2023-03-31 | 2023-06-13 | 上海微创心通医疗科技有限公司 | 介入手柄与介入系统 |
CN116942252B (zh) * | 2023-09-20 | 2023-11-28 | 杭州亿科医疗科技有限公司 | 取栓装置及取栓系统 |
CN117796974B (zh) * | 2024-03-01 | 2024-05-31 | 北京纳通医疗科技控股有限公司 | 椎间植骨器械及手术器械组件 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2710193A (en) * | 1950-06-21 | 1955-06-07 | Baron Raoul Marie Amedee | Mechanical gripping chuck |
US20020091439A1 (en) * | 1994-12-15 | 2002-07-11 | Baker Steve G. | Graft assembly having support structure |
US20030114912A1 (en) * | 2000-05-30 | 2003-06-19 | Jacques Sequin | Endoprosthesis deployment system for treating vascular bifurcations |
US20040127912A1 (en) * | 2002-12-31 | 2004-07-01 | Dmitry Rabkin | Stent delivery system |
US20040186551A1 (en) * | 2003-01-17 | 2004-09-23 | Xtent, Inc. | Multiple independent nested stent structures and methods for their preparation and deployment |
US20050149159A1 (en) * | 2003-12-23 | 2005-07-07 | Xtent, Inc., A Delaware Corporation | Devices and methods for controlling and indicating the length of an interventional element |
US20050246008A1 (en) * | 2004-04-30 | 2005-11-03 | Novostent Corporation | Delivery system for vascular prostheses and methods of use |
Family Cites Families (418)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1012524A (en) | 1904-07-25 | 1911-12-19 | Francis B Crocker | Apparatus for automatic regulation of rectifiers and rotary converters. |
US1026407A (en) | 1908-12-21 | 1912-05-14 | Steel Shoe Company | Footwear. |
US1021345A (en) | 1911-01-07 | 1912-03-26 | Henry Welch | Xylophone. |
SE445884B (sv) * | 1982-04-30 | 1986-07-28 | Medinvent Sa | Anordning for implantation av en rorformig protes |
US5190546A (en) | 1983-10-14 | 1993-03-02 | Raychem Corporation | Medical devices incorporating SIM alloy elements |
US5104399A (en) | 1986-12-10 | 1992-04-14 | Endovascular Technologies, Inc. | Artificial graft and implantation method |
US6221102B1 (en) | 1983-12-09 | 2001-04-24 | Endovascular Technologies, Inc. | Intraluminal grafting system |
US4562596A (en) | 1984-04-25 | 1986-01-07 | Elliot Kornberg | Aortic graft, device and method for performing an intraluminal abdominal aortic aneurysm repair |
SE8803444D0 (sv) | 1988-09-28 | 1988-09-28 | Medinvent Sa | A device for transluminal implantation or extraction |
US5078726A (en) | 1989-02-01 | 1992-01-07 | Kreamer Jeffry W | Graft stent and method of repairing blood vessels |
US5578071A (en) | 1990-06-11 | 1996-11-26 | Parodi; Juan C. | Aortic graft |
US5360443A (en) | 1990-06-11 | 1994-11-01 | Barone Hector D | Aortic graft for repairing an abdominal aortic aneurysm |
US5160341A (en) | 1990-11-08 | 1992-11-03 | Advanced Surgical Intervention, Inc. | Resorbable urethral stent and apparatus for its insertion |
US6682557B1 (en) | 1991-04-11 | 2004-01-27 | Endovascular Technologies, Inc. | Bifurcated multicapsule intraluminal grafting system and method |
US5628783A (en) | 1991-04-11 | 1997-05-13 | Endovascular Technologies, Inc. | Bifurcated multicapsule intraluminal grafting system and method |
US5591172A (en) | 1991-06-14 | 1997-01-07 | Ams Medinvent S.A. | Transluminal implantation device |
DE59208848D1 (de) | 1991-10-11 | 1997-10-09 | Angiomed Ag | Vorrichtung zum Aufweiten einer Stenose |
US5693084A (en) | 1991-10-25 | 1997-12-02 | Cook Incorporated | Expandable transluminal graft prosthesis for repair of aneurysm |
US5316023A (en) | 1992-01-08 | 1994-05-31 | Expandable Grafts Partnership | Method for bilateral intra-aortic bypass |
US5201757A (en) | 1992-04-03 | 1993-04-13 | Schneider (Usa) Inc. | Medial region deployment of radially self-expanding stents |
US5817102A (en) | 1992-05-08 | 1998-10-06 | Schneider (Usa) Inc. | Apparatus for delivering and deploying a stent |
US5707376A (en) | 1992-08-06 | 1998-01-13 | William Cook Europe A/S | Stent introducer and method of use |
US5562725A (en) | 1992-09-14 | 1996-10-08 | Meadox Medicals Inc. | Radially self-expanding implantable intraluminal device |
US5364352A (en) | 1993-03-12 | 1994-11-15 | Heart Rhythm Technologies, Inc. | Catheter for electrophysiological procedures |
WO1994023786A1 (fr) | 1993-04-13 | 1994-10-27 | Boston Scientific Corporation | Dispositif d'application d'une prothese |
US5480423A (en) | 1993-05-20 | 1996-01-02 | Boston Scientific Corporation | Prosthesis delivery |
US5464449A (en) | 1993-07-08 | 1995-11-07 | Thomas J. Fogarty | Internal graft prosthesis and delivery system |
US5855598A (en) | 1993-10-21 | 1999-01-05 | Corvita Corporation | Expandable supportive branched endoluminal grafts |
US5639278A (en) | 1993-10-21 | 1997-06-17 | Corvita Corporation | Expandable supportive bifurcated endoluminal grafts |
US5723004A (en) | 1993-10-21 | 1998-03-03 | Corvita Corporation | Expandable supportive endoluminal grafts |
US5632772A (en) | 1993-10-21 | 1997-05-27 | Corvita Corporation | Expandable supportive branched endoluminal grafts |
US5989280A (en) | 1993-10-22 | 1999-11-23 | Scimed Lifesystems, Inc | Stent delivery apparatus and method |
US5445646A (en) | 1993-10-22 | 1995-08-29 | Scimed Lifesystems, Inc. | Single layer hydraulic sheath stent delivery apparatus and method |
AU1091095A (en) | 1993-11-08 | 1995-05-29 | Harrison M. Lazarus | Intraluminal vascular graft and method |
US5476505A (en) | 1993-11-18 | 1995-12-19 | Advanced Cardiovascular Systems, Inc. | Coiled stent and delivery system |
US5527353A (en) | 1993-12-02 | 1996-06-18 | Meadox Medicals, Inc. | Implantable tubular prosthesis |
DE9319267U1 (de) | 1993-12-15 | 1994-02-24 | Günther, Rudolf W., Prof. Dr., 52074 Aachen | Aortenendoprothese |
US5476506A (en) | 1994-02-08 | 1995-12-19 | Ethicon, Inc. | Bi-directional crimped graft |
US5609627A (en) | 1994-02-09 | 1997-03-11 | Boston Scientific Technology, Inc. | Method for delivering a bifurcated endoluminal prosthesis |
US6051020A (en) | 1994-02-09 | 2000-04-18 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US6165213A (en) | 1994-02-09 | 2000-12-26 | Boston Scientific Technology, Inc. | System and method for assembling an endoluminal prosthesis |
US6039749A (en) * | 1994-02-10 | 2000-03-21 | Endovascular Systems, Inc. | Method and apparatus for deploying non-circular stents and graftstent complexes |
US5507769A (en) | 1994-10-18 | 1996-04-16 | Stentco, Inc. | Method and apparatus for forming an endoluminal bifurcated graft |
US5415664A (en) | 1994-03-30 | 1995-05-16 | Corvita Corporation | Method and apparatus for introducing a stent or a stent-graft |
US5507731A (en) | 1994-05-17 | 1996-04-16 | Cordis Corporation | Rapid exchange segmented catheter |
US5683451A (en) | 1994-06-08 | 1997-11-04 | Cardiovascular Concepts, Inc. | Apparatus and methods for deployment release of intraluminal prostheses |
US5824041A (en) | 1994-06-08 | 1998-10-20 | Medtronic, Inc. | Apparatus and methods for placement and repositioning of intraluminal prostheses |
CA2147547C (fr) | 1994-08-02 | 2006-12-19 | Peter J. Schmitt | Greffon souple tisse mince |
US5653743A (en) | 1994-09-09 | 1997-08-05 | Martin; Eric C. | Hypogastric artery bifurcation graft and method of implantation |
NL9500094A (nl) | 1995-01-19 | 1996-09-02 | Industrial Res Bv | Y-vormige stent en werkwijze van het plaatsen daarvan. |
US5755770A (en) | 1995-01-31 | 1998-05-26 | Boston Scientific Corporatiion | Endovascular aortic graft |
US5575818A (en) | 1995-02-14 | 1996-11-19 | Corvita Corporation | Endovascular stent with locking ring |
US5683449A (en) | 1995-02-24 | 1997-11-04 | Marcade; Jean Paul | Modular bifurcated intraluminal grafts and methods for delivering and assembling same |
DE69518337T2 (de) | 1995-03-10 | 2001-02-01 | Impra Inc., Tempe | Endoluminal eingekapselter stent und herstellverfahren |
AUPN228395A0 (en) | 1995-04-11 | 1995-05-04 | Hart, Vincent G. | Artificial arterial-venous graft |
US5591228A (en) | 1995-05-09 | 1997-01-07 | Edoga; John K. | Methods for treating abdominal aortic aneurysms |
US5681347A (en) | 1995-05-23 | 1997-10-28 | Boston Scientific Corporation | Vena cava filter delivery system |
DE69633263T2 (de) | 1995-05-25 | 2005-09-08 | Medtronic, Inc., Minneapolis | Stentanordnung |
US5702418A (en) | 1995-09-12 | 1997-12-30 | Boston Scientific Corporation | Stent delivery system |
US5591195A (en) | 1995-10-30 | 1997-01-07 | Taheri; Syde | Apparatus and method for engrafting a blood vessel |
GB9522332D0 (en) | 1995-11-01 | 1996-01-03 | Biocompatibles Ltd | Braided stent |
US5628788A (en) | 1995-11-07 | 1997-05-13 | Corvita Corporation | Self-expanding endoluminal stent-graft |
US6045557A (en) | 1995-11-10 | 2000-04-04 | Baxter International Inc. | Delivery catheter and method for positioning an intraluminal graft |
US20080221668A1 (en) | 1995-11-13 | 2008-09-11 | Boston Scientific Corp. | Expandable supportive branched endoluminal grafts |
US6576009B2 (en) | 1995-12-01 | 2003-06-10 | Medtronic Ave, Inc. | Bifurcated intraluminal prostheses construction and methods |
US5626604A (en) | 1995-12-05 | 1997-05-06 | Cordis Corporation | Hand held stent crimping device |
FR2743293B1 (fr) | 1996-01-08 | 1998-03-27 | Denis Jean Marc | Endoprothese aorto-iliaque |
US5800512A (en) | 1996-01-22 | 1998-09-01 | Meadox Medicals, Inc. | PTFE vascular graft |
JPH09215753A (ja) | 1996-02-08 | 1997-08-19 | Schneider Usa Inc | チタン合金製自己拡張型ステント |
US5843160A (en) | 1996-04-01 | 1998-12-01 | Rhodes; Valentine J. | Prostheses for aneurysmal and/or occlusive disease at a bifurcation in a vessel, duct, or lumen |
US6629981B2 (en) | 2000-07-06 | 2003-10-07 | Endocare, Inc. | Stent delivery system |
US6413269B1 (en) | 2000-07-06 | 2002-07-02 | Endocare, Inc. | Stent delivery system |
BE1010183A3 (fr) | 1996-04-25 | 1998-02-03 | Dereume Jean Pierre Georges Em | Endoprothese luminale pour ramification de voies d'un corps humain ou animal et son procede de fabrication. |
US6592617B2 (en) | 1996-04-30 | 2003-07-15 | Boston Scientific Scimed, Inc. | Three-dimensional braided covered stent |
UA58485C2 (uk) | 1996-05-03 | 2003-08-15 | Медінол Лтд. | Спосіб виготовлення роздвоєного стента (варіанти) та роздвоєний стент (варіанти) |
US6440165B1 (en) | 1996-05-03 | 2002-08-27 | Medinol, Ltd. | Bifurcated stent with improved side branch aperture and method of making same |
NL1003178C2 (nl) | 1996-05-21 | 1997-11-25 | Cordis Europ | Buisvormige prothese van uithardbaar materiaal. |
JP4014226B2 (ja) | 1996-06-20 | 2007-11-28 | ヴァスキュテック リミテッド | 体内の径路の補綴による修復 |
US5928279A (en) | 1996-07-03 | 1999-07-27 | Baxter International Inc. | Stented, radially expandable, tubular PTFE grafts |
US6077295A (en) | 1996-07-15 | 2000-06-20 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent delivery system |
US5830217A (en) | 1996-08-09 | 1998-11-03 | Thomas J. Fogarty | Soluble fixation device and method for stent delivery catheters |
US6325819B1 (en) | 1996-08-19 | 2001-12-04 | Cook Incorporated | Endovascular prosthetic device, an endovascular graft prothesis with such a device, and a method for repairing an abdominal aortic aneurysm |
US5968068A (en) | 1996-09-12 | 1999-10-19 | Baxter International Inc. | Endovascular delivery system |
US5968052A (en) | 1996-11-27 | 1999-10-19 | Scimed Life Systems Inc. | Pull back stent delivery system with pistol grip retraction handle |
US5897587A (en) | 1996-12-03 | 1999-04-27 | Atrium Medical Corporation | Multi-stage prosthesis |
US5776142A (en) * | 1996-12-19 | 1998-07-07 | Medtronic, Inc. | Controllable stent delivery system and method |
US6015431A (en) | 1996-12-23 | 2000-01-18 | Prograft Medical, Inc. | Endolumenal stent-graft with leak-resistant seal |
US5957974A (en) | 1997-01-23 | 1999-09-28 | Schneider (Usa) Inc | Stent graft with braided polymeric sleeve |
US6951572B1 (en) | 1997-02-20 | 2005-10-04 | Endologix, Inc. | Bifurcated vascular graft and method and apparatus for deploying same |
US6090128A (en) | 1997-02-20 | 2000-07-18 | Endologix, Inc. | Bifurcated vascular graft deployment device |
US5948483A (en) | 1997-03-25 | 1999-09-07 | The Board Of Trustees Of The University Of Illinois | Method and apparatus for producing thin film and nanoparticle deposits |
GR970100134A (el) | 1997-04-10 | 1998-12-31 | Τυπος διχαλωτου ενδοαυλικου μοσχευματος για την ενδοαυλικη αντιμετωπιση ανευρυσματων της κοιλιακης αορτης και τεχνικης τοποθετησης | |
GB9710366D0 (en) | 1997-05-20 | 1997-07-16 | Biocompatibles Ltd | Stent deployment device |
AUPO700897A0 (en) | 1997-05-26 | 1997-06-19 | William A Cook Australia Pty Ltd | A method and means of deploying a graft |
US6168616B1 (en) | 1997-06-02 | 2001-01-02 | Global Vascular Concepts | Manually expandable stent |
US6007575A (en) | 1997-06-06 | 1999-12-28 | Samuels; Shaun Laurence Wilkie | Inflatable intraluminal stent and method for affixing same within the human body |
US5904713A (en) | 1997-07-14 | 1999-05-18 | Datascope Investment Corp. | Invertible bifurcated stent/graft and method of deployment |
US5906619A (en) | 1997-07-24 | 1999-05-25 | Medtronic, Inc. | Disposable delivery device for endoluminal prostheses |
US6174330B1 (en) | 1997-08-01 | 2001-01-16 | Schneider (Usa) Inc | Bioabsorbable marker having radiopaque constituents |
US6070589A (en) | 1997-08-01 | 2000-06-06 | Teramed, Inc. | Methods for deploying bypass graft stents |
US6306164B1 (en) | 1997-09-05 | 2001-10-23 | C. R. Bard, Inc. | Short body endoprosthesis |
US5984955A (en) | 1997-09-11 | 1999-11-16 | Wisselink; Willem | System and method for endoluminal grafting of bifurcated or branched vessels |
US6183444B1 (en) | 1998-05-16 | 2001-02-06 | Microheart, Inc. | Drug delivery module |
US6554794B1 (en) | 1997-09-24 | 2003-04-29 | Richard L. Mueller | Non-deforming deflectable multi-lumen catheter |
US6179809B1 (en) | 1997-09-24 | 2001-01-30 | Eclipse Surgical Technologies, Inc. | Drug delivery catheter with tip alignment |
JP4065663B2 (ja) | 1997-10-02 | 2008-03-26 | ボストン サイエンティフィック リミテッド | 繊維を体内へと送達するためのデバイス |
WO1999026559A1 (fr) | 1997-11-25 | 1999-06-03 | Triad Vascular Systems, Inc. | Greffon endovasculaire multicouche |
US6171277B1 (en) | 1997-12-01 | 2001-01-09 | Cordis Webster, Inc. | Bi-directional control handle for steerable catheter |
US6395019B2 (en) | 1998-02-09 | 2002-05-28 | Trivascular, Inc. | Endovascular graft |
FR2775182B1 (fr) | 1998-02-25 | 2000-07-28 | Legona Anstalt | Dispositif formant andoprothese intracorporelle endoluminale, en particulier aortique abdominale |
US6077296A (en) | 1998-03-04 | 2000-06-20 | Endologix, Inc. | Endoluminal vascular prosthesis |
US6019778A (en) | 1998-03-13 | 2000-02-01 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
US6129756A (en) | 1998-03-16 | 2000-10-10 | Teramed, Inc. | Biluminal endovascular graft system |
US6224609B1 (en) | 1998-03-16 | 2001-05-01 | Teramed Inc. | Bifurcated prosthetic graft |
EP0943300A1 (fr) | 1998-03-17 | 1999-09-22 | Medicorp S.A. | Dispositif pour la mise en place d'un stent de manière réversible |
US6290731B1 (en) | 1998-03-30 | 2001-09-18 | Cordis Corporation | Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm |
US6887268B2 (en) | 1998-03-30 | 2005-05-03 | Cordis Corporation | Extension prosthesis for an arterial repair |
US6656215B1 (en) | 2000-11-16 | 2003-12-02 | Cordis Corporation | Stent graft having an improved means for attaching a stent to a graft |
EP1067882A1 (fr) * | 1998-03-31 | 2001-01-17 | Salviac Limited | Catheter de mise en place |
US6520983B1 (en) | 1998-03-31 | 2003-02-18 | Scimed Life Systems, Inc. | Stent delivery system |
US6524336B1 (en) | 1998-04-09 | 2003-02-25 | Cook Incorporated | Endovascular graft |
US6217609B1 (en) | 1998-06-30 | 2001-04-17 | Schneider (Usa) Inc | Implantable endoprosthesis with patterned terminated ends and methods for making same |
US6120522A (en) | 1998-08-27 | 2000-09-19 | Scimed Life Systems, Inc. | Self-expanding stent delivery catheter |
US6203550B1 (en) | 1998-09-30 | 2001-03-20 | Medtronic, Inc. | Disposable delivery device for endoluminal prostheses |
JP2002525168A (ja) | 1998-09-30 | 2002-08-13 | インプラ・インコーポレーテッド | 埋込み可能なステントの導入機構 |
US6273909B1 (en) | 1998-10-05 | 2001-08-14 | Teramed Inc. | Endovascular graft system |
US6214036B1 (en) | 1998-11-09 | 2001-04-10 | Cordis Corporation | Stent which is easily recaptured and repositioned within the body |
US6371963B1 (en) | 1998-11-17 | 2002-04-16 | Scimed Life Systems, Inc. | Device for controlled endoscopic penetration of injection needle |
US6187036B1 (en) | 1998-12-11 | 2001-02-13 | Endologix, Inc. | Endoluminal vascular prosthesis |
US6660030B2 (en) | 1998-12-11 | 2003-12-09 | Endologix, Inc. | Bifurcation graft deployment catheter |
US6197049B1 (en) | 1999-02-17 | 2001-03-06 | Endologix, Inc. | Articulating bifurcation graft |
US6517571B1 (en) | 1999-01-22 | 2003-02-11 | Gore Enterprise Holdings, Inc. | Vascular graft with improved flow surfaces |
DE60038474T2 (de) | 1999-01-22 | 2009-04-30 | Gore Enterprise Holdings, Inc., Newark | Kombination aus stent und transplantat mit niedrigem profil |
US7018401B1 (en) | 1999-02-01 | 2006-03-28 | Board Of Regents, The University Of Texas System | Woven intravascular devices and methods for making the same and apparatus for delivery of the same |
BR0007932A (pt) | 1999-02-01 | 2002-07-02 | Univ Texas | Stents trançados bifurcados e trifurcados e métodos para fabricação dos mesmos |
US6162246A (en) | 1999-02-16 | 2000-12-19 | Barone; Hector Daniel | Aortic graft and method of treating abdominal aortic aneurysms |
US6231597B1 (en) | 1999-02-16 | 2001-05-15 | Mark E. Deem | Apparatus and methods for selectively stenting a portion of a vessel wall |
US6200339B1 (en) | 1999-02-23 | 2001-03-13 | Datascope Investment Corp. | Endovascular split-tube bifurcated graft prosthesis and an implantation method for such a prosthesis |
EP1156758B1 (fr) | 1999-02-26 | 2008-10-15 | LeMaitre Vascular, Inc. | Prothese endoluminale |
US6261316B1 (en) | 1999-03-11 | 2001-07-17 | Endologix, Inc. | Single puncture bifurcation graft deployment system |
US6743247B1 (en) | 1999-04-01 | 2004-06-01 | Scion Cardio-Vascular, Inc. | Locking frame, filter and deployment system |
US6190360B1 (en) | 1999-04-09 | 2001-02-20 | Endotex Interventional System | Stent delivery handle |
US6162237A (en) | 1999-04-19 | 2000-12-19 | Chan; Winston Kam Yew | Temporary intravascular stent for use in retrohepatic IVC or hepatic vein injury |
US6926724B1 (en) | 1999-05-04 | 2005-08-09 | City Of Hope | Visceral anastomotic device and method of using same |
US6468260B1 (en) | 1999-05-07 | 2002-10-22 | Biosense Webster, Inc. | Single gear drive bidirectional control handle for steerable catheter |
US6146415A (en) | 1999-05-07 | 2000-11-14 | Advanced Cardiovascular Systems, Inc. | Stent delivery system |
US6585756B1 (en) | 1999-05-14 | 2003-07-01 | Ernst P. Strecker | Implantable lumen prosthesis |
US6398802B1 (en) | 1999-06-21 | 2002-06-04 | Scimed Life Systems, Inc. | Low profile delivery system for stent and graft deployment |
US6306424B1 (en) | 1999-06-30 | 2001-10-23 | Ethicon, Inc. | Foam composite for the repair or regeneration of tissue |
US6652570B2 (en) | 1999-07-02 | 2003-11-25 | Scimed Life Systems, Inc. | Composite vascular graft |
US6440161B1 (en) | 1999-07-07 | 2002-08-27 | Endologix, Inc. | Dual wire placement catheter |
JP2003504151A (ja) | 1999-07-16 | 2003-02-04 | スナンバデル,ラルス | 血管の治療処置のための装置 |
US6230476B1 (en) | 1999-09-02 | 2001-05-15 | Gary W. Clem, Inc. | Row crop gathering belt for combine heads |
US6183481B1 (en) | 1999-09-22 | 2001-02-06 | Endomed Inc. | Delivery system for self-expanding stents and grafts |
US6270525B1 (en) | 1999-09-23 | 2001-08-07 | Cordis Corporation | Precursor stent gasket for receiving bilateral grafts having controlled contralateral guidewire access |
US6344056B1 (en) | 1999-12-29 | 2002-02-05 | Edwards Lifesciences Corp. | Vascular grafts for bridging a vessel side branch |
US6344052B1 (en) | 1999-09-27 | 2002-02-05 | World Medical Manufacturing Corporation | Tubular graft with monofilament fibers |
US6849087B1 (en) | 1999-10-06 | 2005-02-01 | Timothy A. M. Chuter | Device and method for staged implantation of a graft for vascular repair |
US6383171B1 (en) | 1999-10-12 | 2002-05-07 | Allan Will | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
US6652567B1 (en) | 1999-11-18 | 2003-11-25 | David H. Deaton | Fenestrated endovascular graft |
US6280466B1 (en) | 1999-12-03 | 2001-08-28 | Teramed Inc. | Endovascular graft system |
GB0001102D0 (en) | 2000-01-19 | 2000-03-08 | Sulzer Vascutek Ltd | Prosthesis |
US6325822B1 (en) | 2000-01-31 | 2001-12-04 | Scimed Life Systems, Inc. | Braided stent having tapered filaments |
US6398807B1 (en) | 2000-01-31 | 2002-06-04 | Scimed Life Systems, Inc. | Braided branching stent, method for treating a lumen therewith, and process for manufacture therefor |
US6602280B2 (en) | 2000-02-02 | 2003-08-05 | Trivascular, Inc. | Delivery system and method for expandable intracorporeal device |
US6344044B1 (en) | 2000-02-11 | 2002-02-05 | Edwards Lifesciences Corp. | Apparatus and methods for delivery of intraluminal prosthesis |
US6808534B1 (en) | 2000-02-16 | 2004-10-26 | Endovascular Technologies, Inc. | Collapsible jacket guard |
US6814752B1 (en) | 2000-03-03 | 2004-11-09 | Endovascular Technologies, Inc. | Modular grafting system and method |
ES2328901T3 (es) | 2000-03-14 | 2009-11-19 | Cook Incorporated | Injerto de protesis endovascular. |
US6942691B1 (en) | 2000-04-27 | 2005-09-13 | Timothy A. M. Chuter | Modular bifurcated graft for endovascular aneurysm repair |
US6361556B1 (en) | 2000-04-27 | 2002-03-26 | Endovascular Tech Inc | System and method for endovascular aneurysm repair in conjuction with vascular stabilization |
US7226474B2 (en) | 2000-05-01 | 2007-06-05 | Endovascular Technologies, Inc. | Modular graft component junctions |
US7135037B1 (en) | 2000-05-01 | 2006-11-14 | Endovascular Technologies, Inc. | System and method for forming a junction between elements of a modular endovascular prosthesis |
US6572643B1 (en) | 2000-07-19 | 2003-06-03 | Vascular Architects, Inc. | Endoprosthesis delivery catheter assembly and method |
US6808533B1 (en) | 2000-07-28 | 2004-10-26 | Atrium Medical Corporation | Covered stent and method of covering a stent |
US6773454B2 (en) | 2000-08-02 | 2004-08-10 | Michael H. Wholey | Tapered endovascular stent graft and method of treating abdominal aortic aneurysms and distal iliac aneurysms |
US7118592B1 (en) | 2000-09-12 | 2006-10-10 | Advanced Cardiovascular Systems, Inc. | Covered stent assembly for reduced-shortening during stent expansion |
US6730119B1 (en) | 2000-10-06 | 2004-05-04 | Board Of Regents Of The University Of Texas System | Percutaneous implantation of partially covered stents in aneurysmally dilated arterial segments with subsequent embolization and obliteration of the aneurysm cavity |
US7314483B2 (en) | 2000-11-16 | 2008-01-01 | Cordis Corp. | Stent graft with branch leg |
US6942692B2 (en) | 2000-11-16 | 2005-09-13 | Cordis Corporation | Supra-renal prosthesis and renal artery bypass |
US7267685B2 (en) | 2000-11-16 | 2007-09-11 | Cordis Corporation | Bilateral extension prosthesis and method of delivery |
US6843802B1 (en) | 2000-11-16 | 2005-01-18 | Cordis Corporation | Delivery apparatus for a self expanding retractable stent |
US7229472B2 (en) | 2000-11-16 | 2007-06-12 | Cordis Corporation | Thoracic aneurysm repair prosthesis and system |
US6645242B1 (en) | 2000-12-11 | 2003-11-11 | Stephen F. Quinn | Bifurcated side-access intravascular stent graft |
US20020169497A1 (en) | 2001-01-02 | 2002-11-14 | Petra Wholey | Endovascular stent system and method of providing aneurysm embolization |
US6743210B2 (en) * | 2001-02-15 | 2004-06-01 | Scimed Life Systems, Inc. | Stent delivery catheter positioning device |
US6602225B2 (en) | 2001-02-28 | 2003-08-05 | Scimed Life Systems, Inc | Substantially circular catheter assembly |
US8764817B2 (en) | 2001-03-05 | 2014-07-01 | Idev Technologies, Inc. | Methods for securing strands of woven medical devices and devices formed thereby |
US20020143387A1 (en) | 2001-03-27 | 2002-10-03 | Soetikno Roy M. | Stent repositioning and removal |
DK1245202T3 (da) | 2001-03-27 | 2004-08-30 | Cook William Europ | Aortagrafindretning |
CA2438087C (fr) | 2001-03-28 | 2010-11-23 | Cook Incorporated | Prothese endovasculaire modulaire et utilisation de cette derniere |
US20040138734A1 (en) | 2001-04-11 | 2004-07-15 | Trivascular, Inc. | Delivery system and method for bifurcated graft |
US6761733B2 (en) | 2001-04-11 | 2004-07-13 | Trivascular, Inc. | Delivery system and method for bifurcated endovascular graft |
US7175651B2 (en) | 2001-07-06 | 2007-02-13 | Andrew Kerr | Stent/graft assembly |
US20040215322A1 (en) | 2001-07-06 | 2004-10-28 | Andrew Kerr | Stent/graft assembly |
US6733521B2 (en) | 2001-04-11 | 2004-05-11 | Trivascular, Inc. | Delivery system and method for endovascular graft |
US20040073288A1 (en) | 2001-07-06 | 2004-04-15 | Andrew Kerr | Stent/graft assembly |
US20050021123A1 (en) | 2001-04-30 | 2005-01-27 | Jurgen Dorn | Variable speed self-expanding stent delivery system and luer locking connector |
US7828833B2 (en) | 2001-06-11 | 2010-11-09 | Boston Scientific Scimed, Inc. | Composite ePTFE/textile prosthesis |
EP1407388A4 (fr) | 2001-06-27 | 2005-05-04 | Compumedics Ltd | Systeme reparti de notification d'evenements |
US6716239B2 (en) | 2001-07-03 | 2004-04-06 | Scimed Life Systems, Inc. | ePTFE graft with axial elongation properties |
JP4512362B2 (ja) | 2001-07-06 | 2010-07-28 | アンギオメット ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー メディツィンテヒニク コマンデイトゲゼルシャフト | 自己拡張式ステントの迅速プッシャ組立体及びステント交換形態を備えた運搬システム |
US20030014075A1 (en) | 2001-07-16 | 2003-01-16 | Microvention, Inc. | Methods, materials and apparatus for deterring or preventing endoleaks following endovascular graft implanation |
US6755854B2 (en) | 2001-07-31 | 2004-06-29 | Advanced Cardiovascular Systems, Inc. | Control device and mechanism for deploying a self-expanding medical device |
GB0123633D0 (en) | 2001-10-02 | 2001-11-21 | Angiomed Ag | Stent delivery system |
US6866669B2 (en) | 2001-10-12 | 2005-03-15 | Cordis Corporation | Locking handle deployment mechanism for medical device and method |
US6939352B2 (en) | 2001-10-12 | 2005-09-06 | Cordis Corporation | Handle deployment mechanism for medical device and method |
US20030074055A1 (en) | 2001-10-17 | 2003-04-17 | Haverkost Patrick A. | Method and system for fixation of endoluminal devices |
AUPR847301A0 (en) | 2001-10-26 | 2001-11-15 | Cook Incorporated | Endoluminal prostheses for curved lumens |
US6939376B2 (en) * | 2001-11-05 | 2005-09-06 | Sun Biomedical, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
US7147657B2 (en) | 2003-10-23 | 2006-12-12 | Aptus Endosystems, Inc. | Prosthesis delivery systems and methods |
US6929661B2 (en) | 2001-11-28 | 2005-08-16 | Aptus Endosystems, Inc. | Multi-lumen prosthesis systems and methods |
US7637932B2 (en) | 2001-11-28 | 2009-12-29 | Aptus Endosystems, Inc. | Devices, systems, and methods for prosthesis delivery and implantation |
US9320503B2 (en) | 2001-11-28 | 2016-04-26 | Medtronic Vascular, Inc. | Devices, system, and methods for guiding an operative tool into an interior body region |
US7147656B2 (en) | 2001-12-03 | 2006-12-12 | Xtent, Inc. | Apparatus and methods for delivery of braided prostheses |
US7014653B2 (en) | 2001-12-20 | 2006-03-21 | Cleveland Clinic Foundation | Furcated endovascular prosthesis |
US6913594B2 (en) | 2001-12-31 | 2005-07-05 | Biosense Webster, Inc. | Dual-function catheter handle |
US20030130725A1 (en) | 2002-01-08 | 2003-07-10 | Depalma Donald F. | Sealing prosthesis |
US7326237B2 (en) | 2002-01-08 | 2008-02-05 | Cordis Corporation | Supra-renal anchoring prosthesis |
US20030130720A1 (en) | 2002-01-08 | 2003-07-10 | Depalma Donald F. | Modular aneurysm repair system |
GB0203177D0 (en) | 2002-02-11 | 2002-03-27 | Anson Medical Ltd | An improved control mechanism for medical catheters |
US7708771B2 (en) | 2002-02-26 | 2010-05-04 | Endovascular Technologies, Inc. | Endovascular graft device and methods for attaching components thereof |
US8211166B2 (en) | 2002-02-26 | 2012-07-03 | Endovascular Technologies, Inc. | Endovascular grafting device |
US7000649B2 (en) | 2002-03-20 | 2006-02-21 | Terumo Kabushiki Kaisha | Woven tubing for stent type blood vascular prosthesis and stent type blood vascular prosthesis using the tubing |
US7063721B2 (en) | 2002-03-20 | 2006-06-20 | Terumo Kabushiki Kaisha | Woven tubing for stent type blood vascular prosthesis and stent type blood vascular prosthesis using the tubing |
DE60319353T2 (de) | 2002-03-25 | 2009-03-19 | William Cook Europe Aps | Verzweigte gefässstütze |
US7052511B2 (en) | 2002-04-04 | 2006-05-30 | Scimed Life Systems, Inc. | Delivery system and method for deployment of foreshortening endoluminal devices |
US6911039B2 (en) | 2002-04-23 | 2005-06-28 | Medtronic Vascular, Inc. | Integrated mechanical handle with quick slide mechanism |
US7105016B2 (en) | 2002-04-23 | 2006-09-12 | Medtronic Vascular, Inc. | Integrated mechanical handle with quick slide mechanism |
US7131991B2 (en) | 2002-04-24 | 2006-11-07 | Medtronic Vascular, Inc. | Endoluminal prosthetic assembly and extension method |
US6830575B2 (en) | 2002-05-08 | 2004-12-14 | Scimed Life Systems, Inc. | Method and device for providing full protection to a stent |
US20040117003A1 (en) | 2002-05-28 | 2004-06-17 | The Cleveland Clinic Foundation | Minimally invasive treatment system for aortic aneurysms |
US7264632B2 (en) | 2002-06-07 | 2007-09-04 | Medtronic Vascular, Inc. | Controlled deployment delivery system |
US6858038B2 (en) | 2002-06-21 | 2005-02-22 | Richard R. Heuser | Stent system |
EP1517651B1 (fr) | 2002-06-28 | 2010-05-26 | Cook Incorporated | Endoprothese pour anevrisme de l'aorte thoracique |
US7314484B2 (en) | 2002-07-02 | 2008-01-01 | The Foundry, Inc. | Methods and devices for treating aneurysms |
US11890181B2 (en) | 2002-07-22 | 2024-02-06 | Tmt Systems, Inc. | Percutaneous endovascular apparatus for repair of aneurysms and arterial blockages |
US20040019375A1 (en) | 2002-07-26 | 2004-01-29 | Scimed Life Systems, Inc. | Sectional crimped graft |
US6984243B2 (en) | 2002-07-30 | 2006-01-10 | Cordis Corporation | Abrasion resistant vascular graft |
US7175652B2 (en) | 2002-08-20 | 2007-02-13 | Cook Incorporated | Stent graft with improved proximal end |
US7550004B2 (en) | 2002-08-20 | 2009-06-23 | Cook Biotech Incorporated | Endoluminal device with extracellular matrix material and methods |
JP4238374B2 (ja) | 2002-08-23 | 2009-03-18 | ウイリアム エー.クック オーストラリア ピティワイ、リミティド. | 合成プロテーゼ |
US7264631B2 (en) | 2002-09-16 | 2007-09-04 | Scimed Life Systems, Inc. | Devices and methods for AAA management |
US20040059406A1 (en) | 2002-09-20 | 2004-03-25 | Cully Edward H. | Medical device amenable to fenestration |
US7001422B2 (en) | 2002-09-23 | 2006-02-21 | Cordis Neurovascular, Inc | Expandable stent and delivery system |
AU2003293267B2 (en) | 2002-12-04 | 2008-02-28 | Cook Incorporated | Device and method for treating thoracid aorta |
BR0317876A (pt) | 2002-12-31 | 2005-12-06 | Nicholas V Perricone | Composições de liberação de droga tópica estáveis |
US7763062B2 (en) | 2003-01-21 | 2010-07-27 | Boston Scientific Scimed, Inc. | Method and system for delivering and implanting a graft |
ITTO20030037A1 (it) | 2003-01-24 | 2004-07-25 | Sorin Biomedica Cardio S P A Ora S Orin Biomedica | Dispositivo d'azionamento per cateteri. |
US20040260382A1 (en) | 2003-02-12 | 2004-12-23 | Fogarty Thomas J. | Intravascular implants and methods of using the same |
US7169118B2 (en) | 2003-02-26 | 2007-01-30 | Scimed Life Systems, Inc. | Elongate medical device with distal cap |
US7220274B1 (en) | 2003-03-21 | 2007-05-22 | Quinn Stephen F | Intravascular stent grafts and methods for deploying the same |
WO2004093746A1 (fr) | 2003-03-26 | 2004-11-04 | The Foundry Inc. | Dispositifs et procedes de traitement d'anevrismes de l'aorte abdominale |
US6984244B2 (en) | 2003-03-27 | 2006-01-10 | Endovascular Technologies, Inc. | Delivery system for endoluminal implant |
US7473271B2 (en) * | 2003-04-11 | 2009-01-06 | Boston Scientific Scimed, Inc. | Stent delivery system with securement and deployment accuracy |
US20070032852A1 (en) | 2003-04-25 | 2007-02-08 | Medtronic Vascular, Inc. | Methods and Apparatus for Treatment of Aneurysms Adjacent to Branch Arteries |
US20050033416A1 (en) | 2003-05-02 | 2005-02-10 | Jacques Seguin | Vascular graft and deployment system |
US20040230289A1 (en) | 2003-05-15 | 2004-11-18 | Scimed Life Systems, Inc. | Sealable attachment of endovascular stent to graft |
US7235093B2 (en) | 2003-05-20 | 2007-06-26 | Boston Scientific Scimed, Inc. | Mechanism to improve stent securement |
EP1635736A2 (fr) | 2003-06-05 | 2006-03-22 | FlowMedica, Inc. | Systemes et procedes destines a realiser des interventions bilaterales ou un diagnostic dans des lumieres du corps ramifiees |
US8721710B2 (en) | 2003-08-11 | 2014-05-13 | Hdh Medical Ltd. | Anastomosis system and method |
US7628806B2 (en) | 2003-08-20 | 2009-12-08 | Boston Scientific Scimed, Inc. | Stent with improved resistance to migration |
EP1670390B1 (fr) | 2003-09-02 | 2008-12-24 | Abbott Laboratories | Systeme d'introduction d'un dispositif medical |
US7993384B2 (en) | 2003-09-12 | 2011-08-09 | Abbott Cardiovascular Systems Inc. | Delivery system for medical devices |
US7758625B2 (en) | 2003-09-12 | 2010-07-20 | Abbott Vascular Solutions Inc. | Delivery system for medical devices |
WO2005032340A2 (fr) | 2003-09-29 | 2005-04-14 | Secant Medical, Llc | Ensemble de greffe de prothese vasculaire a support integral |
US20050085894A1 (en) | 2003-10-16 | 2005-04-21 | Kershner James R. | High strength and lubricious materials for vascular grafts |
US7144421B2 (en) | 2003-11-06 | 2006-12-05 | Carpenter Judith T | Endovascular prosthesis, system and method |
EP3424463A1 (fr) | 2003-11-08 | 2019-01-09 | Cook Medical Technologies LLC | Système d'endoprothèses d'aortes et de branches vasculaires |
EP1689329A2 (fr) | 2003-11-12 | 2006-08-16 | Medtronic Vascular, Inc. | Systeme de reduction de l'annulus des valvules cardiaques |
US7575591B2 (en) | 2003-12-01 | 2009-08-18 | Cordis Corporation | Prosthesis graft with Z pleating |
US20050137677A1 (en) | 2003-12-17 | 2005-06-23 | Rush Scott L. | Endovascular graft with differentiable porosity along its length |
US20050154441A1 (en) | 2004-01-14 | 2005-07-14 | Cook Incorporated | Introducer |
CN1921905A (zh) | 2004-02-27 | 2007-02-28 | 住友电气工业株式会社 | 复合结构体及其制备方法 |
CA2558573A1 (fr) | 2004-03-11 | 2005-09-22 | Trivascular, Inc. | Greffon endovasculaire modulaire |
WO2005099627A1 (fr) | 2004-04-12 | 2005-10-27 | Cook Incorporated | Dispositif de reparation d'une endoprothese |
US7682381B2 (en) | 2004-04-23 | 2010-03-23 | Boston Scientific Scimed, Inc. | Composite medical textile material and implantable devices made therefrom |
US7766960B2 (en) | 2004-04-30 | 2010-08-03 | Novostent Corporation | Delivery catheter that controls foreshortening of ribbon-type prostheses and methods of making and use |
WO2005112823A1 (fr) | 2004-05-04 | 2005-12-01 | The Board Of Regents Of The University Of Texas System | Implantation percutanée d'endoprothèse vasculaire partiellement couverte dans des segments artériels dilatés de manière anévrismale avec embolisation et oblitération subséquentes de la cavité anévrismale |
US8267985B2 (en) * | 2005-05-25 | 2012-09-18 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
US20050273154A1 (en) | 2004-06-08 | 2005-12-08 | Colone William M | Bifurcated stent graft and apparatus for making same |
US7318835B2 (en) | 2004-07-20 | 2008-01-15 | Medtronic Vascular, Inc. | Endoluminal prosthesis having expandable graft sections |
US8048145B2 (en) | 2004-07-22 | 2011-11-01 | Endologix, Inc. | Graft systems having filling structures supported by scaffolds and methods for their use |
ATE540640T1 (de) | 2004-07-22 | 2012-01-15 | Nellix Inc | Systeme zur behandlung von endovaskulären aneurysmen |
US7344562B2 (en) | 2004-07-28 | 2008-03-18 | Cordis Corporation | AAA low profile support structure |
EP1621158A1 (fr) | 2004-07-28 | 2006-02-01 | Cordis Corporation | Prothèse à profil réduit pour anévrisme aortique abdominal |
US20060030921A1 (en) | 2004-08-03 | 2006-02-09 | Medtronic Vascular, Inc. | Intravascular securement device |
US7695506B2 (en) | 2004-09-21 | 2010-04-13 | Boston Scientific Scimed, Inc. | Atraumatic connections for multi-component stents |
US20060069323A1 (en) | 2004-09-24 | 2006-03-30 | Flowmedica, Inc. | Systems and methods for bi-lateral guidewire cannulation of branched body lumens |
US20060074481A1 (en) | 2004-10-04 | 2006-04-06 | Gil Vardi | Graft including expandable cuff |
US20070179600A1 (en) | 2004-10-04 | 2007-08-02 | Gil Vardi | Stent graft including expandable cuff |
US7344560B2 (en) | 2004-10-08 | 2008-03-18 | Boston Scientific Scimed, Inc. | Medical devices and methods of making the same |
US20060085057A1 (en) | 2004-10-14 | 2006-04-20 | Cardiomind | Delivery guide member based stent anti-jumping technologies |
WO2006072835A2 (fr) | 2004-11-03 | 2006-07-13 | Jacques Seguin | Greffe vasculaire et systeme de deploiement |
ES2478283T3 (es) | 2004-11-10 | 2014-07-21 | Boston Scientific Scimed, Inc. | Endoprótesis vascular atraumática con fuerza de despliegue reducida |
US20080108969A1 (en) | 2005-11-28 | 2008-05-08 | Andrew Kerr | Dialysis Catheter |
US7691095B2 (en) | 2004-12-28 | 2010-04-06 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Bi-directional steerable catheter control handle |
US7588596B2 (en) | 2004-12-29 | 2009-09-15 | Scimed Life Systems, Inc. | Endoluminal prosthesis adapted to resist migration and method of deploying the same |
US20060155366A1 (en) | 2005-01-10 | 2006-07-13 | Laduca Robert | Apparatus and method for deploying an implantable device within the body |
US8287583B2 (en) | 2005-01-10 | 2012-10-16 | Taheri Laduca Llc | Apparatus and method for deploying an implantable device within the body |
US7578838B2 (en) | 2005-01-12 | 2009-08-25 | Cook Incorporated | Delivery system with helical shaft |
US7306623B2 (en) | 2005-01-13 | 2007-12-11 | Medtronic Vascular, Inc. | Branch vessel graft design and deployment method |
AU2006206259A1 (en) | 2005-01-21 | 2006-07-27 | Gen 4, Llc | Modular stent graft employing bifurcated graft and leg locking stent elements |
US7918880B2 (en) | 2005-02-16 | 2011-04-05 | Boston Scientific Scimed, Inc. | Self-expanding stent and delivery system |
US20060224232A1 (en) | 2005-04-01 | 2006-10-05 | Trivascular, Inc. | Hybrid modular endovascular graft |
US20060233991A1 (en) | 2005-04-13 | 2006-10-19 | Trivascular, Inc. | PTFE layers and methods of manufacturing |
US20060233990A1 (en) | 2005-04-13 | 2006-10-19 | Trivascular, Inc. | PTFE layers and methods of manufacturing |
AU2006239228A1 (en) | 2005-04-28 | 2006-11-02 | Nellix, Inc. | Graft systems having filling structures supported by scaffolds and methods for their use |
US8357190B2 (en) | 2005-05-10 | 2013-01-22 | Cook Medical Technologies Llc | Laparoscopic vascular access |
US7935140B2 (en) | 2005-05-13 | 2011-05-03 | Merit Medical Systems, Inc. | Delivery device with anchoring features and associated method |
CN2817768Y (zh) | 2005-05-24 | 2006-09-20 | 微创医疗器械(上海)有限公司 | 一种覆膜支架的主体支架段及覆膜支架 |
GB0512319D0 (en) | 2005-06-16 | 2005-07-27 | Angiomed Ag | Catheter device variable pusher |
AU2006269419A1 (en) | 2005-07-07 | 2007-01-18 | Nellix, Inc. | Systems and methods for endovascular aneurysm treatment |
US9149378B2 (en) | 2005-08-02 | 2015-10-06 | Reva Medical, Inc. | Axially nested slide and lock expandable device |
US9504555B2 (en) | 2005-08-18 | 2016-11-29 | Cook Medical Technologies Llc | Assembly of stent grafts |
WO2007025174A2 (fr) | 2005-08-26 | 2007-03-01 | Vascular And Endovascular Surgical Technologies, Inc. | Greffon endoluminal |
US8911491B2 (en) | 2005-09-02 | 2014-12-16 | Medtronic Vascular, Inc. | Methods and apparatus for treatment of aneurysms adjacent branch arteries including branch artery flow lumen alignment |
US8551153B2 (en) | 2005-12-20 | 2013-10-08 | Cordis Corporation | Prosthesis comprising a coiled stent and method of use thereof |
US20070150041A1 (en) | 2005-12-22 | 2007-06-28 | Nellix, Inc. | Methods and systems for aneurysm treatment using filling structures |
US8167892B2 (en) | 2005-12-29 | 2012-05-01 | Cordis Corporation | Adjustable and detached stent deployment device |
US20070156229A1 (en) | 2005-12-30 | 2007-07-05 | Park Jin S | "D"-shape stent for treatment of abdominal aortic aneurysm |
US20070156224A1 (en) | 2006-01-04 | 2007-07-05 | Iulian Cioanta | Handle system for deploying a prosthetic implant |
US20070162109A1 (en) | 2006-01-11 | 2007-07-12 | Luis Davila | Intraluminal stent graft |
US8900287B2 (en) | 2006-01-13 | 2014-12-02 | Aga Medical Corporation | Intravascular deliverable stent for reinforcement of abdominal aortic aneurysm |
US9375215B2 (en) | 2006-01-20 | 2016-06-28 | W. L. Gore & Associates, Inc. | Device for rapid repair of body conduits |
US8083792B2 (en) | 2006-01-24 | 2011-12-27 | Cordis Corporation | Percutaneous endoprosthesis using suprarenal fixation and barbed anchors |
US8518098B2 (en) * | 2006-02-21 | 2013-08-27 | Cook Medical Technologies Llc | Split sheath deployment system |
US20080114435A1 (en) | 2006-03-07 | 2008-05-15 | Med Institute, Inc. | Flexible delivery system |
US8257419B2 (en) | 2006-03-10 | 2012-09-04 | Cordis Corporation | Apparatus for treating a bifurcated region of a conduit |
US20070225797A1 (en) | 2006-03-24 | 2007-09-27 | Medtronic Vascular, Inc. | Prosthesis With Adjustable Opening for Side Branch Access |
US7481836B2 (en) | 2006-03-30 | 2009-01-27 | Medtronic Vascular, Inc. | Prosthesis with coupling zone and methods |
US9757260B2 (en) | 2006-03-30 | 2017-09-12 | Medtronic Vascular, Inc. | Prosthesis with guide lumen |
US7678141B2 (en) | 2006-04-18 | 2010-03-16 | Medtronic Vascular, Inc. | Stent graft having a flexible, articulable, and axially compressible branch graft |
US20070244547A1 (en) | 2006-04-18 | 2007-10-18 | Medtronic Vascular, Inc., A Delaware Corporation | Device and Method for Controlling the Positioning of a Stent Graft Fenestration |
US8262718B2 (en) | 2006-04-27 | 2012-09-11 | William A. Cook Australia Pty. Ltd. | Assembly for controlled sequential stent graft deployment |
US7615044B2 (en) | 2006-05-03 | 2009-11-10 | Greatbatch Ltd. | Deflectable sheath handle assembly and method therefor |
US20100292771A1 (en) | 2009-05-18 | 2010-11-18 | Syncardia Systems, Inc | Endovascular stent graft system and guide system |
US9259336B2 (en) | 2006-06-06 | 2016-02-16 | Cook Medical Technologies Llc | Stent with a crush-resistant zone |
EP2034653A4 (fr) | 2006-06-20 | 2012-12-26 | Ntt Docomo Inc | Dispositif et procédé de communication radio utilisés dans un système de communication mobile |
US20080077231A1 (en) | 2006-07-06 | 2008-03-27 | Prescient Medical, Inc. | Expandable vascular endoluminal prostheses |
US8202310B2 (en) | 2006-07-14 | 2012-06-19 | Cordis Corporation | AAA repair device with aneurysm sac access port |
US8021412B2 (en) | 2006-08-18 | 2011-09-20 | William A. Cook Australia Pty. Ltd. | Iliac extension with flared cuff |
JP2010504820A (ja) | 2006-09-28 | 2010-02-18 | クック・インコーポレイテッド | 胸部大動脈瘤を修復するための装置および方法 |
MX344492B (es) | 2006-10-22 | 2016-12-16 | Idev Tech Inc * | Dispositivos y métodos para el avance de stent. |
WO2008051935A1 (fr) | 2006-10-22 | 2008-05-02 | Idev Technologies, Inc. | Procédés de fixation d'extrémités de brins et dispositifs résultants |
US20080114444A1 (en) | 2006-11-09 | 2008-05-15 | Chun Ho Yu | Modular stent graft and delivery system |
US7655034B2 (en) | 2006-11-14 | 2010-02-02 | Medtronic Vascular, Inc. | Stent-graft with anchoring pins |
KR100801122B1 (ko) | 2006-11-17 | 2008-02-05 | (주)블루버드 소프트 | 모바일 단말기 |
US7252042B1 (en) * | 2006-11-29 | 2007-08-07 | George Berend Freeman Blake | Fertilizer spike injection tool |
US9044311B2 (en) | 2006-11-30 | 2015-06-02 | Cook Medical Technologies Llc | Aortic graft device |
US8216298B2 (en) | 2007-01-05 | 2012-07-10 | Medtronic Vascular, Inc. | Branch vessel graft method and delivery system |
EP2106250B1 (fr) | 2007-01-25 | 2020-04-01 | Boston Scientific Limited | Endoscope avec endoprothèse préchargée ou pré-chargeable |
WO2008094601A2 (fr) | 2007-01-31 | 2008-08-07 | William A. Cook Australia Pty. Ltd. | Dispositif d'introduction d'un endoscope |
EP2114506A4 (fr) | 2007-02-09 | 2014-11-05 | Taheri Laduca Llc | Appareil et procédé de déploiement d'un dispositif implantable à l'intérieur du corps |
US20080208325A1 (en) | 2007-02-27 | 2008-08-28 | Boston Scientific Scimed, Inc. | Medical articles for long term implantation |
WO2008124728A1 (fr) | 2007-04-09 | 2008-10-16 | Ev3 Peripheral, Inc. | Stent extensible et système de déploiement |
WO2008124844A1 (fr) * | 2007-04-10 | 2008-10-16 | Edwards Lifesciences Corporation | Cathéter à gaine rétractable |
US8715336B2 (en) | 2007-04-19 | 2014-05-06 | Medtronic Vascular, Inc. | Methods and apparatus for treatment of aneurysms adjacent to branch arteries |
WO2008151204A1 (fr) | 2007-06-04 | 2008-12-11 | Sequent Medical Inc. | Procédés et dispositifs pour le traitement de défauts vasculaires |
US8048147B2 (en) | 2007-06-27 | 2011-11-01 | Aga Medical Corporation | Branched stent/graft and method of fabrication |
US8372131B2 (en) | 2007-07-16 | 2013-02-12 | Power Ten , LLC | Surgical site access system and deployment device for same |
US20090043376A1 (en) | 2007-08-08 | 2009-02-12 | Hamer Rochelle M | Endoluminal Prosthetic Conduit Systems and Method of Coupling |
US8390107B2 (en) | 2007-09-28 | 2013-03-05 | Intel Mobile Communications GmbH | Semiconductor device and methods of manufacturing semiconductor devices |
WO2009046372A2 (fr) | 2007-10-04 | 2009-04-09 | Trivascular2, Inc. | Greffon vasculaire modulaire pour administration percutanée à profil réduit |
US9414842B2 (en) | 2007-10-12 | 2016-08-16 | St. Jude Medical, Cardiology Division, Inc. | Multi-component vascular device |
US9107741B2 (en) | 2007-11-01 | 2015-08-18 | Cook Medical Technologies Llc | Flexible stent graft |
US20090164001A1 (en) | 2007-12-21 | 2009-06-25 | Biggs David P | Socket For Fenestrated Tubular Prosthesis |
US8021413B2 (en) | 2007-12-27 | 2011-09-20 | Cook Medical Technologies Llc | Low profile medical device |
US20090171451A1 (en) | 2007-12-27 | 2009-07-02 | Cook Incorporated | Implantable device having composite weave |
US8926688B2 (en) | 2008-01-11 | 2015-01-06 | W. L. Gore & Assoc. Inc. | Stent having adjacent elements connected by flexible webs |
US9439790B2 (en) | 2008-01-17 | 2016-09-13 | Boston Scientific Scimed, Inc. | Stent with anti-migration feature |
US20100004728A1 (en) | 2008-02-13 | 2010-01-07 | Nellix, Inc. | Graft endoframe having axially variable characteristics |
US8163004B2 (en) | 2008-02-18 | 2012-04-24 | Aga Medical Corporation | Stent graft for reinforcement of vascular abnormalities and associated method |
US20090228020A1 (en) | 2008-03-06 | 2009-09-10 | Hansen Medical, Inc. | In-situ graft fenestration |
US7655037B2 (en) | 2008-04-17 | 2010-02-02 | Cordis Corporation | Combination barb restraint and stent attachment deployment mechanism |
CN101902988A (zh) | 2008-04-25 | 2010-12-01 | 耐利克斯股份有限公司 | 支架移植物的输送系统 |
US20100305686A1 (en) | 2008-05-15 | 2010-12-02 | Cragg Andrew H | Low-profile modular abdominal aortic aneurysm graft |
US20090287145A1 (en) | 2008-05-15 | 2009-11-19 | Altura Interventional, Inc. | Devices and methods for treatment of abdominal aortic aneurysms |
JP2011522615A (ja) | 2008-06-04 | 2011-08-04 | ネリックス・インコーポレーテッド | 封止装置および使用方法 |
AU2009262832A1 (en) | 2008-06-04 | 2009-12-30 | Nellix, Inc. | Docking apparatus and methods of use |
US8114147B2 (en) | 2008-06-16 | 2012-02-14 | Boston Scientific Scimed, Inc. | Continuous double layered stent for migration resistance |
CN102076281B (zh) | 2008-06-30 | 2014-11-05 | 波顿医疗公司 | 用于腹主动脉瘤的系统和方法 |
US20100030321A1 (en) | 2008-07-29 | 2010-02-04 | Aga Medical Corporation | Medical device including corrugated braid and associated method |
DE102008048533A1 (de) | 2008-09-16 | 2010-03-25 | Jotec Gmbh | Einführsystem zum Absetzen von katheterbasierten Stentvorrichtungen |
US9375307B2 (en) | 2008-09-17 | 2016-06-28 | Cook Medical Technologies Llc | Graft fabric crimping pattern |
US9149376B2 (en) | 2008-10-06 | 2015-10-06 | Cordis Corporation | Reconstrainable stent delivery system |
US9597214B2 (en) | 2008-10-10 | 2017-03-21 | Kevin Heraty | Medical device |
US8986361B2 (en) | 2008-10-17 | 2015-03-24 | Medtronic Corevalve, Inc. | Delivery system for deployment of medical devices |
US9339630B2 (en) * | 2009-02-19 | 2016-05-17 | Medtronic Vascular, Inc. | Retractable drug delivery system and method |
US9427302B2 (en) | 2009-04-09 | 2016-08-30 | Medtronic Vascular, Inc. | Stent having a C-shaped body section for use in a bifurcation |
EP2419061A1 (fr) | 2009-04-16 | 2012-02-22 | Cook Medical Technologies LLC | Ensemble introducteur |
US8540764B2 (en) | 2009-04-17 | 2013-09-24 | Medtronic Vascular, Inc. | Mobile external coupling for branch vessel connection |
US20110054587A1 (en) | 2009-04-28 | 2011-03-03 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
US8858613B2 (en) * | 2010-09-20 | 2014-10-14 | Altura Medical, Inc. | Stent graft delivery systems and associated methods |
US20110118763A1 (en) | 2009-07-01 | 2011-05-19 | Beane Richard M | Method and apparatus for effecting an aortic valve bypass, including the provision and use of a t-stent for effecting a distal anastomosis for the same |
WO2011031587A1 (fr) * | 2009-09-10 | 2011-03-17 | Boston Scientific Scimed, Inc. | Endoprothèse avec repositionnement de filament ou élément de récupération et structure protectrice |
EP2490629B1 (fr) | 2009-10-20 | 2019-05-22 | Cook Medical Technologies, LLC | Dispositif de déploiement à rotation contrôlée |
CN103260548B (zh) | 2009-12-01 | 2017-01-18 | 阿尔图拉医疗公司 | 模块化内移植物设备以及相关系统和方法 |
US20110213450A1 (en) | 2010-03-01 | 2011-09-01 | Koven Technology Canada, Inc. | Medical device delivery system |
CN104780030B (zh) * | 2010-03-17 | 2018-11-09 | Lg电子株式会社 | 在支持多个天线的无线通信系统中发送信道状态信息-参考信号的方法、基站和移动站 |
US8764811B2 (en) | 2010-04-20 | 2014-07-01 | Medtronic Vascular, Inc. | Controlled tip release stent graft delivery system and method |
US8663305B2 (en) * | 2010-04-20 | 2014-03-04 | Medtronic Vascular, Inc. | Retraction mechanism and method for graft cover retraction |
US9326870B2 (en) * | 2010-04-23 | 2016-05-03 | Medtronic Vascular, Inc. | Biodegradable stent having non-biodegradable end portions and mechanisms for increased stent hoop strength |
US8623064B2 (en) * | 2010-04-30 | 2014-01-07 | Medtronic Vascular, Inc. | Stent graft delivery system and method of use |
US9023095B2 (en) | 2010-05-27 | 2015-05-05 | Idev Technologies, Inc. | Stent delivery system with pusher assembly |
US9301864B2 (en) * | 2010-06-08 | 2016-04-05 | Veniti, Inc. | Bi-directional stent delivery system |
BR112012032384A2 (pt) | 2010-06-18 | 2016-11-08 | Cook Medical Technologies Llc | sistema de administração de stent; e método para implantar um stent em um lúmen do paciente |
CN102347817B (zh) * | 2010-08-02 | 2014-01-08 | 华为技术有限公司 | 通知参考信号配置信息的方法及设备 |
US9173205B2 (en) * | 2010-08-13 | 2015-10-27 | Lg Electronics Inc. | Method and base station for transmitting downlink signal and method and equipment for receiving downlink signal |
EP2651345B1 (fr) | 2010-12-16 | 2018-05-16 | Cook Medical Technologies LLC | Système de commande de poignée pour un système de pose d'endoprothèse |
CN102525698A (zh) | 2010-12-31 | 2012-07-04 | 微创医疗器械(上海)有限公司 | 一种介入医疗器械输送和释放装置 |
US20120185031A1 (en) | 2011-01-19 | 2012-07-19 | Michael Ryan | Rotary and linear handle mechanism for constrained stent delivery system |
US9486348B2 (en) | 2011-02-01 | 2016-11-08 | S. Jude Medical, Cardiology Division, Inc. | Vascular delivery system and method |
WO2012118638A1 (fr) | 2011-02-28 | 2012-09-07 | Cook Medical Technologies Llc | Poignée centrée de courte amplitude pour système de pose d'endoprothèse |
AU2011202175B1 (en) | 2011-05-11 | 2011-07-28 | Cook Medical Technologies Llc | Rotation operated delivery device |
AU2012209013B2 (en) | 2011-08-02 | 2013-11-14 | Cook Medical Technologies Llc | Delivery device having a variable diameter introducer sheath |
CA2855903A1 (fr) | 2011-11-15 | 2013-05-23 | Boston Scientific Scimed, Inc. | Dispositif medical a un ou plusieurs elements de transition de gainage |
CN105050549B (zh) | 2012-08-10 | 2017-07-21 | 阿尔图拉医疗公司 | 支架输送系统以及相关方法 |
-
2013
- 2013-08-09 CN CN201380053101.9A patent/CN105050549B/zh active Active
- 2013-08-09 US US13/964,015 patent/US20140046429A1/en not_active Abandoned
- 2013-08-09 US US13/963,912 patent/US20140052232A1/en not_active Abandoned
- 2013-08-09 WO PCT/US2013/054438 patent/WO2014026173A1/fr active Application Filing
- 2013-08-09 AU AU2013299425A patent/AU2013299425A1/en not_active Abandoned
- 2013-08-09 JP JP2015526747A patent/JP6326648B2/ja active Active
- 2013-08-09 US US13/964,013 patent/US10285833B2/en active Active
- 2013-08-09 CA CA2881535A patent/CA2881535A1/fr not_active Abandoned
- 2013-08-09 EP EP13753011.9A patent/EP2882381B1/fr active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2710193A (en) * | 1950-06-21 | 1955-06-07 | Baron Raoul Marie Amedee | Mechanical gripping chuck |
US20020091439A1 (en) * | 1994-12-15 | 2002-07-11 | Baker Steve G. | Graft assembly having support structure |
US20030114912A1 (en) * | 2000-05-30 | 2003-06-19 | Jacques Sequin | Endoprosthesis deployment system for treating vascular bifurcations |
US20040127912A1 (en) * | 2002-12-31 | 2004-07-01 | Dmitry Rabkin | Stent delivery system |
US20040186551A1 (en) * | 2003-01-17 | 2004-09-23 | Xtent, Inc. | Multiple independent nested stent structures and methods for their preparation and deployment |
US20050149159A1 (en) * | 2003-12-23 | 2005-07-07 | Xtent, Inc., A Delaware Corporation | Devices and methods for controlling and indicating the length of an interventional element |
US20050246008A1 (en) * | 2004-04-30 | 2005-11-03 | Novostent Corporation | Delivery system for vascular prostheses and methods of use |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10285833B2 (en) | 2012-08-10 | 2019-05-14 | Lombard Medical Limited | Stent delivery systems and associated methods |
US9737426B2 (en) | 2013-03-15 | 2017-08-22 | Altura Medical, Inc. | Endograft device delivery systems and associated methods |
US10463517B2 (en) | 2017-01-16 | 2019-11-05 | Cook Medical Technologies Llc | Controlled expansion stent graft delivery system |
US11083606B2 (en) | 2017-12-05 | 2021-08-10 | Cook Medical Technologies Llc | Endograft delivery device assembly |
AU2019203004B1 (en) * | 2019-04-30 | 2019-09-12 | Cook Medical Technologies Llc | A line pull assembly for a prosthetic delivery device |
US11166833B2 (en) | 2019-04-30 | 2021-11-09 | Cook Medical Technologies Llc | Line pull assembly for a prosthetic delivery device |
US11672661B2 (en) | 2019-08-22 | 2023-06-13 | Silara Medtech Inc. | Annuloplasty systems and methods |
US12133800B2 (en) | 2019-08-22 | 2024-11-05 | Silara Medtech Inc. | Annuloplasty systems and methods |
WO2022173790A1 (fr) * | 2021-02-10 | 2022-08-18 | Silara Medtech Inc. | Manche d'actionnement, appareil et procédé de récupération d'un implant |
Also Published As
Publication number | Publication date |
---|---|
US20140046428A1 (en) | 2014-02-13 |
CN105050549A (zh) | 2015-11-11 |
CN105050549B (zh) | 2017-07-21 |
US20140046429A1 (en) | 2014-02-13 |
CA2881535A1 (fr) | 2014-02-13 |
JP2015524712A (ja) | 2015-08-27 |
US10285833B2 (en) | 2019-05-14 |
WO2014026173A1 (fr) | 2014-02-13 |
WO2014026173A9 (fr) | 2014-03-20 |
JP6326648B2 (ja) | 2018-05-23 |
EP2882381A4 (fr) | 2016-04-13 |
AU2013299425A1 (en) | 2015-03-19 |
EP2882381B1 (fr) | 2018-12-26 |
EP2882381A1 (fr) | 2015-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140052232A1 (en) | Handle assemblies for stent graft delivery systems and associated systems and methods | |
US11877929B2 (en) | Delivery systems for prosthetic heart valve | |
US20230338133A1 (en) | System and method to radially constrict a stent graft | |
US6746462B1 (en) | Methods and apparatus for treating vascular occlusions | |
EP2568929B1 (fr) | Poignée de cathéter pour système de pose de prothèse | |
US6599304B1 (en) | Methods and apparatus for treating vascular occlusions | |
US20190255299A1 (en) | Intravascular delivery system and method for percutaneous coronary intervention | |
JP5677954B2 (ja) | 人工心臓弁および送達装置 | |
US9161850B2 (en) | Introducer for endovascular implants | |
US20080114436A1 (en) | Aneurysm covering devices and delivery devices | |
JP2018506333A (ja) | 操作機構を持つガイドカテーテル | |
TW201630574A (zh) | 具有用於致動的滑動件和旋鈕的可再約束支架輸送系統及方法 | |
US20090099638A1 (en) | Motorized deployment system | |
JP2009504345A (ja) | 可変速度ステント送達システム | |
EP4070765A1 (fr) | Dispositif de guidage de canulation de stent pour endoprothèse bifurquée | |
WO2000013738A2 (fr) | Procedes et appareils convenant au traitement des occlusions vasculaires | |
US9192499B2 (en) | Inner catheter for a self-expanding medical device delivery system with a closed coil wire | |
CN115515534A (zh) | 递送系统构型 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALTURA MEDICAL, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CRAGG, ANDREW H.;LOGAN, JOHN;TSAI, GEORGE;AND OTHERS;SIGNING DATES FROM 20131028 TO 20131106;REEL/FRAME:031982/0906 |
|
AS | Assignment |
Owner name: SILICON VALLEY BANK, CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:ALTURA MEDICAL, INC.;REEL/FRAME:034704/0682 Effective date: 20141201 Owner name: SILICON VALLEY BANK, CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:ALTURA MEDICAL, INC.;REEL/FRAME:034781/0718 Effective date: 20141201 |
|
AS | Assignment |
Owner name: ALTURA MEDICAL, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:036565/0660 Effective date: 20150730 |
|
AS | Assignment |
Owner name: ALTURA MEDICAL, INC., CALIFORNIA Free format text: RELEASE;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:036865/0590 Effective date: 20151007 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |