US20110108997A1 - Mounting method and mounting structure for semiconductor package component - Google Patents
Mounting method and mounting structure for semiconductor package component Download PDFInfo
- Publication number
- US20110108997A1 US20110108997A1 US13/003,996 US201013003996A US2011108997A1 US 20110108997 A1 US20110108997 A1 US 20110108997A1 US 201013003996 A US201013003996 A US 201013003996A US 2011108997 A1 US2011108997 A1 US 2011108997A1
- Authority
- US
- United States
- Prior art keywords
- semiconductor package
- package component
- substrate
- reinforcing adhesive
- reinforcing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/303—Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
- H05K3/305—Affixing by adhesive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10613—Details of electrical connections of non-printed components, e.g. special leads
- H05K2201/10621—Components characterised by their electrical contacts
- H05K2201/10734—Ball grid array [BGA]; Bump grid array
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/05—Patterning and lithography; Masks; Details of resist
- H05K2203/0502—Patterning and lithography
- H05K2203/0545—Pattern for applying drops or paste; Applying a pattern made of drops or paste
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/14—Related to the order of processing steps
- H05K2203/1476—Same or similar kind of process performed in phases, e.g. coarse patterning followed by fine patterning
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/3494—Heating methods for reflowing of solder
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a semiconductor package component mounting method for surface-mounting a semiconductor package component on a substrate.
- a semiconductor package component such as a BGA (Ball Grid Array) component having electrodes formed on the underside is mounted in one of the process illustrated in FIGS. 17( a ) to 17 ( e ) and the process illustrated in FIGS. 18( a ) to 18 ( d ).
- BGA Bit Grid Array
- a semiconductor package component 3 is mounted on a substrate 1 in such a manner that bump electrodes 4 of the semiconductor package component 3 come into contact with electrodes 2 on the substrate 1 .
- reflow is performed.
- the solder of the bump electrodes 4 melts and the semiconductor package component 3 moves to a proper position by the self-alignment effect.
- the substrate and component are cooled to the melting temperature of the solder or lower to solidify the solder, so that electrical connection between the semiconductor package component 3 and the substrate 1 is completed.
- thermoset resin 5 is injected between the semiconductor package component 3 and the substrate 1 with a syringe or the like.
- the substrate 1 is heated to a temperature not lower than the curing temperature of the thermoset resin 5 to cure the thermoset resin 5 , thereby mechanically fixing the semiconductor package component 3 onto the substrate 1 .
- FIGS. 17( a ) to 17 ( e ) involves two heating steps, the reflow in FIG. 17( c ) and the heating in FIG. 17( e ).
- the process illustrated in FIGS. 18( a ) to 18 ( d ) involves only one heating step.
- thermoset resin 5 is applied to a position 6 on the substrate 1 where the semiconductor package component 3 is to be mounted.
- FIG. 19 illustrates how the thermoset resin 5 is applied.
- the semiconductor package component 3 is mounted on the substrate 1 in such a manner that the bump electrodes 4 of the semiconductor package component 3 come into contact with the electrode 2 on the substrate 1 .
- the uncured thermoset resin 5 is in contact with the substrate 1 and the underside of the semiconductor package component 3 .
- thermoset resin 5 is uncured at this point in time, the semiconductor package component 3 is moved to the proper position by the self-alignment effect of the melted solder between the electrodes on the substrate 1 and the electrodes of the semiconductor package component 3 .
- the temperature decreases to a temperature not higher than the melting temperature of the solder to solidify the solder, so that the electrical connection and mechanical bonding of the semiconductor package component 3 to the substrate 1 are completed.
- FIG. 20 illustrates the completion of the mounting.
- the mounting process illustrated in FIGS. 18 to 20 involves only one heating step. However, the quantity and position of the thermoset resin 5 to be applied are difficult to adjust, thereby causing variations in mounting quality.
- the uncured thermoset resin 5 is in the vicinity of or in contact with the solder. Therefore, when the application quantity of the thermoset resin 5 is reduced in order to prevent some of the uncured thermoset resin 5 from melting and being mixed with the solidifying solder to degrade the soldering quality, the strength of the mechanical bonding between the semiconductor package component 3 and the substrate 1 decreases.
- An object of the present invention is to provide a semiconductor package component mounting method which can reduce the number of heating steps, stably maintain the quality of electrical joining between a semiconductor package component and a substrate, and ensure a sufficient strength of mechanical bonding between the semiconductor package component and the substrate.
- a semiconductor package component mounting method includes: mounting a semiconductor package component on a substrate in such a manner that an electrode of the substrate and an electrode of the semiconductor package component are brought into contact with each other through a solidified joining metal; applying a reinforcing adhesive between the periphery of an area on the substrate where the semiconductor package component is mounted and the outer surface of the semiconductor package component in such a manner that the reinforcing adhesive does not contact the joining metal; and performing reflow to melt the joining metal while the reinforcing adhesive is uncured, curing the reinforcing adhesive, and solidifying the joining metal.
- a semiconductor package component mounting structure is a structure in which a semiconductor package component is mounted onto a substrate by joining an electrode of the substrate to an electrode of the semiconductor package component with a joining metal.
- the mounting structure includes: a cured reinforcing adhesive which is not in contact with the joining metal, the reinforcing adhesive extending from a surface of the semiconductor package component opposite a surface facing the substrate to the substrate, wherein the cured reinforcing adhesive extends over a distance L 1 onto the opposite surface of the semiconductor package component from an end face of the semiconductor package component and extends over a distance L 2 onto the surface of the semiconductor package component facing the substrate from the end face of the semiconductor package component, the end face connecting the surface of the semiconductor package component facing the substrate and the opposite surface; and the distance L 1 over which the reinforcing adhesive extends onto the opposite surface of the semiconductor package component from the end face connecting the surface of the semiconductor package component facing the substrate and the opposite surface is equal to or greater than the distance L 2 over which the reinforcing adhesive extends onto the surface of the semiconductor
- a semiconductor package component mounting method includes: applying a first reinforcing adhesive to a position on a substrate where a semiconductor package component is to be mounted; mounting the semiconductor package component on the substrate in such a manner that an electrode of the substrate and an electrode of the semiconductor package component are brought into contact with each other through a solidified joining metal; applying a second reinforcing adhesive between the periphery of an area on the substrate where the semiconductor package component is mounted and the outer surface of the semiconductor package component; and performing reflow to melt the joining metal and curing the first and second reinforcing adhesives while the joining metal solidifies.
- a semiconductor package component mounting structure is a structure in which a semiconductor package component is mounted on a substrate by joining an electrode of the substrate to an electrode of the semiconductor package component with a joining metal.
- the mounting structure includes: a cured first reinforcing adhesive disposed between the substrate and a surface of the semiconductor package component facing the substrate; and a cured second reinforcing adhesive disposed from an end face connecting the surface of the semiconductor package component facing the substrate and the opposite surface of the semiconductor package component to the substrate.
- a semiconductor package component mounting structure is a structure in which a semiconductor package component is mounted on a substrate by joining an electrode of the substrate to an electrode of the semiconductor package component with a joining metal.
- the mounting structure includes: a cured first reinforcing adhesive disposed between the substrate and a surface of the semiconductor package component facing the substrate; and a cured second reinforcing adhesive disposed from the surface of the semiconductor package component opposite the surface facing the substrate to the substrate.
- the reinforcing adhesive is applied after the semiconductor package component is mounted on the substrate, and in the heating step, the reinforcing adhesive is sufficiently cured after the joining metal has melts and solidifies.
- the number of heating steps can be reduced and the reinforcing adhesive can be readily applied in such a manner that the reinforcing adhesive does not come into contact with the joining metal in the process of melting and solidifying.
- the quality of electrical joining between the semiconductor package component and the substrate can be stably maintained, and a sufficient strength of the mechanical bonding between the semiconductor package component and the substrate can be ensured.
- the first reinforcing adhesive is applied before the semiconductor package component is mounted on the substrate; the second reinforcing adhesive is applied after the semiconductor package component is mounted on the substrate; and, in the heating step, the first and second reinforcing adhesives are cured after the joining metal melts and solidifies. Accordingly, the number of heating steps can be reduced and, even when the application quantity of the first reinforcing adhesive is reduced in order to prevent degradation of the joining quality due to some of the first reinforcing adhesive mixed during the melting of the joining metal, the cured second reinforcing adhesive ensures a sufficient mechanical strength.
- FIG. 1 is a process diagram illustrating a mounting method according to a first embodiment of the present invention
- FIG. 2 is a perspective view illustrating a reinforcing adhesive applied according to the first embodiment
- FIG. 3 is a cross-sectional view illustrating completion of mounting according to the first embodiment
- FIG. 4 is a plan view of a mounting method according to a second embodiment of the present invention.
- FIG. 5 is a perspective view illustrating completion of mounting according to the second embodiment
- FIG. 6 is a plan view of a mounting method according to a third embodiment of the present invention.
- FIG. 7 is a perspective view illustrating completion of mounting according to the third embodiment.
- FIG. 8 is a process diagram of a mounting method according to a fourth embodiment of the present invention.
- FIG. 9 is a perspective view illustrating first and second reinforcing adhesives applied according to the fourth embodiment.
- FIG. 10 is a cross-sectional view illustrating completion of mounting according to the fourth embodiment.
- FIG. 11 is a horizontal cross-sectional view illustrating the first and second reinforcing adhesives applied according to the fourth embodiment
- FIG. 12 is a plan view illustrating completion of mounting of a mounting method according to a fifth embodiment of the present invention.
- FIG. 13 is a perspective view illustrating the completion of mounting according to the fifth embodiment
- FIG. 14 is a horizontal cross-sectional view illustrating the completion of mounting according to the fifth embodiment
- FIG. 15 is a plan view illustrating completion of mounting of a mounting method according to a sixth embodiment of the present invention.
- FIG. 16 is a perspective view illustrating the completion of mounting according to the sixth embodiment.
- FIG. 17 is a process diagram illustrating a conventional mounting method
- FIG. 18 is a process diagram illustrating another conventional mounting method
- FIG. 19 is a perspective view illustrating the method in FIG. 18( b );
- FIG. 20 is a perspective view illustrating the method in FIG. 18( c );
- FIG. 21 is a cross-sectional view of a variation of the third embodiment.
- a semiconductor package component mounting method of the present invention will be described below with respect to specific embodiments.
- FIGS. 1 to 3 illustrate a first embodiment of the present invention.
- a BGA semiconductor package component 3 is mounted on a substrate 1 in such a manner that bump electrodes 4 of the semiconductor package component 3 come into contact with electrodes 2 on the substrate 1 .
- reinforcing adhesives 5 c are applied in the form of a stick from the periphery of an area on the substrate 1 where the semiconductor package component 3 is mounted over to the outer surface of the semiconductor package component 3 at regular intervals except the corner portions as illustrated in FIG. 2 .
- This arrangement can reduce the application quantity of the adhesive and prevent the adhesive from unnecessarily entering between the semiconductor package component 3 and the substrate. Since the reinforcing adhesives 5 c are applied in the form of a stick at regular intervals except the corner portions, the semiconductor package component 3 can be fixed in a balanced manner.
- the reinforcing adhesive 5 c herein is a thermoset resin. The reinforcing adhesive 5 c is applied in such a manner that the reinforcing adhesive 5 c does not contact the bump electrodes 4 .
- the temperature further rises to cure the reinforcing adhesive 5 c . Then the temperature is decreased to the melting temperature of the solder or lower to solidify the solder, thereby completing the electrical connection and mechanical bonding of the semiconductor package component 3 and the substrate 1 .
- the reinforcing adhesive 5 c can be readily prevented from contacting the bump electrodes 4 even if the application quantities and application positions are varied. This is because the semiconductor package component 3 is mounted on the substrate 1 as illustrated in FIG. 1( b ) and then the reinforcing adhesive 5 c is applied so that the reinforcing adhesive 5 c extends from a surface 3 b of the semiconductor package component 3 opposite a surface 3 a facing the substrate 1 to the substrate 1 as illustrated in FIG. 1( c ). As illustrated in FIG. 3 , in the completed mounting structure, the reinforcing adhesive 5 c is away from the solder which is a joining metal. Thus, good soldering quality is achieved.
- a portion L 1 is convex-shaped. While a portion L 2 is concave-shaped, the portion L 2 may be convex-shaped.
- the shape of the cured reinforcing adhesive 5 c is made such that L 1 ⁇ L 2 , where L 1 is a distance over which the reinforcing adhesive 5 c extends onto the surface 3 b of the semiconductor package component 3 opposite the surface 3 a facing the substrate 1 from an end face 3 c connecting the surface 3 a and the surface 3 b , and L 2 is a distance over which the reinforcing adhesive 5 c extends onto the surface 3 a facing the substrate 1 from the end face 3 c of the semiconductor package component 3 .
- a gap between the substrate 1 and the semiconductor package component 3 in this case is approximately 0.2 mm.
- the melting point and solidification start temperature of the solder of the bump electrodes 4 were in the range of 217° C. to 219° C. and 219° C., respectively.
- the viscosity of the reinforcing adhesive 5 c was 60 Pa ⁇ s (measured with a cone and plate viscometer at 5 rpm and 25° C.)
- the curing start temperature of the reinforcing adhesive 5 c was 185° C. and the curing peak temperature of the reinforcing adhesive 5 c was 210° C.
- the thixotropy of the reinforcing adhesive 5 c determined from a ratio between viscosities measured with the cone and plate viscometer at 0.5 rpm and 5 rpm at 25° C. (viscosity at 0.5 rpm/viscosity at 5 rpm) was in the range of approximately 4 to 6.
- FIGS. 4 and 5 illustrate a second embodiment.
- the reinforcing adhesive 5 c is applied to a portion except the corner portions 3 d of the semiconductor package component 3 and cured.
- a reinforcing adhesive 5 c is applied to portions of a semiconductor package component 3 including corner portions 3 d , and distances L 1 and L 2 of the cured reinforcing adhesive 5 c are set such that L 1 ⁇ L 2 .
- the second embodiment is different from the first embodiment only in the shape of the applied reinforcing adhesive 5 c . Others are the same as in the embodiment.
- FIGS. 6 and 7 illustrate a third embodiment.
- the reinforcing adhesive 5 c is applied to the portions of the semiconductor package component 3 including the corner portions 3 d of the semiconductor package component 3 in such a manner that L 1 ⁇ L 2 .
- the third embodiment differs from the first embodiment only in that a reinforcing adhesive 5 c is applied in such a manner that the reinforcing adhesive 5 c extends from an end face 3 c that connecting a surface 3 a of a semiconductor package component 3 facing a substrate 1 and an opposite surface 3 b to the substrate 1 .
- Others are the same as in the first embodiment.
- the reinforcing adhesive 5 c is applied from the end face 3 c of the semiconductor package component 3 to cover the full height of the end face 3 c of the semiconductor package component 3 in a position where the reinforcing adhesive 5 c is applied and the surface of the reinforcing adhesive 5 c outside from the end face 3 c of the semiconductor package component 3 is concave-shaped along the height of the end face 3 c as illustrated in FIG. 21 .
- a distance L 3 from the edge of the semiconductor package component 3 to the perimeter of the reinforcing adhesive 5 c is preferably greater than a distance L 4 from the substrate 1 to the top of the semiconductor package component 3 .
- the completed shape of the surface of the reinforcing adhesive 5 c may be convex-shaped as indicated by a phantom line in FIG. 21 , depending on the viscosity of the used reinforcing adhesive 5 c.
- the embodiments are also applicable to LGA (Land Grid Array) semiconductor package components 3 .
- LGA Land Grid Array
- a paste containing a joining metal is applied to at least one of a set of electrodes of the semiconductor package component 3 and a set of electrodes 2 of a substrate 1 to be joined to the set of the electrodes of the semiconductor package component 3 .
- the semiconductor package component 3 can be mounted on the substrate 1 to implement the present invention.
- FIGS. 8 to 11 illustrate a fourth embodiment of the present invention.
- thermoset resin 5 a is applied in the form of a dot in a position 6 on a substrate 1 where a semiconductor package component 3 is to be mounted.
- FIG. 9 illustrates how the first thermoset resin 5 a is applied.
- the semiconductor package component 3 is mounted on the substrate 1 in such a manner that bump electrodes 4 of the semiconductor package component 3 come into contact with electrodes 2 on the substrate 1 .
- the uncured first thermoset resin 5 a is disposed between and in contact with the substrate 1 and the underside of the semiconductor package component 3 .
- the semiconductor package component 3 is mounted on the substrate 1 in such a manner that the bump electrodes 4 of the BGA semiconductor package component 3 come into contact with the electrodes 2 on the substrate 1 .
- a second reinforcing adhesive 5 b is applied between the periphery of the area on the substrate 1 where the semiconductor package component 3 is mounted and the outer surface of the semiconductor package component 3 , for example, at predetermined intervals, as illustrated in FIG. 9( b ).
- the second reinforcing adhesive 5 b is a thermoset resin.
- FIG. 8( d ) includes FIGS. 8( d - 1 ), 8 ( d - 2 ) and 8 ( d - 3 ).
- FIGS. 8( d - 2 ) and 8 ( d - 3 ) depict cross sections as viewed from different angles at the same point in time in the reflow to show how the first and second reinforcing adhesives 5 a and 5 b have changed from the state in FIG. 8( d - 1 ).
- FIG. 10 is a vertical cross-sectional view illustrating the completion of the mounting.
- FIG. 11 is a cross-sectional view taken horizontally along a plane of the electrodes 2 of the substrate 1 .
- the second reinforcing adhesive 5 b is applied after the semiconductor package component 3 is mounted on the substrate 1 , the second reinforcing adhesive 5 b is distanced from the solder which is a joining metal, irrespective of variations of the application quantity and application positions, as illustrated in FIG. 10 . Thus, good soldering quality is achieved.
- the shape of the cured second reinforcing adhesive 5 b is made such that L 1 >L 2 , where L 1 is a distance over which the second reinforcing adhesive 5 b extends onto the surface 3 b of the semiconductor package component 3 opposite the surface 3 a facing the substrate 1 from an end face 3 c connecting the surface 3 a and the surface 3 b , and L 2 is a distance over which the second reinforcing adhesive 5 b extends onto the surface 3 a facing the substrate 1 from the end face 3 c of the semiconductor package component 3 .
- a gap between the substrate 1 and the semiconductor package component 3 at that point was approximately 0.2 mm.
- the melting point and solidification start temperature of the solder of the bump electrodes 4 were in the range of 217° C. to 219° C. and 219° C., respectively.
- the viscosity of the reinforcing adhesive 5 a was 60 Pa ⁇ s (measured with a cone and plate viscometer at 5 rpm and 25° C.).
- the curing start temperature of the reinforcing adhesive 5 a was 185° C. and the curing peak temperature of the reinforcing adhesive 5 a was 210° C.
- FIGS. 12 to 14 illustrate a fifth embodiment.
- the second reinforcing adhesive 5 b is applied to portions of the semiconductor package component 3 except the corner portions 3 d .
- a second reinforcing adhesive 5 b is applied to portions of a semiconductor package component 3 including corner portions 3 d of the semiconductor package component 3 in the step of FIG. 8( c - 2 ).
- Distances L 1 and L 2 of the cured second reinforcing adhesive 5 b are set such that L 1 ⁇ L 2 .
- the fifth embodiment is different from the fourth embodiment only in the shape of the applied second reinforcing adhesive 5 b . Others are the same as in the fourth embodiment.
- FIG. 14 is a horizontal cross-sectional view of a first reinforcing adhesive 5 a and the second reinforcing adhesive 5 b which are cured.
- FIGS. 15 and 16 illustrate a sixth embodiment.
- the second reinforcing adhesive 5 b is applied to the portions of the semiconductor package component 3 including the corner portions 3 d of the semiconductor package component 3 in such a manner that L 1 ⁇ L 2 .
- the sixth embodiment is different from the fourth embodiment only in that a second reinforcing adhesive 5 b is applied in such a manner that the second reinforcing adhesive 5 b extends from an end face 3 c connecting a surface 3 a of a semiconductor package component 3 facing a substrate 1 and an opposite surface 3 b to the substrate 1 .
- Others are the same as in the fourth embodiment.
- the embodiments are also applicable to LGA (Land Grid Array) semiconductor package components 3 .
- LGA Land Grid Array
- a paste containing a joining metal is applied to at least one of a set of electrodes of the semiconductor package component 3 and a set of electrodes 2 of a substrate 1 to be joined to the set of the electrodes of the semiconductor package component 3 .
- the semiconductor package component 3 can be mounted on the substrate 1 to implement the present invention.
- the present invention is useful for fabrication of various electronic devices such as mobile devices that may be subjected to drop impact.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Wire Bonding (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
- The present invention relates to a semiconductor package component mounting method for surface-mounting a semiconductor package component on a substrate.
- A semiconductor package component such as a BGA (Ball Grid Array) component having electrodes formed on the underside is mounted in one of the process illustrated in
FIGS. 17( a) to 17(e) and the process illustrated inFIGS. 18( a) to 18(d). - In
FIGS. 17( a) and 17(b), asemiconductor package component 3 is mounted on asubstrate 1 in such a manner thatbump electrodes 4 of thesemiconductor package component 3 come into contact withelectrodes 2 on thesubstrate 1. - In
FIG. 17( c), reflow is performed. In the reflow, the solder of thebump electrodes 4 melts and thesemiconductor package component 3 moves to a proper position by the self-alignment effect. Then the substrate and component are cooled to the melting temperature of the solder or lower to solidify the solder, so that electrical connection between thesemiconductor package component 3 and thesubstrate 1 is completed. - In
FIG. 17( d), athermoset resin 5 is injected between thesemiconductor package component 3 and thesubstrate 1 with a syringe or the like. - In
FIG. 17( e), thesubstrate 1 is heated to a temperature not lower than the curing temperature of thethermoset resin 5 to cure thethermoset resin 5, thereby mechanically fixing thesemiconductor package component 3 onto thesubstrate 1. - The method illustrated in
FIGS. 17( a) to 17(e) involves two heating steps, the reflow inFIG. 17( c) and the heating inFIG. 17( e). In contrast, the process illustrated inFIGS. 18( a) to 18(d) involves only one heating step. - In
FIGS. 18( a) and 18(b), thethermoset resin 5 is applied to aposition 6 on thesubstrate 1 where thesemiconductor package component 3 is to be mounted.FIG. 19 illustrates how thethermoset resin 5 is applied. - In
FIG. 18( c), thesemiconductor package component 3 is mounted on thesubstrate 1 in such a manner that thebump electrodes 4 of thesemiconductor package component 3 come into contact with theelectrode 2 on thesubstrate 1. At this point, theuncured thermoset resin 5 is in contact with thesubstrate 1 and the underside of thesemiconductor package component 3. - In
FIG. 18( d), reflow is performed. In the reflow, the solder of thebump electrodes 4 melts. Since thethermoset resin 5 is uncured at this point in time, thesemiconductor package component 3 is moved to the proper position by the self-alignment effect of the melted solder between the electrodes on thesubstrate 1 and the electrodes of thesemiconductor package component 3. After thethermoset resin 5 is cured by heating, the temperature decreases to a temperature not higher than the melting temperature of the solder to solidify the solder, so that the electrical connection and mechanical bonding of thesemiconductor package component 3 to thesubstrate 1 are completed.FIG. 20 illustrates the completion of the mounting. -
- Patent Literature: Japanese Patent Application Laid-Open Publication No. 11-204568
- The mounting process illustrated in
FIGS. 18 to 20 involves only one heating step. However, the quantity and position of thethermoset resin 5 to be applied are difficult to adjust, thereby causing variations in mounting quality. - Specifically, during the process in which the solder melts and solidifies, the
uncured thermoset resin 5 is in the vicinity of or in contact with the solder. Therefore, when the application quantity of thethermoset resin 5 is reduced in order to prevent some of theuncured thermoset resin 5 from melting and being mixed with the solidifying solder to degrade the soldering quality, the strength of the mechanical bonding between thesemiconductor package component 3 and thesubstrate 1 decreases. - An object of the present invention is to provide a semiconductor package component mounting method which can reduce the number of heating steps, stably maintain the quality of electrical joining between a semiconductor package component and a substrate, and ensure a sufficient strength of mechanical bonding between the semiconductor package component and the substrate.
- A semiconductor package component mounting method according to the present invention includes: mounting a semiconductor package component on a substrate in such a manner that an electrode of the substrate and an electrode of the semiconductor package component are brought into contact with each other through a solidified joining metal; applying a reinforcing adhesive between the periphery of an area on the substrate where the semiconductor package component is mounted and the outer surface of the semiconductor package component in such a manner that the reinforcing adhesive does not contact the joining metal; and performing reflow to melt the joining metal while the reinforcing adhesive is uncured, curing the reinforcing adhesive, and solidifying the joining metal.
- A semiconductor package component mounting structure according to the present invention is a structure in which a semiconductor package component is mounted onto a substrate by joining an electrode of the substrate to an electrode of the semiconductor package component with a joining metal. The mounting structure includes: a cured reinforcing adhesive which is not in contact with the joining metal, the reinforcing adhesive extending from a surface of the semiconductor package component opposite a surface facing the substrate to the substrate, wherein the cured reinforcing adhesive extends over a distance L1 onto the opposite surface of the semiconductor package component from an end face of the semiconductor package component and extends over a distance L2 onto the surface of the semiconductor package component facing the substrate from the end face of the semiconductor package component, the end face connecting the surface of the semiconductor package component facing the substrate and the opposite surface; and the distance L1 over which the reinforcing adhesive extends onto the opposite surface of the semiconductor package component from the end face connecting the surface of the semiconductor package component facing the substrate and the opposite surface is equal to or greater than the distance L2 over which the reinforcing adhesive extends onto the surface of the semiconductor package component facing the substrate from the end face of the semiconductor package component.
- A semiconductor package component mounting method according to the present invention includes: applying a first reinforcing adhesive to a position on a substrate where a semiconductor package component is to be mounted; mounting the semiconductor package component on the substrate in such a manner that an electrode of the substrate and an electrode of the semiconductor package component are brought into contact with each other through a solidified joining metal; applying a second reinforcing adhesive between the periphery of an area on the substrate where the semiconductor package component is mounted and the outer surface of the semiconductor package component; and performing reflow to melt the joining metal and curing the first and second reinforcing adhesives while the joining metal solidifies.
- A semiconductor package component mounting structure according to the present invention is a structure in which a semiconductor package component is mounted on a substrate by joining an electrode of the substrate to an electrode of the semiconductor package component with a joining metal. The mounting structure includes: a cured first reinforcing adhesive disposed between the substrate and a surface of the semiconductor package component facing the substrate; and a cured second reinforcing adhesive disposed from an end face connecting the surface of the semiconductor package component facing the substrate and the opposite surface of the semiconductor package component to the substrate.
- A semiconductor package component mounting structure according to the present invention is a structure in which a semiconductor package component is mounted on a substrate by joining an electrode of the substrate to an electrode of the semiconductor package component with a joining metal. The mounting structure includes: a cured first reinforcing adhesive disposed between the substrate and a surface of the semiconductor package component facing the substrate; and a cured second reinforcing adhesive disposed from the surface of the semiconductor package component opposite the surface facing the substrate to the substrate.
- With this configuration, since the reinforcing adhesive is applied after the semiconductor package component is mounted on the substrate, and in the heating step, the reinforcing adhesive is sufficiently cured after the joining metal has melts and solidifies. Thus the number of heating steps can be reduced and the reinforcing adhesive can be readily applied in such a manner that the reinforcing adhesive does not come into contact with the joining metal in the process of melting and solidifying. In addition, the quality of electrical joining between the semiconductor package component and the substrate can be stably maintained, and a sufficient strength of the mechanical bonding between the semiconductor package component and the substrate can be ensured.
- With this configuration, the first reinforcing adhesive is applied before the semiconductor package component is mounted on the substrate; the second reinforcing adhesive is applied after the semiconductor package component is mounted on the substrate; and, in the heating step, the first and second reinforcing adhesives are cured after the joining metal melts and solidifies. Accordingly, the number of heating steps can be reduced and, even when the application quantity of the first reinforcing adhesive is reduced in order to prevent degradation of the joining quality due to some of the first reinforcing adhesive mixed during the melting of the joining metal, the cured second reinforcing adhesive ensures a sufficient mechanical strength.
-
FIG. 1 is a process diagram illustrating a mounting method according to a first embodiment of the present invention; -
FIG. 2 is a perspective view illustrating a reinforcing adhesive applied according to the first embodiment; -
FIG. 3 is a cross-sectional view illustrating completion of mounting according to the first embodiment; -
FIG. 4 is a plan view of a mounting method according to a second embodiment of the present invention; -
FIG. 5 is a perspective view illustrating completion of mounting according to the second embodiment; -
FIG. 6 is a plan view of a mounting method according to a third embodiment of the present invention; -
FIG. 7 is a perspective view illustrating completion of mounting according to the third embodiment; -
FIG. 8 is a process diagram of a mounting method according to a fourth embodiment of the present invention; -
FIG. 9 is a perspective view illustrating first and second reinforcing adhesives applied according to the fourth embodiment; -
FIG. 10 is a cross-sectional view illustrating completion of mounting according to the fourth embodiment; -
FIG. 11 is a horizontal cross-sectional view illustrating the first and second reinforcing adhesives applied according to the fourth embodiment; -
FIG. 12 is a plan view illustrating completion of mounting of a mounting method according to a fifth embodiment of the present invention; -
FIG. 13 is a perspective view illustrating the completion of mounting according to the fifth embodiment; -
FIG. 14 is a horizontal cross-sectional view illustrating the completion of mounting according to the fifth embodiment; -
FIG. 15 is a plan view illustrating completion of mounting of a mounting method according to a sixth embodiment of the present invention; -
FIG. 16 is a perspective view illustrating the completion of mounting according to the sixth embodiment; -
FIG. 17 is a process diagram illustrating a conventional mounting method; -
FIG. 18 is a process diagram illustrating another conventional mounting method; -
FIG. 19 is a perspective view illustrating the method inFIG. 18( b); -
FIG. 20 is a perspective view illustrating the method inFIG. 18( c); and -
FIG. 21 is a cross-sectional view of a variation of the third embodiment. - A semiconductor package component mounting method of the present invention will be described below with respect to specific embodiments.
-
FIGS. 1 to 3 illustrate a first embodiment of the present invention. - In
FIGS. 1( a) and 1(b), a BGAsemiconductor package component 3 is mounted on asubstrate 1 in such a manner that bumpelectrodes 4 of thesemiconductor package component 3 come into contact withelectrodes 2 on thesubstrate 1. - In
FIG. 1( c), reinforcingadhesives 5 c are applied in the form of a stick from the periphery of an area on thesubstrate 1 where thesemiconductor package component 3 is mounted over to the outer surface of thesemiconductor package component 3 at regular intervals except the corner portions as illustrated inFIG. 2 . This arrangement can reduce the application quantity of the adhesive and prevent the adhesive from unnecessarily entering between thesemiconductor package component 3 and the substrate. Since the reinforcingadhesives 5 c are applied in the form of a stick at regular intervals except the corner portions, thesemiconductor package component 3 can be fixed in a balanced manner. The reinforcing adhesive 5 c herein is a thermoset resin. The reinforcing adhesive 5 c is applied in such a manner that the reinforcing adhesive 5 c does not contact thebump electrodes 4. - In
FIG. 1( d), reflow is performed. In the reflow, the solder of thebump electrodes 4 melts. Since the reinforcing adhesive 5 c is not cured at this point, thesemiconductor package component 3 is moved to a proper position by the self-alignment effect of the melted solder between the electrodes on thesubstrate 1 and the electrodes of thesemiconductor package component 3. - In
FIG. 1( e), the temperature further rises to cure the reinforcing adhesive 5 c. Then the temperature is decreased to the melting temperature of the solder or lower to solidify the solder, thereby completing the electrical connection and mechanical bonding of thesemiconductor package component 3 and thesubstrate 1. - In the completed mounting structure of
FIG. 3 , the reinforcing adhesive 5 c can be readily prevented from contacting thebump electrodes 4 even if the application quantities and application positions are varied. This is because thesemiconductor package component 3 is mounted on thesubstrate 1 as illustrated inFIG. 1( b) and then the reinforcing adhesive 5 c is applied so that the reinforcing adhesive 5 c extends from asurface 3 b of thesemiconductor package component 3 opposite asurface 3 a facing thesubstrate 1 to thesubstrate 1 as illustrated inFIG. 1( c). As illustrated inFIG. 3 , in the completed mounting structure, the reinforcing adhesive 5 c is away from the solder which is a joining metal. Thus, good soldering quality is achieved. A portion L1 is convex-shaped. While a portion L2 is concave-shaped, the portion L2 may be convex-shaped. - The shape of the cured reinforcing adhesive 5 c is made such that L1≧L2, where L1 is a distance over which the reinforcing adhesive 5 c extends onto the
surface 3 b of thesemiconductor package component 3 opposite thesurface 3 a facing thesubstrate 1 from anend face 3 c connecting thesurface 3 a and thesurface 3 b, and L2 is a distance over which the reinforcing adhesive 5 c extends onto thesurface 3 a facing thesubstrate 1 from theend face 3 c of thesemiconductor package component 3. As a result, a great degree of reinforcement is achieved compared with a structure in which the reinforcing adhesive 5 c is applied from theend face 3 c of thesemiconductor package component 3 to thesubstrate 1 as indicated by aphantom line 7 inFIG. 3 in the step ofFIG. 1( c) and then cured by reflow. - It should be noted that even when the reinforcing adhesive 5 c is cured in the shape indicated by the
phantom line 7 inFIG. 3 , better soldering quality and a greater degree of reinforcement are achieved than in the conventional example illustrated inFIGS. 9 to 11 . - A gap between the
substrate 1 and thesemiconductor package component 3 in this case is approximately 0.2 mm. The melting point and solidification start temperature of the solder of thebump electrodes 4 were in the range of 217° C. to 219° C. and 219° C., respectively. The viscosity of the reinforcing adhesive 5 c was 60 Pa·s (measured with a cone and plate viscometer at 5 rpm and 25° C.) The curing start temperature of the reinforcing adhesive 5 c was 185° C. and the curing peak temperature of the reinforcing adhesive 5 c was 210° C. - The thixotropy of the reinforcing adhesive 5 c determined from a ratio between viscosities measured with the cone and plate viscometer at 0.5 rpm and 5 rpm at 25° C. (viscosity at 0.5 rpm/viscosity at 5 rpm) was in the range of approximately 4 to 6.
-
FIGS. 4 and 5 illustrate a second embodiment. - In the first embodiment, the reinforcing adhesive 5 c is applied to a portion except the
corner portions 3 d of thesemiconductor package component 3 and cured. In the second embodiment, in the step ofFIG. 1( c), a reinforcing adhesive 5 c is applied to portions of asemiconductor package component 3 includingcorner portions 3 d, and distances L1 and L2 of the cured reinforcing adhesive 5 c are set such that L1≧L2. The second embodiment is different from the first embodiment only in the shape of the applied reinforcing adhesive 5 c. Others are the same as in the embodiment. - In the second embodiment, better soldering quality and a greater degree of reinforcement than in the first embodiment are achieved.
-
FIGS. 6 and 7 illustrate a third embodiment. - In the second embodiment, the reinforcing adhesive 5 c is applied to the portions of the
semiconductor package component 3 including thecorner portions 3 d of thesemiconductor package component 3 in such a manner that L1≧L2. The third embodiment differs from the second embodiment in that L1=0. Specifically, the third embodiment differs from the first embodiment only in that a reinforcing adhesive 5 c is applied in such a manner that the reinforcing adhesive 5 c extends from anend face 3 c that connecting asurface 3 a of asemiconductor package component 3 facing asubstrate 1 and anopposite surface 3 b to thesubstrate 1. Others are the same as in the first embodiment. - The reinforcing adhesive 5 c is applied from the
end face 3 c of thesemiconductor package component 3 to cover the full height of theend face 3 c of thesemiconductor package component 3 in a position where the reinforcing adhesive 5 c is applied and the surface of the reinforcing adhesive 5 c outside from theend face 3 c of thesemiconductor package component 3 is concave-shaped along the height of theend face 3 c as illustrated inFIG. 21 . A distance L3 from the edge of thesemiconductor package component 3 to the perimeter of the reinforcing adhesive 5 c is preferably greater than a distance L4 from thesubstrate 1 to the top of thesemiconductor package component 3. - While the shape of the surface of the reinforcing adhesive 5 c outside from the
end face 3 c is concave-shaped along the height of theend face 3 c inFIGS. 7 and 21 , the completed shape of the surface of the reinforcing adhesive 5 c may be convex-shaped as indicated by a phantom line inFIG. 21 , depending on the viscosity of the used reinforcing adhesive 5 c. - According to the embodiment, better soldering quality and a greater degree of reinforcement than in the conventional art are achieved.
- While the embodiments have been described with respect to BGA
semiconductor package components 3 by way of example, the embodiments are also applicable to LGA (Land Grid Array)semiconductor package components 3. In the case of the LGAsemiconductor package component 3, a paste containing a joining metal is applied to at least one of a set of electrodes of thesemiconductor package component 3 and a set ofelectrodes 2 of asubstrate 1 to be joined to the set of the electrodes of thesemiconductor package component 3. Then thesemiconductor package component 3 can be mounted on thesubstrate 1 to implement the present invention. -
FIGS. 8 to 11 illustrate a fourth embodiment of the present invention. - In
FIGS. 8( a) and 8(b), afirst thermoset resin 5 a is applied in the form of a dot in aposition 6 on asubstrate 1 where asemiconductor package component 3 is to be mounted.FIG. 9 illustrates how thefirst thermoset resin 5 a is applied. - In
FIG. 8( c), thesemiconductor package component 3 is mounted on thesubstrate 1 in such a manner that bumpelectrodes 4 of thesemiconductor package component 3 come into contact withelectrodes 2 on thesubstrate 1. At this point, the uncuredfirst thermoset resin 5 a is disposed between and in contact with thesubstrate 1 and the underside of thesemiconductor package component 3. - In
FIG. 8( c-1), thesemiconductor package component 3 is mounted on thesubstrate 1 in such a manner that thebump electrodes 4 of the BGAsemiconductor package component 3 come into contact with theelectrodes 2 on thesubstrate 1. - In
FIG. 8( c-2), a second reinforcing adhesive 5 b is applied between the periphery of the area on thesubstrate 1 where thesemiconductor package component 3 is mounted and the outer surface of thesemiconductor package component 3, for example, at predetermined intervals, as illustrated inFIG. 9( b). Here, the second reinforcing adhesive 5 b is a thermoset resin. - In
FIG. 8( d), reflow is performed. -
FIG. 8( d) includesFIGS. 8( d-1), 8(d-2) and 8(d-3).FIGS. 8( d-2) and 8(d-3) depict cross sections as viewed from different angles at the same point in time in the reflow to show how the first and second reinforcingadhesives FIG. 8( d-1). - In
FIG. 8( d-1), the solder of thebump electrodes 4 is melted by the reflow. Since the first and second reinforcingadhesives semiconductor package component 3 moves to a proper position by the self-alignment effect of the melted solder between theelectrodes 2 of thesubstrate 1 and the electrodes of thesemiconductor package component 3. - After the temperature further rises and the first and second reinforcing
adhesives FIGS. 8( d-2) and 8(d-3), the temperature is decreased to the melting point of the solder or lower to solidify the solder, thereby completing the electrical connection and mechanical bonding of thesemiconductor package component 3 and thesubstrate 1.FIG. 10 is a vertical cross-sectional view illustrating the completion of the mounting.FIG. 11 is a cross-sectional view taken horizontally along a plane of theelectrodes 2 of thesubstrate 1. - In the mounting structure completed as illustrated in
FIG. 10 , since thesemiconductor package component 3 is mounted on thesubstrate 1 and then the second reinforcing adhesive 5 b is applied from asurface 3 b opposite asurface 3 a of thesemiconductor package component 3 facing thesubstrate 1 to thesubstrate 1 as illustrated inFIG. 8( c-2), strong joining between thesubstrate 1 and thesemiconductor package component 3 can be provided by the cured second reinforcing adhesive 5 b even when the quantity of the first reinforcing adhesive 5 a is reduced to prevent the first reinforcing adhesive 5 a from contacting the solder, and strong joining may not be provided by the first reinforcing adhesive 5 a between thesubstrate 1 and thepackage component 3. In addition, since the second reinforcing adhesive 5 b is applied after thesemiconductor package component 3 is mounted on thesubstrate 1, the second reinforcing adhesive 5 b is distanced from the solder which is a joining metal, irrespective of variations of the application quantity and application positions, as illustrated inFIG. 10 . Thus, good soldering quality is achieved. - The shape of the cured second reinforcing adhesive 5 b is made such that L1>L2, where L1 is a distance over which the second reinforcing adhesive 5 b extends onto the
surface 3 b of thesemiconductor package component 3 opposite thesurface 3 a facing thesubstrate 1 from anend face 3 c connecting thesurface 3 a and thesurface 3 b, and L2 is a distance over which the second reinforcing adhesive 5 b extends onto thesurface 3 a facing thesubstrate 1 from theend face 3 c of thesemiconductor package component 3. As a result, a greater degree of reinforcement is achieved compared with a structure in which the second reinforcing adhesive 5 b is applied from theend face 3 c of thesemiconductor package component 3 to thesubstrate 1 as indicated by aphantom line 7 inFIG. 10 in the step ofFIG. 8( c) and then cured by reflow. - It should be noted that even when the second reinforcing adhesive 5 b is cured in the shape represented by the
phantom line 7 inFIG. 10 , better soldering quality and a greater degree of reinforcement are achieved than in the conventional example illustrated inFIGS. 18 to 20 . - A gap between the
substrate 1 and thesemiconductor package component 3 at that point was approximately 0.2 mm. The melting point and solidification start temperature of the solder of thebump electrodes 4 were in the range of 217° C. to 219° C. and 219° C., respectively. The viscosity of the reinforcing adhesive 5 a was 60 Pa·s (measured with a cone and plate viscometer at 5 rpm and 25° C.). The curing start temperature of the reinforcing adhesive 5 a was 185° C. and the curing peak temperature of the reinforcing adhesive 5 a was 210° C. -
FIGS. 12 to 14 illustrate a fifth embodiment. - In the fourth embodiment, the second reinforcing adhesive 5 b is applied to portions of the
semiconductor package component 3 except thecorner portions 3 d. In the fifth embodiment, a second reinforcing adhesive 5 b is applied to portions of asemiconductor package component 3 includingcorner portions 3 d of thesemiconductor package component 3 in the step ofFIG. 8( c-2). Distances L1 and L2 of the cured second reinforcing adhesive 5 b are set such that L1≧L2. The fifth embodiment is different from the fourth embodiment only in the shape of the applied second reinforcing adhesive 5 b. Others are the same as in the fourth embodiment. - According to the fifth embodiment, good soldering quality and a greater degree of reinforcement than in the fourth embodiment are achieved as illustrated in
FIG. 13 .FIG. 14 is a horizontal cross-sectional view of a first reinforcing adhesive 5 a and the second reinforcing adhesive 5 b which are cured. -
FIGS. 15 and 16 illustrate a sixth embodiment. - In the fifth embodiment, the second reinforcing adhesive 5 b is applied to the portions of the
semiconductor package component 3 including thecorner portions 3 d of thesemiconductor package component 3 in such a manner that L1≧L2. The sixth embodiment differs from the fifth embodiment in that L1=0. Specifically, the sixth embodiment is different from the fourth embodiment only in that a second reinforcing adhesive 5 b is applied in such a manner that the second reinforcing adhesive 5 b extends from anend face 3 c connecting asurface 3 a of asemiconductor package component 3 facing asubstrate 1 and anopposite surface 3 b to thesubstrate 1. Others are the same as in the fourth embodiment. - According to the embodiment, good soldering quality and a greater degree of reinforcement than in the fourth embodiment are achieved.
- While the embodiments have been described with respect to BGA
semiconductor package components 3 by way of example, the embodiments are also applicable to LGA (Land Grid Array)semiconductor package components 3. In the case of the LGAsemiconductor package component 3, a paste containing a joining metal is applied to at least one of a set of electrodes of thesemiconductor package component 3 and a set ofelectrodes 2 of asubstrate 1 to be joined to the set of the electrodes of thesemiconductor package component 3. Then thesemiconductor package component 3 can be mounted on thesubstrate 1 to implement the present invention. - The present invention is useful for fabrication of various electronic devices such as mobile devices that may be subjected to drop impact.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/092,407 US9331047B2 (en) | 2009-04-24 | 2013-11-27 | Mounting method and mounting structure for semiconductor package component |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-105757 | 2009-04-24 | ||
JP2009105757A JP5707569B2 (en) | 2009-04-24 | 2009-04-24 | Mounting method and mounting structure for semiconductor package components |
JP2009105758A JP5464897B2 (en) | 2009-04-24 | 2009-04-24 | Mounting method and mounting structure for semiconductor package components |
JP2009-105758 | 2009-04-24 | ||
PCT/JP2010/002800 WO2010122757A1 (en) | 2009-04-24 | 2010-04-19 | Method for mounting semiconductor package component, and structure having semiconductor package component mounted therein |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/002800 A-371-Of-International WO2010122757A1 (en) | 2009-04-24 | 2010-04-19 | Method for mounting semiconductor package component, and structure having semiconductor package component mounted therein |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/092,407 Division US9331047B2 (en) | 2009-04-24 | 2013-11-27 | Mounting method and mounting structure for semiconductor package component |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110108997A1 true US20110108997A1 (en) | 2011-05-12 |
Family
ID=43010884
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/003,996 Abandoned US20110108997A1 (en) | 2009-04-24 | 2010-04-19 | Mounting method and mounting structure for semiconductor package component |
US14/092,407 Active US9331047B2 (en) | 2009-04-24 | 2013-11-27 | Mounting method and mounting structure for semiconductor package component |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/092,407 Active US9331047B2 (en) | 2009-04-24 | 2013-11-27 | Mounting method and mounting structure for semiconductor package component |
Country Status (4)
Country | Link |
---|---|
US (2) | US20110108997A1 (en) |
EP (1) | EP2423955B8 (en) |
CN (1) | CN102105971B (en) |
WO (1) | WO2010122757A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102800634A (en) * | 2011-05-23 | 2012-11-28 | 松下电器产业株式会社 | Mounting structure of semiconductor package component and manufacturing method therefor |
US20150181740A1 (en) * | 2012-09-06 | 2015-06-25 | Panasonic Intellectual Property Management Co., Ltd. | Mounting structure and method for supplying reinforcing resin material |
US20170211769A1 (en) * | 2016-01-27 | 2017-07-27 | Lite-On Electronics (Guangzhou) Limited | Vehicle lamp device and light-emitting module thereof |
US20200011498A1 (en) * | 2016-01-27 | 2020-01-09 | Lite-On Electronics (Guangzhou) Limited | Light-emitting module for vehicle lamp |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012160817A1 (en) * | 2011-05-26 | 2012-11-29 | パナソニック株式会社 | Method for mounting electronic component, device for mounting electronic component, and system for mounting electronic component |
KR102694680B1 (en) * | 2016-08-01 | 2024-08-14 | 삼성디스플레이 주식회사 | Electronic device, mounting method of the same, and method of manufacturing display apparatus having the same |
WO2019087700A1 (en) * | 2017-11-01 | 2019-05-09 | ソニーセミコンダクタソリューションズ株式会社 | Imaging element, imaging device, electronic apparatus, and method for manufacturing imaging element |
US10211072B2 (en) * | 2017-06-23 | 2019-02-19 | Applied Materials, Inc. | Method of reconstituted substrate formation for advanced packaging applications |
US11094668B2 (en) * | 2019-12-12 | 2021-08-17 | Micron Technology, Inc. | Solderless interconnect for semiconductor device assembly |
JP7283407B2 (en) * | 2020-02-04 | 2023-05-30 | 株式会社デンソー | electronic device |
Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5814401A (en) * | 1997-02-04 | 1998-09-29 | Motorola, Inc. | Selectively filled adhesive film containing a fluxing agent |
US5891753A (en) * | 1997-01-24 | 1999-04-06 | Micron Technology, Inc. | Method and apparatus for packaging flip chip bare die on printed circuit boards |
US5936304A (en) * | 1997-12-10 | 1999-08-10 | Intel Corporation | C4 package die backside coating |
US6046910A (en) * | 1998-03-18 | 2000-04-04 | Motorola, Inc. | Microelectronic assembly having slidable contacts and method for manufacturing the assembly |
US6049124A (en) * | 1997-12-10 | 2000-04-11 | Intel Corporation | Semiconductor package |
US6093972A (en) * | 1997-05-19 | 2000-07-25 | Motorola, Inc. | Microelectronic package including a polymer encapsulated die |
US6274389B1 (en) * | 1997-01-17 | 2001-08-14 | Loctite (R&D) Ltd. | Mounting structure and mounting process from semiconductor devices |
US6340846B1 (en) * | 2000-12-06 | 2002-01-22 | Amkor Technology, Inc. | Making semiconductor packages with stacked dies and reinforced wire bonds |
US6404062B1 (en) * | 1999-03-05 | 2002-06-11 | Fujitsu Limited | Semiconductor device and structure and method for mounting the same |
US6441485B1 (en) * | 2000-05-11 | 2002-08-27 | Amkor Technology, Inc. | Apparatus for electrically mounting an electronic device to a substrate without soldering |
US6486554B2 (en) * | 2001-03-30 | 2002-11-26 | International Business Machines Corporation | Molded body for PBGA and chip-scale packages |
US6617684B2 (en) * | 1996-05-24 | 2003-09-09 | Micron Technology, Inc. | Packaged die on PCB with heat sink encapsulant |
US6661104B2 (en) * | 2000-08-30 | 2003-12-09 | Micron Technology, Inc. | Microelectronic assembly with pre-disposed fill material and associated method of manufacture |
US6667557B2 (en) * | 2001-03-22 | 2003-12-23 | International Business Machines Corporation | Method of forming an apparatus to reduce thermal fatigue stress on flip chip solder connections |
US6700209B1 (en) * | 1999-12-29 | 2004-03-02 | Intel Corporation | Partial underfill for flip-chip electronic packages |
US20040238925A1 (en) * | 2003-05-23 | 2004-12-02 | Paul Morganelli | Pre-applied thermoplastic reinforcement for electronic components |
US20040262368A1 (en) * | 2003-06-26 | 2004-12-30 | Haw Tan Tzyy | Ball grid array solder joint reliability |
US20050077080A1 (en) * | 2003-10-14 | 2005-04-14 | Adesoji Dairo | Ball grid array (BGA) package having corner or edge tab supports |
US6890789B2 (en) * | 2001-01-19 | 2005-05-10 | Matsushita Electric Industrial Co., Ltd. | Photo-semiconductor module and method for manufacturing the same |
US6933619B2 (en) * | 1997-04-24 | 2005-08-23 | International Business Machines Corporation | Electronic package and method of forming |
US6984286B2 (en) * | 2001-01-17 | 2006-01-10 | International Business Machines Corporation | Adjusting fillet geometry to couple a heat spreader to a chip carrier |
US7064452B2 (en) * | 2003-11-04 | 2006-06-20 | Tai-Saw Technology Co., Ltd. | Package structure with a retarding structure and method of making same |
US7141448B2 (en) * | 1999-03-03 | 2006-11-28 | Intel Corporation | Controlled collapse chip connection (C4) integrated circuit package which has two dissimilar underfill materials |
US20060267215A1 (en) * | 2005-05-31 | 2006-11-30 | Hideki Ogawa | Semiconductor device, semiconductor device mounting board, and method for mounting semiconductor device |
US20070035021A1 (en) * | 2005-08-10 | 2007-02-15 | Daigo Suzuki | Printed circuit board and electronic apparatus including printed circuit board |
US20080061312A1 (en) * | 2006-09-12 | 2008-03-13 | Gelcore Llc | Underfill for light emitting device |
JP2008166377A (en) * | 2006-12-27 | 2008-07-17 | Toshiba Corp | Manufacturing method for printed circuit board, printed circuit board and reinforcing electronic part |
US20080303145A1 (en) * | 2007-05-30 | 2008-12-11 | Kabushiki Kaisha Toshiba | Printed Circuit Board, Printed Circuit Board Manufacturing Method and Electronic Device |
US20080308930A1 (en) * | 2007-06-15 | 2008-12-18 | Hisahiko Yoshida | Semiconductor device mounting structure, manufacturing method, and removal method of semiconductor device |
US20090014873A1 (en) * | 2007-07-13 | 2009-01-15 | Yasuo Yokota | Electronic device and manufacturing method |
US20090134529A1 (en) * | 2007-11-28 | 2009-05-28 | Kabushiki Kaisha Toshiba | Circuit board module, electric device, and method for producing circuit board module |
US20090200684A1 (en) * | 2007-12-28 | 2009-08-13 | Naomi Masuda | Flip chip package with shelf and method of manufactguring there of |
US20100000773A1 (en) * | 2006-09-22 | 2010-01-07 | Matsushita Electric Industrial Co., Ltd. | Electronic component mounting structure |
US7682879B2 (en) * | 2006-03-28 | 2010-03-23 | Seagate Technology Llc | Edge coating a microelectronic device |
US20100187672A1 (en) * | 2009-01-29 | 2010-07-29 | Kabushiki Kaisha Toshiba | Electronic apparatus and circuit board |
US20100309628A1 (en) * | 2009-06-03 | 2010-12-09 | Kabushiki Kaisha Toshiba | Electronic device |
US7919356B2 (en) * | 2007-07-31 | 2011-04-05 | International Business Machines Corporation | Method and structure to reduce cracking in flip chip underfill |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07131145A (en) | 1993-11-08 | 1995-05-19 | Matsushita Electric Ind Co Ltd | Soldering method for electronic component |
JPH11163049A (en) | 1997-11-28 | 1999-06-18 | Matsushita Electric Ind Co Ltd | Structure and method of mounting electronic component with bump |
JP3417281B2 (en) | 1998-01-08 | 2003-06-16 | 松下電器産業株式会社 | How to mount electronic components with bumps |
JP3890814B2 (en) | 1999-05-25 | 2007-03-07 | 株式会社デンソー | Electronic component mounting method |
JP2002198384A (en) * | 2000-12-27 | 2002-07-12 | Matsushita Electric Ind Co Ltd | Semiconductor device and its fabrication method |
US6562663B2 (en) * | 2001-03-28 | 2003-05-13 | Motorola, Inc. | Microelectronic assembly with die support and method |
JP3565204B2 (en) * | 2001-12-28 | 2004-09-15 | 三菱電機株式会社 | Electronic equipment |
JP3948289B2 (en) | 2002-01-22 | 2007-07-25 | 松下電器産業株式会社 | Electronic component mounting method |
JP3912342B2 (en) | 2003-07-08 | 2007-05-09 | 松下電器産業株式会社 | Electronic component mounting method |
JP2005032795A (en) | 2003-07-08 | 2005-02-03 | Matsushita Electric Ind Co Ltd | Electronic part mounting structure and electronic part mounting method |
WO2005093817A1 (en) * | 2004-03-29 | 2005-10-06 | Nec Corporation | Semiconductor device and process for manufacturing the same |
US20080036097A1 (en) * | 2006-08-10 | 2008-02-14 | Teppei Ito | Semiconductor package, method of production thereof and encapsulation resin |
JP2008053347A (en) | 2006-08-23 | 2008-03-06 | Seiko Epson Corp | Device, manufacturing method therefor, circuit substrate, and electronic apparatus |
JP2009021465A (en) * | 2007-07-13 | 2009-01-29 | Panasonic Corp | Semiconductor device mounting structure, method of manufacturing same, and method of peeling semiconductor device |
US8129230B2 (en) * | 2009-08-11 | 2012-03-06 | International Business Machines Corporation | Underfill method and chip package |
-
2010
- 2010-04-19 US US13/003,996 patent/US20110108997A1/en not_active Abandoned
- 2010-04-19 WO PCT/JP2010/002800 patent/WO2010122757A1/en active Application Filing
- 2010-04-19 CN CN2010800022176A patent/CN102105971B/en active Active
- 2010-04-19 EP EP10766819.6A patent/EP2423955B8/en active Active
-
2013
- 2013-11-27 US US14/092,407 patent/US9331047B2/en active Active
Patent Citations (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6617684B2 (en) * | 1996-05-24 | 2003-09-09 | Micron Technology, Inc. | Packaged die on PCB with heat sink encapsulant |
US6274389B1 (en) * | 1997-01-17 | 2001-08-14 | Loctite (R&D) Ltd. | Mounting structure and mounting process from semiconductor devices |
US5891753A (en) * | 1997-01-24 | 1999-04-06 | Micron Technology, Inc. | Method and apparatus for packaging flip chip bare die on printed circuit boards |
US5898224A (en) * | 1997-01-24 | 1999-04-27 | Micron Technology, Inc. | Apparatus for packaging flip chip bare die on printed circuit boards |
US5814401A (en) * | 1997-02-04 | 1998-09-29 | Motorola, Inc. | Selectively filled adhesive film containing a fluxing agent |
US6933619B2 (en) * | 1997-04-24 | 2005-08-23 | International Business Machines Corporation | Electronic package and method of forming |
US6093972A (en) * | 1997-05-19 | 2000-07-25 | Motorola, Inc. | Microelectronic package including a polymer encapsulated die |
US5936304A (en) * | 1997-12-10 | 1999-08-10 | Intel Corporation | C4 package die backside coating |
US6049124A (en) * | 1997-12-10 | 2000-04-11 | Intel Corporation | Semiconductor package |
US6046910A (en) * | 1998-03-18 | 2000-04-04 | Motorola, Inc. | Microelectronic assembly having slidable contacts and method for manufacturing the assembly |
US7141448B2 (en) * | 1999-03-03 | 2006-11-28 | Intel Corporation | Controlled collapse chip connection (C4) integrated circuit package which has two dissimilar underfill materials |
US6404062B1 (en) * | 1999-03-05 | 2002-06-11 | Fujitsu Limited | Semiconductor device and structure and method for mounting the same |
US6700209B1 (en) * | 1999-12-29 | 2004-03-02 | Intel Corporation | Partial underfill for flip-chip electronic packages |
US6441485B1 (en) * | 2000-05-11 | 2002-08-27 | Amkor Technology, Inc. | Apparatus for electrically mounting an electronic device to a substrate without soldering |
US6661104B2 (en) * | 2000-08-30 | 2003-12-09 | Micron Technology, Inc. | Microelectronic assembly with pre-disposed fill material and associated method of manufacture |
US6340846B1 (en) * | 2000-12-06 | 2002-01-22 | Amkor Technology, Inc. | Making semiconductor packages with stacked dies and reinforced wire bonds |
US6984286B2 (en) * | 2001-01-17 | 2006-01-10 | International Business Machines Corporation | Adjusting fillet geometry to couple a heat spreader to a chip carrier |
US6890789B2 (en) * | 2001-01-19 | 2005-05-10 | Matsushita Electric Industrial Co., Ltd. | Photo-semiconductor module and method for manufacturing the same |
US6667557B2 (en) * | 2001-03-22 | 2003-12-23 | International Business Machines Corporation | Method of forming an apparatus to reduce thermal fatigue stress on flip chip solder connections |
US6486554B2 (en) * | 2001-03-30 | 2002-11-26 | International Business Machines Corporation | Molded body for PBGA and chip-scale packages |
US20040238925A1 (en) * | 2003-05-23 | 2004-12-02 | Paul Morganelli | Pre-applied thermoplastic reinforcement for electronic components |
US20040262368A1 (en) * | 2003-06-26 | 2004-12-30 | Haw Tan Tzyy | Ball grid array solder joint reliability |
US20050077080A1 (en) * | 2003-10-14 | 2005-04-14 | Adesoji Dairo | Ball grid array (BGA) package having corner or edge tab supports |
US7064452B2 (en) * | 2003-11-04 | 2006-06-20 | Tai-Saw Technology Co., Ltd. | Package structure with a retarding structure and method of making same |
US20060267215A1 (en) * | 2005-05-31 | 2006-11-30 | Hideki Ogawa | Semiconductor device, semiconductor device mounting board, and method for mounting semiconductor device |
US20070035021A1 (en) * | 2005-08-10 | 2007-02-15 | Daigo Suzuki | Printed circuit board and electronic apparatus including printed circuit board |
US7682879B2 (en) * | 2006-03-28 | 2010-03-23 | Seagate Technology Llc | Edge coating a microelectronic device |
US20080061312A1 (en) * | 2006-09-12 | 2008-03-13 | Gelcore Llc | Underfill for light emitting device |
US7843074B2 (en) * | 2006-09-12 | 2010-11-30 | Lumination Llc | Underfill for light emitting device |
US20100000773A1 (en) * | 2006-09-22 | 2010-01-07 | Matsushita Electric Industrial Co., Ltd. | Electronic component mounting structure |
JP2008166377A (en) * | 2006-12-27 | 2008-07-17 | Toshiba Corp | Manufacturing method for printed circuit board, printed circuit board and reinforcing electronic part |
US20080303145A1 (en) * | 2007-05-30 | 2008-12-11 | Kabushiki Kaisha Toshiba | Printed Circuit Board, Printed Circuit Board Manufacturing Method and Electronic Device |
US20080308930A1 (en) * | 2007-06-15 | 2008-12-18 | Hisahiko Yoshida | Semiconductor device mounting structure, manufacturing method, and removal method of semiconductor device |
US20090014873A1 (en) * | 2007-07-13 | 2009-01-15 | Yasuo Yokota | Electronic device and manufacturing method |
US7919356B2 (en) * | 2007-07-31 | 2011-04-05 | International Business Machines Corporation | Method and structure to reduce cracking in flip chip underfill |
US20090134529A1 (en) * | 2007-11-28 | 2009-05-28 | Kabushiki Kaisha Toshiba | Circuit board module, electric device, and method for producing circuit board module |
US20090200684A1 (en) * | 2007-12-28 | 2009-08-13 | Naomi Masuda | Flip chip package with shelf and method of manufactguring there of |
US20100187672A1 (en) * | 2009-01-29 | 2010-07-29 | Kabushiki Kaisha Toshiba | Electronic apparatus and circuit board |
US20100309628A1 (en) * | 2009-06-03 | 2010-12-09 | Kabushiki Kaisha Toshiba | Electronic device |
US8072759B2 (en) * | 2009-06-03 | 2011-12-06 | Kabushiki Kaisha Toshiba | Electronic device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102800634A (en) * | 2011-05-23 | 2012-11-28 | 松下电器产业株式会社 | Mounting structure of semiconductor package component and manufacturing method therefor |
US20120299202A1 (en) * | 2011-05-23 | 2012-11-29 | Panasonic Corporation | Mounting structure of semiconductor package component and manufacturing method therefor |
US8664773B2 (en) * | 2011-05-23 | 2014-03-04 | Panasonic Corporation | Mounting structure of semiconductor package component and manufacturing method therefor |
US20150181740A1 (en) * | 2012-09-06 | 2015-06-25 | Panasonic Intellectual Property Management Co., Ltd. | Mounting structure and method for supplying reinforcing resin material |
US9955604B2 (en) * | 2012-09-06 | 2018-04-24 | Panasonic Intellectual Property Management Co., Ltd. | Mounting structure and method for supplying reinforcing resin material |
US20170211769A1 (en) * | 2016-01-27 | 2017-07-27 | Lite-On Electronics (Guangzhou) Limited | Vehicle lamp device and light-emitting module thereof |
US20200011498A1 (en) * | 2016-01-27 | 2020-01-09 | Lite-On Electronics (Guangzhou) Limited | Light-emitting module for vehicle lamp |
US10823355B2 (en) * | 2016-01-27 | 2020-11-03 | Lite-On Electronics (Guangzhou) Limited | Light-emitting module for vehicle lamp |
US11506352B2 (en) * | 2016-01-27 | 2022-11-22 | Lite-On Electronics (Guangzhou) Limited | Light-emitting module for vehicle lamp |
Also Published As
Publication number | Publication date |
---|---|
US9331047B2 (en) | 2016-05-03 |
WO2010122757A1 (en) | 2010-10-28 |
US20140120663A1 (en) | 2014-05-01 |
EP2423955B1 (en) | 2019-09-04 |
CN102105971B (en) | 2013-05-22 |
EP2423955B8 (en) | 2019-10-09 |
EP2423955A1 (en) | 2012-02-29 |
EP2423955A4 (en) | 2013-04-10 |
CN102105971A (en) | 2011-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9331047B2 (en) | Mounting method and mounting structure for semiconductor package component | |
US9237686B2 (en) | Method and system for producing component mounting board | |
CN107872922B (en) | Printed circuit board, electronic device, and method for manufacturing printed circuit board | |
US20150371931A1 (en) | Semiconductor device and method for producing same | |
KR101975076B1 (en) | Mounting structure and method for manufacturing same | |
US9603295B2 (en) | Mounted structure and manufacturing method of mounted structure | |
CN102800634B (en) | The assembling structure of semiconductor packing device and manufacture method | |
JP5569676B2 (en) | Electronic component mounting method | |
US20150373845A1 (en) | Electronic component mounting structure and method of manufacturing electronic component mounting structure | |
JP2002373914A (en) | Electronic component connection structure | |
JP2003100809A (en) | Flip-chip mounting method | |
JP5464897B2 (en) | Mounting method and mounting structure for semiconductor package components | |
US20110140270A1 (en) | Semiconductor mounting substrate and method for manufacturing the same | |
JP2014143316A (en) | Resin sealing method of flip chip component | |
JP5707569B2 (en) | Mounting method and mounting structure for semiconductor package components | |
JPH11111755A (en) | Manufacture of semiconductor device | |
JP4381795B2 (en) | Electronic component mounting method | |
JP2010267792A (en) | Semiconductor device and manufacturing method therefor | |
JP2004289083A (en) | Substrate for mounting electronic component and method of mounting electronic component | |
JP2001007503A (en) | Mounting method for electronic part | |
JP2015002235A (en) | Electronic component-mounting method | |
CN107749748B (en) | Surface acoustic wave filter chip packaging structure | |
JP2006332354A (en) | Printed circuit board and manufacturing method thereof | |
JP2006005208A (en) | Semiconductor device and its mounting method | |
JP2017152652A (en) | Mounting structure of semiconductor component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PANASONIC CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OHASHI, NAOMICHI;YAMAGUCHI, ATSUSHI;KISHI, ARATA;AND OTHERS;SIGNING DATES FROM 20100825 TO 20100830;REEL/FRAME:025853/0981 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:034194/0143 Effective date: 20141110 Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:034194/0143 Effective date: 20141110 |
|
AS | Assignment |
Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD., JAPAN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ERRONEOUSLY FILED APPLICATION NUMBERS 13/384239, 13/498734, 14/116681 AND 14/301144 PREVIOUSLY RECORDED ON REEL 034194 FRAME 0143. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:056788/0362 Effective date: 20141110 |