US20120026569A1 - System and method for illumination attenuation - Google Patents
System and method for illumination attenuation Download PDFInfo
- Publication number
- US20120026569A1 US20120026569A1 US13/224,497 US201113224497A US2012026569A1 US 20120026569 A1 US20120026569 A1 US 20120026569A1 US 201113224497 A US201113224497 A US 201113224497A US 2012026569 A1 US2012026569 A1 US 2012026569A1
- Authority
- US
- United States
- Prior art keywords
- interrupter
- light beam
- light
- moving
- path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 27
- 238000005286 illumination Methods 0.000 title 1
- 230000002238 attenuated effect Effects 0.000 claims abstract description 14
- 239000013307 optical fiber Substances 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 230000007704 transition Effects 0.000 description 9
- 239000000835 fiber Substances 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 238000007792 addition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/02—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
- G02B26/04—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light by periodically varying the intensity of light, e.g. using choppers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/264—Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
- G02B6/266—Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting the optical element being an attenuator
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/354—Switching arrangements, i.e. number of input/output ports and interconnection types
- G02B6/3544—2D constellations, i.e. with switching elements and switched beams located in a plane
- G02B6/3548—1xN switch, i.e. one input and a selectable single output of N possible outputs
- G02B6/3552—1x1 switch, e.g. on/off switch
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/3564—Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
- G02B6/3568—Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S359/00—Optical: systems and elements
- Y10S359/90—Methods
Definitions
- Embodiments of the present invention relate to systems and methods for attenuating the brightness of a light beam. More particularly, embodiments of the present invention relate to systems and methods for time domain attenuators.
- Surgical instrumentation often uses fiber optics to direct light from a light source, such as a laser, LED or other light source, to a surgical hand piece.
- the tip of the surgical hand piece is then used to direct the light to the eye.
- position domain attenuators that proportionally interrupt part, or all, of a light beam are used.
- a non-optically transmissive element is positioned to prevent a part of the light beam from reaching the target fiber, resulting in some attenuation.
- Position domain attenuators include rotating louvers, variable slot width obstructions, varying aperture size obstructions and varying neutral density filters.
- the quality of the illuminated spot projected from the end of the fiber can be affected.
- the projected spot on the eye may have a bright center from the light that is not obstructed as well as shadow and color rings from the light that was obstructed.
- the center of the spot may exhibit no attenuation, while the edges of the spot are highly attenuated. This result can be undesirable as it provides an uneven energy distribution to the eye.
- Another current attenuation approach includes adjusting the voltage or current of the light source, thereby changing the intensity of the produced light. While this approach can evenly attenuate the brightness of the light spot received at the eye, it suffers the shortcoming that the color temperature of the light is typically changed.
- Embodiments of the present invention provide systems and methods for attenuating the brightness of a light beam.
- an interrupter is moved completely into and fully out of the path of the light beam. This chopping of the light beam attenuates the beam. If the movement of the interrupter is quick enough and the repetition rate of the interrupter cycle high enough, the interruption of the light beam is not perceived by the human eye and the light beam simply appears attenuated.
- Embodiments of the present invention include a light attenuation system comprising a light source to project a light beam, an interrupter operable to move into and out of a path of the light beam, a motor (actuator) coupled to the interrupter to move the interrupter from a position in which the light beam is unhindered by the interrupter to a position in which the light beam is incident on the interrupter, and a controller operable to control the motor and cause the motor to move the interrupter with a repetition rate so that the light beam is unhindered for a first portion of a cycle and the light beam is incident on the interrupter for a second portion of the cycle.
- the light beam When the light beam is incident on the interrupter, it can be fully incident on the interrupter. Attenuation can thus be achieved without affecting the color temperature of the light.
- Another embodiment of the present invention can include a set of computer instructions comprising instructions executable to receive one or more attenuation control parameters.
- the attenuation control parameters can include any variables that can be user specified. In accordance with the implementation, these can include duty cycle, cycle time, repetition rate, attenuation level or other parameters.
- the instructions are executable to determine a control scheme. For example, the controller can determine the amount of time that a light beam should be fully interrupted and unhindered. Accordingly, the control scheme is configured to cause an interrupter to move into and out of a path of a light beam for a plurality of cycles with a repetition rate to attenuate the light beam's brightness.
- Yet another embodiment of the present invention includes a method for attenuating light comprising projecting a light beam along a path and moving an interrupter into and out of the path of the light beam for a plurality of cycles with a repetition rate to attenuate the light beam's brightness without affecting the color temperature of the light beam.
- the light beam is unhindered by the interrupter for a first portion of each cycle and is incident (e.g., fully incident) on the interrupter for the second portion of the cycle.
- Another embodiment of the present invention includes a method for attenuating light comprising projecting a light beam along a path and moving an interrupter into and out of the path of the light beam for a plurality of cycles with a repetition rate to create attenuated light that appears attenuated and continuous to the human eye.
- light beam is unhindered by the interrupter for a first portion of each cycle and is incident (e.g., fully incident) on the interrupter for the second portion of the cycle.
- Embodiments of the present invention provide an advantage over the prior art by attenuating the brightness of a light beam while minimizing deleterious effects such as shadow and color rings caused by position domain attenuators.
- Embodiments of the present invention provide another advantage by allowing for attenuation of a light beam without changing the color temperature of the light, as occurs with attenuation schemes in which the intensity of the light source is varied by reducing the power delivered to the light source.
- FIGS. 1A and 1B are diagrammatic representations of one embodiment of a system for attenuating a light beam in a surgical system utilizing fiber optics.
- FIGS. 2A-2B are diagrammatic representations of another embodiment of a system for attenuating a light beam
- FIGS. 3A-3B are diagrammatic representations of yet another embodiment of a system for attenuating a light beam.
- FIG. 4 illustrates example duty cycles for various levels of attenuation.
- FIGURES Preferred embodiments of the invention are illustrated in the FIGURES, like numerals being used to refer to like and corresponding parts of the various drawings.
- Embodiments of the present invention provide systems and methods for attenuating light in a manner that reduces or eliminates the shadow and color ring effects of position domain attenuators without affecting the color temperature of the light. In other words, embodiments provide for even attenuation of the light beam without affecting the quality of the intensity distribution or color of the light.
- the output brightness of an illuminator is varied by alternately chopping the light beam such that the beam is both fully interrupted and fully unhindered.
- An interrupter can be rapidly moved into and out of the transmission path of a light beam. The brightness of the light beam received at a site will be attenuated based on the amount of time per cycle the light beam remains obstructed and unhindered because less light will be received at the site per unit of time.
- the term “cycle time” of the interrupter is the sum of the unhindered and interrupted time for a cycle
- the “repetition rate” is the number of cycles in a given time period
- the “duty cycle” is the ratio of unhindered time to the cycle time.
- the repetition rate is essentially the frequency of the interrupter, but preferably with a square profile rather than a sinusoidal profile.
- the duty cycle can range from 0% (no light passes) to 100% (no attenuation).
- the interrupter is moved into and out of the path of the light beam at a repetition rate such that the interruption of the beam is not perceived as flashing light by the human eye.
- the repetition rate should be greater than 30 cycles and preferably greater than 60 cycles per second.
- certain repetition rates may not be preferred.
- background lights in the surgical theater can flicker at certain frequencies (e.g., 60 cycles per second in the United States and 50 cycles per second in other areas). Such lights may produce interference with an attenuator running at 60 or 50 cycles a second, depending on location.
- the brightness of a light beam compared to its un-attenuated state is approximately proportional to the duty cycle of the interrupter.
- the cycle time is approximately 13.3 milliseconds.
- the duty cycle is 40%, meaning that the light is unhindered for 5.32 milliseconds of the cycle, the attenuated light beam will appear to be approximately 40% as bright as the un-attenuated light beam.
- Brightness adjustment can be achieved by changing the duty cycle of the interrupter and by changing the repetition rate as necessary to maintain the experience of non-flashing (i.e., continuous) light.
- the interrupter can be linearly placed into and removed from the light beam or rotated into and out of the light beam.
- FIGS. 1A and 1B are diagrammatic representations of one embodiment of a system 100 for attenuating a light beam in a surgical system utilizing fiber optics.
- a light source projects a light beam 104 to an optical fiber 106 .
- Light source 102 can comprise light sources such as a xenon light source, a laser, an LED or other light source used to illuminate or ablate tissue.
- Optical fiber 106 can be a plastic, glass or other material fiber that guides light from light beam 104 to a surgical handset or otherwise guides light to a surgical site.
- Linear actuator (linear motor, solenoid, pneumatic cylinder, hydraulic cylinder, etc.) 108 moves an interrupter 110 into and out of the path of light beam 104 between the light source and optical fiber 106 .
- Interrupter 110 moves from a position in which light beam 104 is unhindered by interrupter 110 (shown in FIG. 1A ) to a position in which light beam 104 is fully incident on interrupter 110 (shown in FIG. 1B ).
- system 100 can include other optical components located between optical fiber 106 and light source 102 . Additionally, the path of light beam 104 may not be straight.
- a controller 112 can control the motion of linear actuator 110 .
- Controller 112 can include any suitable controller that can receive data from various components of system 100 .
- Controller 112 can include a processor 114 (such as an ASIC, CPU, DSP or other processor) and computer instructions 116 executable by processor 114 (e.g., software or other instructions stored on a computer readable medium).
- Instructions 116 can be stored on a computer readable memory 118 (e.g., hard drive, Flash memory, optical memory, RAM, ROM, processor memory or other computer readable medium known in the art).
- Controller 112 can include any number of additional computer components.
- controller 112 can include an analog to digital converter 120 to convert signals from linear actuator 108 to digital signals, and a digital to analog converter 122 to convert signals from processor 114 to analog control signals. While shown as communicating electrical analog signals to a linear actuator 108 , controller 112 can send electrical digital or analog, or pneumatic, control signals to actuator 108 or to other controllers to cause actuator 108 to operate according to a particular control scheme. Additionally, while controller 112 is shown as a single block in FIG. 1 for the sake of simplicity, the control functionality of system 100 can be distributed among multiple processors.
- linear actuator 108 is controlled to move interrupter 110 into and out of light beam 104 .
- interrupter 110 reciprocates from a position in which light beam 104 is unhindered (e.g., as shown in FIG. 1A ) and a position in which light beam is fully incident on interrupter 110 (e.g., as shown in FIG. 1B ).
- the stroke of linear actuator 108 is sufficient to linearly position the interrupter fully into the light beam.
- interrupter 110 is made of a non-transmissive material to fully block light beam 104 when light beam 104 is fully incident on interrupter 110 .
- interrupter 110 can be formed of aluminum.
- controller 112 can receive attenuation control parameters that affect the control scheme according to which controller 112 controls actuator 108 . These parameters can include, for example, duty cycle and repetition rate or other parameters. In other embodiments, one or more of the attenuation control parameters can be predefined at controller 112 .
- Controller 112 can, for example, control linear actuator 108 to have a particular repetition rate and duty cycle.
- the duty cycle can range from 0 to 100% of the cycle time.
- the repetition rate is selected so that if the duty cycle is greater than 0% and less than 100% of the cycle time, the human eye will not perceive flickering of the light (at 0% duty cycle, the interrupter is continuously in the path of light beam 104 and, at 100% duty cycle, the interrupter does not interrupt the light beam 104 ).
- repetition rates of greater than 60 cycles per second will not be visible to the human eye so that the resulting light appears continuous and attenuated.
- Actuator 108 can be selected to have sufficient energy to move interrupter 110 between states in which light beam 104 is unhindered to a state where light beam 104 is fully incident on interrupter 110 in as short a time as possible to minimize the transition period in which light beam 104 is only partially incident on interrupter 110 .
- controller 112 can account for the fact that actuator 108 is moving a mass that must accelerate and decelerate to reciprocate. Consequently, interrupter 110 may be moving in the time in which light beam 104 is fully unhindered and the time in which light beam 104 is fully incident on interrupter 110 . For example, if the cycle time is 13.3 milliseconds and the time that light beam 104 is fully incident on interrupter 110 is 8 milliseconds, interrupter 110 can be moving during the 8 milliseconds it is blocking light beam 104 .
- FIGS. 2A and 2B are diagrammatic representations of another embodiment of the present invention in which a rotary actuator 124 rotates interrupter 126 into and out of the path of beam 104 .
- Actuator 124 can be a rotary motor, a rotary action hydraulic or pneumatic device to impart rotary motion or other rotary actuator.
- rotary actuator 124 can rotate back and forth to move interrupter 126 into and out of the path of light beam 104 .
- rotary actuator 124 alternately rotates 90 degrees. Again, the repetition rate can be selected so that interruption of the light beam is not perceived by a human eye to which light is directed by optical fiber 106 .
- FIGS. 3A and 3B are diagrammatic representations of yet another embodiment that utilizes a rotary actuator 128 to move interrupter 130 into and out of the path of light beam 104 .
- interrupter 130 is coupled to actuator 128 by an arm 132 .
- actuator 128 moves arm 132
- interrupter 130 swings into and out of the path of light beam 104 .
- rotary actuator 128 can alternately rotate a set number of degrees, say 30 degrees, to swing interrupter 130 into the path of light beam 104 to fully block light beam 104 and out of the path of light beam 104 to leave light beam 104 unhindered by interrupter 130 .
- interrupter 130 can swing through an arc such that for one cycle interrupter 130 is on one side of the beam path when light beam 104 is unhindered and for the next cycle is on the other side of the beam path when light beam 104 is unhindered.
- Controller 112 can control actuator 128 such that a particular repetition rate and duty cycle are achieved.
- FIG. 4 is a set of graphs representing one embodiment of cycle states for various levels of attenuation of light beam 104 .
- the cycle time is 16 milliseconds, corresponding to a repetition rate of 62.5 cycles per second.
- Line 140 represents a 25% duty cycle
- line 142 represents a 50% duty cycle
- line 144 represents a 75% duty cycle.
- the interrupter 130 is in a position in which light beam 104 is fully unhindered for approximately 4 milliseconds and fully blocked for 12 milliseconds, resulting in 75% attenuation of light beam 104 (i.e., light beam 104 will only appear to be 25% as bright downstream of the interrupter 130 as it appears upstream of interrupter 130 ).
- the interrupter 130 can still be moving, so the states of the interrupter 130 with respect to light beam 104 may, but do not necessarily, correspond to the actuator 128 states.
- a graph of the actuator 128 state may be different than the graph of the interrupter 130 state relative to light beam 104 .
- transitions (e.g., transition 146 and transition 148 ) between a fully blocking and fully non-blocking state shown in FIG. 4 are shown as corresponding to a square wave. That is, they are shown as instantaneous transitions.
- Embodiments of the present invention thus provide a light attenuation system comprising a light source to project a light beam, an interrupter operable to be positioned into and out of a path of the light beam, an actuator coupled to the interrupter and operable to move the interrupter from a position in which the light beam is unhindered by the interrupter to a position in which the light beam is fully incident on the interrupter, and a controller operable to control the actuator and cause the actuator to move the interrupter with a repetition rate so that the light beam is unhindered for a first portion of a cycle and the light beam is fully incident on the interrupter for a second portion of the cycle to attenuate the light beam's brightness. Attenuation can thus be achieved without affecting the color temperature of the light.
- Another embodiment of the present invention can include a set of computer instructions comprising instructions executable to receive one or more attenuation control parameters.
- the attenuation control parameters can include any variables that can be user specified. According to the particular implementation, these can include duty cycle, cycle time, repetition rate, attenuation level or other parameters.
- the instructions are executable to determine a control scheme. For example, if the system has a preprogrammed repetition rate, the instructions can be executable to receive a duty cycle or other parameters. Based on the received parameters and the predefined repetition rate, the amount of time that a light beam is fully interrupted versus unhindered can be determined.
- control scheme is configured to cause an interrupter to move into and out of a path of a light beam for a plurality of cycles with a repetition rate to attenuate the light beam's brightness.
- the light beam is unhindered by the interrupter for a first portion of each cycle and is fully incident on the interrupter for the second portion of the cycle.
- the instructions can be further executable to generate one or more control signals to cause an actuator to move the interrupter into and out of the path of the light beam according to the control scheme.
- the control signals can be sent to the actuator, another control or other component that can cause the actuator to move according to the control scheme.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Microscoopes, Condenser (AREA)
Abstract
Generally speaking, the output brightness of an illuminator is varied by chopping an output light beam such that the beam is alternately interrupted and unhindered. An interrupter can be rapidly moved into and out of the transmission path of a light beam. The brightness of the light beam received at a site will be attenuated based on the amount of time per cycle the light beam remains obstructed versus unhindered.
Description
- This application is a continuation of U.S. application Ser. No. 12/787,811 filed on May 26, 2010, which is a divisional of U.S. application Ser. No. 11/561,718 filed on Nov. 20, 2006.
- Embodiments of the present invention relate to systems and methods for attenuating the brightness of a light beam. More particularly, embodiments of the present invention relate to systems and methods for time domain attenuators.
- Surgical instrumentation often uses fiber optics to direct light from a light source, such as a laser, LED or other light source, to a surgical hand piece. The tip of the surgical hand piece is then used to direct the light to the eye. In some cases, it is desirable to attenuate the brightness of the light received at the eye. Currently, position domain attenuators that proportionally interrupt part, or all, of a light beam are used. In these systems, a non-optically transmissive element is positioned to prevent a part of the light beam from reaching the target fiber, resulting in some attenuation. Position domain attenuators include rotating louvers, variable slot width obstructions, varying aperture size obstructions and varying neutral density filters. By obstructing just a portion of the light beam, the quality of the illuminated spot projected from the end of the fiber can be affected. For example, the projected spot on the eye may have a bright center from the light that is not obstructed as well as shadow and color rings from the light that was obstructed. Indeed, the center of the spot may exhibit no attenuation, while the edges of the spot are highly attenuated. This result can be undesirable as it provides an uneven energy distribution to the eye.
- Another current attenuation approach includes adjusting the voltage or current of the light source, thereby changing the intensity of the produced light. While this approach can evenly attenuate the brightness of the light spot received at the eye, it suffers the shortcoming that the color temperature of the light is typically changed.
- Embodiments of the present invention provide systems and methods for attenuating the brightness of a light beam. Broadly speaking, an interrupter is moved completely into and fully out of the path of the light beam. This chopping of the light beam attenuates the beam. If the movement of the interrupter is quick enough and the repetition rate of the interrupter cycle high enough, the interruption of the light beam is not perceived by the human eye and the light beam simply appears attenuated.
- Embodiments of the present invention include a light attenuation system comprising a light source to project a light beam, an interrupter operable to move into and out of a path of the light beam, a motor (actuator) coupled to the interrupter to move the interrupter from a position in which the light beam is unhindered by the interrupter to a position in which the light beam is incident on the interrupter, and a controller operable to control the motor and cause the motor to move the interrupter with a repetition rate so that the light beam is unhindered for a first portion of a cycle and the light beam is incident on the interrupter for a second portion of the cycle. When the light beam is incident on the interrupter, it can be fully incident on the interrupter. Attenuation can thus be achieved without affecting the color temperature of the light.
- Another embodiment of the present invention can include a set of computer instructions comprising instructions executable to receive one or more attenuation control parameters. The attenuation control parameters can include any variables that can be user specified. In accordance with the implementation, these can include duty cycle, cycle time, repetition rate, attenuation level or other parameters. Based on the received control parameters and/or predefined control parameters, the instructions are executable to determine a control scheme. For example, the controller can determine the amount of time that a light beam should be fully interrupted and unhindered. Accordingly, the control scheme is configured to cause an interrupter to move into and out of a path of a light beam for a plurality of cycles with a repetition rate to attenuate the light beam's brightness.
- Yet another embodiment of the present invention includes a method for attenuating light comprising projecting a light beam along a path and moving an interrupter into and out of the path of the light beam for a plurality of cycles with a repetition rate to attenuate the light beam's brightness without affecting the color temperature of the light beam. The light beam is unhindered by the interrupter for a first portion of each cycle and is incident (e.g., fully incident) on the interrupter for the second portion of the cycle.
- Another embodiment of the present invention includes a method for attenuating light comprising projecting a light beam along a path and moving an interrupter into and out of the path of the light beam for a plurality of cycles with a repetition rate to create attenuated light that appears attenuated and continuous to the human eye. According to one embodiment light beam is unhindered by the interrupter for a first portion of each cycle and is incident (e.g., fully incident) on the interrupter for the second portion of the cycle.
- Embodiments of the present invention provide an advantage over the prior art by attenuating the brightness of a light beam while minimizing deleterious effects such as shadow and color rings caused by position domain attenuators.
- Embodiments of the present invention provide another advantage by allowing for attenuation of a light beam without changing the color temperature of the light, as occurs with attenuation schemes in which the intensity of the light source is varied by reducing the power delivered to the light source.
- A more complete understanding of the present invention and the advantages thereof may be acquired by referring to the following description, taken in conjunction with the accompanying drawings in which like reference numbers indicate like features and wherein:
-
FIGS. 1A and 1B are diagrammatic representations of one embodiment of a system for attenuating a light beam in a surgical system utilizing fiber optics. -
FIGS. 2A-2B are diagrammatic representations of another embodiment of a system for attenuating a light beam; -
FIGS. 3A-3B are diagrammatic representations of yet another embodiment of a system for attenuating a light beam; and -
FIG. 4 illustrates example duty cycles for various levels of attenuation. - Preferred embodiments of the invention are illustrated in the FIGURES, like numerals being used to refer to like and corresponding parts of the various drawings.
- Embodiments of the present invention provide systems and methods for attenuating light in a manner that reduces or eliminates the shadow and color ring effects of position domain attenuators without affecting the color temperature of the light. In other words, embodiments provide for even attenuation of the light beam without affecting the quality of the intensity distribution or color of the light.
- Generally speaking, the output brightness of an illuminator is varied by alternately chopping the light beam such that the beam is both fully interrupted and fully unhindered. An interrupter can be rapidly moved into and out of the transmission path of a light beam. The brightness of the light beam received at a site will be attenuated based on the amount of time per cycle the light beam remains obstructed and unhindered because less light will be received at the site per unit of time.
- For purposes of explanation, the term “cycle time” of the interrupter is the sum of the unhindered and interrupted time for a cycle, the “repetition rate” is the number of cycles in a given time period, and the “duty cycle” is the ratio of unhindered time to the cycle time. The repetition rate is essentially the frequency of the interrupter, but preferably with a square profile rather than a sinusoidal profile. The duty cycle can range from 0% (no light passes) to 100% (no attenuation).
- Preferably, the interrupter is moved into and out of the path of the light beam at a repetition rate such that the interruption of the beam is not perceived as flashing light by the human eye. To achieve this, the repetition rate should be greater than 30 cycles and preferably greater than 60 cycles per second. Although usable, certain repetition rates may not be preferred. For example, background lights in the surgical theater can flicker at certain frequencies (e.g., 60 cycles per second in the United States and 50 cycles per second in other areas). Such lights may produce interference with an attenuator running at 60 or 50 cycles a second, depending on location. The brightness of a light beam compared to its un-attenuated state is approximately proportional to the duty cycle of the interrupter. Using the example of a repetition rate of 75 cycles per second, the cycle time is approximately 13.3 milliseconds. If the duty cycle is 40%, meaning that the light is unhindered for 5.32 milliseconds of the cycle, the attenuated light beam will appear to be approximately 40% as bright as the un-attenuated light beam. Brightness adjustment can be achieved by changing the duty cycle of the interrupter and by changing the repetition rate as necessary to maintain the experience of non-flashing (i.e., continuous) light. According to various embodiments, the interrupter can be linearly placed into and removed from the light beam or rotated into and out of the light beam.
-
FIGS. 1A and 1B are diagrammatic representations of one embodiment of asystem 100 for attenuating a light beam in a surgical system utilizing fiber optics. Insystem 100, a light source projects alight beam 104 to anoptical fiber 106.Light source 102 can comprise light sources such as a xenon light source, a laser, an LED or other light source used to illuminate or ablate tissue.Optical fiber 106 can be a plastic, glass or other material fiber that guides light fromlight beam 104 to a surgical handset or otherwise guides light to a surgical site. Linear actuator (linear motor, solenoid, pneumatic cylinder, hydraulic cylinder, etc.) 108 moves aninterrupter 110 into and out of the path oflight beam 104 between the light source andoptical fiber 106.Interrupter 110 moves from a position in whichlight beam 104 is unhindered by interrupter 110 (shown inFIG. 1A ) to a position in whichlight beam 104 is fully incident on interrupter 110 (shown inFIG. 1B ). It should be noted thatsystem 100 can include other optical components located betweenoptical fiber 106 andlight source 102. Additionally, the path oflight beam 104 may not be straight. - A
controller 112 can control the motion oflinear actuator 110.Controller 112 can include any suitable controller that can receive data from various components ofsystem 100.Controller 112 can include a processor 114 (such as an ASIC, CPU, DSP or other processor) andcomputer instructions 116 executable by processor 114 (e.g., software or other instructions stored on a computer readable medium).Instructions 116 can be stored on a computer readable memory 118 (e.g., hard drive, Flash memory, optical memory, RAM, ROM, processor memory or other computer readable medium known in the art).Controller 112 can include any number of additional computer components. For example,controller 112 can include an analog todigital converter 120 to convert signals fromlinear actuator 108 to digital signals, and a digital toanalog converter 122 to convert signals fromprocessor 114 to analog control signals. While shown as communicating electrical analog signals to alinear actuator 108,controller 112 can send electrical digital or analog, or pneumatic, control signals toactuator 108 or to other controllers to causeactuator 108 to operate according to a particular control scheme. Additionally, whilecontroller 112 is shown as a single block inFIG. 1 for the sake of simplicity, the control functionality ofsystem 100 can be distributed among multiple processors. - In operation,
linear actuator 108 is controlled to moveinterrupter 110 into and out oflight beam 104. In the embodiment ofFIG. 1 in which a linear motor is used,interrupter 110 reciprocates from a position in whichlight beam 104 is unhindered (e.g., as shown inFIG. 1A ) and a position in which light beam is fully incident on interrupter 110 (e.g., as shown inFIG. 1B ). In other words, the stroke oflinear actuator 108 is sufficient to linearly position the interrupter fully into the light beam. Preferably,interrupter 110 is made of a non-transmissive material to fully blocklight beam 104 whenlight beam 104 is fully incident oninterrupter 110. As one example,interrupter 110 can be formed of aluminum. - According to various embodiments,
controller 112 can receive attenuation control parameters that affect the control scheme according to whichcontroller 112 controls actuator 108. These parameters can include, for example, duty cycle and repetition rate or other parameters. In other embodiments, one or more of the attenuation control parameters can be predefined atcontroller 112. -
Controller 112 can, for example, controllinear actuator 108 to have a particular repetition rate and duty cycle. The duty cycle can range from 0 to 100% of the cycle time. Preferably, the repetition rate is selected so that if the duty cycle is greater than 0% and less than 100% of the cycle time, the human eye will not perceive flickering of the light (at 0% duty cycle, the interrupter is continuously in the path oflight beam 104 and, at 100% duty cycle, the interrupter does not interrupt the light beam 104). Generally, repetition rates of greater than 60 cycles per second will not be visible to the human eye so that the resulting light appears continuous and attenuated. -
Actuator 108 can be selected to have sufficient energy to moveinterrupter 110 between states in whichlight beam 104 is unhindered to a state wherelight beam 104 is fully incident oninterrupter 110 in as short a time as possible to minimize the transition period in whichlight beam 104 is only partially incident oninterrupter 110. Furthermore,controller 112 can account for the fact thatactuator 108 is moving a mass that must accelerate and decelerate to reciprocate. Consequently,interrupter 110 may be moving in the time in whichlight beam 104 is fully unhindered and the time in whichlight beam 104 is fully incident oninterrupter 110. For example, if the cycle time is 13.3 milliseconds and the time thatlight beam 104 is fully incident oninterrupter 110 is 8 milliseconds,interrupter 110 can be moving during the 8 milliseconds it is blockinglight beam 104. - In the above example, a linear actuator is used to selectively interrupt
light beam 104.FIGS. 2A and 2B are diagrammatic representations of another embodiment of the present invention in which arotary actuator 124 rotatesinterrupter 126 into and out of the path ofbeam 104.Actuator 124 can be a rotary motor, a rotary action hydraulic or pneumatic device to impart rotary motion or other rotary actuator. According to one embodiment,rotary actuator 124 can rotate back and forth to moveinterrupter 126 into and out of the path oflight beam 104. According to one embodiment,rotary actuator 124 alternately rotates 90 degrees. Again, the repetition rate can be selected so that interruption of the light beam is not perceived by a human eye to which light is directed byoptical fiber 106. -
FIGS. 3A and 3B are diagrammatic representations of yet another embodiment that utilizes arotary actuator 128 to moveinterrupter 130 into and out of the path oflight beam 104. In the example ofFIGS. 3A and 3B ,interrupter 130 is coupled toactuator 128 by anarm 132. Asactuator 128 movesarm 132,interrupter 130 swings into and out of the path oflight beam 104. For example,rotary actuator 128 can alternately rotate a set number of degrees, say 30 degrees, to swinginterrupter 130 into the path oflight beam 104 to fully blocklight beam 104 and out of the path oflight beam 104 to leavelight beam 104 unhindered byinterrupter 130. According to other embodiments,interrupter 130 can swing through an arc such that for onecycle interrupter 130 is on one side of the beam path whenlight beam 104 is unhindered and for the next cycle is on the other side of the beam path whenlight beam 104 is unhindered.Controller 112 can controlactuator 128 such that a particular repetition rate and duty cycle are achieved. -
FIG. 4 is a set of graphs representing one embodiment of cycle states for various levels of attenuation oflight beam 104. In the example ofFIG. 4 , the cycle time is 16 milliseconds, corresponding to a repetition rate of 62.5 cycles per second.Line 140 represents a 25% duty cycle,line 142 represents a 50% duty cycle andline 144 represents a 75% duty cycle. As can be seen fromline 140, theinterrupter 130 is in a position in whichlight beam 104 is fully unhindered for approximately 4 milliseconds and fully blocked for 12 milliseconds, resulting in 75% attenuation of light beam 104 (i.e.,light beam 104 will only appear to be 25% as bright downstream of theinterrupter 130 as it appears upstream of interrupter 130). During each state (e.g., the fully blocking and the fully non-blocking state) theinterrupter 130 can still be moving, so the states of theinterrupter 130 with respect tolight beam 104 may, but do not necessarily, correspond to the actuator 128 states. In other words, a graph of theactuator 128 state may be different than the graph of theinterrupter 130 state relative tolight beam 104. - The transitions (e.g.,
transition 146 and transition 148) between a fully blocking and fully non-blocking state shown inFIG. 4 are shown as corresponding to a square wave. That is, they are shown as instantaneous transitions. In practice, there is some small transition zone in whichlight beam 104 is only partially blocked. If that transition zone is too long, some of the negative effects of position domain attenuators, such as shadow rings, may be seen briefly. Therefore, it is preferable to make the transition as close to ideal as possible to minimize the transition time. - Embodiments of the present invention thus provide a light attenuation system comprising a light source to project a light beam, an interrupter operable to be positioned into and out of a path of the light beam, an actuator coupled to the interrupter and operable to move the interrupter from a position in which the light beam is unhindered by the interrupter to a position in which the light beam is fully incident on the interrupter, and a controller operable to control the actuator and cause the actuator to move the interrupter with a repetition rate so that the light beam is unhindered for a first portion of a cycle and the light beam is fully incident on the interrupter for a second portion of the cycle to attenuate the light beam's brightness. Attenuation can thus be achieved without affecting the color temperature of the light.
- Another embodiment of the present invention can include a set of computer instructions comprising instructions executable to receive one or more attenuation control parameters. The attenuation control parameters can include any variables that can be user specified. According to the particular implementation, these can include duty cycle, cycle time, repetition rate, attenuation level or other parameters. Based on the received control parameters and/or predefined control parameters, the instructions are executable to determine a control scheme. For example, if the system has a preprogrammed repetition rate, the instructions can be executable to receive a duty cycle or other parameters. Based on the received parameters and the predefined repetition rate, the amount of time that a light beam is fully interrupted versus unhindered can be determined. Accordingly, the control scheme is configured to cause an interrupter to move into and out of a path of a light beam for a plurality of cycles with a repetition rate to attenuate the light beam's brightness. In general, the light beam is unhindered by the interrupter for a first portion of each cycle and is fully incident on the interrupter for the second portion of the cycle.
- The instructions can be further executable to generate one or more control signals to cause an actuator to move the interrupter into and out of the path of the light beam according to the control scheme. The control signals can be sent to the actuator, another control or other component that can cause the actuator to move according to the control scheme.
- While the present invention has been described with reference to particular embodiments, it should be understood that the embodiments are illustrative and that the scope of the invention is not limited to these embodiments. Many variations, modifications, additions and improvements to the embodiments described above are possible. It is contemplated that these variations, modifications, additions and improvements fall within the scope of the invention as detailed in the following claims.
Claims (20)
1. A method for attenuating light comprising:
projecting a light beam along a path;
moving an interrupter, comprising:
moving the interrupter into and out of the path of the light beam for a plurality of cycles with a repetition rate to attenuate a brightness of the light beam without affecting a color temperature of the light beam; and
moving the interrupter such that the light beam is unhindered by the interrupter for a first portion of each cycle and is fully incident on the interrupter for a second portion of the cycle.
2. The method of claim 1 , further comprising directing light from the light beam to a site with an optical fiber.
3. The method of claim 1 , further comprising directing light from the light beam to a human eye, wherein the light from the light beam appears attenuated and continuous to the human eye.
4. The method of claim 1 , wherein the repetition rate is at least 30 cycles per second.
5. The method of claim 1 , wherein the repetition rate is at least 60 cycles per second.
6. The method of claim 1 , wherein moving the interrupter further comprises linearly moving the interrupter.
7. The method of claim 1 , wherein moving the interrupter further comprises rotating the interrupter into and out of the path of the light beam.
8. The method of claim 1 , wherein moving the interrupter further comprises swinging the interrupter into and out of the path of the light beam.
9. A method for attenuating light comprising:
projecting a light beam along a path; and
moving an interrupter, comprising:
moving the interrupter into and out of the path of the light beam for a plurality of cycles with a repetition rate to yield attenuated light that appears attenuated and continuous to a human eye; and
moving the interrupter such that the light beam is unhindered by the interrupter for a first portion of each cycle and is fully incident on the interrupter for a second portion of the cycle.
10. The method of claim 9 , further comprising directing light from the light beam to a site with an optical fiber.
11. The method of claim 9 , further comprising directing light from the light beam to the human eye.
12. The method of claim 9 , wherein the repetition rate is at least 30 cycles per second.
13. The method of claim 9 , wherein the repetition rate is at least 60 cycles per second.
14. The method of claim 9 , wherein moving the interrupter further comprises linearly moving the interrupter.
15. The method of claim 9 , wherein moving the interrupter further comprises rotating the interrupter into and out of the path of the light beam.
16. The method of claim 9 , wherein moving the interrupter further comprises swinging the interrupter into and out of the path of the light beam.
17. A method for attenuating light comprising:
receive one or more attenuation control parameters;
determine a control scheme to cause an interrupter to move into and out of a path of a light beam for a plurality of cycles with a repetition rate to attenuate a brightness of the light beam, wherein the light beam is unhindered by the interrupter for a first portion of each cycle and is fully incident on the interrupter for a second portion of the cycle; and
generate one or more control signals to cause an actuator to move the interrupter into and out of the path of the light beam according to the control scheme.
18. The method of claim 17 , wherein the repetition rate is selected to yield light from the light beam attenuated by the interrupter that appears continuous to a human eye.
19. The method of claim 17 , wherein the repetition rate is at least 30 cycles per second.
20. The method of claim 17 , wherein the repetition rate is at least 60 cycles per second.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/224,497 US20120026569A1 (en) | 2006-11-20 | 2011-09-02 | System and method for illumination attenuation |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/561,718 US7760411B2 (en) | 2006-11-20 | 2006-11-20 | System and method for illumination attenuation |
US12/787,811 US8014052B2 (en) | 2006-11-20 | 2010-05-26 | System and method for illumination attenuation |
US13/224,497 US20120026569A1 (en) | 2006-11-20 | 2011-09-02 | System and method for illumination attenuation |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/787,811 Continuation US8014052B2 (en) | 2006-11-20 | 2010-05-26 | System and method for illumination attenuation |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120026569A1 true US20120026569A1 (en) | 2012-02-02 |
Family
ID=39047826
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/561,718 Active 2028-06-28 US7760411B2 (en) | 2006-11-20 | 2006-11-20 | System and method for illumination attenuation |
US12/787,811 Active US8014052B2 (en) | 2006-11-20 | 2010-05-26 | System and method for illumination attenuation |
US13/224,497 Abandoned US20120026569A1 (en) | 2006-11-20 | 2011-09-02 | System and method for illumination attenuation |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/561,718 Active 2028-06-28 US7760411B2 (en) | 2006-11-20 | 2006-11-20 | System and method for illumination attenuation |
US12/787,811 Active US8014052B2 (en) | 2006-11-20 | 2010-05-26 | System and method for illumination attenuation |
Country Status (6)
Country | Link |
---|---|
US (3) | US7760411B2 (en) |
EP (1) | EP1923729B1 (en) |
JP (2) | JP2008129602A (en) |
AU (1) | AU2007234634B2 (en) |
CA (1) | CA2610569C (en) |
ES (1) | ES2556938T3 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100314381A1 (en) * | 2008-01-28 | 2010-12-16 | Ching Chuan Wang | Heating device |
JP6973801B2 (en) * | 2016-05-20 | 2021-12-01 | パーティクル・メージャーリング・システムズ・インコーポレーテッド | Automatic output control liquid particle counter with flow and bubble detection system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4135791A (en) * | 1974-12-02 | 1979-01-23 | Varian Associates, Inc. | Reduced glare scanner |
US5794761A (en) * | 1994-10-25 | 1998-08-18 | Csem Centre Suisse D'electronique Et De Microtechnique Sa | Switching device |
US6714716B2 (en) * | 2001-03-19 | 2004-03-30 | Optiwork, Inc. | Variable optical attenuator |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2403315A1 (en) * | 1974-01-24 | 1975-08-07 | Agfa Gevaert Ag | ELECTROMAGNETIC DRIVE DEVICE |
JPS5742003A (en) * | 1980-08-27 | 1982-03-09 | Olympus Optical Co Ltd | Intercepting device for of laser beam |
JPS587365Y2 (en) * | 1980-12-19 | 1983-02-09 | 持田製薬株式会社 | Laser-transparent fiber safety device |
EP0164751A3 (en) * | 1984-06-13 | 1988-04-27 | Britt Corporation | A pulsed laser system and method of operation |
US4680968A (en) | 1984-11-23 | 1987-07-21 | Messerschmitt-Bolkow-Blohm Gmbh | Mechanical vibrator |
JPS61285780A (en) * | 1985-06-12 | 1986-12-16 | Asahi Optical Co Ltd | Laser oscillator |
EP0366847A3 (en) * | 1988-11-02 | 1991-01-09 | Sportsoft Systems, Inc. | Graphics display using biomorphs |
JPH02266581A (en) * | 1989-04-06 | 1990-10-31 | Nec Corp | Abnormality detection mechanism for laser beam shutter |
US5299053A (en) * | 1990-10-26 | 1994-03-29 | American Cyanamid Company | Variable shutter illumination system for microscope |
CA2163981C (en) * | 1993-07-02 | 2002-12-31 | Carl O. Bozler | Spatial light modulator |
CA2127029C (en) * | 1993-11-12 | 2003-08-19 | Tibor Juhasz | Intrastromal photorefractive keratectomy |
JPH07208916A (en) * | 1994-01-21 | 1995-08-11 | Sekisui Chem Co Ltd | Laser sensor device |
US5563977A (en) * | 1995-05-24 | 1996-10-08 | General Electric Company | Display system having greyscale control of fiber optic delivered light output |
JP3810109B2 (en) * | 1995-07-27 | 2006-08-16 | 株式会社ニデック | Laser treatment device |
JPH1172722A (en) * | 1997-08-28 | 1999-03-16 | Sharp Corp | Optical opening and closing device, display device and production of these |
JP2000089138A (en) * | 1998-09-07 | 2000-03-31 | Nikon Corp | Optical modulation element, and package therefor, its control method, light quantity compression device, and pickup device |
JP2000193898A (en) * | 1998-12-25 | 2000-07-14 | Horiba Ltd | Optical chopper |
DE19908514A1 (en) | 1999-02-26 | 2000-09-21 | Fraunhofer Ges Forschung | Device and method for light intensity modulation |
US6088606A (en) * | 1999-03-22 | 2000-07-11 | Spectrx, Inc. | Method and apparatus for determining a duration of a medical condition |
US6775048B1 (en) * | 2000-10-31 | 2004-08-10 | Microsoft Corporation | Microelectrical mechanical structure (MEMS) optical modulator and optical display system |
US6771850B1 (en) | 2000-11-18 | 2004-08-03 | Agere Systems Inc. | Article comprising a MEMS device and method therefor |
US6559999B2 (en) * | 2001-06-25 | 2003-05-06 | Electrophysics Corp. | System for modulating radiation using two rotating discs |
JP2003180848A (en) * | 2001-12-20 | 2003-07-02 | Matsushita Electric Ind Co Ltd | Laser device |
JP4149305B2 (en) * | 2003-04-25 | 2008-09-10 | 富士フイルム株式会社 | Optical shutter and image display device using the same |
US7253575B2 (en) * | 2004-11-08 | 2007-08-07 | Sutter Instrument Company | Industrial optical shutter |
JP2006159001A (en) * | 2004-12-02 | 2006-06-22 | Gs Yuasa Corporation:Kk | Uv ray irradiation apparatus |
EP1859310B1 (en) * | 2005-02-23 | 2013-04-10 | Pixtronix Inc. | Display methods and apparatus |
US7771417B2 (en) * | 2005-02-24 | 2010-08-10 | Iridex Corporation | Laser system with short pulse characteristics and its methods of use |
-
2006
- 2006-11-20 US US11/561,718 patent/US7760411B2/en active Active
-
2007
- 2007-11-14 CA CA2610569A patent/CA2610569C/en active Active
- 2007-11-15 ES ES07120809.4T patent/ES2556938T3/en active Active
- 2007-11-15 EP EP07120809.4A patent/EP1923729B1/en active Active
- 2007-11-20 AU AU2007234634A patent/AU2007234634B2/en active Active
- 2007-11-20 JP JP2007300294A patent/JP2008129602A/en active Pending
-
2010
- 2010-05-26 US US12/787,811 patent/US8014052B2/en active Active
-
2011
- 2011-09-02 US US13/224,497 patent/US20120026569A1/en not_active Abandoned
-
2014
- 2014-01-15 JP JP2014005403A patent/JP2014102516A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4135791A (en) * | 1974-12-02 | 1979-01-23 | Varian Associates, Inc. | Reduced glare scanner |
US5794761A (en) * | 1994-10-25 | 1998-08-18 | Csem Centre Suisse D'electronique Et De Microtechnique Sa | Switching device |
US6714716B2 (en) * | 2001-03-19 | 2004-03-30 | Optiwork, Inc. | Variable optical attenuator |
Also Published As
Publication number | Publication date |
---|---|
US7760411B2 (en) | 2010-07-20 |
EP1923729B1 (en) | 2015-10-21 |
US20100232002A1 (en) | 2010-09-16 |
JP2014102516A (en) | 2014-06-05 |
EP1923729A1 (en) | 2008-05-21 |
US8014052B2 (en) | 2011-09-06 |
CA2610569C (en) | 2016-05-10 |
AU2007234634A1 (en) | 2008-06-05 |
JP2008129602A (en) | 2008-06-05 |
US20080117490A1 (en) | 2008-05-22 |
ES2556938T3 (en) | 2016-01-21 |
CA2610569A1 (en) | 2008-05-20 |
AU2007234634B2 (en) | 2013-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102009025678B4 (en) | Lighting device for a vehicle | |
US8070338B2 (en) | Three-mode integrated headlamp | |
EP2136129B1 (en) | Operating light with distance-dependant brightness control | |
JP2003250813A (en) | Surgical illumination apparatus | |
CN109668116A (en) | Lamps apparatus for vehicle | |
US10520176B2 (en) | Automated scrim system for a luminaire | |
US20200330178A1 (en) | Operating lamp and method for adjusting operating field light spots thereof | |
US5006965A (en) | Dimmer for fiber optic light transmission systems | |
US8014052B2 (en) | System and method for illumination attenuation | |
RU2749315C2 (en) | Surgical lamp with adjustable geometric shape of light field | |
JP2011502668A (en) | Surgical microscope with illumination system and illumination system control unit | |
DE3919643A1 (en) | HEADLIGHT THAT IS CONTINUOUSLY ADJUSTABLE IN ITS BRIGHTNESS | |
CN209470142U (en) | Lamps apparatus for vehicle | |
US20090234334A1 (en) | Spatially Distributed Spectrally Neutral Optical Attenuator | |
US5207494A (en) | Dimmer for fiber optic systems | |
CA2409165A1 (en) | An operating theater lamp | |
US20040037082A1 (en) | Dimming apparatus | |
EP2236909A1 (en) | A light collection system for a luminaire | |
JP7009426B2 (en) | Control method for vehicle lighting fixtures and variable light distribution lamps | |
CN114269602A (en) | Vehicle lamp | |
WO2021039725A1 (en) | Vehicular lamp | |
JPH0743786A (en) | Diaphragm mechanism and light projecting device | |
JP2022081698A5 (en) | ||
CN107143755A (en) | Lighting apparatus and nearly distance light switching method | |
JPH01233911A (en) | Operating method for photoelectric switch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |